WO2023243032A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2023243032A1
WO2023243032A1 PCT/JP2022/024091 JP2022024091W WO2023243032A1 WO 2023243032 A1 WO2023243032 A1 WO 2023243032A1 JP 2022024091 W JP2022024091 W JP 2022024091W WO 2023243032 A1 WO2023243032 A1 WO 2023243032A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
value
flow rate
fuel pump
internal combustion
Prior art date
Application number
PCT/JP2022/024091
Other languages
French (fr)
Japanese (ja)
Inventor
直道 山口
裕貴 中居
猛 江頭
正裕 豊原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/024091 priority Critical patent/WO2023243032A1/en
Publication of WO2023243032A1 publication Critical patent/WO2023243032A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Definitions

  • the present disclosure relates to a control device for an internal combustion engine.
  • control devices for internal combustion engines have been known for some time.
  • the control device for an internal combustion engine described in Patent Document 1 below controls an internal combustion engine including an engine-driven high-pressure fuel pump that supplies high-pressure fuel from a fuel tank to a fuel injection means (Paragraph 0014, Claims 1).
  • the high pressure fuel pump is driven by a cam of the internal combustion engine.
  • By closing the on-off valve on the inlet side of the high-pressure fuel pump at a desired timing based on the angle of the shaft that drives the cam a desired amount of high-pressure fuel is discharged.
  • This conventional control device includes means for detecting the rotation speed of the internal combustion engine, means for detecting the pressure of the high-pressure fuel, and a means for detecting the pressure of the high-pressure fuel so that the detected pressure of the high-pressure fuel becomes a target pressure. and control means for feedback controlling the high pressure fuel pump.
  • This control means includes a means for calculating a deviation between the detected high pressure fuel pressure and a target pressure, a means for calculating a feedback operation amount based on the deviation, and a means for calculating a feedback operation amount based on the deviation. , calculation means for calculating the required discharge amount of the high-pressure fuel pump.
  • control means includes means for calculating an angle of the shaft that satisfies the required discharge amount in consideration of the rotational speed of the internal combustion engine and the detected pressure of the high-pressure fuel, and the calculated angle. and means for controlling the opening/closing valve to close when the angle of the shaft is reached.
  • the control device further includes means for detecting a sudden change in the target pressure, and holding means for holding the feedback control parameter so as not to change when the sudden change is detected.
  • This conventional internal combustion engine control device holds the integral term, which is a feedback control parameter, without updating it when the target pressure of high-pressure fuel changes suddenly. By doing this, it is possible to avoid a large integral term being integrated and a large integral term being calculated in a state where the deviation is large, and it is possible to avoid a large overshoot or a large undershoot (Patent Document 1, No. 0015 paragraph).
  • the discharge pressure of the high-pressure fuel pump is prevented from greatly overshooting the pressure target value, and the stability of the transient response is improved. can be improved.
  • this conventional internal combustion engine control device there is a risk that the responsiveness of the discharge pressure of the high-pressure fuel pump to the pressure target value may be reduced.
  • the present disclosure provides a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of a transient response of the discharge pressure of a high-pressure fuel pump to a pressure target value.
  • One aspect of the present disclosure includes a pressurized chamber into which fuel is introduced from a fuel tank via a low-pressure fuel pump, an electromagnetic valve that opens and closes a flow path for introducing the fuel into the pressurized chamber, and a solenoid valve that opens and closes a flow path for introducing the fuel into the pressurized chamber.
  • a control device for an internal combustion engine that controls the discharge pressure of the fuel discharged from a high-pressure fuel pump having a plunger that pressurizes the introduced fuel to a fuel injection device that injects the fuel into a combustion chamber of the internal combustion engine.
  • the pressure detection value of the fuel discharged from the high-pressure fuel pump to the fuel injection device by the pressure sensor and the pressure target value of the discharge pressure are input, and the pressure detection value and the pressure target value are input.
  • a feedback control unit that outputs a pressure deviation between the two and a flow rate target value of the discharge flow rate of the high-pressure fuel pump; , calculating a energization start phase in a reciprocating motion of a flow rate limiting section that outputs a restricted flow rate value that limits the flow rate target value, and the plunger that starts energizing the solenoid valve of the high-pressure fuel pump in accordance with the restricted flow rate value; 1.
  • a control device for an internal combustion engine comprising: an energization start angle calculation section.
  • control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of a transient response to a pressure target value of the discharge pressure of a high-pressure fuel pump.
  • FIG. 1 is a block diagram showing an embodiment of a control device for an internal combustion engine according to the present disclosure.
  • FIG. 2 is a block diagram showing a configuration example of a control device for the internal combustion engine shown in FIG. 1.
  • FIG. 3 is a block diagram showing an example of a flow rate restriction section of the control device for the internal combustion engine shown in FIG. 2;
  • FIG. 4 is a flow diagram showing the flow of processing by the flow rate restriction section of FIG. 3;
  • 5 is a limit value map illustrating an example of a process for determining limit values in FIG. 4;
  • 3 is a graph illustrating the action of the control device for the internal combustion engine shown in FIG. 2.
  • FIG. FIG. 4 is a block diagram showing a modification of the flow rate restriction section of FIG. 3;
  • FIG. 3 is a block diagram showing an example of an FDBK control section of the control device for the internal combustion engine shown in FIG. 2.
  • FIG. 2 is a block diagram showing a configuration example of a control device for the internal
  • FIG. 1 is a block diagram showing an embodiment of a control device for an internal combustion engine according to the present disclosure.
  • the internal combustion engine control device of this embodiment is configured by, for example, an electronic control unit (ECU) 100 that is part of an engine system 1 installed in a vehicle.
  • the engine system 1 includes, for example, an engine 2 that is an internal combustion engine, a fuel tank 3, a low-pressure fuel pump 4, a high-pressure fuel pump 5, a fuel injection device 6, an accelerator opening sensor 7, and an ECU 100. ing.
  • the engine 2 includes, for example, an intake pipe, a throttle body, a throttle valve, an intake manifold, an intake port, a cylinder, a spark plug, a piston, a crankshaft, a camshaft, an exhaust port, an exhaust pipe, etc., which are not shown.
  • the engine 2 takes intake air into an intake pipe based on, for example, the operation of a piston.
  • the flow rate of the intake air taken into the intake pipe is controlled by a throttle valve provided on the throttle body as it passes through the throttle body.
  • the intake air that has passed through the throttle body passes through the intake manifold, is further mixed with fuel injected from the injector 62 provided in the intake port, and is guided to the combustion chamber of the cylinder in the form of an air-fuel mixture.
  • a spark plug uses spark ignition to explosively combust an air-fuel mixture in a combustion chamber to generate mechanical energy, which rotates a crankshaft and a camshaft connected to a piston. Gas generated by combustion is discharged from the combustion chamber of the cylinder to the exhaust pipe through the exhaust port, and is discharged outside the vehicle from the exhaust pipe as exhaust gas.
  • the fuel tank 3 stores liquid fuel such as gasoline, diesel oil, or ethanol.
  • the low-pressure fuel pump 4 is provided, for example, in the middle of a fuel supply pipe 8 that connects the fuel tank 3 and the high-pressure fuel pump 5, and pumps fuel from the fuel tank 3 to the high-pressure fuel pump 5 through the fuel supply pipe 8.
  • the high-pressure fuel pump 5 for example, pressurizes the fuel supplied via the fuel supply pipe 8 and discharges it to the common rail 61 of the fuel injection device 6 .
  • the fuel discharge pressure of the low-pressure fuel pump 4 is lower than the fuel discharge pressure of the high-pressure fuel pump 5, and the fuel discharge pressure of the high-pressure fuel pump 5 is lower than the fuel discharge pressure of the low-pressure fuel pump 4.
  • High pressure that is, "low pressure” and “high pressure” in the low-pressure fuel pump 4 and high-pressure fuel pump 5 represent the relative relationship between the discharge pressures of the respective fuel pumps, and do not define specific pressure ranges. do not have.
  • the high-pressure fuel pump 5 includes, for example, an inlet 51, a solenoid valve 52, a pressurizing chamber 53, a plunger 54, a discharge valve 55, and a discharge port 56.
  • the suction port 51 is connected to, for example, the fuel supply pipe 8, and fuel pumped by the low-pressure fuel pump 4 is introduced into the suction port 51.
  • the solenoid valve 52 is provided, for example, in the middle of a flow path 57 that supplies fuel from the inlet 51 to the pressurizing chamber 53, and is controlled to open and close by the ECU 100, and opens and closes the flow path 57 that supplies fuel to the pressurizing chamber 53. do.
  • Fuel is introduced into the pressurizing chamber 53 from the fuel tank 3 via the low-pressure fuel pump 4. More specifically, fuel is introduced from the fuel tank 3 to the suction port 51 via the low-pressure fuel pump 4, and the flow path 57 is opened and closed between the suction port 51 and the pressurizing chamber 53. It passes through the electromagnetic valve 52 and is introduced into the pressurizing chamber 53.
  • the high-pressure fuel pump 5 may include, for example, a pulsation reducing section 58 that reduces pressure pulsations in the fuel sucked through the suction port 51 and discharged from the discharge port 56.
  • the plunger 54 pressurizes the fuel introduced into the pressurizing chamber 53.
  • the plunger 54 is housed in a cylinder 59, for example, and defines a pressurizing chamber 53 together with the cylinder 59.
  • the plunger 54 is provided so as to be able to reciprocate in the axial direction by a drive mechanism (not shown).
  • the drive mechanism reciprocates the plunger 54 in the axial direction by, for example, rotating a cam attached to the camshaft of the engine 2.
  • the phase of the reciprocating motion of the plunger 54 is detected, for example, by a cam angle sensor that detects the rotation angle of the camshaft, and is input to the ECU 100. That is, the cam angle sensor functions, for example, as an angle sensor that detects the phase of the plunger 54 of the high-pressure fuel pump 5, and the detected phase value ⁇ d of the reciprocating motion of the plunger 54 is dependent on the cam angle ⁇ cam detected by the cam angle sensor. It can be calculated based on
  • the discharge valve 55 is provided between the pressurizing chamber 53 and the discharge port 56.
  • the valve body of the discharge valve 55 contacts the seat surface of the seat member and closes due to the biasing force of the spring. It is in a valve state.
  • the pressure of the fuel inside the pressurizing chamber 53 becomes greater than the pressure of the fuel on the downstream side of the discharge valve 55, and the differential pressure exceeds the biasing force of the spring, the valve body separates from the seating surface of the seat member. The valve becomes open.
  • the discharge port 56 is connected, for example, to the common rail 61 of the fuel injection device 6 and discharges high-pressure fuel pressurized in the pressurizing chamber 53 to the common rail 61.
  • the fuel injection device 6 includes, for example, a common rail 61, an injector 62, and a pressure sensor 63.
  • the common rail 61 stores high-pressure fuel supplied from the high-pressure fuel pump 5 and distributes the high-pressure fuel to the plurality of injectors 62.
  • Each injector 62 injects high-pressure fuel supplied via the common rail 61 into the cylinder of the engine 2, for example.
  • the pressure sensor 63 detects the pressure of high-pressure fuel discharged from the high-pressure fuel pump 5 to the common rail 61, and outputs the pressure detection result to the ECU 100 via a signal line.
  • the accelerator opening sensor 7 is connected to the ECU 100 via a signal line, for example, and detects the amount of depression of the accelerator pedal by the driver of the vehicle as the accelerator opening, and outputs the detected accelerator opening to the ECU 100.
  • ECU 100 is configured by, for example, one or more microcontrollers, and is connected to low pressure fuel pump 4, high pressure fuel pump 5, and fuel injection device 6 via signal lines, and is connected to low pressure fuel pump 4, high pressure fuel pump 5, and fuel injection device 6 through signal lines. and controls the fuel injection device 6.
  • FIG. 2 is a block diagram showing a configuration example of the ECU 100 in FIG. 1.
  • the ECU 100 which is the control device for the internal combustion engine of this embodiment, controls the discharge pressure of fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 that injects fuel into the combustion chamber of the engine 2.
  • ECU 100 includes, for example, a feedback (FDBK) control section 110, a flow rate restriction section 120, and an energization start angle calculation section 130.
  • the ECU 100 includes, for example, an energization start angle limiting section 140, an energization end angle calculation section 150, an energization end angle limiting section 160, and a solenoid valve control section 170.
  • Each part of the ECU 100 shown in FIG. 2 represents each function of the internal combustion engine control device of this embodiment, which is realized by, for example, executing a program stored in a storage device such as a memory by a central processing unit (CPU). ing. Note that each part of the ECU 100 shown in FIG. 2 may be configured, for example, by one or more devices, or by one device.
  • a storage device such as a memory by a central processing unit (CPU).
  • CPU central processing unit
  • the feedback control unit 110 receives, for example, a pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 and a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5. .
  • the ECU 100 inputs a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5 calculated based on the detected value of the accelerator opening sensor 7 to the feedback control unit 110.
  • the feedback control unit 110 controls the pressure deviation ⁇ P between the pressure detection value Pd and the pressure target value Pt and the discharge flow rate of the high-pressure fuel pump 5 based on the input pressure detection value Pd and pressure target value Pt.
  • the target flow rate value QT is output. More specifically, the feedback control unit 110 calculates a flow rate target value QT as a required discharge amount of the high-pressure fuel pump 5 necessary to match the detected pressure value Pd and the pressure target value Pt.
  • FIG. 3 is a block diagram showing an example of the flow rate restriction section 120 of the ECU 100 in FIG. 2.
  • the flow rate restriction unit 120 receives the pressure deviation ⁇ P and the flow rate target value QT, and outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P.
  • the flow rate restriction unit 120 includes, for example, a change amount calculation unit 121, a limit value determination unit 122, a restriction flow value calculation unit 123, and a restriction processing unit 124.
  • FIG. 4 is a flowchart showing the flow of processing by the energization start angle calculation unit 130 of FIG. 3.
  • the flow rate restriction unit 120 starts the process flow shown in FIG. 4, it first starts a process S1 for calculating the amount of change d ⁇ P in the pressure deviation ⁇ P.
  • the change amount calculation unit 121 calculates the change amount d ⁇ P of the pressure deviation ⁇ P based on the pressure deviation ⁇ P input from the feedback control unit 110, for example.
  • the amount of change d ⁇ P in the pressure deviation ⁇ P is an increase or decrease in the pressure deviation ⁇ P per unit time, that is, the rate of change in the pressure deviation ⁇ P. More specifically, the change amount calculation unit 121 calculates, for example, by dividing the difference between the pressure deviation ⁇ P obtained in the previous process and the pressure deviation ⁇ P obtained in the current process by the process cycle. Calculate the amount of change d ⁇ P in the pressure deviation ⁇ P.
  • the flow rate restriction unit 120 executes a process S2 to determine the limit value LV.
  • the limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ⁇ P decreases and as the amount of change d ⁇ P of the pressure deviation ⁇ P increases. More specifically, the limit value determining unit 122 uses a limit value map stored in a storage device such as a memory included in the ECU 100 to determine the limit value LV based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P thereof. Determine.
  • FIG. 5 is a graph showing an example of a limit value map used in the process S2 of determining the limit value LV in FIG.
  • the limit value LV(H) indicated by a dark circle is larger than the limit value LV(L) indicated by a light circle.
  • the limit value map is, for example, a graph in which the horizontal axis is the pressure deviation ⁇ P [%] and the vertical axis is the amount of change d ⁇ P [%/s]. It is specified that as the amount d ⁇ P increases, a larger limit value LV(H) is selected.
  • limit value LV may be defined.
  • the limit value determination unit 122 refers to such a limit value map and determines the limit value LV based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P in the pressure deviation ⁇ P.
  • the flow rate restriction unit 120 executes a process S3 of calculating a restricted flow rate value QL.
  • the restricted flow rate value calculation unit 123 calculates the restricted flow rate value QL by subtracting the restricted value LV from the upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5, for example.
  • the upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5 is inputted from the energization start angle calculation unit 130 to the flow rate restriction unit 120, as shown in FIG. 2, for example.
  • the flow rate restriction unit 120 executes a flow rate restriction process S4 that limits the flow rate target value QT by the restricted flow rate value QL.
  • this process S4 as shown in FIG. do.
  • the restriction processing unit 124 outputs the target flow value QT when the target flow value QT does not exceed the restricted flow value QL, and outputs the restricted flow value QL when the target flow value QT exceeds the restricted flow value QL. do.
  • the output of the flow rate restriction section 120 is limited to a value equal to or less than the limit flow rate value QL obtained by subtracting the limit value LV from the upper limit discharge flow rate Qmax.
  • the energization start angle calculation section 130 receives as input the rotational speed Re of the engine 2, the battery voltage Vb, and the restricted flow rate value QL or the flow rate target value QT output from the flow rate restriction section 120. do.
  • the energization start angle calculation unit 130 calculates, for example, the energization start phase ⁇ on in the reciprocating motion of the plunger 54 that starts energizing the solenoid valve 52 of the high-pressure fuel pump 5 according to the input limited flow value QL or flow rate target value QT. do.
  • the energization start angle calculation unit 130 determines the upper limit discharge flow rate Qmax of the high-pressure fuel pump 5 by referring to a static characteristic map of the high-pressure fuel pump 5 stored in a storage device such as a memory of the ECU 100. Output to. More specifically, the energization start angle calculation unit 130 refers to a static characteristic map of the high-pressure fuel pump 5 according to the rotational speed Re of the engine 2 and the voltage Vb of the battery, for example.
  • the static characteristic map of the high-pressure fuel pump 5 is, for example, a graph in which the horizontal axis represents the energization start phase ⁇ on [deg] and the vertical axis represents the discharge flow rate Q [mg/stroke] of the high-pressure fuel pump 5.
  • the energization start angle calculation unit 130 outputs the energization start phase ⁇ on corresponding to the inputted flow rate limit value QL or target flow rate QT, for example, based on the static characteristic map of the high-pressure fuel pump 5.
  • the energization start angle limiting section 140 receives the energization start phase ⁇ on output from the energization start angle calculation section 130 as input.
  • the energization start angle limiting section 140 outputs the energization start phase ⁇ Lon, which is obtained by limiting the input energization start phase ⁇ on by the phase of the bottom dead center (BDC) and the phase of the top dead center (TDC) of the plunger 54.
  • the energization end angle calculation unit 150 receives, for example, the crank angle ⁇ cra and cam angle ⁇ cam detected by a crank angle sensor and a cam angle sensor that detect the rotation angles of the crankshaft and camshaft of the engine 2.
  • the energization end angle calculation unit 150 outputs the energization end phase ⁇ off of the electromagnetic valve 52 of the high-pressure fuel pump 5 based on the crank angle ⁇ cra and the cam angle ⁇ cam.
  • the energization end angle limiting section 160 receives the energization end phase ⁇ off output from the energization end angle calculation section 150 as input.
  • the energization end angle limiting section 160 outputs the energization end phase ⁇ Loff, which is obtained by limiting the input energization end phase ⁇ off by the BDC phase and the TDC phase of the plunger 54.
  • the solenoid valve control unit 170 generates a drive pulse DP for driving the solenoid of the solenoid valve 52 of the high-pressure fuel pump 5 based on the input energization start phase ⁇ Lon and the energization end phase ⁇ Loff. Output to valve 52. More specifically, the electromagnetic valve control unit 170 receives, for example, a phase detection value ⁇ d by an angle sensor that detects the phase of the plunger 54, an energization start phase ⁇ Lon, and an energization end phase ⁇ Loff.
  • the solenoid valve control unit 170 starts energizing the solenoid valve 52 and opens the flow path 57. Further, the solenoid valve control unit 170 ends the energization of the solenoid valve 52 and closes the flow path 57, for example, when the phase detection value ⁇ d becomes equal to the energization end phase ⁇ Loff.
  • fuel is supplied to the pressurizing chamber 53 of the high-pressure fuel pump 5 at a flow rate corresponding to the restricted flow rate value QL or the target flow rate QT output from the flow rate restricting section 120, and from the high-pressure fuel pump 5 to the fuel injection device 6. It is discharged.
  • FIG. 6 is a graph illustrating the operation of the internal combustion engine control device of this embodiment shown in FIG. 2.
  • the operation of the internal combustion engine control device according to the present embodiment will be explained based on comparison with an internal combustion engine control device according to a comparative example.
  • the upper left graph in FIG. 6 is a graph showing temporal changes in the pressure target value Pt and pressure detection value Pd of the high-pressure fuel pump 5 controlled by the internal combustion engine control device according to the comparative example.
  • the lower left graph in FIG. 6 is a graph showing temporal changes in the flow rate target value QT of the high-pressure fuel pump 5 controlled by the internal combustion engine control device according to the comparative example and the actual discharge flow rate Qd detected by the flow rate sensor.
  • the internal combustion engine control device according to the comparative example differs from the ECU 100, which is the internal combustion engine control device according to the present embodiment, in that it does not have the flow rate restriction section 120 shown in FIG.
  • the other configurations of the internal combustion engine control device according to the comparative example are the same as the internal combustion engine control device according to the present embodiment.
  • the feedback control unit 110 performs feedback control of the discharge pressure of the high-pressure fuel pump 5, that is, the detected pressure value Pd.
  • the discharge flow rate Qd of fuel from the high-pressure fuel pump 5 increases to exceed the target flow rate value QT.
  • the detected pressure value Pd which is the discharge pressure of the high-pressure fuel pump 5
  • an overshoot occurs that greatly exceeds the pressure target value Pt. Pulsations occur in the discharge pressure.
  • the ECU 100 that constitutes the control device for the internal combustion engine of this embodiment controls the discharge pressure of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6.
  • the high-pressure fuel pump 5 includes a pressurizing chamber 53 into which fuel is introduced from the fuel tank 3 via the low-pressure fuel pump 4, and an electromagnetic electromagnetic device that opens and closes a flow path 57 through which fuel is introduced into the pressurizing chamber 53. It has a valve 52 and a plunger 54 that pressurizes the fuel introduced into the pressurizing chamber 53.
  • the fuel injection device 6 injects fuel into the combustion chamber of the engine 2, which is an internal combustion engine.
  • the ECU 100 includes the feedback control section 110, the flow rate restriction section 120, and the energization start angle calculation section 130.
  • a pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 and a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5 are input to the feedback control unit 110 .
  • the feedback control unit 110 also controls the pressure deviation ⁇ P between the pressure detection value Pd and the pressure target value Pt and the discharge flow rate of the high-pressure fuel pump 5 based on the input pressure target value Pt and pressure detection value Pd.
  • the target flow rate value QT is output.
  • the flow rate restriction unit 120 receives the pressure deviation ⁇ P and the flow rate target value QT, and outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P.
  • the energization start angle calculation unit 130 calculates the energization start phase ⁇ on in the reciprocating motion of the plunger 54 that starts energizing the electromagnetic valve 52 of the high-pressure fuel pump 5 in accordance with the restricted flow rate value QL.
  • the internal combustion engine control device of the present embodiment inputs a step-like pressure target value Pt as shown in the upper right graph of FIG. Then, it works as follows. As shown in the lower right graph of FIG. 6, the flow rate target value QT output from the feedback control unit 110 increases rapidly, and, for example, the flow rate target value QT is adjusted to the static characteristics of the high-pressure fuel pump 5 by the energization start angle calculation unit 130. is limited to the upper limit discharge flow rate Qmax.
  • the pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 rapidly increases. Then, the pressure deviation ⁇ P between the pressure target value Pt and the pressure detection value Pd decreases, and for example, the pressure detection value Pd decreases until the pressure detection value Pd reaches about 62.3% of the pressure target value Pt. The amount of change d ⁇ P increases.
  • the control device for an internal combustion engine of this embodiment includes a flow rate limiting section 120 that outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P. have. Therefore, as shown in the upper right and lower right graphs of FIG. 6, before the detected pressure value Pd exceeds the pressure target value Pt, the flow rate limiter 120 limits the flow rate target value QT to the lower restricted flow rate value QL1. .
  • the energization start angle calculation unit 130 determines the energization start phase ⁇ on in the reciprocating motion of the plunger 54 that starts energizing the solenoid valve 52 of the high-pressure fuel pump 5 in accordance with the restricted flow rate value QL1 output from the flow rate restriction unit 120. calculate.
  • the increase in the discharge flow rate Qd of the high-pressure fuel pump 5 is restricted, and the amount of change in the pressure deviation ⁇ P between the pressure detection value Pd and the pressure target value Pt of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 d ⁇ P decreases.
  • the flow rate restriction unit 120 limits the flow rate target value QT to a limit flow rate value QL2 that is larger than the limit flow rate value QL1 and smaller than the flow rate target value QT, based on the amount of change d ⁇ P of the reduced pressure deviation ⁇ P. This prevents an excessive decrease in the discharge flow rate Qd of the high-pressure fuel pump 5, and improves the responsiveness of the detected pressure value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 with respect to the target pressure value Pt.
  • the flow rate restriction section 120 includes a restriction value determination section 122, a restriction flow value calculation section 123, and a restriction processing section 124.
  • the limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ⁇ P decreases and as the amount of change d ⁇ P of the pressure deviation ⁇ P increases.
  • the restricted flow rate value calculation unit 123 subtracts the restricted value LV from the upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5 to calculate the restricted flow rate value QL.
  • the restriction processing unit 124 outputs the target flow value QT if the target flow value QT does not exceed the restricted flow value QL, and outputs the restricted flow value QL if the target flow value QT exceeds the restricted flow value QL.
  • the internal combustion engine control device of the present embodiment controls the discharge of the high-pressure fuel pump 5 when the step-like pressure target value Pt is input to the feedback control unit 110 as shown in the upper right graph of FIG.
  • the detected pressure value Pd which is the pressure, increases rapidly.
  • a relatively large limit value LV is determined.
  • the target flow rate QT is limited to a relatively small flow rate limit value QL1 obtained by subtracting the relatively large limit value LV from the upper limit discharge flow rate Qmax. Therefore, according to the control device for an internal combustion engine of this embodiment, it is possible to prevent the detected pressure value Pd from overshooting beyond the pressure target value Pt, and to prevent the discharge pressure of the high-pressure fuel pump 5 from overshooting with respect to the pressure target value Pt. Response stability can be improved.
  • the target flow rate QT is limited to a relatively large restricted flow rate value QL2 obtained by subtracting the relatively small limit value LV from the upper limit discharge flow rate Qmax. Therefore, according to the control device for an internal combustion engine of the present embodiment, an excessive decrease in the discharge flow rate Qd of the high-pressure fuel pump 5 is prevented, and the pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 is prevented. The responsiveness of the transient response to the pressure target value Pt can be improved.
  • the internal combustion engine control device of this embodiment further includes a solenoid valve control section 170 shown in FIG. 2.
  • the electromagnetic valve control unit 170 receives as input a phase detection value ⁇ d by an angle sensor that detects the phase of the plunger 54 of the high-pressure fuel pump 5 and an energization start phase ⁇ Lon.
  • the solenoid valve control unit 170 starts energizing the solenoid valve 52 and opens the flow path 57 when the detected phase value ⁇ d becomes equal to the energization start phase ⁇ Lon.
  • the solenoid of the solenoid valve 52 of the high-pressure fuel pump 5 starts to be energized and the flow path 57 is opened at the timing when the phase of the reciprocating motion of the plunger 54 becomes equal to the energization start phase ⁇ Lon.
  • fuel is introduced from the fuel tank 3 through the low-pressure fuel pump 4 into the pressurizing chamber 53 of the high-pressure fuel pump 5, is pressurized in the pressurizing chamber 53 of the high-pressure fuel pump 5, and is injected from the high-pressure fuel pump 5.
  • Fuel is discharged to the device 6 at a flow rate corresponding to the restricted flow rate value QL or the target flow rate value QT.
  • the present embodiment provides a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of the transient response to the pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5. be able to.
  • the internal combustion engine control device of this embodiment is not limited to the above-described embodiment.
  • some modifications of the above-described embodiment will be described with reference to FIGS. 7 and 8.
  • FIG. 7 is a block diagram showing a modification of the flow rate restriction section 120 of FIG. 3.
  • the flow rate restriction section 120 may not include the restricted flow rate value calculation section 123 shown in FIG. 3 .
  • the flow rate restriction section 120 includes a change amount calculation section 121, a limit value determination section 122, and a restriction processing section 124.
  • the change amount calculation unit 121 receives the pressure deviation ⁇ P and calculates the change amount d ⁇ P of the pressure deviation ⁇ P, as in the above-described embodiment.
  • the limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ⁇ P decreases and as the amount of change d ⁇ P of the pressure deviation ⁇ P increases. Then, the restriction processing unit 124 calculates a restricted flow rate value QL by subtracting the restricted value LV from the target flow value QT.
  • the internal combustion engine control device can also achieve the same effects as the internal combustion engine control device according to the above-described embodiment. Therefore, also in this modification, it is possible to provide a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of the transient response of the discharge pressure of the high-pressure fuel pump 5 to the pressure target value Pt.
  • the flow rate restriction unit 120 sets the value of the flow rate target value QT to the upper limit discharge flow rate Qmax or the limit flow rate obtained by subtracting the limit value LV from the flow rate target value QT. It was limited to the value QL. However, the internal combustion engine control device according to the present disclosure can also limit the flow rate target value QT using other methods.
  • the flow rate limiter 120 includes a limit value determiner 122 that determines the limit value LV based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P, and a limit value determiner 122 that determines the limit value LV based on the value of the pressure deviation ⁇ P and the amount of change d ⁇ P, and the amount of change in the target flow rate QT that determines the limit value. It may also include a restriction processing unit 124 that outputs a restricted flow rate value QL restricted by LV. That is, the limit value LV is a value for limiting the amount of change in the flow target value QT, which is the difference between the previous value and the current value of the flow target value QT.
  • the internal combustion engine control device not only can the same effects as the internal combustion engine control device according to the above-described embodiment be achieved, but also the high-pressure fuel pump 5 and fuel having large individual differences in static characteristics can be used.
  • the injection device 6 That is, when there are large individual differences in the static characteristics of the high-pressure fuel pump 5 and the fuel injection device 6, the flow target It is more effective to limit the amount of change in the value QT.
  • FIG. 8 is a block diagram showing an example of the feedback control section 110 of the internal combustion engine control device shown in FIG. 2.
  • the feedback control section 110 includes a pressure deviation calculation section 111, a proportional term calculation section 112, an integral term calculation section 113, and an addition section 114.
  • the pressure deviation calculation unit 111 receives the pressure target value Pt and the detected pressure value Pd and calculates the pressure deviation ⁇ P.
  • the proportional term calculation unit 112 calculates a proportional term based on the pressure deviation ⁇ P.
  • the integral term calculation unit 113 calculates an integral term based on the pressure deviation ⁇ P.
  • the adding unit 114 adds the proportional term and the integral term to calculate the flow rate target value QT.
  • the integral term calculation unit 113 receives the restriction determination LD from the flow rate restriction unit 120 as shown in FIGS. 2 and 8.
  • the integral term calculation unit 113 stops calculating the integral term when the target flow rate QT is restricted by the restricted flow rate value QL, that is, when the restriction determination LD is input.
  • the feedback control unit 110 stops the calculation of the integral term by the integral term calculation unit 113, thereby overcorrecting the target flow rate QT.
  • the integral term calculation unit 113 it is possible to prevent the accumulation of integral quantities. Therefore, it becomes possible to more effectively prevent the detected pressure value Pd of the discharge pressure from the high-pressure fuel pump 5 from overshooting beyond the pressure target value Pt.
  • the calculation of the integral term can be stopped by, for example, holding the calculated value, setting the calculated value to zero, or subtracting the overcorrection at the time of limiting the flow rate target value QT from the integral term calculation value. It can be carried out.

Abstract

The present disclosure provides an internal combustion engine control device capable of simultaneously improving the stability and response of the transient response of the ejection pressure of a high-pressure fuel pump relative to a pressure target value. An internal combustion engine control device (ECU 100) is provided with a feedback control unit 110, a flow amount limitation unit 120, and an energization start angle computation unit 130. The feedback control unit 110 uses a pressure detection value Pd by a pressure sensor of fuel ejected from a high-pressure fuel pump into a fuel injection device, and a pressure target value Pt of the ejection pressure of the high-pressure fuel pump as inputs, and outputs a pressure deviation ΔP between the pressure detection value Pd and the pressure target value Pt, and a flow amount target value QT of the ejection flow amount of the high-pressure fuel pump. The flow amount limitation unit 120 uses the pressure deviation ΔP and the flow amount target value QT as inputs, and outputs a limited flow amount value QL which is obtained by limiting the flow amount target value QT, on the basis of the value of the pressure deviation ΔP and an amount of change. The energization start angle computation unit 130 calculates an energization start phase θon in reciprocating movement of a plunger at which energization of an electromagnetic valve of the high-pressure fuel pump is started, in accordance with the limited flow amount value QL.

Description

内燃機関の制御装置Internal combustion engine control device
 本開示は、内燃機関の制御装置に関する。 The present disclosure relates to a control device for an internal combustion engine.
 従来から内燃機関の制御装置が知られている。たとえば、下記特許文献1に記載された内燃機関の制御装置は、燃料タンクから燃料噴射手段に高圧燃料を供給する機関駆動式の高圧燃料ポンプを含む内燃機関を制御する(第0014段落、請求項1)。上記高圧燃料ポンプは、上記内燃機関のカムにより駆動される。このカムを駆動するシャフトの角度に基づく所望のタイミングで上記高圧燃料ポンプの入口側の開閉弁を閉じることにより、所望の吐出量の高圧燃料が吐出される。 Control devices for internal combustion engines have been known for some time. For example, the control device for an internal combustion engine described in Patent Document 1 below controls an internal combustion engine including an engine-driven high-pressure fuel pump that supplies high-pressure fuel from a fuel tank to a fuel injection means (Paragraph 0014, Claims 1). The high pressure fuel pump is driven by a cam of the internal combustion engine. By closing the on-off valve on the inlet side of the high-pressure fuel pump at a desired timing based on the angle of the shaft that drives the cam, a desired amount of high-pressure fuel is discharged.
 この従来の制御装置は、上記内燃機関の回転数を検知するための手段と、上記高圧燃料の圧力を検知するための手段と、その検知された高圧燃料の圧力が目標圧力になるように、上記高圧燃料ポンプをフィードバック制御するための制御手段とを含む。この制御手段は、上記検知された高圧燃料の圧力と目標圧力との偏差を算出するための手段と、その偏差に基づいてフィードバック操作量を算出するための手段と、そのフィードバック操作量に基づいて、高圧燃料ポンプの要求吐出量を算出するための算出手段と、を含む。 This conventional control device includes means for detecting the rotation speed of the internal combustion engine, means for detecting the pressure of the high-pressure fuel, and a means for detecting the pressure of the high-pressure fuel so that the detected pressure of the high-pressure fuel becomes a target pressure. and control means for feedback controlling the high pressure fuel pump. This control means includes a means for calculating a deviation between the detected high pressure fuel pressure and a target pressure, a means for calculating a feedback operation amount based on the deviation, and a means for calculating a feedback operation amount based on the deviation. , calculation means for calculating the required discharge amount of the high-pressure fuel pump.
 さらに、上記制御手段は、上記内燃機関の回転数と前記検知された高圧燃料の圧力とを考慮して、上記要求吐出量を満足する上記シャフトの角度を算出するための手段と、その算出されたシャフトの角度に到達したときに上記開閉弁を閉じるように制御するための手段と、を含む。上記制御装置は、上記目標圧力の急変を検知するための手段と、その急変を検知したときにはフィードバック制御のパラメータを変更しないように保持するための保持手段とをさらに含む。 Furthermore, the control means includes means for calculating an angle of the shaft that satisfies the required discharge amount in consideration of the rotational speed of the internal combustion engine and the detected pressure of the high-pressure fuel, and the calculated angle. and means for controlling the opening/closing valve to close when the angle of the shaft is reached. The control device further includes means for detecting a sudden change in the target pressure, and holding means for holding the feedback control parameter so as not to change when the sudden change is detected.
 この従来の内燃機関の制御装置は、高圧燃料の目標圧力が急激に変化した場合には、フィードバック制御のパラメータである積分項を更新しないで保持する。このようにすると、偏差の大きい状態において大きく積分項が積算されて大きな積分項が算出されることを回避でき、大きくオーバーシュートすることや大きくアンダーシュートすることを回避できる(特許文献1、第0015段落)。 This conventional internal combustion engine control device holds the integral term, which is a feedback control parameter, without updating it when the target pressure of high-pressure fuel changes suddenly. By doing this, it is possible to avoid a large integral term being integrated and a large integral term being calculated in a state where the deviation is large, and it is possible to avoid a large overshoot or a large undershoot (Patent Document 1, No. 0015 paragraph).
特開2007-032322号公報Japanese Patent Application Publication No. 2007-032322
 上記従来の内燃機関の制御装置では、フィードバック制御の積分項を更新しないで保持することで、高圧燃料ポンプの吐出圧力が圧力目標値を大きくオーバーシュートすることを防止して、過渡応答の安定性を向上させることができる。しかしながら、この従来の内燃機関の制御装置では、高圧燃料ポンプの吐出圧力の圧力目標値に対する応答性が低下するおそれがある。 In the conventional internal combustion engine control device described above, by holding the integral term of feedback control without updating, the discharge pressure of the high-pressure fuel pump is prevented from greatly overshooting the pressure target value, and the stability of the transient response is improved. can be improved. However, in this conventional internal combustion engine control device, there is a risk that the responsiveness of the discharge pressure of the high-pressure fuel pump to the pressure target value may be reduced.
 本開示は、高圧燃料ポンプの吐出圧力の圧力目標値に対する過渡応答の安定性と応答性を同時に向上させることが可能な内燃機関の制御装置を提供する。 The present disclosure provides a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of a transient response of the discharge pressure of a high-pressure fuel pump to a pressure target value.
 本開示の一態様は、燃料タンクから低圧燃料ポンプを介して燃料が導入される加圧室と、該加圧室へ前記燃料を導入する流路を開閉する電磁弁と、前記加圧室へ導入された前記燃料を加圧するプランジャと、を有する高圧燃料ポンプから、内燃機関の燃焼室へ前記燃料を噴射する燃料噴射装置へ吐出される前記燃料の吐出圧力を制御する内燃機関の制御装置であって、前記高圧燃料ポンプから前記燃料噴射装置へ吐出された前記燃料の圧力センサによる圧力検出値と、前記吐出圧力の圧力目標値とを入力とし、前記圧力検出値と前記圧力目標値との間の圧力偏差と、前記高圧燃料ポンプの吐出流量の流量目標値とを出力するフィードバック制御部と、前記圧力偏差と前記流量目標値とを入力とし、前記圧力偏差の値と変化量に基いて、前記流量目標値を制限した制限流量値を出力する流量制限部と、前記制限流量値に応じて前記高圧燃料ポンプの前記電磁弁の通電を開始する前記プランジャの往復運動における通電開始位相を算出する通電開始角演算部と、を備えることを特徴とする内燃機関の制御装置である。 One aspect of the present disclosure includes a pressurized chamber into which fuel is introduced from a fuel tank via a low-pressure fuel pump, an electromagnetic valve that opens and closes a flow path for introducing the fuel into the pressurized chamber, and a solenoid valve that opens and closes a flow path for introducing the fuel into the pressurized chamber. A control device for an internal combustion engine that controls the discharge pressure of the fuel discharged from a high-pressure fuel pump having a plunger that pressurizes the introduced fuel to a fuel injection device that injects the fuel into a combustion chamber of the internal combustion engine. The pressure detection value of the fuel discharged from the high-pressure fuel pump to the fuel injection device by the pressure sensor and the pressure target value of the discharge pressure are input, and the pressure detection value and the pressure target value are input. a feedback control unit that outputs a pressure deviation between the two and a flow rate target value of the discharge flow rate of the high-pressure fuel pump; , calculating a energization start phase in a reciprocating motion of a flow rate limiting section that outputs a restricted flow rate value that limits the flow rate target value, and the plunger that starts energizing the solenoid valve of the high-pressure fuel pump in accordance with the restricted flow rate value; 1. A control device for an internal combustion engine, comprising: an energization start angle calculation section.
 本開示の上記一態様によれば、高圧燃料ポンプの吐出圧力の圧力目標値に対する過渡応答の安定性と応答性を同時に向上させることが可能な内燃機関の制御装置を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of a transient response to a pressure target value of the discharge pressure of a high-pressure fuel pump.
本開示に係る内燃機関の制御装置の一実施形態を示すブロック図。1 is a block diagram showing an embodiment of a control device for an internal combustion engine according to the present disclosure. 図1の内燃機関の制御装置の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a control device for the internal combustion engine shown in FIG. 1. FIG. 図2の内燃機関の制御装置の流量制限部の一例を示すブロック図。FIG. 3 is a block diagram showing an example of a flow rate restriction section of the control device for the internal combustion engine shown in FIG. 2; 図3の流量制限部による処理の流れを示すフロー図。FIG. 4 is a flow diagram showing the flow of processing by the flow rate restriction section of FIG. 3; 図4の制限値を決定する処理の一例を説明する制限値マップ。5 is a limit value map illustrating an example of a process for determining limit values in FIG. 4; 図2に示す内燃機関の制御装置による作用を説明するグラフ。3 is a graph illustrating the action of the control device for the internal combustion engine shown in FIG. 2. FIG. 図3の流量制限部の変形例を示すブロック図。FIG. 4 is a block diagram showing a modification of the flow rate restriction section of FIG. 3; 図2の内燃機関の制御装置のFDBK制御部の一例を示すブロック図。FIG. 3 is a block diagram showing an example of an FDBK control section of the control device for the internal combustion engine shown in FIG. 2. FIG.
 以下、図面を参照して本開示に係る内燃機関の制御装置の実施形態を説明する。 Hereinafter, embodiments of an internal combustion engine control device according to the present disclosure will be described with reference to the drawings.
 図1は、本開示に係る内燃機関の制御装置の一実施形態を示すブロック図である。本実施形態の内燃機関の制御装置は、たとえば、車両に搭載されるエンジンシステム1の一部である電子制御装置(ECU)100によって構成されている。エンジンシステム1は、たとえば、内燃機関であるエンジン2と、燃料タンク3と、低圧燃料ポンプ4と、高圧燃料ポンプ5と、燃料噴射装置6と、アクセル開度センサ7と、ECU100と、を備えている。 FIG. 1 is a block diagram showing an embodiment of a control device for an internal combustion engine according to the present disclosure. The internal combustion engine control device of this embodiment is configured by, for example, an electronic control unit (ECU) 100 that is part of an engine system 1 installed in a vehicle. The engine system 1 includes, for example, an engine 2 that is an internal combustion engine, a fuel tank 3, a low-pressure fuel pump 4, a high-pressure fuel pump 5, a fuel injection device 6, an accelerator opening sensor 7, and an ECU 100. ing.
 エンジン2は、たとえば、図示を省略する吸気管、スロットルボディ、スロットルバルブ、吸気マニホールド、吸気ポート、シリンダ、点火プラグ、ピストン、クランクシャフト、カムシャフト、排気ポート、および排気管などを備えている。エンジン2は、たとえば、ピストンの動作に基いて吸気管へ吸入空気を取り込む。吸気管へ取り込まれた吸入空気は、スロットルボディを通過する際にストットルボディに設けられたスロットルバルブによって流量が制御される。 The engine 2 includes, for example, an intake pipe, a throttle body, a throttle valve, an intake manifold, an intake port, a cylinder, a spark plug, a piston, a crankshaft, a camshaft, an exhaust port, an exhaust pipe, etc., which are not shown. The engine 2 takes intake air into an intake pipe based on, for example, the operation of a piston. The flow rate of the intake air taken into the intake pipe is controlled by a throttle valve provided on the throttle body as it passes through the throttle body.
 スロットルボディを通過した吸入空気は、吸気マニホールドを通過し、さらに吸気ポートに設けられたインジェクタ62から噴射された燃料と混合され、混合気の状態でシリンダの燃焼室へ導かれる。点火プラグは、火花着火により燃焼室内の混合気を爆発的に燃焼させて機械エネルギを発生させ、ピストンに連結されたクランクシャフトとカムシャフトを回転させる。燃焼により発生したガスは、シリンダの燃焼室から排気ポートを介して排気管へ排出され、排気ガスとして排気管から車外へ排出される。 The intake air that has passed through the throttle body passes through the intake manifold, is further mixed with fuel injected from the injector 62 provided in the intake port, and is guided to the combustion chamber of the cylinder in the form of an air-fuel mixture. A spark plug uses spark ignition to explosively combust an air-fuel mixture in a combustion chamber to generate mechanical energy, which rotates a crankshaft and a camshaft connected to a piston. Gas generated by combustion is discharged from the combustion chamber of the cylinder to the exhaust pipe through the exhaust port, and is discharged outside the vehicle from the exhaust pipe as exhaust gas.
 燃料タンク3は、たとえば、ガソリン、軽油、エタノールなどの液体の燃料を貯留する。低圧燃料ポンプ4は、たとえば、燃料タンク3と高圧燃料ポンプ5とを接続する燃料供給管8の途中に設けられ、燃料供給管8を通して燃料タンク3から高圧燃料ポンプ5へ燃料を圧送する。高圧燃料ポンプ5は、たとえば、燃料供給管8を介して供給された燃料を加圧して燃料噴射装置6のコモンレール61へ吐出する。 The fuel tank 3 stores liquid fuel such as gasoline, diesel oil, or ethanol. The low-pressure fuel pump 4 is provided, for example, in the middle of a fuel supply pipe 8 that connects the fuel tank 3 and the high-pressure fuel pump 5, and pumps fuel from the fuel tank 3 to the high-pressure fuel pump 5 through the fuel supply pipe 8. The high-pressure fuel pump 5 , for example, pressurizes the fuel supplied via the fuel supply pipe 8 and discharges it to the common rail 61 of the fuel injection device 6 .
 なお、低圧燃料ポンプ4の燃料の吐出圧力は、高圧燃料ポンプ5の燃料の吐出圧力よりも低圧であり、高圧燃料ポンプ5の燃料の吐出圧力は、低圧燃料ポンプ4の燃料の吐出圧力よりも高圧である。すなわち、低圧燃料ポンプ4と高圧燃料ポンプ5における「低圧」と「高圧」は、それぞれの燃料ポンプの吐出圧力の相対的な関係を表すものであり、具体的な圧力の範囲を規定するものではない。 Note that the fuel discharge pressure of the low-pressure fuel pump 4 is lower than the fuel discharge pressure of the high-pressure fuel pump 5, and the fuel discharge pressure of the high-pressure fuel pump 5 is lower than the fuel discharge pressure of the low-pressure fuel pump 4. High pressure. That is, "low pressure" and "high pressure" in the low-pressure fuel pump 4 and high-pressure fuel pump 5 represent the relative relationship between the discharge pressures of the respective fuel pumps, and do not define specific pressure ranges. do not have.
 高圧燃料ポンプ5は、たとえば、吸入口51と、電磁弁52と、加圧室53と、プランジャ54と、吐出弁55と、吐出口56と、を備えている。吸入口51は、たとえば、燃料供給管8に接続され、低圧燃料ポンプ4によって圧送された燃料が導入される。電磁弁52は、たとえば、吸入口51から加圧室53へ燃料を供給する流路57の途中に設けられ、ECU100によって開閉が制御され、加圧室53へ燃料を供給する流路57を開閉する。 The high-pressure fuel pump 5 includes, for example, an inlet 51, a solenoid valve 52, a pressurizing chamber 53, a plunger 54, a discharge valve 55, and a discharge port 56. The suction port 51 is connected to, for example, the fuel supply pipe 8, and fuel pumped by the low-pressure fuel pump 4 is introduced into the suction port 51. The solenoid valve 52 is provided, for example, in the middle of a flow path 57 that supplies fuel from the inlet 51 to the pressurizing chamber 53, and is controlled to open and close by the ECU 100, and opens and closes the flow path 57 that supplies fuel to the pressurizing chamber 53. do.
 加圧室53は、燃料タンク3から低圧燃料ポンプ4を介して燃料が導入される。より詳細には、燃料は、燃料タンク3から低圧燃料ポンプ4を介して吸入口51に導入され、さらに吸入口51と加圧室53との間の流路57とその流路57を開閉する電磁弁52とを通過し、加圧室53へ導入される。高圧燃料ポンプ5は、たとえば、吸入口51から吸入されて吐出口56から吐出される燃料の圧力の脈動を低減する脈動低減部58を備えてもよい。 Fuel is introduced into the pressurizing chamber 53 from the fuel tank 3 via the low-pressure fuel pump 4. More specifically, fuel is introduced from the fuel tank 3 to the suction port 51 via the low-pressure fuel pump 4, and the flow path 57 is opened and closed between the suction port 51 and the pressurizing chamber 53. It passes through the electromagnetic valve 52 and is introduced into the pressurizing chamber 53. The high-pressure fuel pump 5 may include, for example, a pulsation reducing section 58 that reduces pressure pulsations in the fuel sucked through the suction port 51 and discharged from the discharge port 56.
 プランジャ54は、加圧室53に導入された燃料を加圧する。プランジャ54は、たとえば、シリンダ59に収容され、シリンダ59とともに加圧室53を画定する。プランジャ54は、不図示の駆動機構によって軸方向に往復運動可能に設けられている。駆動機構は、たとえば、エンジン2のカムシャフトに取り付けられたカムの回転によってプランジャ54を軸方向に往復運動させる。 The plunger 54 pressurizes the fuel introduced into the pressurizing chamber 53. The plunger 54 is housed in a cylinder 59, for example, and defines a pressurizing chamber 53 together with the cylinder 59. The plunger 54 is provided so as to be able to reciprocate in the axial direction by a drive mechanism (not shown). The drive mechanism reciprocates the plunger 54 in the axial direction by, for example, rotating a cam attached to the camshaft of the engine 2.
 プランジャ54の往復運動の位相は、たとえば、カムシャフトの回転角度を検出するカム角センサによって検出され、ECU100へ入力される。すなわち、カム角センサは、たとえば、高圧燃料ポンプ5のプランジャ54の位相を検出する角度センサとして機能し、プランジャ54の往復運動の位相検出値θdは、カム角センサによって検出されるカム角λcamに基いて算出することができる。 The phase of the reciprocating motion of the plunger 54 is detected, for example, by a cam angle sensor that detects the rotation angle of the camshaft, and is input to the ECU 100. That is, the cam angle sensor functions, for example, as an angle sensor that detects the phase of the plunger 54 of the high-pressure fuel pump 5, and the detected phase value θd of the reciprocating motion of the plunger 54 is dependent on the cam angle λcam detected by the cam angle sensor. It can be calculated based on
 吐出弁55は、加圧室53と吐出口56との間に設けられている。吐出弁55は、加圧室53の内部の燃料と吐出弁55の下流側の燃料との間に差圧が無い状態では、ばねの付勢力によって弁体がシート部材の座面に接して閉弁状態となっている。加圧室53の内部の燃料の圧力が、吐出弁55の下流側の燃料の圧力がよりも大きくなり、その差圧がばねの付勢力を超えると、弁体がシート部材の座面から離れて開弁状態になる。吐出口56は、たとえば、燃料噴射装置6のコモンレール61に接続され、加圧室53で加圧された高圧の燃料をコモンレール61へ吐出する。 The discharge valve 55 is provided between the pressurizing chamber 53 and the discharge port 56. When there is no pressure difference between the fuel inside the pressurizing chamber 53 and the fuel on the downstream side of the discharge valve 55, the valve body of the discharge valve 55 contacts the seat surface of the seat member and closes due to the biasing force of the spring. It is in a valve state. When the pressure of the fuel inside the pressurizing chamber 53 becomes greater than the pressure of the fuel on the downstream side of the discharge valve 55, and the differential pressure exceeds the biasing force of the spring, the valve body separates from the seating surface of the seat member. The valve becomes open. The discharge port 56 is connected, for example, to the common rail 61 of the fuel injection device 6 and discharges high-pressure fuel pressurized in the pressurizing chamber 53 to the common rail 61.
 燃料噴射装置6は、たとえば、コモンレール61と、インジェクタ62と、圧力センサ63とを備えている。コモンレール61は、高圧燃料ポンプ5から供給された高圧の燃料を貯留し、複数のインジェクタ62へ高圧の燃料を分配する。各々のインジェクタ62は、たとえば、コモンレール61を介して供給された高圧の燃料を、エンジン2のシリンダ内へ噴射する。圧力センサ63は、高圧燃料ポンプ5からコモンレール61へ吐出された高圧の燃料の圧力を検出し、圧力の検出結果をECU100へ信号線を介して出力する。 The fuel injection device 6 includes, for example, a common rail 61, an injector 62, and a pressure sensor 63. The common rail 61 stores high-pressure fuel supplied from the high-pressure fuel pump 5 and distributes the high-pressure fuel to the plurality of injectors 62. Each injector 62 injects high-pressure fuel supplied via the common rail 61 into the cylinder of the engine 2, for example. The pressure sensor 63 detects the pressure of high-pressure fuel discharged from the high-pressure fuel pump 5 to the common rail 61, and outputs the pressure detection result to the ECU 100 via a signal line.
 アクセル開度センサ7は、たとえば、ECU100に信号線を介して接続され、車両の運転者によるアクセルペダルの踏量をアクセル開度として検出し、検出したアクセル開度をECU100へ出力する。ECU100は、たとえば、一つ以上のマイクロコントローラによって構成され、低圧燃料ポンプ4、高圧燃料ポンプ5、および燃料噴射装置6に信号線を介して接続され、これら低圧燃料ポンプ4、高圧燃料ポンプ5、および燃料噴射装置6を制御する。 The accelerator opening sensor 7 is connected to the ECU 100 via a signal line, for example, and detects the amount of depression of the accelerator pedal by the driver of the vehicle as the accelerator opening, and outputs the detected accelerator opening to the ECU 100. ECU 100 is configured by, for example, one or more microcontrollers, and is connected to low pressure fuel pump 4, high pressure fuel pump 5, and fuel injection device 6 via signal lines, and is connected to low pressure fuel pump 4, high pressure fuel pump 5, and fuel injection device 6 through signal lines. and controls the fuel injection device 6.
 図2は、図1のECU100の構成例を示すブロック図である。本実施形態の内燃機関の制御装置であるECU100は、高圧燃料ポンプ5から、エンジン2の燃焼室へ燃料を噴射する燃料噴射装置6へ吐出される燃料の吐出圧力を制御する。ECU100は、たとえば、フィードバック(FDBK)制御部110と、流量制限部120と、通電開始角演算部130と、を備えている。また、ECU100は、たとえば、通電開始角制限部140と、通電終了角演算部150と、通電終了角制限部160と、電磁弁制御部170とを備えている。 FIG. 2 is a block diagram showing a configuration example of the ECU 100 in FIG. 1. The ECU 100, which is the control device for the internal combustion engine of this embodiment, controls the discharge pressure of fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 that injects fuel into the combustion chamber of the engine 2. ECU 100 includes, for example, a feedback (FDBK) control section 110, a flow rate restriction section 120, and an energization start angle calculation section 130. Further, the ECU 100 includes, for example, an energization start angle limiting section 140, an energization end angle calculation section 150, an energization end angle limiting section 160, and a solenoid valve control section 170.
 図2に示すECU100の各部は、たとえば、メモリなどの記憶装置に記憶されたプログラムを中央処理装置(CPU)によって実行することによって実現される本実施形態の内燃機関の制御装置の各機能を表している。なお、図2に示すECU100の各部は、たとえば、一つの部分を一つまたは複数の装置によって構成してもよく、複数の部分を一つの装置によって構成してもよい。 Each part of the ECU 100 shown in FIG. 2 represents each function of the internal combustion engine control device of this embodiment, which is realized by, for example, executing a program stored in a storage device such as a memory by a central processing unit (CPU). ing. Note that each part of the ECU 100 shown in FIG. 2 may be configured, for example, by one or more devices, or by one device.
 フィードバック制御部110は、たとえば、高圧燃料ポンプ5から燃料噴射装置6へ吐出された燃料の圧力センサ63による圧力検出値Pdと、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptとを入力とする。ECU100は、たとえば、アクセル開度センサ7の検出値に基いて算出した高圧燃料ポンプ5の吐出圧力の圧力目標値Ptを、フィードバック制御部110へ入力する。 The feedback control unit 110 receives, for example, a pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 and a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5. . For example, the ECU 100 inputs a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5 calculated based on the detected value of the accelerator opening sensor 7 to the feedback control unit 110.
 フィードバック制御部110は、たとえば、入力された圧力検出値Pdと圧力目標値Ptとに基いて、圧力検出値Pdと圧力目標値Ptとの間の圧力偏差ΔPと、高圧燃料ポンプ5の吐出流量の流量目標値QTとを出力する。より具体的には、フィードバック制御部110は、圧力検出値Pdと圧力目標値Ptとを一致させるのに必要な高圧燃料ポンプ5の要求吐出量としての流量目標値QTを算出する。 For example, the feedback control unit 110 controls the pressure deviation ΔP between the pressure detection value Pd and the pressure target value Pt and the discharge flow rate of the high-pressure fuel pump 5 based on the input pressure detection value Pd and pressure target value Pt. The target flow rate value QT is output. More specifically, the feedback control unit 110 calculates a flow rate target value QT as a required discharge amount of the high-pressure fuel pump 5 necessary to match the detected pressure value Pd and the pressure target value Pt.
 図3は、図2のECU100の流量制限部120の一例を示すブロック図である。流量制限部120は、圧力偏差ΔPと流量目標値QTとを入力とし、圧力偏差ΔPの値と変化量dΔPに基いて、流量目標値QTを制限した制限流量値QLを出力する。流量制限部120は、たとえば、変化量算出部121と、制限値決定部122と、制限流量値算出部123と、制限処理部124と、を有している。 FIG. 3 is a block diagram showing an example of the flow rate restriction section 120 of the ECU 100 in FIG. 2. The flow rate restriction unit 120 receives the pressure deviation ΔP and the flow rate target value QT, and outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ΔP and the amount of change dΔP. The flow rate restriction unit 120 includes, for example, a change amount calculation unit 121, a limit value determination unit 122, a restriction flow value calculation unit 123, and a restriction processing unit 124.
 図4は、図3の通電開始角演算部130による処理の流れを示すフロー図である。流量制限部120は、図4に示す処理フローを開始すると、まず、圧力偏差ΔPの変化量dΔPを算出する処理S1を開始する。この処理S1において、変化量算出部121は、たとえば、フィードバック制御部110から入力された圧力偏差ΔPに基いて、圧力偏差ΔPの変化量dΔPを算出する。 FIG. 4 is a flowchart showing the flow of processing by the energization start angle calculation unit 130 of FIG. 3. When the flow rate restriction unit 120 starts the process flow shown in FIG. 4, it first starts a process S1 for calculating the amount of change dΔP in the pressure deviation ΔP. In this process S1, the change amount calculation unit 121 calculates the change amount dΔP of the pressure deviation ΔP based on the pressure deviation ΔP input from the feedback control unit 110, for example.
 ここで、圧力偏差ΔPの変化量dΔPとは、単位時間当たりの圧力偏差ΔPの増減、すなわち圧力偏差ΔPの変化率である。より具体的には、変化量算出部121は、たとえば、前回の処理で得られた圧力偏差ΔPと、今回の処理で得られた圧力偏差ΔPとの差分を、処理周期で除すことによって、圧力偏差ΔPの変化量dΔPを算出する。 Here, the amount of change dΔP in the pressure deviation ΔP is an increase or decrease in the pressure deviation ΔP per unit time, that is, the rate of change in the pressure deviation ΔP. More specifically, the change amount calculation unit 121 calculates, for example, by dividing the difference between the pressure deviation ΔP obtained in the previous process and the pressure deviation ΔP obtained in the current process by the process cycle. Calculate the amount of change dΔP in the pressure deviation ΔP.
 次に、流量制限部120は、制限値LVを決定する処理S2を実行する。この処理S2において、制限値決定部122は、圧力偏差ΔPの値が減少するほど、かつ圧力偏差ΔPの変化量dΔPが増加するほど、大きい制限値LVを決定する。より具体的には、制限値決定部122は、たとえば、ECU100を構成するメモリなどの記憶装置に記憶された制限値マップを用い、圧力偏差ΔPの値とその変化量dΔPに基いて制限値LVを決定する。 Next, the flow rate restriction unit 120 executes a process S2 to determine the limit value LV. In this process S2, the limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ΔP decreases and as the amount of change dΔP of the pressure deviation ΔP increases. More specifically, the limit value determining unit 122 uses a limit value map stored in a storage device such as a memory included in the ECU 100 to determine the limit value LV based on the value of the pressure deviation ΔP and the amount of change dΔP thereof. Determine.
 図5は、図4の制限値LVを決定する処理S2に用いられる制限値マップの一例を示すグラフである。図5において、濃色の円で示す制限値LV(H)は、淡色の円で示す制限値LV(L)よりも大きい制限値LVである。制限値マップは、たとえば、横軸を圧力偏差ΔP[%]、縦軸を変化量dΔP[%/s]とするグラフであり、圧力偏差ΔPの値が減少するほど、かつ圧力偏差ΔPの変化量dΔPが増加するほど、大きい制限値LV(H)が選択されるように規定されている。 FIG. 5 is a graph showing an example of a limit value map used in the process S2 of determining the limit value LV in FIG. In FIG. 5, the limit value LV(H) indicated by a dark circle is larger than the limit value LV(L) indicated by a light circle. The limit value map is, for example, a graph in which the horizontal axis is the pressure deviation ΔP [%] and the vertical axis is the amount of change dΔP [%/s]. It is specified that as the amount dΔP increases, a larger limit value LV(H) is selected.
 図5に示す例では、相対的に大きい制限値LV(H)と小さい制限値LV(L)の2つの大きさの異なる制限値LVが規定されているが、3つ以上の大きさの異なる制限値LVが規定されていてもよい。また、図5に示す例では、圧力検出値Pdが圧力目標値Ptの63.2[%]に達するまで、すなわち圧力目標値Ptと圧力検出値Pdとの圧力偏差ΔPが36.8[%]以下になるまでは、制限値LVを設定しない。制限値決定部122は、このような制限値マップを参照し、圧力偏差ΔPの値と圧力偏差ΔPの変化量dΔPに基いて制限値LVを決定する。 In the example shown in FIG. 5, two different limit values LV, a relatively large limit value LV (H) and a small limit value LV (L), are defined, but there are three or more different limit values LV. A limit value LV may be defined. In the example shown in FIG. 5, until the detected pressure value Pd reaches 63.2% of the target pressure value Pt, that is, the pressure deviation ΔP between the target pressure value Pt and the detected pressure value Pd is 36.8%. ] The limit value LV is not set until it is below. The limit value determination unit 122 refers to such a limit value map and determines the limit value LV based on the value of the pressure deviation ΔP and the amount of change dΔP in the pressure deviation ΔP.
 次に、流量制限部120は、制限流量値QLを算出する処理S3を実行する。この処理S3において、制限流量値算出部123は、たとえば、高圧燃料ポンプ5の静特性に基く上限吐出流量Qmaxから制限値LVを減算して制限流量値QLを算出する。高圧燃料ポンプ5の静特性に基く上限吐出流量Qmaxは、たとえば、図2に示すように、通電開始角演算部130から流量制限部120へ入力される。 Next, the flow rate restriction unit 120 executes a process S3 of calculating a restricted flow rate value QL. In this process S3, the restricted flow rate value calculation unit 123 calculates the restricted flow rate value QL by subtracting the restricted value LV from the upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5, for example. The upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5 is inputted from the energization start angle calculation unit 130 to the flow rate restriction unit 120, as shown in FIG. 2, for example.
 次に、流量制限部120は、流量目標値QTを制限流量値QLによって制限する流量制限処理S4を実行する。この処理S4において、制限処理部124は、図3に示すように、制限流量値算出部123から出力された制限流量値QLと、フィードバック制御部110から出力された流量目標値QTとを入力とする。制限処理部124は、たとえば、流量目標値QTが制限流量値QLを超過しない場合は流量目標値QTを出力し、流量目標値QTが制限流量値QLを超過する場合は制限流量値QLを出力する。 Next, the flow rate restriction unit 120 executes a flow rate restriction process S4 that limits the flow rate target value QT by the restricted flow rate value QL. In this process S4, as shown in FIG. do. For example, the restriction processing unit 124 outputs the target flow value QT when the target flow value QT does not exceed the restricted flow value QL, and outputs the restricted flow value QL when the target flow value QT exceeds the restricted flow value QL. do.
 これにより、流量制限部120の出力は、上限吐出流量Qmaxから制限値LVを減算した制限流量値QL以下に制限される。以上により、図4に示す流量制限部120の処理フローが終了する。 As a result, the output of the flow rate restriction section 120 is limited to a value equal to or less than the limit flow rate value QL obtained by subtracting the limit value LV from the upper limit discharge flow rate Qmax. With the above, the processing flow of the flow rate restriction section 120 shown in FIG. 4 is completed.
 通電開始角演算部130は、たとえば、図2に示すように、エンジン2の回転数Reおよびバッテリの電圧Vbと、流量制限部120から出力される制限流量値QLまたは流量目標値QTを入力とする。通電開始角演算部130は、たとえば、入力された制限流量値QLまたは流量目標値QTに応じて高圧燃料ポンプ5の電磁弁52の通電を開始するプランジャ54の往復運動における通電開始位相θonを算出する。 For example, as shown in FIG. 2, the energization start angle calculation section 130 receives as input the rotational speed Re of the engine 2, the battery voltage Vb, and the restricted flow rate value QL or the flow rate target value QT output from the flow rate restriction section 120. do. The energization start angle calculation unit 130 calculates, for example, the energization start phase θon in the reciprocating motion of the plunger 54 that starts energizing the solenoid valve 52 of the high-pressure fuel pump 5 according to the input limited flow value QL or flow rate target value QT. do.
 また、通電開始角演算部130は、たとえば、ECU100のメモリなどの記憶装置に記憶された高圧燃料ポンプ5の静特性マップを参照して、高圧燃料ポンプ5の上限吐出流量Qmaxを流量制限部120へ出力する。より具体的には、通電開始角演算部130は、たとえば、エンジン2の回転数Reとバッテリの電圧Vbに応じた高圧燃料ポンプ5の静特性マップを参照する。 Further, the energization start angle calculation unit 130 determines the upper limit discharge flow rate Qmax of the high-pressure fuel pump 5 by referring to a static characteristic map of the high-pressure fuel pump 5 stored in a storage device such as a memory of the ECU 100. Output to. More specifically, the energization start angle calculation unit 130 refers to a static characteristic map of the high-pressure fuel pump 5 according to the rotational speed Re of the engine 2 and the voltage Vb of the battery, for example.
 高圧燃料ポンプ5の静特性マップは、たとえば、横軸を通電開始位相θon[deg]、縦軸を高圧燃料ポンプ5の吐出流量Q[mg/stroke]とするグラフである。通電開始角演算部130は、たとえば、高圧燃料ポンプ5の静特性マップに基いて、入力された制限流量値QLまたは流量目標値QTに対応する通電開始位相θonを出力する。 The static characteristic map of the high-pressure fuel pump 5 is, for example, a graph in which the horizontal axis represents the energization start phase θon [deg] and the vertical axis represents the discharge flow rate Q [mg/stroke] of the high-pressure fuel pump 5. The energization start angle calculation unit 130 outputs the energization start phase θon corresponding to the inputted flow rate limit value QL or target flow rate QT, for example, based on the static characteristic map of the high-pressure fuel pump 5.
 通電開始角制限部140は、通電開始角演算部130から出力された通電開始位相θonを入力とする。通電開始角制限部140は、入力された通電開始位相θonをプランジャ54の下死点(BDC)の位相と上死点(TDC)の位相によって制限した通電開始位相θLonを出力する。 The energization start angle limiting section 140 receives the energization start phase θon output from the energization start angle calculation section 130 as input. The energization start angle limiting section 140 outputs the energization start phase θLon, which is obtained by limiting the input energization start phase θon by the phase of the bottom dead center (BDC) and the phase of the top dead center (TDC) of the plunger 54.
 通電終了角演算部150は、たとえば、エンジン2のクランクシャフトとカムシャフトの回転角度を検出するクランク角センサとカム角センサによって検出されたクランク角φcraとカム角λcamを入力とする。通電終了角演算部150は、クランク角φcraとカム角λcamに基く高圧燃料ポンプ5の電磁弁52の通電終了位相θoffを出力する。 The energization end angle calculation unit 150 receives, for example, the crank angle φcra and cam angle λcam detected by a crank angle sensor and a cam angle sensor that detect the rotation angles of the crankshaft and camshaft of the engine 2. The energization end angle calculation unit 150 outputs the energization end phase θoff of the electromagnetic valve 52 of the high-pressure fuel pump 5 based on the crank angle φcra and the cam angle λcam.
 通電終了角制限部160は、通電終了角演算部150から出力された通電終了位相θoffを入力とする。通電終了角制限部160は、入力された通電終了位相θoffをプランジャ54のBDCの位相とTDCの位相によって制限した通電終了位相θLoffを出力する。 The energization end angle limiting section 160 receives the energization end phase θoff output from the energization end angle calculation section 150 as input. The energization end angle limiting section 160 outputs the energization end phase θLoff, which is obtained by limiting the input energization end phase θoff by the BDC phase and the TDC phase of the plunger 54.
 電磁弁制御部170は、入力された通電開始位相θLonと通電終了位相θLoffとに基いて高圧燃料ポンプ5の電磁弁52のソレノイドを駆動させる駆動パルスDPを生成して、高圧燃料ポンプ5の電磁弁52へ出力する。より詳細には、電磁弁制御部170は、たとえば、プランジャ54の位相を検出する角度センサによる位相検出値θdと、通電開始位相θLonと、通電終了位相θLoffとを入力とする。 The solenoid valve control unit 170 generates a drive pulse DP for driving the solenoid of the solenoid valve 52 of the high-pressure fuel pump 5 based on the input energization start phase θLon and the energization end phase θLoff. Output to valve 52. More specifically, the electromagnetic valve control unit 170 receives, for example, a phase detection value θd by an angle sensor that detects the phase of the plunger 54, an energization start phase θLon, and an energization end phase θLoff.
 電磁弁制御部170は、たとえば、位相検出値θdが通電開始位相θLonと等しくなった場合に、電磁弁52への通電を開始して流路57を開放する。また、電磁弁制御部170は、たとえば、位相検出値θdが通電終了位相θLoffと等しくなった場合に、電磁弁52への通電を終了して流路57を閉鎖する。これにより、流量制限部120から出力された制限流量値QLまたは流量目標値QTに応じた流量の燃料が高圧燃料ポンプ5の加圧室53に供給され、高圧燃料ポンプ5から燃料噴射装置6へ吐出される。 For example, when the phase detection value θd becomes equal to the energization start phase θLon, the solenoid valve control unit 170 starts energizing the solenoid valve 52 and opens the flow path 57. Further, the solenoid valve control unit 170 ends the energization of the solenoid valve 52 and closes the flow path 57, for example, when the phase detection value θd becomes equal to the energization end phase θLoff. As a result, fuel is supplied to the pressurizing chamber 53 of the high-pressure fuel pump 5 at a flow rate corresponding to the restricted flow rate value QL or the target flow rate QT output from the flow rate restricting section 120, and from the high-pressure fuel pump 5 to the fuel injection device 6. It is discharged.
 図6は、図2に示す本実施形態の内燃機関の制御装置による作用を説明するグラフである。以下、本実施形態に係る内燃機関の制御装置の作用を、比較例に係る内燃機関の制御装置との対比に基いて説明する。 FIG. 6 is a graph illustrating the operation of the internal combustion engine control device of this embodiment shown in FIG. 2. Hereinafter, the operation of the internal combustion engine control device according to the present embodiment will be explained based on comparison with an internal combustion engine control device according to a comparative example.
 図6の左上のグラフは、比較例に係る内燃機関の制御装置によって制御された高圧燃料ポンプ5の圧力目標値Ptと圧力検出値Pdの時間変化を示すグラフである。図6の左下のグラフは比較例に係る内燃機関の制御装置によって制御された高圧燃料ポンプ5の流量目標値QTと流量センサによって検出された実際の吐出流量Qdの時間変化を示すグラフである。 The upper left graph in FIG. 6 is a graph showing temporal changes in the pressure target value Pt and pressure detection value Pd of the high-pressure fuel pump 5 controlled by the internal combustion engine control device according to the comparative example. The lower left graph in FIG. 6 is a graph showing temporal changes in the flow rate target value QT of the high-pressure fuel pump 5 controlled by the internal combustion engine control device according to the comparative example and the actual discharge flow rate Qd detected by the flow rate sensor.
 比較例に係る内燃機関の制御装置は、図2に示す流量制限部120を有しない点で、本実施形態に係る内燃機関の制御装置であるECU100と異なっている。比較例に係る内燃機関の制御装置のその他の構成は、本実施形態に係る内燃機関の制御装置と同様である。比較例に係る内燃機関の制御装置では、フィードバック制御部110により、高圧燃料ポンプ5の吐出圧力すなわち圧力検出値Pdのフィードバック制御を実施している。 The internal combustion engine control device according to the comparative example differs from the ECU 100, which is the internal combustion engine control device according to the present embodiment, in that it does not have the flow rate restriction section 120 shown in FIG. The other configurations of the internal combustion engine control device according to the comparative example are the same as the internal combustion engine control device according to the present embodiment. In the internal combustion engine control device according to the comparative example, the feedback control unit 110 performs feedback control of the discharge pressure of the high-pressure fuel pump 5, that is, the detected pressure value Pd.
 たとえば、エンジンシステム1を搭載する車両の急発進時に、アクセル開度センサ7の検出値であるアクセル開度が急増した場合を想定する。この場合、比較例の内燃機関の制御装置では、フィードバック制御部110に、図6の左上のグラフに示すようなステップ状の圧力目標値Ptが入力される。その結果、図6の左下のグラフに示すように、フィードバック制御部110から出力される流量目標値QTが急増し、たとえば通電開始角演算部130によって流量目標値QTが上限吐出流量Qmaxに制限される。 For example, assume a case where the accelerator opening, which is the detected value of the accelerator opening sensor 7, rapidly increases when a vehicle equipped with the engine system 1 suddenly starts. In this case, in the internal combustion engine control device of the comparative example, a step-like pressure target value Pt as shown in the upper left graph of FIG. 6 is input to the feedback control unit 110. As a result, as shown in the lower left graph of FIG. 6, the flow rate target value QT output from the feedback control unit 110 increases rapidly, and for example, the flow rate target value QT is limited to the upper limit discharge flow rate Qmax by the energization start angle calculation unit 130. Ru.
 しかし、流量制限部120を有しない比較例に係る内燃機関の制御装置では、高圧燃料ポンプ5の燃料の吐出流量Qdが流量目標値QTを超えて増大する。その結果、比較例に係る内燃機関の制御装置では、高圧燃料ポンプ5の吐出圧力である圧力検出値Pdが急増して圧力目標値Ptを大きく超えるオーバーシュートが発生し、高圧燃料ポンプ5の燃料の吐出圧力に脈動が生じる。 However, in the internal combustion engine control device according to the comparative example that does not include the flow rate restriction section 120, the discharge flow rate Qd of fuel from the high-pressure fuel pump 5 increases to exceed the target flow rate value QT. As a result, in the control device for an internal combustion engine according to the comparative example, the detected pressure value Pd, which is the discharge pressure of the high-pressure fuel pump 5, rapidly increases and an overshoot occurs that greatly exceeds the pressure target value Pt. Pulsations occur in the discharge pressure.
 すなわち、流量制限部120を有しない比較例に係る内燃機関の制御装置では、高圧燃料ポンプ5の燃料の吐出圧力の圧力目標値Ptに対する過渡応答の安定性が低下するという課題がある。このような比較例の内燃機関の制御装置において、フィードバック制御部110のゲイン調整で高圧燃料ポンプ5の吐出圧力のオーバーシュートを抑制した場合は、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptに対する応答性が低下するおそれがある。 That is, in the control device for an internal combustion engine according to the comparative example that does not include the flow rate restricting section 120, there is a problem that the stability of the transient response of the fuel discharge pressure of the high-pressure fuel pump 5 to the pressure target value Pt decreases. In the internal combustion engine control device of such a comparative example, when the overshoot of the discharge pressure of the high-pressure fuel pump 5 is suppressed by gain adjustment of the feedback control unit 110, the discharge pressure of the high-pressure fuel pump 5 with respect to the pressure target value Pt is Responsiveness may decrease.
 これに対し、本実施形態の内燃機関の制御装置を構成するECU100は、高圧燃料ポンプ5から燃料噴射装置6へ吐出される燃料の吐出圧力を制御する。高圧燃料ポンプ5は、前述のように、燃料タンク3から低圧燃料ポンプ4を介して燃料が導入される加圧室53と、その加圧室53へ燃料を導入する流路57を開閉する電磁弁52と、加圧室53へ導入された燃料を加圧するプランジャ54と、を有している。燃料噴射装置6は、前述のように、内燃機関であるエンジン2の燃焼室へ燃料を噴射する。ECU100は、前述のように、フィードバック制御部110と、流量制限部120と、通電開始角演算部130とを有している。フィードバック制御部110は、高圧燃料ポンプ5から燃料噴射装置6へ吐出された燃料の圧力センサ63による圧力検出値Pdと、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptとが入力される。また、フィードバック制御部110は、入力された圧力目標値Ptと圧力検出値Pdに基いて、圧力検出値Pdと圧力目標値Ptとの間の圧力偏差ΔPと、高圧燃料ポンプ5の吐出流量の流量目標値QTとを出力する。流量制限部120は、圧力偏差ΔPと流量目標値QTとを入力とし、圧力偏差ΔPの値と変化量dΔPに基いて、流量目標値QTを制限した制限流量値QLを出力する。通電開始角演算部130は、制限流量値QLに応じて高圧燃料ポンプ5の電磁弁52の通電を開始するプランジャ54の往復運動における通電開始位相θonを算出する。 On the other hand, the ECU 100 that constitutes the control device for the internal combustion engine of this embodiment controls the discharge pressure of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6. As described above, the high-pressure fuel pump 5 includes a pressurizing chamber 53 into which fuel is introduced from the fuel tank 3 via the low-pressure fuel pump 4, and an electromagnetic electromagnetic device that opens and closes a flow path 57 through which fuel is introduced into the pressurizing chamber 53. It has a valve 52 and a plunger 54 that pressurizes the fuel introduced into the pressurizing chamber 53. As described above, the fuel injection device 6 injects fuel into the combustion chamber of the engine 2, which is an internal combustion engine. As described above, the ECU 100 includes the feedback control section 110, the flow rate restriction section 120, and the energization start angle calculation section 130. A pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 and a pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5 are input to the feedback control unit 110 . The feedback control unit 110 also controls the pressure deviation ΔP between the pressure detection value Pd and the pressure target value Pt and the discharge flow rate of the high-pressure fuel pump 5 based on the input pressure target value Pt and pressure detection value Pd. The target flow rate value QT is output. The flow rate restriction unit 120 receives the pressure deviation ΔP and the flow rate target value QT, and outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ΔP and the amount of change dΔP. The energization start angle calculation unit 130 calculates the energization start phase θon in the reciprocating motion of the plunger 54 that starts energizing the electromagnetic valve 52 of the high-pressure fuel pump 5 in accordance with the restricted flow rate value QL.
 このような構成により、本実施形態の内燃機関の制御装置は、前述の比較例と同様に、フィードバック制御部110に、図6の右上のグラフに示すようなステップ状の圧力目標値Ptが入力されると、次のように動作する。図6の右下のグラフに示すように、フィードバック制御部110から出力される流量目標値QTが急増し、たとえば、通電開始角演算部130によって流量目標値QTが高圧燃料ポンプ5の静特性に基く上限吐出流量Qmaxに制限される。 With such a configuration, the internal combustion engine control device of the present embodiment inputs a step-like pressure target value Pt as shown in the upper right graph of FIG. Then, it works as follows. As shown in the lower right graph of FIG. 6, the flow rate target value QT output from the feedback control unit 110 increases rapidly, and, for example, the flow rate target value QT is adjusted to the static characteristics of the high-pressure fuel pump 5 by the energization start angle calculation unit 130. is limited to the upper limit discharge flow rate Qmax.
 また、高圧燃料ポンプ5の吐出流量の流量目標値QTの急増により、高圧燃料ポンプ5から燃料噴射装置6へ吐出された燃料の圧力センサ63による圧力検出値Pdが急増する。そして、圧力目標値Ptと圧力検出値Pdとの間の圧力偏差ΔPが減少し、たとえば、圧力検出値Pdが圧力目標値Ptの62.3[%]程度に達するまで、圧力検出値Pdの変化量dΔPが増加していく。 Furthermore, due to the rapid increase in the target flow rate QT of the discharge flow rate of the high-pressure fuel pump 5, the pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 by the pressure sensor 63 rapidly increases. Then, the pressure deviation ΔP between the pressure target value Pt and the pressure detection value Pd decreases, and for example, the pressure detection value Pd decreases until the pressure detection value Pd reaches about 62.3% of the pressure target value Pt. The amount of change dΔP increases.
 ここで、本実施形態の内燃機関の制御装置は、前述のように、圧力偏差ΔPの値と変化量dΔPに基いて、流量目標値QTを制限した制限流量値QLを出力する流量制限部120を有している。そのため、図6の右上および右下のグラフに示すように、圧力検出値Pdが圧力目標値Ptを超える前に、流量制限部120によって流量目標値QTがより低い制限流量値QL1に制限される。 Here, as described above, the control device for an internal combustion engine of this embodiment includes a flow rate limiting section 120 that outputs a restricted flow rate value QL that limits the flow rate target value QT based on the value of the pressure deviation ΔP and the amount of change dΔP. have. Therefore, as shown in the upper right and lower right graphs of FIG. 6, before the detected pressure value Pd exceeds the pressure target value Pt, the flow rate limiter 120 limits the flow rate target value QT to the lower restricted flow rate value QL1. .
 その結果、通電開始角演算部130は、流量制限部120から出力された制限流量値QL1に応じて高圧燃料ポンプ5の電磁弁52の通電を開始するプランジャ54の往復運動における通電開始位相θonを算出する。これにより、高圧燃料ポンプ5の吐出流量Qdの増加が制限され、高圧燃料ポンプ5から燃料噴射装置6へ吐出された燃料の圧力検出値Pdと圧力目標値Ptの間の圧力偏差ΔPの変化量dΔPが低下する。その結果、高圧燃料ポンプ5の吐出流量Qdが流量目標値QTを超えることが防止され、高圧燃料ポンプ5から燃料噴射装置6へ吐出される燃料の圧力検出値Pdが圧力目標値Ptを超えるオーバーシュートが防止される。 As a result, the energization start angle calculation unit 130 determines the energization start phase θon in the reciprocating motion of the plunger 54 that starts energizing the solenoid valve 52 of the high-pressure fuel pump 5 in accordance with the restricted flow rate value QL1 output from the flow rate restriction unit 120. calculate. As a result, the increase in the discharge flow rate Qd of the high-pressure fuel pump 5 is restricted, and the amount of change in the pressure deviation ΔP between the pressure detection value Pd and the pressure target value Pt of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 dΔP decreases. As a result, the discharge flow rate Qd of the high-pressure fuel pump 5 is prevented from exceeding the flow rate target value QT, and the detected pressure value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 is prevented from exceeding the pressure target value Pt. Shoots are prevented.
 さらに、流量制限部120は、低下した圧力偏差ΔPの変化量dΔPに基いて、流量目標値QTを、制限流量値QL1よりも大きく、流量目標値QTよりも小さい制限流量値QL2に制限する。これにより、高圧燃料ポンプ5の吐出流量Qdの過剰な低下が防止され、高圧燃料ポンプ5から燃料噴射装置6へ吐出される燃料の圧力検出値Pdの圧力目標値Ptに対する応答性が向上する。 Furthermore, the flow rate restriction unit 120 limits the flow rate target value QT to a limit flow rate value QL2 that is larger than the limit flow rate value QL1 and smaller than the flow rate target value QT, based on the amount of change dΔP of the reduced pressure deviation ΔP. This prevents an excessive decrease in the discharge flow rate Qd of the high-pressure fuel pump 5, and improves the responsiveness of the detected pressure value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 with respect to the target pressure value Pt.
 より詳細には、本実施形態の内燃機関の制御装置において、流量制限部120は、制限値決定部122と、制限流量値算出部123と、制限処理部124とを有している。制限値決定部122は、圧力偏差ΔPの値が減少するほど、かつ圧力偏差ΔPの変化量dΔPが増加するほど、大きい制限値LVを決定する。制限流量値算出部123は、高圧燃料ポンプ5の静特性に基く上限吐出流量Qmaxから制限値LVを減算して制限流量値QLを算出する。制限処理部124は、流量目標値QTが制限流量値QLを超過しない場合は流量目標値QTを出力し、流量目標値QTが制限流量値QLを超過する場合は制限流量値QLを出力する。 More specifically, in the internal combustion engine control device of this embodiment, the flow rate restriction section 120 includes a restriction value determination section 122, a restriction flow value calculation section 123, and a restriction processing section 124. The limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ΔP decreases and as the amount of change dΔP of the pressure deviation ΔP increases. The restricted flow rate value calculation unit 123 subtracts the restricted value LV from the upper limit discharge flow rate Qmax based on the static characteristics of the high-pressure fuel pump 5 to calculate the restricted flow rate value QL. The restriction processing unit 124 outputs the target flow value QT if the target flow value QT does not exceed the restricted flow value QL, and outputs the restricted flow value QL if the target flow value QT exceeds the restricted flow value QL.
 このような構成により、本実施形態の内燃機関の制御装置は、図6の右上のグラフのようにフィードバック制御部110にステップ状の圧力目標値Ptが入力されると、高圧燃料ポンプ5の吐出圧力である圧力検出値Pdが急増する。その結果、圧力目標値Ptと圧力検出値Pdの圧力偏差ΔPが減少し、かつ圧力偏差ΔPの変化量dΔPが増加すると、比較的に大きな制限値LVが決定される。 With such a configuration, the internal combustion engine control device of the present embodiment controls the discharge of the high-pressure fuel pump 5 when the step-like pressure target value Pt is input to the feedback control unit 110 as shown in the upper right graph of FIG. The detected pressure value Pd, which is the pressure, increases rapidly. As a result, when the pressure deviation ΔP between the pressure target value Pt and the detected pressure value Pd decreases and the amount of change dΔP in the pressure deviation ΔP increases, a relatively large limit value LV is determined.
 これにより、流量目標値QTが、上限吐出流量Qmaxから比較的に大きな制限値LVを減算した比較的に小さい制限流量値QL1に制限される。したがって、本実施形態の内燃機関の制御装置によれば、圧力検出値Pdが圧力目標値Ptを超えてオーバーシュートすることを防止して、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptに対する過渡応答の安定性を向上させることができる。 As a result, the target flow rate QT is limited to a relatively small flow rate limit value QL1 obtained by subtracting the relatively large limit value LV from the upper limit discharge flow rate Qmax. Therefore, according to the control device for an internal combustion engine of this embodiment, it is possible to prevent the detected pressure value Pd from overshooting beyond the pressure target value Pt, and to prevent the discharge pressure of the high-pressure fuel pump 5 from overshooting with respect to the pressure target value Pt. Response stability can be improved.
 その後、圧力偏差ΔPの変化量dΔPが減少することで、比較的に小さな制限値LVが決定される。その結果、図6の右下のグラフに示すように、流量目標値QTが、上限吐出流量Qmaxから比較的に小さな制限値LVを減算した比較的に大きい制限流量値QL2に制限される。したがって、本実施形態の内燃機関の制御装置によれば、高圧燃料ポンプ5の吐出流量Qdの過剰な低下が防止され、高圧燃料ポンプ5から燃料噴射装置6へ吐出される燃料の圧力検出値Pdの圧力目標値Ptに対する過渡応答の応答性を向上させることができる。 Thereafter, the amount of change dΔP in the pressure deviation ΔP decreases, so that a relatively small limit value LV is determined. As a result, as shown in the lower right graph of FIG. 6, the target flow rate QT is limited to a relatively large restricted flow rate value QL2 obtained by subtracting the relatively small limit value LV from the upper limit discharge flow rate Qmax. Therefore, according to the control device for an internal combustion engine of the present embodiment, an excessive decrease in the discharge flow rate Qd of the high-pressure fuel pump 5 is prevented, and the pressure detection value Pd of the fuel discharged from the high-pressure fuel pump 5 to the fuel injection device 6 is prevented. The responsiveness of the transient response to the pressure target value Pt can be improved.
 また、本実施形態の内燃機関の制御装置は、図2に示す電磁弁制御部170をさらに備えている。電磁弁制御部170は、高圧燃料ポンプ5のプランジャ54の位相を検出する角度センサによる位相検出値θdと通電開始位相θLonとを入力とする。電磁弁制御部170は、位相検出値θdが通電開始位相θLonと等しくなった場合に電磁弁52への通電を開始して流路57を開放する。 Furthermore, the internal combustion engine control device of this embodiment further includes a solenoid valve control section 170 shown in FIG. 2. The electromagnetic valve control unit 170 receives as input a phase detection value θd by an angle sensor that detects the phase of the plunger 54 of the high-pressure fuel pump 5 and an energization start phase θLon. The solenoid valve control unit 170 starts energizing the solenoid valve 52 and opens the flow path 57 when the detected phase value θd becomes equal to the energization start phase θLon.
 このような構成により、プランジャ54の往復運動の位相が通電開始位相θLonに等しくなったタイミングで高圧燃料ポンプ5の電磁弁52のソレノイドに通電が開始されて流路57が開放される。その結果、燃料タンク3から低圧燃料ポンプ4を介して高圧燃料ポンプ5の加圧室53に燃料が導入され、高圧燃料ポンプ5の加圧室53で加圧され、高圧燃料ポンプ5から燃料噴射装置6へ制限流量値QLまた流量目標値QTに応じた流量の燃料が吐出される。 With such a configuration, the solenoid of the solenoid valve 52 of the high-pressure fuel pump 5 starts to be energized and the flow path 57 is opened at the timing when the phase of the reciprocating motion of the plunger 54 becomes equal to the energization start phase θLon. As a result, fuel is introduced from the fuel tank 3 through the low-pressure fuel pump 4 into the pressurizing chamber 53 of the high-pressure fuel pump 5, is pressurized in the pressurizing chamber 53 of the high-pressure fuel pump 5, and is injected from the high-pressure fuel pump 5. Fuel is discharged to the device 6 at a flow rate corresponding to the restricted flow rate value QL or the target flow rate value QT.
 以上説明したように、本実施形態によれば、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptに対する過渡応答の安定性と応答性を同時に向上させることが可能な内燃機関の制御装置を提供することができる。なお、本実施形態の内燃機関の制御装置は、前述の実施形態に限定されない。以下、図7および図8を参照して、前述の実施形態のいくつかの変形例を説明する。 As described above, the present embodiment provides a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of the transient response to the pressure target value Pt of the discharge pressure of the high-pressure fuel pump 5. be able to. Note that the internal combustion engine control device of this embodiment is not limited to the above-described embodiment. Hereinafter, some modifications of the above-described embodiment will be described with reference to FIGS. 7 and 8.
 図7は、図3の流量制限部120の変形例を示すブロック図である。流量制限部120は、たとえば、図3に示す制限流量値算出部123を有しなくてもよい。図7に示す内燃機関の制御装置の変形例において、流量制限部120は、変化量算出部121と、制限値決定部122と、制限処理部124とを有している。変化量算出部121は、前述の実施形態と同様に、圧力偏差ΔPを入力とし、圧力偏差ΔPの変化量dΔPを算出する。制限値決定部122は、前述の実施形態と同様に、圧力偏差ΔPの値が減少するほど、かつ圧力偏差ΔPの変化量dΔPが増加するほど、大きい制限値LVを決定する。そして、制限処理部124は、流量目標値QTから制限値LVを減算した制限流量値QLを算出する。 FIG. 7 is a block diagram showing a modification of the flow rate restriction section 120 of FIG. 3. For example, the flow rate restriction section 120 may not include the restricted flow rate value calculation section 123 shown in FIG. 3 . In the modification of the internal combustion engine control device shown in FIG. 7, the flow rate restriction section 120 includes a change amount calculation section 121, a limit value determination section 122, and a restriction processing section 124. The change amount calculation unit 121 receives the pressure deviation ΔP and calculates the change amount dΔP of the pressure deviation ΔP, as in the above-described embodiment. Similarly to the embodiment described above, the limit value determining unit 122 determines a larger limit value LV as the value of the pressure deviation ΔP decreases and as the amount of change dΔP of the pressure deviation ΔP increases. Then, the restriction processing unit 124 calculates a restricted flow rate value QL by subtracting the restricted value LV from the target flow value QT.
 この変形例に係る内燃機関の制御装置においても、前述の実施形態に係る内燃機関の制御装置と同様の効果を奏することができる。したがって、本変形例においても、高圧燃料ポンプ5の吐出圧力の圧力目標値Ptに対する過渡応答の安定性と応答性を同時に向上させること可能な内燃機関の制御装置を提供することができる。 The internal combustion engine control device according to this modification can also achieve the same effects as the internal combustion engine control device according to the above-described embodiment. Therefore, also in this modification, it is possible to provide a control device for an internal combustion engine that can simultaneously improve the stability and responsiveness of the transient response of the discharge pressure of the high-pressure fuel pump 5 to the pressure target value Pt.
 なお、前述の実施形態および変形例に係る内燃機関の制御装置では、流量制限部120は、流量目標値QTの値を、上限吐出流量Qmaxまたは流量目標値QTから制限値LVを減算した制限流量値QLに制限していた。しかし、本開示に係る内燃機関の制御装置は、他の方法によって流量目標値QTを制限することも可能である。 In the internal combustion engine control device according to the embodiment and modification described above, the flow rate restriction unit 120 sets the value of the flow rate target value QT to the upper limit discharge flow rate Qmax or the limit flow rate obtained by subtracting the limit value LV from the flow rate target value QT. It was limited to the value QL. However, the internal combustion engine control device according to the present disclosure can also limit the flow rate target value QT using other methods.
 たとえば、図7に示す例において、流量制限部120は、圧力偏差ΔPの値と変化量dΔPに基いて制限値LVを決定する制限値決定部122と、流量目標値QTの変化量を制限値LVによって制限した制限流量値QLを出力する制限処理部124と、を有してもよい。すなわち、制限値LVは、流量目標値QTの前回値と今回値との差である流量目標値QTの変化量を制限するための値である。 For example, in the example shown in FIG. 7, the flow rate limiter 120 includes a limit value determiner 122 that determines the limit value LV based on the value of the pressure deviation ΔP and the amount of change dΔP, and a limit value determiner 122 that determines the limit value LV based on the value of the pressure deviation ΔP and the amount of change dΔP, and the amount of change in the target flow rate QT that determines the limit value. It may also include a restriction processing unit 124 that outputs a restricted flow rate value QL restricted by LV. That is, the limit value LV is a value for limiting the amount of change in the flow target value QT, which is the difference between the previous value and the current value of the flow target value QT.
 この変形例に係る内燃機関の制御装置によれば、前述の実施形態に係る内燃機化の制御装置と同様の効果を奏することができるだけでなく、静特性の個体差が大きい高圧燃料ポンプ5および燃料噴射装置6に対応できる。すなわち、高圧燃料ポンプ5および燃料噴射装置6の静特性の個体差が大きい場合には、フィードバック制御部110から出力された流量目標値QTの上限値(絶対値)を制限するよりも、流量目標値QTの変化量を制限する方が効果的である。 According to the internal combustion engine control device according to this modification, not only can the same effects as the internal combustion engine control device according to the above-described embodiment be achieved, but also the high-pressure fuel pump 5 and fuel having large individual differences in static characteristics can be used. Compatible with the injection device 6. That is, when there are large individual differences in the static characteristics of the high-pressure fuel pump 5 and the fuel injection device 6, the flow target It is more effective to limit the amount of change in the value QT.
 図8は、図2の内燃機関の制御装置のフィードバック制御部110の一例を示すブロック図である。図8に示す例において、フィードバック制御部110は、圧力偏差演算部111と、比例項演算部112と、積分項演算部113と、加算部114と、を有している。圧力偏差演算部111は、圧力目標値Ptと圧力検出値Pdとを入力として圧力偏差ΔPを算出する。比例項演算部112は、圧力偏差ΔPに基いて比例項を算出する。積分項演算部113は、圧力偏差ΔPに基いて積分項を算出する。加算部114は、比例項と積分項とを加算して流量目標値QTを算出する。積分項演算部113は、たとえば、流量目標値QTが制限流量値QLによって制限されている場合に、図2および図8に示すように、流量制限部120から制限判定LDが入力される。積分項演算部113は、制限流量値QLによって流量目標値QTが制限されている場合、すなわち制限判定LDが入力された場合に、積分項の演算を停止する。 FIG. 8 is a block diagram showing an example of the feedback control section 110 of the internal combustion engine control device shown in FIG. 2. In the example shown in FIG. 8, the feedback control section 110 includes a pressure deviation calculation section 111, a proportional term calculation section 112, an integral term calculation section 113, and an addition section 114. The pressure deviation calculation unit 111 receives the pressure target value Pt and the detected pressure value Pd and calculates the pressure deviation ΔP. The proportional term calculation unit 112 calculates a proportional term based on the pressure deviation ΔP. The integral term calculation unit 113 calculates an integral term based on the pressure deviation ΔP. The adding unit 114 adds the proportional term and the integral term to calculate the flow rate target value QT. For example, when the flow rate target value QT is limited by the restricted flow rate value QL, the integral term calculation unit 113 receives the restriction determination LD from the flow rate restriction unit 120 as shown in FIGS. 2 and 8. The integral term calculation unit 113 stops calculating the integral term when the target flow rate QT is restricted by the restricted flow rate value QL, that is, when the restriction determination LD is input.
 このように、制限流量値QLによって流量目標値QTが制限されている場合に、フィードバック制御部110において、積分項演算部113による積分項の演算を停止することで、流量目標値QTの過補正、すなわち積分量の蓄積を防止することができる。したがって、高圧燃料ポンプ5による吐出圧力の圧力検出値Pdが圧力目標値Ptを超えてオーバーシュートすることを、より効果的に防止することが可能になる。なお、積分項の演算の停止は、たとえば、演算値を保持すること、演算値をゼロにすること、または、流量目標値QTの制限時の過補正分を積分項演算値から差し引くことなどによって行うことができる。 In this way, when the target flow rate QT is limited by the restricted flow rate value QL, the feedback control unit 110 stops the calculation of the integral term by the integral term calculation unit 113, thereby overcorrecting the target flow rate QT. In other words, it is possible to prevent the accumulation of integral quantities. Therefore, it becomes possible to more effectively prevent the detected pressure value Pd of the discharge pressure from the high-pressure fuel pump 5 from overshooting beyond the pressure target value Pt. Note that the calculation of the integral term can be stopped by, for example, holding the calculated value, setting the calculated value to zero, or subtracting the overcorrection at the time of limiting the flow rate target value QT from the integral term calculation value. It can be carried out.
 以上、図面を用いて本開示の実施形態とその変形例を詳述してきたが、具体的な構成はこれらの実施形態および変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiments of the present disclosure and their modifications have been described above in detail using the drawings, the specific configurations are not limited to these embodiments and modifications, and within the scope of the gist of the present invention. Even if there are design changes, etc., they are included in the present disclosure.
2    エンジン(内燃機関)
3    燃料タンク
4    低圧燃料ポンプ
5    高圧燃料ポンプ
52   電磁弁
53   加圧室
54   プランジャ
57   流路
6    燃料噴射装置
63   圧力センサ
100  ECU(内燃機関の制御装置)
110  フィードバック制御部
111  圧力偏差演算部
112  比例項演算部
113  積分項演算部
114  加算部
120  流量制限部
122  制限値決定部
123  制限流量値算出部
124  制限処理部
130  通電開始角演算部
170  電磁弁制御部
dΔP  圧力偏差の変化量
LV   制限値
Pd   圧力検出値
Pt   圧力目標値
QL   制限流量値
Qmax 上限吐出流量
QT   流量目標値
ΔP   圧力偏差
θon  通電開始位相
2 Engine (internal combustion engine)
3 Fuel tank 4 Low pressure fuel pump 5 High pressure fuel pump 52 Solenoid valve 53 Pressurizing chamber 54 Plunger 57 Flow path 6 Fuel injection device 63 Pressure sensor 100 ECU (internal combustion engine control device)
110 Feedback control section 111 Pressure deviation calculation section 112 Proportional term calculation section 113 Integral term calculation section 114 Addition section 120 Flow rate restriction section 122 Limit value determination section 123 Restriction flow value calculation section 124 Restriction processing section 130 Energization start angle calculation section 170 Solenoid valve Control part dΔP Change amount of pressure deviation LV Limit value Pd Pressure detection value Pt Pressure target value QL Limit flow value Qmax Upper limit discharge flow rate QT Flow rate target value ΔP Pressure deviation θon Current supply start phase

Claims (6)

  1.  燃料タンクから低圧燃料ポンプを介して燃料が導入される加圧室と、該加圧室へ前記燃料を導入する流路を開閉する電磁弁と、前記加圧室へ導入された前記燃料を加圧するプランジャと、を有する高圧燃料ポンプから、内燃機関の燃焼室へ前記燃料を噴射する燃料噴射装置へ吐出される前記燃料の吐出圧力を制御する内燃機関の制御装置であって、
     前記高圧燃料ポンプから前記燃料噴射装置へ吐出された前記燃料の圧力センサによる圧力検出値と、前記吐出圧力の圧力目標値とを入力とし、前記圧力検出値と前記圧力目標値との間の圧力偏差と、前記高圧燃料ポンプの吐出流量の流量目標値とを出力するフィードバック制御部と、
     前記圧力偏差と前記流量目標値とを入力とし、前記圧力偏差の値と変化量に基いて、前記流量目標値を制限した制限流量値を出力する流量制限部と、
     前記制限流量値に応じて前記高圧燃料ポンプの前記電磁弁の通電を開始する前記プランジャの往復運動における通電開始位相を算出する通電開始角演算部と、
     を備えることを特徴とする内燃機関の制御装置。
    A pressurizing chamber into which fuel is introduced from a fuel tank via a low-pressure fuel pump, an electromagnetic valve that opens and closes a flow path for introducing the fuel into the pressurizing chamber, and a solenoid valve that presses the fuel introduced into the pressurizing chamber. A control device for an internal combustion engine that controls the discharge pressure of the fuel discharged from a high-pressure fuel pump having a plunger that presses the fuel to a fuel injection device that injects the fuel into a combustion chamber of the internal combustion engine,
    The pressure detected by the pressure sensor of the fuel discharged from the high-pressure fuel pump to the fuel injection device and the pressure target value of the discharge pressure are input, and the pressure between the pressure detected value and the pressure target value is input. a feedback control unit that outputs the deviation and a target flow rate value of the discharge flow rate of the high-pressure fuel pump;
    a flow rate limiting section that receives the pressure deviation and the flow rate target value as input, and outputs a restricted flow rate value that limits the flow rate target value based on the value and the amount of change of the pressure deviation;
    an energization start angle calculation unit that calculates an energization start phase in a reciprocating motion of the plunger that starts energization of the solenoid valve of the high-pressure fuel pump according to the restricted flow rate value;
    A control device for an internal combustion engine, comprising:
  2.  前記流量制限部は、前記圧力偏差の前記値が減少するほど、かつ前記圧力偏差の前記変化量が増加するほど、大きい制限値を決定する制限値決定部と、前記流量目標値から前記制限値を減算した前記制限流量値を算出する制限処理部と、を有することを特徴とする請求項1に記載の内燃機関の制御装置。 The flow rate limiting unit includes a limit value determining unit that determines a larger limit value as the value of the pressure deviation decreases and the amount of change in the pressure deviation increases; The control device for an internal combustion engine according to claim 1, further comprising a restriction processing unit that calculates the restriction flow value by subtracting the restriction flow value.
  3.  前記流量制限部は、前記圧力偏差の前記値が減少するほど、かつ前記圧力偏差の前記変化量が増加するほど、大きい制限値を決定する制限値決定部と、前記高圧燃料ポンプの静特性に基く上限吐出流量から前記制限値を減算して前記制限流量値を算出する制限流量値算出部と、前記流量目標値が前記制限流量値を超過しない場合は前記流量目標値を出力し、前記流量目標値が前記制限流量値を超過する場合は前記制限流量値を出力する制限処理部と、を有することを特徴とする請求項1に記載の内燃機関の制御装置。 The flow rate limiting section includes a limit value determining section that determines a larger limit value as the value of the pressure deviation decreases and as the amount of change in the pressure deviation increases; a limit flow rate value calculation unit that calculates the limit flow value by subtracting the limit value from the upper limit discharge flow rate, and outputs the target flow rate when the target flow rate value does not exceed the limit flow rate value; The control device for an internal combustion engine according to claim 1, further comprising a restriction processing section that outputs the restriction flow rate value when the target value exceeds the restriction flow rate value.
  4.  前記流量制限部は、前記圧力偏差の前記値と前記変化量に基いて制限値を決定する制限値決定部と、前記流量目標値の変化量を前記制限値によって制限した前記制限流量値を出力する制限処理部と、を有することを特徴とする請求項1に記載の内燃機関の制御装置。 The flow rate limiter includes a limit value determining unit that determines a limit value based on the value of the pressure deviation and the amount of change, and outputs the limit flow value in which the amount of change in the target flow rate is limited by the limit value. The control device for an internal combustion engine according to claim 1, further comprising a restriction processing section that performs the following steps.
  5.  前記フィードバック制御部は、前記圧力偏差を算出する圧力偏差演算部と、前記圧力偏差に基いて比例項を算出する比例項演算部と、前記圧力偏差に基いて積分項を算出する積分項演算部と、前記比例項と前記積分項とを加算して前記流量目標値を算出する加算部と、を有し、
     前記積分項演算部は、前記制限流量値によって前記流量目標値が制限されている場合に、前記積分項の演算を停止することを特徴とする請求項1に記載の内燃機関の制御装置。
    The feedback control section includes a pressure deviation calculation section that calculates the pressure deviation, a proportional term calculation section that calculates a proportional term based on the pressure deviation, and an integral term calculation section that calculates an integral term based on the pressure deviation. and an addition unit that calculates the flow rate target value by adding the proportional term and the integral term,
    2. The control device for an internal combustion engine according to claim 1, wherein the integral term calculating section stops calculating the integral term when the target flow rate value is limited by the restricted flow rate value.
  6.  前記プランジャの位相を検出する角度センサによる位相検出値と前記通電開始位相とを入力とし、前記位相検出値が前記通電開始位相と等しくなった場合に前記電磁弁への通電を開始して前記流路を開放する電磁弁制御部をさらに備えることを特徴とする請求項1に記載の内燃機関の制御装置。 A phase detection value by an angle sensor that detects the phase of the plunger and the energization start phase are input, and when the phase detection value becomes equal to the energization start phase, energization to the solenoid valve is started to control the flow. 2. The control device for an internal combustion engine according to claim 1, further comprising a solenoid valve control section for opening the passage.
PCT/JP2022/024091 2022-06-16 2022-06-16 Internal combustion engine control device WO2023243032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024091 WO2023243032A1 (en) 2022-06-16 2022-06-16 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024091 WO2023243032A1 (en) 2022-06-16 2022-06-16 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
WO2023243032A1 true WO2023243032A1 (en) 2023-12-21

Family

ID=89192486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024091 WO2023243032A1 (en) 2022-06-16 2022-06-16 Internal combustion engine control device

Country Status (1)

Country Link
WO (1) WO2023243032A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188545A (en) * 2000-12-20 2002-07-05 Hitachi Ltd High-pressure fuel pump control device for cylinder injection engine
JP2003106208A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Controller for internal combustion engine
JP2003307149A (en) * 2002-04-12 2003-10-31 Denso Corp Accumulator fuel injection device
JP2004019639A (en) * 2002-06-20 2004-01-22 Hitachi Ltd High pressure fuel pump controller for internal combustion engine
JP2006112371A (en) * 2004-10-18 2006-04-27 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP2007100668A (en) * 2005-10-07 2007-04-19 Mitsubishi Electric Corp High pressure fuel pump control device for engine
JP2007205193A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp High pressure fuel pump control device for internal combustion engine
JP2011202549A (en) * 2010-03-25 2011-10-13 Hitachi Automotive Systems Ltd High pressure fuel pump control system for internal combustion engine
US20160084191A1 (en) * 2013-05-31 2016-03-24 Mtu Friedrichshafen Gmbh Method for controlling a pressure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188545A (en) * 2000-12-20 2002-07-05 Hitachi Ltd High-pressure fuel pump control device for cylinder injection engine
JP2003106208A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Controller for internal combustion engine
JP2003307149A (en) * 2002-04-12 2003-10-31 Denso Corp Accumulator fuel injection device
JP2004019639A (en) * 2002-06-20 2004-01-22 Hitachi Ltd High pressure fuel pump controller for internal combustion engine
JP2006112371A (en) * 2004-10-18 2006-04-27 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP2007100668A (en) * 2005-10-07 2007-04-19 Mitsubishi Electric Corp High pressure fuel pump control device for engine
JP2007205193A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp High pressure fuel pump control device for internal combustion engine
JP2011202549A (en) * 2010-03-25 2011-10-13 Hitachi Automotive Systems Ltd High pressure fuel pump control system for internal combustion engine
US20160084191A1 (en) * 2013-05-31 2016-03-24 Mtu Friedrichshafen Gmbh Method for controlling a pressure

Similar Documents

Publication Publication Date Title
US8100112B2 (en) Fuel-supply quantity estimating apparatus and fuel injection system
US7757669B2 (en) High-pressure fuel pump control apparatus for an internal combustion engine
JP4297160B2 (en) Internal combustion engine
US7789071B2 (en) Fuel supply system for an internal combustion engine
US9631593B2 (en) Control device for internal combustion engine
US8079345B2 (en) High pressure fuel supply control system for internal combustion engine
US20110196594A1 (en) Controller for fuel injection system
JP2013177823A (en) Fuel leakage detection apparatus
JP6146274B2 (en) Control device for internal combustion engine
JP2013245635A (en) Fuel pressure control device
WO2023243032A1 (en) Internal combustion engine control device
JP5497556B2 (en) Engine control device
JP4529943B2 (en) Fuel injection control device for internal combustion engine
JP4497046B2 (en) Control device for internal combustion engine
JP2007032321A (en) Controller of internal combustion engine
JP5018374B2 (en) Fuel injection system for internal combustion engine
JP2007032330A (en) Controller of internal combustion engine
JP4329755B2 (en) High pressure fuel pump for internal combustion engine
CN108350819B (en) Control device for internal combustion engine
JP4075567B2 (en) Fuel supply device for internal combustion engine
JP2014202075A (en) Fuel injection device
JP4389417B2 (en) Fuel supply apparatus for in-cylinder injection internal combustion engine
JP7465162B2 (en) Engine Control Unit
JP2002054479A (en) Cylinder injection engine control device
US10473077B2 (en) Control device for high-pressure pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946849

Country of ref document: EP

Kind code of ref document: A1