WO2023243060A1 - 光通信システム及びリセット方法 - Google Patents

光通信システム及びリセット方法 Download PDF

Info

Publication number
WO2023243060A1
WO2023243060A1 PCT/JP2022/024207 JP2022024207W WO2023243060A1 WO 2023243060 A1 WO2023243060 A1 WO 2023243060A1 JP 2022024207 W JP2022024207 W JP 2022024207W WO 2023243060 A1 WO2023243060 A1 WO 2023243060A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
signal
optical
node
parent node
Prior art date
Application number
PCT/JP2022/024207
Other languages
English (en)
French (fr)
Inventor
ひろし 渡邉
紗希 野添
良 小山
友裕 川野
和英 中江
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024207 priority Critical patent/WO2023243060A1/ja
Publication of WO2023243060A1 publication Critical patent/WO2023243060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present disclosure relates to an optical communication system configured with optical nodes that are optically powered, and a reset method for remotely resetting the optical nodes.
  • Optical fiber networks especially access networks that connect communication equipment installed in communication buildings and communication terminals on the user side, require the installation and maintenance of new routes or connections to different routes in order to use equipment efficiently.
  • Optical fiber core wires are changed at a certain frequency. Normally, such fiber switching work requires a worker to go to the site and manually switch the connections of the optical fibers, but a technology has been proposed in which the connections of the optical fibers can be switched by remote control.
  • Non-Patent Documents 1 and 2 describe optical power supply and A method is disclosed that can simultaneously realize the functions of controlling multiple optical switches included in an optical node.
  • This optical node is installed in an optical fiber network, and connects and switches fibers of communication/main signal optical fibers on a fiber-by-fiber basis.
  • FIG. 1 is a diagram illustrating a form in which optical power is supplied in parallel to optical nodes in an optical fiber network.
  • the optical power supply light emitted from the power supply control light source 11 located inside an optical node installed inside a communication building, etc. (hereinafter, the optical node will be referred to as a "parent node") is transmitted inside or near the parent node 10.
  • the power supply light is photoelectrically converted by the optical power supply converter 21 of the child node 20 and stored as electric power in the power storage unit 22 .
  • a control signal generated by intensity modulation or the like is superimposed on the optical power supply light.
  • This control signal is, for example, a serial communication method.
  • devices such as a PIC (Peripheral Interface Controller) microcomputer 23 in the child node 20 are operated. Further, a control signal may be sent back from the child node 20 side to the parent node 10 as necessary. Note that since this child node 20 is installed outdoors in a wide range of locations, it does not use a commercial power source, but operates on power supplied by optical power from the parent node 10.
  • FIG. 2 is a diagram illustrating a mode in which optical power is supplied to optical nodes in an optical fiber network in a serial manner.
  • Optical power supply light emitted from a power supply control light source 11 located at a parent node 10 in a communication building or the like is sequentially transmitted to a plurality of child nodes 20 via a single power supply optical fiber.
  • Each child node 10 is equipped with a 1 ⁇ 2 optical switch (n ⁇ n optical switch) 24, and either supplies the optically fed light to the optically fed converter 21 in its own child node 20 or to the rear child node 20. Switch the direction of sending to.
  • This 1 ⁇ 2 optical switch 24 is switched by a control signal superimposed on the optical power supply light. In this manner, the 1 ⁇ 2 optical switch 24 switches, in response to the control signal, the route of the optical fiber line that allows the power supply control light source 11 and each child node 20 to communicate one-on-one in a time-division manner.
  • the PIC microcomputer 23 and the optical switch 24 cannot be controlled or driven. Therefore, when a plurality of child nodes 20 exist as in the configurations shown in FIGS.
  • the premise of operation is that a certain amount of electricity is always stored.
  • the optical communication system according to the present invention is equipped with a configuration that allows remote reset of a child node from the parent node side and also allows confirmation of whether the remote reset is successful or unsuccessful.
  • the present invention can provide an optical communication system and a reset method that can reduce costs and improve the operation of an optical fiber network.
  • the child node is powered and controlled by optical power supply light from a single power supply control light source from the parent node. Since the amount of power stored in child nodes that are not optically powered decreases, it is necessary to efficiently optically supply power to a plurality of child nodes.
  • the parent node transmits the reset signal to any one of the child nodes until transmitting the reset completion confirmation signal
  • the The light for driving power is supplied to any of the child nodes.
  • the efficiency of optical power supply can be improved by storing power in other child nodes using the reset time.
  • the parent node of the optical communication system according to the present invention does not receive the response signal after transmitting the reset completion confirmation signal, it is preferable that the parent node transmits the reset signal and the reset completion confirmation signal a specified number of times. Even if resetting a child node fails, the reset may succeed after retrying. By automatically repeating reset retries, it is possible to reduce the number of man-hours for workers and reduce costs.
  • FIG. 2 is a diagram illustrating a configuration in which optical power is supplied to optical nodes of an optical fiber network in parallel.
  • FIG. 2 is a diagram illustrating a form in which optical power is supplied to optical nodes of an optical fiber network in a serial manner.
  • 1 is a diagram illustrating an optical communication system according to the present invention.
  • FIG. 3 is a diagram illustrating a method for resetting an optical node according to the present invention.
  • 1 is a diagram illustrating an optical communication system according to the present invention.
  • FIG. 3 is a diagram illustrating a method for resetting an optical node according to the present invention.
  • 1 is a diagram illustrating an optical communication system according to the present invention.
  • FIG. 3 is a diagram illustrating a method for resetting an optical node according to the present invention.
  • 1 is a diagram illustrating an optical communication system according to the present invention.
  • FIG. 3 is a diagram illustrating the optical communication system 301 of this embodiment.
  • one parent node 10 and one or more child nodes 20 are connected by an optical fiber 51 for main signal and an optical fiber 52 for optical power feeding, and light for driving power is connected to the optical fiber 52 for optical power feeding.
  • superimposing a signal on drive power light is achieved by intensity modulating the drive power light.
  • superimposing a signal on the driving power light may be realized by another method, for example, a method of wavelength multiplexing a signal of a different wavelength from that of the feeding light onto the driving power light.
  • Additional function a A reception function that receives a reset signal that is modulated power supply light from the parent node 10.
  • An execution function that executes a reset on the PIC microcomputer 23 after receiving a reset signal.
  • Additional function c A function of transmitting a response signal generated by modulating the reflected light of the power supply light to the parent node 20 after the reset is completed.
  • FIG. 4 is a sequence diagram illustrating a method for resetting the child node 20 in the optical communication system 301.
  • the prerequisites for this sequence are that the child node 20 has a sufficient amount of stored power to execute the remote reset, and that no other commands are being executed on the child node 20 (multiple commands cannot be executed at the same time). (not executed), and the relevant child node 20 must be in a state where it can normally receive the reset request command.
  • This reset method is a reset method for resetting the child node 20 in the optical communication system 301, and includes: The parent node 10 superimposes a signal on the driving power light and transmits a reset signal to any one child node 20 via the optical fiber 52 for optical power supply (step S01); The child node 20 receives the reset signal from the optical fiber 52 for optical power supply and resets itself (step S02); The parent node 10 intensity-modulates the light for driving power and transmits a reset completion confirmation signal to the child node 20 through the optical fiber 52 for optical power supply (step S03); After the child node 20 resets itself and receives the reset completion confirmation signal, the child node 20 superimposes a signal on the drive power light supplied from the parent node 10 to generate the response signal, and sends the signal to the optical fiber 52 for optical power supply.
  • step S04 the parent node 10 determines whether the reset of the child node 20 is successful or not based on the presence or absence of a response signal transmitted from the child node 20 through the optical fiber 52 for optical power supply.
  • Step S05 I do.
  • Step S01 The parent node 10 drives the channel selector 12 or drives the 1 ⁇ 2 optical switch 24 for the child node 20#1, and sets the optical path to a state where optical power can be supplied to the child node 20#1. Then, the parent node 10 transmits a reset signal to the child node 20#1 using the additional function 1. Child node 20#1 receives the reset signal using additional function a. ⁇ Step S02 Child node 20#1 resets itself using additional function b. ⁇ Step S03 The parent node 10 uses the additional function 2 to transmit a reset completion confirmation signal to the child node 20#1.
  • Step S04 If the child node 20#1 has completed its own reset, the additional function c transmits a response signal as a response to the reset completion confirmation signal.
  • Step S05 The parent node 10 receives the response signal through the additional function 3. On the other hand, the parent node 10 may not be able to receive the response signal within a specified time from the transmission of the reset completion confirmation signal. Therefore, the parent node 10 uses the additional function 4 to determine whether the reset is successful or unsuccessful based on whether or not a response signal is received.
  • FIG. 7 is a diagram illustrating the optical communication system 303 of this embodiment.
  • the optical communication system 303 has the following two functions added to the child node 20 of the optical communication system 303 compared to the child node of the optical communication system explained in FIG.
  • Additional function d A function in which the child node 20 (child node 20#1 in this embodiment) that has received the reset signal autonomously switches its own 1 ⁇ 2 optical switch 24 to the rear side before starting reset.
  • Additional function e A function to switch the 1 ⁇ 2 optical switch 24 to its own side after the reset of the child node 20 is completed.
  • FIG. 9 is a diagram illustrating the operation of the optical communication system 304 of this embodiment.
  • the optical communication system of this embodiment has the following functions added to the optical communication systems (301 to 303) of Embodiments 1 to 3.
  • (Additional function f) This is a function added to the child node 20, and is a function to send back the reset start time and completion time when sending a response signal after the reset is completed.
  • (Additional function 7) This is a function added to the parent node 10, which indicates the number or identifier (e.g. child node #1) of the child node 10 included in the response signal from the child node 20, reset start time, and completion.
  • the functions described above enable the parent node 10 of the optical communication system of this embodiment to calculate the time required for resetting each child node 20 from the reset start time and completion time. In other words, it is possible to send the reset completion confirmation signal in step S03 during a reset (the child node cannot send a response signal, so the reset is repeated) or after a while after the reset is completed (an idle time occurs). This can be avoided and the operation of the optical communication system can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

コストの低減及び光ファイバ網の稼働を向上させることができる光通信システムを提供することを目的とする。 本発明に係る光通信システム301は、給電光が光ファイバ52で親ノード10から子ノード20に供給されており、親ノード10が給電光に信号を重畳し、1つの子ノード20へリセット信号を光ファイバ52で送信すること、子ノード20が光ファイバ52からリセット信号を受信して自身をリセットすること、親ノード10が給電光に信号を重畳し、当該子ノード20へリセット完了確認信号を光ファイバ52で送信すること、子ノード20が自身のリセット後且つリセット完了確認信号の受信後に、親ノード10から供給された給電光を強度変調して応答信号とし、光ファイバ52で親ノード10へ送信すること、及び親ノード10が子ノード20から光ファイバ52で送信された応答信号の有無で子ノード20のリセットの成否を判断する。

Description

光通信システム及びリセット方法
 本開示は、光給電される光ノードで構成させる光通信システム、及び光ノードを遠隔リセットするリセット方法に関する。
 光ファイバ網、特に通信ビルに設置された通信装置とユーザ側の通信端末を結ぶアクセスネットワークでは、その開通や保守において効率的に設備を使用するために新たなルートを設置や、異なるルートへの変更といった光ファイバ心線の切替が一定の頻度で行われている。通常このような心線切替の作業は作業者現地に赴いて手動で光ファイバ心線の接続切替えを行うのに対し、光ファイバ心線の接続切替を遠隔操作で行う技術が提案されている。
 例えば、非特許文献1及び2は、所内等の電源環境に設置された給電制御光源と、遠隔に配置された単数あるいは複数の光ノードから構成されるシステムにおいて、単一のレーザで光給電および光ノードに内包される複数の光スイッチの制御の機能を同時に実現できる方式を開示する。この光ノードは、光ファイバ網内に設置され、通信用/主信号用の光ファイバの心線単位で心線相互の接続や切替を行う。
 図1は、光ファイバ網の光ノードへの光給電を並列型で行う形態を説明する図である。通信ビル等の内部に設置された光ノード(以下、当該光ノードを「親ノード」と記載する。)の内部にある給電制御光源11から出た光給電光は、親ノード10の内部あるいは近傍にあるチャンネルセレクタ(光切替装置)12で、複数の給電用光ファイバ52のうちの1つを介して、複数の光ノード(以下、当該光ノードを「子ノード」と記載する。)に送信される。給電光は、子ノード20の光給電コンバータ21で光電変換され、蓄電部22に電力として蓄えられる。
 また、光給電光には、強度変調等により生成された制御信号が重畳されている。この制御信号は、例えばシリアル通信の方式である。子ノード20で受信された当該制御信号により、子ノード20内のPIC(Peripheral Interface Controller)マイコン23等のデバイスが操作される。また必要に応じて、子ノード20側から親ノード10へ制御信号を返信する場合もある。尚、この子ノード20は屋外の広範囲な場所に設置されるため、商用電源は利用せず、親ノード10からの光給電による電力での運用となる。
 図2は、光ファイバ網の光ノードへの光給電を直列型で行う形態を説明する図である。通信ビル内等の親ノード10にある給電制御光源11から出た光給電光は、単一の給電用光ファイバを介して、複数の子ノード20に順次送信される。各子ノード10は、1×2光スイッチ(n×n光スイッチ)24を備えており、当該光給電光を自身の子ノード20内の光給電コンバータ21に供給するか、後方の子ノード20へ送るかの方向を切替える。この1×2光スイッチ24の切替は光給電光に重畳した制御信号により行う。このように、1×2光スイッチ24は、制御信号により、給電制御光源11と各子ノード20が時分割的に1対1で通信できる光心線のルートとなるように切り替える。
 蓄電部22の蓄電電圧値が、所定の電圧値以下になるとPICマイコン23や光スイッチ24の制御や駆動ができなくなる。このため、図1、2の構成のように複数の子ノード20が存在する場合、チャンネルセレクタ12、もしくは各1×2光スイッチ24を適切に切り替えて光給電を行い、各々の蓄電部22に常に一定量の蓄電がなされている状態に保たれることを運用の前提とする。
 尚、各々の子ノード20の蓄電部22に常に一定の蓄電量が保たれるように、給電制御光源11から制御信号により子ノード20に対して、蓄電部22の蓄電量を随時、問合せ、確認してもよい。
2021年 電子情報通信学会 総合大会 B-13-16、「将来光アクセス網に向けた遠隔光路切替ノードの検討」 2022年 電子情報通信学会 総合大会 B-13-28、「遠隔光路切替ノードの直列接続方式に関する一検討」
 上記の光ノードで構成させる光ファイバ網においては、子ノードを再起動(リセット)することが必要な場合がある。例えば、子ノードに搭載されたPICマイコンに対して、何らかの手段で新たなファームウェアをインストールし、旧ファームウェアから新ファームウェアに変更する場合である。このような場合、作業員が現地へ赴き、各子ノードのリセットが必要になる。しかし、作業員が現地へ赴き、各子ノードをリセットすることは、コストの低減や光ファイバ網の稼働を向上させることが困難という課題があった。
 そこで、本発明は、上記課題を解決するために、コストの低減及び光ファイバ網の稼働を向上させることができる光通信システム及びリセット方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る光通信システムは、親ノード側から子ノードの遠隔リセットを実行でき、更に遠隔リセットが成功か不成功かを確認できる構成を備えることとした。
 具体的には、本発明に係る光通信システムは、1つの親ノードと1又は複数の子ノードとが主信号用の光ファイバ及び光給電用の光ファイバで接続され、駆動電力用の光が前記光給電用の光ファイバで前記親ノードから前記子ノードに供給される光通信システムであって、
 前記親ノードは、
 前記駆動電力用の光に信号を重畳し、任意の1つの前記子ノードへリセット信号及びリセット完了確認信号を前記光給電用の光ファイバで送信すること、及び前記子ノードから前記光給電用の光ファイバで送信された応答信号の有無で前記子ノードのリセットの成否を判断すること、を行い、
 前記子ノードは、
 前記光給電用の光ファイバから前記リセット信号を受信して自身をリセットすること、及び自身のリセット後且つ前記リセット完了確認信号の受信後に、前記親ノードから供給された前記駆動電力用の光に信号を重畳して前記応答信号とし、前記光給電用の光ファイバで前記親ノードへ送信すること、を行う
ことを特徴とする。
 また、本発明に係る子ノードのリセット方法は、1つの親ノードと1又は複数の子ノードとが主信号用の光ファイバ及び光給電用の光ファイバで接続され、駆動電力用の光が前記光給電用の光ファイバで前記親ノードから前記子ノードに供給される光通信システムにおいて、前記子ノードをリセットするリセット方法であって、
 前記親ノードが、前記駆動電力用の光に信号を重畳し、任意の1つの前記子ノードへリセット信号を前記光給電用の光ファイバで送信すること、
 前記子ノードが、前記光給電用の光ファイバから前記リセット信号を受信して自身をリセットすること、
 前記親ノードが、リセット完了確認信号を前記光給電用の光ファイバで送信すること、
 前記子ノードが、自身のリセット後且つ前記リセット完了確認信号の受信後に、前記親ノードから供給された前記駆動電力用の光に信号を重畳して前記応答信号とし、前記光給電用の光ファイバで前記親ノードへ送信すること、及び
 前記親ノードが、前記子ノードから前記光給電用の光ファイバで送信された応答信号の有無で前記子ノードのリセットの成否を判断すること、
を行う。
 本光通信システム及びリセット方法は、親ノード側から子ノードの遠隔リセットを実行でき、更に遠隔リセットが成功か不成功かを確認できるため、作業員が現地へ赴く必要がない。このため、作業員を現地へ派遣するコストや時間を省くことができる。従って、本発明は、コストの低減及び光ファイバ網の稼働を向上させることができる光通信システム及びリセット方法を提供することができる。
 子ノードは、親ノードからの単一の給電制御光源からの光給電光で給電や制御がなされる。光給電されていない子ノードは、蓄電量が減少していくため、複数の子ノードに効率良く光給電を行う必要がある。
 そこで、本発明に係る光通信システムは、前記親ノードが任意の1つの前記子ノードへ、前記リセット信号を送信した後から前記リセット完了確認信号を送信するまでの間、当該子ノード以外の前記子ノードのいずれかに前記駆動電力用の光が供給されることを特徴とする。リセット時間を利用して他の子ノードを蓄電することで光給電の効率を向上させることができる。
 本発明に係る光通信システムの前記親ノードは、前記リセット完了確認信号の送信後、前記応答信号を受信しない場合、前記リセット信号及び前記リセット完了確認信号の送信を規定回数だけ行うことが好ましい。子ノードのリセットが失敗したとしても再試行でリセットが成功することもある。リセットの再試行を自動で繰り返すことで、作業員の工数を低減でき、コスト低減を図れる。
 本発明に係る光通信システムの前記子ノードは、前記応答信号に、前記リセットを開始した開始時刻及び完了した完了時刻を含めること、及び前記親ノードは、前記応答信号から前記開始時刻及び前記完了時刻を取り出し、前記子ノード毎に前記開始時刻と前記完了時刻を管理することが好ましい。親ノードで各子ノードのリセットに係る時間を把握することで、前記リセット完了確認信号を送出するタイミングを適切に設定することができる。つまり、子ノードがリセット中に前記リセット完了確認信号を発出することや子ノードがリセット完了後に無駄な時間が発生することを避けることができる。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明の構成により、光ノードで構成させる光ファイバ網において、子ノードを遠隔からの再起動(遠隔リセット)を実行でき、更に遠隔リセットが成功か不成功かを確認が可能となる。このため、作業員が現地に赴くことなく、親ノードから一括して遠隔の複数の子ノードをリセットすることができる。従って、本発明は、コストの低減及び光ファイバ網の稼働を向上させることができる光通信システム及びリセット方法を提供することができる。
光ファイバ網の光ノードへの光給電を並列型で行う形態を説明する図である。 光ファイバ網の光ノードへの光給電を直列型で行う形態を説明する図である。 本発明に係る光通信システムを説明する図である。 本発明に係る光ノードのリセット方法を説明する図である。 本発明に係る光通信システムを説明する図である。 本発明に係る光ノードのリセット方法を説明する図である。 本発明に係る光通信システムを説明する図である。 本発明に係る光ノードのリセット方法を説明する図である。 本発明に係る光通信システムを説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 以下の実施形態で説明する各子ノードは、蓄電部に蓄えられた電力により、制御部、及びノード内のデバイスの駆動を行う。各子ノードは、自身が光給電光を受光していない時、即ち 図1でチャンネルセレクタ12が他の子ノードの方向に切替えられている場合、あるいは図2で1×2光スイッチ24を後方の子ノード側に切替えている場合、蓄電部22に蓄えられた電力は、PICマイコン23の駆動や自然放電等により時間経過とともに減少していく。
 また、子ノードへの光給電は、主信号用の光ファイバ51ではなく、給電用の光ファイバ52でなされる。
(実施形態1)
 図3は、本実施形態の光通信システム301を説明する図である。光通信システム301は、1つの親ノード10と1又は複数の子ノード20とが主信号用の光ファイバ51及び光給電用の光ファイバ52で接続され、駆動電力用の光が前記光給電用の光ファイバ52で親ノード10から子ノード20に供給される光通信システムであって、
 親ノード10は、
 前記駆動電力用の光に信号を重畳し、任意の1つの子ノード20へリセット信号及びリセット完了確認信号を光給電用の光ファイバ52で送信すること、及び子ノード20から光給電用の光ファイバ52で送信された応答信号の有無で子ノード20のリセットの成否を判断すること、を行い、
 子ノード20は、
 光給電用の光ファイバ52から前記リセット信号を受信して自身をリセットすること、及び自身のリセット後且つ前記リセット完了確認信号の受信後に、親ノード10から供給された前記駆動電力用の光に信号を重畳して前記応答信号とし、光給電用の光ファイバ52で親ノード10へ送信すること、を行うことを特徴とする。
 本実施形態及び以下の実施形態では、駆動電力用の光に信号を重畳することを、駆動電力用の光を強度変調することで実現する例を説明する。なお、駆動電力用の光に信号を重畳することを、他の手法、例えば、給電光とは異なる波長の信号を駆動電力用の光に波長多重する手法で実現してもよい。
 図1で説明した光通信システムの親ノードに対し、光通信システム301の親ノード10に次の4機能が追加される。
(追加機能1)親ノード10から特定の子ノード20への給電光を変調して生成したリセット信号を送信する送信機能。
(追加機能2)親ノード10から特定の子ノード20への給電光を変調して生成したリセット完了確認信号を送信する送信機能。
(追加機能3)リセットが完了した子ノード20が給電光の反射光を変調して生成し、親ノード10へ送信したリセット完了確認の応答信号を受信する受信機能。
(追加機能4)応答信号の受信の有無に基づきリセット実施の成功/不成功を判定する判定機能。
 尚、追加機能4については、例えば、リセット完了確認信号の送信から、一定時間経過以内にリセットが完了したことの応答信号が受信されるか否かで成功/不成功の判定を行う。
 また、図3において、符号Sigは、親ノード10と子ノード20との間で送受されるリセット信号、リセット完了確認信号、及び応答信号を示す。
 図1で説明した光通信システムの子ノードに対し、光通信システム301の子ノード20には次の3機能が追加される。
(追加機能a)親ノード10から、変調された給電光であるリセット信号を受信する受信機能。
(追加機能b)リセット信号を受信した後にPICマイコン23でリセットを実行する実行機能。
(追加機能c)リセット完了後、給電光の反射光を変調して生成した応答信号を親ノード20へ送信する機能。
 図4は、光通信システム301における子ノード20のリセット方法を説明するシーケンス図である。尚、このシーケンスの前提として、遠隔リセットを実行するのに十分な蓄電量が子ノード20に保持されてこと、他のコマンドが該当の子ノード20で実行されていないこと(同時に複数のコマンドを実行しないこと)、リセットリクエストのコマンドが該当の子ノード20が正常に受信できる状態であること、とする。
 本リセット方法は、光通信システム301において、子ノード20をリセットするリセット方法であって、
 親ノード10が、前記駆動電力用の光に信号を重畳し、任意の1つの子ノード20へリセット信号を光給電用の光ファイバ52で送信すること(ステップS01)、
 子ノード20が、光給電用の光ファイバ52から前記リセット信号を受信して自身をリセットすること(ステップS02)、
 親ノード10が、前記駆動電力用の光を強度変調し、当該子ノード20へリセット完了確認信号を光給電用の光ファイバ52で送信すること(ステップS03)、
 子ノード20が、自身のリセット後且つ前記リセット完了確認信号の受信後に、親ノード10から供給された前記駆動電力用の光に信号を重畳して前記応答信号とし、光給電用の光ファイバ52で親ノード10へ送信すること(ステップS04)、及び
 親ノード10が、子ノード20から光給電用の光ファイバ52で送信された応答信号の有無で子ノード20のリセットの成否を判断すること(ステップS05)、
を行う。
 本実施形態では、子ノード20#1を遠隔リセットする場合を説明する。
・ステップS01
 親ノード10は、チャンネルセレクタ12を駆動し、もしくは子ノード20#1に対して1×2光スイッチ24を駆動させ、光経路を子ノード20#1に光給電できる状態とする。そして、親ノード10は追加機能1により子ノード20#1へリセット信号を送信する。子ノード20#1は追加機能aによりリセット信号を受信する。
・ステップS02
 子ノード20#1は、追加機能bにより自身をリセットする。
・ステップS03
 親ノード10は追加機能2により子ノード20#1へリセット完了確認信号を送信する。
・ステップS04
 子ノード20#1は、自身のリセットが完了していれば、追加機能cによりリセット完了確認信号へのレスポンスとして応答信号を送信する。
・ステップS05
 親ノード10は追加機能3により応答信号を受信する。一方、親ノード10はリセット完了確認信号の送信から規定時間内に応答信号を受信できない場合もある。そこで、親ノード10は追加機能4により応答信号の受信の有無に基づきリセットの成功/不成功の判定を行う。
 以上説明した機能及びシーケンスにより、親ノード10から子ノード20を遠隔で再起動(遠隔リセット)を実行でき、更に遠隔リセットが成功か不成功かを親ノード10で確認が可能となる。
 本実施形態は、図1の並列型の光通信システムで説明したが、図2の直列型の光通信システムでも同様に遠隔リセットができる。
(実施形態2)
 図5は、本実施形態の光通信システム302を説明する図である。光通信システム302は、図3の光通信システム301に対し、親ノード10が任意の1つの子ノード20(例えば、子ノード20#1)へ、前記リセット信号を送信した後から前記リセット完了確認信号を送信するまでの間、当該子ノード以外の前記子ノードのいずれか(例えば、子ノード20#2)に前記駆動電力用の光が供給されることを特徴とする。
 具体的には、光通信システム302は、光通信システム301の親ノード10に次の2機能が追加される。
(追加機能5)すべての子ノード20のリセット実施に要する時間を把握する機能。
(追加機能6)任意の子ノードがリセット実施期間中に、他の子ノードへの光給電、もしくは子ノードのデバイス実行(光ファイバ心線の接続切替等)する機能。
 図6は、光通信システム302における子ノード20のリセット方法を説明するシーケンス図である。実施形態1と同様に、子ノード20#1を遠隔リセットする場合を説明する。本図では、図4のシーケンスと異なる部分のみ説明する。
・ステップS11
 ステップS01の後に、親ノード10は追加機能6により、チャンネルセレクタ12を駆動し、光給電光の送信先を子ノード20#1以外の子ノード(本実施形態では子ノード20#2)に切り替える。そして、親ノード10は子ノード20#2に対して光給電、もしくはコマンド実行を行う。
 この間に子ノード10#1においてステップS02を行う。
・ステップS12
 親ノード10は、追加機能5で予め保持しているリセット実施に要する時間T以上が経過した後に、チャンネルセレクタ12を駆動し、光給電光の送信先を子ノード20#1に戻す。
 その後、子ノード20#1に対してステップS03以降を行う。
 以上説明した機能及びシーケンスにより、並列型の光通信システムにおいて、子ノード20がリセットコマンドを実行している時間に、他の子ノード20に対して光給電を行えたり、他のコマンドの実施が可能となる。従って、親ノード10内の1台の給電制御光源11の効率的な運用が可能となる。
(実施形態3)
 図7は、本実施形態の光通信システム303を説明する図である。光通信システム303は、図2で説明した光通信システムの子ノードに対し、光通信システム303の子ノード20には次の2機能が追加される。
(追加機能d)リセット信号を受信した子ノード20(本実施形態では子ノード20#1)が、リセット開始前に、自身の1×2光スイッチ24を後方側に自律的に切替える機能。
(追加機能e)子ノード20のリセット完了後に1×2光スイッチ24を自身側に切替える機能。
 図8は、光通信システム301における子ノード20のリセット方法を説明するシーケンス図である。第1の実施形態と同様に、子ノード20#1を遠隔リセットする場合を説明する。本図では、図4のシーケンスと異なる部分のみ説明する。
・ステップS21
 ステップS01でリセット信号を受信した子ノード10#1が、自身の1×2光スイッチ24を後方側に自律的に切替える。
・ステップS22
 子ノード10#1でリセットコマンドが実行されている間、親ノード10は光給電光の送信先を子ノード20#1以外の子ノード(本実施形態では子ノード20#3)に切り替える。そして、親ノード10は子ノード20#3に対して光給電、もしくはコマンド実行を行う。
 この間に子ノード10#1においてステップS02を行う。
・ステップS23
 親ノード10は、追加機能5で予め保持しているリセット実施に要する時間T以上が経過した後に、光給電光の送信先を子ノード20#3から子ノード20#1に戻す(光給電/コマンド実行の終了)。
・ステップS24
 子ノード20#1は、ステップS02のリセットコマンド実行の完了後に、自身の1×2光スイッチ24を自身側に切替える。
 その後、子ノード20#1に対してステップS03以降を行う。
 以上説明した機能及びシーケンスにより、直列型の光通信システムにおいて、子ノード20がリセットコマンドを実行している時間に、他の子ノード20に対して光給電を行えたり、他のコマンドの実施が可能となる。従って、親ノード10内の1台の給電制御光源11の効率的な運用が可能となる。
(実施形態4)
 実施形態1~3において、ステップS05にて親ノード10が子ノード20から応答信号を受信できない場合(リセットが失敗の場合)に、自動的に、リセットが失敗した子ノード20に対して、ステップS01からステップS05を繰り返す。この繰り返しは、親ノード10が応答信号を受信できるまで、一定回数(N回)を上限として、繰り返すことが好ましい。
(実施形態5)
 図9は、本実施形態の光通信システム304の動作を説明する図である。本実施形態の光通信システムは、実施形態1~3の光通信システム(301~303)に次の機能が追加される。
(追加機能f)子ノード20に追加される機能であり、リセット完了した後の応答信号を送出の際に、リセット開始時刻と完了時刻を、併せて返信する機能。
(追加機能7)親ノード10に追加される機能であり、子ノード20からの応答信号に含まれる子ノード10の番号、もしくは識別子(例:子ノード#1)と、リセット開始時刻、及び完了時刻のデータを管理する機能。
 以上説明した機能により、本実施形態の光通信システムの親ノード10は、リセットの開始時刻と完了時刻から、子ノード20毎のリセットに要する時間を算出することが可能となる。つまり、ステップS03のリセット完了確認信号をリセット中(子ノードから応答信号を送信できないのでリセットが繰り返される。)やリセット完了後しばらくたった後(無可動の時間が発生する。)に送出することを回避でき、光通信システムの稼働を高めることができる。
10:親ノード
11:給電制御光源
12:チャネルセレクタ
20、20#1、20#2、20#3:子ノード
21:光給電コンバータ
22:蓄電部
23:PICマイコン
24:光スイッチ
51:主信号用の光ファイバ
52:光給電用の光ファイバ
301~304:光通信システム

Claims (8)

  1.  1つの親ノードと1又は複数の子ノードとが主信号用の光ファイバ及び光給電用の光ファイバで接続され、駆動電力用の光が前記光給電用の光ファイバで前記親ノードから前記子ノードに供給される光通信システムであって、
     前記親ノードは、
     前記駆動電力用の光に信号を重畳し、任意の1つの前記子ノードへリセット信号及びリセット完了確認信号を前記光給電用の光ファイバで送信すること、及び前記子ノードから前記光給電用の光ファイバで送信された応答信号の有無で前記子ノードのリセットの成否を判断すること、を行い、
     前記子ノードは、
     前記光給電用の光ファイバから前記リセット信号を受信して自身をリセットすること、及び自身のリセット後且つ前記リセット完了確認信号の受信後に、前記親ノードから供給された前記駆動電力用の光に信号を重畳して前記応答信号とし、前記光給電用の光ファイバで前記親ノードへ送信すること、を行う
    ことを特徴とする光通信システム。
  2.  前記親ノードが任意の1つの前記子ノードへ、前記リセット信号を送信した後から前記リセット完了確認信号を送信するまでの間、当該子ノード以外の前記子ノードのいずれかに前記駆動電力用の光が供給されることを特徴とする請求項1に記載の光通信システム。
  3.  前記親ノードは、前記リセット完了確認信号の送信後、前記応答信号を受信しない場合、前記リセット信号及び前記リセット完了確認信号の送信を規定回数だけ行うことを特徴とする請求項1に記載の光通信システム。
  4.  前記子ノードは、前記応答信号に、前記リセットを開始した開始時刻及び完了した完了時刻を含めること、及び
     前記親ノードは、前記応答信号から前記開始時刻及び前記完了時刻を取り出し、前記子ノード毎に前記開始時刻と前記完了時刻を管理すること
    を特徴とする請求項1に記載の光通信システム。
  5.  1つの親ノードと1又は複数の子ノードとが主信号用の光ファイバ及び光給電用の光ファイバで接続され、駆動電力用の光が前記光給電用の光ファイバで前記親ノードから前記子ノードに供給される光通信システムにおいて、前記子ノードをリセットするリセット方法であって、
     前記親ノードが、前記駆動電力用の光に信号を重畳し、任意の1つの前記子ノードへリセット信号を前記光給電用の光ファイバで送信すること、
     前記子ノードが、前記光給電用の光ファイバから前記リセット信号を受信して自身をリセットすること、
     前記親ノードが、リセット完了確認信号を前記光給電用の光ファイバで送信すること、
     前記子ノードが、自身のリセット後且つ前記リセット完了確認信号の受信後に、前記親ノードから供給された前記駆動電力用の光に信号を重畳して応答信号とし、前記光給電用の光ファイバで前記親ノードへ送信すること、及び
     前記親ノードが、前記子ノードから前記光給電用の光ファイバで送信された前記応答信号の有無で前記子ノードのリセットの成否を判断すること、
    を行うリセット方法。
  6.  前記親ノードが任意の1つの前記子ノードへ、前記リセット信号を送信した後から前記リセット完了確認信号を送信するまでの間、当該子ノード以外の前記子ノードのいずれかに前記駆動電力用の光を供給することを特徴とする請求項5に記載のリセット方法。
  7.  前記親ノードが、前記リセット完了確認信号の送信後、前記応答信号を受信しない場合、前記リセット信号及び前記リセット完了確認信号の送信を規定回数だけ行うことを特徴とする請求項5に記載のリセット方法。
  8.  前記子ノードが前記リセットを開始した開始時刻及び完了した完了時刻を前記応答信号に含めること、及び
     前記親ノードが、前記応答信号から前記開始時刻及び前記完了時刻を取り出し、前記子ノード毎に前記開始時刻と前記完了時刻を管理すること
    を特徴とする請求項5に記載のリセット方法。
PCT/JP2022/024207 2022-06-16 2022-06-16 光通信システム及びリセット方法 WO2023243060A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024207 WO2023243060A1 (ja) 2022-06-16 2022-06-16 光通信システム及びリセット方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024207 WO2023243060A1 (ja) 2022-06-16 2022-06-16 光通信システム及びリセット方法

Publications (1)

Publication Number Publication Date
WO2023243060A1 true WO2023243060A1 (ja) 2023-12-21

Family

ID=89192590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024207 WO2023243060A1 (ja) 2022-06-16 2022-06-16 光通信システム及びリセット方法

Country Status (1)

Country Link
WO (1) WO2023243060A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193374A (ja) * 2009-02-20 2010-09-02 Sumitomo Electric Ind Ltd 光伝送方法、光受信装置及びこれを用いたponシステム及び光通信システム
JP2019054423A (ja) * 2017-09-15 2019-04-04 株式会社日立製作所 光給電システム
JP2021068935A (ja) * 2019-10-18 2021-04-30 京セラ株式会社 光給電システム
WO2022107327A1 (ja) * 2020-11-20 2022-05-27 日本電信電話株式会社 光給電システム、スリープ解除方法及び受電側光通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193374A (ja) * 2009-02-20 2010-09-02 Sumitomo Electric Ind Ltd 光伝送方法、光受信装置及びこれを用いたponシステム及び光通信システム
JP2019054423A (ja) * 2017-09-15 2019-04-04 株式会社日立製作所 光給電システム
JP2021068935A (ja) * 2019-10-18 2021-04-30 京セラ株式会社 光給電システム
WO2022107327A1 (ja) * 2020-11-20 2022-05-27 日本電信電話株式会社 光給電システム、スリープ解除方法及び受電側光通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSUYA FUJIMOTO, TOMOHIRO KAWANO, KAZUHIDE NAKAE, HIROSHI WATANABE, KAZUNORI KATAYAMA (NTT): "B-13-17: Study on optical power supply efficiency towards realizing remote optical path switching node", PROCEEDINGS OF THE 2021 IEICE GENERAL CONFERENCE; MARCH 9-12, 2021, IEICE, JP, 1 March 2021 (2021-03-01) - 9 March 2021 (2021-03-09), JP, pages 260, XP009551187 *

Similar Documents

Publication Publication Date Title
US4470154A (en) Optical communication network
JP6343908B2 (ja) 通信システム
WO2022130525A1 (ja) 監視制御装置及び光給電システム
JP6289670B2 (ja) 光ネットワーク監視のための装置および方法
WO2003044967A2 (en) Power line communication system with autonomous network segments
CN108650126B (zh) 一种ptn网络中自动发现和配置带内dcn的方法
CN106031064A (zh) 一种应用于多波长无源光网络的通信方法、装置及系统
US11095464B2 (en) Optical fibre enhanced PoE network
CN114449377B (zh) 无源光网络的组网方法和装置
CN112311473B (zh) 光纤供电系统
WO2010050529A1 (ja) 無線通信システム、その無線通信方法、中継装置及び無線端末装置
WO2023243060A1 (ja) 光通信システム及びリセット方法
JP2007274280A (ja) Ponシステムにおける局側装置、伝送レート切替装置、及び、通信方法
CN115733237A (zh) 储能系统和黑启动装置
CN101867990A (zh) 具有优先级的电器无线控制网络
CN101867599A (zh) 电器无线控制网络的控制方法
CN101859480A (zh) 电器无线控制网络
JP2004297522A (ja) 光伝送システム及び光伝送装置
JP6458822B2 (ja) 通信機器、通信方法および通信システム
WO2023228393A1 (ja) 光通信システム、光ノード、および光給電方法
CN100417097C (zh) 一种智能光网络中软永久连接建立方法
WO2024018499A1 (ja) 光給電システムの管理装置及びファイル送信方法
JP4769971B2 (ja) Ponシステム、onu装置、ponシステムにおける拡張機能実行方法および拡張機能実行プログラム
US11032010B1 (en) Methods and apparatus for reducing power consumption in optical devices
WO2024069748A1 (ja) 通信装置切替方法および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946876

Country of ref document: EP

Kind code of ref document: A1