WO2023240997A1 - 一种用于高强度环槽铆钉的铆接控制方法 - Google Patents

一种用于高强度环槽铆钉的铆接控制方法 Download PDF

Info

Publication number
WO2023240997A1
WO2023240997A1 PCT/CN2022/142119 CN2022142119W WO2023240997A1 WO 2023240997 A1 WO2023240997 A1 WO 2023240997A1 CN 2022142119 W CN2022142119 W CN 2022142119W WO 2023240997 A1 WO2023240997 A1 WO 2023240997A1
Authority
WO
WIPO (PCT)
Prior art keywords
riveting
current
control method
motor
ring
Prior art date
Application number
PCT/CN2022/142119
Other languages
English (en)
French (fr)
Inventor
罗明洋
李伟
贾云龙
张帅
毛俊
杨林
郭龙
郭少卿
廖雪辉
张小连
李传奇
Original Assignee
眉山中车紧固件科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山中车紧固件科技有限公司 filed Critical 眉山中车紧固件科技有限公司
Publication of WO2023240997A1 publication Critical patent/WO2023240997A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/16Drives for riveting machines; Transmission means therefor
    • B21J15/26Drives for riveting machines; Transmission means therefor operated by rotary drive, e.g. by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups

Definitions

  • the invention belongs to the technical field of riveting and fastening, especially to the technical field of design and production of hand-held cordless power tools, and in particular to a riveting control method for high-strength ring-groove rivets.
  • Ring-groove rivets are widely used in fields such as new energy, bridges, and steel structures. If hydraulic tools or pneumatic tools are used, they are subject to on-site operating conditions, such as high altitude, high-voltage power supply, etc. These tools are often difficult to meet the conditions of use. If cordless rechargeable electric riveting tools can be used for installation, these problems can be better solved. At present, the output pulling force of electric riveting tools at home and abroad is below 30kN, which cannot meet the needs of large-diameter rings. Installation requirements for slotted rivets.
  • the present invention discloses a riveting control method for high-strength ring-groove rivets based on the shortcomings of the prior art.
  • the present invention provides a riveting tool that can overcome the defects of existing riveting tools in completing the riveting of high-strength ring-groove rivets. It adopts a movable electric drive, has a maximum riveting pulling force of 70kN, and can control different riveting methods. Riveting control methods.
  • a riveting control method for high-strength ring-groove rivets which is characterized by:
  • the riveting tool used in riveting includes a gun head assembly, a driving mechanism, a transmission mechanism, a power source and a control module arranged in the riveting tool housing;
  • the gun head assembly includes claws and anvils for extrusion riveting of ring groove rivets;
  • the power source is a removable and rechargeable battery;
  • the driving mechanism includes a DC motor, a motor-driven reduction gearbox and a drive shaft;
  • the transmission mechanism is a planetary roller wire Rod transmission mechanism, the planetary roller screw shaft of the star roller screw transmission mechanism is coaxially driven and connected with the claw of the gun head assembly, and the planetary roller screw shaft and the drive shaft of the driving mechanism are driven and connected through respectively installed gears;
  • the control module includes: STM32 main controller circuit, current sampling circuit, brushless DC motor drive circuit, Hall stroke protection circuit, overcurrent protection circuit, Hall limit circuit, and blocking protection circuit;
  • the riveting control adopts a PI adjustment algorithm and implements a double closed-loop control method for the motor speed and line current. During the riveting stress-receiving process, the riveting control is performed by detecting the relationship between the line current and the set value.
  • Riveting control for short-tailed ring-groove rivets includes: setting the motor reverse current Ia and time t; when the anvil resists the collar, the force on the motor suddenly increases, and the current collected by the current sampling circuit surges. When the current is greater than the set At a certain current Ia, the main controller determines that the anvil has resisted the collar, and the main controller starts timing. After continuing to travel for t time, the main controller controls the drive circuit to drive the motor to brake and reverse until it reaches the front Hall limit. , all parameters are reset, and riveting is completed.
  • Riveting control for pull-off ring groove rivets includes: dividing the riveting process in chronological order into: riveting combination section, collar bulging deformation section, collar bulging deformation rear section, anvil extrusion collar section, extrusion After the deformation of the collar, pull off the pretensioning section and pull off the rear section; obtain the first-order differential minimum value K1 of the current in the post-bulging deformation section of the collar, obtain the first-order differential minimum value K2 of the current in the post-deformation section of the extrusion collar, and set the pull The first-order difference value of the current after breaking is K3. Let K3 be less than or equal to K1 or K2. After the ring groove rivet is broken, the current drops sharply.
  • the main controller circuit performs a first-order difference operation on the collected current value, and the obtained current first-order When the difference is greater than the K3 value, the main controller determines that the riveting is completed, drives the motor to brake and reverse until it reaches the front Hall limit, and resets all parameters to complete the riveting.
  • the planetary roller screw shaft and the drive shaft of the present invention are driven and arranged in parallel.
  • the transmission mechanism also includes a roller planetary screw nut that is driven and matched with the planetary roller screw shaft.
  • the roller planetary screw nut is surrounded by a large gear; the diameter of the small gear set by the drive shaft of the driving mechanism is smaller than that of the large gear. diameter, the small gear of the drive shaft set is drivingly connected to the large gear of the planetary screw nut set.
  • the front end face of the roller planetary screw nut is provided with a plane thrust roller bearing
  • the rear end face is provided with a thrust needle roller bearing
  • a set of front and rear needle roller bearings are provided on the outer periphery.
  • a set of needle roller bearings are provided at the front and rear of the drive shaft.
  • the riveting tool used in the riveting control method of the present invention can have an output pulling force of up to 70kN and can effectively complete the riveting installation of ring-groove rivets including 12mm diameter specifications; the present invention has a human-computer interaction interface and can perform riveting installation modes for rivets of different specifications and models. selection; the motor torque can be controlled by adjusting the input current of the motor, and ultimately the tool output pulling force can be adjusted.
  • the drive and transmission structure of the present invention uses a planetary roller screw as a component that converts rotational motion into linear motion.
  • the planetary roller screw is applied to the design of a handheld lithium battery riveting tool, and a current control scheme is used to realize the adjustment of the riveting force.
  • the planetary roller screw shaft and the screw nut are in line contact, while the ball screw shaft and the screw nut are in point contact. Line contact has better force bearing than point contact.
  • two types of screws with the same diameter specifications the planetary roller screw can theoretically achieve three times the load capacity and six times the service life of ordinary ball screws. Therefore, in the design of high-tension electric riveting tools, the use of smaller diameter planetary roller screws can meet the design requirements and effectively reduce the weight of the entire machine.
  • Figure 1 is a schematic cross-sectional structural view of the riveting tool of the present invention
  • Figure 2 is a partially enlarged schematic diagram of Figure 1;
  • Figure 3 is a control block diagram of the short tail rivet riveting of the present invention.
  • Figure 4 is a control block diagram of the pull-off rivet riveting of the present invention.
  • Figures 5 to 8 are schematic diagrams of the riveting process of short-tailed ring-groove rivets
  • Figure 9 is a current change curve diagram during the riveting process of the short-tail ring groove rivet of the riveting tool of the present invention.
  • Figures 10 to 13 are schematic diagrams of the riveting process of pull-off ring groove rivets
  • Figure 14 is a current change curve diagram during the riveting process of the pull-off ring groove rivet with the riveting tool of the present invention.
  • 1 is the claw
  • 2 is the anvil
  • 3 is the outer sleeve
  • 4 is the connecting shaft
  • 5 is the left end cover
  • 6 is the base
  • 7 is the steel ring
  • 8 is the needle bearing
  • 9 is the large gear
  • 10 It is a needle bearing
  • 11 is the right end cover
  • 12 is a thrust needle bearing
  • 13 is a motor drive circuit board
  • 14 is a cooling fan
  • 15 is a steel ring
  • 16 is an LCD screen
  • 17 is a button
  • 18 is a motor
  • 19 is a control Circuit board
  • 20 is lithium battery
  • 21 is switch
  • 22 is reduction box
  • 23 is button battery
  • 24 is pinion
  • 25 is LED light
  • 26 is needle bearing
  • 27 is roller planetary screw nut
  • 28 is plane Thrust roller bearing
  • 29 is the planetary roller screw shaft
  • T is the collar
  • G is the riveting workpiece
  • M is the rivet
  • F is the pulling force
  • t t1 to
  • the riveting tool for high-strength ring-groove rivets of the present invention is driven by its own battery and includes a gun head assembly, a driving mechanism, a transmission mechanism, a power source and the like.
  • the gun head assembly includes a claw 1 and an anvil 2.
  • the anvil 2 is fixedly arranged on the outer sleeve 3 of the gun body.
  • the claw 1 is connected to the transmission mechanism through threads.
  • the power source is provided by a rechargeable lithium battery 20 .
  • the driving mechanism is a reduction motor 18 driven by a rechargeable lithium battery 20 .
  • the transmission mechanism is a planetary roller screw transmission mechanism.
  • the reduction motor 18 drives the planetary roller screw nut 27 to rotate through gear transmission, thereby causing the planetary roller screw shaft 29 to perform axial linear motion to generate pulling force or thrust.
  • the present invention uses a planetary roller screw as a component that converts rotational motion into linear motion.
  • the planetary roller screw is applied to the design of a handheld lithium-ion riveting tool, and a current control scheme is used to adjust the riveting force.
  • the ball screw and the screw nut are in point contact structure; in the riveting tool structure of the present invention, the planetary roller screw shaft 29 and the planetary roller screw nut 27 are in line contact, and the line contact is Compared with point contact, it has better force resistance; for two screws with the same diameter specifications, the planetary roller screw can theoretically achieve three times the load capacity and six times the service life of ordinary ball screws.
  • the present invention can meet the design requirements by using planetary roller screws with smaller diameters and effectively reduce the weight of the whole machine.
  • the tool has a human-computer interaction interface through which riveting parameters can be set, such as current size, riveting stroke, etc.
  • the control module of the invention includes an STM32 main controller circuit, a current sampling circuit, a brushless DC motor drive circuit, a Hall stroke protection circuit, an overcurrent protection circuit, a Hall limit circuit, and a blocking protection circuit.
  • the present invention designs different riveting control methods based on the riveting principles and riveting characteristics of different rivets.
  • a current value Ia and time t are set, such as 12mm rivet riveting Set the current value Ia to 27A and the time t to 0.8s.
  • the control principle block diagram is shown in Figure 3.
  • the current sampling circuit transmits the collected current value Ib to the main controller.
  • Ib>Ia the motor is controlled to continue running at constant power for t time. After the time is reached, the motor starts to brake and reverse. Thus achieving a precise riveting control.
  • Figure 9 is a current change curve chart for the riveting process of short-tail ring groove rivets; in the figure, the ordinate represents the current, the abscissa represents the riveting time, and the curve is the change in the riveting current value as the riveting time changes.
  • this control method Compared with the direct control of the stroke, this control method has the following advantages: it can avoid excessive wear of the anvil and unstable rivet quality.
  • direct control of the stroke often fails to accurately determine whether the riveting is in place, resulting in possible wear of the anvil, increased friction, or high hardness of the rivet collar, resulting in slow riveting speed and unsatisfactory riveting quality. requirements; or because the anvil has become larger due to too much riveting, the inner wall of the anvil is stretched, or the hardness of the collar is too soft, the riveting force is too small, and the riveting speed is accelerated, causing the tail teeth to be broken.
  • Figure 14 is a current change curve during the riveting process of pull-off ring groove rivets; the ordinate represents the current, and the abscissa represents the riveting time.
  • the curve is the change in the riveting current value as the riveting time changes.
  • the lower part of the figure is a Schematic diagram of order difference.
  • the working process of the riveting tool of the present invention is: press the start switch 21, the motor 18 is powered and starts to run, and is decelerated by the reduction box 22 to increase the torque.
  • the planetary roller screw nut 27 is installed with a large gear 9, which is connected to the reduction box 22
  • the pinion gear 24 on the shaft engages and drives, further decelerating and increasing the torque of the screw nut 27.
  • the rotation of the pinion gear 24 drives the rotation of the large gear 9 to drive the planetary roller screw nut 27 to rotate.
  • the rotational motion is converted into The linear motion of the planetary roller screw shaft 29 causes the claw 1 to generate a pulling force, which acts on the ring groove rivet, and the forces are mutual, so that the anvil 2 on the gun head generates thrust and squeezes the collar to deform.
  • the control module gives a signal and starts timing until the preset conditions in the program are reached. The motor 18 brakes and reverses to the initial state, thus completing a riveting cycle.
  • the anvil 2 resists the outer edge of the collar, causing the anvil 2 to move in the opposite direction relative to the claw 1 and squeeze the collar. surface.
  • the force used by the anvil 2 to squeeze the collar and achieve a certain deformation requirement is the riveting force, which is equal to the pulling force generated by the roller planetary screw shaft 29 .
  • the size of the riveting force changes in real time and gradually increases.
  • the current of the motor during the riveting process is detected through the current detection sensor on the motor drive circuit board, and then the detected current value is fed back to the PLC program for data judgment:
  • the motor 18 immediately brakes and reverses, and the roller planetary screw shaft 29 moves downward to cause the claw 1 to push the rivet away from the claw head 1, and at the same time the iron
  • the anvil 2 is also separated from the collar, and at this point, the installation of the rivet is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Insertion Pins And Rivets (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

一种用于高强度环槽铆钉的铆接控制方法,铆接采用的铆接工具包括设置于铆接工具壳体中的枪头组件、驱动机构、传动机构、动力源和控制模块;铆接控制采用PI调节算法,对电机(18)速度、线电流(I)实行双闭环控制方式,在铆接受力过程中,通过检测线电流(I)与设定值(Ia)的关系进行铆接控制。

Description

一种用于高强度环槽铆钉的铆接控制方法 技术领域
本发明属于铆接紧固技术领域,尤其属于手持式无绳电动工具设计与生产技术领域,特别涉及一种用于高强度环槽铆钉的铆接控制方法。
背景技术
环槽铆钉在新能源、桥梁、钢结构建筑等领域大量应用,若使用液压工具或者气动工具,受现场作业条件限制,如高空、高压电源等。这些工具往往较难满足使用条件,若能使用无绳充电式电动铆接工具进行安装,能够较好的解决这些问题,目前国内外的电动铆接工具的输出拉力都在30kN以下,无法满足大直径规格环槽铆钉的安装要求。
发明内容
本发明根据现有技术的不足公开了一种用于高强度环槽铆钉的铆接控制方法。本发明提供一种能够克服现有铆接工具在完成高强度环槽铆钉铆接时存在的缺陷,采用可移动电驱动、铆接拉力最大可以达到70kN、并可对不同铆接方式进行控制的铆接工具及其铆接控制方法。
本发明通过以下技术方案实现:
一种用于高强度环槽铆钉的铆接控制方法,其特征在于:
铆接采用的铆接工具包括设置于铆接工具壳体中的枪头组件、驱动机构、传动机构、动力源和控制模块;
枪头组件包括用于环槽铆钉挤压铆接的卡爪和铁砧;动力源是可拆卸 充电的蓄电池;驱动机构包括直流电机、电机驱动的减速箱和驱动轴;传动机构为行星滚柱丝杆传动机构,星滚柱丝杆传动机构的行星滚柱丝杆轴与枪头组件的卡爪同轴驱动联接,行星滚柱丝杆轴与驱动机构的驱动轴通过各自安装的齿轮驱动联接;控制模块包括:STM32主控制器电路,电流采样电路,无刷直流电机驱动电路,霍尔行程保护电路,过流保护电路,霍尔限位电路,堵停保护电路;
铆接控制采用PI调节算法,对电机速度、线电流实行双闭环控制方式,在铆接受力过程中,通过检测线电流与设定值的关系进行铆接控制。
铆接控制针对短尾型环槽铆钉包括:设置电机反转电流Ia和时间t;当铁砧抵住套环时,电机受力突然增加,电流采样电路所采集的电流产生激增,当电流大于设定的电流Ia时,主控制器判断铁砧已抵住套环,主控制器开始计时,继续行进t时间后,主控制器控制驱动电路驱动电机刹车并反转,直到到达前霍尔限位,各项参数复位,完成铆接。
铆接控制针对拉断型环槽铆钉包括:将铆接过程设置按时间顺序分为:铆接结合段,套环起鼓变形段,套环起鼓变形后段,铁砧挤压套环段,挤压套环变形后段,拉断预紧段,拉断后段;获取套环起鼓变形后段电流一阶差分最小值K1,获取挤压套环变形后段电流一阶差分最小值K2,设置拉断后段电流一阶差分值为K3,令K3小于或等于K1或K2;环槽铆钉拉断后,电流急剧下降,主控制器电路将采集得到的电流值进行一阶差分运算,得到的电流一阶差分大于K3值时,则主控制器判断铆接完成,驱动电机刹车并反转,直到到达前霍尔限位,各项参数复位,完成铆接。
本发明所述行星滚柱丝杆轴与驱动轴平行驱动布置。
进一步所述传动机构还包括与行星滚柱丝杆轴驱动配合的滚柱行星丝杆螺母,滚柱行星丝杆螺母外周套装大齿轮;所述驱动机构的驱动轴套装的小齿轮直径小于大齿轮直径,驱动轴套装的小齿轮与行星丝杆螺母套装的大齿轮驱动联接。
进一步所述滚柱行星丝杆螺母前端面设置平面推力滚柱轴承、后端面设置推力滚针轴承、外周设置前后各一组滚针轴承。
进一步所述驱动轴外周设置前后各一组滚针轴承。
本发明铆接控制方法采用的铆接工具其输出拉力可以达到70kN,能够有效完成包括12mm直径规格的环槽铆钉的铆接安装;本发明具备人机交互界面,可以针对不同规格型号的铆钉进行铆接安装模式的选择;可以通过调节电机的输入电流进而控制电机扭矩的大小,最终实现对工具输出拉力的调节。
本发明驱动及其传动结构采用行星滚柱丝杆作为旋转运动转换为直线运动的部件,将行星滚丝杆应用于手持式锂电铆接工具的设计中,采用电流控制方案实现铆接力的调节。相比于常规电动工具采用的滚珠丝杆,行星滚柱丝杆轴与丝杆螺母为线接触,而滚珠丝杆轴与丝杆螺母为点接触,线接触较点接触具备更好的受力,相同直径规格的两种丝杆,理论上行星滚柱丝杆可达普通滚珠丝杆的三倍负载能力以及六倍的使用寿命。所以在大拉力的电动铆接工具设计中采用较小直径规格的行星滚柱丝杆即可满足设计要求,可有效地降低整机的重量。
附图说明
图1是本发明铆接工具剖视结构示意图;
图2是图1局部放大示意图;
图3是本发明短尾型铆钉铆接控制框图;
图4是本发明拉断型铆钉铆接控制框图;
图5至图8是短尾型环槽铆钉铆接过程示意图;
图9是本发明铆接工具短尾型环槽铆钉铆接过程电流变化曲线图;
图10至图13是拉断型环槽铆钉铆接过程示意图;
图14是本发明铆接工具拉断型环槽铆钉铆接过程电流变化曲线图。
图中,1是卡爪,2是铁砧,3是外套筒,4是连接轴,5是左端盖,6是底座,7是钢环,8是滚针轴承,9是大齿轮,10是滚针轴承,11是右端盖,12是推力滚针轴承,13是电机驱动电路板,14是散热风扇,15是钢环,16是液晶屏,17是按键,18是电机,19是控制电路板,20是锂电池,21是开关,22是减速箱,23是纽扣电池,24是小齿轮,25是LED灯,26是滚针轴承,27是滚柱行星丝杆螺母,28是平面推力滚柱轴承,29是行星滚柱丝杆轴,T是套环,G是铆接工件,M是铆钉,F是拉力,t、t1至t6是各铆接段时间,I是电流。
具体实施方式
下面结合具体实施方式对本发明进一步说明,具体实施方式是对本发明原理的进一步说明,不以任何方式限制本发明,与本发明相同或类似技术均没有超出本发明保护的范围。
结合附图。
本发明用于高强度环槽铆钉铆接工具采用自带蓄电池驱动,包括枪头组件、驱动机构、传动机构、动力源等组成。
枪头组件包括卡爪1和铁砧2,铁砧2与枪体外套筒3固定设置,卡爪1通过螺纹与传动机构联传动接连。
动力源采用可充电式锂电池20提供。驱动机构为可充电式锂电池20驱动的减速电机18。
传动机构为行星滚柱丝杆传动机构。减速电机18通过齿轮传动带动行星滚柱丝杆螺母27作旋转运动,从而使得行星滚柱丝杆轴29作轴向的直线运动产生拉力或者推力。
本发明采用了行星滚柱丝杆作为旋转运动转换为直线运动的部件,将行星滚丝杆应用于手持式锂电铆接工具的设计中,采用电流控制方案实现铆接力的调节。
相对于电动工具采用的滚珠丝杆传动,滚珠丝杆与丝杆螺母为点接触结构;本发明铆接工具结构中行星滚柱丝杆轴29与行星滚柱丝杆螺母27为线接触,线接触较点接触具备更好的受力;相同直径规格的两种丝杆,理论上行星滚柱丝杆可达普通滚珠丝杆的三倍负载能力以及六倍的使用寿命。本发明在大拉力的电动铆接工具设计中采用较小直径规格的行星滚柱丝杆即可满足设计要求,有效地降低整机的重量。
工具具有人机交互界面,可通过该界面进行铆接参数设定,比如电流大小、铆接行程等。
本发明控制模块包括STM32主控制器电路,电流采样电路,无刷直流电机驱动电路,霍尔行程保护电路,过流保护电路,霍尔限位电路,堵停保护电路。
本发明根据不同铆钉的铆接原理和铆接特性设计了不同的铆接控制方法。
如图3,图5至图9所示,针对短尾型环槽铆钉的铆接特性,本例在短尾型环槽铆钉铆接控制方法中,设置一个电流值Ia及时间t,如12mm铆钉铆接设置电流值Ia为为27A、时间t为0.8s。控制原理框图如图3所示,电流采样电路将采集的电流值Ib输送给主控制器,当Ib>Ia时,控制电机以恒功率继续运行t时间,时间到达后电机开始刹车并反转,从而达到一个精准的铆接控制。
如图9所示,图9是针对短尾型环槽铆钉铆接过程电流变化曲线图;图中,纵坐标表示电流,横坐标表示铆接时间,曲线是随铆接时间变化铆接电流值的变化。
该控制方式相较于直接控制行程的方式优点为:可避免铁砧磨损太大、铆钉质量不稳定。在现有铆接控制中,直接控制行程常常不能准确判断铆接是否到位,造成可能的铁砧磨损,使摩擦力变大,或铆钉套环硬度偏高等原因,致使铆接速度变缓,铆接质量不能满足要求;或因为铁砧因铆接太多,尺寸变大,铁砧内壁拉,或者套环硬度偏软,铆接力偏小,铆接速度加快,导致尾牙拉坏。
如图4,图10至图14所示,针对拉断型环槽铆钉,由于其不同的铆 接构成和特点,拉断型环槽铆钉呈现的电流变化曲线如图14所示,电流为离散的变化量,对其求一阶差分,从图中可以看出,在拉断时,即t5时刻,其电流值瞬间减小,其电流的一阶差分值k3小于t1~t2,t3~t4时刻一阶差分的最小值k1、k2,即k3<<k1或k2,故根据k3值的大小即可判断铆钉是否拉断,从而达到快速控制电机刹车反转,实现拉断后自动反转的目的。
如图14所示,图14是拉断型环槽铆钉铆接过程电流变化曲线图;纵坐标表示电流,横坐标表示铆接时间,曲线是随铆接时间变化铆接电流值的变化,图中下部是一阶差分示意图。
本发明铆接工具的工作过程是:按下启动开关21,电机18得电开始运转,经减速箱22减速增加扭矩,行星滚柱丝杆螺母27安装大齿轮9,该大齿轮9与减速箱22轴上的小齿轮24啮合传动,进一步减速增加丝杆螺母27的转矩,小齿轮24旋转带动大齿轮9旋转带动行星滚柱丝杆螺母27旋转,通过行星滚柱丝杆将旋转运动转化为行星滚柱丝杆轴29直线运动从而使得卡爪1产生拉力,该拉力作用于环槽铆钉,而力的作用是相互的,从而枪头上的铁砧2产生推力并挤压套环变形。当系统检测到电机18电流到达预设值时,控制模块给出信号并开始计时直到达到程序中的预设条件后电机18刹车,反转至初始状态,至此完成一个铆接循环。
在使用铆接工具前,将锂电池20装在电动铆接工具底座,然后根据所需安装的铆钉在参数设置页面进行程序的选择,按动开关21按钮进行环槽铆钉的安装。
进行铆接操作时,首先通过17按键根据不同的铆钉选择相对应的铆接 模式;将卡爪1插入铆钉的尾部,确保卡爪1内部的拉槽与将铆钉尾部的拉槽咬合;按住开关21按钮,电机18得电开始运行;经过驱动机构、传动机构的动力传输,使得滚柱行星丝杆轴29产生图5或图10箭头所示方向的拉力F;滚柱行星丝杆轴29与连接轴4螺纹连接,连接轴4另外一端与卡爪1连接。此过程中,当卡爪1咬合并拉住铆钉尾牙并向上运动时,由于铁砧2抵住套环外边缘,使得铁砧2产生相对于卡爪1相反方向的运动并挤压套环表面。在挤压套环过程中,铁砧2挤压套环并使其达到一定变形要求的力便是铆接力,该铆接力与滚柱行星丝杆轴29产生的拉力大小相等。铆接力的大小是实时变化并逐渐上升的,通过电机驱动电路板上的电流检测传感器对铆接过程中电机的电流进行检测,再将检测到的电流值反馈至PLC程序进行数据判断:当所检测到的电流值I、或/和时间t符合设定铆接模式时,电机18立即刹车并反转,滚柱行星丝杆轴29向下运动使卡爪1推动拉铆钉从爪头1脱离,同时铁砧2也从套环脱离,至此,完成拉铆钉安装。

Claims (7)

  1. 一种用于高强度环槽铆钉的铆接控制方法,其特征在于:
    铆接采用的铆接工具包括设置于铆接工具壳体中的枪头组件、驱动机构、传动机构、动力源和控制模块;
    枪头组件包括用于环槽铆钉挤压铆接的卡爪和铁砧;动力源是可拆卸充电的蓄电池;驱动机构包括直流电机、电机驱动的减速箱和驱动轴;传动机构为行星滚柱丝杆传动机构,星滚柱丝杆传动机构的行星滚柱丝杆轴与枪头组件的卡爪同轴驱动联接,行星滚柱丝杆轴与驱动机构的驱动轴通过各自安装的齿轮驱动联接;控制模块包括:STM32主控制器电路,电流采样电路,无刷直流电机驱动电路,霍尔行程保护电路,过流保护电路,霍尔限位电路,堵停保护电路;
    铆接控制采用PI调节算法,对电机速度、线电流实行双闭环控制方式,在铆接受力过程中,通过检测线电流与设定值的关系进行铆接控制。
  2. 根据权利要求1所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:铆接控制针对短尾型环槽铆钉包括:设置电机反转电流Ia和时间t;当铁砧抵住套环时,电机受力突然增加,电流采样电路所采集的电流产生激增,当电流大于设定的电流Ia时,主控制器判断铁砧已抵住套环,主控制器开始计时,继续行进t时间后,主控制器控制驱动电路驱动电机刹车并反转,直到到达前霍尔限位,各项参数复位,完成铆接。
  3. 根据权利要求1所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:铆接控制针对拉断型环槽铆钉包括:将铆接过程设置按时间顺序分为:铆接结合段,套环起鼓变形段,套环起鼓变形后段,铁砧挤压套环段,挤 压套环变形后段,拉断预紧段,拉断后段;获取套环起鼓变形后段电流一阶差分最小值K 1,获取挤压套环变形后段电流一阶差分最小值K 2,设置拉断后段电流一阶差分值为K 3,令K 3小于或等于K 1或K 2;环槽铆钉拉断后,电流急剧下降,主控制器电路将采集得到的电流值进行一阶差分运算,得到的电流一阶差分大于K 3值时,则主控制器判断铆接完成,驱动电机刹车并反转,直到到达前霍尔限位,各项参数复位,完成铆接。
  4. 根据权利要求1或2或3所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:所述行星滚柱丝杆轴与驱动轴平行驱动布置。
  5. 根据权利要求4所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:所述传动机构还包括与行星滚柱丝杆轴驱动配合的滚柱行星丝杆螺母,滚柱行星丝杆螺母外周套装大齿轮;所述驱动机构的驱动轴套装的小齿轮直径小于大齿轮直径,驱动轴套装的小齿轮与行星丝杆螺母套装的大齿轮驱动联接。
  6. 根据权利要求5所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:所述滚柱行星丝杆螺母前端面设置平面推力滚柱轴承、后端面设置推力滚针轴承、外周设置前后各一组滚针轴承。
  7. 根据权利要求5所述的用于高强度环槽铆钉的铆接控制方法,其特征在于:所述驱动轴外周设置前后各一组滚针轴承。
PCT/CN2022/142119 2022-06-15 2022-12-26 一种用于高强度环槽铆钉的铆接控制方法 WO2023240997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210676497.3 2022-06-15
CN202210676497.3A CN115090822A (zh) 2022-06-15 2022-06-15 一种用于高强度环槽铆钉的铆接控制方法

Publications (1)

Publication Number Publication Date
WO2023240997A1 true WO2023240997A1 (zh) 2023-12-21

Family

ID=83290993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142119 WO2023240997A1 (zh) 2022-06-15 2022-12-26 一种用于高强度环槽铆钉的铆接控制方法

Country Status (2)

Country Link
CN (1) CN115090822A (zh)
WO (1) WO2023240997A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090822A (zh) * 2022-06-15 2022-09-23 眉山中车紧固件科技有限公司 一种用于高强度环槽铆钉的铆接控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108398A1 (de) * 2014-06-13 2015-12-17 Techway Industrial Co., Ltd. Elektrisches Nietmutterwerkzeug und ein Steuergerät dafür
CN205798316U (zh) * 2016-05-25 2016-12-14 江苏东成机电工具有限公司 电动拉铆枪
CN109954829A (zh) * 2017-12-22 2019-07-02 车王电子股份有限公司 拉钉机的控制方法
CN111136209A (zh) * 2019-10-29 2020-05-12 宁波蓝圣智能科技有限公司 一种伺服电动自动铆接机
CN111151697A (zh) * 2020-01-20 2020-05-15 眉山中车紧固件科技有限公司 一种电动铆接工具
CN111571509A (zh) * 2020-05-26 2020-08-25 上海威若顿机械制造有限公司 全自动-半自动可转换的电动铆螺母工具
CN115090822A (zh) * 2022-06-15 2022-09-23 眉山中车紧固件科技有限公司 一种用于高强度环槽铆钉的铆接控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108398A1 (de) * 2014-06-13 2015-12-17 Techway Industrial Co., Ltd. Elektrisches Nietmutterwerkzeug und ein Steuergerät dafür
CN205798316U (zh) * 2016-05-25 2016-12-14 江苏东成机电工具有限公司 电动拉铆枪
CN109954829A (zh) * 2017-12-22 2019-07-02 车王电子股份有限公司 拉钉机的控制方法
CN111136209A (zh) * 2019-10-29 2020-05-12 宁波蓝圣智能科技有限公司 一种伺服电动自动铆接机
CN111151697A (zh) * 2020-01-20 2020-05-15 眉山中车紧固件科技有限公司 一种电动铆接工具
CN111571509A (zh) * 2020-05-26 2020-08-25 上海威若顿机械制造有限公司 全自动-半自动可转换的电动铆螺母工具
CN115090822A (zh) * 2022-06-15 2022-09-23 眉山中车紧固件科技有限公司 一种用于高强度环槽铆钉的铆接控制方法

Also Published As

Publication number Publication date
CN115090822A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
US8631880B2 (en) Power tool with impact mechanism
WO2023240997A1 (zh) 一种用于高强度环槽铆钉的铆接控制方法
CN104308790B (zh) 铆螺母电动工具
WO2023240996A1 (zh) 一种用于高强度环槽铆钉的铆接工具
CN109048754B (zh) 行程和拉铆力多档可调的电动铆螺母工具
CN108188968A (zh) 一种电动冲击扳手及其装配力矩的控制方法
CN109996620A (zh) 紧固工具
CN210412377U (zh) 具有扭力监测的双伺服拉铆装置
CN106891089B (zh) 一种多用主轴结构
CN111151697A (zh) 一种电动铆接工具
CN204819308U (zh) 电动铆螺母工具
WO2016149852A1 (zh) 新型多功能省力拉马
CN109015503B (zh) 锂电直驱恒扭力扳手
EP4316687A1 (en) Riveting tool for high-strength ring groove rivet
CN212042509U (zh) 一种电动铆接工具
CN201300266Y (zh) 手持式电动攻丝器
CN207982421U (zh) 用于充电式锂电池铆钉枪圆孔改六角孔的操作装置
CN212527535U (zh) 一种轻钢结构专用高效螺钉紧固工具
CN210878462U (zh) 一种多功能压力机
CN204221688U (zh) 铆螺母电动工具
CN109834655A (zh) 一种电动铆螺母工具
CN201187535Y (zh) 啮合式离合器
CN207982211U (zh) 用于电动手柄的环槽铆钉操作装置
CN110125874A (zh) 一种建筑工程用螺丝帽拆卸装置
CN209095435U (zh) 电动扳手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946661

Country of ref document: EP

Kind code of ref document: A1