WO2023242504A1 - Dispositif de transmission d'un mouvement et siège - Google Patents
Dispositif de transmission d'un mouvement et siège Download PDFInfo
- Publication number
- WO2023242504A1 WO2023242504A1 PCT/FR2023/050840 FR2023050840W WO2023242504A1 WO 2023242504 A1 WO2023242504 A1 WO 2023242504A1 FR 2023050840 W FR2023050840 W FR 2023050840W WO 2023242504 A1 WO2023242504 A1 WO 2023242504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- assembly
- axial
- elastic member
- bearing
- complementary
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 40
- 230000000295 complement effect Effects 0.000 claims abstract description 93
- 238000005096 rolling process Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000010079 rubber tapping Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D11/00—Passenger or crew accommodation; Flight-deck installations not otherwise provided for
- B64D11/06—Arrangements of seats, or adaptations or details specially adapted for aircraft seats
- B64D11/0619—Arrangements of seats, or adaptations or details specially adapted for aircraft seats with energy absorbing means specially adapted for mitigating impact loads for passenger seats, e.g. at a crash
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
- F16C19/181—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
- F16C19/183—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
- F16C19/184—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/546—Systems with spaced apart rolling bearings including at least one angular contact bearing
- F16C19/547—Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
- F16C19/548—Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C31/00—Bearings for parts which both rotate and move linearly
- F16C31/04—Ball or roller bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/067—Fixing them in a housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2229/00—Setting preload
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/43—Aeroplanes; Helicopters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
- F16C2380/27—Motor coupled with a gear, e.g. worm gears
Definitions
- the present disclosure concerns a device for transmitting a movement and a seat comprising said device.
- Each seat comprises a plurality of elements, for example a backrest, a seat, a headrest, one or more armrests, etc.
- each seat can be provided with one or more actuators allowing the seat to move relative to the ground on which it is installed, or the different elements of the seat to move relative to the others.
- the actuator comprises an output shaft, a motor and a brake.
- the output shaft is connected to the seat or seat element to be moved.
- the motor is capable of driving the output shaft in translation and/or rotation in order to cause a concomitant movement of the seat or the corresponding seat element.
- the brake makes it possible to lock the output shaft in position, which prevents the movement of the seat or the corresponding element thereof when the motor is not activated.
- the actuator further comprises a reduction train connecting the brake and the output shaft.
- the reduction gear includes a set of mechanical parts, such as gears, connecting rods, racks, etc.
- a device for transmitting a movement intended for an actuator comprising:
- a first, fixed assembly comprising a housing extending along a first axis
- first assembly comprises a first axial stop and the second assembly comprises a first complementary axial stop, the first axial stop and the first complementary axial stop being opposite each other axially, a first axial clearance being formed between the first stop axial and the first complementary axial stop, in which the first elastic member is able to be deformed during the translation of the second assembly along the first axis in a first direction when an axial force greater than a first threshold is exerted by the second together on said first elastic member, the first axial play being progressively reduced until the first complementary axial stop comes into axial support on the first axial stop.
- axial has the meaning along the axis of extent of the housing, or parallel to it
- radial has the meaning along any axis transverse or substantially transverse to this housing.
- circumferential we mean around the aforementioned axis or an axis parallel to it.
- the actuator is for example a rotary type actuator.
- the actuator may include a brake, a motor and a reduction gear housed in a housing.
- the axial force exerted by the second assembly on the first elastic member can be generated by the forces acting within the actuator. Also, thanks to the axial support of the first complementary axial stop, belonging to the second set, on the first axial stop, belonging to the first set, the forces within the actuator are dissipated through the first set of the transmission device . The percentage of forces generated in the actuator which reach the brake is therefore reduced, or even zero. By consequently, the risks of wear and/or breakage of the brake are limited without the need to oversize the parts of the reduction train, which makes it possible to reduce the manufacturing cost of the actuator and its weight.
- At least one of the first axial stop and the first complementary axial stop may comprise a friction surface comprising roughness and/or elements projecting axially, for example a dog system.
- the deformation of the first elastic member during the translation of the second assembly along the first axis taking place when an axial force greater than the first threshold is exerted by the second assembly on said first elastic member it is possible to define from what level of effort acting within the actuator the proposed device comes into service when the second assembly is moved axially in the first direction. This prevents the transmission device from activating when the forces in the actuator present no risk to the integrity of the brake.
- the first threshold corresponds in the present text for example to the maximum axial force which can be applied to the first elastic member without it being deformed.
- the first threshold is between 10 N and 250 N.
- the first threshold is equal to 60 N.
- the proposed device has a limited number of parts which interact with each other in a simple manner.
- the device is therefore simple to manufacture and takes up little space.
- the actuator in which the transmission device is included is configured to, when requested, move a seat, for example an aircraft seat.
- the transmission device can also be included in an actuator configured to, when requested, move a part of the seat relative to other parts of the seat.
- loaded we mean here that forces making it possible to impart movement to the output shaft are generated within the actuator, whatever the intensity of these forces.
- the casing of the actuator is connected to a fixed part of the seat or of the aircraft, that is to say, to a part of the seat or of the aircraft which does not move when the actuator is requested.
- the actuator may further include an output shaft passing through the housing.
- the output shaft extends along a longitudinal axis which is for example substantially parallel to the axis of extension of the housing of the first assembly.
- the output shaft moves, in translation along its longitudinal axis or in rotation around this longitudinal axis, when the actuator is requested.
- the output shaft may be connected to the seat so as to cause movement of the seat concomitant with movement of the output shaft when the actuator is requested.
- the output shaft can be connected to a movable part of the seat, that is to say, to a part of the seat which moves when the actuator is requested. This mobile part is then moved concomitantly with the movement of the output shaft.
- the movement of the seat or the part of the seat can be integral with the movement of the output shaft.
- integral we mean here that the movement of the seat or part of the seat is of the same type as the movement of the output shaft and in a direction substantially parallel to the movement of the output shaft.
- the movement of the seat or part of the seat can therefore be a translation and/or a rotation.
- the actuator brake When the actuator brake is engaged, movement of the output shaft can be prevented.
- the brake is engaged when the actuator is deactivated.
- deactivated we mean that the actuator is not loaded, no force capable of moving the output shaft being generated within the actuator.
- the transmission device can be included in the reduction train of the actuator.
- the first assembly of the transmission device is fixed.
- the first set comprises a set of parts of this device which are stationary when the transmission device is in service.
- the first assembly may include part of the actuator housing.
- the housing of the first assembly may correspond to a housing of the actuator housing.
- the first axial stop may be part of the casing.
- the first axial stop can be included in a radially internal wall of the casing delimiting the housing.
- the housing may comprise a first end and a second end opposed axially.
- the first and second ends of the housing are open ends.
- at least one of the first and second ends of the housing is closed by an end wall.
- the end wall may be a wall of the casing extending substantially in the radial direction.
- the second assembly comprises parts of the transmission device capable of moving in rotation around the first axis and/or in translation along this first axis, as will be detailed.
- the first elastic member is for example a wave spring.
- the first elastic member is a wire-type spring, a spiral spring or an elastic washer, for example a Belleville washer.
- the first elastic member preferably has a substantially annular cross section, an opening or cavity extending substantially axially along the elastic member. The deformation of the first elastic member under the effect of the axial force exerted by the second assembly on the first elastic member comprises for example an axial compression of the first elastic member.
- the second assembly can comprise at least one shaft and a helical pinion integral with each other, the helical pinion comprising the first complementary axial stop and meshing with a complementary input pinion of the device.
- the shaft of the second assembly extends along a longitudinal axis which is for example substantially parallel to the axis of extension of the housing of the first assembly.
- the helical pinion has for example a substantially annular shape comprising a hole, for example centered on the helical pinion.
- the helical pinion further comprises a radially outer castellated face, that is to say, comprising a plurality of teeth distributed circumferentially on this radially outer face.
- a helical pinion corresponds here to a pinion in which each tooth on its radially outer face is arranged so as to form an angle, called a helix angle, distinct from 0° and 90° with the longitudinal axis of the shaft of the second set.
- the helix angle of the helical pinion of the second assembly can be between 5° and 50°, preferably between 15° and 30°.
- the shaft of the second assembly and the helical pinion integral with each other the shaft can be mounted tight or adjusted in the hole of the helical pinion.
- the helical pinion is thus arranged around the shaft of the second assembly.
- the input pinion also called upstream pinion, can also be a helical pinion having a substantially annular shape comprising a hole, for example centered on the input pinion.
- the input pinion also includes a radially outer castellated face.
- the helix angle of the input gear is equal, but in opposite direction, to the helix angle of the teeth of the helical gear of the second set.
- the input pinion can be connected to the actuator motor by an input shaft, also called a motor shaft.
- the motor shaft extends along a longitudinal axis which can be substantially parallel to the axis of extension of the housing of the first assembly.
- the input pinion and the motor shaft are advantageously secured to each other.
- the motor shaft can be mounted tight or fitted in the input gear hole.
- a set of mechanical parts is interposed between the input pinion and the motor shaft, this set of mechanical parts acting as an overload brake.
- the input pinion being complementary to the helical pinion of the second assembly, the torque of forces causing the rotation of the input pinion is transmitted to the helical pinion of the second assembly.
- the helical pinion is therefore driven by the input pinion in rotation around the longitudinal axis of the shaft of the second assembly, which is preferably parallel to the longitudinal axis of the motor shaft.
- the input pinion and the pinion of the second set being helical gears having the same helix angle
- the gearing between the input pinion and the pinion of the second set is a helical type gear.
- a helical type gear generates an axial force on the gears which interact when a torque is transmitted between these gears.
- the axial force is generated by the contact forces generated between the two pinions of the gear as they rotate. This axial force is proportional to the torque transmitted between the pinions. Therefore, the helical gear between the input gear and the gear of the second set implies that when the input gear rotates around the longitudinal axis of the input shaft, the gear of the second set also rotates around of the longitudinal axis of the shaft of the second assembly.
- the rotation of these two pinions generates the axial force which moves the shaft of the second assembly in translation along its longitudinal axis.
- the motor shaft can also be moved in translation along its longitudinal axis in a direction opposite to that of the translation of the shaft of the second assembly.
- the first complementary axial stop being included in the pinion of the second assembly, the translation of the shaft of the second assembly along its longitudinal axis makes it possible to progressively reduce the first axial play, until the first axial stop complementary comes into contact with the first axial stop of the first assembly. The forces exerted on the actuator are therefore dissipated through the first assembly.
- the shaft of the second assembly can move in axial translation in the first direction
- the opening or axial cavity of the first elastic member preferably has a diameter greater than a diameter of the shaft of the second set.
- the second assembly can also comprise a second pinion secured to the shaft of the second assembly and meshing with a complementary output pinion of the device.
- the second pinion of the second assembly can also have an annular shape comprising a hole and a radially outer castellated face.
- the diameter of the second pinion may be equal to or different from the diameter of the other pinion of the second set.
- the second pinion of the second set can be a straight pinion, that is to say, a pinion in which the teeth of the radially outer face are oriented parallel or perpendicular to the longitudinal axis of the the tree of the second set.
- the teeth of the radially outer face of the gear form an angle equal to 0° or 90° with the longitudinal axis of the shaft of the second assembly.
- the second pinion is a helical pinion, the helix angle of which may be equal to or different from the helix angle of the other helical pinion of the second set.
- the output pinion also called downstream pinion, can also have a substantially annular shape comprising a hole, for example centered on the output pinion.
- the output pinion may also include a radially outer castellated face.
- the teeth on the radially outer face of the output pinion have an orientation substantially equal to that of the teeth on the radially outer face of the second pinion.
- the output gear is also a spur gear.
- the output gear is a helical gear whose helix angle of the teeth is equal to the helix angle of the teeth of the second gear of the second set.
- the output pinion can be connected to the movable part of the seat via the output shaft of the actuator.
- the output gear and the output shaft are integral with each other.
- the output shaft can be mounted tight or fitted into the hole of the output gear.
- the shaft of the second assembly is, as indicated above, rotated around its longitudinal axis.
- the second pinion of the second assembly being integral with the shaft of the second assembly, it is also rotated around the longitudinal axis of the shaft of the second assembly.
- the complementarity between the second pinion of the second assembly and the output pinion implies that the output pinion also rotates around the longitudinal axis of the output shaft when the second pinion of the second assembly rotates.
- the support of the first complementary axial stop on the first axial stop is therefore stronger than in any other configuration of the pinions of the second set, which makes it possible to dissipate more effectively through the first set the forces to which the actuator is subjected. If only one of the gears of the second set is helical, the dissipation of forces through the first set is more effective if the helical gear is the one having a smaller diameter. In particular, for an identical torque and helix angle, the axial force produced by the helical gear is greater when the diameter of the helical gear decreases.
- a first bearing can be mounted in the housing radially between the first assembly and the second assembly, the first bearing comprising a radially outer ring arranged opposite the first assembly and a radially inner ring arranged opposite the second together, the first elastic member bearing axially on the radially external ring of said first bearing.
- the radially internal and radially external rings of the first bearing preferably have a generally cylindrical shape and are coaxial with each other.
- a plurality of rolling elements can be arranged between the radially inner ring and the radially outer ring of the first bearing.
- the first bearing can be arranged around a first end portion of the shaft of the second assembly, the radially internal ring and the radially external ring of the first bearing being coaxial around the longitudinal axis of the shaft of the second set.
- the radially internal ring of the first bearing can be integral with the shaft of the second assembly. Also, when the second assembly moves axially and/or rotates around the longitudinal axis of its shaft, the radially internal ring of the first bearing moves and/or rotates integrally with the second assembly.
- the axial force associated with the axial movement of the radially inner ring of the first bearing is transmitted to the radially outer ring of the first bearing through the plurality of rolling elements. If this axial force is greater than the first threshold described above, the radially outer ring of the first bearing is also moved axially and the first elastic member is compressed. If the axial force transmitted to the radially outer ring of the first bearing is less than the first threshold, the ring radially outer of the first bearing does not move axially and the first elastic member is not compressed.
- the first elastic member bearing axially on the radially outer ring of the first bearing, an elastic energy stored in the first elastic member opposes the axial movement of the radially outer ring of the first bearing as long as the axial force transmitted to this radially external ring is not greater than the first threshold.
- the elastic energy stored in the first elastic member corresponds to the elastic energy associated with the axial force corresponding to the first threshold described above.
- the axial support of the first elastic member on the radially external ring of the first bearing can be direct or indirect support.
- direct support we mean that the radially outer ring of the first bearing and the first elastic member are in contact with each other.
- indirect support we mean that at least one part, movable axially, is interposed between the radially external ring of the first bearing and the first elastic member. In certain cases, only the radially outer periphery of the first elastic member comes into axial support on the radially outer ring of the first bearing.
- the first assembly may comprise a first shoulder and the second assembly may comprise a first complementary shoulder, the radially outer ring of the first bearing bearing axially on the first shoulder of the first assembly, the radially inner ring of the first bearing bearing axially on the first complementary shoulder of the second assembly.
- the first shoulder and the first complementary shoulder can be radially opposite each other.
- the first shoulder can be included in the casing.
- the first shoulder may comprise an annular axial support face of the radially external ring of the first bearing. This annular face of the first shoulder is shaped to be axially opposite the radially external ring of the first bearing. The annular face of the first shoulder extends for example radially towards the first complementary shoulder.
- the first complementary shoulder can be included in the shaft of the second assembly.
- the first complementary shoulder may comprise an annular axial support face of the radially internal ring of the first bearing. This annular face of the first complementary shoulder is shaped to face axially the radially internal ring of the first bearing.
- the annular face of the first complementary shoulder can extend radially in the direction of the first shoulder.
- the annular faces of the first shoulder and the first complementary shoulder can be aligned in the radial direction when the transmission device is at rest (that is to say, when no axial force is exerted by the second together).
- the axial support of the radially outer ring and the radially inner ring of the first bearing on, respectively, the first shoulder and the first complementary shoulder can be direct or indirect support.
- direct support we mean that the radially outer ring and the radially inner ring are respectively in contact with the first shoulder and the first complementary shoulder.
- indirect support we mean that at least one part is interposed between the radially outer ring of the first bearing and the first shoulder, and between the radially inner ring of the first bearing and the first complementary shoulder.
- the first shoulder and the first complementary shoulder it is possible to easily position the first bearing in its installation position around the shaft of the second assembly.
- installation position we mean here the position of the first bearing when the proposed device is functional but at rest.
- the first complementary shoulder makes it possible to transmit to the radially internal ring of the first bearing the axial force associated with the axial translation of the second assembly, even if radial play exists between the shaft of the second assembly and the first bearing.
- the radially internal ring of the first bearing can move integrally with the second assembly, even in the presence of such radial play.
- the axial force is transmitted through the rolling elements to the radially outer ring of the first bearing and, if this axial force is greater than the first threshold described above, the radially outer ring of the first bearing can also move axially so as to compress the first elastic member.
- the device may further comprise a first prestressing element of the first elastic member capable of adjusting an axial prestressing force acting on the first elastic member.
- the first prestressing element can be part of the first assembly of the device.
- the axial prestressing force acting on the first elastic member defines the first threshold from which the first elastic member is deformed during the axial translation of the second assembly in the first direction.
- the value of effort axial prestressing of the first elastic member is equal to the first threshold.
- the first prestressing element may be in contact with a radially external and/or internal periphery of the first elastic member.
- the first prestressing element may be a threaded plug comprising, on a radially external surface, a thread complementary to a tapping provided in the housing of the first assembly.
- the first prestressing element can be a nut comprising, on a radially external surface, a thread complementary to the tapping provided in the housing of the first assembly.
- the first prestressing element can be a plate connected directly to the first assembly, preferably by means of a removable connection. The plate can for example be screwed onto the first assembly so as to be in contact with the first elastic member.
- first prestressing element whatever the type of first prestressing element, it can be crossed by a hole or an axial cavity dimensioned so as to allow the axial movement of the shaft of the second assembly through this hole or this cavity.
- the first prestressing element can be moved in the housing in a direction going towards the first elastic member, so as to compress it, which increases the axial prestressing force.
- the first prestressing element can be moved in the housing in a direction away from the first elastic member, so as to relax it, which reduces the axial prestressing force.
- This modification of the axial prestressing force of the first elastic member is particularly possible when the first prestressing element is a threaded plug or a nut as described above.
- the first prestressing element is dimensioned so that the first elastic member is subjected to a precise value of axial prestressing force when the first prestressing element is installed in the transmission device. a movement.
- the first prestressing element is a plate as described above.
- the first shoulder of the first assembly can be included in the plate, an axial length of the first shoulder being a function of the axial prestressing force to be induced in the first elastic member.
- the first elastic member in particular when the housing has its two ends open, can be arranged directly between the first prestressing element and the first bearing. According to another example, in particular when the housing has at least one of its ends closed by the end wall, the first elastic member can be arranged directly between the first bearing and the end wall.
- the device may further comprise a second elastic member installed inside the housing, in which the first assembly comprises a second axial stop and the second assembly comprises a second complementary axial stop, the second axial stop and the second complementary axial stop being opposite each other axially, a second axial clearance being formed between the second axial stop and the second complementary axial stop, in which the second elastic member is able to be deformed during the translation of the second together along the first axis in a second direction opposite to the first direction when an axial force greater than a second threshold is exerted by the second assembly on said second elastic member, the second axial play being progressively reduced until the second complementary axial stop comes into axial support on the second axial stop.
- a second elastic member installed inside the housing, in which the first assembly comprises a second axial stop and the second assembly comprises a second complementary axial stop, the second axial stop and the second complementary axial stop being opposite each other axially, a second axial clearance being formed between the second axial stop and the second complementary axial stop, in which the second
- the transmission device to constitute a bidirectional brake capable of absorbing the forces undergone by the actuator even in the event of seat rebound and regardless of the direction of installation in the seat of the transmission device.
- the axial support of the second axial stop on the second complementary axial stop taking place when the second assembly moves in the second direction which is opposite to the first direction the dissipation of the axial force which drives the second assembly in translation along the first axis can in this configuration be dissipated through the first assembly regardless of the direction of axial movement of the first assembly.
- at least one of the second axial stop and the second complementary axial stop may comprise a friction surface comprising roughness and/or elements projecting axially, for example a dog system.
- the deformation of the second elastic member during the translation of the second assembly along the first axis in the second direction taking place when an axial force greater than the second threshold is exerted by the second assembly on said second elastic member it is possible to define from what level of effort acting within the actuator the proposed device comes into service when the second assembly is moved axially in the second direction. This prevents the transmission device from activating when the forces in the actuator present no risk to the integrity of the brake.
- the second threshold may be equal to or different from the first threshold.
- the second elastic member is for example a wave spring.
- the second elastic member is a wire-type spring, a spiral spring or an elastic washer, for example a Belleville washer.
- the second threshold corresponds for example to the maximum axial force which can be applied to the second elastic member without it being deformed.
- the second threshold is between 10 N and 250 N.
- the first threshold is equal to 60 N.
- the deformation of the second elastic member under the effect of the axial force exerted by the second assembly on the second elastic member comprises for example an axial compression of the second elastic member.
- the device may further comprise a second bearing mounted in the housing radially between the first assembly and the second assembly, the second bearing comprising a radially external ring arranged facing the first assembly and a radially internal ring arranged facing the second assembly, the second elastic member bearing axially directly on the radially external ring of said second bearing.
- the radially internal and radially external rings of the second bearing have, for example, a generally cylindrical shape and are coaxial with each other.
- a plurality of rolling elements can be arranged between the radially inner ring and the radially outer ring of the second bearing.
- the second bearing can be arranged around a second end part of the shaft of the second assembly, the second end part of this shaft being axially opposed to the first end part on which the first bearing is arranged.
- the radially inner ring and the radially outer ring of the second bearing are coaxial around the longitudinal axis of the shaft of the second assembly.
- the radially internal ring of the second bearing can be integral with the shaft of the second assembly. Also, when the second set moves axially and/or rotates around the longitudinal axis of its shaft, the radially internal ring of the second bearing moves and/or rotates integrally with the second assembly.
- the axial force associated with the axial movement of the radially internal ring of the second bearing is transmitted to the radially external ring of the second bearing through the plurality of rolling elements. If this axial force is greater than the second threshold described above, the radially outer ring of the second bearing is also moved axially and the second elastic member is compressed. If the axial force transmitted to the radially outer ring of the second bearing is less than the second threshold, the radially outer ring of the second bearing does not move axially and the second elastic member is not compressed.
- the second elastic member bearing axially on the radially outer ring of the second bearing, an elastic energy stored in the second elastic member opposes the axial movement of the radially outer ring of the second bearing as long as the axial force transmitted to this radially external ring is not greater than the second threshold.
- the total elastic energy stored in the second elastic member corresponds to the elastic energy associated with the axial force corresponding to the second threshold described above.
- the axial support of the second elastic member on the radially external ring of the second bearing can be direct support or indirect support as described above. In certain cases, only the radially outer periphery of the second elastic member comes into axial support on the radially outer ring of the second bearing.
- the first assembly may further comprise a second shoulder and the second assembly may further comprise a second complementary shoulder, the radially outer ring of the second bearing bearing axially on the second shoulder of the first assembly, the radially internal ring of the second bearing bearing axially on the second complementary shoulder of the second assembly.
- the second shoulder and the second complementary shoulder can be radially opposite each other.
- the second shoulder can be included in the casing.
- the second shoulder may comprise an annular axial support face of the radially external ring of the second bearing. This annular face of the second shoulder is shaped to be axially opposite the radially external ring of the second bearing.
- the annular face of the second shoulder extends for example radially towards the second complementary shoulder.
- the second complementary shoulder can be included in the shaft of the second assembly.
- the second complementary shoulder may comprise an annular axial support face of the radially internal ring of the second bearing. This annular face of the second complementary shoulder is shaped to face axially the radially internal ring of the second bearing.
- the annular face of the second complementary shoulder can extend radially in the direction of the second shoulder.
- the annular faces of the second shoulder and the second complementary shoulder can be aligned in the radial direction when the transmission device is at rest.
- the axial support of the radially outer ring and the radially inner ring of the second bearing on, respectively, the second shoulder and the second complementary shoulder can be direct support or indirect support as described above.
- first shoulder and the second shoulder of the first assembly and the first complementary shoulder and the second complementary shoulder of the second assembly makes it possible to separate the force path of the first and the second elastic members, which allows the value of the first threshold and the value of the second threshold described above are independent of each other and that they can be adjusted independently.
- the second shoulder and the second complementary shoulder it is possible to easily position the second bearing in its installation position around the shaft of the second assembly.
- the second complementary shoulder also makes it possible to transmit to the radially internal ring of the second bearing the axial force associated with the axial translation of the second assembly, even if radial play exists between the shaft of the second assembly and the second bearing.
- the radially internal ring of the second bearing can therefore move integrally with the second assembly, even in the presence of such radial play.
- the axial force is transmitted through the rolling elements to the radially outer ring of the second bearing and, if this axial force is greater than the second threshold described above, the radially outer ring of the second bearing can also move axially so as to compress the second elastic member.
- the device may further comprise a second prestressing element of the second elastic member capable of adjusting an axial prestressing force acting on the second elastic member independently of the axial prestressing force acting on the first elastic member .
- the first prestressing element and the second prestressing element therefore make it possible to independently adjust the prestressing force which acts respectively on the first elastic member and on the second elastic member.
- the transmission device therefore constitutes an operational bidirectional brake.
- the second prestressing element can be part of the first assembly.
- the axial prestressing force acting on the second elastic member defines the second threshold from which the second elastic member is deformed during the axial translation of the second assembly in the second direction.
- the value of the axial prestressing force of the second elastic member is equal to the second threshold.
- the second prestressing element can be in contact with a radially external and/or internal periphery of the second elastic member.
- the second prestressing element can be a threaded plug, a nut or a plate having the characteristics explained previously.
- the second prestressing element is a plate, the second shoulder described above can be included in the plate.
- certain types of second prestressing element make it possible to modify the axial prestressing force of the second elastic member by moving the second prestressing element in the housing in a direction going towards the second elastic organ.
- the second elastic member is thus compressed, which increases its axial prestressing force.
- the second prestressing element can be moved in the housing in a direction away from the second elastic member, so as to relax it, which reduces its axial prestressing force. Note that the movements of the first and second prestressing elements are independent of each other, which makes it possible to apply a different prestressing force to each elastic member.
- the second prestressing element is dimensioned so that the second elastic member is subjected to a precise value of axial prestressing force when the second prestressing element is installed in the transmission device. a movement.
- the second elastic member can be arranged directly between the second prestressing element and the second bearing.
- the second elastic member can be arranged directly between the second bearing and the end wall.
- the first set is a set of parts of this device which are stationary when the transmission device is in service.
- the first assembly may comprise the casing, the first prestressing element and the second prestressing element.
- the second assembly comprises parts of the transmission device capable of moving in rotation around the first axis and/or in translation along this first axis.
- the second assembly may comprise the shaft and the pinion(s) secured thereto, the first bearing and the second bearing.
- a seat for an aircraft comprising a fixed part intended to be fixed to a fixed part of the aircraft and a movable part capable of being moved relative to the fixed part, a device for transmission of a movement according to one of the preceding claims being mounted between the movable part and the fixed part, the first assembly of the transmission device being connected to said fixed part of the seat, the second assembly of the transmission device being able to be driven by a motor in rotation around the first axis and in translation along said first axis, the second assembly being connected to said movable part of the seat.
- the movement transmission device gives the movable part of the seat a movement which causes it to move relative to the fixed part of said seat.
- the second assembly of the device is connected to the output shaft of the actuator. The movement of the second assembly causes a movement of the output shaft, which will therefore move the movable part of the seat.
- the fixed part of the seat can be connected directly or indirectly to the fixed part of the aircraft.
- the fixed part of the aircraft corresponds for example to the ground.
- the fixed and movable parts of the seat each correspond to one of the elements of the seat.
- the movable part corresponds to the seat back
- the fixed part of the seat corresponds to the seat, which is connected, directly or via the feet, to the floor of the aircraft.
- the element of the seat which constitutes the fixed part thereof in a given situation constitutes the mobile part of the seat in another situation.
- the seat which is connected to the ground via the feet could move relative to the feet, the feet being included in the fixed part of the seat, and the seat forming part of the movable part of the seat.
- the element of the seat which constitutes the movable part thereof in a given situation may constitute the fixed part of the seat in another situation.
- the fixed part of the seat comprises for example a slide fixed to the floor of the aircraft.
- the mobile part of the seat comprises for example several feet connected to the slide so as to be able to slide along it.
- the actuator used may be a linear actuator.
- the shaft and pinion(s) of the second assembly of the proposed transmission device can be replaced by a screw-nut system.
- a screw-nut system comprises a screw extending along an axis, which can be substantially parallel to the axis of extension of the housing, and a nut capable of rotating around the axis of the screw.
- the nut is in particular rotated around the axis of the screw by the actuator motor.
- the screw is connected to the mobile part of the seat.
- the nut and the screw are connected so that a rotation of the nut around the axis of the screw causes the axial movement of the screw.
- the first complementary axial stop and/or the second complementary axial stop can then be included in faces of the nut arranged opposite the first axial stop and/or the second axial stop of the first assembly.
- the first complementary axial stop and/or the second complementary axial stop are included in an additional part secured to the nut and arranged axially in the continuity of the nut, in particular in faces of this additional part arranged opposite the first axial stop and/or the second axial stop of the first assembly.
- the first and second complementary shoulders of the second assembly can be carried by the nut or by the additional part.
- FIG. 1 shows a schematic side view of an aircraft seat provided with at least one actuator comprising a device for transmitting a movement according to the invention.
- Fig. 2 shows a schematic side view of an aircraft seat provided with at least one actuator comprising a device for transmitting a movement according to the invention.
- FIG. 2 shows a schematic view in axial section of an actuator of the seat of Figure 1.
- FIG. 3 shows a schematic view in axial section of the device for transmitting a movement of the seat of Figure 1 according to one embodiment of the invention.
- FIG. 4 shows a schematic view in axial section of the device for transmitting a movement of the seat of Figure 1 according to an alternative embodiment of the device of Figure 3, the transmission device being in a first position.
- FIG. 5 shows a schematic view in axial section of the device for transmitting a movement of the seat of Figure 1 according to the alternative embodiment of Figure 4 in a second position.
- Figure 1 shows a seat 2, in particular for an aircraft.
- the seat 2 includes a seat 4, a backrest 6 and a headrest 8.
- the seat 2 can also include a leg rest 10.
- the seat 2 is intended to be connected to a fixed part of the aircraft, in particular to the ground.
- the seat 2 may comprise feet 12 and a slide 14.
- the slide 14 comprises for example two rails fixed to the ground, each foot 12 being mounted on one of the rails so as to be able to slide along the respective rail .
- the seat 2 is thus able to move forwards or backwards.
- the seat 2 includes one or more electric drive systems 18, also called actuators.
- Each actuator 18 is dedicated to moving one of the elements (seat 4, backrest 6, headrest 8, leg rest 10, etc.) of seat 2 relative to the others.
- actuator 18 is dedicated to moving seat 2 in slide 14.
- the element of the seat 2 which is moved is called “mobile part”, while the elements relative to which it moves are called “fixed part”.
- the “movable part” is seat 2
- the “fixed part” is the fixed part of the aircraft.
- the actuator 18 comprises a motor 20, an output shaft 22, a reduction gear 23, a brake 24 and a casing 25.
- the motor 20 is able to generate a movement of a shaft of the actuator, called the input shaft or motor shaft (not illustrated).
- the motor 20 generates in particular a rotational movement of the input shaft around a longitudinal axis of this input shaft.
- longitudinal we mean here extending along its longest dimension.
- the input shaft is integral with a pinion 26, called the upstream pinion or input pinion, which will be described below with reference to Figure 3.
- the output shaft 22 is configured to be driven in rotation around its longitudinal axis A.
- the output shaft 22 is driven in rotation when the input shaft rotates around its longitudinal axis as indicated above.
- the longitudinal axes of the output shaft 22 and the input shaft are substantially parallel.
- the output shaft 22 is integral with a pinion 30, called the downstream pinion or output pinion.
- the rotation of the output shaft 22 around the axis A causes the movement, in rotation and/or in translation, of the movable part of the seat 2.
- the output shaft 22 is thus configured to transform the rotation of the input shaft in a movement adapted to move the movable part relative to the fixed part of the seat.
- the reduction train 23 is for example a multi-stage reduction train.
- the reduction gear 23 comprises a set of mechanical parts, such as gears or connecting rods, adapted to transmit the movement of the input shaft to the output shaft 22. More precisely, these mechanical parts connect the shaft input to the output shaft 22.
- the reduction train 23 comprises a device 30 for transmitting a movement, in particular the movement of the input shaft, which will be described later with reference to the figures 3 to 5.
- the reduction gear 23 makes it possible to reduce the speed of movement of the input shaft before being transmitted to the output shaft 22.
- the reduction in the speed of movement generated by the motor 20 is linked to a increase in the output torque of the actuator 18.
- the brake 24 is configured to brake or prevent the rotation of the input shaft generated by the motor 20, so as to also brake or prevent the rotation of the output shaft 22, and therefore, the movement of the movable part of the seat 2 relative to its fixed part.
- the casing 25 houses the motor 20, the brake 24 and the reduction gear 26.
- the output shaft 22 is connected to the reduction gear 23 and crosses in its longitudinal direction A the casing 25.
- the casing 25 is connected to the fixed part of the seat 2.
- the transmission device 30 comprises a first assembly 100 and a second assembly 200.
- the first assembly 100 comprises a housing 110 extending along an axis B.
- the axis B is substantially parallel to the longitudinal axes of the input shaft and the output shaft 22 of the actuator 18.
- the housing 110 is for example included in the casing 25, the casing 25 therefore forming part of the first assembly 100.
- the housing 110 can be delimited by a radially internal wall 27 of the casing 25.
- the housing 110 may comprise a first end part 112, a second end part 114 and a central part 116.
- the central part 116 is arranged axially between the first end part 112 and the second part d end 114.
- the central part 116 is delimited axially between a first face 118 of the radially internal wall 27 of the casing 25 and a second face 120 of the radially internal wall 27 of the casing 25.
- the first face 118 and the second face 120 extends substantially radially.
- the first face 118 and the second face 120 each comprise a hole which communicates the central part 116 with, respectively, the first end part 112 and the second end part 114.
- the first end part 112 is extends between the first face 118 and a first end 112A, while the second end portion 114 extends between the second face 120 and a second end 114A axially opposite the first end 112A.
- the first end part 112, the second end part 114 and the central part 116 have a generally cylindrical shape.
- the first end part 112 and the second end part 114 have substantially the same diameter, without this being limiting.
- the central part 116 of the housing 110 has a diameter greater than the diameter of the first and second end parts 112, 114.
- Housing 110 can be closed at one of its ends.
- an end wall 115 extending substantially radially at one of the ends of the housing, in this case at the second end 114A, closes the housing 110.
- the housing 110 can be opened at its two ends 112A, 114A.
- the first assembly 100 may further comprise a first prestressing element 124 and a second prestressing element 130.
- the first prestressing element 124 comprises a plug which is dimensioned so as to be able to be introduced, at less partially, in the first end part 112 of the housing 110.
- the plug is in particular a plug whose radially external surface comprises a thread (not illustrated) complementary to a tapping 150 provided on a fraction of the radially internal wall 27 of the casing delimiting the first end portion 112 of the housing 110.
- the first prestressing element 124 is a nut comprising on a radially external surface a complementary thread (not shown) of the tapping 150.
- the first prestressing element can be removably connected to the housing 110.
- the axial position of the first prestressing element 124 to the interior of the housing 110 can be adjusted by moving the first prestressing element 124 along the tapping 150 from a rotational movement of the first prestressing element 124 around the axis B.
- the second prestressing element 130 is a plate which is connected to the second face 120 of the radially internal wall 27 of the casing 25, preferably in a removable manner.
- the plate 130 can be screwed onto the second face 120 of the radially internal wall by screws 152.
- the plate 130 comprises a hole having a dimension equal to or greater than the hole on the face 120 of the radially internal wall 27. , which allows the arrangement of the plate on the face 120 to neither totally nor partially close the hole communicating the second end part 114 and the central part 116 of the housing 110.
- the second prestressing element 130 is a nut similar to the nut of the first prestressing element 124.
- a tapping complementary to the thread of the surface radially externally of the nut can be provided on a fraction of the radially internal wall 27 of the casing delimiting the second end portion 114 of the housing 110.
- the first prestressing element 124 could be a plate similar to the plate 130 described above, and the second prestressing element 130 could be a plug similar to that of the first prestressing element 124 of Figure 3.
- the first assembly 100 may further comprise a first shoulder 132 and a second shoulder 134.
- the first shoulder 132 is included in the first end portion 112 of the housing 100, while the second shoulder 134 is included in the second end part 114 of housing 100.
- the first shoulder 132 and/or the second shoulder 134 are formed by a portion of the casing 25 projecting radially inside the housing 110 from the radially internal wall 27.
- the first shoulder 132 and/or the second shoulder 134 are formed from the arrangement of a separate part of the casing 25 inside the housing 110, so that at least a portion of this separate part of the casing 25 makes projecting radially relative to the radially internal wall 27.
- the first shoulder 132 is formed by a portion projecting radially inside the first end part 112 of the housing 110 from the radially internal wall 27 of the casing 25.
- the second shoulder 134 is included in a portion of the plate 130, this portion of the plate 130 being arranged radially inside the second end portion 114 of the housing 110. More precisely, in Figure 3 the second shoulder 134 is formed by a portion of the plate 130 projecting axially relative to the rest of the plate so as to be able to be inserted into the second end part 114 of the housing 110. Advantageously, this projecting portion of the plate is dimensioned so as to be radially in contact with the radially internal wall 27 in the second end part 1 14 of the housing 1 10. In Figures 4 to 5, the second shoulder 134 is formed by a portion projecting radially inside the second end part 1 14 of the housing 1 10 from the radially internal wall 27 of the housing 25.
- the first shoulder 132 and the second shoulder 134 have for example an annular shape.
- the first shoulder 132 may comprise an annular face 136 which, as will be detailed, comes into axial support of a first bearing 270.
- the second shoulder 134 may comprise an annular face 138 which, as will be detailed, comes into support axial of a second bearing 280.
- a first elastic member 300 is housed in the first end part 112 of the housing 110.
- a second elastic member 400 is housed in the second end part 114 of the housing 1 10.
- the first elastic member 300 and the second elastic member 400 are arranged in the housing 110 so as to be able to be deformed in the axial direction as will be detailed.
- the first and second elastic members 300, 400 are a wave spring, without this being limiting.
- the first elastic member 300 and the second elastic member 400 have a substantially hollow cylindrical shape or a substantially annular shape. A cavity or a hole therefore passes axially through the first and second elastic members 300, 400.
- a radially external diameter of the first elastic member 300 is for example substantially equal to the diameter of the first end portion 112 of the housing.
- a radially external diameter of the second elastic member 400 is for example substantially equal to the diameter of the second end portion 114 of the housing.
- a radially internal diameter of the first elastic member 300 and a radially internal diameter of the second elastic member 400 are advantageously chosen so as to allow at least part of the second assembly 200 to move axially through the first and second elastic members 300, 400, as will be detailed.
- the second assembly 200 is housed in the housing 110 of the first assembly 100.
- the second assembly 200 comprises a shaft 210 and at least one helical pinion 230 housed in the housing 110 of the first assembly 100.
- the shaft 210 has a generally cylindrical shape extending along the axis B.
- the shaft 210 has a substantially circular cross section.
- transverse is meant here included in a plane substantially perpendicular to the axis B.
- a diameter of the cross section of the shaft 210 is over the entire length of the shaft 210 less than the diameter of the first part d end 112 of the housing 110, to the diameter of the second end portion 114 of the housing 110 and to the radially internal diameters of the first and second elastic members 300, 400.
- the shaft 210 can thus move axially along each of the end parts 112, 114 of the housing 110, as well as along the central part 116 of the housing 110.
- the shaft comprises a first end part 212, a second end part 214 and a central part 216.
- the diameter of the cross section of the shaft 210 in the first part d end 212 and in the second end portion 214 is less than the diameter of the cross section of the shaft in the central portion 216.
- a first shoulder 218 is formed at the interface between the first end portion 212 and the central part 216.
- a second shoulder 220 is formed at the interface between the second end part 214 and the central part 216 of the shaft 216.
- the cross sections of the first end part 212, the second end part 214 and the central part 216 all have the same diameter.
- the first shoulder 218 is formed by a portion of the shaft projecting radially relative to the rest of the shaft 210 at the interface between the first end portion 212 and the central portion 216 of the shaft 210
- the second shoulder 220 is formed by a portion of the shaft projecting radially relative to the rest of the shaft 210 at the interface between the second end portion 214 and the central portion 216 of the shaft 220 .
- the first shoulder 218 and the second shoulder 220 have for example an annular shape.
- the first shoulder 218 may comprise an annular face 222 which, as will be detailed, comes into axial support of the first bearing 270.
- the second shoulder 220 may comprise an annular face 224 which, as will be detailed, comes into axial support of the second bearing 280.
- the first shoulder 218 of the shaft is complementary to the first shoulder 132 of the first assembly 100.
- the annular face 222 of the first shoulder 218 of the tree 210 is preferably aligned in the radial direction with the annular face 136 of the first shoulder 132 of the first assembly 100.
- the second shoulder 220 of the shaft 210 is complementary to the second shoulder 134 of the first assembly 100.
- the annular face 224 of the second shoulder 220 of the shaft 210 is therefore preferably aligned in the radial direction with the annular face 138 of the second shoulder 134 of the first assembly 100.
- the rest position of the device 30 corresponds to a position in which no axial force is exerted on the first elastic member 300 and/or on the second elastic member 400 by the second assembly 200.
- the helical pinion 230 is arranged around the shaft 210.
- the helical pinion 230 is arranged around the central part 216 of the shaft 210.
- the helical pinion 230 advantageously has an annular shape, a hole (not visible) of diameter substantially equal to the diameter of the central part 216 of the shaft 210 passing axially through the helical pinion 230.
- the shaft 210 is thus mounted tight or adjusted in the hole of the helical pinion 230, which makes it possible to secure the movements of the shaft 210 and the helical pinion as will be detailed.
- the pinion 230 comprises a first face 231 A and a second face 231 B which are axially opposed.
- the helical pinion 230 is in particular arranged in the central part 116 of the housing 110.
- the helical pinion 230 is arranged between the first face 118 of the radially internal wall 27 of the casing 25 and an intermediate wall 119 projecting radially into the central part 116 of the housing 110 from the radially internal wall 27 of the casing.
- the wall 119 comprises a first face 119A which is directly facing axially the first face 118 of the radially internal wall 27 when the second assembly 200 is not installed in the housing 110.
- a radially external diameter of the helical pinion 230 is chosen so that at least a portion of the first face 231 A of the helical pinion 230 faces axially opposite the first face 118 of the radially internal wall 27. of the crankcase.
- the radially external diameter of the helical pinion 230 is chosen so that at least a portion of the second face 231 B of the helical pinion 230 faces axially opposite the first face 119A of the intermediate wall 119. .
- the first face 118 of the radially internal wall 27 and the first face 119 of the intermediate wall 119 are separated by a distance allowing, in the rest position of the device 30, the formation of a first axial play J1 and a second axial play J2 between the pinion 230 and these faces 118, 1 19A.
- the first axial clearance J1 is formed axially between the first face 231A of the pinion 230 and the first face 118 of the radially internal wall 27 of the casing 25.
- the second axial clearance J2 is formed axially between the second face 231 B of the pinion 230 and the first face 119A of the intermediate wall 119.
- a radially external face 232 of the helical pinion 230 comprises a plurality of teeth oriented so as to form an angle, called a helix angle, distinct from 0° and 90° with the axis B.
- the radially outer face 232 of the helical pinion 230 is meshed with a complementary input pinion 240, in particular with a radially outer face 242 of this input pinion 240.
- the radially external face 240 of the input pinion is provided with teeth.
- the helix angle of the input pinion 240 is advantageously equal to the helix angle of the helical pinion 230 in order to ensure correct meshing between the helical pinion 230 and the input pinion 240.
- the helical pinion 240 input 240 is in particular a pinion connected to the motor shaft of the actuator 18, so that the input pinion 240 moves integrally with the motor shaft.
- the second assembly 200 may further comprise a second pinion 250 mounted tight or adjusted around the shaft 210. The movements of the shaft 210 and the second pinion 250 are thus joined together.
- the second pinion 250 may have an annular shape similar to the shape of the helical pinion 230, but, as can be seen from the figures, it may have a radially outer diameter less than the radially outer diameter of the helical pinion 230.
- a radially external face 252 of the second pinion 250 comprises a plurality of teeth.
- the second pinion 250 can be a helical pinion (helix angle distinct from 0° and 90°) or a straight pinion.
- the teeth of the radially external face 252 form an angle with axis B equal to 0° or 90°.
- the helix angle of the second pinion 250 may be equal to or different from the helix angle of the helical pinion 230.
- the helix angle of the helical pinion 230 and pinion 250 have opposite directions, without this being limiting.
- the radially external face 252 of the second pinion 250 is meshed with a complementary output pinion 260, in particular with a radially external face 262 of this output gear 260.
- the radially outer face 262 of the output gear 260 is provided with teeth.
- the angle formed between the teeth of the output pinion 260 and the axis B is advantageously equal to the angle formed between the teeth of the second pinion 250 and the axis B in order to ensure correct gearing between the second pinion 250 and THE output pinion 260.
- the output pinion 260 is in particular a pinion connected to the output shaft 22 of the actuator 18, so that the output pinion 260 moves integrally with the output shaft 22.
- the second assembly 200 may further comprise the first bearing 270 and the second bearing 280.
- the first bearing 270 comprises a radially internal ring 272 and a radially external ring 274.
- a plurality of rolling elements 276 are arranged circumferentially between the rings 272 and 274 of the first bearing 270.
- the second bearing 280 comprises a radially inner ring 282 and a radially outer ring 284.
- a plurality of rolling elements 286 are arranged circumferentially between the rings 282 and 284 of the second bearing 280.
- the bearings 270, 280 comprise a single circumferential row of rolling elements 276, 286, but several rows of rolling elements distributed radially can be provided.
- the first bearing 270 is arranged around the first end portion 212 of the shaft 210.
- the radially external ring 274 of the first bearing 270 comes into axial support of the first shoulder 132 of the first assembly, in particular of the annular face 136 of this first shoulder 132.
- the radially internal ring 274 of the first bearing 270 comes into axial support of the first complementary shoulder 218 of the shaft 210, in particular of the annular face 222.
- the radially external ring 284 of the second bearing 280 comes into axial support of the second shoulder 134 of the first assembly, in particular of the annular face 138 of this first shoulder 132.
- the radially internal ring 284 of the second bearing 280 comes into axial support of the second complementary shoulder 220 of the shaft 210, in particular of the annular face 224.
- each bearing 270, 280 can be configured to rotate integrally with the shaft 210 around the axis B.
- the first elastic member 300 comes into axial support of the radially outer ring 274 of the first bearing 270
- the second elastic member 400 comes into axial support of the radially outer ring 284 of the second bearing 280.
- the first elastic member 300 is arranged axially between the first prestressing element 124 and the first bearing 270, while the second elastic member 400 is arranged axially between the second bearing 280 and the end wall 115 of the housing 110.
- the first elastic member 300 is arranged in a manner similar to Figure 3, but the second elastic member 400 is arranged axially between the second bearing 280 and the second prestressing element 130.
- the first prestressing element 124 it is possible to create a first axial prestressing force which acts on the first elastic member 300.
- the first prestressing element 124 is a plug or a nut as described above, the first axial prestressing force can be created and adjusted from the movement of the first prestressing element 124 along the thread 150.
- the first prestressing element 124 is moved along the thread 150 towards the first member elastic 300, the first elastic member 300 is compressed, which increases the first axial prestressing force which acts on the elastic member 300.
- the first prestressing element 124 when the first prestressing element 124 is moved along the tapping 150 in the opposite direction to the first elastic member 300, the first elastic member 300 relaxes, which reduces the first axial prestressing force which acts on the elastic member 300.
- the first prestressing element 124 is a plate like the plate described above with reference in Figure 3, the plate is dimensioned so as to induce a determined value of first axial prestressing force when the plate is installed in the housing 110. More precisely, the length of a portion of the plate projecting axially to be introduced in the first end portion 112 of the housing 110 can be chosen so as to subject the first elastic member 300 to the predetermined value of first axial prestressing force.
- the second prestressing element 130 it is possible to create a second axial prestressing force which acts on the second elastic member 400.
- the second prestressing element 130 is a plug or a nut as described above
- the second axial prestressing force can be created and adjusted from the movement of the second prestressing element 130 along the thread provided on the second end part 114 of the housing 110.
- the second prestressing element 130 is the plate of Figure 3
- the plate is dimensioned so as to induce a determined value of second axial prestressing force when the plate is installed in the housing 110. More precisely, the length of the portion of the plate projecting axially to be introduced into the second end portion of the housing 110 can be chosen so as to subject the second elastic member 400 to the predetermined value of second axial prestressing force.
- the input pinion 240 moves integrally with the motor shaft of the actuator 18.
- the input pinion 240 and the helical pinion 230 are two complementary helical pinions which form a helical gear. Such a gear generates an axial force on the gears which interact when a torque is transmitted between these gears.
- the input pinion 240 is also driven in rotation around this axis.
- the gearing of the input gear 240 with the helical gear 230 causes the helical gear to also be moved in rotation around the axis B when the input gear 240 rotates.
- the shaft 210 being the helical pinion 230, the shaft 210 is also driven in rotation around the axis B.
- the gearing between the helical pinion 230 and the input pinion 240 being of the helical type, the transmission of the torque from the input pinion 240 to the helical pinion 230 generates an axial force in the helical pinion 230 which causes the displacement axial of the helical pinion 230 according to the direction of this axial force.
- the helical gear can also generate an opposite axial force in the input gear 240 which causes the axial movement of the input gear 240 in a direction opposite to the direction of the axial force generated in the helical gear 230.
- the second assembly 200 moves axially towards the first elastic member 300.
- the contact between the first shoulder 218 and the radially internal ring 274 of the first bearing causes the transmission of the axial force generated in the helical pinion 230 to the first bearing 270.
- the axial force is transmitted to the radially internal ring 274 of the bearing 270.
- the radially internal ring 274 of the bearing 270 internal 274 is then moved axially integrally with the second assembly 200.
- the axial force is then transmitted to the radially external ring 272 of the first bearing through the rolling elements 276.
- the first elastic member 300 comes into axial support of the radially external ring 272 of the first bearing 270.
- a first axial prestressing force acts on the first elastic member 300.
- the first elastic member 300 opposes the axial movement of the radially outer ring 272 of the first bearing 270 under the effect of the axial force. The axial movement of the second assembly 200 is thus stopped.
- the first elastic member 300 cannot oppose the axial movement of the radially outer ring 272 of the first bearing 270 under the effect of the axial force generated in the helical pinion 230.
- the radially external ring 272 therefore moves axially so as to compress the first elastic member 300.
- the first axial prestressing force thus defines a first threshold of axial prestressing force from which the first elastic member 300 is compressed due to the axial displacement of the second assembly 200 under the effect of the axial force generated in the helical pinion 230.
- the second assembly can continue its axial movement towards the first elastic member 300.
- the first axial play J 1 is thus gradually reduced until the first face 118 of the radially internal wall 27 of the casing 25 and the first face 231 A of the helical pinion 230 come into contact with each other, as illustrated in Figure 5.
- the first face 118 therefore comprises a first axial stop 121 and the first face 231 A of the helical pinion 230 therefore comprises a first complementary axial stop 221.
- the contact between the first axial stop 121 and the first complementary axial stop 221 makes it possible to dissipate all or part of the axial force generated in the helical pinion 230 through the casing 25.
- the operation of the transmission device is similar to when the axial force generated in the helical pinion 230 is oriented towards the first elastic member 300.
- the second assembly 200 moves axially towards the second elastic member 400.
- the contact between the second shoulder 220 and the radially internal ring 284 of the second bearing 280 causes the transmission of the axial force generated in the helical pinion 230 in the second bearing 280.
- the axial force is transmitted to the radially internal ring 284 of the bearing 280.
- the radially internal ring 284 is then moved axially integrally with the second assembly 200.
- the axial force is then transmitted to the radially outer ring 282 of the second bearing through the rolling elements 286.
- the second elastic member 400 cannot oppose the axial movement of the radially outer ring 282 of the second bearing 280 under the effect of the axial force generated in the helical pinion 230.
- the radially external ring 282 therefore moves axially so as to compress the second elastic member 400.
- the second axial prestressing force thus defines a second threshold of axial prestressing force from which the second elastic member 400 is compressed due to the axial displacement of the second assembly 200 under the effect of the axial force generated in the helical pinion 230.
- the second assembly can continue its axial movement towards the second elastic member 400.
- the second axial play J2 is thus gradually reduced until the first face 119A of the wall intermediate 1 19 and the second face 231 B of the helical pinion 230 come into contact with each other.
- the first face 119A therefore comprises a second axial stop 123 and the second face 231 B of the helical pinion 230 therefore comprises a second complementary axial stop 223.
- the contact between the second axial stop 123 and the first complementary axial stop 223 makes it possible to dissipate all or part of the axial force generated in the helical pinion 230 through the casing 25.
- any reduction in the first axial play J1 implies an increase in the second axial play J2, as visible in Figure 5.
- any reduction in the second axial play J2 implies an increase in the first axial play J1.
- the axial forces generated within the actuator 18 are dissipated through the first assembly 100 of the transmission device 30 when these are very significant, in particular, greater than the first threshold or at the second axial force threshold described previously.
- the percentage of forces generated in the actuator 18 which reach the brake 24 is therefore reduced, or even zero. Consequently, the risks of wear and/or breakage of the brake 24 are limited.
- the transmission device could comprise a single elastic member.
- a single prestressing element and a only bearing are included in the device 30.
- the first axial stop 121 and the second axial stop 123 could project axially relative to the rest of the wall 118 and the respective wall 119A in which each of them is understood.
- the first complementary axial stop 221 and the second complementary axial stop 223 could project axially relative to the rest of the wall 231 A and the respective wall 231 B in which each of them is included.
- At least one of the first axial stop and the first complementary axial stop and/or at least one of the second axial stop and the second complementary axial stop may comprise a friction surface comprising roughness and /or elements projecting axially, for example a dog system.
- the dissipation of the axial force through the first assembly 100 is increased.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transmission Devices (AREA)
- Chairs For Special Purposes, Such As Reclining Chairs (AREA)
- Seats For Vehicles (AREA)
Abstract
Dispositif de transmission (30) d'un mouvement comportant : - un premier ensemble (100) comprenant un logement (110) s'étendant le long d'un premier axe (B); - un second ensemble (200) configuré pour se déplacer en rotation et en translation le long dudit premier axe à l'intérieur dudit logement; - un premier organe élastique (300); dans lequel le premier ensemble comprend une première butée axiale (121) et le second ensemble comprend une première butée axiale complémentaire (221), un premier jeu axial (J1) étant formé entre la première butée axiale et la première butée axiale complémentaire, dans lequel le premier organe élastique est apte à être déformé lors de la translation du second ensemble le long du premier axe lorsqu'un effort axial supérieur à un premier seuil est exercé, la première butée axiale complémentaire venant en appui axial sur la première butée axiale.
Description
Description
Titre : Dispositif de transmission d’un mouvement et siège
Domaine technique
[0001] La présente divulgation concerne un dispositif de transmission d’un mouvement et un siège comprenant ledit dispositif.
Technique antérieure
[0002] Dans le domaine du transport de personnes, notamment aérien, il est connu d'équiper les aéronefs de sièges permettant de transporter des passagers en position assise. Chaque siège comprend une pluralité d’éléments, par exemple un dossier, une assise, un appui-tête, un ou plusieurs accoudoirs, etc.
[0003] Afin d’améliorer le confort des passagers, chaque siège peut être muni d’un ou plusieurs actionneurs permettant le déplacement du siège par rapport au sol sur lequel il est installé, ou le déplacement des différents éléments du siège relativement aux autres.
[0004] Généralement, l’actionneur comporte un arbre de sortie, un moteur et un frein. L’arbre de sortie est relié au siège ou à l’élément du siège à déplacer. Le moteur est capable d’entrainer en translation et/ou en rotation l’arbre de sortie afin de provoquer un déplacement concomitant du siège ou de l’élément du siège correspondant. Le frein permet de bloquer en position l’arbre de sortie, ce qui permet d’empêcher le déplacement du siège ou de l’élément correspondant de celui-ci lorsque le moteur n’est pas activé.
[0005] L’actionneur comprend en outre un train de réduction reliant le frein et l’arbre de sortie. Le train de réduction comprend un ensemble de pièces mécaniques, telles que des pignonneries, des bielles, des crémaillères, etc.
[0006] Dans certaines situations, des efforts importants se produisent au sein de l’actionneur. Ces efforts sont transmis entre l’arbre de sortie et le frein à travers le train de réduction, et conduisent à l’usure du frein, voire à sa rupture. Le siège et/ou les éléments du siège respectifs peuvent alors se déplacer de manière incontrôlée. De telles situations surviennent par exemple en cas d’arrêt brutal du déplacement du siège ou de l’un de ses éléments, ou lorsqu’un passager se laisse tomber violemment sur le siège. Cette situation a lieu aussi en cas d’atterrissage d’urgence de l’avion, lors duquel l’actionneur est soumis à des efforts très importants, généralement connus comme « efforts de type crash ».
[0007] Classiquement, afin de limiter les risques d’usure et de rupture du frein, les pièces mécaniques du train de réduction, sont surdimensionnées. Toutefois, ce surdimensionnement augmente à la fois le coût de fabrication de l’actionneur et le poids de
l’aéronef. Par ailleurs, les efforts qui se produisent au sein de l’actionneur lors des situations indiquées ci-avant sont difficiles à modéliser avec précision, de sorte que le surdimensionnement des pièces mécaniques du train de réduction peut être insuffisant pour éviter l’usure ou la rupture du frein.
Résumé
[0008] La présente divulgation vient améliorer la situation.
[0009] A cet effet, il est proposé un dispositif de transmission d’un mouvement destiné à un actionneur, le dispositif comportant :
- un premier ensemble, fixe, comprenant un logement s’étendant le long d’un premier axe ;
- un second ensemble agencé dans ledit logement et s’étendant selon le premier axe, le second ensemble étant configuré pour se déplacer en rotation autour dudit premier axe et pour se déplacer en translation le long dudit premier axe à l’intérieur dudit logement ;
- un premier organe élastique installé à l’intérieur dudit logement ; dans lequel le premier ensemble comprend une première butée axiale et le second ensemble comprend une première butée axiale complémentaire, la première butée axiale et la première butée axiale complémentaire étant en vis-à-vis axial, un premier jeu axial étant formé entre la première butée axiale et la première butée axiale complémentaire, dans lequel le premier organe élastique est apte à être déformé lors de la translation du second ensemble le long du premier axe selon une première direction lorsqu’un effort axial supérieur à un premier seuil est exercé par le second ensemble sur ledit premier organe élastique, le premier jeu axial étant progressivement réduit jusqu’à ce que la première butée axiale complémentaire vienne en appui axial sur la première butée axiale.
[0010] Dans le présent texte, les termes « axial », « radial » et « circonférentiel » sont définis par rapport à l’axe d’étendue du logement du premier ensemble. En particulier, « axial » a pour sens suivant l’axe d’étendue du logement, ou parallèle à lui, et radial a pour sens suivant tout axe transversal ou sensiblement transversal à ce logement. Par « circonférentiel » on entend autour de l’axe précité ou d’un axe parallèle à lui.
[0011] L’actionneur est par exemple un actionneur de type rotatif. L’actionneur peut comprendre un frein, un moteur et un train réducteur logés dans un carter.
[0012] L’effort axial exercé par le second ensemble sur le premier organe élastique peut être généré par les efforts agissant au sein de l’actionneur. Aussi, grâce à l’appui axial de la première butée axiale complémentaire, appartenant au second ensemble, sur la première butée axiale, appartenant au premier ensemble, les efforts au sein de l’actionneur sont dissipés à travers le premier ensemble du dispositif de transmission. Le pourcentage des efforts générés dans l’actionneur qui atteignent le frein est donc réduit, voire nul. Par
conséquent, les risques d’usure et/ou de rupture du frein sont limités sans besoin de surdimensionner les pièces du train de réduction, ce qui permet de réduire le coût de fabrication de l’actionneur et son poids.
[0013] Afin d’augmenter davantage la dissipation des efforts, au moins l’une parmi la première butée axiale et la première butée axiale complémentaire peuvent comprendre une surface de friction comportant des rugosités et/ou des éléments faisant saillie axialement, par exemple un système a crabots.
[0014] Par ailleurs, la déformation du premier organe élastique lors de la translation du second ensemble le long du premier axe ayant lieu lorsqu’un effort axial supérieur au premier seuil est exercé par le second ensemble sur ledit premier organe élastique, il est possible de définir à partir de quel niveau d’effort agissant au sein de l’actionneur le dispositif proposé entre en service lorsque le second ensemble est déplacé axialement selon la première direction. On évite ainsi que le dispositif de transmission s’active lorsque les efforts dans l’actionneur ne présentent aucun risque pour l’intégrité du frein. On note que le premier seuil correspond dans le présent texte par exemple à l’effort axial maximal qui peut être appliqué sur le premier organe élastique sans qu’il soit déformé. De préférence, le premier seuil est compris entre 10 N et 250 N. Par exemple, le premier seuil est égal à 60 N.
[0015] Enfin, le dispositif proposé présente un nombre de pièces limité qui interagissent entre elles de manière simple. Le dispositif est donc simple à fabriquer et présente un encombrement réduit.
[0016] L’actionneur dans lequel le dispositif de transmission est compris est configuré pour, lorsqu’il est sollicité, déplacer un siège, par exemple un siège d’aéronef. Le dispositif de transmission peut aussi être compris dans un actionneur configuré pour, lorsqu’il est sollicité, déplacer une partie du siège relativement aux autres parties du siège. Par « sollicité » on entend ici que des efforts permettant de conférer un mouvement à l’arbre de sortie sont générés au sein de l’actionneur, quelle que soit l’intensité de ces efforts.
[0017] Le carter de l’actionneur est relié à une partie fixe du siège ou de l’aéronef, c’est-à- dire, à une partie du siège ou de l’aéronef qui ne se déplace pas lorsque l’actionneur est sollicité. L’actionneur peut comprendre en outre un arbre de sortie traversant le carter. L’arbre de sortie s’étend le long d’un axe longitudinal qui est par exemple sensiblement parallèle à l’axe d’étendue du logement du premier ensemble. L’arbre de sortie se déplace, en translation le long de son axe longitudinal ou en rotation autour de cet axe longitudinal, lorsque l’actionneur est sollicité. L’arbre de sortie peut être relié au siège de sorte à provoquer un déplacement du siège concomitant au déplacement de l’arbre de sortie
lorsque l’actionneur est sollicité. Alternativement, l’arbre de sortie peut être relié à une partie mobile du siège, c’est-à-dire, à une partie du siège qui se déplace lorsque l’actionneur est sollicité. Cette partie mobile est alors déplacée concomitamment au déplacement de l’arbre de sortie. Le déplacement du siège ou de la partie du siège peut être solidaire du déplacement de l’arbre de sortie. Par « solidaire » on entend ici que le déplacement du siège ou de la partie du siège est de même type que le déplacement de l’arbre de sortie et selon une direction sensiblement parallèle au déplacement de l’arbre de sortie. Le déplacement du siège ou de la partie du siège peut donc être une translation et/ou une rotation.
[0018] Lorsque le frein de l’actionneur est engagé, le déplacement de l’arbre de sortie peut être empêché. En particulier, le frein est engagé lorsque l’actionneur est désactivé. Par « désactivé », on entend que l’actionneur n’est pas sollicité, aucun effort capable de déplacer l’arbre de sortie n’étant généré au sein de l’actionneur.
[0019] Le dispositif de transmission peut être compris dans le train de réduction de l’actionneur.
[0020] Comme indiqué, le premier ensemble du dispositif de transmission est fixe. Par « fixe », on entend ici que le premier ensemble comprend un ensemble de pièces de ce dispositif qui sont immobiles lorsque le dispositif de transmission est en service. Le premier ensemble peut comprendre une partie du carter de l’actionneur. En particulier, le logement du premier ensemble peut correspondre à un logement du carter de l’actionneur. La première butée axiale peut faire partie du carter. Par exemple, la première butée axiale peut être comprise dans une paroi radialement interne du carter délimitant le logement.
[0021] Le logement peut comprendre une première extrémité et une seconde extrémité opposées axialement. Dans un exemple, les première et seconde extrémités du logement sont des extrémités ouvertes. Dans un autre exemple, au moins l’une parmi la première et la seconde extrémité du logement est fermée par une paroi d’extrémité. La paroi d’extrémité peut être une paroi du carter s’étendant sensiblement selon la direction radiale.
[0022] Le second ensemble comprend quant à lui des pièces du dispositif de transmission capables de se déplacer en rotation autour du premier axe et/ou en translation le long de ce premier axe, comme il va être détaillé.
[0023] Le premier organe élastique est par exemple un ressort à vagues. Alternativement, le premier organe élastique est un ressort de type filaire, un ressort spiral ou une rondelle élastique, par exemple une rondelle de Belleville. Le premier organe élastique a de préférence une section transversale sensiblement annulaire, une ouverture ou cavité s’étendant sensiblement axialement le long de l’organe élastique.
[0024] La déformation du premier organe élastique sous l’effet de l’effort axial exercé par le second ensemble sur le premier organe élastique comprend par exemple une compression axiale du premier organe élastique.
[0025] Selon un aspect, le second ensemble peut comprendre au moins un arbre et un pignon hélicoïdal solidaires l’un par rapport à l’autre, le pignon hélicoïdal comprenant la première butée axiale complémentaire et engrenant avec un pignon d’entrée complémentaire du dispositif.
[0026] L’arbre du second ensemble s’étend selon un axe longitudinal qui est par exemple sensiblement parallèle à l’axe d’étendue du logement du premier ensemble.
[0027] Le pignon hélicoïdal a par exemple une forme sensiblement annulaire comprenant un trou, par exemple centré sur le pignon hélicoïdal. Le pignon hélicoïdal comprend en outre une face radialement externe crénelée, c’est-à-dire, comportant une pluralité de dents reparties de manière circonférentielle sur cette face radialement externe. Un pignon hélicoïdal correspond ici à un pignon dans lequel chaque dent de sa face radialement externe est disposée de sorte à former un angle, dit angle d’hélice, distinct de 0° et de 90° avec l’axe longitudinal de l’arbre du second ensemble. Dans le cas présent, l’angle d’hélice du pignon hélicoïdal du second ensemble peut être compris entre 5° et 50°, de préférence entre 15° et 30°.
[0028] Afin de rendre solidaires entre eux l’arbre du second ensemble et le pignon hélicoïdal, l’arbre peut être monté serré ou ajusté dans le trou du pignon hélicoïdal. Le pignon hélicoïdal est ainsi agencé autour de l’arbre du second ensemble.
[0029] Le pignon d’entrée, aussi appelé pignon amont, peut aussi être un pignon hélicoïdal ayant une forme sensiblement annulaire comprenant un trou, par exemple centré sur le pignon d’entrée. Le pignon d’entrée comprend également une face radialement externe crénelée. Pour être complémentaire du pignon hélicoïdal du second ensemble, l’angle d’hélice du pignon d’entrée est égal, mais de sens opposé, à l’angle d’hélice des dents du pignon hélicoïdal du second ensemble.
[0030] Le pignon d’entrée peut être relié au moteur de l’actionneur par un arbre d’entrée, aussi appelé arbre moteur. L’arbre moteur s’étend le long d’un axe longitudinal qui peut être sensiblement parallèle à l’axe d’étendue du logement du premier ensemble. Le pignon d’entrée et l’arbre moteur sont avantageusement solidaires l’un de l’autre. En particulier, l’arbre moteur peut être monté serré ou ajusté dans le trou du pignon d’entrée. Alternativement, un ensemble de pièces mécaniques est interposé entre le pignon d’entrée et l’arbre moteur, cet ensemble de pièces mécaniques faisant office de frein de surcharge.
[0031 ] Lorsque l’actionneur est sollicité, le moteur entraine l’arbre moteur en rotation autour de son axe longitudinal. Le pignon d’entrée est alors entraîné en rotation autour de l’axe longitudinal de l’arbre moteur. Le pignon d’entrée étant complémentaire du pignon hélicoïdal du second ensemble, le couple de forces provoquant la rotation du pignon d’entrée est transmis au pignon hélicoïdal du second ensemble. Le pignon hélicoïdal est donc entraîné par le pignon d’entrée en rotation autour de l’axe longitudinal de l’arbre du second ensemble, qui est de préférence parallèle à l’axe longitudinal de l’arbre moteur.
[0032] Le pignon d’entrée et le pignon du second ensemble étant des pignons hélicoïdaux ayant un même angle d’hélice, l’engrenage entre le pignon d’entrée et le pignon du second ensemble est un engrenage de type hélicoïdal. Un engrenage de type hélicoïdal génère un effort axial sur les pignons qui interagissent quand un couple est transmis entre ces pignons. En particulier, l’effort axial est généré par les forces de contact générées entre les deux pignons de l’engrenage lorsqu’ils tournent. Cet effort axial est proportionnel au couple transmis entre les pignons. Par conséquent, l’engrenage hélicoïdal entre le pignon d’entrée et le pignon du second ensemble implique que quand le pignon d’entrée tourne autour de l’axe longitudinal de l’arbre d’entrée, le pignon du second ensemble tourne également autour de l’axe longitudinal de l’arbre du second ensemble. La rotation de ces deux pignons génère l’effort axial qui déplace en translation l’arbre du second ensemble le long de son axe longitudinal. L’arbre moteur peut aussi être déplacé en translation le long de son axe longitudinal selon une direction opposée à celle de la translation de l’arbre du second ensemble.
[0033] La première butée axiale complémentaire étant comprise dans le pignon du second ensemble, la translation de l’arbre du second ensemble le long de son axe longitudinal permet de réduire progressivement le premier jeu axial, jusqu’à ce que la première butée axiale complémentaire entre en contact avec la première butée axiale du premier ensemble. Les efforts exercés sur l’actionneur sont donc dissipés à travers le premier ensemble.
[0034] On note que le déplacement de l’arbre du second ensemble en translation axiale selon la première direction a lieu uniquement lorsque l’effort axial généré sur les pignons est supérieur au premier seuil présenté ci-avant.
[0035] On note également que pour que l’arbre du second ensemble puisse se déplacer en translation axiale selon la première direction, l’ouverture ou cavité axiale du premier organe élastique a de préférence un diamètre supérieur à un diamètre de l’arbre du second ensemble.
[0036] Le second ensemble peut par ailleurs comprendre un deuxième pignon solidaire de l’arbre du second ensemble et engrenant avec un pignon de sortie complémentaire du dispositif.
[0037] Le deuxième pignon du second ensemble peut également avoir une forme annulaire comprenant un trou et une face radialement externe crénelée. Le diamètre du deuxième pignon peut être égal à ou différent du diamètre de l’autre pignon du second ensemble.
[0038] Selon un exemple, le deuxième pignon du second ensemble peut être un pignon droit, c’est-à-dire, un pignon dans lequel les dents de la face radialement externe sont orientées parallèlement ou perpendiculairement à l’axe longitudinal de l’arbre du second ensemble. Autrement dit, dans un pignon droit, les dents de la face radialement externe du pignon forment un angle égal à 0° ou 90° avec l’axe longitudinal de l’arbre du second ensemble. Selon un autre exemple, le deuxième pignon est un pignon hélicoïdal, dont l’angle d’hélice peut être égal à ou différent de l’angle d’hélice de l’autre pignon hélicoïdal du second ensemble.
[0039] Le pignon de sortie, aussi appelé pignon aval, peut aussi avoir une forme sensiblement annulaire comprenant un trou, par exemple centré sur le pignon de sortie. Le pignon de sortie peut comprendre également une face radialement externe crénelée. Pour être complémentaire du deuxième pignon du second ensemble, les dents sur la face radialement externe du pignon de sortie ont une orientation sensiblement égale à celle des dents sur la face radialement externe du deuxième pignon. Aussi, si le deuxième pignon du second ensemble est un pignon droit, le pignon de sortie est également un pignon droit. Au contraire, si le deuxième pignon du second ensemble est un pignon hélicoïdal, le pignon de sortie est un pignon hélicoïdal dont l’angle d’hélice des dents est égal à l’angle d’hélice des dents du deuxième pignon du second ensemble.
[0040] Le pignon de sortie peut être relié à la partie mobile du siège par l’intermédiaire de l’arbre de sortie de l’actionneur. Le pignon de sortie et l’arbre de sortie sont solidaires l’un de l’autre. En particulier, l’arbre de sortie peut être monté serré ou ajusté dans le trou du pignon de sortie.
[0041] Lorsque l’actionneur est sollicité, l’arbre du second ensemble est, comme indiqué ci-avant, entraîné en rotation autour de son axe longitudinal. Le deuxième pignon du second ensemble étant solidaire de l’arbre du second ensemble, il est également entraîné en rotation autour de l’axe longitudinal de l’arbre du second ensemble. La complémentarité entre le deuxième pignon du second ensemble et le pignon de sortie implique que le pignon de sortie tourne également autour de l’axe longitudinal de l’arbre de sortie lorsque le deuxième pignon du second ensemble tourne.
[0042] Lorsque les deux pignons du second ensemble sont hélicoïdaux avec des angles d’hélice de sens opposés, l’effort axial qui permet le déplacement axial du second ensemble est plus élevé que dans toute autre configuration des pignons du second ensemble. L’appui de la première butée axiale complémentaire sur la première butée axiale est donc plus fort que dans toute autre configuration des pignons du second ensemble, ce qui permet de dissiper plus efficacement à travers le premier ensemble les efforts auxquels l’actionneur est soumis. Si seulement l’un des pignons du second ensemble est hélicoïdal, la dissipation des efforts à travers le premier ensemble est plus efficace si le pignon hélicoïdal est celui ayant un diamètre plus petit. En particulier, pour un couple et un angle d’hélice identique, l’effort axial produit par l’engrange hélicoïdal est plus important quand le diamètre du pignon hélicoïdal diminue.
[0043] Selon un aspect, un premier roulement peut être monté dans le logement radialement entre le premier ensemble et le second ensemble, le premier roulement comprenant une bague radialement externe disposée en regard du premier ensemble et une bague radialement interne disposée en regard du second ensemble, le premier organe élastique venant en appui axialement sur la bague radialement externe dudit premier roulement.
[0044] Les bagues radialement interne et radialement externe du premier roulement ont de préférence une forme générale cylindrique et sont coaxiales entre elles. Une pluralité d’éléments roulants peut être agencée entre la bague radialement interne et la bague radialement externe du premier roulement.
[0045] Le premier roulement peut être agencé autour d’une première partie d’extrémité de l’arbre du second ensemble, la bague radialement interne et la bague radialement externe du premier roulement étant coaxiales autour de l’axe longitudinal de l’arbre du second ensemble.
[0046] La bague radialement interne du premier roulement peut être solidaire de l’arbre du second ensemble. Aussi, lorsque le second ensemble se déplace axialement et/ou tourne autour de l’axe longitudinal de son arbre, la bague radialement interne du premier roulement se déplace et/ou tourne solidairement avec le second ensemble.
[0047] L’effort axial associé au déplacement axial de la bague radialement interne du premier roulement est transmis à la bague radialement externe du premier roulement à travers la pluralité d’éléments roulants. Si cet effort axial est supérieur au premier seuil décrit précédemment, la bague radialement externe du premier roulement est aussi déplacée axialement et le premier organe élastique est comprimé. Si l’effort axial transmis à la bague radialement externe du premier roulement est inférieur au premier seuil, la bague
radialement externe du premier roulement ne se déplace pas axialement et le premier organe élastique n’est pas comprimé. En effet, le premier organe élastique venant en appui axialement sur la bague radialement externe du premier roulement, une énergie élastique emmagasinée dans le premier organe élastique s’oppose au déplacement axial de la bague radialement externe du premier roulement tant que l’effort axial transmis à cette bague radialement externe n’est pas supérieur au premier seuil. L’énergie élastique emmagasinée dans le premier organe élastique correspond à l’énergie élastique associée à l’effort axial correspondant au premier seuil décrit ci-avant.
[0048] On note que l’appui axial du premier organe élastique sur la bague radialement externe du premier roulement peut être un appui direct ou indirect. Par « appui direct » on entend que la bague radialement externe du premier roulement et le premier organe élastique sont au contact l’une de l’autre. Par « appui indirect » on entend qu’au moins une pièce, mobile axialement, est interposée entre la bague radialement externe du premier roulement et le premier organe élastique. Dans certains cas, uniquement la périphérie radialement externe du premier organe élastique vient en appui axial sur la bague radialement externe du premier roulement.
[0049] Selon un aspect, le premier ensemble peut comprendre un premier épaulement et le second ensemble peut comprendre un premier épaulement complémentaire, la bague radialement externe du premier roulement venant axialement en appui sur le premier épaulement du premier ensemble, la bague radialement interne du premier roulement venant axialement en appui sur le premier épaulement complémentaire du second ensemble.
[0050] Le premier épaulement et le premier épaulement complémentaire peuvent être en vis-à-vis radial l’un de l’autre.
[0051] Le premier épaulement peut être compris dans le carter. Le premier épaulement peut comprendre une face annulaire d’appui axial de la bague radialement externe du premier roulement. Cette face annulaire du premier épaulement est conformée pour être en vis-à-vis axial de la bague radialement externe du premier roulement. La face annulaire du premier épaulement s’étend par exemple radialement en direction du premier épaulement complémentaire.
[0052] Le premier épaulement complémentaire peut être compris dans l’arbre du second ensemble. Le premier épaulement complémentaire peut comprendre une face annulaire d’appui axial de la bague radialement interne du premier roulement. Cette face annulaire du premier épaulement complémentaire est conformée pour être en vis-à-vis axial de la
bague radialement interne du premier roulement. La face annulaire du premier épaulement complémentaire peut s’étendre radialement en direction du premier épaulement.
[0053] Les faces annulaires du premier épaulement et du premier épaulement complémentaire peuvent être alignées suivant la direction radiale lorsque le dispositif de transmission est au repos (c’est-à-dire, lorsqu’aucun effort axial n’est exercé par le second ensemble).
[0054] L’appui axial de la bague radialement externe et la bague radialement interne du premier roulement sur, respectivement, le premier épaulement et le premier épaulement complémentaire peut être un appui direct ou indirect. Par « appui direct » on entend que la bague radialement externe et la bague radialement interne sont respectivement au contact du premier épaulement et du premier épaulement complémentaire. Par « appui indirect » on entend qu’au moins une pièce est interposée entre la bague radialement externe du premier roulement et le premier épaulement, et entre la bague radialement interne du premier roulement et le premier épaulement complémentaire.
[0055] Grâce au premier épaulement et au premier épaulement complémentaire, il est possible de positionner facilement le premier roulement dans sa position d’installation autour de l’arbre du second ensemble. Par « position d’installation », on entend ici la position du premier roulement lorsque le dispositif proposé est fonctionnel mais au repos. Par ailleurs, le premier épaulement complémentaire permet de transmettre à la bague radialement interne du premier roulement l’effort axial associé à la translation axiale du second ensemble, même si un jeu radial existe entre l’arbre du second ensemble et le premier roulement. Aussi, la bague radialement interne du premier roulement peut se déplacer solidairement avec le second ensemble, même en présence d’un tel jeu radial. Comme expliqué précédemment, l’effort axial est transmis à travers les éléments roulants à la bague radialement externe du premier roulement et, si cet effort axial est supérieur au premier seuil décrit ci-avant, la bague radialement externe du premier roulement peut aussi se déplacer axialement de sorte à comprimer le premier organe élastique.
[0056] Selon un autre aspect, le dispositif peut comprendre en outre un premier élément de précontrainte du premier organe élastique apte à régler un effort axial de précontrainte agissant sur le premier organe élastique.
[0057] Le premier élément de précontrainte peut faire partie du premier ensemble du dispositif.
[0058] L’effort axial de précontrainte agissant sur le premier organe élastique définit le premier seuil à partir duquel le premier organe élastique est déformé lors de la translation axiale du second ensemble selon la première direction. En particulier, la valeur de l’effort
axial de précontrainte du premier organe élastique est égal au premier seuil. Autrement dit, plus l’effort axial de précontrainte du premier organe élastique est élevé, plus l’effort axial exercé par le second ensemble sur le premier organe élastique doit être élevé pour que le premier organe élastique soit déformé et le second ensemble puisse donc se déplacer axialement selon la première direction.
[0059] Le premier élément de précontrainte peut être au contact d’une périphérie radialement externe et/ou interne du premier organe élastique.
[0060] Le premier élément de précontrainte peut être un bouchon fileté comprenant, sur une surface radialement externe, un filetage complémentaire d’un taraudage prévu dans le logement du premier ensemble. Alternativement, le premier élément de précontrainte peut être un écrou comprenant, sur une surface radialement externe, un filetage complémentaire du taraudage prévu dans le logement du premier ensemble. Alternativement, le premier élément de précontrainte peut être une plaque reliée directement sur le premier ensemble, de préférence au moyen d’une liaison amovible. La plaque peut être par exemple vissée sur le premier ensemble de sorte à être au contact du premier organe élastique.
[0061] Quel que soit le type de premier élément de précontrainte, il peut être traversé par un trou ou une cavité axiale dimensionnée de sorte à permettre le déplacement axial de l’arbre du second ensemble à travers ce trou ou cette cavité.
[0062] Dans certains cas, il est possible de modifier l’effort axial de précontrainte du premier organe élastique par déplacement du premier élément de précontrainte dans le logement. En particulier, le premier élément de précontrainte peut être déplacé dans le logement dans une direction allant vers le premier organe élastique, de sorte à le comprimer, ce qui augmente l’effort axial de précontrainte. De même, le premier élément de précontrainte peut être déplacé dans le logement dans une direction s’éloignant du premier organe élastique, de sorte à le détendre, ce qui diminue l’effort axial de précontrainte. Cette modification de l’effort axial de précontrainte du premier organe élastique est notamment possible lorsque le premier élément de précontrainte est un bouchon fileté ou un écrou tels que décrits ci-avant.
[0063] Dans d’autres cas, le premier élément de précontrainte est dimensionné de sorte que le premier organe élastique est soumis à une valeur précise d’effort axial de précontrainte lorsque le premier élément de précontrainte est installé dans le dispositif de transmission d’un mouvement. De tels cas ont lieu notamment lorsque le premier élément de précontrainte est une plaque telle que décrite ci-avant. Dans ces cas, le premier épaulement du premier ensemble peut être compris dans la plaque, une longueur axiale du
premier épaulement étant fonction de l’effort axial de précontrainte à induire dans le premier organe élastique.
[0064] Selon un exemple, notamment lorsque le logement a ses deux extrémités ouvertes, le premier organe élastique peut être agencé directement entre le premier élément de précontrainte et le premier roulement. Selon un autre exemple, notamment lorsque le logement a au moins l’une de ses extrémités fermée par la paroi d’extrémité, le premier organe élastique peut être agencé directement entre le premier roulement et la paroi d’extrémité.
[0065] Selon un aspect, le dispositif peut comporter en outre un second organe élastique installé à l’intérieur du logement, dans lequel le premier ensemble comprend une seconde butée axiale et le second ensemble comprend une seconde butée axiale complémentaire, la seconde butée axiale et la seconde butée axiale complémentaire étant en vis-à-vis axial, un second jeu axial étant formé entre la seconde butée axiale et la seconde butée axiale complémentaire, dans lequel le second organe élastique est apte à être déformé lors de la translation du second ensemble le long du premier axe selon une seconde direction opposée à la première direction lorsqu’un effort axial supérieur à un second seuil est exercé par le second ensemble sur ledit second organe élastique, le second jeu axial étant progressivement réduit jusqu’à ce que la seconde butée axiale complémentaire vienne en appui axial sur la seconde butée axiale.
[0066] La présence du premier organe élastique et du second organe élastique aptes à être déformés sous l’effet d’efforts axiaux orientés selon des directions opposées permet au dispositif de transmission de constituer un frein bidirectionnel capable d’amortir les efforts subis par l’actionneur même en cas de rebond du siège et indépendamment du sens d’installation dans le siège du dispositif de transmission. En particulier, l’appui axial de la seconde butée axiale sur la seconde butée axiale complémentaire ayant lieu quand le second ensemble se déplace selon la seconde direction qui est opposée à la première direction, la dissipation de l’effort axial qui entraine le second ensemble en translation le long du premier axe peut dans cette configuration être dissipé à travers le premier ensemble quel que soit le sens du déplacement axial du premier ensemble. Afin d’augmenter la dissipation des efforts, au moins l’une parmi la seconde butée axiale et la seconde butée axiale complémentaire peuvent comprendre une surface de friction comportant des rugosités et/ou des éléments faisant saillie axialement, par exemple un système a crabots.
[0067] Par ailleurs, la déformation du second organe élastique lors de la translation du second ensemble le long du premier axe selon la seconde direction ayant lieu lorsqu’un effort axial supérieur au second seuil est exercé par le second ensemble sur ledit second
organe élastique, il est possible de définir à partir de quel niveau d’effort agissant au sein de l’actionneur le dispositif proposé entre en service lorsque le second ensemble est déplacé axialement selon la seconde direction. On évite ainsi que le dispositif de transmission s’active lorsque les efforts dans l’actionneur ne présentent aucun risque pour l’intégrité du frein. On note que le second seuil peut être égal ou différent du premier seuil. Le second organe élastique est par exemple un ressort à vagues. Alternativement, le second organe élastique est un ressort de type filaire, un ressort spiral ou une rondelle élastique, par exemple une rondelle de Belleville. Le second seuil correspond par exemple à l’effort axial maximal qui peut être appliqué sur le second organe élastique sans qu’il soit déformé. De préférence, le second seuil est compris entre 10 N et 250 N. Par exemple, le premier seuil est égal à 60 N.
[0068] On note que le déplacement de l’arbre du second ensemble en translation axiale selon la seconde direction a lieu uniquement lorsque l’effort axial généré sur les pignons est supérieur au second seuil présenté ci-avant.
[0069] La déformation du second organe élastique sous l’effet de l’effort axial exercé par le second ensemble sur le second organe élastique comprend par exemple une compression axiale du second organe élastique.
[0070] Selon un aspect, le dispositif peut comprendre en outre un second roulement monté dans le logement radialement entre le premier ensemble et le second ensemble, le second roulement comprenant une bague radialement externe disposée en regard du premier ensemble et une bague radialement interne disposée en regard du second ensemble, le second organe élastique venant en appui axialement directement sur la bague radialement externe dudit second roulement.
[0071] Les bagues radialement interne et radialement externe du second roulement ont par exemple une forme générale cylindrique et sont coaxiales entre elles. Une pluralité d’éléments roulants peut être agencée entre la bague radialement interne et la bague radialement externe du second roulement.
[0072] Le second roulement peut être agencé autour d’une seconde partie d’extrémité de l’arbre du second ensemble, la seconde partie d’extrémité de cet arbre étant opposée axialement à la première partie d’extrémité sur laquelle le premier roulement est agencé. La bague radialement interne et la bague radialement externe du second roulement sont coaxiales autour de l’axe longitudinal de l’arbre du second ensemble.
[0073] La bague radialement interne du second roulement peut être solidaire de l’arbre du second ensemble. Aussi, lorsque le second ensemble se déplace axialement et/ou tourne
autour de l’axe longitudinal de son arbre, la bague radialement interne du second roulement se déplace et/ou tourne solidairement avec le second ensemble.
[0074] L’effort axial associé au déplacement axial de la bague radialement interne du second roulement est transmis à la bague radialement externe du second roulement à travers la pluralité d’éléments roulants. Si cet effort axial est supérieur au second seuil décrit précédemment, la bague radialement externe du second roulement est aussi déplacée axialement et le second organe élastique est comprimé. Si l’effort axial transmis à la bague radialement externe du second roulement est inférieur au second seuil, la bague radialement externe du second roulement ne se déplace pas axialement et le second organe élastique n’est pas comprimé. En effet, le second organe élastique venant en appui axialement sur la bague radialement externe du second roulement, une énergie élastique emmagasinée dans le second organe élastique s’oppose au déplacement axial de la bague radialement externe du second roulement tant que l’effort axial transmis à cette bague radialement externe n’est pas supérieur au second seuil. L’énergie élastique totale emmagasinée dans le second organe élastique correspond à l’énergie élastique associée à l’effort axial correspondant au second seuil décrit ci-avant. On note que l’appui axial du second organe élastique sur la bague radialement externe du second roulement peut être un appui direct ou un appui indirect tels que décrits ci-avant. Dans certains cas, uniquement la périphérie radialement externe du second organe élastique vient en appui axial sur la bague radialement externe du second roulement.
[0075] Selon un aspect, le premier ensemble peut comprendre en outre un second épaulement et le second ensemble peut comprendre en outre un second épaulement complémentaire, la bague radialement externe du second roulement venant axialement en appui sur le second épaulement du premier ensemble, la bague radialement interne du second roulement venant axialement en appui sur le second épaulement complémentaire du second ensemble.
[0076] Le second épaulement et le second épaulement complémentaire peuvent être en vis-à-vis radial l’un de l’autre.
[0077] Le second épaulement peut être compris dans le carter. Le second épaulement peut comprendre une face annulaire d’appui axial de la bague radialement externe du second roulement. Cette face annulaire du second épaulement est conformée pour être en vis-à- vis axial de la bague radialement externe du second roulement. La face annulaire du second épaulement s’étend par exemple radialement en direction du second épaulement complémentaire.
[0078] Le second épaulement complémentaire peut être compris dans l’arbre du second ensemble. Le second épaulement complémentaire peut comprendre une face annulaire d’appui axial de la bague radialement interne du second roulement. Cette face annulaire du second épaulement complémentaire est conformée pour être en vis-à-vis axial de la bague radialement interne du second roulement. La face annulaire du second épaulement complémentaire peut s’étendre radialement en direction du second épaulement.
[0079] Les faces annulaires du second épaulement et du second épaulement complémentaire peuvent être alignées suivant la direction radiale lorsque le dispositif de transmission est au repos.
[0080] L’appui axial de la bague radialement externe et la bague radialement interne du second roulement sur, respectivement, le second épaulement et le second épaulement complémentaire peut être un appui direct ou un appui indirect tels que décrits ci-avant.
[0081 ] La présence du premier épaulement et du second épaulement du premier ensemble et du premier épaulement complémentaire et du second épaulement complémentaire du second ensemble permet de séparer le chemin d’efforts du premier et du second organes élastiques, ce qui permet que la valeur du premier seuil et la valeur du second seuil décrits ci-avant soient indépendantes l’une de l’autre et qu’elles puissent être réglées indépendamment.
[0082] Par ailleurs, grâce au second épaulement et au second épaulement complémentaire, il est possible de positionner facilement le second roulement dans sa position d’installation autour de l’arbre du second ensemble. Le second épaulement complémentaire permet aussi de transmettre à la bague radialement interne du second roulement l’effort axial associé à la translation axiale du second ensemble, même si un jeu radial existe entre l’arbre du second ensemble et le second roulement. La bague radialement interne du second roulement peut donc se déplacer solidairement avec le second ensemble, même en présence d’un tel jeu radial. Comme expliqué précédemment, l’effort axial est transmis à travers les éléments roulants à la bague radialement externe du second roulement et, si cet effort axial est supérieur au second seuil décrit ci-avant, la bague radialement externe du second roulement peut aussi se déplacer axialement de sorte à comprimer le second organe élastique.
[0083] Selon un aspect, le dispositif peut comprendre en outre un second élément de précontrainte du second organe élastique apte à régler un effort axial de précontrainte agissant sur le second organe élastique indépendamment de l’effort axial de précontrainte agissant sur le premier organe élastique.
[0084] Le premier élément de précontrainte et le second élément de précontrainte permettent donc de régler indépendamment l’effort de précontrainte qui agit respectivement sur le premier organe élastique et sur le second organe élastique. Ainsi, les efforts de précontrainte agissant sur les premier et second organes élastiques peuvent être différents de sorte qu’ils ne s’annulent pas entre eux. Le dispositif de transmission constitue donc un frein bidirectionnel opérationnel.
[0085] Le second élément de précontrainte peut faire partie du premier ensemble. L’effort axial de précontrainte agissant sur le second organe élastique définit le second seuil à partir duquel le second organe élastique est déformé lors de la translation axiale du second ensemble selon la seconde direction. En particulier, la valeur de l’effort axial de précontrainte du second organe élastique est égal au second seuil. Autrement dit, plus l’effort axial de précontrainte du second organe élastique est élevé, plus l’effort axial exercé par le second ensemble sur le second organe élastique doit être élevé pour que le second organe élastique soit déformé et le second ensemble puisse donc se déplacer axialement selon la seconde direction.
[0086] Le second élément de précontrainte peut être au contact d’une périphérie radialement externe et/ou interne du second organe élastique. Comme le premier élément de précontrainte, le second élément de précontrainte peut être un bouchon fileté, un écrou ou une plaque ayant les caractéristiques exposées précédemment. Lorsque le second élément de précontrainte est une plaque, le second épaulement décrit ci-avant peut être compris dans la plaque.
[0087] Comme indiqué ci-avant en référence au premier organe élastique, certains types de second élément de précontrainte permettent de modifier l’effort axial de précontrainte du second organe élastique par déplacement du second élément de précontrainte dans le logement selon une direction allant vers le second organe élastique. Le second organe élastique est ainsi comprimé, ce qui augmente son effort axial de précontrainte. De même, le second élément de précontrainte peut être déplacé dans le logement dans une direction s’éloignant du second organe élastique, de sorte à le détendre, ce qui diminue son effort axial de précontrainte. On note que les déplacements des premier et second éléments de précontrainte sont indépendants entre eux, ce qui permet d’appliquer un effort de précontrainte différent sur chaque organe élastique.
[0088] Dans d’autres cas, le second élément de précontrainte est dimensionné de sorte que le second organe élastique est soumis à une valeur précise d’effort axial de précontrainte lorsque le second élément de précontrainte est installé dans le dispositif de transmission d’un mouvement.
[0089] Selon un exemple, notamment lorsque le logement a ses deux extrémités ouvertes, le second organe élastique peut être agencé directement entre le second élément de précontrainte et le second roulement. Selon un autre exemple, notamment lorsque le logement a au moins l’une de ses extrémités fermée par la paroi d’extrémité, le second organe élastique peut être agencé directement entre le second roulement et la paroi d’extrémité.
[0090] Comme indiqué précédemment, le premier ensemble est un ensemble de pièces de ce dispositif qui sont immobiles lorsque le dispositif de transmission est en service. Aussi, lorsque deux organes élastiques sont inclus dans le dispositif, le premier ensemble peut comprendre le carter, le premier élément de précontrainte et le second élément de précontrainte. Le second ensemble, comme indiqué, comprend des pièces du dispositif de transmission capables de se déplacer en rotation autour du premier axe et/ou en translation le long de ce premier axe. Aussi, dans le cas d’un dispositif de transmission comprenant deux organes élastiques agencés tel que décrit précédemment, le second ensemble peut comprendre l’arbre et le(s) pignon(s) solidaire(s) de celui-ci, le premier roulement et le second roulement.
[0091] Selon un autre aspect, il est proposé un siège pour aéronef, comportant une partie fixe destinée à être fixée à une partie fixe de l’aéronef et une partie mobile apte à être déplacée par rapport à la partie fixe, un dispositif de transmission d’un mouvement selon l’une des revendications précédentes étant monté entre la partie mobile et la partie fixe, le premier ensemble du dispositif de transmission étant relié à ladite partie fixe du siège, le second ensemble du dispositif de transmission étant apte à être entraîné par un moteur en rotation autour du premier axe et en translation le long dudit premier axe, le second ensemble étant relié à la dite partie mobile su siège.
[0092] Le dispositif de transmission d’un mouvement confère à la partie mobile du siège un mouvement qui l’amène à se déplacer par rapport à la partie fixe dudit siège. En particulier, comme expliqué ci-avant, le second ensemble du dispositif est relié à l’arbre de sortie de l’actionneur. Le déplacement du second ensemble provoque un déplacement de l’arbre de sortie, lequel va donc déplacer la partie mobile du siège.
[0093] La partie fixe du siège peut être reliée directement ou indirectement à la partie fixe de l’aéronef. La partie fixe de l’aéronef correspond par exemple au sol.
[0094] Dans certains cas, les parties fixe et mobile du siège correspondent chacune à l’un des éléments du siège. Dans un exemple non limitatif, la partie mobile correspond au dossier du siège, tandis que la partie fixe du siège correspond à l’assise, qui est reliée, directement ou par l’intermédiaire des pieds, au sol de l’aéronef.
[0095] On note qu’il n’est pas exclu que l’élément du siège qui constitue la partie fixe de celui-ci dans une situation donnée, constitue la partie mobile du siège dans une autre situation. Par exemple, l’assise qui est reliée au sol par l’intermédiaire des pieds pourrait se déplacer relativement aux pieds, les pieds étant compris dans la partie fixe du siège, et l’assise faisant partie de la partie mobile du siège. De même, l’élément du siège qui constitue la partie mobile de celui-ci dans une situation donnée peut constituer la partie fixe du siège dans une autre situation.
[0096] Selon un autre exemple non limitatif, la partie fixe du siège comprend par exemple une glissière fixée au sol de l’aéronef. La partie mobile du siège comprend par exemple plusieurs pieds reliés à la glissière de manière à pouvoir coulisser le long de celle-ci.
[0097] On note que dans certains cas, l’actionneur utilisé peut être un actionneur linéaire. Dans de tels cas, l’arbre et le(s) pignon(s) du second ensemble du dispositif de transmission proposé peuvent être remplacés par un système vis-écrou. Un tel système comprend une vis s’étendant selon un axe, qui peut être sensiblement parallèle à l’axe d’étendue du logement, et un écrou apte à tourner autour de l’axe de la vis. L’écrou est en particulier entraîné en rotation autour de l’axe de la vis par le moteur de l’actionneur. La vis est quant à elle reliée à la partie mobile du siège. L’écrou et la vis sont reliés de sorte qu’une rotation de l’écrou autour de l’axe de la vis entraine le déplacement axial de la vis. La première butée axiale complémentaire et/ou la seconde butée axiale complémentaire peuvent alors être comprises dans des faces de l’écrou disposées en regard de la première butée axiale et/ou de la seconde butée axiale du premier ensemble. Alternativement, la première butée axiale complémentaire et/ou la seconde butée axiale complémentaire sont comprises dans une pièce supplémentaire solidaire de l’écrou et disposée axialement dans la continuité de l’écrou, notamment dans des faces de cette pièce supplémentaire disposées en regard de la première butée axiale et/ou de la seconde butée axiale du premier ensemble. Dans le cas d’un actionneur linéaire comprenant un système vis-écrou, les premier et second épaulements complémentaires du second ensemble peuvent être portées par l’écrou ou par la pièce supplémentaire.
Brève description des dessins
[0098] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0099] [Fig. 1] montre une vue latérale schématique d’un siège pour aéronef muni d’au moins un actionneur comprenant un dispositif de transmission d’un mouvement selon l’invention.
Fig. 2
[0100] [Fig. 2] montre une vue schématique en coupe axiale d’un actionneur du siège de la figure 1.
Fig. 3
[0101] [Fig. 3] montre une vue schématique en coupe axiale du dispositif de transmission d’un mouvement du siège de la figure 1 selon une forme de réalisation de l’invention.
Fig. 4
[0102] [Fig. 4] montre une vue schématique en coupe axiale du dispositif de transmission d’un mouvement du siège de la figure 1 selon une variante de réalisation du dispositif de la figure 3, le dispositif de transmission étant dans une première position.
Fig. 5
[0103] [Fig. 5] montre une vue schématique en coupe axiale du dispositif de transmission d’un mouvement du siège de la figure 1 selon la variante de réalisation de la figure 4 dans une seconde position.
Description des modes de réalisation
[0104] La figure 1 montre un siège 2, notamment pour aéronef. Le siège 2 comprend une assise 4, un dossier 6 et un appui-tête 8. Le siège 2 peut en outre comprendre un repose- jambes 10.
[0105] Le siège 2 est destiné à être relié à une partie fixe de l’aéronef, notamment au sol. A cet effet, le siège 2 peut comprendre des pieds 12 et une glissière 14. La glissière 14 comprend par exemple deux rails fixés au sol, chaque pied 12 étant monté sur l’un des rails de manière à pouvoir coulisser le long du rail respectif. Le siège 2 est ainsi apte à se déplacer en avant ou en arrière.
[0106] Le siège 2 comporte un ou plusieurs systèmes d’entrainement 18 électriques, aussi appelés actionneurs. Chaque actionneur 18 est dédié au déplacement de l’un des éléments (assise 4, dossier 6, appui-tête 8, repose-jambes 10, etc) du siège 2 par rapport aux autres. Alternativement, l’actionneur 18 est dédié au déplacement du siège 2 dans la glissière 14.
[0107] Dans ce qui suit, l’élément du siège 2 qui est déplacé est appelé « partie mobile », tandis que les éléments par rapport auxquels il se déplace sont appelés « partie fixe ». Lorsque le siège 2 est déplacé intégralement par rapport à la partie fixe de l’aéronef, la « partie mobile » est le siège 2, et la « partie fixe », la partie fixe de l’aéronef.
[0108] Comme visible sur la figure 2, l’actionneur 18 comprend un moteur 20, un arbre de sortie 22, un train de réduction 23, un frein 24 et un carter 25.
[0109] Le moteur 20 est apte à générer un mouvement d’un arbre de l’actionneur, dit arbre d’entrée ou arbre moteur (non illustré). Le moteur 20 génère notamment un mouvement de rotation de l’arbre d’entrée autour d’un axe longitudinal de cet arbre d’entrée. Par « longitudinal » on entend ici s’étendant le long de sa plus longue dimension. L’arbre d’entrée est solidaire d’un pignon 26, dit pignon amont ou pignon d’entrée, qui sera décrit par la suite en référence à la figure 3.
[0110] L’arbre de sortie 22 est configuré pour être entraîné en rotation autour de son axe longitudinal A. En particulier, l’arbre de sortie 22 est entraîné en rotation lorsque l’arbre d’entrée tourne autour de son axe longitudinal comme indiqué ci-avant. Avantageusement, les axes longitudinaux de l’arbre de sortie 22 et de l’arbre d’entrée sont sensiblement parallèles. Comme il va être détaillé, l’arbre de sortie 22 est solidaire d’un pignon 30, dit pignon aval ou pignon de sortie. La rotation de l’arbre de sortie 22 autour de l’axe A provoque le déplacement, en rotation et/ou en translation, de la partie mobile du siège 2. L’arbre de sortie 22 est ainsi configuré pour transformer la rotation de l’arbre d’entrée en un mouvement adapté pour déplacer la partie mobile par rapport à la partie fixe du siège.
[0111] Le train de réduction 23 est par exemple un train réducteur multi-étages. Le train réducteur 23 comprend un ensemble de pièces mécaniques, telles que des pignonneries ou des bielles, adaptées pour transmettre le mouvement de l’arbre d’entrée à l’arbre de sortie 22. Plus précisément, ces pièces mécaniques relient l’arbre d’entrée à l’arbre de sortie 22. Parmi ces pièces mécaniques, le train de réduction 23 comprend un dispositif de transmission 30 d’un mouvement, notamment le mouvement de l’arbre d’entrée, qui sera décrit ultérieurement en référence aux figures 3 à 5.
[0112] Le train réducteur 23 permet de réduire la vitesse du mouvement de l’arbre d’entrée avant d’être transmis à l’arbre de sortie 22. La réduction de la vitesse du mouvement généré par le moteur 20 est liée à une augmentation du couple de sortie de l’actionneur 18.
[0113] Le frein 24 est configuré pour freiner ou empêcher la rotation de l’arbre d’entrée générée par le moteur 20, de sorte à freiner ou empêcher également la rotation de l’arbre de sortie 22, et donc, le mouvement de la partie mobile du siège 2 par rapport à sa partie fixe.
[0114] Comme il ressort de la figure 2, le carter 25 loge le moteur 20, le frein 24 et le train de réduction 26. L’arbre de sortie 22 est relié au train réducteur 23 et traverse selon sa direction longitudinale A le carter 25. Le carter 25 est relié à la partie fixe du siège 2.
[0115] Maintenant le dispositif de transmission 30 sera décrit en référence aux figures 3 à 5.
[0116] Le dispositif de transmission 30 comprend un premier ensemble 100 et un second ensemble 200.
[0117] Le premier ensemble 100 comprend un logement 110 s’étendant selon un axe B. Avantageusement, l’axe B est sensiblement parallèle aux axes longitudinaux de l’arbre d’entrée et de l’arbre de sortie 22 de l’actionneur 18. Le logement 1 10 est par exemple compris dans le carter 25, le carter 25 faisant donc partie du premier ensemble 100. Le logement 1 10 peut être délimité par une paroi radialement interne 27 du carter 25.
[0118] Le logement 110 peut comprendre une première partie d’extrémité 112, une seconde partie d’extrémité 114 et une partie centrale 116. La partie centrale 116 est disposée axialement entre la première partie d’extrémité 1 12 et la seconde partie d’extrémité 114. En particulier, la partie centrale 1 16 est délimitée axialement entre une première face 1 18 de la paroi radialement interne 27 du carter 25 et une seconde face 120 de la paroi radialement interne 27 du carter 25. La première face 118 et la seconde face 120 s’étendent sensiblement radialement. La première face 1 18 et la seconde face 120 comprennent chacune un trou qui fait communiquer la partie centrale 116 avec, respectivement, la première partie d’extrémité 112 et la seconde partie d’extrémité 114. La première partie d’extrémité 112 s’étend entre la première face 118 et une première extrémité 112A, tandis que la seconde partie d’extrémité 114 s’étend entre la seconde face 120 et une seconde extrémité 1 14A opposée axialement à la première extrémité 1 12A.
[0119] Avantageusement, la première partie d’extrémité 1 12, la seconde partie d’extrémité 114 et la partie central 1 16 ont une forme générale cylindrique. Sur les figures, la première partie d’extrémité 1 12 et la seconde partie d’extrémité 114 ont sensiblement le même diamètre, sans que ceci ne soit limitatif. La partie centrale 116 du logement 110 a un diamètre supérieur au diamètre des première et seconde parties d’extrémité 1 12, 1 14.
[0120] Le logement 110 peut être fermé à l’une de ses extrémités. En particulier, comme il ressort de la figure 3, une paroi d’extrémité 115 s’étendant sensiblement radialement à l’une des extrémités du logement, en l’espèce à la seconde extrémité 114A, ferme le logement 1 10. Alternativement, comme sur les figures 4 et 5, le logement 1 10 peut être ouvert à ses deux extrémités 112A, 1 14A.
[0121] Le premier ensemble 100 peut comprendre en outre un premier élément de précontrainte 124 et un second élément de précontrainte 130. Sur la figure 3, le premier élément de précontrainte 124 comprend un bouchon qui est dimensionné de sorte à pouvoir être introduit, au moins partiellement, dans la première partie d’extrémité 1 12 du logement 1 10. Le bouchon est en particulier un bouchon dont une surface radialement externe comprend un filetage (non illustré) complémentaire d’un taraudage 150 prévu sur une
fraction de la paroi radialement interne 27 du carter délimitant la première partie d’extrémité 112 du logement 110. Sur les figures 4 et 5, le premier élément de précontrainte 124 est un écrou comprenant sur une surface radialement externe un filetage (non illustré) complémentaire du taraudage 150. Grâce au taraudage 150 et au filetage complémentaire prévu sur le premier élément de précontrainte 124, le premier élément de précontrainte peut être relié de manière amovible au logement 1 10. De surcroit, la position axiale du premier élément de précontrainte 124 à l’intérieur du logement 110 peut être ajustée par déplacement du premier élément de précontrainte 124 le long du taraudage 150 à partir d’un mouvement de rotation du premier élément de précontrainte 124 autour de l’axe B. Sur la figure 3, le second élément de précontrainte 130 est une plaque qui est reliée à la seconde face 120 de la paroi radialement interne 27 du carter 25, de préférence de manière amovible. Par exemple, la plaque 130 peut être vissée sur la seconde face 120 de la paroi radialement interne par des vis 152. Avantageusement, la plaque 130 comprend un trou ayant une dimension égale ou supérieure au trou de la face 120 de la paroi radialement interne 27, ce qui permet que l’agencement de la plaque sur la face 120 n’obture ni totalement ni partiellement le trou communiquant la seconde partie d’extrémité 114 et la partie centrale 1 16 du logement 110. Sur les figures 4 et 5, le second élément de précontrainte 130 est un écrou similaire à l’écrou du premier élément de précontrainte 124. Afin de relier cet écrou à la seconde partie d’extrémité 1 14 du logement 110, un taraudage (non illustré) complémentaire du filetage de la surface radialement externe de l’écrou peut être prévu sur une fraction de la paroi radialement interne 27 du carter délimitant la seconde partie d’extrémité 1 14 du logement 1 10. Bien entendu, le premier élément de précontrainte 124 pourrait être une plaque similaire à la plaque 130 décrite ci-avant, et le second élément de précontrainte 130 pourrait être un bouchon similaire à celui du premier élément de précontrainte 124 de la figure 3.
[0122] Le premier ensemble 100 peut en outre comprendre un premier épaulement 132 et un second épaulement 134. Le premier épaulement 132 est compris dans la première partie d’extrémité 1 12 du logement 100, tandis que le second épaulement 134 est compris dans la seconde partie d’extrémité 114 du logement 100.
[0123] Dans certains cas, le premier épaulement 132 et/ou le second épaulement 134 sont formés par une portion du carter 25 faisant saillie radialement à l’intérieur du logement 110 depuis la paroi radialement interne 27. Dans d’autres cas, le premier épaulement 132 et/ou le second épaulement 134 sont formés à partir de l’agencement d’une pièce distincte du carter 25 à l’intérieur du logement 110, de sorte qu’au moins une portion de cette pièce distincte du carter 25 fasse saillie radialement par rapport à la paroi radialement interne 27. En l’espèce, le premier épaulement 132 est formé par une portion faisant saillie radialement
à l’intérieur de la première partie d’extrémité 1 12 du logement 110 depuis la paroi radialement interne 27 du carter 25. Sur la figure 3, le second épaulement 134 est compris dans une portion de la plaque 130, cette portion de la plaque 130 étant agencée radialement à l’intérieur de la seconde partie d’extrémité 114 du logement 110. Plus précisément, sur la figure 3 le second épaulement 134 est formé par une portion de la plaque 130 faisant saillie axialement par rapport au reste de la plaque de sorte à pouvoir s’insérer dans la seconde partie d’extrémité 114 du logement 110. Avantageusement, cette portion en saillie de la plaque est dimensionnée de sorte à être radialement au contact de la paroi radialement interne 27 dans la seconde partie d’extrémité 1 14 du logement 1 10. Sur les figures 4 à 5, le second épaulement 134 est formé par une portion faisant saillie radialement à l’intérieur de la seconde partie d’extrémité 1 14 du logement 1 10 depuis la paroi radialement interne 27 du carter 25.
[0124] Le premier épaulement 132 et le second épaulement 134 ont par exemple une forme annulaire. Le premier épaulement 132 peut comprendre une face annulaire 136 qui, comme il va être détaillé, vient en appui axial d’un premier roulement 270. Le second épaulement 134 peut comprendre une face annulaire 138 qui, comme il va être détaillé, vient en appui axial d’un second roulement 280.
[0125] Comme il ressort des figures 3 à 5, un premier organe élastique 300 est logé dans la première partie d’extrémité 1 12 du logement 110. Un second organe élastique 400 est logé dans la seconde partie d’extrémité 114 du logement 1 10. Le premier organe élastique 300 et le second organe élastique 400 sont agencés dans le logement 110 de sorte à pouvoir être déformées selon la direction axiale comme il va être détaillé.
[0126] Sur la figure 3, le premier et le second organes élastiques 300, 400 sont un ressort à vagues, sans que ceci ne soit limitatif.
[0127] Avantageusement, le premier organe élastique 300 et le second organe élastique 400 ont une forme sensiblement cylindrique creuse ou une forme sensiblement annulaire. Une cavité ou un trou traverse donc axialement le premier et second organes élastiques 300, 400. Un diamètre radialement externe du premier organe élastique 300 est par exemple sensiblement égal au diamètre de la première partie d’extrémité 112 du logement. Un diamètre radialement externe du second organe élastique 400 est par exemple sensiblement égal au diamètre de la seconde partie d’extrémité 114 du logement. Un diamètre radialement interne du premier organe élastique 300 et un diamètre radialement interne du second organe élastique 400 sont avantageusement choisis de sorte à permettre qu’au moins une partie du second ensemble 200 se déplace axialement à travers le premier et le second organes élastiques 300, 400, comme il va être détaillé.
[0128] Comme il ressort des figures 3 à 5, le second ensemble 200 est logé dans le logement 110 du premier ensemble 100. Le second ensemble 200 comprend un arbre 210 et au moins un pignon hélicoïdal 230 logés dans le logement 110 du premier ensemble 100.
[0129] L’arbre 210 a une forme générale cylindrique s’étendant suivant l’axe B. Avantageusement, l’arbre 210 a une section transversale sensiblement circulaire. Par « transversal » on entend ici compris dans un plan sensiblement perpendiculaire à l’axe B. Avantageusement, un diamètre de la section transversale de l’arbre 210 est sur toute la longueur de l’arbre 210 inférieur au diamètre de la première partie d’extrémité 112 du logement 110, au diamètre de la seconde partie d’extrémité 114 du logement 1 10 et aux diamètres radialement internes du premier et second organes élastiques 300, 400. L’arbre 210 peut ainsi se déplacer axialement le long de chacune des parties d’extrémité 112, 114 du logement 1 10, ainsi que le long de la partie centrale 116 du logement 1 10.
[0130] L’arbre comprend une première partie d’extrémité 212, une seconde partie d’extrémité 214 et une partie centrale 216. Comme il ressort des figures, le diamètre de la section transversale de l’arbre 210 dans la première partie d’extrémité 212 et dans la seconde partie d’extrémité 214 est inférieur au diamètre de la section transversale de l’arbre dans la partie centrale 216. Aussi, un premier épaulement 218 est formé à l’interface entre la première partie d’extrémité 212 et la partie centrale 216. De même, un second épaulement 220 est formé à l’interface entre la seconde partie d’extrémité 214 et la partie centrale 216 de l’arbre 216. Alternativement, les sections transversales de la première partie d’extrémité 212, de la seconde partie d’extrémité 214 et de la partie centrale 216 ont toutes le même diamètre. Dans ce cas, le premier épaulement 218 est formé par une portion de l’arbre faisant saillie radialement par rapport au reste de l’arbre 210 à l’interface entre la première partie d’extrémité 212 et la partie centrale 216 de l’arbre 210, et le second épaulement 220 est formé par une portion de l’arbre faisant saillie radialement par rapport au reste de l’arbre 210 à l’interface entre la seconde partie d’extrémité 214 et la partie central 216 de l’arbre 220.
[0131 ] Le premier épaulement 218 et le second épaulement 220 ont par exemple une forme annulaire. Le premier épaulement 218 peut comprendre une face annulaire 222 qui, comme il va être détaillé, vient en appui axial du premier roulement 270. Le second épaulement 220 peut comprendre une face annulaire 224 qui, comme il va être détaillé, vient en appui axial du second roulement 280.
[0132] Le premier épaulement 218 de l’arbre est complémentaire du premier épaulement 132 du premier ensemble 100. Par « complémentaire » on entend ici que dans une position de repos du dispositif 30, la face annulaire 222 du premier épaulement 218 de l’arbre 210
est de préférence alignée suivant la direction radiale avec la face annulaire 136 du premier épaulement 132 du premier ensemble 100. De même, le second épaulement 220 de l’arbre 210 est complémentaire du second épaulement 134 du premier ensemble 100. Dans la position de repos du dispositif 30, la face annulaire 224 du second épaulement 220 de l’arbre 210 est donc de préférence alignée suivant la direction radiale avec la face annulaire 138 du second épaulement 134 du premier ensemble 100. Comme il va être détaillé, la position de repos du dispositif 30 correspond à une position dans laquelle aucun effort axial n’est exercé sur le premier organe élastique 300 et/ou sur le second organe élastique 400 par le second ensemble 200.
[0133] Le pignon hélicoïdal 230 est agencé autour de l’arbre 210. Sur les figures, le pignon hélicoïdal 230 est agencé autour de la partie centrale 216 de l’arbre 210. Le pignon hélicoïdal 230 a avantageusement une forme annulaire, un trou (non visible) de diamètre sensiblement égal au diamètre de la partie centrale 216 de l’arbre 210 traversant axialement le pignon hélicoïdal 230. L’arbre 210 est ainsi monté serré ou ajusté dans le trou du pignon hélicoïdal 230, ce qui permet de solidariser les mouvements de l’arbre 210 et du pignon hélicoïdal comme il va être détaillé. Le pignon 230 comprend une première face 231 A et une seconde face 231 B opposées axialement.
[0134] Le pignon hélicoïdal 230 est en particulier agencé dans la partie centrale 116 du logement 110. Sur les figures, le pignon hélicoïdal 230 est agencé entre la première face 1 18 de la paroi radialement interne 27 du carter 25 et une paroi intermédiaire 119 faisant saillie radialement dans la partie centrale 1 16 du logement 1 10 depuis la paroi radialement interne 27 du carter. La paroi 119 comprend une première face 119A qui est directement en vis-à-vis axial de la première face 1 18 de la paroi radialement interne 27 lorsque le second ensemble 200 n’est pas installé dans le logement 110.
[0135] Un diamètre radialement externe du pignon hélicoïdal 230 est choisi de sorte qu’au moins une portion de la première face 231 A du pignon hélicoïdal 230 soit en vis-à-vis axial de la première face 118 de la paroi radialement interne 27 du carter. De manière analogue, le diamètre radialement externe du pignon hélicoïdal 230 est choisi de sorte qu’au moins une portion de la seconde face 231 B du pignon hélicoïdal 230 soit en vis-à-vis axial de la première face 119A de la paroi intermédiaire 119.
[0136] Avantageusement, la première face 1 18 de la paroi radialement interne 27 et la première face 1 19 de la paroi intermédiaire 1 19 sont séparées d’une distance permettant, dans la position de repos du dispositif 30, la formation d’un premier jeu axial J1 et d’un second jeu axial J2 entre le pignon 230 et ces faces 118, 1 19A. En particulier, comme visible sur les figures 3 et 4, le premier jeu axial J1 est formé axialement entre la première
face 231A du pignon 230 et la première face 118 de la paroi radialement interne 27 du carter 25. Le second jeu axial J2 est formé axialement entre la seconde face 231 B du pignon 230 et la première face 119A de la paroi intermédiaire 1 19.
[0137] Une face radialement externe 232 du pignon hélicoïdal 230 comprend une pluralité de dents orientées de sorte à former un angle, dit angle d’hélice, distinct de 0° et de 90° avec l’axe B. Lorsque le dispositif 30 est installé dans l’actionneur 18, la face radialement externe 232 du pignon hélicoïdal 230 est engrenée avec un pignon d’entrée 240 complémentaire, notamment avec une face radialement externe 242 de ce pignon d’entrée 240. Comme il ressort clairement de la figure 3, la face radialement externe 240 du pignon d’entrée est munie de dents. L’angle d’hélice du pignon d’entrée 240 est avantageusement égal à l’angle d’hélice du pignon hélicoïdal 230 afin d’assurer un correct engrenage entre le pignon hélicoïdal 230 et le pignon d’entrée 240. Le pignon d’entrée 240 est en particulier un pignon relié à l’arbre moteur de l’actionneur 18, de sorte que le pignon d’entrée 240 se déplace solidairement avec l’arbre moteur.
[0138] Le second ensemble 200 peut en outre comprendre un second pignon 250 monté serré ou ajusté autour de l’arbre 210. Les mouvements de l’arbre 210 et du second pignon 250 sont ainsi solidarisés. Le second pignon 250 peut avoir une forme annulaire similaire à la forme du pignon hélicoïdal 230, mais, comme il ressort des figures, il peut avoir un diamètre radialement externe inférieur au diamètre radialement externe du pignon hélicoïdal 230.
[0139] Une face radialement externe 252 du second pignon 250 comprend une pluralité de dents. Le second pignon 250 peut être un pignon hélicoïdal (angle d’hélice distinct de 0° et de 90°) ou un pignon droit. Dans le cas d’un pignon droit, les dents de la face radialement externe 252 forment avec l’axe B un angle égal à 0° ou 90°.
[0140] Quand le second pignon 250 est un pignon hélicoïdal, l’angle d’hélice du second pignon 250 peut être égal ou différent de l’angle d’hélice du pignon hélicoïdal 230. De préférence, l’angle d’hélice du pignon hélicoïdal 230 et du pignon 250 ont des sens opposés, sans que ceci ne soit limitatif.
[0141] Comme visible sur la figure 3, lorsque le dispositif 30 est installé dans l’actionneur 18, la face radialement externe 252 du second pignon 250 est engrenée avec un pignon de sortie 260 complémentaire, notamment avec une face radialement externe 262 de ce pignon de sortie 260. Comme il ressort clairement de la figure 3, la face radialement externe 262 du pignon de sortie 260 est munie de dents. L’angle formé entre les dents du pignon de sortie 260 et l’axe B est avantageusement égal à l’angle formé entre les dents du second pignon 250 et l’axe B afin d’assurer un correct engrenage entre le second pignon 250 et le
pignon de sortie 260. Le pignon de sortie 260 est en particulier un pignon relié à l’arbre de sortie 22 de l’actionneur 18, de sorte que le pignon de sortie 260 se déplace solidairement avec l’arbre de sortie 22.
[0142] Le second ensemble 200 peut en outre comprendre le premier roulement 270 et le second roulement 280. Le premier roulement 270 comprend une bague radialement interne 272 et une bague radialement externe 274. Une pluralité d’éléments roulants 276 sont agencés circonférentiellement entre les bagues 272 et 274 du premier roulement 270. Le second roulement 280 comprend une bague radialement interne 282 et une bague radialement externe 284. Une pluralité d’éléments roulants 286 sont agencés circonférentiellement entre les bagues 282 et 284 du second roulement 280. Sur les figures, les roulements 270, 280 comprennent une seule rangée circonférentielle d’éléments roulants 276, 286, mais plusieurs rangées d’éléments roulants réparties radialement peuvent être prévues.
[0143] Le premier roulement 270 est agencé autour de la première partie d’extrémité 212 de l’arbre 210. Dans la position de repos du dispositif 30, la bague radialement externe 274 du premier roulement 270 vient en appui axial de premier épaulement 132 du premier ensemble, notamment de la face annulaire 136 de ce premier épaulement 132. La bague radialement interne 274 du premier roulement 270 vient en appui axial du premier épaulement complémentaire 218 de l’arbre 210, notamment de la face annulaire 222. Dans la position de repos du dispositif 30, la bague radialement externe 284 du second roulement 280 vient en appui axial de second épaulement 134 du premier ensemble, notamment de la face annulaire 138 de ce premier épaulement 132. La bague radialement interne 284 du second roulement 280 vient en appui axial du second épaulement complémentaire 220 de l’arbre 210, notamment de la face annulaire 224.
[0144] La bague radialement interne 272, 282 de chaque roulement 270, 280 peut être configurée pour tourner solidairement avec l’arbre 210 autour de l’axe B.
[0145] Comme il ressort clairement des figures 3 à 5, le premier organe élastique 300 vient en appui axial de la bague radialement externe 274 du premier roulement 270, et le second organe élastique 400 vient en appui axial de la bague radialement externe 284 du second roulement 280.
[0146] Sur la figure 3, le premier organe élastique 300 est agencé axialement entre le premier élément de précontrainte 124 et le premier roulement 270, tandis que le second organe élastique 400 est agencé axialement entre le second roulement 280 et la paroi d’extrémité 115 du logement 110. Sur les figures 4 et 5, le premier organe élastique 300 est agencé de manière similaire à la figure 3, mais le second organe élastique 400 est
agencé axialement entre le second roulement 280 et le second élément de précontrainte 130.
[0147] Grâce au premier élément de précontrainte 124, il est possible de créer un premier effort axial de précontrainte qui agit sur le premier organe élastique 300. En particulier, lorsque le premier élément de précontrainte 124 est un bouchon ou un écrou tels que décrits ci-avant, le premier effort axial de précontrainte peut être créé et ajusté à partir du déplacement du premier élément de précontrainte 124 le long du taraudage 150. Quand le premier élément de précontrainte 124 est déplacé le long du taraudage 150 en direction du premier organe élastique 300, le premier organe élastique 300 est comprimé, ce qui augmente le premier effort axial de précontrainte qui agit sur l’organe élastique 300. Au contraire, quand le premier élément de précontrainte 124 est déplacé le long du taraudage 150 en direction opposée au premier organe élastique 300, le premier organe élastique 300 se détend, ce qui diminue le premier effort axial de précontrainte qui agit sur l’organe élastique 300. Si le premier élément de précontrainte 124 est une plaque comme la plaque décrite ci-avant en référence à la figure 3, la plaque est dimensionnée de sorte à induire une valeur déterminée de premier effort axial de précontrainte lorsque la plaque est installée dans le logement 110. Plus précisément, la longueur d’une portion de la plaque faisant saillie axialement pour être introduite dans la première partie d’extrémité 112 du logement 110 peut être choisie de sorte à soumettre le premier organe élastique 300 à la valeur prédéterminée de premier effort axial de précontrainte.
[0148] De manière analogue, grâce au second élément de précontrainte 130, il est possible de créer un second effort axial de précontrainte qui agit sur le second organe élastique 400. En particulier, lorsque le second élément de précontrainte 130 est un bouchon ou un écrou tels que décrits ci-avant, le second effort axial de précontrainte peut être créé et ajusté à partir du déplacement du second élément de précontrainte 130 le long du taraudage prévu sur la seconde partie d’extrémité 1 14 du logement 1 10. Si le second élément de précontrainte 130 est la plaque de la figure 3, la plaque est dimensionnée de sorte à induire une valeur déterminée de second effort axial de précontrainte lorsque la plaque est installée dans le logement 110. Plus précisément, la longueur de la portion de la plaque faisant saillie axialement pour être introduite dans la seconde partie d’extrémité du logement 110 peut être choisie de sorte à soumettre le second organe élastique 400 à la valeur prédéterminée de second effort axial de précontrainte.
[0149] On note que le premier effort axial de précontrainte et le second effort axial de précontrainte peuvent être différents entre eux.
[0150] Maintenant, un mode de fonctionnement du dispositif de transmission 30 sera expliqué.
[0151] Comme indiqué précédemment, le pignon d’entrée 240 se déplace solidairement avec l’arbre moteur de l’actionneur 18. Comme également expliqué, le pignon d’entrée 240 et le pignon hélicoïdal 230 sont deux pignons hélicoïdaux complémentaires qui forment un engrenage hélicoïdal. Un tel engrenage génère un effort axial sur les pignons qui interagissent quand un couple est transmis entre ces pignons.
[0152] Lorsque l’arbre moteur est entraîné par le moteur 20 en rotation autour de son axe longitudinal, le pignon d’entrée 240 est aussi entraîné en rotation autour de cet axe. L’engrenage du pignon d’entrée 240 avec le pignon hélicoïdal 230 fait que le pignon hélicoïdal soit déplacé aussi en rotation autour de l’axe B lorsque le pignon d’entrée 240 tourne. L’arbre 210 étant du pignon hélicoïdal 230, l’arbre 210 est aussi entraîné en rotation autour de l’axe B.
[0153] L’engrenage entre le pignon hélicoïdal 230 et le pignon d’entrée 240 étant de type hélicoïdal, la transmission du couple du pignon d’entrée 240 au pignon hélicoïdal 230 génère un effort axial dans le pignon hélicoïdal 230 qui provoque le déplacement axial du pignon hélicoïdal 230 selon la direction de cet effort axial. L’engrenage hélicoïdal peut aussi générer un effort axial opposé dans le pignon d’entrée 240 qui provoque le déplacement axial du pignon d’entrée 240 selon une direction opposée à la direction de l’effort axial généré dans le pignon hélicoïdal 230.
[0154] Lorsque l’effort axial généré dans le pignon hélicoïdal 230 du second ensemble 200 est orienté en direction du premier organe élastique 300, le second ensemble 200 se déplace axialement en direction du premier organe élastique 300. Le contact entre le premier épaulement 218 et la bague radialement interne 274 du premier roulement provoque la transmission de l’effort axial généré dans le pignon hélicoïdal 230 au premier roulement 270. En particulier, l’effort axial est transmis à la bague radialement interne 274 du roulement 270. La bague radialement interne 274 est alors déplacée axialement solidairement avec le second ensemble 200. L’effort axial est ensuite transmis à la bague radialement externe 272 du premier roulement à travers les éléments roulants 276.
[0155] Comme indiqué, le premier organe élastique 300 vient en appui axial de la bague radialement externe 272 du premier roulement 270. Comme également indiqué, un premier effort axial de précontrainte agit sur le premier organe élastique 300. Lorsque l’effort axial généré dans le pignon hélicoïdal 230 et transmis à la bague radialement externe 272 du premier roulement est inférieur ou égal au premier effort axial de précontrainte, le premier organe élastique 300 s’oppose au déplacement axial de la bague radialement externe 272
du premier roulement 270 sous l’effet de l’effort axial. Le déplacement axial du second ensemble 200 est ainsi arrêté. Lorsque l’effort axial généré dans le pignon hélicoïdal 230 et transmis à la bague radialement externe 272 du premier roulement est supérieur au premier effort axial de précontrainte, le premier organe élastique 300 ne peut pas s’opposer au déplacement axial de la bague radialement externe 272 du premier roulement 270 sous l’effet de l’effort axial généré dans le pignon hélicoïdal 230. La bague radialement externe 272 se déplace donc axialement de sorte à comprimer le premier organe élastique 300. Le premier effort axial de précontrainte définit ainsi un premier seuil d’effort axial de précontrainte à partir duquel le premier organe élastique 300 est comprimé à cause du déplacement axial du second ensemble 200 sous l’effet de l’effort axial généré dans le pignon hélicoïdal 230.
[0156] Grâce à la compression du premier organe élastique 300, le second ensemble peut continuer son déplacement axial en direction du premier organe élastique 300. Le premier jeu axial J 1 est ainsi réduit progressivement jusqu’à ce que la première face 118 de la paroi radialement interne 27 du carter 25 et la première face 231 A du pignon hélicoïdal 230 entrent en contact entre elles, comme illustré sur la figure 5. La première face 118 comprend donc une première butée axiale 121 et la première face 231 A du pignon hélicoïdal 230 comprend donc une première butée axiale complémentaire 221. Le contact entre la première butée axiale 121 et la première butée axiale complémentaire 221 permet de dissiper tout ou partie de l’effort axial généré dans le pignon hélicoïdal 230 à travers le carter 25.
[0157] Lorsque l’effort axial généré dans le pignon hélicoïdal 230 du second ensemble 200 est orienté en direction du second organe élastique 400, le fonctionnement du dispositif de transmission est similaire à quand l’effort axial généré dans le pignon hélicoïdal 230 est orienté en direction du premier organe élastique 300. Toutefois, dans ce cas le second ensemble 200 se déplace axialement en direction du second organe élastique 400. Le contact entre le second épaulement 220 et la bague radialement interne 284 du second roulement 280 provoque la transmission de l’effort axial généré dans le pignon hélicoïdal 230 au second roulement 280. En particulier, l’effort axial est transmis à la bague radialement interne 284 du roulement 280. La bague radialement interne 284 est alors déplacée axialement solidairement avec le second ensemble 200. L’effort axial est ensuite transmis à la bague radialement externe 282 du second roulement à travers les éléments roulants 286.
[0158] Lorsque l’effort axial généré dans le pignon hélicoïdal 230 et transmis à la bague radialement externe 282 du second roulement est inférieur ou égal au second effort axial de précontrainte, le second organe élastique 400, qui comme expliqué vient en appui axial
de la bague radialement externe 282 du second roulement 280, s’oppose au déplacement axial de cette bague radialement externe 282 sous l’effet de l’effort axial. Le déplacement axial du second ensemble 200 est ainsi arrêté. Lorsque l’effort axial généré dans le pignon hélicoïdal 230 et transmis à la bague radialement externe 282 du second roulement est supérieur au second effort axial de précontrainte, le second organe élastique 400 ne peut pas s’opposer au déplacement axial de la bague radialement externe 282 du second roulement 280 sous l’effet de l’effort axial généré dans le pignon hélicoïdal 230. La bague radialement externe 282 se déplace donc axialement de sorte à comprimer le second organe élastique 400. Le second effort axial de précontrainte définit ainsi un second seuil d’effort axial de précontrainte à partir duquel le second organe élastique 400 est comprimé à cause du déplacement axial du second ensemble 200 sous l’effet de l’effort axial généré dans le pignon hélicoïdal 230.
[0159] Grâce à la compression du second organe élastique 300, le second ensemble peut continuer son déplacement axial en direction du second organe élastique 400. Le second jeu axial J2 est ainsi réduit progressivement jusqu’à ce que la première face 119A de la paroi intermédiaire 1 19 et la seconde face 231 B du pignon hélicoïdal 230 entrent en contact entre elles. La première face 119A comprend donc une seconde butée axiale 123 et la seconde face 231 B du pignon hélicoïdal 230 comprend donc une seconde butée axiale complémentaire 223. Le contact entre la seconde butée axiale 123 et la première butée axiale complémentaire 223 permet de dissiper tout ou partie de l’effort axial généré dans le pignon hélicoïdal 230 à travers le carter 25.
[0160] On note que toute réduction du premier jeu axial J1 implique une augmentation du second jeu axial J2, comme visible sur la figure 5. De manière analogue, toute réduction du second jeu axial J2 implique une augmentation du premier jeu axial J1.
[0161] Grâce au dispositif décrit ci-dessus, les efforts axiaux générés au sein de l’actionneur 18 sont dissipés à travers le premier ensemble 100 du dispositif de transmission 30 lorsque ceux-ci sont très importants, en particulier, supérieurs au premier seuil ou au second seuil d’effort axial décrits précédemment. Le pourcentage des efforts générés dans l’actionneur 18 qui atteignent le frein 24 est donc réduit, voire nul. Par conséquent, les risques d’usure et/ou de rupture du frein 24 sont limités.
[0162] La présente divulgation ne se limite pas aux exemples de dispositif de transmission décrits ci-avant, seulement à titre d’exemple, mais elle englobe toutes les variantes que pourra envisager l’homme de l’art dans le cadre de la protection recherchée
[0163] Par exemple, comme indiqué précédemment, le dispositif de transmission pourrait comprendre un seul organe élastique. Dans ce cas, un seul élément de précontrainte et un
seul roulement sont inclus dans le dispositif 30. Par ailleurs, la première butée axiale 121 et la seconde butée axiale 123 pourraient faire saillie axialement par rapport au reste de la paroi 1 18 et de la paroi 119A respective dans laquelle chacune d’entre elles est comprise. De même, la première butée axiale complémentaire 221 et la seconde butée axiale complémentaire 223 pourraient faire saillie axialement par rapport au reste de la paroi 231 A et de la paroi 231 B respective dans laquelle chacune d’entre elles est comprise. Selon une autre variante, au moins l’une parmi la première butée axiale et la première butée axiale complémentaire et/ou au moins l’une parmi la seconde butée axiale et la seconde butée axiale complémentaire peuvent comprendre une surface de friction comportant des rugosités et/ou des éléments faisant saillie axialement, par exemple un système a crabots.
Comme indiqué précédemment, grâce aux rugosités et/ou aux éléments faisant saillie radialement, la dissipation de l’effort axial à travers le premier ensemble 100 est augmentée.
Claims
[Revendication 1] Dispositif de transmission (30) d’un mouvement destiné à un actionneur (18), le dispositif (30) comportant :
- un premier ensemble (100), fixe, comprenant un logement (1 10) s’étendant le long d’un premier axe (B) ;
- un second ensemble (200) agencé dans ledit logement (110) et s’étendant selon le premier axe (B), le second ensemble (200) étant configuré pour se déplacer en rotation autour dudit premier axe (B) et pour se déplacer en translation le long dudit premier axe (B) à l’intérieur dudit logement (110) ;
- un premier organe élastique (300) installé à l’intérieur dudit logement (110) ; dans lequel le premier ensemble (100) comprend une première butée axiale (121 ) et le second ensemble (200) comprend une première butée axiale complémentaire (221 ), la première butée axiale (121 ) et la première butée axiale complémentaire (221 ) étant en vis- à-vis axial, un premier jeu axial (J1 ) étant formé entre la première butée axiale (121 ) et la première butée axiale complémentaire (221 ), dans lequel le premier organe élastique (300) est apte à être déformé lors de la translation du second ensemble (200) le long du premier axe (B) selon une première direction lorsqu’un effort axial supérieur à un premier seuil est exercé par le second ensemble (200) sur ledit premier organe élastique (300), le premier jeu axial étant progressivement réduit jusqu’à ce que la première butée axiale complémentaire (221 ) vienne en appui axial sur la première butée axiale (121 ).
[Revendication 2] Dispositif (30) selon la revendication 1 , dans lequel le second ensemble (200) comprend au moins un arbre (210) et un pignon hélicoïdal (230) solidaires l’un par rapport à l’autre, le pignon hélicoïdal (230) comprenant la première butée axiale complémentaire (221 ) et engrenant avec un pignon d’entrée (240) complémentaire du dispositif (30).
[Revendication 3] Dispositif (30) selon l’une des revendications précédentes, dans lequel un premier roulement (270) est monté dans le logement (110) radialement entre le premier ensemble (100) et le second ensemble (200), le premier roulement (270) comprenant une bague radialement externe (272) disposée en regard du premier ensemble (100) et une bague radialement interne (274) disposée en regard du second ensemble (200), le premier organe élastique (300) venant en appui axialement sur la bague radialement externe (272) dudit premier roulement.
[Revendication 4] Dispositif (30) selon la revendication précédente, dans lequel le premier ensemble (100) comprend un premier épaulement (132) et le second ensemble (200)
comprend un premier épaulement complémentaire (218), la bague radialement externe (272) du premier roulement (270) venant axialement en appui sur le premier épaulement (132) du premier ensemble (100), la bague radialement interne (274) du premier roulement (270) venant axialement en appui sur le premier épaulement complémentaire (218) du second ensemble (200).
[Revendication 5] Dispositif (30) selon l’une des revendications précédentes, comprenant en outre un premier élément de précontrainte (124) du premier organe élastique (300) apte à régler un effort axial de précontrainte agissant sur le premier organe élastique (300).
[Revendication 6] Dispositif (30) selon la revendication précédente, comportant en outre un second organe élastique (400) installé à l’intérieur du logement (1 10), dans lequel le premier ensemble (100) comprend une seconde butée axiale (123) et le second ensemble comprend une seconde butée axiale complémentaire (223), la seconde butée axiale (123) et la seconde butée axiale complémentaire (223) étant en vis-à-vis axial, un second jeu axial (J2) étant formé entre la seconde butée axiale (123) et la seconde butée axiale complémentaire (223), dans lequel le second organe élastique (400) est apte à être déformé lors de la translation du second ensemble (200) le long du premier axe selon une seconde direction opposée à la première direction lorsqu’un effort axial supérieur à un second seuil est exercé par le second ensemble (200) sur ledit second organe élastique (400), le second jeu axial (J2) étant progressivement réduit jusqu’à ce que la seconde butée axiale complémentaire (223) vienne en appui axial sur la seconde butée axiale (123).
[Revendication 7] Dispositif (30) selon la revendication précédente, comprenant en outre un second roulement (280) monté dans le logement (1 10) radialement entre le premier ensemble (100) et le second ensemble (200), le second roulement (280) comprenant une bague radialement externe (282) disposée en regard du premier ensemble (100) et une bague radialement interne (284) disposée en regard du second ensemble (200), le second organe élastique (400) venant en appui axialement directement sur la bague radialement externe (282) dudit second roulement (280).
[Revendication 8] Dispositif (30) selon la revendication précédente, dans lequel le premier ensemble (100) comprend en outre un second épaulement (134) et le second ensemble (200) comprend en outre un second épaulement complémentaire (220), la bague radialement externe (282) du second roulement (280) venant axialement en appui sur le second épaulement (134) du premier ensemble (100), la bague radialement interne (284) du second roulement (280) venant axialement en appui sur le second épaulement complémentaire (220) du second ensemble (200).
[Revendication 9] Dispositif (30) selon l’une des revendications 6 à 8, comprenant en outre un second élément de précontrainte (130) du second organe élastique (400) apte à régler un effort axial de précontrainte agissant sur le second organe élastique (400) indépendamment de l’effort axial de précontrainte agissant sur le premier organe élastique (300).
[Revendication 10] Siège (2) pour aéronef, comportant une partie fixe destinée à être fixée à une partie fixe de l’aéronef et une partie mobile apte à être déplacée par rapport à la partie fixe, un dispositif de transmission (30) d’un mouvement selon l’une des revendications précédentes étant monté entre la partie mobile et la partie fixe, le premier ensemble (100) du dispositif de transmission étant relié à ladite partie fixe du siège (2), le second ensemble (200) du dispositif de transmission étant apte à être entraîné par un moteur (20) en rotation autour du premier axe (B) et en translation le long dudit premier axe (B), le second ensemble (200) étant relié à ladite partie mobile su siège (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2205726 | 2022-06-14 | ||
FR2205726A FR3136450A1 (fr) | 2022-06-14 | 2022-06-14 | Dispositif de transmission d’un mouvement et siège |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023242504A1 true WO2023242504A1 (fr) | 2023-12-21 |
Family
ID=82694254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/050840 WO2023242504A1 (fr) | 2022-06-14 | 2023-06-12 | Dispositif de transmission d'un mouvement et siège |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3136450A1 (fr) |
WO (1) | WO2023242504A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7839039B2 (en) * | 2006-06-27 | 2010-11-23 | Jtekt Corporation | Brushless motor |
WO2021099737A1 (fr) * | 2019-11-22 | 2021-05-27 | Safran Electronics & Defense | Siège d'aéronef |
-
2022
- 2022-06-14 FR FR2205726A patent/FR3136450A1/fr active Pending
-
2023
- 2023-06-12 WO PCT/FR2023/050840 patent/WO2023242504A1/fr unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7839039B2 (en) * | 2006-06-27 | 2010-11-23 | Jtekt Corporation | Brushless motor |
WO2021099737A1 (fr) * | 2019-11-22 | 2021-05-27 | Safran Electronics & Defense | Siège d'aéronef |
Also Published As
Publication number | Publication date |
---|---|
FR3136450A1 (fr) | 2023-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1540143B1 (fr) | Recentrage d un rotor apres decouplage | |
FR2943314A1 (fr) | Helice non carenee a pales a calage variable de turbomachine | |
EP3175146B1 (fr) | Réducteur de couple | |
FR3016014A1 (fr) | Actionneur avec systeme vis-ecrou irreversible, frein a tambour et dispositif de freinage ainsi equipes | |
FR3017600A1 (fr) | Actionneur a bloqueur et limiteur de couple associes | |
EP3596360B1 (fr) | Reducteur de vitesse debrayable | |
FR3116578A1 (fr) | Dispositif d’entraînement électrique d’un essieu d’un véhicule | |
EP3175136B1 (fr) | Actionneur de freinage pour véhicule | |
WO2023242504A1 (fr) | Dispositif de transmission d'un mouvement et siège | |
EP3187759A1 (fr) | Dispositif de transmission de mouvement par engrenage et système d'actionnement le comprenant | |
FR2993920A1 (fr) | Helice non carenee a pales a calage variable pour une turbomachine | |
FR2944846A1 (fr) | Limiteur de couple notamment pour actionneur de nacelle de turboreacteur d'aeronef | |
EP3994061B1 (fr) | Siège d'aéronef | |
EP3708877B1 (fr) | Train epicycloïdal d'engrenages, boîte de transmission de puissance, aéronef, et procédé | |
WO2023144483A1 (fr) | Dispositif de transmission d'un mouvement | |
FR3007335A1 (fr) | Dispositif de blocage pour un actionneur comportant un organe de blocage mecanique | |
EP3906370B1 (fr) | Réducteur planétaire comportant un support souple précontraint | |
WO2002093728A2 (fr) | Actionneur linéaire, notamment actionneur pour frein d'avion | |
FR3038678A1 (fr) | Actionneur de frein a double demultiplication, etrier et frein, et procede d'actionnement | |
WO2024115852A1 (fr) | Chaine cinématique irréversible et à rendement élevé, de préférence pour robinet | |
FR2798167A1 (fr) | Demarreur de vehicule automobile comportant un dispositif d'entrainement par friction | |
FR3018328A3 (fr) | Differentiel pour vehicule automobile avec dispositif de maintien en position de l'axe porte-satellite | |
EP3087287B1 (fr) | Frein à disque comportant un frein de stationnement à actionnement hydraulique et un groupe de rattrapage d'usure | |
EP3963234A1 (fr) | Réducteur épicycloïdal comprenant au moins une pièce de transmission d'effort axial formant un chemin d'effort radialement excentré | |
FR3142228A1 (fr) | Piston allege pour frein a disque et frein a disque comportant un tel piston |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23736172 Country of ref document: EP Kind code of ref document: A1 |