WO2023243174A1 - Substrate inspection device, film forming device, substrate inspection method, and film forming method - Google Patents

Substrate inspection device, film forming device, substrate inspection method, and film forming method Download PDF

Info

Publication number
WO2023243174A1
WO2023243174A1 PCT/JP2023/011332 JP2023011332W WO2023243174A1 WO 2023243174 A1 WO2023243174 A1 WO 2023243174A1 JP 2023011332 W JP2023011332 W JP 2023011332W WO 2023243174 A1 WO2023243174 A1 WO 2023243174A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reference point
board
carrier
corner
Prior art date
Application number
PCT/JP2023/011332
Other languages
French (fr)
Japanese (ja)
Inventor
和憲 谷
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2023243174A1 publication Critical patent/WO2023243174A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to a substrate inspection apparatus, a film deposition apparatus including the substrate inspection apparatus, a substrate inspection method using the substrate inspection apparatus, and a film deposition method including the substrate inspection method.
  • An organic EL display device is known as a flat panel display device.
  • An organic EL element that constitutes an organic EL display device has a basic structure in which a functional layer having a light-emitting layer, which is an organic layer that causes light emission, is formed between two opposing electrodes (a cathode electrode and an anode electrode).
  • the functional layer and electrode layer of an organic EL element are formed by depositing the materials constituting each layer on a substrate such as glass through a mask in a film deposition apparatus.
  • Patent Document 1 discloses a method of irradiating the surface of a substrate with a line-shaped light that straddles the width direction perpendicular to the conveyance direction of the substrate, taking images while conveying the substrate, and connecting multiple images to obtain an image of the entire substrate. Discloses a technology for detecting cracks in the substrate by acquiring an image of the substrate and detecting the edges of the substrate from the image.
  • the present invention has been made in view of the above problems, and aims to provide a technique for detecting cracks in a substrate with a simple configuration at low cost.
  • the board inspection device of the present invention includes: support means for supporting the substrate; Photographing means for photographing the substrate supported by the supporting means; determining means for determining whether a crack has occurred in the substrate based on the photographic result of the photographing means; Equipped with The determining means is characterized in that it determines whether a crack has occurred in the substrate based on a distance between a first reference point and a second reference point calculated based on the photographic result.
  • the substrate inspection method of the present invention includes: A board inspection method using a board inspection apparatus comprising a support means for supporting a board, and a photographing means for photographing the board supported by the support means, the method comprising: performing a determination step of determining whether a crack has occurred in the substrate based on the photographing result of the photographing means;
  • the determination step is characterized in that it is determined whether a crack has occurred in the substrate based on a distance between a first reference point and a second reference point calculated based on the photographic results.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus.
  • FIG. 2 is a schematic configuration diagram of a substrate lifting device provided in a carrier delivery chamber.
  • FIG. 3 is a diagram illustrating a state in which a substrate carrier is carried into a carrier delivery chamber.
  • FIG. 3 is a diagram illustrating a state in which a substrate is being carried into a carrier delivery chamber.
  • FIG. 3 is a diagram showing how a substrate is supported by a substrate lifting device in a carrier delivery chamber.
  • FIG. 3 is a diagram illustrating a state in which a substrate is held by a substrate carrier in a carrier delivery chamber.
  • FIG. 2 is a plan view illustrating the configuration of a substrate and a substrate carrier.
  • FIG. 3 is a cross-sectional view of the suction pad and clamp of the substrate carrier.
  • FIG. 3 is a diagram showing a peeling method for peeling a substrate from a substrate carrier. It is a figure which shows the photographed image and edge image of a board
  • FIG. 3 is a diagram showing diagonal dimensions of a substrate obtained in a substrate crack inspection.
  • FIG. 3 is a flow diagram of a crack inspection of a board. It is a schematic block diagram of a film-forming chamber.
  • FIG. 2 is a diagram illustrating the configuration of an electronic device.
  • the present invention can be applied, for example, to a film forming apparatus that forms a thin film of a film forming material on the surface of an object to be film-formed, such as a substrate, by vapor deposition or sputtering while conveying the film-forming object, such as a substrate, and forms a thin film with a desired pattern by vacuum evaporation. It can be desirably applied to an apparatus for forming (a material film). Any material such as glass, a film of a polymeric material, a silicon wafer, or metal can be selected as the material of the substrate, and the substrate may be, for example, a substrate in which a film of polyimide or the like is deposited on a glass substrate. .
  • the present invention can also be applied to film forming apparatuses including sputtering apparatuses and CVD (Chemical Vapor Deposition) apparatuses.
  • the technology of the present invention is applicable to manufacturing equipment for organic electronic devices (eg, organic light emitting elements, thin film solar cells), optical members, and the like.
  • an organic light emitting device manufacturing apparatus that forms an organic light emitting device by evaporating a deposition material and depositing it on a substrate through a mask is one of the preferred application examples of the present invention.
  • the substrate inspection apparatus of the present invention is not limited to this, and can be applied to the various manufacturing apparatuses described above.
  • FIG. 1 is a plan view showing a schematic configuration of a film forming apparatus according to an embodiment of the present invention.
  • a film forming apparatus used in an organic EL display production line will be described.
  • a substrate of a predetermined size is carried into a film forming apparatus, and organic EL and metal layers are formed.
  • the substrate after film formation is carried out to a post-process and undergoes post-processing such as cutting the substrate.
  • a film forming apparatus called an in-line type will be described as an example.
  • a plurality of chambers are arranged side by side, and a substrate, a substrate carrier, and a mask are sequentially transported into each chamber, and various processes are performed in each chamber.
  • a transport roller or a linear motor is used as a transport means.
  • a plurality of conveyance rollers are arranged along the conveyance direction on both sides of the conveyance path, and are rotated by the driving force of an AC servo motor (not shown) to convey the substrate carrier 100 and the mask M into and out of each room. do.
  • Each chamber is configured so that a vacuum atmosphere or an inert gas atmosphere can be created for each chamber or for each of a plurality of adjacent chambers.
  • the film forming apparatus is equipped with a vacuum pump (not shown).
  • the film forming apparatus to which the substrate inspection apparatus of the present invention is applied is not limited to an in-line type, but may be a cluster type film forming apparatus.
  • a cluster type film forming apparatus a film is formed on a substrate while being transported between a plurality of chambers arranged around a transport robot.
  • FIG. 1 among the plurality of chambers, only the chamber that performs typical processing is shown with the symbol R, and the other chambers are omitted with black dots. Further, in FIG. 1, a thin solid line arrow indicates a transport route of the substrate carrier 100, a thin broken line arrow indicates a transport route of the substrate 200, and a thick solid line arrow indicates a transport route of the mask M.
  • the operation of the devices provided in each room is controlled by a control unit C such as a computer.
  • the control section C can be provided individually for each device, or a common control section C can be provided for a plurality of devices. Generally, it is a well-known technology that various operations are controlled by a control unit.
  • the control unit C for example, an information processing device or a processing circuit equipped with computational resources such as a processor and a memory can be used.
  • the substrate carrier 100 and the substrate 200 are sent to the substrate placement chamber R1, and the substrate 200 is held above the substrate carrier 100 in the substrate placement chamber R1.
  • the substrate carrier 100 is arranged with the substrate holding surface facing upward in the vertical direction.
  • the substrate 200 carried into the substrate mounting chamber R1 is placed on the holding surface of the substrate carrier 100 so that the surface to be film-formed faces upward in the vertical direction.
  • the film forming apparatus images the substrate 200 to obtain position information, and performs position adjustment (first alignment) so that the substrate 200 is at a predetermined position on the substrate carrier 100.
  • the substrate carrier 100 and the substrate 200 held by the substrate carrier 100 are transported to the reversing chamber R2.
  • a reversing mechanism for reversing the orientation of the substrate holding surface of the substrate carrier 100 from vertically upward to vertically downward is arranged in the reversing chamber R2.
  • the substrate carrier 100 is rotated 180 degrees upside down together with the substrate 200 so that the substrate 200 is held below the substrate carrier 100.
  • the mask M is transported to the reversing chamber R2 from a route different from the transport route of the substrate carrier 100.
  • the substrate carrier 100 holding the substrate 200 on the lower side is placed on the mask M.
  • the substrate 200 held by the substrate carrier 100 is then transported to the film forming chamber R3 together with the mask M sent to the reversing chamber R2. Note that the rotation of the substrate carrier 100, the joining with the mask M, and the mounting on the mask M may be performed in separate chambers.
  • An alignment device that aligns the substrate carrier 100 (and the substrate 200 held therein) and the mask M is arranged in the reversing chamber R2.
  • the alignment device places the substrate carrier 100 on the mask M in a state where the substrate 200 and the mask M have a predetermined positional relationship in the in-plane direction of the film-forming surface of the substrate 200.
  • the film forming apparatus images the substrate 200 and the mask M to acquire positional information, and adjusts the position of the substrate 200 and the mask M in the in-plane direction. 2 alignment).
  • a thin film is formed on the surface of the substrate 200 through a mask M having an opening at a desired film forming position, and then the substrate carrier 100 and the like are transported to the mask unloading chamber R4.
  • Ru a plurality of film forming chambers R3 are provided as shown in FIG. 1 so that thin films can be formed using different materials. Therefore, normally, by transporting the substrate 200 once, a film forming process is performed in one specific film forming chamber R3.
  • the substrate 200 held by the substrate carrier 100 is lifted from the mask M in the mask unloading chamber R4.
  • the mask M that has been used a predetermined number of times is carried out from the mask carrying-out chamber R4 to the outside of the apparatus.
  • the substrate 200 held by the substrate carrier 100 and the mask M to be used again are transported from the mask unloading room R4 to the relay room R5.
  • the mask M in the relay room R5 is transported toward the reversal room R2.
  • a mask stocker may be arranged on the production line to store a plurality of masks M and take them out as needed.
  • the substrate carrier 100 and the substrate 200 in the relay room R5 are inverted in an inversion chamber (not shown) so that the film-forming surface of the substrate 200 and the substrate holding surface of the substrate carrier 100 face upward in the vertical direction, and then transferred to the substrate separation chamber. It is transported to R6.
  • the substrate 200 is separated from the substrate carrier 100 in the substrate separation chamber R6.
  • the substrate carrier 100 is carried out to the outside of the film forming apparatus or transported to the substrate mounting chamber R1 again. Further, the substrate 200 peeled off from the substrate carrier 100 is taken out to the outside.
  • the present invention is not limited to the deposit-up configuration as shown in FIG. 1, but may also take a deposit-down configuration or a side deposit configuration.
  • the substrate 200 is inspected for cracks. Details of the crack inspection method for the substrate 200 will be described later.
  • the configuration of the substrate lifting device arranged in the substrate mounting chamber R1 will be described with reference to FIG. 2.
  • the substrate lifting device includes a carrier delivery chamber 300, a lifting mechanism 400, and a clamp rotation mechanism 500 as a clamp driving means. Note that a plurality of lifting mechanisms 400 having a similar configuration may be arranged.
  • FIG. 2 is a diagram showing a schematic configuration of the carrier delivery chamber 300 and the substrate lifting device according to this embodiment.
  • the carrier delivery chamber 300 includes an opening 311 through which the substrate carrier 100 passes, a carrier gate valve 312 that can open and close this opening 311, an opening 321 through which the substrate 200 passes, and a gate valve 312 for substrates that can open and close this opening 321.
  • a gate valve 322 is provided. Note that the opening 311 and the carrier gate valve 312 are provided on the back side and the front side of the plane of FIG. 2, respectively. As a result, the substrate carrier 100 enters the carrier delivery chamber 300 from the back side of the page and is carried out to the outside of the carrier delivery chamber 300 toward the front side of the page. Although not shown, the opening 311 and the carrier gate valve 312 are also provided on the right side of the carrier delivery chamber 300.
  • the carrier delivery chamber 300 is provided with a carrier support member 330 that supports the substrate carrier 100 when the substrate 200 is placed on the substrate carrier 100.
  • This carrier support member 330 supports the outer periphery of the substrate carrier 100 so as not to interfere with the operation of support pins provided in the elevating mechanism.
  • the carrier support member 330 may be provided with an opening in a region through which the support pin passes.
  • a conveyance roller for conveying the substrate carrier 100 may be provided in the substrate mounting chamber R1 (carrier delivery chamber 300). In this case, when the substrate 200 is placed on the substrate carrier 100, the transport roller can support the substrate carrier 100.
  • the carrier delivery room 300 is provided with an imaging means 350 (photographing means). Although only one imaging means 350 is shown in each figure, generally a plurality of imaging means 350 are provided.
  • the control unit C can perform positional adjustment (alignment) of the substrate carrier 100 and the substrate 200 by acquiring position information from an image of the substrate carrier 100 and the substrate 200 taken by the imaging means 350.
  • a wide-angle imaging means 350 that can image the entire board may be provided, or a plurality of imaging means 350 that have a field of view that can image a part of the substrate 200 may be provided.
  • the imaging means 350 is arranged so that the viewing angle includes at least part of the sides and ends of the substrate 200.
  • the imaging means 350 can also have a role as a determining means for determining the type of the substrate carrier 100 or the type of the substrate 200. For example, various marks are attached depending on the type of the substrate carrier 100, and the type of the substrate carrier 100 can be determined based on the marks imaged by the imaging means 350.
  • the imaging means 350 used for alignment and the imaging means 350 as a discrimination means may be provided separately, or one of the plurality of imaging means 350 generally provided for alignment may also be used as a discrimination means. You can also do it.
  • the entire substrate lifting device may be disposed in the substrate placement chamber R1, or the carrier transfer chamber 300 may correspond to the substrate placement chamber R1. In the latter case, most of the structure of the lifting mechanism (other than the support pin 411) and most of the structure of the clamp rotation mechanism 500 (other than the push-in pin 511) are arranged outside the substrate mounting chamber R1. will be done.
  • the elevating mechanism 400 includes a plurality of support pins 411, a first plate 410 that supports the plurality of support pins 411, and a ball screw mechanism 420 as a first elevating means for elevating the first plate 410.
  • the ball screw mechanism 420 includes a motor 421, a screw shaft 422 rotated by the motor 421, a nut portion 423 that moves up and down along the screw shaft 422 as the screw shaft 422 rotates, and a nut portion fixed to the nut portion 423.
  • a column 424 that moves up and down together with 423 is provided.
  • a plurality of balls are configured to circulate endlessly between the inner circumferential surface of the nut portion 423 and the outer circumferential surface of the screw shaft 422.
  • the first plate 410 is supported by a column 424, and the support pin 411 moves up and down together with the first plate 410 as the screw shaft 422 rotates.
  • the plurality of support pins 411 serving as support means for supporting the substrate 200 are configured to be able to abut against the substrate 200 from below in the vertical direction, and as the support pins 411 move up and down within the carrier delivery chamber 300, the substrate 200 is supported. 200 goes up and down.
  • a ball screw mechanism is employed as the elevating means for elevating and lowering the plate, but other known techniques such as a rack and pinion system may also be employed as the elevating means.
  • the substrate lifting device also includes an alignment mechanism 430 as alignment means that adjusts the position of the substrate 200 with respect to the substrate carrier 100 by moving the plurality of support pins 411 in a direction perpendicular to the lifting direction of the substrate 200.
  • the direction in which the substrate 200 is raised and lowered is the vertical direction. Therefore, the alignment mechanism 430 is configured to be able to move the plurality of support pins 411 in the horizontal direction.
  • the alignment mechanism 430 has a first rail 431 extending in the left-right direction (hereinafter referred to as the "X-axis direction”) in FIG. ”). Note that both the X-axis direction and the Y-axis direction are perpendicular to the vertical direction.
  • the second rail 432 is configured to be able to reciprocate along the first rail 431.
  • the alignment mechanism 430 includes a pedestal 433 on which the elevating mechanism 400 is placed. This pedestal 433 is configured to be able to reciprocate along the second rail 432.
  • the alignment mechanism 430 also includes a first shaft portion 434 fixed to the pedestal 433 and extending in the X-axis direction, and a second shaft portion 436 fixed to the pedestal 433 and extending in the Y-axis direction. Further, the alignment mechanism 430 includes a moving mechanism 435 that moves the first shaft portion 434 in the X-axis direction, and a moving mechanism (not shown) that moves the second shaft portion 436 in the Y-axis direction.
  • various known techniques such as a ball screw mechanism or a rack and pinion type mechanism can be adopted.
  • the alignment mechanism 430 configured as described above, by moving the elevating mechanism 400 together with the pedestal 433 in the X-axis direction and the Y-axis direction, the plurality of support pins 411 can be moved in the horizontal direction. Thereby, the substrate 200 placed on the plurality of support pins 411 can be moved and adjusted in the horizontal direction, and the position of the substrate 200 with respect to the substrate carrier 100 can be adjusted.
  • the clamp rotation mechanism 500 includes a plurality of push pins 511, a clamp plate 510 that supports the plurality of push pins 511, and a ball screw mechanism 520 that moves the clamp plate 510 up and down.
  • the ball screw mechanism 520 includes a motor 521, a screw shaft 522 rotated by the motor 521, a nut portion 523 that moves up and down along the screw shaft 522 as the screw shaft 522 rotates, and a nut portion fixed to the nut portion 523.
  • a support column 524 that moves up and down together with 523 is provided.
  • a plurality of balls are configured to endlessly circulate between the inner circumferential surface of the nut portion 523 and the outer circumferential surface of the screw shaft 522.
  • the clamping plate 510 is supported by a support 524, and the push pin 511 moves up and down together with the clamping plate 510 as the screw shaft 522 rotates.
  • a ball screw mechanism is employed as the elevating means for elevating and lowering the clamp plate 510
  • other known techniques such as a rack and pinion system may also be employed as the elevating means.
  • FIG. 3 is a diagram showing how the substrate carrier 100 is carried into the carrier delivery chamber 300.
  • FIG. 4 is a diagram showing a state in which the substrate 200 is being carried into the carrier delivery chamber 300.
  • FIG. 5 is a diagram showing how the substrate 200 is supported by the support pins 411.
  • FIG. 6 is a diagram showing how the substrate 200 is held by the substrate carrier 100.
  • the opening 311 is opened by the operation of the carrier gate valve 312, and the substrate carrier 100 is carried into the carrier delivery chamber 300.
  • the substrate carrier 100 carried into the carrier delivery chamber 300 is supported by a carrier support member 330 (see FIG. 3). Note that in order to make the configuration of each part easier to understand, illustration of the opening 311 and the carrier gate valve 312 is omitted in the drawings from FIG. 3 onwards.
  • the substrate carrier 100 is provided with a plurality of clamps 110 for holding the substrate 200 on the substrate carrier 100.
  • the clamp 110 is rotatably provided on the substrate carrier 100 in a state where it is biased in a first rotational direction, which is a direction in which the substrate 200 held by the substrate carrier 100 is clamped.
  • a first rotational direction which is a direction in which the substrate 200 held by the substrate carrier 100 is clamped.
  • the clamp 110 on the left side is rotatably provided on the substrate carrier 100 in a state in which it is biased clockwise
  • the clamp 110 on the right side is in a state in which it is biased in a counterclockwise direction. is rotatably provided on the substrate carrier 100.
  • the opening 321 is opened by the operation of the substrate gate valve 322, and the substrate 200 is carried into the carrier delivery chamber 300 (see FIG. 4).
  • the substrate 200 is carried into the carrier delivery chamber 300 by a transfer robot.
  • FIG. 4 only a part of the hand part 250 which supports the board
  • This hand portion 250 is generally provided in a comb-like shape so as not to interfere with the operation of the support pin 411 and the like.
  • the plurality of support pins 411 are raised to a predetermined position together with the first plate 410 by the lifting mechanism 400.
  • the plurality of support pins 411 are provided so as to be able to pass through the plurality of through holes provided in the substrate carrier 100, and the tips of the plurality of support pins 411 are above the upper surface of the substrate carrier 100 and are carried in. It moves to a position below the bottom surface of the substrate 200.
  • the plurality of push pins 511 are raised together with the clamp plate 510 by the clamp rotation mechanism 500, and the tips of the respective push pins 511 push in the corresponding clamps 110, respectively.
  • the clamp 110 rotates in the second rotation direction opposite to the first rotation direction, and the substrate 200 can be placed on the substrate carrier 100 from above (see FIG. 4).
  • the order of carrying the substrate 200 into the carrier delivery chamber 300, lifting the first plate 410 by the elevating mechanism 400, and lifting the clamp plate 510 by the clamp rotation mechanism 500 is not particularly limited, and they may be performed simultaneously. I don't mind.
  • the first plate 410 is lowered to a predetermined position by the lifting mechanism 400. This brings the substrate 200 sufficiently close to the substrate carrier 100 (see FIG. 5).
  • the alignment mechanism 430 adjusts the movement of the substrate 200 in the X-axis direction and the Y-axis direction, and adjusts the position of the substrate 200 with respect to the substrate carrier 100. Thereafter, the first plate 410 is further lowered by the lifting mechanism 400, and the tips of the plurality of support pins 411 move below the lower surface of the substrate carrier 100. During this process, the substrate 200 is placed on the substrate carrier 100. Note that the substrate carrier 100 is provided with a plurality of suction pads 130 (see FIG. 8), and the substrate 200 is in a state of being suctioned by the plurality of suction pads 130. Note that simply placing the substrate 200 on the substrate carrier 100 may result in insufficient suction by the suction pad 130, so by pressing the substrate 200 downward, the suction by the suction pad 130 can be made more reliable. It is also preferable to go through a process.
  • the clamp plate 510 is lowered by the clamp rotation mechanism 500.
  • the push pin 511 separates from the clamp 110, and the clamp 110 rotates in the first rotation direction to sandwich the substrate 200 between the substrate carriers 100.
  • the substrate 200 is held by the substrate carrier 100 (see FIG. 6).
  • the substrate 200 held as described above is taken out from the carrier delivery chamber 300 together with the substrate carrier 100 and transported to the reversing chamber R2.
  • FIG. 7(a) is a top view of the substrate 200.
  • the substrate 200 has a substantially rectangular shape, and is cut in a post-process along cutting lines 211 and 212 shown by dashed lines in FIG.
  • the inner part surrounded by dotted lines in the figure becomes an image display section and corresponds to the display element area.
  • FIG. 7(b) is a top view of the substrate carrier 100.
  • the substrate carrier 100 is provided with a plurality of clamps 110. The number and arrangement of the clamps 110 may be appropriately set depending on the size and weight of the substrate carrier and the substrate 200.
  • the substrate carrier 100 has a plurality of through holes 121 provided in a predetermined central area (in the area surrounded by a broken line in FIG. 7(b)) and a plurality of through holes provided along the outer periphery of the substrate carrier 100. 122.
  • the plurality of through holes 121 are provided along the cutting lines 211 and 212 in the substrate 200, and are located outside the area surrounded by the dotted line in FIG. 7(a). It is set up to be located.
  • the plurality of through holes 122 are provided along the outer periphery of the substrate 200 and are located outside the area surrounded by the dotted line in FIG. 7(a). It is set up like this.
  • the plurality of through holes 121 and 122 are used for the purpose of passing the support pin 411 through and for the purpose of attaching the suction pad 130.
  • the arrangement of the through-holes through which the support pins 411 pass and the through-holes through which the suction pads 130 are attached can be set as appropriate, such as alternately providing them.
  • the hole diameter of the through hole used for the support pin 411 to pass through and the hole diameter of the through hole used for the suction pad 130 to be attached may be set to be the same, or may be set to be different. Good too.
  • FIG. 8 is a sectional view taken along line AA in FIG. 7(b).
  • the diameter of the through hole 121 through which the support pin 411 passes is set to be larger than the outer diameter of the support pin 411. This allows the support pin 411 to pass through the through hole, and also allows the support pin 411 to move horizontally with respect to the substrate carrier 100 during alignment.
  • a displacement prevention member 411a made of an elastic material such as rubber is provided at the tip of the support pin 411 to suppress displacement of the substrate 200.
  • the suction pad 130 is attached to the substrate carrier 100 while being inserted into the through hole for the suction pad 130.
  • the suction pad 130 includes a metal pad body 131 having a flange portion 131a, an adhesive member 132 provided at the tip of the pad body 131 via an adhesive layer (not shown), and an adhesive member 132 for fixing the pad body 131 to a through hole.
  • a fixing member 133 is provided. Note that the flange portion 131a and the fixing member 133 are integrated by a known method. Further, the fixing member 133 and the substrate carrier 100 can be fixed using known techniques such as bolts.
  • the material for the adhesive member 132 it is preferable to use fluororubber that does not contain siloxane bonds in order to suppress the generation of outgas that adversely affects the manufacturing process under vacuum. Furthermore, as for the material constituting the adhesive layer, it is desirable to use a known adhesive or double-sided tape that does not emit outgas components.
  • This adhesive member 132 is configured to be adjustable in the vertical direction in the figure within a certain range using a spacer or the like (not shown) so that the amount of protrusion from the surface of the substrate carrier 100 can be controlled. The above amount of protrusion is less than the thickness of the substrate 200, although it depends on the size of the members constituting the suction pad 130 and the compression characteristics of the adhesive member 132.
  • the hole diameter of the through hole for the suction pad 130 is larger than the outer diameter of the portion of the pad body 131 inserted into the through hole, and the pad body 131 is allowed to swing up and down to a certain extent in addition to vertical movement.
  • the clamp 110 is provided on the substrate carrier 100 so as to be rotatable around the shaft portion 110a. Further, the clamp 110 is biased in the first rotation direction by a spring 110b serving as a biasing member. As described above, when pushed in by the push-in pin 511, the clamp 110 rotates in the second rotational direction against the biasing force of the spring 110b, and when the push-in pin 511 is released, it rotates in the first rotational direction due to the biasing force of the spring 110b. do.
  • the state of the clamp 110 rotated in the second rotation direction by the push pin 511 is shown by a solid line
  • the state of the clamp 110 when the push pin 511 is separated and rotated in the first rotation direction is shown by a dotted line.
  • the clamp 110 rotates around a shaft portion 110a along the film-forming surface of the substrate 200. Therefore, when the clamp 110 is pushed in by the push pin 511, the clamp 110 can be retracted from above the substrate holding area of the substrate carrier 100. In this way, a path for placing the substrate 200 on the substrate carrier 100 can be secured with a simple configuration.
  • FIG. 9A is a diagram showing how the substrate 200 is held by the substrate carrier 100 in the substrate separation chamber R6.
  • FIG. 9(b) is a diagram showing a state in which the push pin 511 is raised and the clamp 110 is rotated in the second rotation direction.
  • FIG. 9C is a diagram showing how the support pins 411 are raised and the substrate 200 is peeled off from the substrate carrier 100.
  • the substrate carrier 100 holding the substrate 200 is carried into the carrier delivery chamber 300 with the first plate 410 and the clamping plate 510 waiting below, and these are supported by the carrier support member 330 (see FIG. 9). a)).
  • the clamp rotation mechanism 500 raises the plurality of push pins 511 together with the clamp plate 510, and the tip of each push pin 511 pushes the corresponding clamp 110.
  • the clamp 110 rotates in the second rotation direction opposite to the first rotation direction, and becomes in a state where the substrate 200 can be separated from the substrate carrier 100 (see FIG. 9(b)).
  • the plurality of support pins 411 are raised together with the first plate 410 to a predetermined position by the lifting mechanism 400.
  • the substrate 200 is pushed in by the plurality of support pins 411, peeled off from the substrate carrier 100, and raised to a predetermined position (see FIG. 9(c)).
  • the substrate 200 is carried out from the carrier delivery chamber 300 by the transfer robot. Further, after the plurality of support pins 411 are lowered together with the first plate 410, the substrate carrier 100 is carried out from the carrier delivery chamber 300 and is carried out to the outside of the film forming apparatus, or transported again to the substrate mounting chamber R1. be done.
  • ⁇ Crack inspection of board> As described above, a peeling operation for peeling the substrate 200 from the substrate carrier 100 is performed in the substrate peeling chamber R6. However, since the substrate 200 is bonded to the substrate carrier 100 by the suction pad 130, cracks may occur in the substrate 200 during the peeling process. Even if a crack occurs in the substrate 200 in a vacuum device such as the substrate separation chamber R6, the operator cannot visually detect it, and if broken pieces remain in the vacuum device, it may lead to equipment failure. . Therefore, the film forming apparatus according to this embodiment is configured to perform a crack inspection to detect the presence or absence of cracks in the substrate 200 in the substrate peeling chamber R6 after the peeling operation.
  • control unit C calculates the distance between the reference points of the substrate 200 based on the photographic result of the imaging means 350, and determines whether a crack has occurred in the substrate 200 based on the distance.
  • the details of the substrate inspection apparatus and inspection method in the substrate separation chamber R6 according to this embodiment will be explained.
  • the crack inspection is started with the substrate 200 supported by the support pins 411 (the state shown in FIG. 9(c)) after the support pins 411 are lifted and the substrate 200 is peeled off from the substrate carrier 100.
  • an image is taken by the imaging means 350 from the film-forming surface side of the substrate 200 so as to include the edge portions near the four corners of the substrate 200.
  • the imaging means 350 is configured so that four images are obtained by the imaging means 350 and the four corners of the substrate 200 are included in the viewing angle of the imaging means 350 in each image.
  • the imaging means 350 includes four cameras, each of which images each of the four corners of the substrate 200. That is, although not shown, cameras are provided at positions corresponding to each of the four corners of the board 200.
  • the board inspection apparatus only needs to be provided with imaging means 350 that can take images of at least the peripheral areas of each of the four corners of the board 200, and may be provided with a wide-angle imaging means 350 that can take images of the entire board. .
  • an optical imaging device is used in which the control unit C can control the amount of illumination light from the light source, the shutter speed, the gain value, etc.
  • the control unit C can adjust the obtained image by controlling at least one of the light amount, shutter speed, and gain value.
  • the control unit C of this embodiment analyzes the image taken by the imaging means 350 and recognizes the sides forming the surface of the substrate 200 as edges. Therefore, even if, for example, the board 200 is cracked and supported at an angle by the support pins 411, and the vertical position of the board 200 changes compared to when no crack has occurred, it is possible to adjust each parameter. It is possible to obtain an image with recognizable edges.
  • FIG. 10(a) is a diagram showing the positional relationship between the viewing angles of the substrate 200 and the imaging means 350, and four viewing angles 351 to 354 are indicated by two-dot chain lines.
  • FIG. 10B is a diagram showing an image taken by the imaging means 350, and shows the inside of the viewing angle 351.
  • FIG. 10(c) is a diagram showing an image taken by the imaging means 350, and shows the inside of the viewing angle 352.
  • the imaging means 350 performs imaging so that the four corners of the substantially rectangular substrate 200 are included in each captured image.
  • the range of the viewing angle 351 that includes the first corner of the substrate 200 in the imaging range includes the edge 210A of the substrate 200 and the edge 210C orthogonal to the edge 210A.
  • the substrate 200 of this embodiment has chamfered corners and has a corner edge 210B.
  • a carrier mark may be formed on a part of the substrate carrier 100 for alignment.
  • the control unit C can recognize the edges of the substrate 200 from the image taken by the imaging means 350 and obtain the coordinates of the intersections of the edges. At the viewing angle 351, the coordinates of the intersection 220A of the edge 210A and the edge 210C are obtained, and positional information around the first corner of the substrate 200 is obtained.
  • the range of the viewing angle 352 for imaging a second corner diagonally to the first corner of the substrate 200 includes an edge 210D parallel to the edge 210A of the substrate 200 and an edge perpendicular to the edge 210D. 210F and a corner edge 210E.
  • the control unit C obtains position information of the intersection 220B as the intersection coordinates of the edge 210A and the edge 210C.
  • the control unit C calculates the distance L1 between the intersection 220A and the intersection 220B. Calculate.
  • the viewing angle 353 for imaging the third corner and the viewing angle 354 for imaging the fourth corner, and the distance L2 between the intersections of edges included in each are also calculated by the control unit C. Ru. That is, in this embodiment, the imaging means 350 and the control unit C acquire positional information of the intersection of two sides as a reference point provided at the position closest to each of the first corner to the fourth corner, and We can obtain two diagonal distances.
  • FIG. 11(a) is a diagram showing the top and front sides of the substrate 200 with no cracks.
  • FIG. 11(b) is a diagram showing the top and front sides of the substrate 200 where cracks have occurred. If there is a crack in the board 200, the board 200 may be tilted and supported by the support pins 411, or the position may shift due to the impact when the board 200 is cracked. There is a difference in distance L1b when there is a difference. Therefore, in this embodiment, the distances L1 and L2 between the reference points located at diagonal positions of the substrate 200 are calculated, and if either of the distances L1 or L2 deviates from a predetermined theoretical value range, , the control unit C as a determining means determines that the substrate 200 has a crack.
  • two distances between reference points on the board are acquired and used for detecting cracks in the board, but it is also possible to use only one piece of distance information for detecting cracks in the board.
  • a configuration may also be adopted in which distances other than diagonal distances are also acquired and more distance information is used.
  • ⁇ Crack inspection processing flow> Referring to FIG. 12, a processing flow for inspecting cracks in the substrate 200 of this embodiment will be described.
  • the substrate 200 and the substrate carrier 100 are carried into the substrate separation chamber R6.
  • the board 200 is carried in such that the edge thereof is roughly included in the viewing angle 351 to viewing angle 354 of the imaging means 350.
  • a crack inspection of the substrate 200 is started (S100).
  • step S101 the imaging means 350 images four locations around the corners of the substrate 200.
  • the control unit C stores the photographed image in a memory and performs image processing such as filter processing on the photographed image to create an edge image.
  • step S102 the control unit C determines whether an edge can be detected from the edge image.
  • the control unit C of this embodiment also functions as a determination unit that determines whether a problem occurs in photographing an edge image.
  • the detection method is arbitrary; for example, at the viewing angle 351, it may be determined whether line segments corresponding to the edges 210A, 210B, and 210C can be extracted from the edge image. For example, the determination may be made by comparing the acquired edge image with an image pattern of an assumed edge image.
  • the process proceeds to step S103, the user is notified of the error occurrence and the error type, and the crack inspection ends (S108).
  • step S104 the control unit C acquires the intersection coordinates from the edge.
  • the intersection point 220A first reference point
  • the intersection point 220B second reference point
  • edge 210D and edge 210F included in viewing angle 352.
  • Coordinates are acquired as location information.
  • the coordinates of the intersection of edges included in viewing angle 353 (third reference point) and the intersection of edges included in viewing angle 354 (fourth reference point) are also acquired as position information.
  • step S105 the control unit C calculates a diagonal distance as the distance between intersection points located at diagonal positions on the substrate 200.
  • the distance between the intersection point 220A in the viewing angle 351 and the intersection point 220B in the viewing angle 352, and the distance between the intersection point in the viewing angle 353 and the intersection point in the viewing angle 354 are the diagonal distances. Calculated.
  • step S106 the control unit C checks whether the calculated diagonal distance is within the theoretical value range and determines whether the substrate 200 is cracked.
  • the theoretical value range is set to the design value ⁇ 3 mm in consideration of manufacturing errors, measurement errors, and the like. Note that the theoretical value range is not limited to this value, and can be determined as appropriate depending on the configuration of the substrate and the device. If the diagonal distance is within the theoretical value range, the control unit C determines that there is no crack in the substrate 200, and after the crack inspection is completed (S108), the substrate 200 and the substrate carrier 100 are automatically transferred to the substrate separation chamber. It is carried out from R6.
  • step S106 determines that a crack has occurred in the board 200, and in step S107, an alarm indicates that a crack has been detected.
  • the user is notified and the crack inspection ends (S108).
  • the user manually removes the substrate 200 from the substrate separation chamber R6.
  • the method of notifying the user is not limited to an alarm, and may be a method using other notification means such as notification on a display screen.
  • a part of the board can be photographed while the board is stationary, and cracks in the board can be detected within the vacuum apparatus from the photographed results.
  • a crack in the board was detected based on the diagonal distance of the board, but instead of the diagonal distance, it may be determined whether a crack has occurred in the board based on another distance between intersection points. It's okay. Specifically, we check whether the distances between the four intersection points along the four sides of a roughly rectangular board are within the theoretical value range, and if any of them is outside the theoretical distance range, cracks have occurred in the board. It may be configured to determine that.
  • the intersection of the edges was used as the reference point of the board, but it is also possible to provide a board mark in a part other than the image display area on the board and use other things such as the board mark as the reference point. Also good.
  • the structure is such that the crack inspection of the substrate is performed in the substrate peeling chamber, but a structure may be adopted in which the crack test of the substrate is performed in a chamber other than the substrate peeling chamber.
  • the board inspection device according to the present invention may be used to inspect the board for cracks before the board is held on the board carrier, and the device and order for testing the board for cracks may be as described above. This is not limited to examples.
  • An evaporation source 600 as a film forming source is provided in the film forming chamber R3.
  • the substrate 200 held by the substrate carrier 100 is positioned and supported within the film forming chamber R3 so that it faces downward.
  • a mask M is also arranged below the substrate 200 in a state in which it is positioned with respect to the substrate 200.
  • the mask M is provided with an opening at a position corresponding to a position where a thin film is to be formed on the substrate 200. Thereby, film formation is performed on the substrate 200 held by the substrate carrier 100 via the mask M.
  • film formation is performed by vacuum evaporation.
  • the film-forming material is evaporated or sublimated from the evaporation source 600, and the film-forming material is vapor-deposited onto the substrate 200 to form a thin film on the substrate 200.
  • the evaporation source 600 is a known technique, detailed explanation thereof will be omitted.
  • the evaporation source 600 can be configured with a container such as a crucible that contains a film forming material, a heating device that heats the container, and the like.
  • the film forming source is not limited to the evaporation source 600, and may be a sputtering cathode for forming a film by sputtering.
  • FIG. 14(a) is an overall view of the organic EL display device 700
  • FIG. 14(b) is a cross-sectional view of one pixel.
  • each light emitting element has a structure including an organic layer sandwiched between a pair of electrodes.
  • the pixel herein refers to the smallest unit that can display a desired color in the display area 701.
  • a pixel 702 is configured by a combination of a first light emitting element 702R, a second light emitting element 702G, and a third light emitting element 702B, which emit light different from each other.
  • the pixel 702 is often composed of a combination of a red light-emitting element, a green light-emitting element, and a blue light-emitting element, but it may also be a combination of a yellow light-emitting element, a cyan light-emitting element, and a white light-emitting element. There are no restrictions.
  • FIG. 14(b) is a schematic partial cross-sectional view taken along line BB in FIG. 14(a).
  • the pixel 702 consists of a plurality of light emitting elements, and each light emitting element has a first electrode (anode) 704, a hole transport layer 705, one of the light emitting layers 706R, 706G, and 706B, and an electron transport layer on a substrate 703. It has a layer 707 and a second electrode (cathode) 708.
  • the hole transport layer 705, the light emitting layers 706R, 706G, and 706B, and the electron transport layer 707 correspond to organic layers.
  • the light-emitting layer 706R is an organic EL layer that emits red
  • the light-emitting layer 706G is an organic EL layer that emits green
  • the light-emitting layer 706B is an organic EL layer that emits blue.
  • the light-emitting layers 706R, 706G, and 706B are formed in patterns corresponding to light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue, respectively.
  • the first electrode 704 is formed separately for each light emitting element.
  • the hole transport layer 705, the electron transport layer 707, and the second electrode 708 may be formed in common for the plurality of light emitting elements 702R, 702G, and 702B, or may be formed for each light emitting element.
  • an insulating layer 709 is provided between the first electrodes 704 in order to prevent the first electrodes 704 and the second electrodes 708 from shorting due to foreign matter.
  • a protective layer 710 is provided to protect the organic EL element from moisture and oxygen.
  • hole transport layer 705 and electron transport layer 707 are shown as one layer in FIG. 14(b), depending on the structure of the organic EL display element, they may be formed as multiple layers including a hole blocking layer and an electron blocking layer. may be formed. Further, between the first electrode 704 and the hole transport layer 705, a positive hole having an energy band structure that allows holes to be smoothly injected from the first electrode 704 to the hole transport layer 705 is provided. A hole injection layer can also be formed. Similarly, an electron injection layer can also be formed between the second electrode 708 and the electron transport layer 707.
  • a substrate (mother glass) 703 on which a circuit (not shown) for driving an organic EL display device and a first electrode 704 are formed is prepared.
  • Acrylic resin is formed by spin coating on the substrate 703 on which the first electrode 704 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the part where the first electrode 704 is formed, and an insulating layer is formed. Form 709. This opening corresponds to the light emitting region where the light emitting element actually emits light.
  • a substrate 703 with a patterned insulating layer 709 is placed on a substrate carrier on which an adhesive member is arranged.
  • the substrate 703 is held by the adhesive member.
  • a hole transport layer 705 is formed as a common layer on the first electrode 704 in the display area.
  • the hole transport layer 705 is formed by vacuum deposition. In reality, the hole transport layer 705 is formed to have a larger size than the display area 701, so a high-definition mask is not required.
  • the substrate 703 on which up to the hole transport layer 705 has been formed is carried into a second organic material film forming apparatus.
  • the substrate and the mask are aligned, the substrate is placed on the mask, and a light-emitting layer 706R that emits red light is formed on a portion of the substrate 703 where an element that emits red light is to be arranged.
  • a light-emitting layer 706G that emits green light is formed by a third organic material film-forming device, and a light-emitting layer 706B that emits blue light is further formed by a fourth organic material film-forming device.
  • the electron transport layer 707 is formed over the entire display area 701 using a fifth film formation apparatus.
  • the electron transport layer 707 is formed as a layer common to the three color light emitting layers 706R, 706G, and 706B.
  • a second electrode 708 is formed by moving the substrate on which the electron transport layer 707 has been formed using a metal vapor deposition material film forming apparatus.
  • the film is moved to a plasma CVD apparatus and a protective layer 710 is formed, thereby completing the film forming process on the substrate 703.
  • the adhesive member is peeled off from the substrate 703 to separate the substrate 703 from the substrate carrier.
  • the organic EL display device 700 is completed through cutting.
  • the substrate 703 on which the insulating layer 709 has been patterned is exposed to an atmosphere containing moisture or oxygen from the time the substrate 703 on which the insulating layer 709 has been patterned is carried into the film forming apparatus until the film forming of the protective layer 710 is completed, the light emitting layer made of the organic EL material may There is a risk of deterioration due to moisture and oxygen. Therefore, in this embodiment, substrates are carried in and out between film forming apparatuses under a vacuum atmosphere or an inert gas atmosphere.

Abstract

Used is a substrate inspection device characterized by comprising: a support means for supporting a substrate; a photographing means for photographing the substrate supported by the support means; and a determination means for determining whether a crack has occurred in the substrate on the basis of the photographing result of the photographing means. The substrate inspection device is characterized in that the determination means determines whether the crack has occurred in the substrate on the basis of a distance calculated between a first reference point and a second reference point on the basis of the photographing result.

Description

基板検査装置、成膜装置、基板検査方法及び成膜方法Substrate inspection equipment, film deposition equipment, substrate inspection method, and film deposition method
 本発明は、基板検査装置、基板検査装置を備える成膜装置、基板検査装置を用いた基板検査方法、及び基板検査方法を含む成膜方法に関する。 The present invention relates to a substrate inspection apparatus, a film deposition apparatus including the substrate inspection apparatus, a substrate inspection method using the substrate inspection apparatus, and a film deposition method including the substrate inspection method.
 フラットパネル表示装置として有機EL表示装置が知られている。有機EL表示装置を構成する有機EL素子は、2つの向かい合う電極(カソード電極及びアノード電極)の間に、発光を起こす有機物層である発光層を有する機能層が形成された基本構造を持つ。有機EL素子の機能層及び電極層は、成膜装置内で、それぞれの層を構成する材料をマスクを介してガラスなどの基板に成膜することで形成される。 An organic EL display device is known as a flat panel display device. An organic EL element that constitutes an organic EL display device has a basic structure in which a functional layer having a light-emitting layer, which is an organic layer that causes light emission, is formed between two opposing electrodes (a cathode electrode and an anode electrode). The functional layer and electrode layer of an organic EL element are formed by depositing the materials constituting each layer on a substrate such as glass through a mask in a film deposition apparatus.
 成膜装置が成膜を行う際に、撮像装置を用いて基板を撮影して得られた画像を、基板のアライメントや検査などに利用する場合がある。特許文献1は、基板の面に対して基板の搬送方向と直交する幅方向で跨ぐようなライン状の光を照射した上で基板を搬送しながら撮像し、複数の画像を繋げることで基板全体の画像を取得し、当該画像から基板のエッジを検出して基板の割れを検知する技術を開示している。 When a film forming apparatus performs film formation, an image obtained by photographing a substrate using an imaging device may be used for alignment, inspection, etc. of the substrate. Patent Document 1 discloses a method of irradiating the surface of a substrate with a line-shaped light that straddles the width direction perpendicular to the conveyance direction of the substrate, taking images while conveying the substrate, and connecting multiple images to obtain an image of the entire substrate. Discloses a technology for detecting cracks in the substrate by acquiring an image of the substrate and detecting the edges of the substrate from the image.
特開2017-150937号公報JP 2017-150937 Publication
 しかしながら、基板を搬送しながら連続して撮像を行う上記構成においては、搬送手段による基板の保持が不十分で搬送中に基板が動いてしまうと適切な画像が得られず基板の割れが検知できない。従って、撮像を邪魔しないように、かつ十分に基板を保持して高精度に搬送可能な搬送手段が必要となり、設備コストが大きくなる。 However, in the above configuration in which images are taken continuously while the substrate is being transported, if the substrate is not sufficiently held by the transport means and moves during transport, an appropriate image cannot be obtained and cracks in the board cannot be detected. . Therefore, a transport means is required that can sufficiently hold the substrate and transport it with high precision without interfering with imaging, which increases the equipment cost.
 本発明は上記課題に鑑みてなされたものであり、低コストで簡易的な構成で基板の割れを検知する技術を提供することを目的とする。 The present invention has been made in view of the above problems, and aims to provide a technique for detecting cracks in a substrate with a simple configuration at low cost.
 本発明の基板検査装置は、
 基板を支持する支持手段と、
 前記支持手段により支持された前記基板の撮影を行う撮影手段と、
 前記撮影手段の撮影結果を基に前記基板に割れが生じているか判定する判定手段と、
を備え、
 前記判定手段は、前記撮影結果を基に算出された第1の基準点と第2の基準点との間の距離に基づいて、前記基板に割れが生じているか判定することを特徴とする。
 また、本発明の基板検査方法は、
 基板を支持する支持手段と、前記支持手段により支持された前記基板の撮影を行う撮影手段と、を備える基板検査装置を用いた基板検査方法であって、
 前記撮影手段の撮影結果を基に前記基板に割れが生じているか判定する判定工程を行い、
 前記判定工程は、前記撮影結果を基に算出された第1の基準点と第2の基準点との間の距離に基づいて、前記基板に割れが生じているか判定することを特徴とする。
The board inspection device of the present invention includes:
support means for supporting the substrate;
Photographing means for photographing the substrate supported by the supporting means;
determining means for determining whether a crack has occurred in the substrate based on the photographic result of the photographing means;
Equipped with
The determining means is characterized in that it determines whether a crack has occurred in the substrate based on a distance between a first reference point and a second reference point calculated based on the photographic result.
Further, the substrate inspection method of the present invention includes:
A board inspection method using a board inspection apparatus comprising a support means for supporting a board, and a photographing means for photographing the board supported by the support means, the method comprising:
performing a determination step of determining whether a crack has occurred in the substrate based on the photographing result of the photographing means;
The determination step is characterized in that it is determined whether a crack has occurred in the substrate based on a distance between a first reference point and a second reference point calculated based on the photographic results.
 本発明によれば、低コストで簡易的な構成で基板の割れを検知する技術を提供することができる。 According to the present invention, it is possible to provide a technique for detecting cracks in a substrate with a low cost and simple configuration.
成膜装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a film forming apparatus. キャリア受渡室に設けられる基板昇降装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a substrate lifting device provided in a carrier delivery chamber. キャリア受渡室に基板キャリアが搬入された様子を示す図である。FIG. 3 is a diagram illustrating a state in which a substrate carrier is carried into a carrier delivery chamber. キャリア受渡室に基板が搬入される途中の様子を示す図である。FIG. 3 is a diagram illustrating a state in which a substrate is being carried into a carrier delivery chamber. キャリア受渡室で基板が基板昇降装置に支持される様子を示す図である。FIG. 3 is a diagram showing how a substrate is supported by a substrate lifting device in a carrier delivery chamber. キャリア受渡室で基板が基板キャリアに保持された様子を示す図である。FIG. 3 is a diagram illustrating a state in which a substrate is held by a substrate carrier in a carrier delivery chamber. 基板と基板キャリアの構成を説明する平面図である。FIG. 2 is a plan view illustrating the configuration of a substrate and a substrate carrier. 基板キャリアの吸着パッドとクランプの断面図である。FIG. 3 is a cross-sectional view of the suction pad and clamp of the substrate carrier. 基板キャリアから基板を剥離する剥離方法を示す図である。FIG. 3 is a diagram showing a peeling method for peeling a substrate from a substrate carrier. 基板と基板キャリアの撮影画像とエッジ画像を示す図である。It is a figure which shows the photographed image and edge image of a board|substrate and a board|substrate carrier. 基板の割れ検査で取得する基板の対角寸法を示す図である。FIG. 3 is a diagram showing diagonal dimensions of a substrate obtained in a substrate crack inspection. 基板の割れ検査のフロー図である。FIG. 3 is a flow diagram of a crack inspection of a board. 成膜室の概略構成図である。It is a schematic block diagram of a film-forming chamber. 電子デバイスの構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of an electronic device.
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。 EMBODIMENT OF THE INVENTION Below, with reference to drawings, the form for carrying out this invention is illustratively described in detail based on an Example. However, the dimensions, materials, shapes, and relative arrangement of the components described in this embodiment should be changed as appropriate depending on the configuration of the device to which the invention is applied and various conditions. That is, the scope of the present invention is not intended to be limited to the following embodiments.
 本発明は、例えば、基板等の成膜対象物を搬送しながらその表面に蒸着やスパッタリングにより成膜材料の薄膜を形成する成膜装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料膜)を形成する装置に望ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、シリコンウェハ、金属などの任意の材料を選択でき、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが堆積された基板であってもよい。また、蒸着材料としても、有機材料、金属製材料(金属、金属酸化物など)などの任意の材料を選択してもよい。なお、以下の説明において説明する真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機発光素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、蒸着材料を蒸発させてマスクを介して基板に蒸着させることで有機発光素子を形成する有機発光素子の製造装置は、本発明の好ましい適用例の一つである。以下、本発明を電子デバイスの製造装置に適用した場合を例に説明するが、本発明の基板検査装置はこれに限られず、上記の各種製造装置に適用可能である。 The present invention can be applied, for example, to a film forming apparatus that forms a thin film of a film forming material on the surface of an object to be film-formed, such as a substrate, by vapor deposition or sputtering while conveying the film-forming object, such as a substrate, and forms a thin film with a desired pattern by vacuum evaporation. It can be desirably applied to an apparatus for forming (a material film). Any material such as glass, a film of a polymeric material, a silicon wafer, or metal can be selected as the material of the substrate, and the substrate may be, for example, a substrate in which a film of polyimide or the like is deposited on a glass substrate. . Further, as the vapor deposition material, any material such as an organic material or a metallic material (metal, metal oxide, etc.) may be selected. In addition to the vacuum deposition apparatus described in the following description, the present invention can also be applied to film forming apparatuses including sputtering apparatuses and CVD (Chemical Vapor Deposition) apparatuses. Specifically, the technology of the present invention is applicable to manufacturing equipment for organic electronic devices (eg, organic light emitting elements, thin film solar cells), optical members, and the like. Among these, an organic light emitting device manufacturing apparatus that forms an organic light emitting device by evaporating a deposition material and depositing it on a substrate through a mask is one of the preferred application examples of the present invention. Hereinafter, a case where the present invention is applied to an electronic device manufacturing apparatus will be described as an example, but the substrate inspection apparatus of the present invention is not limited to this, and can be applied to the various manufacturing apparatuses described above.
 (実施例)
 <成膜装置>
 図1は本発明の実施例に係る成膜装置の概略構成を示す平面図である。ここでは有機ELディスプレイの製造ラインにおける成膜装置について説明する。有機ELディスプレイを製造する場合、成膜装置に所定のサイズの基板を搬入し、有機ELや金属層の成膜を行う。成膜後の基板は後工程に搬出され、基板のカットなどの後処理を受ける。
(Example)
<Film forming equipment>
FIG. 1 is a plan view showing a schematic configuration of a film forming apparatus according to an embodiment of the present invention. Here, a film forming apparatus used in an organic EL display production line will be described. When manufacturing an organic EL display, a substrate of a predetermined size is carried into a film forming apparatus, and organic EL and metal layers are formed. The substrate after film formation is carried out to a post-process and undergoes post-processing such as cutting the substrate.
 本実施例においては、インライン型と呼ばれる成膜装置を例にして説明する。インライン型の成膜装置においては、複数の室(チャンバ)が並ぶように配されており、基板、基板キャリア、及びマスクは、順次各室内に搬送され、各室内において各種処理が施される。基板等の搬送には、搬送手段として搬送ローラやリニアモータが用いられる。搬送ローラは、搬送経路の両脇に搬送方向に沿って複数配置されており、それぞれ不図示のACサーボモータの駆動力により回転することで、基板キャリア100やマスクMを各室の内外へ搬送する。各室においては、個々の室毎、又は隣り合う複数の室毎に、真空雰囲気又は不活性ガス雰囲気とすることができるように構成されている。真空容器の内部の真空状態を維持するために、成膜装置は不図示の真空ポンプを備えている。 In this embodiment, a film forming apparatus called an in-line type will be described as an example. In an in-line type film forming apparatus, a plurality of chambers are arranged side by side, and a substrate, a substrate carrier, and a mask are sequentially transported into each chamber, and various processes are performed in each chamber. To transport the substrate, etc., a transport roller or a linear motor is used as a transport means. A plurality of conveyance rollers are arranged along the conveyance direction on both sides of the conveyance path, and are rotated by the driving force of an AC servo motor (not shown) to convey the substrate carrier 100 and the mask M into and out of each room. do. Each chamber is configured so that a vacuum atmosphere or an inert gas atmosphere can be created for each chamber or for each of a plurality of adjacent chambers. In order to maintain the vacuum state inside the vacuum container, the film forming apparatus is equipped with a vacuum pump (not shown).
 なお、本発明の基板検査装置が適用される成膜装置はインライン型に限定されず、クラスタ型の成膜装置であってもよい。クラスタ型の成膜装置では、基板が、搬送ロボットを中心に配置された複数の室の間を搬送されながら成膜される。 Note that the film forming apparatus to which the substrate inspection apparatus of the present invention is applied is not limited to an in-line type, but may be a cluster type film forming apparatus. In a cluster type film forming apparatus, a film is formed on a substrate while being transported between a plurality of chambers arranged around a transport robot.
 図1においては、複数の室のうち、代表的な処理を施す室についてのみ、符号Rを付して示し、その他の室については黒点により省略している。また、図1中、細い実線の矢印は基板キャリア100の搬送経路を示し、細い破線の矢印は基板200の搬送経路を示し、太い実線の矢印はマスクMの搬送経路を示している。各室に備えられる装置の動作はコンピュータなどの制御部Cにより制御される。制御部Cについては、各装置に対して個別に設けることもできるし、複数の装置に対して共通の制御部Cを設けることもできる。一般的に、各種動作が制御部により制御されること自体は周知技術である。制御部Cとしては、例えばプロセッサやメモリなどの演算資源を備える情報処理装置や処理回路を使用できる。 In FIG. 1, among the plurality of chambers, only the chamber that performs typical processing is shown with the symbol R, and the other chambers are omitted with black dots. Further, in FIG. 1, a thin solid line arrow indicates a transport route of the substrate carrier 100, a thin broken line arrow indicates a transport route of the substrate 200, and a thick solid line arrow indicates a transport route of the mask M. The operation of the devices provided in each room is controlled by a control unit C such as a computer. The control section C can be provided individually for each device, or a common control section C can be provided for a plurality of devices. Generally, it is a well-known technology that various operations are controlled by a control unit. As the control unit C, for example, an information processing device or a processing circuit equipped with computational resources such as a processor and a memory can be used.
 まず、基板載置室R1に基板キャリア100と基板200が送られ、基板載置室R1にて、基板200は基板キャリア100の上側に保持される。基板載置室R1内では、基板キャリア100は基板保持面が鉛直方向上を向いた状態で配置されている。基板載置室R1に搬入された基板200は、被成膜面が鉛直方向上を向くように、基板キャリア100の保持面に載置される。この載置時に成膜装置は基板200を撮像して位置情報を取得し、基板200が基板キャリア100上の所定の位置にくるように位置調整(第1のアライメント)を行う。基板キャリア100と、基板キャリア100に保持された基板200は、反転室R2に搬送される。 First, the substrate carrier 100 and the substrate 200 are sent to the substrate placement chamber R1, and the substrate 200 is held above the substrate carrier 100 in the substrate placement chamber R1. In the substrate mounting chamber R1, the substrate carrier 100 is arranged with the substrate holding surface facing upward in the vertical direction. The substrate 200 carried into the substrate mounting chamber R1 is placed on the holding surface of the substrate carrier 100 so that the surface to be film-formed faces upward in the vertical direction. During this placement, the film forming apparatus images the substrate 200 to obtain position information, and performs position adjustment (first alignment) so that the substrate 200 is at a predetermined position on the substrate carrier 100. The substrate carrier 100 and the substrate 200 held by the substrate carrier 100 are transported to the reversing chamber R2.
 反転室R2には、基板キャリア100の基板保持面の向きを鉛直方向上向きから鉛直方向下向きに反転させる反転機構が配置されている。反転室R2において、基板200が基板キャリア100の下側に保持されるように、基板キャリア100は基板200と共に、上下逆になるように180°回転する。 A reversing mechanism for reversing the orientation of the substrate holding surface of the substrate carrier 100 from vertically upward to vertically downward is arranged in the reversing chamber R2. In the reversing chamber R2, the substrate carrier 100 is rotated 180 degrees upside down together with the substrate 200 so that the substrate 200 is held below the substrate carrier 100.
 更に、マスクMが基板キャリア100の搬送経路とは別の経路から反転室R2に搬送される。反転室R2では、下側に基板200を保持した基板キャリア100が、マスクMの上に載置される。そして、この反転室R2に送られてきたマスクMと共に、基板キャリア100に保持された基板200は成膜室R3へと搬送される。なお、基板キャリア100の回転、マスクMとの合流、マスクMへの載置が、それぞれ別のチャンバで行われてもよい。 Further, the mask M is transported to the reversing chamber R2 from a route different from the transport route of the substrate carrier 100. In the reversing chamber R2, the substrate carrier 100 holding the substrate 200 on the lower side is placed on the mask M. The substrate 200 held by the substrate carrier 100 is then transported to the film forming chamber R3 together with the mask M sent to the reversing chamber R2. Note that the rotation of the substrate carrier 100, the joining with the mask M, and the mounting on the mask M may be performed in separate chambers.
 反転室R2には、基板キャリア100(及びそれに保持される基板200)と、マスクMとを位置合わせするアライメント装置が配置されている。アライメント装置は、基板200とマスクMが基板200の被成膜面の面内方向において所定の位置関係となるようにした状態で、マスクMに基板キャリア100を載置する。反転室R2において基板キャリア100をマスクMに載置するとき、成膜装置は基板200及びマスクMを撮像して位置情報を取得し、基板200とマスクMの面内方向での位置調整(第2のアライメント)を行う。 An alignment device that aligns the substrate carrier 100 (and the substrate 200 held therein) and the mask M is arranged in the reversing chamber R2. The alignment device places the substrate carrier 100 on the mask M in a state where the substrate 200 and the mask M have a predetermined positional relationship in the in-plane direction of the film-forming surface of the substrate 200. When placing the substrate carrier 100 on the mask M in the reversing chamber R2, the film forming apparatus images the substrate 200 and the mask M to acquire positional information, and adjusts the position of the substrate 200 and the mask M in the in-plane direction. 2 alignment).
 続いて、成膜室R3にて、所望の成膜位置に開口を有するマスクMを介して、基板200の表面に薄膜が形成された後に、基板キャリア100等は、マスク搬出室R4に搬送される。なお、一般的に、異なる材料によって薄膜を形成できるように、図1に示すように複数の成膜室R3が設けられている。従って、通常、1回の基板200の搬送により、特定の一箇所の成膜室R3にて、成膜処理が施される。 Subsequently, in the film forming chamber R3, a thin film is formed on the surface of the substrate 200 through a mask M having an opening at a desired film forming position, and then the substrate carrier 100 and the like are transported to the mask unloading chamber R4. Ru. Note that, generally, a plurality of film forming chambers R3 are provided as shown in FIG. 1 so that thin films can be formed using different materials. Therefore, normally, by transporting the substrate 200 once, a film forming process is performed in one specific film forming chamber R3.
 成膜後、マスク搬出室R4において、基板キャリア100に保持された基板200は、マスクMから持ち上げられる。使用回数が所定の回数に到達したマスクMは、マスク搬出室R4から装置外部へ搬出される。基板キャリア100に保持された基板200、及び再度使用されるマスクMは、マスク搬出室R4から中継室R5へ搬送される。中継室R5のマスクMは、反転室R2に向けて搬送される。製造ラインに、複数のマスクMを保管して必要に応じて搬出するマスクストッカを配置してもよい。中継室R5の基板キャリア100及び基板200は、不図示の反転室において、基板200の被成膜面及び基板キャリア100の基板保持面が鉛直方向上向きとなるように反転された後、基板剥離室R6に搬送される。 After film formation, the substrate 200 held by the substrate carrier 100 is lifted from the mask M in the mask unloading chamber R4. The mask M that has been used a predetermined number of times is carried out from the mask carrying-out chamber R4 to the outside of the apparatus. The substrate 200 held by the substrate carrier 100 and the mask M to be used again are transported from the mask unloading room R4 to the relay room R5. The mask M in the relay room R5 is transported toward the reversal room R2. A mask stocker may be arranged on the production line to store a plurality of masks M and take them out as needed. The substrate carrier 100 and the substrate 200 in the relay room R5 are inverted in an inversion chamber (not shown) so that the film-forming surface of the substrate 200 and the substrate holding surface of the substrate carrier 100 face upward in the vertical direction, and then transferred to the substrate separation chamber. It is transported to R6.
 そして、基板剥離室R6において、基板キャリア100から基板200は剥離される。その後、基板キャリア100は、成膜装置の外部に搬出されるか、再度、基板載置室R1に搬送される。また、基板キャリア100から剥離された基板200は、外部に取り出される。なお、本発明は図1のようなデポアップの構成に限られず、デポダウンの構成やサイドデポの構成を取ってもよい。本実施例においては、基板剥離室R6で基板200を基板キャリア100から剥離した後に、基板200に割れが生じていないか検査を行う。基板200の割れ検査方法の詳細については後述する。 Then, the substrate 200 is separated from the substrate carrier 100 in the substrate separation chamber R6. After that, the substrate carrier 100 is carried out to the outside of the film forming apparatus or transported to the substrate mounting chamber R1 again. Further, the substrate 200 peeled off from the substrate carrier 100 is taken out to the outside. Note that the present invention is not limited to the deposit-up configuration as shown in FIG. 1, but may also take a deposit-down configuration or a side deposit configuration. In this embodiment, after the substrate 200 is separated from the substrate carrier 100 in the substrate separation chamber R6, the substrate 200 is inspected for cracks. Details of the crack inspection method for the substrate 200 will be described later.
 <基板昇降装置>
 基板載置室R1に配される基板昇降装置の構成について、図2を参照して説明する。基板昇降装置は、キャリア受渡室300と、昇降機構400と、クランプ駆動手段としてのクランプ回転機構500と、備える。なお、同様の構成を持つ昇降機構400を複数配置してもよい。
<Substrate lifting device>
The configuration of the substrate lifting device arranged in the substrate mounting chamber R1 will be described with reference to FIG. 2. The substrate lifting device includes a carrier delivery chamber 300, a lifting mechanism 400, and a clamp rotation mechanism 500 as a clamp driving means. Note that a plurality of lifting mechanisms 400 having a similar configuration may be arranged.
 図2は、本実施例に係るキャリア受渡室300と基板昇降装置の概略構成を示す図である。キャリア受渡室300は、基板キャリア100が通る開口部311と、この開口部311を開閉可能なキャリア用ゲートバルブ312と、基板200が通る開口部321と、この開口部321を開閉可能な基板用ゲートバルブ322と、を備える。なお、上記の開口部311及びキャリア用ゲートバルブ312は、図2の紙面奥側と手前側にそれぞれ設けられている。これにより、基板キャリア100は、紙面奥側からキャリア受渡室300に入り、紙面手前側に向かってキャリア受渡室300の外側に搬出される。また、図示を省略しているが、開口部311及びキャリア用ゲートバルブ312は、キャリア受渡室300の右側にも設けられている。 FIG. 2 is a diagram showing a schematic configuration of the carrier delivery chamber 300 and the substrate lifting device according to this embodiment. The carrier delivery chamber 300 includes an opening 311 through which the substrate carrier 100 passes, a carrier gate valve 312 that can open and close this opening 311, an opening 321 through which the substrate 200 passes, and a gate valve 312 for substrates that can open and close this opening 321. A gate valve 322 is provided. Note that the opening 311 and the carrier gate valve 312 are provided on the back side and the front side of the plane of FIG. 2, respectively. As a result, the substrate carrier 100 enters the carrier delivery chamber 300 from the back side of the page and is carried out to the outside of the carrier delivery chamber 300 toward the front side of the page. Although not shown, the opening 311 and the carrier gate valve 312 are also provided on the right side of the carrier delivery chamber 300.
 また、キャリア受渡室300には、基板200を基板キャリア100に載置する際に、基板キャリア100を支持するキャリア支持部材330が設けられている。このキャリア支持部材330は、昇降機構に備えられる支持ピンの動作を妨げることがないように、基板キャリア100の外周を支持している。あるいは、キャリア支持部材330に、支持ピンが通る領域には開口部が設けられていてもよい。また、基板載置室R1(キャリア受渡室300)には、基板キャリア100を搬送するための搬送ローラが設けられていてもよい。この場合、基板200を基板キャリア100に載置する際に、搬送ローラが基板キャリア100を支持することができる。 Further, the carrier delivery chamber 300 is provided with a carrier support member 330 that supports the substrate carrier 100 when the substrate 200 is placed on the substrate carrier 100. This carrier support member 330 supports the outer periphery of the substrate carrier 100 so as not to interfere with the operation of support pins provided in the elevating mechanism. Alternatively, the carrier support member 330 may be provided with an opening in a region through which the support pin passes. Moreover, a conveyance roller for conveying the substrate carrier 100 may be provided in the substrate mounting chamber R1 (carrier delivery chamber 300). In this case, when the substrate 200 is placed on the substrate carrier 100, the transport roller can support the substrate carrier 100.
 更に、キャリア受渡室300には、撮像手段350(撮影手段)が設けられている。各図においては、一つのみ撮像手段350を図示しているが、一般的に、複数の撮像手段350が設けられる。制御部Cは、撮像手段350によって基板キャリア100と基板200を撮影した画像から位置情報を取得することで、基板キャリア100と基板200の位置調整(アライメント)をすることができる。基板全体を撮像できるような広角の撮像手段350を設けてもよいし、基板200の一部を撮像できる程度の視野を持つ撮像手段350を複数設けてもよい。基板200のエッジ画像を元にアライメントを行う場合は、基板200の辺部及び端部の少なくとも一部を視野角に含むように撮像手段350を配置する。 Further, the carrier delivery room 300 is provided with an imaging means 350 (photographing means). Although only one imaging means 350 is shown in each figure, generally a plurality of imaging means 350 are provided. The control unit C can perform positional adjustment (alignment) of the substrate carrier 100 and the substrate 200 by acquiring position information from an image of the substrate carrier 100 and the substrate 200 taken by the imaging means 350. A wide-angle imaging means 350 that can image the entire board may be provided, or a plurality of imaging means 350 that have a field of view that can image a part of the substrate 200 may be provided. When performing alignment based on the edge image of the substrate 200, the imaging means 350 is arranged so that the viewing angle includes at least part of the sides and ends of the substrate 200.
 また、撮像手段350に、基板キャリア100の種類を、又は、基板200の種類を判別する判別手段としての役割を持たすこともできる。例えば、基板キャリア100の種類に応じて各種マークを付しておき、撮像手段350により撮像されたマークにより基板キャリア100の種類を判別することができる。アライメントを行うために用いる撮像手段350と、判別手段としての撮像手段350を別々に設けてもよいし、アライメントのために一般的に複数設けられる撮像手段350の一つを判別手段として兼用することもできる。 Furthermore, the imaging means 350 can also have a role as a determining means for determining the type of the substrate carrier 100 or the type of the substrate 200. For example, various marks are attached depending on the type of the substrate carrier 100, and the type of the substrate carrier 100 can be determined based on the marks imaged by the imaging means 350. The imaging means 350 used for alignment and the imaging means 350 as a discrimination means may be provided separately, or one of the plurality of imaging means 350 generally provided for alignment may also be used as a discrimination means. You can also do it.
 本実施例においては、昇降機構400については支持ピン411のみがキャリア受渡室300内に挿入され、クランプ回転機構500については押し込みピン511のみがキャリア受渡室300内に挿入されるように構成されている。これにより、潤滑剤や摩耗粉などがキャリア受渡室300に侵入することを抑制できる。なお、基板載置室R1に基板昇降装置の全体を配置する構成としてもよいし、上記のキャリア受渡室300が基板載置室R1に相当する構成とすることもできる。後者の場合には、昇降機構の大部分の構成(支持ピン411以外の構成)と、クランプ回転機構500の大部分の構成(押し込みピン511以外の構成)は基板載置室R1の外部に配されることになる。 In this embodiment, only the support pin 411 of the lifting mechanism 400 is inserted into the carrier delivery chamber 300, and only the push pin 511 of the clamp rotation mechanism 500 is inserted into the carrier delivery chamber 300. There is. Thereby, lubricant, abrasion powder, and the like can be prevented from entering the carrier delivery chamber 300. Note that the entire substrate lifting device may be disposed in the substrate placement chamber R1, or the carrier transfer chamber 300 may correspond to the substrate placement chamber R1. In the latter case, most of the structure of the lifting mechanism (other than the support pin 411) and most of the structure of the clamp rotation mechanism 500 (other than the push-in pin 511) are arranged outside the substrate mounting chamber R1. will be done.
 昇降機構400は、複数の支持ピン411と、複数の支持ピン411を支持する第1プレート410と、第1プレート410を昇降させる第1昇降手段としてのボールネジ機構420と、を備える。ボールネジ機構420は、モータ421と、モータ421により回転するネジ軸422と、ネジ軸422の回転動作に伴ってネジ軸422に沿って上下動するナット部423と、ナット部423に固定されナット部423と共に上下動する支柱424と、を備える。ナット部423の内周面と、ネジ軸422の外周面との間には、複数のボールが無限循環するように構成されている。第1プレート410は支柱424に支えられており、ネジ軸422の回転動作に伴って支持ピン411が第1プレート410と共に上下動する。基板200を支持する支持手段としての複数の支持ピン411は、基板200に鉛直方向の下方側から当接可能に構成されており、キャリア受渡室300内で支持ピン411が上下動することにより基板200が昇降する。 The elevating mechanism 400 includes a plurality of support pins 411, a first plate 410 that supports the plurality of support pins 411, and a ball screw mechanism 420 as a first elevating means for elevating the first plate 410. The ball screw mechanism 420 includes a motor 421, a screw shaft 422 rotated by the motor 421, a nut portion 423 that moves up and down along the screw shaft 422 as the screw shaft 422 rotates, and a nut portion fixed to the nut portion 423. A column 424 that moves up and down together with 423 is provided. A plurality of balls are configured to circulate endlessly between the inner circumferential surface of the nut portion 423 and the outer circumferential surface of the screw shaft 422. The first plate 410 is supported by a column 424, and the support pin 411 moves up and down together with the first plate 410 as the screw shaft 422 rotates. The plurality of support pins 411 serving as support means for supporting the substrate 200 are configured to be able to abut against the substrate 200 from below in the vertical direction, and as the support pins 411 move up and down within the carrier delivery chamber 300, the substrate 200 is supported. 200 goes up and down.
 本実施例においては、プレートを昇降させる昇降手段として、ボールネジ機構を採用する場合を示したが、昇降手段としてラックアンドピニオン方式などその他の公知技術を採用することもできる。 In this embodiment, a ball screw mechanism is employed as the elevating means for elevating and lowering the plate, but other known techniques such as a rack and pinion system may also be employed as the elevating means.
 また、基板昇降装置は、複数の支持ピン411を基板200の昇降方向に対して垂直方向に移動させることで、基板キャリア100に対する基板200の位置を調整するアライメント手段としてのアライメント機構430を備えている。なお、本実施例においては、基板200の昇降方向は鉛直方向である。従って、アライメント機構430は、複数の支持ピン411を水平方向に移動させることができるように構成されている。具体的には、アライメント機構430は、図2中左右方向(以下、「X軸方向」と称する)に延びる第1レール431と、第1レール431に対して垂直方向(以下、「Y軸方向」と称する)に延びる第2レール432とを備える。なお、X軸方向とY軸方向はいずれも鉛直方向に対して垂直である。第2レール432は、第1レール431に沿って往復移動できるように構成されている。 The substrate lifting device also includes an alignment mechanism 430 as alignment means that adjusts the position of the substrate 200 with respect to the substrate carrier 100 by moving the plurality of support pins 411 in a direction perpendicular to the lifting direction of the substrate 200. There is. Note that in this embodiment, the direction in which the substrate 200 is raised and lowered is the vertical direction. Therefore, the alignment mechanism 430 is configured to be able to move the plurality of support pins 411 in the horizontal direction. Specifically, the alignment mechanism 430 has a first rail 431 extending in the left-right direction (hereinafter referred to as the "X-axis direction") in FIG. ”). Note that both the X-axis direction and the Y-axis direction are perpendicular to the vertical direction. The second rail 432 is configured to be able to reciprocate along the first rail 431.
 そして、アライメント機構430においては、昇降機構400が載置される台座433を備えている。この台座433は第2レール432に沿って往復移動可能に構成されている。また、アライメント機構430は、台座433に固定され、かつX軸方向に延びる第1軸部434と、台座433に固定され、かつY軸方向に延びる第2軸部436と、を備える。更に、アライメント機構430は、第1軸部434をX軸方向に移動させる移動機構435と、第2軸部436をY軸方向に移動させる移動機構(不図示)と、を備える。これらの移動機構については、ボールネジ機構やラックアンドピニオン方式の機構など、各種公知技術を採用することができる。 The alignment mechanism 430 includes a pedestal 433 on which the elevating mechanism 400 is placed. This pedestal 433 is configured to be able to reciprocate along the second rail 432. The alignment mechanism 430 also includes a first shaft portion 434 fixed to the pedestal 433 and extending in the X-axis direction, and a second shaft portion 436 fixed to the pedestal 433 and extending in the Y-axis direction. Further, the alignment mechanism 430 includes a moving mechanism 435 that moves the first shaft portion 434 in the X-axis direction, and a moving mechanism (not shown) that moves the second shaft portion 436 in the Y-axis direction. For these moving mechanisms, various known techniques such as a ball screw mechanism or a rack and pinion type mechanism can be adopted.
 以上のように構成されるアライメント機構430によって、台座433と共に昇降機構400をX軸方向及びY軸方向に移動させることで、複数の支持ピン411を水平方向に移動させることができる。これにより、複数の支持ピン411に載置された基板200を水平方向に移動調整することができ、基板キャリア100に対する基板200の位置を調整することができる。 With the alignment mechanism 430 configured as described above, by moving the elevating mechanism 400 together with the pedestal 433 in the X-axis direction and the Y-axis direction, the plurality of support pins 411 can be moved in the horizontal direction. Thereby, the substrate 200 placed on the plurality of support pins 411 can be moved and adjusted in the horizontal direction, and the position of the substrate 200 with respect to the substrate carrier 100 can be adjusted.
 クランプ回転機構500は、複数の押し込みピン511と、複数の押し込みピン511を支持するクランプ用プレート510と、クランプ用プレート510を昇降させるボールネジ機構520と、を備える。ボールネジ機構520は、モータ521と、モータ521により回転するネジ軸522と、ネジ軸522の回転動作に伴ってネジ軸522に沿って上下動するナット部523と、ナット部523に固定されナット部523と共に上下動する支柱524と、を備える。ナット部523の内周面と、ネジ軸522の外周面との間には、複数のボールが無限循環するように構成されている。また、クランプ用プレート510は支柱524に支えられており、ネジ軸522の回転動作に伴って押し込みピン511がクランプ用プレート510と共に上下動する。なお、クランプ用プレート510を昇降させる昇降手段として、ボールネジ機構を採用する場合を示したが、昇降手段としては、ラックアンドピニオン方式などその他の公知技術を採用することもできる。 The clamp rotation mechanism 500 includes a plurality of push pins 511, a clamp plate 510 that supports the plurality of push pins 511, and a ball screw mechanism 520 that moves the clamp plate 510 up and down. The ball screw mechanism 520 includes a motor 521, a screw shaft 522 rotated by the motor 521, a nut portion 523 that moves up and down along the screw shaft 522 as the screw shaft 522 rotates, and a nut portion fixed to the nut portion 523. A support column 524 that moves up and down together with 523 is provided. A plurality of balls are configured to endlessly circulate between the inner circumferential surface of the nut portion 523 and the outer circumferential surface of the screw shaft 522. Further, the clamping plate 510 is supported by a support 524, and the push pin 511 moves up and down together with the clamping plate 510 as the screw shaft 522 rotates. Although a case is shown in which a ball screw mechanism is employed as the elevating means for elevating and lowering the clamp plate 510, other known techniques such as a rack and pinion system may also be employed as the elevating means.
 <基板キャリアへの基板載置動作>
 以上のように構成される基板昇降装置を用いて、キャリア受渡室300の内部で基板キャリア100に基板200を保持させる動作について、図3~図6を参照して説明する。図3は、基板キャリア100がキャリア受渡室300に搬入された様子を示す図である。図4は、基板200がキャリア受渡室300に搬入される途中の様子を示す図である。図5は、基板200が支持ピン411に支持されている様子を示す図である。図6は、基板200が基板キャリア100に保持された様子を示す図である。
<Operation of placing the board on the board carrier>
The operation of holding the substrate 200 on the substrate carrier 100 inside the carrier transfer chamber 300 using the substrate lifting device configured as described above will be described with reference to FIGS. 3 to 6. FIG. 3 is a diagram showing how the substrate carrier 100 is carried into the carrier delivery chamber 300. FIG. 4 is a diagram showing a state in which the substrate 200 is being carried into the carrier delivery chamber 300. FIG. 5 is a diagram showing how the substrate 200 is supported by the support pins 411. FIG. 6 is a diagram showing how the substrate 200 is held by the substrate carrier 100.
 まず、キャリア用ゲートバルブ312の動作によって、開口部311が開いた状態となり、基板キャリア100がキャリア受渡室300に搬入される。キャリア受渡室300に搬入された基板キャリア100は、キャリア支持部材330に支持される(図3参照)。なお、各部の構成を分かり易くするために、図3以降の図においては、開口部311とキャリア用ゲートバルブ312は図示が省略されている。 First, the opening 311 is opened by the operation of the carrier gate valve 312, and the substrate carrier 100 is carried into the carrier delivery chamber 300. The substrate carrier 100 carried into the carrier delivery chamber 300 is supported by a carrier support member 330 (see FIG. 3). Note that in order to make the configuration of each part easier to understand, illustration of the opening 311 and the carrier gate valve 312 is omitted in the drawings from FIG. 3 onwards.
 基板キャリア100は、基板200を基板キャリア100に保持するためのクランプ110が複数設けられている。クランプ110は、基板キャリア100に保持させる基板200を挟み込む方向である第1回転方向に付勢された状態で、基板キャリア100に回動可能に設けられている。なお、図3において、紙面上、左側のクランプ110は時計回り方向に付勢された状態で基板キャリア100に回動可能に設けられ、右側のクランプ110は反時計回り方向に付勢された状態で基板キャリア100に回動可能に設けられている。 The substrate carrier 100 is provided with a plurality of clamps 110 for holding the substrate 200 on the substrate carrier 100. The clamp 110 is rotatably provided on the substrate carrier 100 in a state where it is biased in a first rotational direction, which is a direction in which the substrate 200 held by the substrate carrier 100 is clamped. In addition, in FIG. 3, the clamp 110 on the left side is rotatably provided on the substrate carrier 100 in a state in which it is biased clockwise, and the clamp 110 on the right side is in a state in which it is biased in a counterclockwise direction. is rotatably provided on the substrate carrier 100.
 基板キャリア100がキャリア支持部材330に支持された後に、基板用ゲートバルブ322の動作によって、開口部321が開いた状態となり、基板200がキャリア受渡室300に搬入される(図4参照)。基板200は、搬送ロボットによりキャリア受渡室300に搬入される。なお、図4においては、搬送ロボットにおける基板200を支持するハンド部250の一部のみ示している。このハンド部250は、支持ピン411などの動作の妨げにならないように櫛歯状に設けられるのが一般的である。 After the substrate carrier 100 is supported by the carrier support member 330, the opening 321 is opened by the operation of the substrate gate valve 322, and the substrate 200 is carried into the carrier delivery chamber 300 (see FIG. 4). The substrate 200 is carried into the carrier delivery chamber 300 by a transfer robot. In addition, in FIG. 4, only a part of the hand part 250 which supports the board|substrate 200 in a transfer robot is shown. This hand portion 250 is generally provided in a comb-like shape so as not to interfere with the operation of the support pin 411 and the like.
 また、基板200搬入時には、昇降機構400によって第1プレート410と共に複数の支持ピン411が所定位置まで上昇する。なお、複数の支持ピン411は、基板キャリア100に設けられた複数の貫通孔を貫通可能に設けられており、複数の支持ピン411の先端は、基板キャリア100の上面よりも上方かつ搬入される基板200の下面よりも下方の位置まで移動する。 Furthermore, when the substrate 200 is carried in, the plurality of support pins 411 are raised to a predetermined position together with the first plate 410 by the lifting mechanism 400. Note that the plurality of support pins 411 are provided so as to be able to pass through the plurality of through holes provided in the substrate carrier 100, and the tips of the plurality of support pins 411 are above the upper surface of the substrate carrier 100 and are carried in. It moves to a position below the bottom surface of the substrate 200.
 更に、クランプ回転機構500によって、クランプ用プレート510と共に複数の押し込みピン511が上昇し、それぞれの押し込みピン511の先端がそれぞれ対応するクランプ110を押し込む。これにより、第1回転方向とは反対方向の第2回転方向にクランプ110は回転し、基板キャリア100の上に、上方から基板200を載置可能な状態となる(図4参照)。 Furthermore, the plurality of push pins 511 are raised together with the clamp plate 510 by the clamp rotation mechanism 500, and the tips of the respective push pins 511 push in the corresponding clamps 110, respectively. As a result, the clamp 110 rotates in the second rotation direction opposite to the first rotation direction, and the substrate 200 can be placed on the substrate carrier 100 from above (see FIG. 4).
 なお、基板200のキャリア受渡室300への搬入動作、昇降機構400による第1プレート410の上昇動作、及び、クランプ回転機構500によるクランプ用プレート510の上昇動作の順序は特に限定されず、同時に行っても構わない。 Note that the order of carrying the substrate 200 into the carrier delivery chamber 300, lifting the first plate 410 by the elevating mechanism 400, and lifting the clamp plate 510 by the clamp rotation mechanism 500 is not particularly limited, and they may be performed simultaneously. I don't mind.
 複数の支持ピン411の先端に基板200が載置され、搬送ロボットのハンド部250が退避した後に、昇降機構400によって第1プレート410は所定位置まで下降する。これにより、基板200は基板キャリア100に十分近づいた状態となる(図5参照)。 After the substrate 200 is placed on the tips of the plurality of support pins 411 and the hand section 250 of the transfer robot is retracted, the first plate 410 is lowered to a predetermined position by the lifting mechanism 400. This brings the substrate 200 sufficiently close to the substrate carrier 100 (see FIG. 5).
 この状態で、アライメント機構430によって、基板200のX軸方向及びY軸方向への移動調整がなされ、基板キャリア100に対する基板200の位置調整がなされる。その後、昇降機構400によって第1プレート410は更に下降し、複数の支持ピン411の先端は、基板キャリア100の下面よりも下方に移動する。この過程で、基板200は基板キャリア100の上に載置された状態となる。なお、基板キャリア100には、複数の吸着パッド130(図8参照)が設けられており、基板200は複数の吸着パッド130に吸着された状態となる。なお、基板200を基板キャリア100に載置するだけでは、吸着パッド130による吸着が不十分になる場合もあるため、基板200を下方に押圧することで、吸着パッド130による吸着をより確実にする工程を経ることも好ましい。 In this state, the alignment mechanism 430 adjusts the movement of the substrate 200 in the X-axis direction and the Y-axis direction, and adjusts the position of the substrate 200 with respect to the substrate carrier 100. Thereafter, the first plate 410 is further lowered by the lifting mechanism 400, and the tips of the plurality of support pins 411 move below the lower surface of the substrate carrier 100. During this process, the substrate 200 is placed on the substrate carrier 100. Note that the substrate carrier 100 is provided with a plurality of suction pads 130 (see FIG. 8), and the substrate 200 is in a state of being suctioned by the plurality of suction pads 130. Note that simply placing the substrate 200 on the substrate carrier 100 may result in insufficient suction by the suction pad 130, so by pressing the substrate 200 downward, the suction by the suction pad 130 can be made more reliable. It is also preferable to go through a process.
 基板200が基板キャリア100に載置された後に、クランプ回転機構500によって、クランプ用プレート510が下降する。これにより、押し込みピン511がクランプ110から離れ、クランプ110は、第1回転方向に回転して、基板200を基板キャリア100に挟み込む。これにより、基板200は基板キャリア100に保持される(図6参照)。以上のように保持された基板200は、基板キャリア100ごとキャリア受渡室300から搬出され、反転室R2に搬送される。 After the substrate 200 is placed on the substrate carrier 100, the clamp plate 510 is lowered by the clamp rotation mechanism 500. As a result, the push pin 511 separates from the clamp 110, and the clamp 110 rotates in the first rotation direction to sandwich the substrate 200 between the substrate carriers 100. Thereby, the substrate 200 is held by the substrate carrier 100 (see FIG. 6). The substrate 200 held as described above is taken out from the carrier delivery chamber 300 together with the substrate carrier 100 and transported to the reversing chamber R2.
 <基板及び基板キャリア>
 次に、図7、図8を参照して、本実施例に係る成膜装置に用いられる基板200及び基板キャリア100について説明する。
<Substrate and substrate carrier>
Next, with reference to FIGS. 7 and 8, the substrate 200 and substrate carrier 100 used in the film forming apparatus according to this embodiment will be described.
 図7(a)は、基板200の上面図である。基板200は、略矩形であり、図7中の一点鎖線で示した裁断線211、212に沿って後工程により裁断される。ディスプレイに用いられる場合には、図中、点線で囲んだ内側の部分が画像表示部となり、ディスプレイ素子領域に相当する。 FIG. 7(a) is a top view of the substrate 200. The substrate 200 has a substantially rectangular shape, and is cut in a post-process along cutting lines 211 and 212 shown by dashed lines in FIG. When used for a display, the inner part surrounded by dotted lines in the figure becomes an image display section and corresponds to the display element area.
 図7(b)は、基板キャリア100の上面図である。基板キャリア100には、複数のクランプ110が設けられている。クランプ110の個数や配置は基板キャリア及び基板200の大きさや重量により適宜設定すればよい。基板キャリア100は、中央の所定領域内(図7(b)中の破線で囲んだ領域内)に設けられる複数の貫通孔121と、基板キャリア100の外周に沿うように設けられる複数の貫通孔122と、を備える。基板キャリア100に基板200が保持された状態において、複数の貫通孔121は、基板200における裁断線211、212に沿うように設けられ、図7(a)中の点線で囲んだ領域の外側に位置するように設けられている。また、基板キャリア100に基板200が保持された状態において、複数の貫通孔122は、基板200の外周に沿うように設けられ、図7(a)中の点線で囲んだ領域の外側に位置するように設けられている。 FIG. 7(b) is a top view of the substrate carrier 100. The substrate carrier 100 is provided with a plurality of clamps 110. The number and arrangement of the clamps 110 may be appropriately set depending on the size and weight of the substrate carrier and the substrate 200. The substrate carrier 100 has a plurality of through holes 121 provided in a predetermined central area (in the area surrounded by a broken line in FIG. 7(b)) and a plurality of through holes provided along the outer periphery of the substrate carrier 100. 122. When the substrate 200 is held by the substrate carrier 100, the plurality of through holes 121 are provided along the cutting lines 211 and 212 in the substrate 200, and are located outside the area surrounded by the dotted line in FIG. 7(a). It is set up to be located. Further, when the substrate 200 is held by the substrate carrier 100, the plurality of through holes 122 are provided along the outer periphery of the substrate 200 and are located outside the area surrounded by the dotted line in FIG. 7(a). It is set up like this.
 複数の貫通孔121、122は、支持ピン411が貫通する用途と、吸着パッド130が取り付けられる用途に利用される。支持ピン411が貫通するために用いられる貫通孔と、吸着パッド130が取り付けられるために用いられる貫通孔の配置については、交互に設けるなど、適宜、設定することができる。支持ピン411が貫通するために用いられる貫通孔の孔径と、吸着パッド130が取り付けられるために用いられる貫通孔の孔径は、同一となるように設定してもよいし、異なるように設定してもよい。 The plurality of through holes 121 and 122 are used for the purpose of passing the support pin 411 through and for the purpose of attaching the suction pad 130. The arrangement of the through-holes through which the support pins 411 pass and the through-holes through which the suction pads 130 are attached can be set as appropriate, such as alternately providing them. The hole diameter of the through hole used for the support pin 411 to pass through and the hole diameter of the through hole used for the suction pad 130 to be attached may be set to be the same, or may be set to be different. Good too.
 図8を参照して、基板キャリア100について、より詳細に説明する。図8は、図7(b)中のA-A断面図である。図8に示すように、支持ピン411が貫通するために用いられる貫通孔121の孔径は、支持ピン411の外径よりも大きくなるように設定されている。これにより、支持ピン411は貫通孔を貫通することができ、かつ、アライメントの際に基板キャリア100に対して支持ピン411が水平方向に移動することができる。なお、支持ピン411の先端には、基板200の位置ずれを抑制するためにゴムなどの弾性材料により構成される位置ずれ防止部材411aが設けられている。 With reference to FIG. 8, the substrate carrier 100 will be described in more detail. FIG. 8 is a sectional view taken along line AA in FIG. 7(b). As shown in FIG. 8, the diameter of the through hole 121 through which the support pin 411 passes is set to be larger than the outer diameter of the support pin 411. This allows the support pin 411 to pass through the through hole, and also allows the support pin 411 to move horizontally with respect to the substrate carrier 100 during alignment. Note that a displacement prevention member 411a made of an elastic material such as rubber is provided at the tip of the support pin 411 to suppress displacement of the substrate 200.
 また、吸着パッド130は、吸着パッド130用の貫通孔に挿通された状態で基板キャリア100に取り付けられる。吸着パッド130は、フランジ部131aを有する金属製のパッド本体131と、パッド本体131の先端に不図示の接着層を介して設けられる粘着部材132と、パッド本体131を貫通孔に固定するための固定部材133と、を備える。なお、フランジ部131aと固定部材133は公知の方法で一体化されている。また、固定部材133と基板キャリア100は、ボルト等の公知技術により固定することができる。粘着部材132の材料としては、真空下での製造プロセスに悪影響を及ぼすアウトガスの発生を抑制するために、シロキサン結合を含まないフッ素ゴムを採用するのが好ましい。また、接着層を構成する材料も同様に、アウトガス成分を放出しない公知の接着剤、両面テープを使用するのが望ましい。この粘着部材132は、基板キャリア100の表面からの突出量を管理できるよう不図示のスペーサ等を用いて一定の範囲内で図中上下方向に調整可能に構成されている。上記の突出量は、吸着パッド130を構成する部材のサイズや、粘着部材132の圧縮特性にもよるが、基板200の厚さ未満である。吸着パッド130用の貫通孔の孔径はパッド本体131の貫通孔への挿入部分の外径より大きく、パッド本体131は鉛直方向の上下動に加えてある程度の揺動が許容されている。 Furthermore, the suction pad 130 is attached to the substrate carrier 100 while being inserted into the through hole for the suction pad 130. The suction pad 130 includes a metal pad body 131 having a flange portion 131a, an adhesive member 132 provided at the tip of the pad body 131 via an adhesive layer (not shown), and an adhesive member 132 for fixing the pad body 131 to a through hole. A fixing member 133 is provided. Note that the flange portion 131a and the fixing member 133 are integrated by a known method. Further, the fixing member 133 and the substrate carrier 100 can be fixed using known techniques such as bolts. As the material for the adhesive member 132, it is preferable to use fluororubber that does not contain siloxane bonds in order to suppress the generation of outgas that adversely affects the manufacturing process under vacuum. Furthermore, as for the material constituting the adhesive layer, it is desirable to use a known adhesive or double-sided tape that does not emit outgas components. This adhesive member 132 is configured to be adjustable in the vertical direction in the figure within a certain range using a spacer or the like (not shown) so that the amount of protrusion from the surface of the substrate carrier 100 can be controlled. The above amount of protrusion is less than the thickness of the substrate 200, although it depends on the size of the members constituting the suction pad 130 and the compression characteristics of the adhesive member 132. The hole diameter of the through hole for the suction pad 130 is larger than the outer diameter of the portion of the pad body 131 inserted into the through hole, and the pad body 131 is allowed to swing up and down to a certain extent in addition to vertical movement.
 そして、クランプ110は、軸部110aを中心に回転可能となるように、基板キャリア100に設けられている。また、クランプ110は、付勢部材としてのバネ110bによって、第1回転方向に付勢されている。上記の通り、押し込みピン511によって押し込まれると、クランプ110はバネ110bの付勢力に抗して第2回転方向に回転し、押し込みピン511が離れるとバネ110bの付勢力によって第1回転方向に回転する。なお、図8においては、押し込みピン511によって第2回転方向に回転したクランプ110の状態を実線で示し、押し込みピン511が離れて第1回転方向に回転したクランプ110の状態を点線で示している。クランプ110は基板200の成膜面に沿った軸部110aを中心に回転する。そのため、クランプ110が押し込みピン511によって押し込まれた状態では、クランプ110が基板キャリア100の基板保持領域の上方から退避できる。このように、簡単な構成で、基板200を基板キャリア100に載置する経路を確保することができる。 The clamp 110 is provided on the substrate carrier 100 so as to be rotatable around the shaft portion 110a. Further, the clamp 110 is biased in the first rotation direction by a spring 110b serving as a biasing member. As described above, when pushed in by the push-in pin 511, the clamp 110 rotates in the second rotational direction against the biasing force of the spring 110b, and when the push-in pin 511 is released, it rotates in the first rotational direction due to the biasing force of the spring 110b. do. In addition, in FIG. 8, the state of the clamp 110 rotated in the second rotation direction by the push pin 511 is shown by a solid line, and the state of the clamp 110 when the push pin 511 is separated and rotated in the first rotation direction is shown by a dotted line. . The clamp 110 rotates around a shaft portion 110a along the film-forming surface of the substrate 200. Therefore, when the clamp 110 is pushed in by the push pin 511, the clamp 110 can be retracted from above the substrate holding area of the substrate carrier 100. In this way, a path for placing the substrate 200 on the substrate carrier 100 can be secured with a simple configuration.
 <基板キャリアからの基板剥離動作>
 基板剥離室R6においても、上記のように構成された基板昇降装置が設けられ、基板200を基板キャリア100に載置する手順を逆順に行うことで、基板200を基板キャリア100から剥離することができる。以下、図9を参照して、基板キャリア100から基板200を剥離する動作について説明する。図9(a)は、基板剥離室R6内で基板200が基板キャリア100に保持されている様子を示す図である。図9(b)は、押し込みピン511が上昇してクランプ110が第2回転方向に回転した様子を示す図である。図9(c)は、支持ピン411が上昇して基板200が基板キャリア100から剥離された様子を示す図である。
<Substrate peeling operation from substrate carrier>
The substrate lifting device configured as described above is also provided in the substrate peeling room R6, and the substrate 200 can be peeled from the substrate carrier 100 by performing the procedure for placing the substrate 200 on the substrate carrier 100 in the reverse order. can. The operation of peeling the substrate 200 from the substrate carrier 100 will be described below with reference to FIG. FIG. 9A is a diagram showing how the substrate 200 is held by the substrate carrier 100 in the substrate separation chamber R6. FIG. 9(b) is a diagram showing a state in which the push pin 511 is raised and the clamp 110 is rotated in the second rotation direction. FIG. 9C is a diagram showing how the support pins 411 are raised and the substrate 200 is peeled off from the substrate carrier 100.
 まず、第1プレート410とクランプ用プレート510が下方に待機した状態で、基板200を保持した基板キャリア100がキャリア受渡室300に搬入され、これらはキャリア支持部材330に支持される(図9(a)参照)。 First, the substrate carrier 100 holding the substrate 200 is carried into the carrier delivery chamber 300 with the first plate 410 and the clamping plate 510 waiting below, and these are supported by the carrier support member 330 (see FIG. 9). a)).
 その後、クランプ回転機構500によって、クランプ用プレート510と共に、複数の押し込みピン511が上昇し、それぞれの押し込みピン511の先端が、それぞれ対応するクランプ110を押し込む。これにより、第1回転方向とは反対方向の第2回転方向にクランプ110は回転し、基板キャリア100から基板200を剥離可能な状態となる(図9(b)参照)。そして、昇降機構400によって、第1プレート410と共に複数の支持ピン411が所定位置まで上昇する。この過程で、基板200は複数の支持ピン411によって押し込まれ、基板キャリア100から剥離されて所定位置まで上昇する(図9(c)参照)。 Thereafter, the clamp rotation mechanism 500 raises the plurality of push pins 511 together with the clamp plate 510, and the tip of each push pin 511 pushes the corresponding clamp 110. As a result, the clamp 110 rotates in the second rotation direction opposite to the first rotation direction, and becomes in a state where the substrate 200 can be separated from the substrate carrier 100 (see FIG. 9(b)). Then, the plurality of support pins 411 are raised together with the first plate 410 to a predetermined position by the lifting mechanism 400. In this process, the substrate 200 is pushed in by the plurality of support pins 411, peeled off from the substrate carrier 100, and raised to a predetermined position (see FIG. 9(c)).
 その後、基板200は、搬送ロボットによってキャリア受渡室300から搬出される。また、第1プレート410と共に複数の支持ピン411が下降した後に、基板キャリア100はキャリア受渡室300から搬出されて、成膜装置の外部に搬出されるか、再度、基板載置室R1に搬送される。 Thereafter, the substrate 200 is carried out from the carrier delivery chamber 300 by the transfer robot. Further, after the plurality of support pins 411 are lowered together with the first plate 410, the substrate carrier 100 is carried out from the carrier delivery chamber 300 and is carried out to the outside of the film forming apparatus, or transported again to the substrate mounting chamber R1. be done.
 <基板の割れ検査>
 上記の通り、基板剥離室R6にて基板200を基板キャリア100から剥がす剥離動作が行われる。しかし、基板200は基板キャリア100に対して吸着パッド130で接着されているため、剥離動作の過程で基板200には割れが生じることがある。基板剥離室R6等の真空装置内で基板200の割れが発生しても作業者は視認して検知することはできず、真空装置内に割れた破片が残ると装置の故障等にもつながりうる。そこで、本実施例に係る成膜装置は、基板剥離室R6内で基板200の割れ有無を検知する割れ検査を剥離動作後に行うよう構成されている。割れ検査においては、撮像手段350の撮影結果を基に、制御部Cが基板200の基準点間の距離を算出して、該距離に基づいて基板200に割れが生じているかを判定する。以下、本実施例に係る基板剥離室R6における基板検査装置とその検査方法について詳細を説明する。
<Crack inspection of board>
As described above, a peeling operation for peeling the substrate 200 from the substrate carrier 100 is performed in the substrate peeling chamber R6. However, since the substrate 200 is bonded to the substrate carrier 100 by the suction pad 130, cracks may occur in the substrate 200 during the peeling process. Even if a crack occurs in the substrate 200 in a vacuum device such as the substrate separation chamber R6, the operator cannot visually detect it, and if broken pieces remain in the vacuum device, it may lead to equipment failure. . Therefore, the film forming apparatus according to this embodiment is configured to perform a crack inspection to detect the presence or absence of cracks in the substrate 200 in the substrate peeling chamber R6 after the peeling operation. In the crack inspection, the control unit C calculates the distance between the reference points of the substrate 200 based on the photographic result of the imaging means 350, and determines whether a crack has occurred in the substrate 200 based on the distance. Hereinafter, the details of the substrate inspection apparatus and inspection method in the substrate separation chamber R6 according to this embodiment will be explained.
 割れ検査は、支持ピン411が上昇して基板200が基板キャリア100から剥がされた後、基板200が支持ピン411に支持された状態(図9(c)に示す状態)で開始される。割れ検査においては、まず、撮像手段350によって基板200の4つの角付近のエッジ部分を含むように基板200の成膜面側から撮像される。具体的には、撮像手段350によって4枚の画像が得られ、それぞれの画像に基板200の4つの角が撮像手段350の視野角に含まれるように撮像手段350は構成されている。本実施例においては、撮像手段350は4つのカメラを含み、それぞれのカメラで基板200の4つの角のそれぞれを撮像する。すなわち、図示は省略しているが、基板200の4つの角それぞれに対応した位置にカメラが設けられている。なお、基板検査装置としては、少なくとも基板200の4つの角それぞれの周辺領域を撮像可能に撮像手段350が設けられていればよく、基板全体を撮像できるよう広角の撮像手段350を設けても良い。 The crack inspection is started with the substrate 200 supported by the support pins 411 (the state shown in FIG. 9(c)) after the support pins 411 are lifted and the substrate 200 is peeled off from the substrate carrier 100. In the crack inspection, first, an image is taken by the imaging means 350 from the film-forming surface side of the substrate 200 so as to include the edge portions near the four corners of the substrate 200. Specifically, the imaging means 350 is configured so that four images are obtained by the imaging means 350 and the four corners of the substrate 200 are included in the viewing angle of the imaging means 350 in each image. In this embodiment, the imaging means 350 includes four cameras, each of which images each of the four corners of the substrate 200. That is, although not shown, cameras are provided at positions corresponding to each of the four corners of the board 200. Note that the board inspection apparatus only needs to be provided with imaging means 350 that can take images of at least the peripheral areas of each of the four corners of the board 200, and may be provided with a wide-angle imaging means 350 that can take images of the entire board. .
 本実施例では、撮像手段350として、光源からの照明光の光量、シャッタースピード、ゲイン値などを制御部Cにより制御することが可能な、光学的な撮像装置を用いる。制御部Cは、光量、シャッタースピードやゲイン値の少なくともいずれかを制御することにより、得られる画像を調整することが可能である。そして、本実施例の制御部Cは、撮像手段350が撮影した画像を解析して基板200の面を構成する辺をエッジとして認識する。従って、例えば基板200が割れて支持ピン411に傾いて支持されることで、割れが発生していない場合に対して基板200の鉛直方向の位置が変わった場合でも、各パラメータを調整することによりエッジを認識可能な画像を得ることが可能である。 In this embodiment, as the imaging means 350, an optical imaging device is used in which the control unit C can control the amount of illumination light from the light source, the shutter speed, the gain value, etc. The control unit C can adjust the obtained image by controlling at least one of the light amount, shutter speed, and gain value. Then, the control unit C of this embodiment analyzes the image taken by the imaging means 350 and recognizes the sides forming the surface of the substrate 200 as edges. Therefore, even if, for example, the board 200 is cracked and supported at an angle by the support pins 411, and the vertical position of the board 200 changes compared to when no crack has occurred, it is possible to adjust each parameter. It is possible to obtain an image with recognizable edges.
 図10(a)は、基板200と撮像手段350の視野角の位置関係を示す図であり、4つの視野角351~視野角354を二点鎖線で示す。図10(b)は、撮像手段350による撮影画像を示す図であり、視野角351の内部を示す。図10(c)は、撮像手段350による撮影画像を示す図であり、視野角352の内部を示す。基板200の撮影時点では、基板キャリア100の鉛直方向上側で基板200が支持ピン411に支持されているため、基板剥離室R6の上方に配置された撮像手段350から見ると基板キャリア100の一部に基板200が重なった状態となっている。 FIG. 10(a) is a diagram showing the positional relationship between the viewing angles of the substrate 200 and the imaging means 350, and four viewing angles 351 to 354 are indicated by two-dot chain lines. FIG. 10B is a diagram showing an image taken by the imaging means 350, and shows the inside of the viewing angle 351. FIG. 10(c) is a diagram showing an image taken by the imaging means 350, and shows the inside of the viewing angle 352. At the time of photographing the substrate 200, since the substrate 200 is supported by the support pins 411 above the substrate carrier 100 in the vertical direction, a portion of the substrate carrier 100 is seen from the imaging means 350 disposed above the substrate separation chamber R6. The substrate 200 is in an overlapping state.
 上記の通り、本実施例においては略矩形である基板200の4つの角がそれぞれの撮影画像に含まれるように撮像手段350が撮像を行う。基板200の第1の角を撮像範囲に含む視野角351の範囲には、基板200のエッジ210Aと、エッジ210Aと直交するエッジ210Cと、が含まれる。更に本実施例の基板200は、角が面取りされており、角エッジ210Bを有する。なお、基板キャリア100の一部にはアライメントのためキャリアマークが形成されていても良い。 As described above, in this embodiment, the imaging means 350 performs imaging so that the four corners of the substantially rectangular substrate 200 are included in each captured image. The range of the viewing angle 351 that includes the first corner of the substrate 200 in the imaging range includes the edge 210A of the substrate 200 and the edge 210C orthogonal to the edge 210A. Further, the substrate 200 of this embodiment has chamfered corners and has a corner edge 210B. Note that a carrier mark may be formed on a part of the substrate carrier 100 for alignment.
 制御部Cは、撮像手段350が撮影した画像から基板200のエッジを認識し、エッジの交点座標を得ることが可能である。視野角351においては、エッジ210Aとエッジ210Cとの交点220Aの交点220Aの座標が得られ、基板200の第1の角周辺の位置情報が取得される。 The control unit C can recognize the edges of the substrate 200 from the image taken by the imaging means 350 and obtain the coordinates of the intersections of the edges. At the viewing angle 351, the coordinates of the intersection 220A of the edge 210A and the edge 210C are obtained, and positional information around the first corner of the substrate 200 is obtained.
 同様に、基板200の第1の角と対角の位置にある第2の角を撮像する視野角352の範囲には、基板200のエッジ210Aと平行なエッジ210Dと、エッジ210Dと直交するエッジ210Fと、隅エッジ210Eと、が含まれる。そして、制御部Cによりエッジ210Aとエッジ210Cの交点座標として交点220Bの位置情報が得られる。交点220Aを含む第1の画像と交点220Bを含む第2の画像から対角位置にある交点220Aと交点220Bの位置情報が得られると、制御部Cは交点220Aと交点220Bの間の距離L1を算出する。 Similarly, the range of the viewing angle 352 for imaging a second corner diagonally to the first corner of the substrate 200 includes an edge 210D parallel to the edge 210A of the substrate 200 and an edge perpendicular to the edge 210D. 210F and a corner edge 210E. Then, the control unit C obtains position information of the intersection 220B as the intersection coordinates of the edge 210A and the edge 210C. When the positional information of the intersection 220A and the intersection 220B located at diagonal positions is obtained from the first image including the intersection 220A and the second image including the intersection 220B, the control unit C calculates the distance L1 between the intersection 220A and the intersection 220B. Calculate.
 また、本実施例においては、第3の角を撮像する視野角353と第4の角を撮像する視野角354、それぞれに含まれるエッジの交点間の距離L2も同様に制御部Cにより算出される。すなわち、本実施例においては、撮像手段350と制御部Cによって、第1の角~第4の角それぞれに最も近い位置に設けられる基準点として二辺の交点の位置情報を取得し、基板200の対角距離を2つ得ることができる。 In addition, in this embodiment, the viewing angle 353 for imaging the third corner and the viewing angle 354 for imaging the fourth corner, and the distance L2 between the intersections of edges included in each are also calculated by the control unit C. Ru. That is, in this embodiment, the imaging means 350 and the control unit C acquire positional information of the intersection of two sides as a reference point provided at the position closest to each of the first corner to the fourth corner, and We can obtain two diagonal distances.
 図11(a)は、割れが生じていない基板200の上面と正面を示す図である。図11(b)は、割れが生じた基板200の上面と正面を示す図である。基板200に割れがある場合、基板200は傾いて支持ピン411に支持されたり、割れたときの衝撃で位置がずれたりするため、基板200に割れがない場合の距離L1aと、基板200に割れがある場合の距離L1bとには差が生じる。そこで、本実施例においては、基板200の対角の位置にある基準点間の距離L1、L2を算出し、距離L1、L2のいずれか一方が予め定められた理論値範囲からずれた場合に、判定手段としての制御部Cが基板200に割れありと判定する構成とした。なお、本実施例においては基板の基準点間の距離を2つ取得して、基板の割れ検知に用いる構成としたが、基板の割れ検知に距離情報を1つだけ用いる構成としても良いし、対角距離以外の距離も取得し、より多くの距離情報を用いる構成としても良い。 FIG. 11(a) is a diagram showing the top and front sides of the substrate 200 with no cracks. FIG. 11(b) is a diagram showing the top and front sides of the substrate 200 where cracks have occurred. If there is a crack in the board 200, the board 200 may be tilted and supported by the support pins 411, or the position may shift due to the impact when the board 200 is cracked. There is a difference in distance L1b when there is a difference. Therefore, in this embodiment, the distances L1 and L2 between the reference points located at diagonal positions of the substrate 200 are calculated, and if either of the distances L1 or L2 deviates from a predetermined theoretical value range, , the control unit C as a determining means determines that the substrate 200 has a crack. Note that in this embodiment, two distances between reference points on the board are acquired and used for detecting cracks in the board, but it is also possible to use only one piece of distance information for detecting cracks in the board. A configuration may also be adopted in which distances other than diagonal distances are also acquired and more distance information is used.
 <割れ検査の処理フロー>
 図12を参照して、本実施例の基板200の割れ検査の処理フローを説明する。成膜処理が完了し、マスクMが基板200から取り外されると、基板剥離室R6に基板200と基板キャリア100が搬入される。このとき、基板200のエッジが大まかに撮像手段350の視野角351~視野角354に含まれるように搬入を行う。そして、基板200が基板キャリア100から剥離されて支持ピン411にのみ支持された状態になると、基板200の割れ検査が開始される(S100)。
<Crack inspection processing flow>
Referring to FIG. 12, a processing flow for inspecting cracks in the substrate 200 of this embodiment will be described. When the film formation process is completed and the mask M is removed from the substrate 200, the substrate 200 and the substrate carrier 100 are carried into the substrate separation chamber R6. At this time, the board 200 is carried in such that the edge thereof is roughly included in the viewing angle 351 to viewing angle 354 of the imaging means 350. Then, when the substrate 200 is separated from the substrate carrier 100 and is supported only by the support pins 411, a crack inspection of the substrate 200 is started (S100).
 まず、ステップS101において、撮像手段350により基板200の角周辺の4箇所の撮像が行われる。制御部Cは、撮影画像をメモリに保存し、撮影画像に対してフィルター処理などの画像処理を行ってエッジ画像を作成する。 First, in step S101, the imaging means 350 images four locations around the corners of the substrate 200. The control unit C stores the photographed image in a memory and performs image processing such as filter processing on the photographed image to create an edge image.
 ステップS102において、制御部Cはエッジ画像からエッジを検知できるかどうかを判定する。すなわち、本実施例の制御部Cはエッジ画像の撮影に不具合が生じるかどうかを判定する判定手段としても機能する。検知方法は任意であり、例えば視野角351においては、エッジ画像中からエッジ210A、210B、210Cに対応する線分を抽出できるかどうかを判定してもよい。また例えば、取得されたエッジ画像を想定されるエッジ画像の画像パターンと比較して判定してもよい。ここで、エッジが検知できない場合は、ステップS103に進み、ユーザーにエラー発生とエラー種別を通知して、割れ検査は終了する(S108)。 In step S102, the control unit C determines whether an edge can be detected from the edge image. In other words, the control unit C of this embodiment also functions as a determination unit that determines whether a problem occurs in photographing an edge image. The detection method is arbitrary; for example, at the viewing angle 351, it may be determined whether line segments corresponding to the edges 210A, 210B, and 210C can be extracted from the edge image. For example, the determination may be made by comparing the acquired edge image with an image pattern of an assumed edge image. Here, if the edge cannot be detected, the process proceeds to step S103, the user is notified of the error occurrence and the error type, and the crack inspection ends (S108).
 ステップS102でエッジが検知された場合、ステップS104に進み、制御部Cがエッジから交点座標を取得する。本実施例においては、視野角351に含まれるエッジ210Aとエッジ210Cの交点220A(第1の基準点)、視野角352に含まれるエッジ210Dとエッジ210Fの交点220B(第2の基準点)の座標が位置情報として取得される。同様に、視野角353に含まれるエッジの交点(第3の基準点)と視野角354に含まれるエッジの交点(第4の基準点)の座標も位置情報として取得される。 If an edge is detected in step S102, the process proceeds to step S104, and the control unit C acquires the intersection coordinates from the edge. In this embodiment, the intersection point 220A (first reference point) between edge 210A and edge 210C included in viewing angle 351, and the intersection point 220B (second reference point) between edge 210D and edge 210F included in viewing angle 352. Coordinates are acquired as location information. Similarly, the coordinates of the intersection of edges included in viewing angle 353 (third reference point) and the intersection of edges included in viewing angle 354 (fourth reference point) are also acquired as position information.
 そして、ステップS105に進み、制御部Cが基板200上の対角位置にある交点間の距離として対角距離が算出する。本実施例においては、視野角351内の交点220Aと視野角352内の交点220Bの間の距離と、視野角353内の交点と視野角354内の交点の間の距離とが対角距離として算出される。 Then, the process proceeds to step S105, where the control unit C calculates a diagonal distance as the distance between intersection points located at diagonal positions on the substrate 200. In this embodiment, the distance between the intersection point 220A in the viewing angle 351 and the intersection point 220B in the viewing angle 352, and the distance between the intersection point in the viewing angle 353 and the intersection point in the viewing angle 354 are the diagonal distances. Calculated.
 ステップS106においては、制御部Cが、算出された対角距離が理論値範囲内にあるか確認し、基板200に割れが生じているか判定する。本実施例においては、製造誤差や測定誤差等を考慮して、理論値範囲を設計値±3mmとしている。なお、理論値範囲はこの値に限られるものではなく、基板や装置の構成等に応じて適宜定めることができる。対角距離が理論値範囲内である場合は、制御部Cは基板200に割れが生じていないと判定し、割れ検査終了後(S108)、基板200と基板キャリア100が自動的に基板剥離室R6から搬出される。 In step S106, the control unit C checks whether the calculated diagonal distance is within the theoretical value range and determines whether the substrate 200 is cracked. In this embodiment, the theoretical value range is set to the design value ±3 mm in consideration of manufacturing errors, measurement errors, and the like. Note that the theoretical value range is not limited to this value, and can be determined as appropriate depending on the configuration of the substrate and the device. If the diagonal distance is within the theoretical value range, the control unit C determines that there is no crack in the substrate 200, and after the crack inspection is completed (S108), the substrate 200 and the substrate carrier 100 are automatically transferred to the substrate separation chamber. It is carried out from R6.
 一方、ステップS106で対角距離が理論値範囲内にないことが確認された場合、制御部Cは基板200に割れが生じていると判定し、ステップS107でアラームにより割れが検出されたことをユーザーに報知し、割れ検査が終了する(S108)。アラームにより基板200に割れが生じていると制御部Cが判定したことを知ったユーザーは、基板剥離室R6内から基板200から手動で取り出す。なお、ユーザーへの報知方法はアラームに限られず、表示画面上での通知等その他の通知手段を用いた方法でも良い。 On the other hand, if it is confirmed in step S106 that the diagonal distance is not within the theoretical value range, the control unit C determines that a crack has occurred in the board 200, and in step S107, an alarm indicates that a crack has been detected. The user is notified and the crack inspection ends (S108). When the user learns that the controller C has determined that the substrate 200 is cracked due to the alarm, the user manually removes the substrate 200 from the substrate separation chamber R6. Note that the method of notifying the user is not limited to an alarm, and may be a method using other notification means such as notification on a display screen.
 以上のように、本実施例によれば、基板が静止した状態で基板の一部を撮影し、撮影結果から基板の割れを真空装置内で検知することができる。その結果、従来技術のように高精度な搬送手段が必要ではなく、設備コストが抑制できる。また、基板の全体を撮像する必要がないため、基板のサイズが大きい場合であっても、撮影範囲を広げるために撮像手段を増やす必要がなく、簡易的な構成で撮像手段等の設備コストを抑制した上で基板の割れを検査できる。 As described above, according to this embodiment, a part of the board can be photographed while the board is stationary, and cracks in the board can be detected within the vacuum apparatus from the photographed results. As a result, there is no need for highly accurate conveyance means as in the prior art, and equipment costs can be suppressed. In addition, since there is no need to image the entire board, even if the board is large, there is no need to increase the number of imaging means to expand the imaging range, and the simple configuration reduces equipment costs such as imaging means. It is possible to inspect the board for cracks while suppressing it.
 近年、基板の薄肉化や大型化に伴い、基板に割れが生じやすくなっている。また、基板の割れ検知のために基板全域を撮影する構成とした場合は、より広範に撮影可能な撮影手段が必要となるため設備コストが大きくなりやすい。しかしながら、本発明によれば、基板のサイズによらず撮影範囲を過度に広くする必要がないため撮影手段等の設備コストが抑えられる。更には、エッジを鮮明にするために基板全体に光を投射する必要がないため、画像撮影用の照明光の設備コストも抑えられる。 In recent years, as substrates have become thinner and larger, they are more likely to crack. Furthermore, if a configuration is adopted in which the entire area of the board is photographed in order to detect cracks in the board, a photographing means capable of photographing a wider area is required, which tends to increase the equipment cost. However, according to the present invention, there is no need to make the photographing range excessively wide regardless of the size of the substrate, so the cost of equipment such as photographing means can be suppressed. Furthermore, since it is not necessary to project light onto the entire board to sharpen the edges, the cost of equipment for illumination light for image capture can also be reduced.
 なお、本発明の構成は上記の構成に限られたものではなく、上記実施例に具現された発明と同一性を失わない範囲で種々の変更が可能である。例えば、上記の実施例においては、基板の対角距離に基づいて基板の割れを検知していたが、対角距離の代わりに別の交点間距離に基づいて基板に割れが生じているか判定しても良い。具体的には、略矩形の基板の4辺に沿った4つの交点間距離がそれぞれ理論値範囲内にあるか確認し、どれかが理論離範囲外にある場合に基板に割れが生じていると判定する構成でも良い。また、上記の実施例においては、基板の基準点としてエッジの交点を用いていたが、基板上の画像表示部以外の部分に基板マークを設け、基板マーク等その他のものを基準点として用いても良い。 Note that the configuration of the present invention is not limited to the above configuration, and various changes can be made without losing the sameness as the invention embodied in the above embodiments. For example, in the above embodiment, a crack in the board was detected based on the diagonal distance of the board, but instead of the diagonal distance, it may be determined whether a crack has occurred in the board based on another distance between intersection points. It's okay. Specifically, we check whether the distances between the four intersection points along the four sides of a roughly rectangular board are within the theoretical value range, and if any of them is outside the theoretical distance range, cracks have occurred in the board. It may be configured to determine that. In addition, in the above embodiment, the intersection of the edges was used as the reference point of the board, but it is also possible to provide a board mark in a part other than the image display area on the board and use other things such as the board mark as the reference point. Also good.
 また、上記の実施例においては、基板剥離室で基板の割れ検査を行う構成としたが、基板剥離室以外のチャンバで基板の割れ検査を行う構成としても良い。例えば、基板搬入室において、基板を基板キャリアに保持させる前に本発明に係る基板検査装置を用いて基板の割れ検査を行う構成としても良く、基板の割れ検査を行う装置や順番は上記の実施例に限られるものではない。 Further, in the above embodiment, the structure is such that the crack inspection of the substrate is performed in the substrate peeling chamber, but a structure may be adopted in which the crack test of the substrate is performed in a chamber other than the substrate peeling chamber. For example, in the board loading room, the board inspection device according to the present invention may be used to inspect the board for cracks before the board is held on the board carrier, and the device and order for testing the board for cracks may be as described above. This is not limited to examples.
 <成膜室>
 図13を参照して、成膜室R3における成膜処理について、より詳細に説明する。成膜室R3内には、成膜源としての蒸発源600が設けられている。基板キャリア100に保持された基板200が下向きとなるように、これらは成膜室R3内に位置決めされた状態で支持される。また、基板200の下側には、基板200に対して位置決めされた状態でマスクMも配される。マスクMには、基板200に薄膜を形成する位置に対応する位置に開口が設けられている。これにより、基板キャリア100に保持された基板200上に、マスクMを介して成膜が行われる。
<Film forming chamber>
With reference to FIG. 13, the film forming process in the film forming chamber R3 will be described in more detail. An evaporation source 600 as a film forming source is provided in the film forming chamber R3. The substrate 200 held by the substrate carrier 100 is positioned and supported within the film forming chamber R3 so that it faces downward. Further, a mask M is also arranged below the substrate 200 in a state in which it is positioned with respect to the substrate 200. The mask M is provided with an opening at a position corresponding to a position where a thin film is to be formed on the substrate 200. Thereby, film formation is performed on the substrate 200 held by the substrate carrier 100 via the mask M.
 本実施例においては、真空蒸着による成膜(蒸着)が行われる。具体的には、蒸発源600から成膜材料が蒸発又は昇華し、基板200上に成膜材料が蒸着して基板200上に薄膜が形成される。蒸発源600については、公知技術であるので、その詳細な説明は省略する。例えば、蒸発源600は、坩堝等の成膜材料を収容する容器と、容器を加熱する加熱装置等により構成することができる。なお、成膜源は蒸発源600に限定されるものではなく、成膜源はスパッタリングによって成膜を行うためのスパッタリングカソードであってもよい。 In this example, film formation (vapor deposition) is performed by vacuum evaporation. Specifically, the film-forming material is evaporated or sublimated from the evaporation source 600, and the film-forming material is vapor-deposited onto the substrate 200 to form a thin film on the substrate 200. Since the evaporation source 600 is a known technique, detailed explanation thereof will be omitted. For example, the evaporation source 600 can be configured with a container such as a crucible that contains a film forming material, a heating device that heats the container, and the like. Note that the film forming source is not limited to the evaporation source 600, and may be a sputtering cathode for forming a film by sputtering.
 <電子デバイスの製造方法>
 次に、本実施例に係る成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成を示し、有機EL表示装置の製造方法を例示する。
<Method for manufacturing electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus according to this embodiment will be described. Hereinafter, the configuration of an organic EL display device will be shown as an example of an electronic device, and a method for manufacturing the organic EL display device will be illustrated.
 まず、製造する有機EL表示装置について説明する。図14(a)は有機EL表示装置700の全体図、図14(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be explained. FIG. 14(a) is an overall view of the organic EL display device 700, and FIG. 14(b) is a cross-sectional view of one pixel.
 図14(a)に示すように、有機EL表示装置700の表示領域701には、発光素子を複数備える画素702がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域701において所望の色の表示を可能とする最小単位を指している。本実施例に係る有機EL表示装置の場合、互いに異なる発光を示す第1発光素子702R、第2発光素子702G、第3発光素子702Bの組み合わせにより画素702が構成されている。画素702は、赤色発光素子と緑色発光素子と青色発光素子の組み合わせで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 14(a), in the display area 701 of the organic EL display device 700, a plurality of pixels 702 each including a plurality of light emitting elements are arranged in a matrix. Although details will be explained later, each light emitting element has a structure including an organic layer sandwiched between a pair of electrodes. Note that the pixel herein refers to the smallest unit that can display a desired color in the display area 701. In the case of the organic EL display device according to this embodiment, a pixel 702 is configured by a combination of a first light emitting element 702R, a second light emitting element 702G, and a third light emitting element 702B, which emit light different from each other. The pixel 702 is often composed of a combination of a red light-emitting element, a green light-emitting element, and a blue light-emitting element, but it may also be a combination of a yellow light-emitting element, a cyan light-emitting element, and a white light-emitting element. There are no restrictions.
 図14(b)は、図14(a)のB-B線における部分断面模式図である。画素702は、複数の発光素子からなり、各発光素子は、基板703上に、第1電極(陽極)704と、正孔輸送層705と、発光層706R、706G、706Bのいずれかと、電子輸送層707と、第2電極(陰極)708と、を有している。これらのうち、正孔輸送層705、発光層706R、706G、706B、電子輸送層707が有機層に当たる。また、本実施例では、発光層706Rは赤色を発する有機EL層、発光層706Gは緑色を発する有機EL層、発光層706Bは青色を発する有機EL層である。発光層706R、706G、706Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。 FIG. 14(b) is a schematic partial cross-sectional view taken along line BB in FIG. 14(a). The pixel 702 consists of a plurality of light emitting elements, and each light emitting element has a first electrode (anode) 704, a hole transport layer 705, one of the light emitting layers 706R, 706G, and 706B, and an electron transport layer on a substrate 703. It has a layer 707 and a second electrode (cathode) 708. Among these, the hole transport layer 705, the light emitting layers 706R, 706G, and 706B, and the electron transport layer 707 correspond to organic layers. Further, in this embodiment, the light-emitting layer 706R is an organic EL layer that emits red, the light-emitting layer 706G is an organic EL layer that emits green, and the light-emitting layer 706B is an organic EL layer that emits blue. The light-emitting layers 706R, 706G, and 706B are formed in patterns corresponding to light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue, respectively.
 また、第1電極704は、発光素子毎に分離して形成されている。正孔輸送層705と電子輸送層707と第2電極708は、複数の発光素子702R、702G、702Bで共通に形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極704と第2電極708とが異物によってショートするのを防ぐために、第1電極704間に絶縁層709が設けられている。更に、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層710が設けられている。 Furthermore, the first electrode 704 is formed separately for each light emitting element. The hole transport layer 705, the electron transport layer 707, and the second electrode 708 may be formed in common for the plurality of light emitting elements 702R, 702G, and 702B, or may be formed for each light emitting element. Note that an insulating layer 709 is provided between the first electrodes 704 in order to prevent the first electrodes 704 and the second electrodes 708 from shorting due to foreign matter. Furthermore, since the organic EL layer deteriorates due to moisture and oxygen, a protective layer 710 is provided to protect the organic EL element from moisture and oxygen.
 図14(b)では正孔輸送層705や電子輸送層707は一つの層で示されているが、有機EL表示素子の構造によっては、正孔ブロック層や電子ブロック層を備える複数の層で形成されてもよい。また、第1電極704と正孔輸送層705との間には第1電極704から正孔輸送層705への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、第2電極708と電子輸送層707の間にも電子注入層が形成することもできる。 Although the hole transport layer 705 and electron transport layer 707 are shown as one layer in FIG. 14(b), depending on the structure of the organic EL display element, they may be formed as multiple layers including a hole blocking layer and an electron blocking layer. may be formed. Further, between the first electrode 704 and the hole transport layer 705, a positive hole having an energy band structure that allows holes to be smoothly injected from the first electrode 704 to the hole transport layer 705 is provided. A hole injection layer can also be formed. Similarly, an electron injection layer can also be formed between the second electrode 708 and the electron transport layer 707.
 次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, an example of a method for manufacturing an organic EL display device will be specifically described.
 まず、有機EL表示装置を駆動するための回路(不図示)及び第1電極704が形成された基板(マザーガラス)703を準備する。 First, a substrate (mother glass) 703 on which a circuit (not shown) for driving an organic EL display device and a first electrode 704 are formed is prepared.
 第1電極704が形成された基板703の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極704が形成された部分に開口が形成されるようにパターニングし絶縁層709を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 703 on which the first electrode 704 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the part where the first electrode 704 is formed, and an insulating layer is formed. Form 709. This opening corresponds to the light emitting region where the light emitting element actually emits light.
 絶縁層709がパターニングされた基板703を粘着部材が配置された基板キャリアに載置する。粘着部材によって、基板703は保持される。第1の有機材料成膜装置に搬入し、反転後、正孔輸送層705を、表示領域の第1電極704の上に共通する層として成膜する。正孔輸送層705は真空蒸着により成膜される。実際には正孔輸送層705は表示領域701よりも大きなサイズに形成されるため、高精細なマスクは不要である。 A substrate 703 with a patterned insulating layer 709 is placed on a substrate carrier on which an adhesive member is arranged. The substrate 703 is held by the adhesive member. After being carried into a first organic material film forming apparatus and inverted, a hole transport layer 705 is formed as a common layer on the first electrode 704 in the display area. The hole transport layer 705 is formed by vacuum deposition. In reality, the hole transport layer 705 is formed to have a larger size than the display area 701, so a high-definition mask is not required.
 次に、正孔輸送層705までが形成された基板703を第2の有機材料成膜装置に搬入する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板703の赤色を発する素子を配置する部分に、赤色を発する発光層706Rを成膜する。 Next, the substrate 703 on which up to the hole transport layer 705 has been formed is carried into a second organic material film forming apparatus. The substrate and the mask are aligned, the substrate is placed on the mask, and a light-emitting layer 706R that emits red light is formed on a portion of the substrate 703 where an element that emits red light is to be arranged.
 発光層706Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層706Gを成膜し、更に第4の有機材料成膜装置により青色を発する発光層706Bを成膜する。発光層706R、706G、706Bの成膜が完了した後、第5の成膜装置により表示領域701の全体に電子輸送層707を成膜する。電子輸送層707は、3色の発光層706R、706G、706Bに共通の層として形成される。 Similar to the formation of the light-emitting layer 706R, a light-emitting layer 706G that emits green light is formed by a third organic material film-forming device, and a light-emitting layer 706B that emits blue light is further formed by a fourth organic material film-forming device. . After the formation of the light emitting layers 706R, 706G, and 706B is completed, the electron transport layer 707 is formed over the entire display area 701 using a fifth film formation apparatus. The electron transport layer 707 is formed as a layer common to the three color light emitting layers 706R, 706G, and 706B.
 電子輸送層707まで形成された基板を金属性蒸着材料成膜装置で移動させて第2電極708を成膜する。 A second electrode 708 is formed by moving the substrate on which the electron transport layer 707 has been formed using a metal vapor deposition material film forming apparatus.
 その後プラズマCVD装置に移動して保護層710を成膜して、基板703への成膜工程を完了する。反転後、粘着部材を基板703から剥離することで、基板キャリアから基板703を分離する。その後、裁断を経て有機EL表示装置700が完成する。 Thereafter, the film is moved to a plasma CVD apparatus and a protective layer 710 is formed, thereby completing the film forming process on the substrate 703. After inversion, the adhesive member is peeled off from the substrate 703 to separate the substrate 703 from the substrate carrier. Thereafter, the organic EL display device 700 is completed through cutting.
 絶縁層709がパターニングされた基板703を成膜装置に搬入してから保護層710の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本実施例において、成膜装置間の基板の搬入搬出は、真空雰囲気又は不活性ガス雰囲気の下で行われる。 If the substrate 703 on which the insulating layer 709 has been patterned is exposed to an atmosphere containing moisture or oxygen from the time the substrate 703 on which the insulating layer 709 has been patterned is carried into the film forming apparatus until the film forming of the protective layer 710 is completed, the light emitting layer made of the organic EL material may There is a risk of deterioration due to moisture and oxygen. Therefore, in this embodiment, substrates are carried in and out between film forming apparatuses under a vacuum atmosphere or an inert gas atmosphere.
 200…基板、220A…交点(第1の基準点)、220B…交点(第2の基準点)、350…撮像手段(撮影手段)、411…支持ピン(支持手段)、C…制御部(判定手段)、L1…距離 200... Board, 220A... Intersection (first reference point), 220B... Intersection (second reference point), 350... Imaging means (photographing means), 411... Support pin (support means), C... Control unit (judgment) means), L1...distance

Claims (16)

  1.  基板を支持する支持手段と、
     前記支持手段により支持された前記基板の撮影を行う撮影手段と、
     前記撮影手段の撮影結果を基に前記基板に割れが生じているか判定する判定手段と、
    を備え、
     前記判定手段は、前記撮影結果を基に算出された第1の基準点と第2の基準点との間の距離に基づいて、前記基板に割れが生じているか判定することを特徴とする基板検査装置。
    support means for supporting the substrate;
    Photographing means for photographing the substrate supported by the supporting means;
    determining means for determining whether a crack has occurred in the substrate based on the photographic result of the photographing means;
    Equipped with
    The board characterized in that the determining means determines whether a crack has occurred in the board based on a distance between a first reference point and a second reference point calculated based on the photographing result. Inspection equipment.
  2.  前記判定手段は、前記距離が予め設定された理論値範囲から外れている場合に前記基板に割れが生じていると判定することを特徴とする請求項1に記載の基板検査装置。 The board inspection apparatus according to claim 1, wherein the determining means determines that a crack has occurred in the board when the distance is outside a preset theoretical value range.
  3.  前記判定手段は、前記撮影結果から前記第1の基準点と前記第2の基準点の位置情報を取得し、前記位置情報を基に前記距離を算出することを特徴とする請求項1に記載の基板検査装置。 2. The determining means acquires positional information of the first reference point and the second reference point from the photographic result, and calculates the distance based on the positional information. board inspection equipment.
  4.  前記基板は略矩形であり、
     前記第1の基準点は、前記基板の面の4つの角のうち第1の角に最も近い位置に設けられ、
     前記第2の基準点は、前記4つの角のうち前記第1の角と異なる第2の角に最も近い位置に設けられることを特徴とする請求項1に記載の基板検査装置。
    The substrate is approximately rectangular,
    The first reference point is provided at a position closest to a first corner of the four corners of the surface of the substrate,
    2. The board inspection apparatus according to claim 1, wherein the second reference point is provided at a position closest to a second corner different from the first corner among the four corners.
  5.  前記第1の角は、前記第2の角に対して対角の位置にあることを特徴とする請求項4に記載の基板検査装置。 5. The board inspection apparatus according to claim 4, wherein the first corner is located diagonally to the second corner.
  6.  前記撮影結果は、前記第1の角と前記第1の基準点を含む第1の画像と、前記第2の角と前記第2の基準点を含む第2の画像と、を含むことを特徴とする請求項4に記載の基板検査装置。 The photographing result includes a first image including the first corner and the first reference point, and a second image including the second corner and the second reference point. The board inspection apparatus according to claim 4.
  7.  前記第1の基準点は、前記第1の角を形成する二辺の交点であり、
     前記第2の基準点は、前記第2の角を形成する二辺の交点であることを特徴とする請求項4に記載の基板検査装置。
    The first reference point is an intersection of two sides forming the first corner,
    5. The board inspection apparatus according to claim 4, wherein the second reference point is an intersection of two sides forming the second corner.
  8.  前記第1の基準点及び前記第2の基準点は、前記基板上に設けられたマークであることを特徴とする請求項1に記載の基板検査装置。 The board inspection apparatus according to claim 1, wherein the first reference point and the second reference point are marks provided on the board.
  9.  前記基板は、前記4つの角のうち第3の角に最も近い位置に設けられる第3の基準点と、前記4つの角のうち前記第3の角に対して対角の位置にある第4の角に最も近い位置に設けられる第4の基準点と、を有し、
     前記判定手段は、前記第1の基準点と前記第2の基準点の間の前記距離、及び前記第3の基準点と前記第4の基準点の間の距離に基づいて前記基板に割れが生じているか判定することを特徴とする請求項5に記載の基板検査装置。
    The substrate has a third reference point provided at a position closest to the third corner among the four corners, and a fourth reference point located diagonally to the third corner among the four corners. a fourth reference point provided at a position closest to the corner of the
    The determining means determines whether there is a crack in the substrate based on the distance between the first reference point and the second reference point and the distance between the third reference point and the fourth reference point. 6. The board inspection apparatus according to claim 5, further comprising a step of determining whether or not a problem has occurred.
  10.  前記支持手段は、前記基板に鉛直方向の下方側から当接する複数のピンであることを特徴とする請求項1に記載の基板検査装置。 2. The board inspection apparatus according to claim 1, wherein the support means is a plurality of pins that contact the board from below in the vertical direction.
  11.  前記判定手段が前記基板に割れが生じていると判定した場合に作業者に通知する通知手段を更に備えることを特徴とする請求項1に記載の基板検査装置。 The board inspection apparatus according to claim 1, further comprising notification means for notifying an operator when the determination means determines that a crack has occurred in the board.
  12.  前記通知手段は、アラームであることを特徴とする請求項11に記載の基板検査装置。 The board inspection apparatus according to claim 11, wherein the notification means is an alarm.
  13.  前記支持手段と前記撮影手段が内部に設けられる真空容器と、
     前記基板を前記真空容器の内外へ搬送する搬送手段と、
    を更に備えることを特徴とする請求項1~12のいずれか1項に記載の基板検査装置。
    a vacuum container in which the supporting means and the photographing means are provided;
    Conveying means for conveying the substrate into and out of the vacuum container;
    The board inspection apparatus according to any one of claims 1 to 12, further comprising:
  14.  基板キャリアに保持された前記基板上に薄膜を形成する成膜源と、
     請求項1~12のいずれか1項に記載の基板検査装置と、
    を備えることを特徴とする成膜装置。
    a deposition source that forms a thin film on the substrate held by a substrate carrier;
    A board inspection device according to any one of claims 1 to 12,
    A film forming apparatus comprising:
  15.  基板を支持する支持手段と、前記支持手段により支持された前記基板の撮影を行う撮影手段と、を備える基板検査装置を用いた基板検査方法であって、
     前記撮影手段の撮影結果を基に前記基板に割れが生じているか判定する判定工程を行い、
     前記判定工程は、前記撮影結果を基に算出された第1の基準点と第2の基準点との間の距離に基づいて、前記基板に割れが生じているか判定することを特徴とする基板検査方法。
    A board inspection method using a board inspection apparatus comprising a support means for supporting a board, and a photographing means for photographing the board supported by the support means, the method comprising:
    performing a determination step of determining whether a crack has occurred in the substrate based on the photographing result of the photographing means;
    The substrate characterized in that the determination step includes determining whether a crack has occurred in the substrate based on a distance between a first reference point and a second reference point calculated based on the photographic result. Inspection method.
  16.  請求項15に記載された基板検査方法によって検査され、基板キャリアに保持された前記基板上に薄膜を形成する成膜工程を行うことを特徴とする成膜方法。 A film forming method comprising performing a film forming step of forming a thin film on the substrate inspected by the substrate inspection method according to claim 15 and held by a substrate carrier.
PCT/JP2023/011332 2022-06-16 2023-03-22 Substrate inspection device, film forming device, substrate inspection method, and film forming method WO2023243174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-097318 2022-06-16
JP2022097318A JP2023183676A (en) 2022-06-16 2022-06-16 Substrate inspection device, and deposition device

Publications (1)

Publication Number Publication Date
WO2023243174A1 true WO2023243174A1 (en) 2023-12-21

Family

ID=89192588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011332 WO2023243174A1 (en) 2022-06-16 2023-03-22 Substrate inspection device, film forming device, substrate inspection method, and film forming method

Country Status (2)

Country Link
JP (1) JP2023183676A (en)
WO (1) WO2023243174A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163238A (en) * 2005-12-13 2007-06-28 Central Glass Co Ltd Crack detection method of glass plate under conveyance
JP2010071880A (en) * 2008-09-19 2010-04-02 Olympus Corp Substrate inspection device and substrate processing system
JP2014201437A (en) * 2013-04-10 2014-10-27 株式会社Jcu Plate crack detection method
US20150221563A1 (en) * 2014-02-04 2015-08-06 Applied Materials, Inc. Application of in-line glass edge-inspection and alignment check in display manufacturing
JP2016148665A (en) * 2015-02-13 2016-08-18 アズビル株式会社 Inspection system and inspection method
JP2020003469A (en) * 2018-06-29 2020-01-09 キヤノントッキ株式会社 Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method
JP2021513080A (en) * 2018-02-13 2021-05-20 コーニング インコーポレイテッド Equipment and methods for inspecting glass sheets

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163238A (en) * 2005-12-13 2007-06-28 Central Glass Co Ltd Crack detection method of glass plate under conveyance
JP2010071880A (en) * 2008-09-19 2010-04-02 Olympus Corp Substrate inspection device and substrate processing system
JP2014201437A (en) * 2013-04-10 2014-10-27 株式会社Jcu Plate crack detection method
US20150221563A1 (en) * 2014-02-04 2015-08-06 Applied Materials, Inc. Application of in-line glass edge-inspection and alignment check in display manufacturing
JP2016148665A (en) * 2015-02-13 2016-08-18 アズビル株式会社 Inspection system and inspection method
JP2021513080A (en) * 2018-02-13 2021-05-20 コーニング インコーポレイテッド Equipment and methods for inspecting glass sheets
JP2020003469A (en) * 2018-06-29 2020-01-09 キヤノントッキ株式会社 Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method

Also Published As

Publication number Publication date
JP2023183676A (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CN110660693B (en) Substrate inspection system, inspection method, electronic device manufacturing system, and electronic device manufacturing method
JP7244401B2 (en) Alignment apparatus, film formation apparatus, alignment method, film formation method, and electronic device manufacturing method
WO2023243174A1 (en) Substrate inspection device, film forming device, substrate inspection method, and film forming method
KR102590797B1 (en) Adsorption system, adsorption method and film forming apparatus using the same, film forming method, and manufacturing method of electronic device
CN114790538B (en) Film forming apparatus
KR20210081589A (en) Film forming apparatus, manufacturing apparatus of electronic device, film forming method, and manufacturing method of electronic device
JP7082172B2 (en) Alignment device, film formation device, alignment method, film formation method, and manufacturing method of electronic devices
KR20200048841A (en) Mask replacement timing determination apparatus, film forming apparatus, mask replacement timing determination method, film forming method, and manufacturing method of electronic device
JP7033180B2 (en) Manufacturing method of rotary drive device, film forming device including this, and electronic device
JP7320034B2 (en) Substrate transfer device and film forming device
WO2024004326A1 (en) Alignment device, film forming device, and alignment method
KR20210078271A (en) Alignment system, film-forming apparatus, alignment method, film-forming method, manufacturing method of electronic device and recording medium of computer program
WO2023210464A1 (en) Film deposition device, film deposition method, electronic device manufacturing method, and computer program recording medium
KR20200049379A (en) Alignment apparatus, film forming apparatus, alignment method, film forming method, and manufacturing method of electronic device
JP7361080B2 (en) Substrate lifting device and film forming device
WO2023238478A1 (en) Film formation device, film formation method, alignment device, and alignment method
JP7078694B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
KR102620156B1 (en) Apparatus and method for checking adhesion degree and apparatus and method for forming film using the same, and manufacturing method of electronic device
KR20230069822A (en) Alignment apparatus
JP2023178622A (en) Film formation device, film formation method, alignment device, and alignment method
JP2023178641A (en) Film formation device, film formation method, alignment device, and alignment method
JP2024067719A (en) CARRIER SUPPORT DEVICE, FILM FORMING APPARATUS, AND CARRIER SUPPORT METHOD
KR20240066103A (en) Carrier supporting apparatus, film forming apparatus, and carrier method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823478

Country of ref document: EP

Kind code of ref document: A1