WO2023241362A1 - 一种星间链路构建方法及通信装置 - Google Patents
一种星间链路构建方法及通信装置 Download PDFInfo
- Publication number
- WO2023241362A1 WO2023241362A1 PCT/CN2023/097570 CN2023097570W WO2023241362A1 WO 2023241362 A1 WO2023241362 A1 WO 2023241362A1 CN 2023097570 W CN2023097570 W CN 2023097570W WO 2023241362 A1 WO2023241362 A1 WO 2023241362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- trajectory
- ground
- address
- inter
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 142
- 238000010276 construction Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims description 74
- 238000013507 mapping Methods 0.000 claims description 38
- 230000015654 memory Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 26
- 238000004590 computer program Methods 0.000 claims description 19
- 230000033001 locomotion Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 9
- 230000006870 function Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 23
- 238000013461 design Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 101100067649 Caenorhabditis elegans gta-1 gene Proteins 0.000 description 7
- 230000001174 ascending effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18521—Systems of inter linked satellites, i.e. inter satellite service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
Definitions
- the embodiments of the present application relate to the field of communication technology, and in particular, to an inter-satellite link construction method and a communication device.
- the fifth generation (5th generation, 5G) new radio has entered the commercial deployment stage from the standardization stage.
- the NR standard is researched and designed based on the characteristics of land communications, and has the characteristics of providing high-speed, high-reliability, and low-latency communications for user terminals.
- NTN non-terrestrial networks
- a constellation consists of several satellites distributed in a single or multiple orbital planes as required. All satellites in the same constellation adopt circular orbits with the same altitude and the same inclination angle.
- the orbital plane is evenly distributed along the equator. The satellites are evenly distributed within the orbit. There is a certain relationship between the phases of the satellites between different orbital planes.
- Each satellite can generally establish inter-satellite links with the two satellites in the orbital plane, and can also establish inter-satellite links with satellites in adjacent orbital planes.
- This application provides an inter-satellite link construction method and a communication device to establish inter-satellite links in satellite constellations with discrete orbits.
- this application provides an inter-satellite link construction method, which can be performed by a satellite.
- the satellite can be a geostationary satellite, a non-geostationary satellite, an artificial satellite, a low-orbit satellite, a medium-orbit satellite, a high-orbit satellite, etc. , this application is not specifically limited here.
- the method includes: the first satellite receives an inter-satellite link creation message from the second satellite, and the inter-satellite link creation message includes at least one of the following: the address of the second satellite, the satellite number of the second satellite; The address is determined based on the projection position of the second satellite on the second ground projection trajectory; the second satellite and the first satellite satisfy the inter-satellite link matching rules, and the first satellite creates an inter-satellite link between the first satellite and the second satellite; The inter-satellite link matching rule is determined based on at least one of the following parameters: the address of the second satellite and the satellite number of the second satellite.
- the satellite when constructing an inter-satellite link, the satellite is determined based on the address of the satellite or the satellite number of the satellite, regardless of the orbit of the satellite.
- the inter-satellite link constructed in this way can adapt to satellite constellations with discrete orbits. needs.
- the inter-satellite link matching rule includes at least one of the following: the address of the second satellite and the address of the first satellite satisfy the satellite address difference, the satellite number of the second satellite and the satellite number of the first satellite satisfy The number satisfies the satellite number difference, and there is a mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located; the address of the first satellite is determined based on the projected position of the first satellite on the first ground projection trajectory.
- the inter-satellite link matching rules can be determined based on the address of the satellite, the number of the satellite, and whether there is a mapping relationship in the trajectory of the satellite. In this way, it can be ensured that the satellite can establish an appropriate inter-satellite link and ensure that the satellites in the same orbit on the ground can Inter-satellite link construction efficiency.
- the inter-satellite link matching rules are included in the creation message, or are not included in the creation message, but may be transmitted together with the creation message.
- the inter-satellite link matching rules are pre-stored in the first satellite. This method can reduce signaling overhead.
- the creation message also includes an identification of the ground projection trajectory of the second satellite.
- the creation message also includes the identification of the ground projection trajectory of the second satellite so that the first satellite can simply determine whether the second satellite can establish an inter-satellite link with the first satellite based on the identification of the ground projection trajectory of the second satellite.
- the address of the second satellite is also determined based on the identification of the second ground projection trajectory.
- the address of the second satellite is determined based on the identification of the ground projection trajectory of the second satellite, and satellite addressing is performed based on the identification of the ground projection trajectory of the second satellite in order to construct an inter-satellite link more quickly.
- the first satellite and the second satellite belong to the same ground co-orbit satellite chain, and the conditions for satisfying the satellite address difference include: the address of the first satellite and the address of the second satellite are less than the first address threshold.
- the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite The distance between the two satellites is less than the first distance threshold, and the distance between the first satellite and the second satellite is less than the first latitude threshold.
- the first satellite and the second satellite belong to the same ground co-orbit satellite chain, and the conditions for satisfying the satellite number difference include: the satellite number of the first satellite and the satellite number of the second satellite are less than the first number threshold.
- the ground co-orbit satellite chain includes multiple satellites with the same projected trajectory on the ground;
- the trajectory circle is the trajectory segment of the ground co-orbit satellite chain that crosses the reference line twice in the same direction in the projected trajectory on the ground, and the latitude of the reference line It is fixed.
- the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles.
- the conditions for satisfying the satellite number difference include: the first satellite and the second satellite The distance between the two satellites is less than the second distance threshold, and the distance between the first satellite and the second satellite is less than the second latitude threshold.
- inter-satellite links can ensure the efficiency of inter-satellite link construction for ground co-orbiting satellites.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance between the second satellite is less than the third distance threshold, and the distance between the first satellite and the second satellite is less than the third latitude threshold;
- the satellites in the similar ground co-orbit satellite chain have the same orbital height and the same orbital inclination, and only the projected trajectories on the ground have longitude offsets.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite number difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance to the second satellite is less than a fourth distance threshold or the distance between the first satellite and the second satellite is less than a fourth latitude threshold.
- building an inter-satellite link can ensure the efficiency of inter-satellite link construction for the ground co-orbiting satellite.
- building an inter-satellite link based on whether there is a mapping relationship between the trajectory segments of the first satellite and the second satellite can ensure the efficiency of inter-satellite link construction for ground co-orbiting satellites.
- This method is applicable to any of the following situations: the first satellite and the second satellite belong to the same ground co-orbit satellite chain; or the first satellite and the second satellite belong to a similar ground co-orbit satellite chain; or the first satellite and the second satellite The satellites belong to different ground common orbit satellite chains, and the first satellite and the second satellite do not belong to similar ground common orbit satellite chains.
- the address of the satellite is indicated by the trajectory point or trajectory segment in the satellite's ground projection trajectory, which can make full use of the same properties of the ground projection trajectories of the satellites in the ground co-orbit satellite chain, and reduce routing addressing when routing. complexity and improve the efficiency of routing addressing.
- trajectory points are indicated by one of the following parameters:
- the distance from the reference point moving along the first projection trajectory to the trajectory point, the satellite motion phase difference accumulated from the reference point moving along the first projection trajectory to the trajectory point, the accumulated satellite motion phase difference from the reference point moving along the first projection trajectory to the trajectory point The latitude difference; the reference point is any point in the first projection trajectory; the first projection trajectory is the projection trajectory of any ground co-orbit satellite chain on the ground.
- the trajectory point can be indicated by the distance from the reference point to the trajectory point.
- the reference point is any point in the projected trajectory 1, and the location 10 meters away from the reference point is the trajectory point, then the trajectory point can be 10 meters away.
- the trajectory point can be indicated by the accumulated satellite motion phase difference from the reference point to the trajectory point.
- the reference point is any point in the projection trajectory 1, and the satellite ground projection is at time 1 when it is located at the reference point.
- the trajectory point can be indicated by the accumulated satellite motion phase difference between time 1 and time X+1; the trajectory point can be indicated by the accumulated latitude difference from the reference point to the trajectory point, for example, the reference point is the projected trajectory At any point in 1, the reference point is located at latitude 1. From the reference point to the trajectory point, the Y latitude needs to be passed, then the trajectory point can be indicated by the Y latitude. Track points can be indicated in a number of different ways using the above parameters.
- the first satellite establishes an inter-satellite link between the first satellite and other satellites; establishing an inter-satellite link between the first satellite and other satellites includes at least one of the following conditions triggering:
- Inter-satellite link failure between the first satellite and the second satellite the satellite address difference between the first satellite and the second satellite exceeds the value of the satellite address difference, the satellite number difference between the first satellite and the second satellite exceeds the satellite number difference There is no mapping relationship between the value of and the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located.
- the establishment of inter-satellite links between the first satellite and other satellites can ensure the rapid construction of new inter-satellite links to ensure data transmission.
- the first satellite reconstructs the inter-satellite link between the first satellite and the second satellite; reconstructing the inter-satellite link between the first satellite and the second satellite includes at least one of the following conditions trigger:
- the inter-satellite link between the first satellite and the second satellite is rebuilt to ensure data transmission.
- this application provides an inter-satellite link construction method, which can be executed by satellites.
- the satellites can be geostationary satellites, non-geostationary satellites, artificial satellites, low-orbit satellites, medium-orbit satellites, high-orbit satellites, etc. , this application is not specifically limited here.
- the method includes: the second satellite determines the inter-satellite link creation message, and sends the inter-satellite link creation message to the first satellite.
- the inter-satellite link creation message includes at least one of the following: the address of the second satellite, the address of the second satellite satellite number; the address of the second satellite is determined based on the projected position of the second satellite on the second ground projection trajectory; the inter-satellite link matching rule is determined based on at least one of the following parameters: the address of the second satellite, the third 2. The satellite number of the satellite.
- the inter-satellite link matching rule includes at least one of the following: the address of the second satellite and the address of the first satellite satisfy the satellite address difference, the satellite number of the second satellite and the satellite number of the first satellite satisfy The number satisfies the satellite number difference, and there is a mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located; the address of the first satellite is determined based on the projected position of the first satellite on the first ground projection trajectory.
- the inter-satellite link matching rules are included in the creation message, or are not included in the creation message, but may be transmitted together with the creation message.
- the inter-satellite link matching rules are pre-stored in the first satellite.
- the creation message also includes an identification of the ground projection trajectory of the second satellite.
- the address of the second satellite is also determined based on the identification of the second ground projection trajectory.
- the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite The distance between the two satellites is less than the first distance threshold, and the distance between the first satellite and the second satellite is less than the first latitude threshold;
- the ground co-orbit satellite chain includes multiple satellites with the same projected trajectory on the ground;
- the trajectory circle is the trajectory segment of the ground co-orbit satellite chain that crosses the reference line twice in the same direction in the projected trajectory on the ground, and the latitude of the reference line It is fixed.
- the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles.
- the conditions for satisfying the satellite number difference include: the first satellite and the second satellite The distance between the two satellites is less than the second distance threshold or the distance between the first satellite and the second satellite is less than the second latitude threshold.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance between the second satellite is less than the third distance threshold or the distance between the first satellite and the second satellite is less than the third latitude threshold; or, the first satellite and the second satellite belong to a similar ground co-orbit satellite chain, and the first satellite and the second satellite
- the satellite belongs to the closest orbit circle, and the conditions for satisfying the satellite number difference include: the distance between the first satellite and the second satellite is less than the fourth distance threshold or the distance between the first satellite and the second satellite is less than the fourth latitude threshold; where, similar The satellites in the ground co-orbit satellite chain have the same orbital altitude and the same orbital inclination, and only the projected trajectories on the ground have longitude offsets.
- the mapping relationship indicates that the first trajectory segment identifier where the first satellite is located corresponds to the second trajectory segment identifier where the second satellite is located.
- trajectory points are indicated by one of the following parameters:
- the distance from the reference point moving along the first projection trajectory to the trajectory point, the satellite motion phase difference accumulated from the reference point moving along the first projection trajectory to the trajectory point, the accumulated satellite motion phase difference from the reference point moving along the first projection trajectory to the trajectory point The latitude difference; the reference point is any point in the first projection trajectory; the first projection trajectory is the projection trajectory of any ground co-orbit satellite chain on the ground.
- inventions of the present application provide a communication device.
- the communication device may be a first satellite (such as the first satellite in the first aspect) or a chip provided inside the first satellite; the communication device may be The second satellite (such as the second satellite in the second aspect) or a chip disposed inside the second satellite.
- the communication device has the function of realizing the above-mentioned first aspect.
- the communication device includes modules or units or means corresponding to the steps involved in any one of the above-mentioned first to second aspects.
- the function Either unit or means can be implemented by software, or implemented by hardware, or can be implemented by hardware executing corresponding software.
- the communication device is used to implement the method in any possible design of the first aspect.
- the communication device includes a processing unit and a transceiver unit, where the transceiver unit can be used to send and receive signals, to To realize communication between the communication device and other devices, for example, the transceiver unit is used to receive the inter-satellite link creation message of the second satellite; the processing unit can be used to perform some internal operations of the communication device.
- the transceiver unit may be called an input-output unit, a communication unit, etc., the transceiver unit may be a transceiver, and the processing unit may be a processor.
- the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.;
- the processing unit may be a processor, a processing circuit or a logic circuit, etc.
- the transceiver unit is configured to receive an inter-satellite link creation message from the second satellite.
- the inter-satellite link creation message includes at least one of the following: the address of the second satellite, the satellite number of the second satellite Number; the address of the second satellite is determined based on the projection position of the second satellite on the second ground projection trajectory; the processing unit is used for the second satellite and the first satellite to meet the inter-satellite link matching rules, and the first satellite creates the first satellite An inter-satellite link with the second satellite; wherein the inter-satellite link matching rule is determined based on at least one of the following parameters: the address of the second satellite and the satellite number of the second satellite.
- the communication device is used to implement the method in any possible design of the second aspect above.
- the processing unit is used to determine the inter-satellite link creation message; the transceiver unit is used to send the message to the first
- the satellite sends an inter-satellite link creation message, and the inter-satellite link creation message includes at least one of the following: the address of the second satellite, the satellite number of the second satellite; the address of the second satellite is projected on the second ground based on the second satellite
- the projected position of the trajectory is determined; the inter-satellite link matching rule is determined based on at least one of the following parameters: the address of the second satellite and the satellite number of the second satellite.
- the inter-satellite link matching rule includes at least one of the following: the address of the second satellite and the address of the first satellite satisfy the satellite address difference, the satellite number of the second satellite and the satellite number of the first satellite satisfy The number satisfies the satellite number difference, and there is a mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located; the address root of the first satellite Determined based on the projection position of the first satellite on the first ground projection trajectory.
- the inter-satellite link matching rules are included in the creation message or pre-stored in the first satellite.
- the creation message also includes an identification of the ground projection trajectory of the second satellite.
- the address of the second satellite is also determined based on the identification of the second ground projection trajectory.
- the first satellite and the second satellite belong to the same ground co-orbit satellite chain
- the conditions for satisfying the satellite address difference include: the address of the first satellite and the address of the second satellite are less than the first address threshold; and/ Or, the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles.
- the conditions for satisfying the satellite address difference include: the distance between the first satellite and the second satellite is less than the distance between the first satellite and the second satellite.
- a distance threshold or the distance between the first satellite and the second satellite is less than the first latitude threshold; or the first satellite and the second satellite belong to the same ground co-orbit satellite chain, and the conditions for satisfying the satellite number difference include: the satellite number of the first satellite and The satellite number of the second satellite is less than the first number threshold; and/or the first satellite and the second satellite belong to the same ground common orbit satellite chain, and the first satellite and the second satellite belong to adjacent orbit circles, and the satellite number difference is satisfied.
- the conditions include: the distance between the first satellite and the second satellite is less than the second distance threshold or the distance between the first satellite and the second satellite is less than the second latitude threshold; wherein, the ground co-orbit satellite chain includes multiple projected trajectories on the ground The same satellite; the trajectory circle is the trajectory segment where the ground common trajectory satellite chain crosses the reference line twice in the same direction in the projected trajectory on the ground. The latitude of the reference line is fixed.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance between the second satellite is less than the third distance threshold or the distance between the first satellite and the second satellite is less than the third latitude threshold; or, the first satellite and the second satellite belong to a similar ground co-orbit satellite chain, and the first satellite and the second satellite
- the satellite belongs to the closest orbit circle, and the conditions for satisfying the satellite number difference include: the distance between the first satellite and the second satellite is less than the fourth distance threshold or the distance between the first satellite and the second satellite is less than the fourth latitude threshold; where, similar ground
- the satellites in the co-orbit satellite chain have the same orbital altitude and the same orbital inclination, and only the projected trajectories on the ground have longitude offsets.
- the mapping relationship indicates that the first trajectory segment identifier where the first satellite is located corresponds to the second trajectory segment identifier where the second satellite is located.
- the first satellite and the second satellite belong to the same ground co-orbit satellite chain; or the first satellite and the second satellite belong to a similar ground co-orbit satellite chain; or the first satellite and the second satellite belong to Different ground common orbit satellite chains, and the first satellite and the second satellite do not belong to similar ground common orbit satellite chains.
- the address of the first satellite indicates a trajectory point of the first satellite in the ground projection trajectory or a point within the neighborhood of the trajectory point, or the address of the first satellite indicates the first satellite in the ground projection.
- the address of the second satellite indicates the trajectory point of the second satellite in the ground projected trajectory or a point within the neighborhood of the trajectory point, or, the address of the second satellite
- the address indicates a trajectory segment in the ground projected trajectory of the second satellite or a trajectory segment within a neighborhood range of the trajectory segment.
- trajectory points are indicated by one of the following parameters:
- the distance from the reference point moving along the first projection trajectory to the trajectory point, the satellite motion phase difference accumulated from the reference point moving along the first projection trajectory to the trajectory point, the accumulated satellite motion phase difference from the reference point moving along the first projection trajectory to the trajectory point The latitude difference; the reference point is any point in the first projection trajectory; the first projection trajectory is the projection trajectory of any ground co-orbit satellite chain on the ground.
- the processing unit is also used to establish an inter-satellite link between the first satellite and other satellites; establishing an inter-satellite link between the first satellite and other satellites includes at least one of the following conditions: kind of trigger:
- the inter-satellite link failure between the first satellite and the second satellite the satellite address difference between the first satellite and the second satellite exceeds the satellite address.
- the value of the satellite address difference, the value of the satellite number difference between the first satellite and the second satellite exceeds the value of the satellite number difference, and there is no mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located.
- the processing unit is also used to reconstruct the inter-satellite link between the first satellite and the second satellite; reconstructing the inter-satellite link between the first satellite and the second satellite at least includes the following conditions:
- the value of the satellite address difference is changed, the value of the satellite number difference is changed, and the mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located is changed.
- the communication device includes a processor and may also include a transceiver, the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design in the first aspect. Or a method in the implementation.
- the communication device may further include one or more memories, the memory being used to couple with the processor, and the memory may store necessary computer programs to implement the functions involved in any one of the above first to second aspects. or instructions.
- the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any of the possible designs or implementations of the first to second aspects. method.
- the communication device includes a processor, which may be coupled to a memory.
- the memory may store necessary computer programs or instructions to implement the functions involved in any one of the above-mentioned first to second aspects.
- the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any of the possible designs or implementations of the first to second aspects. method.
- the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute any possible design of the above first to second aspects or Methods in the implementation.
- the processor can be implemented by hardware or software.
- the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be implemented by software.
- the processor may be a general-purpose processor implemented by reading software code stored in memory.
- the above processors may be one or more, and the memories may be one or more.
- the memory can be integrated with the processor, or the memory can be provided separately from the processor. During the specific implementation process, the memory and the processor can be integrated on the same chip, or they can be respectively provided on different chips. The embodiments of this application do not limit the type of memory and the arrangement method of the memory and the processor.
- embodiments of the present application provide a communication system, which includes the first satellite and the second satellite in the first aspect.
- the present application provides a chip system, which includes a processor for implementing the method described in any of the possible designs of the first aspect through logic circuits or executing computer instructions.
- the chip system may also include a memory for storing the above computer instructions.
- the chip system can be composed of chips or include chips and other discrete devices.
- the present application also provides a computer-readable storage medium.
- Computer-readable instructions are stored in the computer-readable storage medium.
- the computer-readable instructions When the computer-readable instructions are run on a computer, the computer executes any of the steps in the first aspect.
- One possible design approach One possible design approach.
- the present application provides a computer program product containing instructions that, when run on a computer, cause the computer to execute the methods of each embodiment of the first aspect.
- Figure 1 shows a schematic diagram of a land communication system
- Figure 2 shows a schematic diagram of a non-terrestrial communication system provided by an embodiment of the present application
- FIG. 3 shows a schematic diagram of the 5G satellite communication system architecture provided by the embodiment of this application.
- Figure 4A shows a schematic diagram of a ground co-orbit satellite chain
- Figure 4B shows a schematic diagram of a similar ground co-orbit satellite chain
- Figure 4C shows a schematic diagram of adjacent trajectory circles
- Figure 4D shows a schematic diagram of a partition track circle
- Figure 5 shows a schematic diagram of the movement of ground co-orbit satellites
- Figure 6 shows a schematic diagram of another communication system architecture provided by an embodiment of the present application.
- Figure 7 shows a schematic flowchart of an inter-satellite link construction method provided by an embodiment of the present application
- Figure 8 shows a schematic diagram of the address of the satellite provided by the embodiment of the present application.
- Figure 9 shows a schematic diagram of an inter-satellite link construction provided by an embodiment of the present application.
- Figure 10 shows a schematic diagram of an inter-satellite link construction provided by an embodiment of the present application.
- Figure 11 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 12 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 13 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 1 shows the architecture of a terrestrial network communication system.
- the communication system 100 may include a network device 110 and terminal devices 101 to 106 . It should be understood that the communication system 100 may include more or fewer network devices or terminal devices. Network equipment or terminal equipment can be hardware, functionally divided software, or a combination of the above two.
- the terminal device 104 to the terminal device 106 can also form a communication system.
- the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106.
- Network devices and terminal devices can communicate through other devices or network elements.
- the network device 110 can send downlink data to the terminal devices 101 to 106, and can also receive uplink data sent by the terminal devices 101 to 106.
- the terminal devices 101 to 106 can also send uplink data to the network device 110, and can also receive downlink data sent by the network device 110.
- the network device 110 is a node in a radio access network (radio access network, RAN), which may also be called a base station or a RAN node (or device).
- radio access network radio access network
- RAN radio access network
- some examples of access network equipment are: next generation node B (gNB), transmitting point (TP), transmission reception point (TRP), home base station in the 5G network (for example, home evolved NodeB, or home Node B, HNB), macro base station, micro base station (also called small station), relay station, base band unit (BBU), or sixth generation ( 6th generation, 6G ) and other network equipment in communication systems evolved after 5G.
- Network equipment 110 also It can be other devices with network device functions.
- the network device 110 can also be device-to-device (D2D), vehicle-to-everything (V2X), machine-to-machine (machine- Equipment that undertakes base station functions in to-machine (M2M) communications, etc., can also include centralized units (centralized units, CUs) and distributed units (distributed units) in cloud radio access network (cloud radio access network, C-RAN) systems.
- D2D device-to-device
- V2X vehicle-to-everything
- M2M machine-to-machine
- C-RAN cloud radio access network
- Network equipment in unit (DU) and NTN communication systems can be deployed on high-altitude platforms or satellites. The embodiments of the present application do not specifically limit this.
- Terminal equipment 101 to 106 which can also be called UE, mobile station (MS), mobile terminal (MT), etc., are devices that provide voice or data connectivity to users. They can also be called It is an IoT device.
- the terminal devices 101 to 106 include handheld devices with wireless connection functions, vehicle-mounted devices, and the like.
- the terminal devices 101 to 106 can be: mobile phones, tablets, laptops, PDAs, customer-premises equipment (CPE), mobile internet devices (MID), Wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) devices, Augmented reality (AR) equipment, wireless terminals in industrial control, smart home equipment (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, self-driving (self-driving) Wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, and wireless terminals in smart city, Or wireless terminals and flying equipment (for example, smart robots, hot air balloons, drones, airplanes) in smart homes, etc.
- the terminal devices 101 to 106 can also be other devices with terminal functions.
- the terminal devices 101 to 106 can also be devices that serve as terminal functions in D2D
- the satellite network routing method can be applied to the NTN communication system.
- the NTN communication system includes satellite 201 and terminal equipment 202.
- the terminal device 202 reference may be made to the related descriptions of the above-mentioned terminal devices 101 to 106.
- Satellite 201 may also be called a high-altitude platform, high-altitude aircraft, or satellite base station.
- the satellite 201 can be regarded as one or more network devices in the terrestrial network communication system architecture.
- Satellite 201 provides communication services to terminal equipment 202, and satellite 201 can also be connected to core network equipment.
- the structure and functions of the satellite 201 can also refer to the above description of the network equipment.
- the communication method between the satellite 201 and the terminal device 202 may also refer to the description in Figure 1 above. I won’t go into details here.
- a 5G satellite communication system architecture is shown in Figure 3.
- Ground terminal equipment accesses the network through the 5G new air interface.
- 5G base stations are deployed on satellites and connected to the ground core network through wireless links.
- wireless links there are wireless links between satellites to complete signaling interaction and user data transmission between base stations. Descriptions of the devices and interfaces in Figure 3 are as follows:
- 5G new air interface the wireless link between the terminal and the base station.
- Xn interface The interface between the 5G base station and the base station. It is mainly used for signaling interactions such as switching.
- NG interface The interface between the 5G base station and the 5G core network. It mainly interacts with the non-access stratum (NAS) signaling of the core network, as well as user business data.
- NAS non-access stratum
- the network equipment in the terrestrial network communication system and the satellites in the NTN communication system can be collectively regarded as network equipment.
- the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
- the technical solutions provided by the embodiments of the present application will be described by taking the device used to implement the functions of the network device as a satellite as an example. It can be understood that when the method provided by the embodiment of the present application is applied to a terrestrial network communication system, the actions performed by the satellite can be applied to the base station or network equipment for execution.
- the device for realizing the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the above-mentioned satellites may be geostationary satellites, non-geostationary satellites, artificial satellites, low-orbit satellites, medium-orbit satellites, high-orbit satellites, etc., which are not specifically limited in this application.
- Ground co-orbit satellite chain includes a group of satellites with the same orbital inclination, but each satellite is in a discrete orbit, and the projected trajectory on the ground is the same, as shown in Figure 4A, where satellites 1, Satellite 2 and satellite 3 are a group of satellites with the same orbital inclination angle, and their projected trajectories on the ground are all trajectory 1. This is only an illustrative description and is not specifically limited. In order to make the ground co-orbit satellite chain have the same trajectory on the ground, all satellites in the satellite chain need to have the same orbital inclination. The right ascension of the ascending node (RAAN) of any two satellites must be different (RAAN).
- RAAN ascending node
- ⁇ E is the angular velocity of the earth's rotation
- n 0 is the angular velocity of the satellite motion
- n 0 is the angular velocity of the satellite motion
- n 0 is the angular velocity of the satellite motion
- ⁇ RAAN is the ascending node right ascension difference between satellite orbits
- ⁇ AoL is the ascending angular distance difference between satellites.
- Similar ground common orbit satellite chain The satellites in the similar ground common orbit satellite chain have the same orbital height and the same orbital inclination, and only the projected trajectory on the ground has a longitude offset.
- satellite 1, satellite 2, satellite 3 and satellite 4 are a group of satellites with the same orbital inclination, but the projected trajectories of satellite 1 and satellite 2 on the ground are Trajectory 1, the projected trajectories of satellite 3 and satellite 4 on the ground are trajectory 2.
- trajectory 1 and trajectory 2 There is only a longitude offset between trajectory 1 and trajectory 2. This is only an exemplary description and is not specifically limited.
- Trajectory circle The trajectory segment of the ground co-orbit satellite chain crossing the reference line twice in the same direction in the projected trajectory on the ground.
- the latitude of the reference line is fixed, and the reference line is located in the ground projection trajectory of the satellite in the ground co-orbit satellite chain.
- the latitude of the reference line can be 45 degrees.
- track circle 1 and track circle 2 are taken as examples for illustration, where track circle 1 and track circle 2 are adjacent track circles.
- Initial longitude of the track circle The geographical longitude of the track circle that crosses the reference line for the first time, which can be used to indicate the distance of the track circle.
- this application provides a new satellite network routing method by taking advantage of the characteristics of the satellites in the ground common trajectory satellite chain projecting common trajectories on the ground.
- this method can also be applied to the communication system shown in Figure 6.
- the description of the equipment in Figure 6 is as follows:
- Ground facilities including terminals and ground stations and other ground equipment connected to the ground co-orbit constellation.
- Gateway station communicates with satellites (terrestrial co-orbit constellations) through feeder links and provides transit between satellites and core networks.
- Step 701 The second satellite sends an inter-satellite link creation message of the second satellite to the first satellite.
- the inter-satellite link creation message includes at least one of the following: the address of the second satellite, the satellite number of the second satellite; The addresses of the two satellites are determined based on the projected position of the second satellite on the second ground projection trajectory.
- the inter-satellite link creation message can include only the address of the satellite, only the satellite number, or both satellites.
- the address also includes the number of the satellite, which is not specifically limited in this application.
- the address of the satellite can be determined based on the satellite being a satellite in a ground co-orbit satellite chain and having the same properties of the projected trajectory on the ground, and based on the projected position of the satellite's projected trajectory on the ground.
- the address of the second satellite can be determined based on the location of the second satellite on the ground.
- the projection position of the second ground projection trajectory is determined; the address of the first satellite can be determined based on the projection position of the first satellite on the first ground projection trajectory.
- the address of the first satellite indicates a trajectory point of the first satellite in the ground projection trajectory or a point within the neighborhood of the trajectory point, or the address of the first satellite indicates the first satellite in the ground projection trajectory. Trajectory segments in or within the neighborhood of a trajectory segment.
- the address of the second satellite indicates a trajectory point of the second satellite in the ground projection trajectory or a point within the neighborhood of the trajectory point, or the address of the second satellite indicates a trajectory segment or trajectory segment of the second satellite in the ground projection trajectory. Trajectory segments within the neighborhood.
- the address of the satellite is indicated by the trajectory point or trajectory segment in the satellite's ground projection trajectory, which can make full use of the same properties of the ground projection trajectories of the satellites in the ground co-orbit satellite chain, and reduce routing addressing when routing. complexity and improve the efficiency of routing addressing.
- the trajectory point is indicated by one of the following parameters:
- different satellites may be located in different terrestrial common-orbit satellite chains. Based on the trajectory identifier projected on the ground by the terrestrial common-orbit satellite chain, the projected trajectory of the satellite can be determined. Based on this, it is easier and more convenient to determine the address of the satellite.
- the inter-satellite link matching rules include at least one of the following: the address of the second satellite and the address of the first satellite satisfy the satellite address difference; the satellite number of the second satellite and the satellite number of the first satellite satisfy the satellite number Difference, there is a mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located.
- Case 2 The inter-satellite link matching rule is that the satellite number of the second satellite and the satellite number of the first satellite satisfy the satellite number difference.
- first address threshold, first number threshold, first distance threshold, second distance threshold, third distance threshold, fourth distance threshold, first latitude threshold, and The second latitude threshold, the third latitude threshold and the fourth latitude threshold can be flexibly set based on the actual situation. This application does not specifically limit the specific values of these thresholds. Optionally, some thresholds can also be set to the same, For example, if the first latitude threshold is the same as the second latitude threshold, this is only an illustrative description and is not specifically limited.
- pairing according to the following rules: when the satellite enters the configured trajectory number + GTAR, it looks for the satellite in the trajectory number + GTAR of another satellite chain to build an inter-satellite link. When the satellite leaves the configured trajectory number + GTAR, the satellite disconnects the inter-satellite link.
- two trajectories with intersection points are paired, and the satellites in the two trajectories establish inter-satellite links that can be maintained for a long time.
- the first satellite can also establish inter-satellite links with other satellites; establish inter-satellite links between the first satellite and other satellites.
- Inter-satellite links include at least one of the following trigger conditions:
- the inter-satellite link failure between the first satellite and the second satellite (for example, the communication link between the first satellite and the second satellite is broken, the second satellite communication failure, etc.), the satellite between the first satellite and the second satellite
- the address difference exceeds the value of the satellite address difference
- the satellite number difference between the first satellite and the second satellite exceeds the satellite number difference, and there is no mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located.
- the first satellite can also re-establish the inter-satellite link between the first satellite and the second satellite; re-establishing the inter-satellite link between the first satellite and the second satellite includes at least one of the following conditions triggering:
- the transceiver unit may be called an input-output unit, a communication unit, etc.
- the transceiver unit may be a transceiver
- the processing unit may be a processor.
- the communication device is a module (such as a chip) in a communication device
- the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.
- the processing unit may be a processor, a processing circuit or a logic circuit, etc.
- the device may be the above-mentioned first satellite, second satellite, etc.
- the processing unit 1101 is used to determine the inter-satellite link creation message; the transceiver unit 1102 is used to send the inter-satellite link creation message to the first satellite, and the inter-satellite link creation message at least includes the following: One: the address of the second satellite, the satellite number of the second satellite; the address of the second satellite is determined based on the projected position of the second satellite on the second ground projection trajectory; the inter-satellite link matching rule is determined based on at least one of the following parameters of: the address of the second satellite and the satellite number of the second satellite.
- the inter-satellite link matching rule includes at least one of the following: the address of the second satellite and the address of the first satellite satisfy the satellite address difference, the satellite number of the second satellite and the satellite number of the first satellite satisfy The number satisfies the satellite number difference, and there is a mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located; the address of the first satellite is determined based on the projected position of the first satellite on the first ground projection trajectory.
- the inter-satellite link matching rules are included in the creation message or pre-stored in the first satellite.
- the conditions for satisfying the satellite number difference include: the distance between the first satellite and the second satellite Less than the second distance threshold or the distance between the first satellite and the second satellite is less than the second latitude threshold; wherein, the ground co-orbit satellite chain includes multiple satellites with the same projected trajectory on the ground; the trajectory circle is the ground co-orbit satellite chain In the trajectory segment of the projected trajectory on the ground that crosses the reference line twice in the same direction, the latitude of the reference line is fixed.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite address difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance between the second satellite is less than the third distance threshold or the distance between the first satellite and the second satellite is less than the third latitude threshold; among them, the orbital heights and orbital inclinations of the satellites in the similar ground co-orbiting satellite chain are the same, and only the projection on the ground There is a longitude offset in the trajectory.
- the first satellite and the second satellite belong to a similar ground common orbit satellite chain, and the first satellite and the second satellite belong to the closest orbit circle.
- the conditions for satisfying the satellite number difference include: the first satellite and the second satellite belong to the closest orbit circle.
- the distance between the second satellite and the second satellite is less than the fourth distance threshold or the distance between the first satellite and the second satellite is less than the fourth latitude threshold; where, the satellites in the similar ground co-orbit satellite chain have the same orbital height and the same orbital inclination, and only the projection on the ground There is a longitude offset in the trajectory.
- the first satellite and the second satellite belong to the same ground co-orbit satellite chain; or the first satellite and the second satellite belong to a similar ground co-orbit satellite chain; or the first satellite and the second satellite belong to Different ground common orbit satellite chains, and the first satellite and the second satellite do not belong to similar ground common orbit satellite chains.
- trajectory points are indicated by one of the following parameters:
- the processing unit 1101 is also used to establish an inter-satellite link between the first satellite and other satellites; establishing an inter-satellite link between the first satellite and other satellites at least includes the following conditions: A trigger:
- Inter-satellite link failure between the first satellite and the second satellite the satellite address difference between the first satellite and the second satellite exceeds the value of the satellite address difference, the satellite number difference between the first satellite and the second satellite exceeds the satellite number difference There is no mapping relationship between the value of and the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located.
- the processing unit 1101 is also used to reconstruct the inter-satellite link between the first satellite and the second satellite; reconstructing the inter-satellite link between the first satellite and the second satellite at least includes the following conditions One of the triggers:
- the value of the satellite address difference is changed, the value of the satellite number difference is changed, and the mapping relationship between the trajectory segment where the second satellite is located and the trajectory segment where the first satellite is located is changed.
- Communication device 1200 may be a chip or a system on a chip.
- the communication device may be located in the equipment involved in any of the above method embodiments, such as the first satellite, network equipment, ground equipment, etc., to perform actions corresponding to the equipment.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the processor 1210 is used to execute the computer program stored in the memory 1220 to implement the actions of each device in any of the above method embodiments.
- Communication device 1200 may also include memory 1220 for storing computer programs.
- the memory 1220 and the processor 1210 are coupled. Coupling is an indirect coupling or communication connection between devices, units or modules, which can be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
- the memory 1220 is integrated with the processor 1210.
- the communication device 1200 may or may not include the transceiver 1230, which is illustrated by a dotted box in the figure.
- the communication device 1200 may interact with other devices through the transceiver 1230.
- the transceiver 1230 may be a circuit, a bus, a transceiver, or any other device that may be used for information exchange.
- the communication device 1200 may be the first satellite or ground equipment in the implementation of the above methods.
- connection medium between the above-mentioned transceiver 1230, processor 1210 and memory 1220 is not limited in the embodiment of the present application.
- the memory 1220, the processor 1210 and the transceiver 1230 are connected through a bus in Figure 12.
- the bus is represented by a thick line in Figure 12.
- the connection methods between other components are only schematically explained. It is not limited.
- the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 12, but it does not mean that there is only one bus or one type of bus.
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the steps in the embodiments of the present application.
- a general-purpose processor may be a microprocessor or any conventional processor, etc.
- the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
- the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
- Memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- the memory in the embodiment of the present application can also be a circuit or any other device capable of performing a storage function, used to store computer programs, program instructions and/or data.
- the embodiment of the present application also provides another communication device 1300, including: an interface circuit 1310 and a logic circuit 1320; the interface circuit 1310 can be understood as an input and output interface, and can be used to perform any of the above methods.
- the sending and receiving steps of each device in the embodiment; the logic circuit 1320 can be used to run codes or instructions to perform the method performed by each device in any of the above embodiments, which will not be described again.
- embodiments of the present application also provide a computer-readable storage medium that stores instructions. When the instructions are executed, each device in any of the above method embodiments is executed. be implemented.
- the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
- inventions of the present application provide a communication system.
- the communication system includes the first satellite, ground equipment and other satellites mentioned in any of the above method embodiments, and can be used to perform each of the above method embodiments.
- embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may employ computer-usable storage media (including but not limited to magnetic disk storage, compact disc read-only memory (CD-ROM)) containing computer-usable program code therein. , optical storage, etc.).
- computer-usable storage media including but not limited to magnetic disk storage, compact disc read-only memory (CD-ROM)
- CD-ROM compact disc read-only memory
- These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
- Instructions are provided for implementing a process or processes in a flowchart and/or a block diagram The steps for a function specified in a box or boxes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Relay Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种星间链路构建方法及通信装置,涉及通信技术领域,第一卫星接收第二卫星的星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定的;若第二卫星与第一卫星满足星间链路匹配规则,第一卫星创建第一卫星与第二卫星之间的星间链路;其中,星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、第二卫星的卫星编号。通过该方式可以在地面共轨迹星座中建立星间链路。
Description
相关申请的交叉引用
本申请要求在2022年06月14日提交中国专利局、申请号为202210673153.7、申请名称为“一种星间链路构建方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,尤其涉及一种星间链路构建方法及通信装置。
目前,第五代(5th generation,5G)新空口(new radio,NR)已经从标准化阶段进入到商业部署阶段。NR标准是针对于陆地通信特点进行研究设计,具有为用户终端提供高速率、高可靠、低时延通信的特点。相比于陆地通信,非陆地网络(non-terrestrial networks,NTN)通信具有覆盖区域大、组网灵活等特点。当前,各研究院、通信组织、公司参等均参与研究NTN通信技术与标准,力图将天、空、地通信构建成一个统一的通信网络。
在NTN通信中,太空中可能部署大量的卫星,大量的卫星可构成星座,大规模通信卫星星座通常采用沃克(Walker)星座来设计。星座由若干颗卫星按要求分布在单个或多个轨道平面构成。同一星座所有卫星采用高度相同,倾角相同的圆轨道,轨道平面沿赤道均匀分布,卫星在轨道内均匀分布,不同轨道面之间卫星的相位存在一定关系。对每颗卫星一般可以与轨道面内的前后两颗卫星建立星间链路,还可以和相邻轨道面的卫星建立星间链路。
但是,当卫星星座中的不同卫星的轨道是离散的,不在同一个轨道内时,采用上述Walker星座的建立星间链路的方式不再适用。
发明内容
本申请提供一种星间链路构建方法及通信装置,以在轨道离散的卫星星座中建立星间链路。
第一方面,本申请提供一种星间链路构建方法,该方法可通过卫星来执行,该卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定。
该方法包括:第一卫星接收第二卫星的星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定;第二卫星与第一卫星满足星间链路匹配规则,第一卫星创建第一卫星与第二卫星之间的星间链路;其中,星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、第二卫星的卫星编号。
本申请中,卫星在构建星间链路时,是基于卫星的地址或卫星的卫星编号确定的,与卫星所在的轨道无关,通过该方式构建的星间链路可以适配轨道离散的卫星星座的需求。
在一种可能的方式中,星间链路匹配规则至少包括以下中的一种:第二卫星的地址与第一卫星的地址满足卫星地址差、第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差、第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系;第一卫星的地址根据第一卫星在第一地面投影轨迹的投影位置确定的。
本申请中,星间链路匹配规则可基于卫星的地址、卫星的编号以及卫星所在轨迹是否存在映射关系来确定,通过该方式可以保证卫星可以建立合适的星间链路,保证地面共轨迹卫星的星间链路构建效率。
在一种可能的方式中,星间链路匹配规则包括在创建消息中,或者不包括在创建消息中,但可同创建消息一起传输。
在一种可能的方式中,星间链路匹配规则预存在第一卫星中。该方式可以减少信令开销。
在一种可能的方式中,创建消息还包括第二卫星地面投影轨迹的标识。
本申请中,创建消息还包括第二卫星地面投影轨迹的标识以便第一卫星可以基于第二卫星地面投影轨迹的标识简单判断第二卫星是否可以与第一卫星构建星间链路。
在一种可能的方式中,第二卫星的地址还根据第二地面投影轨迹的标识确定。
本申请中,第二卫星的地址根据第二卫星地面投影轨迹的标识确定,基于第二卫星地面投影轨迹标识进行卫星编址以便更加快速地构建星间链路。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星地址差的条件包括:第一卫星的地址与第二卫星的地址小于第一地址阈值。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第一距离阈值、第一卫星与第二卫星距离的小于第一纬度阈值。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星编号差的条件包括:第一卫星的卫星编号与第二卫星的卫星编号小于第一编号阈值。
其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第二距离阈值、第一卫星与第二卫星距离的小于第二纬度阈值。
本申请中,在确定第一卫星与第二卫星为地面共轨迹卫星时,基于距离差、纬度差、地址差等,构建星间链路可保证地面共轨迹卫星的星间链路构建效率。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第三距离阈值、第一卫星与第二卫星距离的小于第三纬度阈值;
其中,相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第四距离阈值或第一卫星与第二卫星距离的小于第四纬度阈值。
本申请中,在确定第一卫星与第二卫星为相似地面共轨迹卫星时,基于距离差、纬度差、地址差等,构建星间链路可保证地面共轨迹卫星的星间链路构建效率。
在一种可能的方式中,映射关系指示第一卫星所在的第一轨迹段标识对应第二卫星所在的第二轨迹段标识。
本申请中,基于第一卫星与第二卫星所在的轨迹段之间是否存在映射关系构建星间链路可保证地面共轨迹卫星的星间链路构建效率。该方式适用于以下任一种情况:第一卫星与第二卫星属于同一地面共轨迹卫星链;或,第一卫星与第二卫星属于相似地面共轨迹卫星链;或,第一卫星与第二卫星属于不同地面共轨迹卫星链,且第一卫星与第二卫星不属于相似地面共轨迹卫星链。
在一种可能的方式中,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段;第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。
本申请中,卫星的地址通过卫星地面投影轨迹中的轨迹点或轨迹段指示,可以充分利用地面共轨迹卫星链中的卫星在地面投影轨迹相同的性质,在路由编址时,减少路由编址的复杂度,提高路由编址的效率。
在一种可能的方式中,轨迹点通过下述参数中的一种指示:
从参考点沿着第一投影轨迹移动到轨迹点的距离、从参考点沿着第一投影轨迹移动到轨迹点累积的卫星运动相位差、从参考点沿着第一投影轨迹移动到轨迹点累积的纬度差;参考点为第一投影轨迹中的任意一点;第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
需要说明的是,轨迹点可通过参考点到轨迹点的距离指示,如,参考点为投影轨迹1中的任意一点,距离参考点10米的位置为轨迹点,那么轨迹点则可通过10米来指示;轨迹点可通过参考点到轨迹点累积的卫星运动相位差指示,如,参考点为投影轨迹1中的任意一点,卫星地面投影位于参考点时处于时刻1,经过X时刻后卫星地面投影位于轨迹点,那么轨迹点则可通过时刻1到时刻X+1之间累计的卫星运动相位差指示;轨迹点可通过参考点到轨迹点累积的纬度差指示,如,参考点为投影轨迹1中的任意一点,参考点位于纬度1,从参考点到轨迹点需要经过Y纬度,那么轨迹点则可通过Y纬度来指示。通过上述参数可采用多种不同的方式指示轨迹点。
在一种可能的方式中,第一卫星建立第一卫星与其他卫星之间的星间链路;建立第一卫星与其他卫星之间的星间链路至少包括以下条件中的一种触发:
第一卫星与第二卫星之间的星间链路故障、第一卫星与第二卫星的卫星地址差超过卫星地址差的取值、第一卫星与第二卫星的卫星编号差超过卫星编号差的取值、第二卫星所在的轨迹段与第一卫星所在的轨迹段不存在映射关系。
本申请中,第一卫星与第二卫星之间的星间链路故障时,第一卫星与其他卫星构建星间链路可保证快速构建新的星间链路,以确保数据的传输。
在一种可能的方式中,第一卫星重建第一卫星与第二卫星之间的星间链路;重建第一卫星与第二卫星之间的星间链路至少包括以下条件中的一种触发:
卫星地址差的取值变更、卫星编号差的取值变更、第二卫星所在的轨迹段与第一卫星
所在的轨迹段的映射关系变更。
本申请中,当星间链路匹配规则发生变化时,重新构建第一卫星与第二卫星之间的星间链路,以确保数据的传输。
第二方面,本申请提供一种星间链路构建方法,该方法可通过卫星来执行,该卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星、高轨道卫星等,本申请在此不具体限定。
该方法包括:第二卫星确定星间链路创建消息,向第一卫星发送星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定的;星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、所述第二卫星的卫星编号。
在一种可能的方式中,星间链路匹配规则至少包括以下中的一种:第二卫星的地址与第一卫星的地址满足卫星地址差、第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差、第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系;第一卫星的地址根据第一卫星在第一地面投影轨迹的投影位置确定的。
在一种可能的方式中,星间链路匹配规则包括在创建消息中,或者不包括在创建消息中,但可同创建消息一起传输。
在一种可能的方式中,星间链路匹配规则预存在第一卫星中。
在一种可能的方式中,创建消息还包括第二卫星地面投影轨迹的标识。
在一种可能的方式中,第二卫星的地址还根据第二地面投影轨迹的标识确定。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星地址差的条件包括:第一卫星的地址与第二卫星的地址小于第一地址阈值。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第一距离阈值、第一卫星与第二卫星距离的小于第一纬度阈值;
其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星编号差的条件包括:第一卫星的卫星编号与第二卫星的卫星编号小于第一编号阈值;其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第二距离阈值或第一卫星与第二卫星距离的小于第二纬度阈值。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第三距离阈值或第一卫星与第二卫星距离的小于第三纬度阈值;或,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地编号差的条件包括:第一卫星与第二卫星距离的小于第四距离阈值或第一卫星与第二卫星距离的小于第四纬度阈值;其中,相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
在一种可能的方式中,映射关系指示第一卫星所在的第一轨迹段标识对应第二卫星所在的第二轨迹段标识。
在一种可能的方式中,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段;第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。
在一种可能的方式中,轨迹点通过下述参数中的一种指示:
从参考点沿着第一投影轨迹移动到轨迹点的距离、从参考点沿着第一投影轨迹移动到轨迹点累积的卫星运动相位差、从参考点沿着第一投影轨迹移动到轨迹点累积的纬度差;参考点为第一投影轨迹中的任意一点;第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
第三方面,本申请实施例提供一种通信装置,所述通信装置可以为第一卫星(比如第一方面中的第一卫星)或者设置在第一卫星内部的芯片;所述通信装置可以为第二卫星(比如第二方面中的第二卫星)或者设置在第二卫星内部的芯片。所述通信装置具备实现上述第一方面的功能,比如,所述通信装置包括执行上述第一方面至第二方面中任一方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,该通信装置用于实现上述第一方面中任一可能的设计中的方法,所述通信装置包括处理单元、收发单元,其中,收发单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,收发单元用于接收第二卫星的星间链路创建消息;处理单元可以用于执行该通信装置的一些内部操作。所述收发单元可以称为输入输出单元、通信单元等,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是通信设备中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
在一种可能的设计中,收发单元,用于接收第二卫星的星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定的;处理单元,用于第二卫星与第一卫星满足星间链路匹配规则,第一卫星创建第一卫星与第二卫星之间的星间链路;其中,星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、第二卫星的卫星编号。
在另一种可能的设计中,该通信装置用于实现上述第二方面中任一可能的设计中的方法,处理单元,用于确定星间链路创建消息;收发单元,用于向第一卫星发送星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定;星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、所述第二卫星的卫星编号。
在一种可能的方式中,星间链路匹配规则至少包括以下中的一种:第二卫星的地址与第一卫星的地址满足卫星地址差、第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差、第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系;第一卫星的地址根
据第一卫星在第一地面投影轨迹的投影位置确定的。
在一种可能的方式中,星间链路匹配规则包括在创建消息中,或预存在第一卫星中。
在一种可能的方式中,创建消息还包括第二卫星地面投影轨迹的标识。
在一种可能的方式中,第二卫星的地址还根据第二地面投影轨迹的标识确定。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星地址差的条件包括:第一卫星的地址与第二卫星的地址小于第一地址阈值;和/或,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第一距离阈值或第一卫星与第二卫星距离的小于第一纬度阈值;或第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星编号差的条件包括:第一卫星的卫星编号与第二卫星的卫星编号小于第一编号阈值;和/或,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第二距离阈值或第一卫星与第二卫星距离的小于第二纬度阈值;其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第三距离阈值或第一卫星与第二卫星距离的小于第三纬度阈值;或,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第四距离阈值或第一卫星与第二卫星距离的小于第四纬度阈值;其中,相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
在一种可能的方式中,映射关系指示第一卫星所在的第一轨迹段标识对应第二卫星所在的第二轨迹段标识。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链;或,第一卫星与第二卫星属于相似地面共轨迹卫星链;或,第一卫星与第二卫星属于不同地面共轨迹卫星链,且第一卫星与第二卫星不属于相似地面共轨迹卫星链。
在一种可能的方式中,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段;第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。
在一种可能的方式中,轨迹点通过下述参数中的一种指示:
从参考点沿着第一投影轨迹移动到轨迹点的距离、从参考点沿着第一投影轨迹移动到轨迹点累积的卫星运动相位差、从参考点沿着第一投影轨迹移动到轨迹点累积的纬度差;参考点为第一投影轨迹中的任意一点;第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
在一种可能的方式中,处理单元,还用于建立第一卫星与其他卫星之间的星间链路;建立第一卫星与其他卫星之间的星间链路至少包括以下条件中的一种触发:
第一卫星与第二卫星之间的星间链路故障、第一卫星与第二卫星的卫星地址差超过卫
星地址差的取值、第一卫星与第二卫星的卫星编号差超过卫星编号差的取值、第二卫星所在的轨迹段与第一卫星所在的轨迹段不存在映射关系。
在一种可能的方式中,处理单元,还用于重建第一卫星与第二卫星之间的星间链路;重建第一卫星与第二卫星之间的星间链路至少包括以下条件中的一种触发:
卫星地址差的取值变更、卫星编号差的取值变更、第二卫星所在的轨迹段与第一卫星所在的轨迹段的映射关系变更。
在又一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第一方面至第二方面中任一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第二方面任意可能的设计或实现方式中的方法。
在又一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面至第二方面中任一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第二方面任意可能的设计或实现方式中的方法。
在又一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面至第二方面任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第四方面,本申请实施例提供一种通信系统,该通信系统包括上述第一方面中的第一卫星以及第二卫星。
第五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于通过逻辑电路或执行计算机指令实现上述第一方面中任一种可能的设计中所述的方法。该芯片系统还可以包括存储器,用于存储上述计算机指令。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在计算机上运行时,以使得计算机执行如第一方面中任一种可能的设计中的方法。
第七方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面的各实施例的方法。
上述第二方面至第七方面可以达到的技术效果,请参照上述第一方面中相应可能设计
方案可以达到的技术效果说明,本申请这里不再重复赘述。
图1示出了一种陆地通信系统的示意图;
图2示出了本申请实施例提供的一种非陆地通信系统的示意图;
图3示出了本申请实施例提供的5G卫星通信系统架构示意图;
图4A示出了一种地面共轨迹卫星链的示意图;
图4B示出了一种相似地面共轨迹卫星链的示意图;
图4C示出了一种相邻轨迹圈的示意图;
图4D示出了一种隔壁轨迹圈的示意图;
图5示出了地面共轨迹卫星的运动示意图;
图6示出了本申请实施例提供的另一种通信系统架构示意图;
图7示出了本申请实施例提供的一种星间链路构建方法的流程示意图;
图8示出了本申请实施例提供的卫星的地址的示意图;
图9示出了本申请实施例提供的一种星间链路构建的示意图;
图10示出了本申请实施例提供的一种星间链路构建的示意图;
图11示出了本申请实施例提供的通信装置的结构示意图;
图12示出了本申请实施例提供的通信装置的结构示意图;
图13示出了本申请实施例提供的通信装置的结构示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。因此装置与方法的实施可以相互参见,重复之处不再赘述。
图1示出了一种陆地网络通信系统的架构。通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信系统,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备的举例为:5G网络中的下一代节点B(next generation node B,gNB)、发射点(transmitting point,TP)、传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、宏基站、微基站(也称为小站)、中继站、基带单元(base band unit,BBU),或者第六代(6th generation,6G)等5G之后演进的通信系统中的网络设备。网络设备110还
可以是其他具有网络设备功能的设备,例如,网络设备110还可以是设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,即可以部署于高空平台或者卫星。本申请实施例对此不作具体限定。
终端设备101~终端设备106,又可以称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、客户终端设备(customer-premises equipment,CPE)、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备101~终端设备106还可以是其他具有终端功能的设备,例如,终端设备101~终端设备106还可以是D2D通信中担任终端功能的设备。
基于图1所示的陆地网络通信系统架构的描述,本申请实施例提供的卫星网络路由方法可以适用于NTN通信系统。如图2所示,NTN通信系统中包括卫星201和终端设备202。终端设备202的解释可以参照上述终端设备101~终端设备106的相关描述。卫星201还可以称为高空平台、高空飞行器、或卫星基站。将NTN通信系统与陆地网络通信系统联系来看,可以将卫星201看作陆地网络通信系统架构中的一个或多个网络设备。卫星201向终端设备202提供通信服务,卫星201还可以连接到核心网设备。卫星201具有的结构和功能也可以参照上述对网络设备的描述。卫星201和终端设备202之间的通信方式也可以参照上述图1中的描述。在此不再赘述。
以5G为例,一种5G卫星通信系统架构如图3所示。地面终端设备通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图3中的设备和接口的说明如下:
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(access and mobility management function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(user plane function,UPF)负责管理用户面数据的传输,流量统计等功能。会话管理功能(session management function,SMF),主要用于移动网络中的会话管理,如会话建立、修改、释放。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access stratum,NAS)信令等,以及用户的业务数据。
可将陆地网络通信系统中的网络设备和NTN通信系统中的卫星,统一看作网络设备。用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。以下描述本申请实施例提供的技术方案时,以用于实现网络设备的功能的装置是卫星为例,来描述本申请实施例提供的技术方案。可以理解,将本申请实施例提供的方法应用到陆地网络通信系统时,可以将卫星执行的动作应用到基站或网络设备来执行。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端或UE为例,来描述本申请实施例提供的技术方案。
另外,上述的卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语作简单说明。
1)地面共轨迹卫星链:包括一组具有相同的轨道倾角,但每颗卫星都在离散的轨道上,在地面上的投影轨迹是相同的卫星,如图4A所示,其中,卫星1、卫星2以及卫星3为一组具有相同轨道倾角的卫星,在地面的投影轨迹均为轨迹1在此仅示例性描述并不具体限定。为了使得地面共轨迹卫星链在地面上的轨迹相同,卫星链上所有卫星除了轨道倾角需要相同外,任意两颗卫星的升交点赤经(right ascension of the ascending node,RAAN)差(升交点赤经差,其中升交点为卫星从南半球穿过赤道到北半球的点)和升交角距(argument of latitude,AoL)差(升交角距差,其中,升交角距差指示行星或卫星在其轨道上任一位置和升交点的角距离)的比例也必须相同,并且该比例正好能补偿地球自转以及轨道摄动引起的经度漂移,即满足以下公式:
其中,ωE是地球自转角速度,n0是卫星运动角速度;为升交点赤经的轨道摄动量;为平近点角的轨道摄动量;为近地点角距的轨道摄动量;δRAAN为卫星轨道之间的升交点赤经差,δAoL为卫星之间的升交角距差。
如下图5所示,卫星S1和卫星S2是地面共轨迹卫星链上的两颗卫星,卫星S1和卫星S2都在独立的轨道上,轨道的倾角I都是相同的。在t1时刻卫星S1由南向北经过赤道,其地面投影正好位于UE处,卫星S2在赤道南面并在S1的西面;由于地球的自转在t2时刻S2也经过了赤道上的同一点,其地面投影也正好位于UE处(假设UE静止不动)。卫星S1和卫星S2虽然在不同轨道上运行,但它们在地面上的运动轨迹却是相同的。
2)地面共轨迹星座:由一条或多条于地面共轨迹卫星链所组成的星座。
3)相似地面共轨迹卫星链:相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。如图4B所示,其中,卫星1、卫星2、卫星3以及卫星4为一组具有相同轨道倾角的卫星,但是卫星1和卫星2在地面的投影轨迹为
轨迹1,卫星3和卫星4在地面的投影轨迹为轨迹2,其中轨迹1与轨迹2仅仅存在经度的偏移,在此仅示例性描述并不具体限定。
4)轨迹圈:地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的,其中参考线位于地面共轨迹卫星链中卫星在地面投影轨迹中倾角最大的纬度范围内,例如,地面共轨迹卫星中的卫星在地面投影轨迹中倾角最大的纬度范围为[30度,60度],那么参考线所处的纬度可以为45度。如图4C所示,图中以轨迹圈1、轨迹圈2为例来说明,其中轨迹圈1与轨迹圈2为相邻轨迹圈。
5)轨迹圈初始经度:轨迹圈第一次穿越参考线的地理经度,可用于指示轨迹圈的距离。
6)隔壁轨迹圈:相似地面共轨迹卫星链中距离最近的轨迹圈。如图4D所示,图中以地面共轨迹卫星链1和地面共轨迹卫星链2为例来说明,其中,地面共轨迹卫星链1中的卫星在地面投影轨迹为轨迹1,地面共轨迹卫星链2中的卫星在地面投影轨迹为轨迹2,其中轨迹1中的轨迹圈1与轨迹2中轨迹圈2距离最近为隔壁轨迹圈。
基于此本申请利用地面共轨迹卫星链中卫星在地面投影共轨迹的特点,提供一种新的卫星网络路由方法。该方法除了可以应用于上述图2和图3示出的系统中,还可应用于图6示出的通信系统中,图6中的设备的说明如下:
地面共轨迹星座:可以为终端和信关站、核心网的数据进行转发或者路由。
卫星:地面共轨迹星座中的卫星,具有星间链路,可以通过星间链路转发数据到相邻的卫星。
地面设施:包含终端和地面站等和地面共轨迹星座有连接的地面设备。
终端:通过卫星接入,可以通过服务链路与卫星通信,可以通过卫星(地面共轨迹星座)发送数据到其他终端或者核心网(互联网)。
信关站:通过馈电链路和卫星(地面共轨迹星座)通信,提供卫星和核心网之间的中转。
考虑到现有技术中不存在基于轨道离散的卫星星座构建星间链路的方案,考虑到地面共轨迹星座中卫星的轨道是离散的,且地面共轨迹星座中可能存在多条地面共轨迹卫星链,且一条地面共轨迹卫星链中包括的卫星轨道倾角相同,且在地面投影轨迹是相同,本申请可基于地面共轨迹卫星链中卫星在地面投影轨迹相同的性质构建卫星之间的星间链路,以克服现有技术中不存在轨道离散卫星星座不能构建星间链路的问题。本申请提供一种星间链路构建方法,如图7所示,该方法可通过卫星来执行,该卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定,图7中以第一卫星和第二卫星为例来说明,本申请并不限定卫星的数量。执行如下:
步骤701,第二卫星向第一卫星发送第二卫星的星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定。
相应地,第一卫星接收第二卫星的星间拦路创建消息。
需要说明的是,星间链路是指卫星之间通信的链路,也称为星际链路或交叉链路(crosslink)。通过星间链路可以实现卫星之间的数据传输和交换。通过星间链路将多颗卫星互联在一起,形成一个以卫星作为交换节点的空间通信网络。
星间链路创建消息中可仅包括卫星的地址,也可仅包括卫星编号,还可以既包括卫星
的地址又包括卫星的编号,本申请在此不具体限定。其中,卫星的地址可基于卫星为地面共轨迹卫星链中的卫星,在地面投影轨迹相同的性质,根据卫星在地面投影轨迹的投影位置确定,其中,第二卫星的地址可根据第二卫星在第二地面投影轨迹的投影位置确定;第一卫星的地址可根据第一卫星在第一地面投影轨迹的投影位置确定。
一种可能的实现中,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。
本申请中,卫星的地址通过卫星地面投影轨迹中的轨迹点或轨迹段指示,可以充分利用地面共轨迹卫星链中的卫星在地面投影轨迹相同的性质,在路由编址时,减少路由编址的复杂度,提高路由编址的效率。
一种可能的实现中,轨迹点通过下述参数中的一种指示:
从参考点沿着第一投影轨迹移动到轨迹点的距离、从参考点沿着第一投影轨迹移动到轨迹点累积的卫星运动相位差、从参考点沿着第一投影轨迹移动到轨迹点累积的纬度差;参考点为第一投影轨迹中的任意一点;第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
需要说明的是,轨迹点可通过参考点到轨迹点的距离指示,如,参考点为投影轨迹1中的任意一点,距离参考点10米的位置为轨迹点,那么轨迹点则可通过10米来指示;轨迹点可通过参考点到轨迹点累积的卫星运动相位差指示,如,参考点为投影轨迹1中的任意一点,卫星地面投影位于参考点时处于时刻1,经过X时刻后卫星地面投影位于轨迹点,那么轨迹点则可通过时刻1到时刻X+1之间累计的卫星运动相位差指示;轨迹点可通过参考点到轨迹点累积的纬度差指示,如,参考点为投影轨迹1中的任意一点,参考点位于纬度1,从参考点到轨迹点需要经过Y纬度,那么轨迹点则可通过Y纬度来指示。通过不同的方式指示轨迹点,可以提高路由编址的灵活性。
一种可能的实现中,可将参考点累计到轨迹点的轨迹位置定义为地面投影轨迹地址(ground track address,GTA),如下图8所示,五角星示意的轨迹点为参考点,把卫星沿着地面投影轨迹运动的累积纬度差作为位置差,那么轨迹点1的GTA为从参考点到轨迹点1累积的纬度差也即38.3度,轨迹点2的GTA为从参考点到轨迹点2累积的纬度差也即517.1度。此外,当地面有多条卫星轨迹时,每条卫星轨迹可通过轨迹编号来区分,轨迹位置可用轨迹编号和轨迹内位置共同描述。另外,地面投影轨迹中的一段轨迹可定义为地面投影轨迹地址范围(ground track address range,GTAR),一般可用轨迹两端的GTA来描述,比如,轨迹点1与轨迹点2之间的轨迹GTAR=(GTA0,GTA1)。
一种可能的实现中,卫星的地址可至少通过如下参数中的一种确定的:卫星的经纬度位置、卫星的星历、卫星的卫星编号。
例如,根据第一卫星的经纬度位置可以知晓第一卫星的当前位置信息;第一卫星的星历中包括第一卫星的轨道信息、第一卫星的高度等信息,基于第一卫星的星历可以获取第一卫星的当前位置信息;卫星编号可以是依据卫星其在地面共轨迹卫星链中的前后顺序依次编号的,基于第一卫星编号可以知晓第一卫星的星历,并进一步根据第一卫星的星历确定第一卫星的当前位置。基于第一卫星当前的位置信息,可以知晓第一卫星在地面投影轨
迹中的位置,基于预设的参考点信息,可以获取第一卫星的地址。
可选的,创建消息还包括第二卫星地面投影轨迹的标识。创建消息包括第二卫星地面投影轨迹的标识以便第一卫星可以基于第二卫星地面投影轨迹的标识简单判断第二卫星是否可以与第一卫星构建星间链路。
可选的,第二卫星的地址还根据第二地面投影轨迹的标识确定。第一卫星的地址还可根据第一地面投影轨迹的标识确定。
需要说明的是,不同的卫星可能位于不同的地面共轨迹卫星链中,基于地面共轨迹卫星链在地面投影的轨迹标识可以确定卫星的投影轨迹,基于此确定卫星的地址更加简单便捷。
步骤702,第二卫星与第一卫星满足星间链路匹配规则,第一卫星创建第一卫星与第二卫星之间的星间链路;其中,星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、第二卫星的卫星编号。
具体地,第一卫星在基于第二卫星发送的星间链路创建消息,可确定第一卫星与第二卫星是否满足星间链路匹配规则。
若满足,第一卫星可向第二卫星发送星间链路创建成功响应消息,或者发送星间链路的标识信息。该星间链路的标识信息可指示第一卫星与第二卫星之间的星间链路创建成功。
若不满足,第一卫星可向第二卫星发送创建失败响应消息。该创建失败响应消息指示第一卫星与第二卫星星间链路创建失败。可选的,在创建失败的响应消息中携带创建失败的原因。
第二卫星基于响应消息则可知晓第一卫星与第二卫星是否可以创建星间链路。第一卫星创建第一卫星与第二卫星之间的星间链路后,可通过星间链路传输数据,本申请在此不具体限定创建成功的星间链路具体作用。
本申请中星间链路匹配规则是根据第二卫星的地址、第二卫星的卫星编号确定的,例如,第一卫星接收到星间链路创建消息后,基于第二卫星的地址和第一卫星的地址进行判断,确定满足预设的地址差或者距离阈值,则确定满足星间链路匹配规则;例如,第一卫星接收到星间链路创建消息后,基于第二卫星的卫星编号和第一卫星的卫星编号进行判断,确定满足预设的编号差或者距离阈值,则确定满足星间链路匹配规则,因此第一卫星在收到第二卫星的地址或第二卫星的卫星编号后,可以确定第二卫星与第一卫星是否满足星间链路匹配规则。
可选的,星间链路匹配规则至少包括以下中的一种:第二卫星的地址与第一卫星的地址满足卫星地址差、第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差、第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系。
例如,卫星地址差设置为X,根据第一卫星的地址和第二卫星的地址,确定第一卫星与第二卫星之间的距离小于或等于X,那么则确定第一卫星与第二卫星可以构建星间链路;卫星编号差设置为A,根据第一卫星的卫星编号和第二卫星的卫星编号,确定第一卫星与第二卫星之间的卫星编号差小于或等于A,那么则确定第一卫星与第二卫星可以构建星间链路;第一卫星所在的轨迹段1与第二卫星所在的轨迹段2存在一一映射关系,也即当第一卫星处于轨迹段1时,可以与处在轨迹段2的第二卫星构建星间链路。在此仅作示例性说明,并不具体限定。
本申请中,星间链路匹配规则可基于卫星的地址、卫星的编号以及卫星所在轨迹是否
存在映射关系来确定,通过该方式可以保证卫星可以建立合适的星间链路,保证地面共轨迹卫星的星间链路构建效率以及链路稳定性,避免频繁创建链路。
一种可能的实现中,星间链路匹配规则包括在创建消息中。第一卫星收到该创建消息后,可基于该星间链路匹配规则确定第一卫星与第二卫星是否可以创建星间链路。
一种可能的实现中,星间链路匹配规则可以预存在第一卫星中。第一卫星收到创建消息后,可基于其预存的星间链路匹配规则确定第一卫星与第二卫星是否可以创建星间链路。
在介绍不同的星间链路匹配规则之前,先介绍一下卫星之间的位置关系,主要包括以下几种:
位置关系1、第一卫星与第二卫星属于同一地面共轨迹卫星链。
位置关系2、第一卫星与第二卫星属于相似地面共轨迹卫星链。
位置关系3、第一卫星与第二卫星属于不同地面共轨迹卫星链,且第一卫星与第二卫星不属于相似地面共轨迹卫星链。
关于各个位置关系的理解可参照上文的术语解释,本申请在此不展开说明。
为了更好地说明本申请的方案,下面分情况对不同的星间链路匹配规则进行说明:
情况1、星间链路匹配规则为第二卫星的地址与第一卫星的地址满足卫星地址差。
需要说明的是,星间链路匹配规则是基于卫星地址差确定,但是在第一卫星与第二卫星在不同的位置关系下可采用不同的方式构建星间链路,具体如下:
方式1、第一卫星与第二卫星的位置关系为位置关系1。
第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星地址差的条件包括:第一卫星的地址与第二卫星的地址小于第一地址阈值。例如,第一卫星的地址通过GTA1指示,第二卫星的地址通过GTA2指示时,当GTA2与GTA1的差值的绝对值小于第一地址阈值GTAX时,则确定第一卫星与第二卫星可以构建星间链路。
一种可能的实现中,第二卫星还可以确定第二卫星的地址后,在第一地址阈值范围内搜索同一地面共轨迹卫星链中的卫星,将第一地址阈值范围内的卫星均作为构建星间链路的备选卫星,之后从这些备选卫星中筛选出距离第二卫星最近的第一卫星(也即第一卫星),发送星间链路创建消息,以构建第二卫星与第一卫星之间的星间链路,或者在备选卫星中基于卫星的性质(数据传输时延、带宽等)设置优先级,将优先级较高的卫星作为第一卫星,在此仅作示例性说明,并不具体限定。
在第一卫星与第二卫星的位置关系为位置关系1,且第一卫星与第二卫星属于相邻轨迹圈时,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第一距离阈值或第一卫星与第二卫星距离的小于第一纬度阈值。地面投影轨迹上的两个点的GTA差(ΔGTA)对一圈的GTA(360°)取余,也即两点的纬度差:ΔGTArel=|ΔGTA|%360。例如,第一卫星的地址通过GTA1指示,第二卫星的地址通过GTA2指示时,当GTA2与GTA1的纬度差值的绝对值小于第一纬度阈值时,则确定第一卫星与第二卫星可以构建星间链路。
一种可能的实现中,在执行步骤701之前,第二卫星还可以确定其地址后,在第一纬度阈值范围内搜索同一地面共轨迹卫星链,且位于相邻轨迹圈的卫星,将第一纬度阈值范围内的卫星均作为构建星间链路的备选卫星,之后从这些备选卫星中筛选出第一卫星,向第一卫星发送星间链路创建消息,以构建第一卫星与第二卫星之间的星间链路。例如筛选出与第二卫星纬度差最小的卫星作为第一卫星,即第二卫星与第一卫星的维度差为min(ΔGTArel);或者筛选出优先级高的卫星作为第一卫星。其中优先级可以是根据卫星的
性质设置的,卫星的性质具体可以是数据传输时延、带宽等,在此仅作示例性说明,并不具体限定。
一种可能的实现中,还可根据相邻轨迹圈中卫星的距离确定如何构建星间链路,例如,第一卫星的地址通过GTA1指示,第二卫星的地址通过GTA2指示时,当GTA2与GTA1的距离差值的绝对值小于第一距离阈值时,则确定第一卫星与第二卫星可以构建星间链路。
又一种可能的实现中,第二卫星建立星间链路时,可以在第二卫星的地址的第一距离阈值范围内搜索同一地面共轨迹卫星链,且位于相邻轨迹圈的卫星,将第一距离阈值范围内的卫星作为构建星间链路的备选卫星,从这些备选卫星中筛选出第一卫星,向第一卫星发送星间链路创建消息,以构建第一卫星与第二卫星之间的星间链路。例如从备选卫星中筛选出于与第二卫星距离最近的卫星作为第一卫星,即第二卫星与第一卫星的距离可以为min(ΔGTArel)+ΔLongneibor_loop*cos(i),其中ΔLongneibor_loop是相邻轨迹圈的初始经度的差,i是轨道倾角,即;或者从备选卫星中选择优先级高的卫星作为第一卫星。其中卫星的优先级可以是根据卫星的性质设置的,其中卫星的性质可以是数据传输时延、带宽等,在此仅作示例性说明,并不具体限定。
图9以为337号卫星配星间链路为例来说明。实线即为相同轨迹段内,GTA差最小的卫星(336和338)的星间链路;虚线为相邻轨迹圈卫星之间相对GTA最接近的卫星(313和1)的星间链路;点虚线为相邻轨迹圈卫星之间的距离最近的卫星(312和2)的星间链路。
方式2、第一卫星与第二卫星的位置关系为位置关系2。
第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第三距离阈值或第一卫星与第二卫星距离的小于第三纬度阈值。
需要说明的是,构建相似地面共轨迹卫星链中的星间链路时,可以和距离最近的轨迹圈中距离最近或较近(小于第三距离阈值)的卫星建立星间链路。也可选距离最近的轨迹圈中纬度距离最近或较近(小于第三纬度阈值)的卫星构建星间链路。可参照上述方式1中地面共轨迹卫星链,且位于相邻轨迹圈的卫星的星间链路构建方式来理解,在此不赘述。
情况2、星间链路匹配规则为第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差。
需要说明的是,星间链路匹配规则是基于卫星编号差确定,但是在第一卫星与第二卫星在不同的位置关系下可采用不同的方式构建星间链路,具体如下:
方式1、第一卫星与第二卫星的位置关系为位置关系1。
第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星编号差的条件包括:第一卫星的卫星编号与第二卫星的卫星编号小于第一编号阈值。例如,第一卫星的卫星编号通过编号1指示,第二卫星的卫星编号通过编号2指示时,当编号2与编号1的差值的绝对值小于第一编号阈值编号Y时,则确定第一卫星与第二卫星可以构建星间链路。
一种可能的实现中,在执行步骤701之前,第二卫星还可以确定第二卫星的卫星编号后,在第一编号阈值范围内搜索同一地面共轨迹卫星链中的卫星,将第一编号阈值范围内的卫星均作为构建星间链路的备选卫星,之后从这些备选卫星中筛选出第一卫星,向第一卫星发送星间链路创建消息,以构建第一卫星与第二卫星之间的星间链路。例如,从备选卫星中筛选出与第二卫星距离最近的卫星作为第一卫星,或者从备选卫星中筛选出优先级
高的卫星作为第一卫星。其中卫星的优先级可以是根据卫星的性质设置的,其中卫星的性质可以是数据传输时延、带宽等,在此仅作示例性说明,并不具体限定。
第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第二距离阈值或第一卫星与第二卫星距离的小于第二纬度阈值。可参照上述情况1中的方式1中属于相邻轨迹圈的卫星来理解在此不赘述。
方式2、第一卫星与第二卫星的位置关系为位置关系2。
第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第四距离阈值、第一卫星与第二卫星距离的小于第四纬度阈值。可参照上述情况1中的方式2来理解在此不赘述。
需要说明的是,上述情况1和情况2提及的第一地址阈值、第一编号阈值、第一距离阈值、第二距离阈值、第三距离阈值、第四距离阈值、第一纬度阈值、第二纬度阈值、第三纬度阈值以及第四纬度阈值,可基于实际情况灵活设定,本申请在此不具体限定这些阈值的具体取值,可选的,某些阈值也可设置为相同的,如第一纬度阈值与第二纬度阈值相同等,在此仅示例性说明,并不具体限定。
情况3、星间链路匹配规则为第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系。
需要说明的是,情况3示出的星间链路匹配估计可以适配上述位置关系1、位置关系2以及位置关系3中的卫星。
可选的,第一卫星确定第一卫星所在的轨迹段与第二卫星所在的轨迹段存在映射关系,第一卫星与第二卫星构建星间链路;映射关系指示第一卫星所在的第一轨迹段标识对应第二卫星所在的第二轨迹段标识。
由于地面共轨迹卫星链内的卫星以及相似地面共轨迹卫星链的卫星之间飞行相对速度(矢量)是恒定的,基于轨迹段存在的映射关系可以建立较恒定的星间链路。但不相似地面共轨迹卫星链的卫星间由于飞行速度(矢量)是不恒定的,因此无法建立长时间的星间链路。但由于地面共轨迹的特性,可以基于上述的映射关系建立一段时间的星间链路。因此我们可以配置两条卫星链轨迹段来建立星间链路。如按照以下规则配对:当卫星进入配置的轨迹号+GTAR后,寻找另外一条卫星链的轨迹号+GTAR中的卫星构建星间链路。当卫星离开配置的轨迹号+GTAR后,卫星断开星间链路连接。一般来说会配对具有交点的两段轨迹,两段轨迹内的卫星建立星间链路可以保持较长的时间。
如下图10所示当轨迹0的卫星进入GTAR0时,会寻找轨迹1的GTAR1内的卫星建立星间链路;当该卫星离开GTAR0时,断开星间链路。需要说明的是,轨迹0中的卫星进入GTAR0时,可向GTAR2内的卫星发送广播消息或组播消息,该消息中包括卫星所处的轨迹号和轨迹段,或者卫星星历信息,收到广播消息或组播消息的卫星可以直接基于消息中的轨迹号和轨迹段确定是否有满足映射关系,若满足,则构建星间链路,也可根据卫星星历信息进行计算确定卫星所处的轨迹号和轨迹段,之后确定是否满足映射关系,是否可以构建星间链路。
本申请中,基于上述的情况构建星间链路可保证地面共轨迹卫星的星间链路构建效率。
此外,第一卫星还可与其他卫星之间建立星间链路;建立第一卫星与其他卫星之间的
星间链路至少包括以下条件中的一种触发:
第一卫星与第二卫星之间的星间链路故障(例如,第一卫星与第二卫星之间的通信链路断路、第二卫星通信故障等)、第一卫星与第二卫星的卫星地址差超过卫星地址差的取值、第一卫星与第二卫星的卫星编号差超过卫星编号差的取值、第二卫星所在的轨迹段与第一卫星所在的轨迹段不存在映射关系。
本申请中,第一卫星与其他卫星构建星间链路可保证地面共轨迹卫星的星间链路构建效率。
可选的,第一卫星还可重建第一卫星与第二卫星之间的星间链路;重建第一卫星与第二卫星之间的星间链路至少包括以下条件中的一种触发:
卫星地址差的取值变更、卫星编号差的取值变更、第二卫星所在的轨迹段与第一卫星所在的轨迹段的映射关系变更(如,轨迹段1与轨迹段2存在映射关系变更为轨迹段1与轨迹段3存在映射关系)。
也即,当星间链路匹配规则发生变化时,重新构建第一卫星与第二卫星之间的星间链路,可保证星间链路的构建效率。
上述主要从设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,各个设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图11示出了本申请实施例中所涉及的通信装置的可能的示例性框图。如图11所示,通信装置1100可以包括:处理单元1101和收发单元1102。处理单元1101用于对通信装置1100的动作进行控制管理。收发单元1102用于支持通信装置1100与其他设备的通信。可选地,收发单元1102可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,通信装置1100还可以包括存储单元,用于存储通信装置1100的程序代码和/或数据。所述收发单元可以称为输入输出单元、通信单元等,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是通信设备中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。具体地,该装置可以为上述的第一卫星、第二卫星等。
在一个实施例中,收发单元1102,用于接收第二卫星的星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定;处理单元1101,用于第二卫星与第一卫星满足星间链路匹配规则,第一卫星创建第一卫星与第二卫星之间的星间链路;其中,星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、第二卫星的卫星编号。
在另一实施例中,处理单元1101,用于确定星间链路创建消息;收发单元1102,用于向第一卫星发送星间链路创建消息,星间链路创建消息至少包括以下中的一种:第二卫星的地址、第二卫星的卫星编号;第二卫星的地址根据第二卫星在第二地面投影轨迹的投影位置确定;星间链路匹配规则是根据至少一种以下参数确定的:第二卫星的地址、所述第二卫星的卫星编号。
在一种可能的方式中,星间链路匹配规则至少包括以下中的一种:第二卫星的地址与第一卫星的地址满足卫星地址差、第二卫星的卫星编号与第一卫星的卫星编号满足卫星编号差、第二卫星所在的轨迹段与第一卫星所在的轨迹段存在映射关系;第一卫星的地址根据第一卫星在第一地面投影轨迹的投影位置确定的。
在一种可能的方式中,星间链路匹配规则包括在创建消息中,或预存在第一卫星中。
在一种可能的方式中,创建消息还包括第二卫星地面投影轨迹的标识。
在一种可能的方式中,第二卫星的地址还根据第二地面投影轨迹的标识确定。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星地址差的条件包括:第一卫星的地址与第二卫星的地址小于第一地址阈值;和/或,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第一距离阈值或第一卫星与第二卫星距离的小于第一纬度阈值;其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链,满足卫星编号差的条件包括:第一卫星的卫星编号与第二卫星的卫星编号小于第一编号阈值;和/或,第一卫星与第二卫星属于同一地面共轨迹卫星链,且第一卫星与第二卫星属于相邻轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第二距离阈值或第一卫星与第二卫星距离的小于第二纬度阈值;其中,地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,参考线的纬度是固定的。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星地址差的条件包括:第一卫星与第二卫星距离的小于第三距离阈值或第一卫星与第二卫星距离的小于第三纬度阈值;其中,相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
在一种可能的方式中,第一卫星与第二卫星属于相似地面共轨迹卫星链,且第一卫星与第二卫星属于距离最近的轨迹圈,满足卫星编号差的条件包括:第一卫星与第二卫星距离的小于第四距离阈值或第一卫星与第二卫星距离的小于第四纬度阈值;其中,相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
在一种可能的方式中,映射关系指示第一卫星所在的第一轨迹段标识对应第二卫星所在的第二轨迹段标识。
在一种可能的方式中,第一卫星与第二卫星属于同一地面共轨迹卫星链;或,第一卫星与第二卫星属于相似地面共轨迹卫星链;或,第一卫星与第二卫星属于不同地面共轨迹卫星链,且第一卫星与第二卫星不属于相似地面共轨迹卫星链。
在一种可能的方式中,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹点或轨
迹点的邻域范围内的点,或,第一卫星的地址指示第一卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段;第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹点或轨迹点的邻域范围内的点,或,第二卫星的地址指示第二卫星在地面投影轨迹中的轨迹段或轨迹段邻域范围内的轨迹段。
在一种可能的方式中,轨迹点通过下述参数中的一种指示:
从参考点沿着第一投影轨迹移动到轨迹点的距离、从参考点沿着第一投影轨迹移动到轨迹点累积的卫星运动相位差、从参考点沿着第一投影轨迹移动到轨迹点累积的纬度差;参考点为第一投影轨迹中的任意一点;第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
在一种可能的方式中,处理单元1101,还用于建立第一卫星与其他卫星之间的星间链路;建立第一卫星与其他卫星之间的星间链路至少包括以下条件中的一种触发:
第一卫星与第二卫星之间的星间链路故障、第一卫星与第二卫星的卫星地址差超过卫星地址差的取值、第一卫星与第二卫星的卫星编号差超过卫星编号差的取值、第二卫星所在的轨迹段与第一卫星所在的轨迹段不存在映射关系。
在一种可能的方式中,处理单元1101,还用于重建第一卫星与第二卫星之间的星间链路;重建第一卫星与第二卫星之间的星间链路至少包括以下条件中的一种触发:
卫星地址差的取值变更、卫星编号差的取值变更、第二卫星所在的轨迹段与第一卫星所在的轨迹段的映射关系变更。
如图12所示,为本申请还提供的一种通信装置1200。通信装置1200可以是芯片或芯片系统。该通信装置可以位于上述任一方法实施例所涉及的设备中,例如第一卫星、网络设备、地面设备等,以执行该设备所对应的动作。
可选的,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1200包括处理器1210。
处理器1210,用于执行存储器1220中存储的计算机程序,以实现上述任一方法实施例中各个设备的动作。
通信装置1200还可以包括存储器1220,用于存储计算机程序。
可选地,存储器1220和处理器1210之间耦合。耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。可选的,存储器1220与处理器1210集成在一起。
其中,处理器1210和存储器1220均可以为一个或多个,不予限制。
可选的,在实际应用中,通信装置1200中可以包括收发器1230,也可不包括收发器1230,图中以虚线框来示意,通信装置1200可以通过收发器1230和其它设备进行信息交互。收发器1230可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置1200可以为上述各方法实施中的第一卫星、地面设备。
本申请实施例中不限定上述收发器1230、处理器1210以及存储器1220之间的具体连接介质。本申请实施例在图12中以存储器1220、处理器1210以及收发器1230之间通过总线连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在本申请实施例中,
处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图13,本申请实施例还提供另一种通信装置1300,包括:接口电路1310和逻辑电路1320;接口电路1310,可以理解为输入输出接口,可用于执行上述任一方法实施例中各个设备的收发步骤;逻辑电路1320可用于运行代码或指令以执行上述任一实施例中各个设备执行的方法,不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有指令,当所述指令被执行时,使上述任一方法实施例中各个设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例提供一种通信系统,该通信系统包括上述任一方法实施例中提及的第一卫星、地面设备以及其他卫星,可用于执行上述任一方法实施例中各个设备执行的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个
方框或多个方框中指定的功能的步骤。
Claims (33)
- 一种星间链路构建方法,其特征在于,包括:第一卫星接收第二卫星的星间链路创建消息,所述星间链路创建消息至少包括以下中的一种:所述第二卫星的地址、所述第二卫星的卫星编号;所述第二卫星的地址根据所述第二卫星在第二地面投影轨迹的投影位置确定;所述第二卫星与所述第一卫星满足星间链路匹配规则,所述第一卫星创建所述第一卫星与所述第二卫星之间的星间链路;其中,所述星间链路匹配规则是根据至少一种以下参数确定的:所述第二卫星的地址、所述第二卫星的卫星编号。
- 根据权利要求1所述的方法,其特征在于,所述星间链路匹配规则至少包括以下中的一种:所述第二卫星的地址与所述第一卫星的地址满足卫星地址差、所述第二卫星的卫星编号与所述第一卫星的卫星编号满足卫星编号差、所述第二卫星所在的轨迹段与所述第一卫星所在的轨迹段存在映射关系;所述第一卫星的地址根据所述第一卫星在第一地面投影轨迹的投影位置确定的。
- 根据权利要求2所述的方法,其特征在于,所述第一卫星与所述第二卫星属于同一地面共轨迹卫星链,满足所述卫星地址差的条件包括:所述第一卫星的地址与所述第二卫星的地址小于第一地址阈值;和/或,所述第一卫星与所述第二卫星属于同一地面共轨迹卫星链,且所述第一卫星与所述第二卫星属于相邻轨迹圈,满足所述卫星地址差的条件包括:所述第一卫星与所述第二卫星距离的小于第一距离阈值,或,所述第一卫星与所述第二卫星距离的小于第一纬度阈值;其中,所述地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;所述轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,所述参考线的纬度是固定的。
- 根据权利要求2所述的方法,其特征在于,所述第一卫星与所述第二卫星属于同一地面共轨迹卫星链,满足所述卫星编号差的条件包括:所述第一卫星的卫星编号与所述第二卫星的卫星编号小于第一编号阈值;和/或,所述第一卫星与所述第二卫星属于同一地面共轨迹卫星链,且所述第一卫星与所述第二卫星属于相邻轨迹圈,满足所述卫星编号差的条件包括:所述第一卫星与所述第二卫星距离的小于第二距离阈值,或,所述第一卫星与所述第二卫星距离的小于第二纬度阈值;其中,所述地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;所述轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,所述参考线的纬度是固定的。
- 根据权利要求2所述的方法,其特征在于,所述第一卫星与所述第二卫星属于相似地面共轨迹卫星链,且所述第一卫星与所述第二卫星属于距离最近的轨迹圈,满足所述卫星地址差的条件包括:所述第一卫星与所述第二卫星距离的小于第三距离阈值,或,所述第一卫星与所述第二卫星距离的小于第三纬度阈值;其中,所述相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
- 根据权利要求2所述的方法,其特征在于,所述第一卫星与所述第二卫星属于相似 地面共轨迹卫星链,且所述第一卫星与所述第二卫星属于距离最近的轨迹圈,满足所述卫星编号差的条件包括:所述第一卫星与所述第二卫星距离的小于第四距离阈值,或,所述第一卫星与所述第二卫星距离的小于第四纬度阈值;其中,所述相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
- 根据权利要求2所述的方法,其特征在于,所述映射关系指示所述第一卫星所在的第一轨迹段标识对应所述第二卫星所在的第二轨迹段标识。
- 根据权利要求7所述的方法,其特征在于,所述第一卫星与所述第二卫星属于同一地面共轨迹卫星链;或,所述第一卫星与所述第二卫星属于相似地面共轨迹卫星链;或,所述第一卫星与所述第二卫星属于不同地面共轨迹卫星链,且所述第一卫星与所述第二卫星不属于相似地面共轨迹卫星链。
- 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一卫星的地址指示所述第一卫星在地面投影轨迹中的轨迹点或所述轨迹点的邻域范围内的点,或,所述第一卫星的地址指示所述第一卫星在地面投影轨迹中的轨迹段或所述轨迹段邻域范围内的轨迹段;所述第二卫星的地址指示所述第二卫星在地面投影轨迹中的轨迹点或所述轨迹点的邻域范围内的点,或,所述第二卫星的地址指示所述第二卫星在地面投影轨迹中的轨迹段或所述轨迹段邻域范围内的轨迹段。
- 根据权利要求1-9中任一项所述的方法,其特征在于,所述星间链路匹配规则包括在所述创建消息中,或预存在所述第一卫星中。
- 根据权利要求1-10中任一所述的方法,其特征在于,所述创建消息还包括所述第二卫星地面投影轨迹的标识。
- 根据权利要求1-11中任一所述的方法,其特征在于,所述第二卫星的地址还根据所述第二地面投影轨迹的标识确定。
- 根据权利要求9所述的方法,其特征在于,所述轨迹点通过下述参数中的一种指示:从参考点沿着第一投影轨迹移动到所述轨迹点的距离、从所述参考点沿着所述第一投影轨迹移动到所述轨迹点累积的卫星运动相位差、从所述参考点沿着所述第一投影轨迹移动到所述轨迹点累积的纬度差;所述参考点为所述第一投影轨迹中的任意一点;所述第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
- 根据权利要求1-13中任一所述的方法,其特征在于,还包括:所述第一卫星建立所述第一卫星与其他卫星之间的星间链路;所述建立所述第一卫星与所述其他卫星之间的星间链路至少包括以下条件中的一种触发:所述第一卫星与所述第二卫星之间的星间链路故障、所述第一卫星与第二卫星的卫星地址差超过所述卫星地址差的取值、所述第一卫星与第二卫星的卫星编号差超过所述卫星1111编号差的取值、所述第二卫星所在的轨迹段与所述第一卫星所在的轨迹段不存在映射关系。
- 根据权利要求1-14中任一所述的方法,其特征在于,还包括:所述第一卫星重建所述第一卫星与所述第二卫星之间的星间链路;所述重建所述第一卫星与所述第二卫星之间的星间链路至少包括以下条件中的一种触发:所述卫星地址差的取值变更、所述卫星编号差的取值变更、所述第二卫星所在的轨迹 段与所述第一卫星所在的轨迹段的映射关系变更。
- 一种通信装置,其特征在于,包括:收发单元,用于接收第二卫星的星间链路创建消息,所述星间链路创建消息至少包括以下中的一种:所述第二卫星的地址、所述第二卫星的卫星编号;所述第二卫星的地址根据所述第二卫星在第二地面投影轨迹的投影位置确定;所述第二卫星与所述通信装置满足星间链路匹配规则,处理单元,用于创建所述通信装置与所述第二卫星之间的星间链路;其中,所述星间链路匹配规则是根据至少一种以下参数确定的:所述第二卫星的地址、所述第二卫星的卫星编号。
- 根据权利要求16所述的装置,其特征在于,所述星间链路匹配规则至少包括以下中的一种:所述第二卫星的地址与所述通信装置的地址满足卫星地址差、所述第二卫星的卫星编号与所述通信装置的卫星编号满足卫星编号差、所述第二卫星所在的轨迹段与所述通信装置所在的轨迹段存在映射关系;所述通信装置的地址根据所述通信装置在第一地面投影轨迹的投影位置确定的。
- 根据权利要求17所述的装置,其特征在于,所述通信装置与所述第二卫星属于同一地面共轨迹卫星链,满足所述卫星地址差的条件包括:所述通信装置的地址与所述第二卫星的地址小于第一地址阈值;和/或,所述通信装置与所述第二卫星属于同一地面共轨迹卫星链,且所述通信装置与所述第二卫星属于相邻轨迹圈,满足所述卫星地址差的条件包括:所述通信装置与所述第二卫星距离的小于第一距离阈值,或,所述通信装置与所述第二卫星距离的小于第一纬度阈值;其中,所述地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;所述轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,所述参考线的纬度是固定的。
- 根据权利要求17所述的装置,其特征在于,所述通信装置与所述第二卫星属于同一地面共轨迹卫星链,满足所述卫星编号差的条件包括:所述通信装置的卫星编号与所述第二卫星的卫星编号小于第一编号阈值;和/或,所述通信装置与所述第二卫星属于同一地面共轨迹卫星链,且所述通信装置与所述第二卫星属于相邻轨迹圈,满足所述卫星编号差的条件包括:所述通信装置与所述第二卫星距离的小于第二距离阈值,或,所述通信装置与所述第二卫星距离的小于第二纬度阈值;其中,所述地面共轨迹卫星链中包括多颗在地面上的投影轨迹相同的卫星;所述轨迹圈为地面共轨迹卫星链在地面的投影轨迹中两次同方向穿越参考线的轨迹段,所述参考线的纬度是固定的。
- 根据权利要求17所述的装置,其特征在于,所述通信装置与所述第二卫星属于相似地面共轨迹卫星链,且所述通信装置与所述第二卫星属于距离最近的轨迹圈,满足所述卫星地址差的条件包括:所述通信装置与所述第二卫星距离的小于第三距离阈值,或,所述通信装置与所述第二卫星距离的小于第三纬度阈值;其中,所述相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
- 根据权利要求17所述的装置,其特征在于,所述通信装置与所述第二卫星属于相似地面共轨迹卫星链,且所述通信装置与所述第二卫星属于距离最近的轨迹圈,满足所述 卫星编号差的条件包括:所述通信装置与所述第二卫星距离的小于第四距离阈值,或,所述通信装置与所述第二卫星距离的小于第四纬度阈值;其中,所述相似地面共轨迹卫星链中卫星的轨道高度相同、轨道倾角相同,仅在地面的投影轨迹存在经度偏移。
- 根据权利要求17所述的装置,其特征在于,所述映射关系指示所述通信装置所在的第一轨迹段标识对应所述第二卫星所在的第二轨迹段标识。
- 根据权利要求22所述的装置,其特征在于,所述通信装置与所述第二卫星属于同一地面共轨迹卫星链;或,所述通信装置与所述第二卫星属于相似地面共轨迹卫星链;或,所述通信装置与所述第二卫星属于不同地面共轨迹卫星链,且所述通信装置与所述第二卫星不属于相似地面共轨迹卫星链。
- 根据权利要求16-23中任一项所述的装置,其特征在于,所述通信装置的地址指示所述通信装置在地面投影轨迹中的轨迹点或所述轨迹点的邻域范围内的点,或,所述通信装置的地址指示所述通信装置在地面投影轨迹中的轨迹段或所述轨迹段邻域范围内的轨迹段;所述第二卫星的地址指示所述第二卫星在地面投影轨迹中的轨迹点或所述轨迹点的邻域范围内的点,或,所述第二卫星的地址指示所述第二卫星在地面投影轨迹中的轨迹段或所述轨迹段邻域范围内的轨迹段。
- 根据权利要求16-24中任一项所述的装置,其特征在于,所述星间链路匹配规则包括在所述创建消息中,或预存在所述通信装置中。
- 根据权利要求16-25中任一所述的装置,其特征在于,所述创建消息还包括所述第二卫星地面投影轨迹的标识。
- 根据权利要求16-25中任一所述的装置,其特征在于,所述第二卫星的地址还根据所述第二地面投影轨迹的标识确定。
- 根据权利要求24所述的装置,其特征在于,所述轨迹点通过下述参数中的一种指示:从参考点沿着第一投影轨迹移动到所述轨迹点的距离、从所述参考点沿着所述第一投影轨迹移动到所述轨迹点累积的卫星运动相位差、从所述参考点沿着所述第一投影轨迹移动到所述轨迹点累积的纬度差;所述参考点为所述第一投影轨迹中的任意一点;所述第一投影轨迹为任一地面共轨迹卫星链在地面上的投影轨迹。
- 根据权利要求16-28中任一所述的装置,其特征在于,所述处理单元,还用于:建立所述通信装置与其他卫星之间的星间链路;所述建立所述通信装置与所述其他卫星之间的星间链路至少包括以下条件中的一种触发:所述通信装置与所述第二卫星之间的星间链路故障、所述通信装置与第二卫星的卫星地址差超过所述卫星地址差的取值、所述通信装置与第二卫星的卫星编号差超过所述卫星1111编号差的取值、所述第二卫星所在的轨迹段与所述通信装置所在的轨迹段不存在映射关系。
- 根据权利要求16-29中任一所述的装置,其特征在于,所述处理单元,还用于:重建所述通信装置与所述第二卫星之间的星间链路;所述重建所述通信装置与所述第二卫星之间的星间链路至少包括以下条件中的一种触发:所述卫星地址差的取值变更、所述卫星编号差的取值变更、所述第二卫星所在的轨迹 段与所述通信装置所在的轨迹段的映射关系变更。
- 一种通信装置,其特征在于,包括:至少一个处理器,所述处理器与存储器耦合;所述至少一个处理器,用于执行所述存储器存储的所述计算机程序或指令,以使得如权利要求1-15中任一项所述的方法被执行。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被计算机执行时,使得如权利要求1-15中任一项所述的方法被执行。
- 一种包含计算机程序或指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得上述权利要求1-15中任一项所述的方法被执行。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210673153.7A CN117278091A (zh) | 2022-06-14 | 2022-06-14 | 一种星间链路构建方法及通信装置 |
CN202210673153.7 | 2022-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023241362A1 true WO2023241362A1 (zh) | 2023-12-21 |
Family
ID=89192226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/097570 WO2023241362A1 (zh) | 2022-06-14 | 2023-05-31 | 一种星间链路构建方法及通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117278091A (zh) |
WO (1) | WO2023241362A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118157794A (zh) * | 2024-03-05 | 2024-06-07 | 中国人民解放军军事科学院系统工程研究院 | 一种星间太赫兹信道摄动影响分析方法 |
CN118509039A (zh) * | 2024-07-22 | 2024-08-16 | 之江实验室 | 多态卫星间激光通信链路仿真方法、装置及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6249513B1 (en) * | 1998-02-06 | 2001-06-19 | Com Dev Limited | Managing inter-satellite connections in a constellation with overlapping orbital planes |
FR2818055A1 (fr) * | 2000-07-27 | 2002-06-14 | Cit Alcatel | Procede et systeme de telecommunication par satellites et terminal pour un tel systeme |
CN111294108A (zh) * | 2020-01-15 | 2020-06-16 | 南京航空航天大学 | 一种面向正交圆轨道构型卫星星座的高效路由方法 |
CN111953399A (zh) * | 2020-07-10 | 2020-11-17 | 东南大学 | 一种低轨卫星通信网络中的星间路由方法 |
-
2022
- 2022-06-14 CN CN202210673153.7A patent/CN117278091A/zh active Pending
-
2023
- 2023-05-31 WO PCT/CN2023/097570 patent/WO2023241362A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6249513B1 (en) * | 1998-02-06 | 2001-06-19 | Com Dev Limited | Managing inter-satellite connections in a constellation with overlapping orbital planes |
FR2818055A1 (fr) * | 2000-07-27 | 2002-06-14 | Cit Alcatel | Procede et systeme de telecommunication par satellites et terminal pour un tel systeme |
CN111294108A (zh) * | 2020-01-15 | 2020-06-16 | 南京航空航天大学 | 一种面向正交圆轨道构型卫星星座的高效路由方法 |
CN111953399A (zh) * | 2020-07-10 | 2020-11-17 | 东南大学 | 一种低轨卫星通信网络中的星间路由方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118157794A (zh) * | 2024-03-05 | 2024-06-07 | 中国人民解放军军事科学院系统工程研究院 | 一种星间太赫兹信道摄动影响分析方法 |
CN118509039A (zh) * | 2024-07-22 | 2024-08-16 | 之江实验室 | 多态卫星间激光通信链路仿真方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN117278091A (zh) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023241362A1 (zh) | 一种星间链路构建方法及通信装置 | |
Ateya et al. | Study of 5G services standardization: Specifications and requirements | |
WO2020098627A1 (zh) | 一种卫星通信的方法、装置及系统 | |
CN104753580B (zh) | 一种数据通信卫星星座系统及其通信方法 | |
CN111182583A (zh) | 面向任务时延约束的低轨卫星数据传输方法 | |
CN117296442A (zh) | 无线通信系统、无线通信方法、装置、设备及存储介质 | |
WO2023241365A1 (zh) | 一种卫星网络路由方法及通信装置 | |
Jung et al. | Satellite clustering for non-terrestrial networks: Concept, architectures, and applications | |
Uchida et al. | Evaluation of wireless network communication by autonomous flight wireless nodes for resilient networks | |
JP2021034769A (ja) | 通信装置、通信方法、及び通信プログラム | |
CN113271136A (zh) | 基于高中低轨混合星座构型的星间网络拓扑结构 | |
Harounabadi et al. | Toward Integration of 6G-NTN to Terrestrial Mobile Networks: Research and Standardization Aspects | |
CN116743581A (zh) | 一种空天地一体化的电网切片架构及其资源优化方法 | |
CN117041928A (zh) | “空天地”一体化应急救援平台 | |
CN114978286B (zh) | 一种高低轨卫星星座设计方法及卫星接入功能部署系统 | |
US20240080091A1 (en) | Proxy device in satellite integrated terrestrial network and operation method of same | |
Palazzi et al. | Satellite coverage in urban areas using Unmanned Airborne Vehicles (UAVs) | |
Guan et al. | Energy-efficient uav communication with 3d trajectory optimization | |
WO2021132194A1 (ja) | 端末装置、管理装置及び通信方法 | |
WO2022156519A1 (zh) | 一种无线通信的方法及装置 | |
WO2023241271A9 (zh) | 一种寻呼方法及通信装置 | |
Rago et al. | Multi-layer NTN architectures toward 6G: The ITA-NTN view | |
Gal-Edd et al. | Evolution of the lunar network | |
WO2024198849A1 (zh) | 通信方法、通信装置、通信系统、介质、芯片和程序产品 | |
WO2024156281A1 (zh) | 一种信息传输方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23822932 Country of ref document: EP Kind code of ref document: A1 |