WO2023240960A1 - 壳体、壳体的制作方法及电子设备 - Google Patents

壳体、壳体的制作方法及电子设备 Download PDF

Info

Publication number
WO2023240960A1
WO2023240960A1 PCT/CN2022/138785 CN2022138785W WO2023240960A1 WO 2023240960 A1 WO2023240960 A1 WO 2023240960A1 CN 2022138785 W CN2022138785 W CN 2022138785W WO 2023240960 A1 WO2023240960 A1 WO 2023240960A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting part
housing
housing body
blocking wall
Prior art date
Application number
PCT/CN2022/138785
Other languages
English (en)
French (fr)
Inventor
吴英超
林建文
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023240960A1 publication Critical patent/WO2023240960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details

Definitions

  • smart wearable devices such as smart watches, smart bracelets, etc.
  • PPG photoplethysmographic, photoplethysmography
  • physiological data such as heart rate and blood oxygen concentration.
  • Smart wearable devices usually include a housing, a light emitter and a light detector.
  • the housing is provided with a first light-transmitting part and a second light-transmitting part.
  • the light signal emitted by the light emitter can pass through the first light-transmitting part and reach the human skin.
  • the light signal reflected back from the human skin can pass through the second light-transmitting part and reach the light detector, and human body physiological data can be obtained by processing the light signal detected by the light detector.
  • the light emitted by the light emitter into the first light-transmitting part is transmitted into the second light-transmitting part and then received by the light detector, that is to say, the light signal emitted by the light emitter is directly detected by the light without being reflected by the skin. This will lead to errors in the optical signals detected by the photodetector, which will lead to a reduction in the accuracy of the detection results.
  • Embodiments of the present application provide a housing, a manufacturing method of the housing, and electronic equipment.
  • the housing can avoid crosstalk between the light in the first light-transmitting part and the light in the second light-transmitting part.
  • the housing is used in electronic equipment When used, the accuracy of detection results of electronic equipment can be improved.
  • a housing including:
  • At least a part of the outer peripheral edge of the first light-transmitting part and/or the second light-transmitting part is directly connected to the housing body;
  • the absolute value of the difference between the thermal expansion coefficient of the material of the first light-transmitting part and/or the second light-transmitting part directly connected to the housing body and the thermal expansion coefficient of the material of the housing body is the third A difference, the ratio of the first difference to the thermal expansion coefficient of the material of the housing body is less than or equal to 20%.
  • the materials of the housing body, the first light-transmitting part, the second light-transmitting part and the light-shielding wall are made according to the materials of the housing body, the first light-transmitting part. , the positions of the second light-transmitting part and the light-shielding wall are arranged;
  • the materials of the housing body, the first light-transmitting part, the second light-transmitting part and the light-shielding wall are extruded, so that the materials of the housing body and the light-shielding wall are The material of the first light-transmitting part, the material of the second light-transmitting part and the material of the light-shielding wall are connected to obtain the housing.
  • Shell is the shell as described above;
  • the light detector is disposed on the same side of the housing as the light emitter, and the light incident on the second light-transmitting part from the side of the housing away from the light detector passes through the The second light-transmitting part enters the photodetector after transmission.
  • Figure 1 is a first structural schematic diagram of a housing provided by an embodiment of the present application.
  • Figure 2 is a second structural schematic diagram of a housing provided by an embodiment of the present application.
  • Figure 4 is a fourth structural schematic diagram of a housing provided by an embodiment of the present application.
  • Figure 5 is a fifth structural schematic diagram of a housing provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the sixth structure of the housing provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an eighth type of housing provided by an embodiment of the present application.
  • Figure 9 is a ninth structural schematic diagram of a housing provided by an embodiment of the present application.
  • Figure 11 is an eleventh structural schematic diagram of a housing provided by an embodiment of the present application.
  • Figure 12 is a flow chart of a method for manufacturing a casing provided by an embodiment of the present application.
  • Figure 13 shows an embodiment of the present application in which the materials of the housing body, the first light-transmitting part, the second light-transmitting part and the light-shielding wall are made according to the materials of the housing body, the first light-transmitting part in Figure 1 , schematic diagram of the arrangement of the positions of the second light-transmitting part and the light-shielding wall.
  • Figure 14 shows an embodiment of the present application in which the materials of the housing body, the first light-transmitting part, the second light-transmitting part and the light-shielding wall are made according to the materials of the housing body, the first light-transmitting part in Figure 3 , schematic diagram of the arrangement of the positions of the second light-transmitting part and the light-shielding wall.
  • Figure 15 shows an embodiment of the present application in which the materials of the housing body, the first light-transmitting part, the second light-transmitting part and the light-shielding wall are made according to the materials of the housing body, the first light-transmitting part in Figure 5 , schematic diagram of the arrangement of the positions of the second light-transmitting part and the light-shielding wall.
  • Figure 16 is a schematic structural diagram of a composite rod provided by an embodiment of the present application.
  • Figure 17 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a first structural schematic diagram of a housing provided by an embodiment of the present application.
  • the embodiment of the present application provides a housing 110, which includes a housing body 10, a first light-transmitting part 20, a second light-transmitting part 30, and a light-shielding wall 40.
  • the second light-transmitting part 30 is spaced apart from the first light-transmitting part 20.
  • the light-shielding wall 40 is provided between the first light-transmitting part 20 and the second light-transmitting part 30 .
  • At least a part of the outer peripheral edge of the first light-transmitting part 20 is directly connected to the housing body 10
  • at least a part of the outer peripheral edge of the second light-transmitting part 30 is directly connected to the housing body 10 .
  • the absolute value of the difference between the thermal expansion coefficient of the material of the first light-transmitting part 20 and the thermal expansion coefficient of the material of the housing body 10 is less than or equal to 20% (for example, the ratio is 20% , 17%, 15%, 12%, 10%, 8%, 5%, 3%, 1%, 0.5%, 0, etc.).
  • the ratio of the absolute value of the difference between the thermal expansion coefficient of the material of the second light-transmitting part 30 and the thermal expansion coefficient of the material of the housing body 10 is less than or equal to 20% (for example, the ratio is 20% , 17%, 15%, 12%, 10%, 8%, 5%, 3%, 1%, 0.5%, 0, etc.).
  • the direct connection between the first light-transmitting part 20 and the second light-transmitting part 30 and the casing body 10 refers to the first light-transmitting part 20 , the second light-transmitting part 30 and the casing.
  • the body 10 is an integral structure, and the intersection between the first light-transmitting part 20 and the second light-transmitting part 30 and the housing body 10 forms a continuous material interface, rather than a combined structure (such as inlaying, bonding, etc.).
  • the case body 10 , the first light-transmitting part 20 , the second light-transmitting part 30 and the light-shielding wall 40 are made by integral molding.
  • the materials of the housing body 10 and the first light-transmitting part 20 are After the material and the material of the second light-transmitting part 30 are heated and softened, the expansion coefficients of the material of the housing body 10 , the material of the first light-transmitting part 20 and the material of the second light-transmitting part 30 are close to each other. After the material, the material of the first light-transmitting part 20 and the material of the second light-transmitting part 30 are extruded together and cooled, the material of the housing body 10 , the material of the first light-transmitting part 20 and the material of the second light-transmitting part 30 The shrinkage rates of the materials are close to each other. Therefore, the parts connecting the housing body 10 and the first light-transmitting part 20 and the second light-transmitting part 30 are not prone to cracking, thereby improving the mechanical strength of the housing 110 .
  • the housing 110 in the embodiment of the present application can pass the steel ball impact test (a steel ball weighing 110g freely falls from a height of 5 cm from the surface of the housing 110 to the first light-transmitting part 20 on the housing 110 impact with the second light-transmitting part 30), the results of the steel ball impact test show that after the impact of the steel ball on the housing 110 of the embodiment of the present application, there will be no cracking on the surface of the housing 110. That is to say, the housing 110 provided by the embodiment of the present application has high mechanical strength and good impact resistance.
  • the transmittance of the first light-transmitting part 20 and the second light-transmitting part 30 for light with a wavelength of 400 nm to 1200 nm is greater than or equal to 30%, such as 30%, 40%, 50%, 60%, 70 %, 80%, 90% or 100%; for example, the transmittance of the light-shielding wall 40 to light with a wavelength of 400nm to 1200nm is less than or equal to 20%, such as 20%, 18%, 15%, 12%, 10%, 8%, 5%, 3%, 1% or 0.
  • the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 and the material 73 of the second light-transmitting part 30 may be the same.
  • the material 72 and the material 73 of the second light-transmitting part 30 may both be glass materials or both resin materials.
  • the first light-transmitting part 20 and the second light-transmitting part 30 are both directly connected to the housing body 10, when the material 71 and the second light-transmitting part 10 of the housing body 10
  • the material 72 of the first light-transmitting part 20 and the material 73 of the second light-transmitting part 30 are the same
  • the thermal expansion coefficients of the same materials are the same, the material 71 of the housing body 10 , the material 73 of the second light-transmitting part 30 and the After the material 72 of the light-transmitting portion 20 is heated, softened and extruded together, it is less likely to crack, thereby improving the mechanical strength of the housing 110 .
  • the number of the second light-transmitting parts 30 is multiple, and the plurality of second light-transmitting parts 30 are arranged around the first light-transmitting part 20 .
  • multiple refers to two or more, such as three, four, five, six, seven, eight, nine, ten, etc.
  • the first light-transmitting part 20 and the second light-transmitting part 30 may each be a regular hexagon, a regular pentagon, a square, a rectangle, an equilateral triangle, a circle, an ellipse, a sector, or an irregular shape. .
  • the light-shielding wall 40 may include a first blocking wall 41 and a second blocking wall 42 ; the first blocking wall 41 is arranged around the first light-transmitting part 20 , and the first blocking wall 41 is provided with one or more There is a first notch 411 , and the first light-transmitting part 20 is directly connected to the housing body 10 at the first notch 411 ; a second blocking wall 42 is provided between every two adjacent second light-transmitting parts 30 .
  • the second retaining wall 42 can be provided corresponding to the first gap 411 , and the second retaining wall 42 is not connected to the first retaining wall 41 . It can be seen that at this time, a partial area of the housing body 10 is filled between the second blocking wall 42 and the first blocking wall 41 so that the housing body 10 can be connected to the first light-transmitting part 20 at the first gap 411 .
  • the number of the second blocking wall 42 may be at least one, that is, one or more, depending on the number of the second light-transmitting parts 30 .
  • the first retaining wall 41 can be provided with multiple first gaps 411.
  • the first retaining wall 41 is composed of a plurality of first retaining wall units 412 arranged at intervals. Any two adjacent first retaining walls A first gap 411 is formed between the units 412 .
  • the plurality of first retaining wall units 412 may be located on the edges of regular hexagons, regular pentagons, squares, rectangles, equilateral triangles, circles, ellipses, sectors, irregular shapes, and other shapes.
  • the first light-transmitting part 20 is directly connected to the housing body 10 at the third notch 431
  • the second light-transmitting part 30 is directly connected to the housing body 10 at the fourth notch 441
  • the first light-transmitting part 20 is directly connected to the housing body 10 at the fourth notch 441.
  • the mechanical strength of the housing 110 can be significantly improved, making the housing 110 less likely to crack. The phenomenon.
  • the third retaining wall 43 can be provided with multiple third gaps 431.
  • the third retaining wall 43 is composed of a plurality of third retaining wall units 432 arranged at intervals. Any two adjacent third retaining walls can A third gap 431 is formed between the units 432 .
  • the plurality of third retaining wall units 432 may be located on the edges of regular hexagons, regular pentagons, squares, rectangles, equilateral triangles, circles, ellipses, sectors, irregular shapes, and other shapes.
  • FIG. 4 is a fourth structural schematic diagram of a housing provided by an embodiment of the present application.
  • the third blocking wall 43 is provided with a third notch 431, and the first light-transmitting part 20 is directly connected to the housing body 10 at the third notch 431.
  • the third retaining wall 43 is closed, that is to say, the third retaining wall 43 is not provided with the third gap 431, and the first light-transmitting part 20 is not connected to the housing body 10.
  • a partial area of the outer peripheral edge of the second light-transmitting part 30 is directly connected to the housing body 10 , and the absolute difference between the thermal expansion coefficient of the material of the second light-transmitting part 30 and the thermal expansion coefficient of the material of the housing body 10 is The ratio of the value to the thermal expansion coefficient of the material of the housing body 10 is less than or equal to 20% (for example, the ratio is 20%, 17%, 15%, 12%, 10%, 8%, 5%, 3%, 1%, 0.5 %, 0, etc.).
  • FIG. 5 is a fifth structural schematic diagram of a housing provided by an embodiment of the present application.
  • the light-shielding wall 40 may include a fifth blocking wall 45 , which is arranged around the second light-transmitting part 30 , and one or more fifth gaps 451 are provided on the fifth blocking wall 45 , and the second light-transmitting part 30 is directly connected to the housing body 10 at the fifth notch 451, and all areas of the outer peripheral edge of the first light-transmitting part 20 are connected to the housing body 10.
  • FIG. 6 is a sixth structural schematic diagram of a housing provided by an embodiment of the present application.
  • the difference between Figure 6 and Figure 5 is that in Figure 5, the fifth blocking wall 45 is provided with a fifth notch 451, and the second light-transmitting part 30 is directly connected to the housing body 10 at the fifth notch 451.
  • the fifth retaining wall 45 is closed, that is to say, the fifth retaining wall 45 is not provided with the fifth gap 451, and the second light-transmitting part 30 is not connected to the housing body 10.
  • the housing body 10 since the thermal expansion coefficient of the material of the first light-transmitting part 20 is very different from the thermal expansion coefficient of the material of the housing body 10 , the housing The portion connecting the main body 10 and the first light-transmitting part 20 is not prone to cracking, thereby improving the mechanical strength of the housing 110 .
  • Figure 7 is a seventh structural schematic diagram of a housing provided by an embodiment of the present application. It can be seen that the difference between Figure 7 and Figure 1 is that in Figure 1, the first retaining wall 41 and The first light-transmitting part 20 is connected, and in Figure 7, the first blocking wall 41 is spaced apart from the first light-transmitting part 20. It can be understood that when the first blocking wall 41 is spaced apart from the first light-transmitting part 20, The area of the first light-transmitting part 20 corresponding to the first blocking wall 41 is directly connected to the housing body 10 , that is to say, all areas of the outer peripheral edge of the first light-transmitting part 20 are connected to the housing body 10 , so that The mechanical strength of the housing 110 can be further improved.
  • Figure 11 is an eleventh structural schematic diagram of a housing provided by an embodiment of the present application. It can be seen that the difference between Figure 11 and Figure 5 is that in Figure 5, the fifth retaining wall 45 It is connected to the second light-transmitting part 30, and in Figure 11, the fifth blocking wall 45 is spaced apart from the second light-transmitting part 30. It can be understood that when the fifth blocking wall 45 is spaced apart from the second light-transmitting part 30, , the area corresponding to the fifth blocking wall 45 on the second light-transmitting part 30 is directly connected to the housing body 10, that is to say, all areas of the outer peripheral edge of the second light-transmitting part 30 are connected to the housing body 10, Therefore, the mechanical strength of the housing 110 can be further improved.
  • the thermal expansion coefficient of any one of the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 and the material 73 of the second light-transmitting part 30 is the same as the thermal expansion coefficient of the material 74 of the light-shielding wall 40
  • the absolute value of the difference between them is the second difference
  • the ratio of the second difference to the thermal expansion coefficient of the material 74 of the light-shielding wall 40 is less than or equal to 20% (for example, the ratio is 20%, 17%, 15%, 12 %, 10%, 8%, 5%, 3%, 1%, 0.5%, 0, etc.)
  • the second difference is between the material 71 of the housing body 10 and the material 72 of the first light-transmitting part 20
  • the ratio of the thermal expansion coefficient to any one of the materials 73 of the second light-transmitting part 30 is less than or equal to 20% (for example, the ratio is 20%, 17%, 15%, 12%, 10%, 8%, 5%, 3%, 1%, 0.
  • the ratio of the second difference to the thermal expansion coefficient of the material 74 of the light-shielding wall 40 is less than or equal to 20%, and/or, the ratio of the second difference to the material 71 of the housing body 10 and the first transparent
  • the ratio of the thermal expansion coefficient of any one of the material 72 of the light part 20 and the material 73 of the second light-transmitting part 30 is less than or equal to 20%.
  • the material 71 of the housing body 10 and the material of the second light-transmitting part 30 can be 73. After the material 72 of the first light-transmitting part 20 and the material 74 of the light-shielding wall 40 are heated, softened and extruded together, they are not prone to cracking.
  • the overall structure of the housing 110 can be in various shapes such as flat plate, curved surface, or bending, and the cross section of the housing 110 can be in the shape of a circle, an ellipse, a sector, a square, a rectangle, an equilateral triangle, Regular hexagon, regular pentagon, irregular shapes and other shapes.
  • the housing 110 When the housing 110 is used in electronics
  • the first light-transmitting part 20 is arranged corresponding to the light emitter, and the second light-transmitting part 30 is arranged corresponding to the light detector, it can avoid that the emitted light signal in the first light-transmitting part 20 has a negative impact on the light signal in the second light-transmitting part 30 .
  • the received optical signal causes interference, thereby improving the accuracy of the optical signal detected by the photodetector, thereby improving the accuracy of the detection result of the electronic device; in addition, the embodiment of the present application combines the first light-transmitting part 20 and/or the second transparent part.
  • the light part 30 is configured to be directly connected to the housing body 10 (that is, the first light-transmitting part 20 and/or the second light-transmitting part 30 and the housing body 10 are an integral structure), and the third light-transmitting part 30 is directly connected to the housing body 10 .
  • the thermal expansion coefficient of the material of the first light-transmitting part 20 and/or the second light-transmitting part 30 is set close to the thermal expansion coefficient of the material of the housing body 10, which can significantly improve the mechanical strength of the housing 110 and make the housing 110 have better Impact resistance, thereby extending the service life of the electronic device including the housing 110.
  • Figure 14 uses the material 71 of the housing body 10, the material 72 of the first light-transmitting part 20, the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 as shown in Figure 3
  • the positions of the housing body 10, the first light-transmitting part 20, the second light-transmitting part 30, and the light-shielding wall 40 are arranged, and then the material 71 of the housing body 10, the material 72 of the first light-transmitting part 20, and the second light-transmitting part 20 are arranged.
  • the material 73 of the light-transmitting part 30 and the material 74 of the light-shielding wall 40 are extruded to obtain the housing 110 as shown in FIG. 1 .
  • the material 71 of the housing body 10 when the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 , the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 are in a non-softened state at normal temperature, Before extruding the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 , the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 , the material of the housing body 10 needs to be extruded. 71.
  • the material 72 of the first light-transmitting part 20, the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 are softened.
  • the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 , the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 are all rod-shaped materials.
  • the diameter of the rod-shaped material can be 0.01mm to 50mm, such as 0.01mm, 0.03mm, 0.05mm, 0.07mm, 0.1mm, 0.3mm, 0.5mm, 0.7mm, 1mm, 3mm, 5mm, 7mm, 10mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 45mm, 50mm, etc.
  • the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 , the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 may all include rod-shaped materials with a diameter of 3 mm and a diameter of 0.46 mm rod-shaped materials, rod-shaped materials with a diameter of 0.46mm can be filled in the gaps between rod-shaped materials with a diameter of 3mm, improving the tightness between rod-shaped materials after extrusion.
  • FIG. 16 is a schematic structural diagram of a composite rod provided by an embodiment of the present application.
  • the material 71 of the housing body 10 , the material 72 of the first light-transmitting part 20 , the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 are extruded, so that the material 71 of the housing body 10 and the material 74 of the light-shielding wall 40 are pressed.
  • the composite rod body 80 can be obtained.
  • the shell 110 can be obtained.
  • the composite rod 80 can be processed by cutting or cutting to obtain the shell 110 .
  • the composite rod body 80 can also be drawn to reduce the cross-sectional size of the composite rod body 80 to obtain a size that conforms to the product design.
  • the composite rod body 80 can be Process to obtain the housing 110.
  • the diameter of the composite rod 80 can be reduced to 1.2 mm, 1 mm, etc.
  • the material 71 of the housing body 10, the material 72 of the first light-transmitting part 20, the material 73 of the second light-transmitting part 30, and the material 74 of the light-shielding wall 40 are arranged according to the materials of the housing body 10, the first transparent part 20, the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40.
  • the positions of the light part 20, the second light-transmitting part 30, and the light-shielding wall 40 are arranged, and the material 71 of the housing body 10, the material 72 of the first light-transmitting part 20, the material 73 of the second light-transmitting part 30, and the light-shielding wall are arranged.
  • the extrusion of the material 74 of the retaining wall 40 can be performed once or multiple times, that is, the composite rod body 80 can be formed through one or multiple rod rows.
  • the composite rod can be formed through one rod row.
  • body 80 that is, all the rods of the housing body 10, all the rods of the first light-transmitting part 20, all the rods of the second light-transmitting part 30 and all the rods of the light-shielding wall 40 are arranged together (one row of rods)
  • the composite rod body 80 is formed through one extrusion; in other embodiments, the composite rod body 80 can be formed through secondary rod arrangement, that is, first, the material 71 of the housing body 10 and the first light-transmitting part 20 are
  • the material 72, the material 73 of the second light-transmitting part 30 and the material 74 of the light-shielding wall 40 are each divided into multiple parts.
  • Each part of the rods is arranged together (the first rod arrangement) and then extruded to form the first rod body ( First extrusion), arranging multiple first rod bodies (second arranging rods), and then extruding multiple first rod bodies (second extrusion) to form the composite rod body 80, or , and can also arrange rods three times, four times, etc. according to actual production needs. It can be understood that by arranging the rods multiple times, the air gap between the rods can be reduced and the tightness between the rods after extrusion can be improved.
  • FIG. 17 is a partial structural diagram of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application also provides an electronic device 100, including a housing 110, a light emitter 50 and a light detector 60.
  • the housing 110 can be the housing 110 in any of the above embodiments; the light emitter 50 is disposed in the housing.
  • the light emitted by the light emitter 50 is incident on the first light transmitting part 20 and then transmitted to the side of the housing 110 away from the light emitter 50 through the first light transmitting part 20; the light detector 60 and the light
  • the emitter 50 is disposed on the same side of the housing 110 .
  • the light incident on the second light-transmitting part 30 from the side of the housing 110 away from the photodetector 60 is transmitted through the second light-transmitting part 30 and then enters the photodetector 60 .
  • the electronic device 100 may be a smart wearable device, such as a watch, a bracelet, a ring, an armband, clothing, etc.; the electronic device 100 may have a health monitoring function, including but not limited to blood oxygen monitoring function and heart rate monitoring function. Functions, etc., the health monitoring function of the electronic device 100 can be implemented through photoplethysmography (PPG).
  • PPG photoplethysmography
  • the housing 110 can be used as a back cover (ie, a cover close to the skin side) of a smart wearable device (eg, a smart watch).
  • a back cover ie, a cover close to the skin side
  • a smart wearable device eg, a smart watch
  • the light emitter 50 may include a light-emitting diode (LED) lamp
  • the light detector 60 may include a light sensor.
  • LED light-emitting diode
  • the electronic device 100 provided in the embodiment of the present application can prevent the light emitted by the light emitter 50 from passing through the first light-transmitting part 20 into the second light-transmitting part 30 and then being received by the photodetector 60 by using the above-mentioned housing 110. Improved the accuracy of detection results.
  • the electronic device 100 may further include a shielding member 90 , the shielding member 90 is disposed on the same side of the housing 110 as the light emitter 50 and the light detector 60 , and the shielding member 90 is disposed between the light emitter 50 and the light detector 60 . between the detectors 60 to prevent the light emitted by the light emitter 50 from directly entering the photodetector 60 and causing cross-light; for example, the top surface of the shielding member 90 can be in contact with the bottom surface of the housing 110 to maximize the Plays a light-shielding role; for example, the material of the shielding member 90 can be glass, ceramics, plastic, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

一种壳体、壳体的制作方法及电子设备,壳体包括壳体本体、第一透光部、第二透光部以及遮光挡墙,第二透光部与第一透光部间隔设置;遮光挡墙设于第一透光部与第二透光部之间,该壳体可以避免第一透光部内的光线与第二透光部内的光线发生串扰,当该壳体应用于电子设备中时,可以提高电子设备的检测结果的准确度。

Description

壳体、壳体的制作方法及电子设备
本申请要求于2022年06月14日提交中国专利局、申请号为202210672787.0、申请名称为“壳体、壳体的制作方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子领域,特别涉及一种壳体、壳体的制作方法及电子设备。
背景技术
随着人们健康意识的不断增强,越来越多的智能穿戴设备(例如智能手表、智能手环等)选择在设备中集成光学元件,依据PPG(photoplethysmographic,光电容积脉搏波描记法)原理测量用户的心率和血氧浓度等生理数据。
智能穿戴设备通常包括壳体、光发射器和光检测器,壳体上设有第一透光部与第二透光部,光发射器发出的光信号可以穿过第一透光部到达人体皮肤,从人体皮肤反射回来的光信号可以穿过第二透光部到达光检测器,通过对光检测器检测的光信号进行处理后可以获得人体生理数据。然而,当光发射器发射到第一透光部内的光线串入第二透光部内进而被光检测器接收时,也即是说,光发射器发出的光信号未经皮肤反射直接被光检测器接收,此时会导致光检测器检测的光信号出现误差,进而导致检测结果的准确度降低。
发明内容
本申请实施例提供一种壳体、壳体的制作方法及电子设备,该壳体可以避免第一透光部内的光线与第二透光部内的光线发生串扰,当该壳体应用于电子设备中时,可以提高电子设备的检测结果的准确度。
第一方面,本申请实施例提供一种壳体,包括:
壳体本体;
第一透光部;
第二透光部,所述第二透光部与所述第一透光部间隔设置;
遮光挡墙,所述遮光挡墙设于所述第一透光部与所述第二透光部之间;
其中,所述第一透光部和/或所述第二透光部的外周边缘的至少一部分与所述壳体本体直接相连;
与所述壳体本体直接相连的所述第一透光部和/或所述第二透光部的材料的热膨胀系数与所述壳体本体的材料的热膨胀系数的差值的绝对值为第一差值,所述第一差值与所述壳体本体的材料的热膨胀系数的比值小于或等于20%。
第二方面,本申请实施例提供一种壳体的制作方法,用于制作上述壳体,包括:
将所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料按照所述壳体本体、所述第一透光部、所述第二透光部、所述遮光挡墙的位置进行排列;
对所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料进行挤压,使所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料相连,得到所述壳体。
第三方面,本申请实施例提供一种电子设备,包括:
壳体,所述壳体为如上所述的壳体;
光发射器,设置于所述壳体的一侧,所述光发射器发出的光线射入所述第一透光部后经由所述第一透光部传输至所述壳体上远离所述光发射器的一侧;
光检测器,与所述光发射器设置于所述壳体的同一侧,从所述壳体上远离所述光检测器的一侧入射至所述第二透光部中的光线经由所述第二透光部传输后进入所述光检测器。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行以下说明,其中在下面的描述中相同的附图标号表示相同部分。
图1为本申请实施例提供的壳体的第一种结构示意图。
图2为本申请实施例提供的壳体的第二种结构示意图。
图3为本申请实施例提供的壳体的第三种结构示意图。
图4为本申请实施例提供的壳体的第四种结构示意图。
图5为本申请实施例提供的壳体的第五种结构示意图。
图6为本申请实施例提供的壳体的第六种结构示意图。
图7为本申请实施例提供的壳体的第七种结构示意图。
图8为本申请实施例提供的壳体的第八种结构示意图。
图9为本申请实施例提供的壳体的第九种结构示意图。
图10为本申请实施例提供的壳体的第十种结构示意图。
图11为本申请实施例提供的壳体的第十一种结构示意图。
图12为本申请实施例提供的壳体的制作方法的流程图。
图13为本申请实施例提供的将壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料按照图1中壳体本体、第一透光部、第二透光部、遮光挡墙的位置进行排列的示意图。
图14为本申请实施例提供的将壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料按照图3中壳体本体、第一透光部、第二透光部、遮光挡墙的位置进行排列的示意图。
图15为本申请实施例提供的将壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料按照图5中壳体本体、第一透光部、第二透光部、遮光挡墙的位置进行排列的示意图。
图16为本申请实施例提供的复合棒体的结构示意图。
图17为本申请实施例提供的电子设备的部分结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1为本申请实施例提供的壳体的第一种结构示意图。本申请实施例提供一种壳体110,包括壳体本体10、第一透光部20、第二透光部30以及遮光挡墙40,第二透光部30与第一透光部20间隔设置;遮光挡墙40设于第一透光部20与第二透光部30之间。
其中,第一透光部20的外周边缘的至少一部分与壳体本体10直接相连,第二透光部30的外周边缘的至少一部分与壳体本体10直接相连。
第一透光部20的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。
第二透光部30的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。
需要说明的是,本申请实施例中,第一透光部20、第二透光部30与壳体本体10直接相连指的是第一透光部20、第二透光部30与壳体本体10为一体结构,第一透光部20、第二透光部30与壳体本体10的交接处形成连续的材料界面,而非组合结构(例如镶嵌、粘接等)。
示例性地,本申请实施例提供的壳体110中,壳体本体10、第一透光部20、第二透光部30以及遮光挡墙40通过一体成型的方式制备。
可以理解的是,当第一透光部20的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体 本体10的材料的热膨胀系数的比值小于或等于20%,第二透光部30的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%时,意味着第一透光部20、第二透光部30的材料的热膨胀系数与壳体本体10的材料的热膨胀系数的差异很小,因此,当对壳体本体10的材料、第一透光部20的材料和第二透光部30的材料进行加热软化后,壳体本体10的材料、第一透光部20的材料和第二透光部30的材料的膨胀率接近,将壳体本体10的材料、第一透光部20的材料和第二透光部30的材料挤压在一起并冷却后,壳体本体10的材料、第一透光部20的材料和第二透光部30的材料的收缩率接近,因此,壳体本体10和第一透光部20、第二透光部30相连的部分不容易出现开裂的现象,从而可以提升壳体110的机械强度。
需要说明的是,本申请实施例的壳体110可以通过钢球冲击实验(重量为110g的钢球从距离壳体110表面5cm的高度自由落体,对壳体110上的第一透光部20和第二透光部30进行冲击),钢球冲击实验的结果显示,本申请实施例的壳体110在经过钢球冲击后,壳体110表面不会出现任何开裂的现象,也即是说,本申请实施例提供的壳体110具有较高的机械强度和较好的耐冲击性能。
在对本申请实施例的壳体110进行测试的同时,本申请发明人对相关技术中第一透光部的外围和第二透光部的外围均被遮光材料围绕的壳体进行了测试,钢球冲击实验的结果显示,经过钢球冲击后,该壳体的第一透光部与周围的遮光材料之间出现裂缝,第二透光部与周围的遮光材料之间也出现裂缝,也即是说,这种壳体不能通过钢球冲击实验,具有较低的机械强度和较差的耐冲击性能。
示例性地,第一透光部20和第二透光部30对波长为400nm~1200nm的光线的透过率均大于或等于30%,例如30%、40%、50%、60%、70%、80%、90%或100%;示例性地,遮光挡墙40对波长为400nm~1200nm的光线的透过率小于或等于20%,例如20%、18%、15%、12%、10%、8%、5%、3%、1%或0。
示例性地,壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74可以各自为玻璃材料或者树脂材料。其中,壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73的颜色可以均为无色透明,遮光挡墙40的材料74的颜色可以为黑色。
示例性地,壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73可以相同,例如,壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73可以均为玻璃材料或者均为树脂材料。
可以理解的是,当不同的材料(不同的热膨胀系数)通过加热软化以及挤压的方式结合在一起形成壳体时,由于不同的材料热膨胀系数不同,因此在冷却后,不同的材料之间容易发生分离进而导致壳体开裂的现象,而本申请实施例中,由于第一透光部20和第二透光部30均与壳体本体10直接相连,当壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73相同时,由于相同的材料的热膨胀系数相同,因此壳体本体10的材料71、第二透光部30的材料73以及第一透光部20的材料72经过加热软化和挤压在一起之后,不容易出现开裂的现象,从而可以提升壳体110 的机械强度。
请结合图1,第二透光部30的数量为多个,多个第二透光部30环绕第一透光部20排列。本申请实施例中,多个指两个或两个以上,例如三个、四个、五个、六个、七个、八个、九个、十个等。
示例性地,第一透光部20和第二透光部30可以各自为正六边形、正五边形、正方形、长方形、等边三角形、圆形、椭圆形、扇形或不规则形状等图形。
请结合图1,遮光挡墙40可以包括第一挡墙41和第二挡墙42;第一挡墙41环绕第一透光部20设置,并且,第一挡墙41上设有一个或多个第一缺口411,第一透光部20于第一缺口411处与壳体本体10直接相连;每两个相邻的第二透光部30之间均设有第二挡墙42。
可以理解的是,通过在相邻的第二透光部30之间设置第二挡墙42,可以避免相邻的第二透光部30之间发生光线串扰;由于第一透光部20于第一缺口411处与壳体本体10直接相连,当第一透光部20与壳体本体10采用相同的材料挤压成型(即材料的热膨胀系数相同)时,可以显著提升壳体110的机械强度,使壳体110不容易出现开裂的现象。
请结合图1,第二挡墙42可以对应于第一缺口411设置,并且,第二挡墙42与第一挡墙41不相连。可以看出,此时,第二挡墙42与第一挡墙41之间填充有壳体本体10的部分区域,使得壳体本体10可以在第一缺口411处与第一透光部20相连。
请结合图1,第二透光部30的外周边缘的所有区域与壳体本体10直接相连,当第二透光部30与壳体本体10采用相同的材料挤压成型(即材料的热膨胀系数相同),可以进一步提升壳体110的机械强度,使壳体110不容易开裂。
示例性地,第二挡墙42的数量可以为至少一个,即一个或多个,具体根据第二透光部30的数量而定。
请结合图1,第二挡墙42的数量可以为多个,多个第二挡墙42在第一透光部20的周围呈发射状分布。示例性地,第二挡墙42上远离第一透光部20的一端与壳体本体10的边缘之间存在间隔,即第二挡墙42没有延伸至壳体本体10的边缘,从而可以避免壳体本体10被分裂为多个部分,保证壳体本体10为连续的一体结构。
请结合图1,第一挡墙41上可以设有多个第一缺口411,第一挡墙41由多个间隔设置的第一挡墙单元412组成,任意相邻的两个第一挡墙单元412之间形成第一缺口411。示例性地,多个第一挡墙单元412可以位于正六边形、正五边形、正方形、长方形、等边三角形、圆形、椭圆形、扇形、不规则形状等图形的边缘上。
请参阅图2,图2为本申请实施例提供的壳体的第二种结构示意图。图2与图1相比,区别之处在于,图1中,第一挡墙41上设有第一缺口411,第一透光部20于第一缺口411处与壳体本体10直接相连,而图2中,第一挡墙41呈封闭状,也即是说,第一挡墙41上未设置第一缺口411,第一透光部20与壳体本体10不相连,但是,图2中,第二透光部30的外周边缘的所有区域均与壳体本体10直接相连,并且,第二透光部30的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、 15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。可以理解的是,通过设置第二透光部30与壳体本体10直接相连,由于第二透光部30的材料的热膨胀系数与壳体本体10的材料的热膨胀系数的差异很小,因此,壳体本体10和第二透光部30相连的部分不容易出现开裂的现象,从而可以提升壳体110的机械强度。
请参阅图3,图3为本申请实施例提供的壳体的第三种结构示意图。遮光挡墙40可以包括第三挡墙43和第四挡墙44;第三挡墙43环绕第一透光部20设置,并且,第三挡墙43上设有一个或多个第三缺口431,第一透光部20于第三缺口431处与壳体本体10直接相连;第四挡墙44环绕第二透光部30设置,并且,第四挡墙44上设有一个或多个第四缺口441,第二透光部30于第四缺口441处与壳体本体10直接相连。
可以理解的是,当第一透光部20于第三缺口431处与壳体本体10直接相连,第二透光部30于第四缺口441处与壳体本体10直接相连,并且第一透光部20、第二透光部30以及壳体本体10采用相同的材料挤压成型(即材料的热膨胀系数相同)时,可以显著提升壳体110的机械强度,使壳体110不容易出现开裂的现象。
请结合图3,第三挡墙43上可以设有多个第三缺口431,第三挡墙43由多个间隔设置的第三挡墙单元432组成,任意相邻的两个第三挡墙单元432之间形成第三缺口431。示例性地,多个第三挡墙单元432可以位于正六边形、正五边形、正方形、长方形、等边三角形、圆形、椭圆形、扇形、不规则形状等图形的边缘上。
请参阅图4,图4为本申请实施例提供的壳体的第四种结构示意图。图4与图3相比,区别之处在于,图3中,第三挡墙43上设有第三缺口431,第一透光部20于第三缺口431处与壳体本体10直接相连,而图4中,第三挡墙43呈封闭状,也即是说,第三挡墙43上未设置第三缺口431,第一透光部20与壳体本体10不相连,但是,图4中,第二透光部30的外周边缘的部分区域与壳体本体10直接相连,并且,第二透光部30的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。可以理解的是,通过设置第二透光部30与壳体本体10直接相连,由于第二透光部30的材料的热膨胀系数与壳体本体10的材料的热膨胀系数的差异很小,因此,壳体本体10和第二透光部30相连的部分不容易出现开裂的现象,从而可以提升壳体110的机械强度。
请参阅图5,图5为本申请实施例提供的壳体的第五种结构示意图。遮光挡墙40可以包括第五挡墙45,第五挡墙45环绕第二透光部30设置,并且,第五挡墙45上设有一个或多个第五缺口451,第二透光部30于第五缺口451处与壳体本体10直接相连,第一透光部20的外周边缘的所有区域与壳体本体10相连。可以理解的是,当第一透光部20的外周边缘的所有区域均与壳体本体10相连时,即,第一透光部20的外围未设置任何遮光挡墙40。
可以理解的是,当第二透光部30于第五缺口451处与壳体本体10直接相连,第一透光部20的外周边缘的所有区域与壳体本体10相连,并且第一透光部20、第二透光部30以及壳体本体10采用相同的材料挤压成型(即材料的热膨胀系数相同)时,可以显著提升壳体110的机械强度,使壳体110不容易出现开裂的现象。
请参阅图6,图6为本申请实施例提供的壳体的第六种结构示意图。图6与图5相比,区别之处在于,图5中,第五挡墙45上设有第五缺口451,第二透光部30于第五缺口451处与壳体本体10直接相连,而图6中,第五挡墙45呈封闭状,也即是说,第五挡墙45上未设置第五缺口451,第二透光部30与壳体本体10不相连,但是,图6中,第一透光部20的外周边缘的所有区域均与壳体本体10直接相连,并且,第一透光部20的材料的热膨胀系数和壳体本体10的材料的热膨胀系数的差值的绝对值与壳体本体10的材料的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。可以理解的是,通过设置第一透光部20与壳体本体10相连,由于第一透光部20的材料的热膨胀系数与壳体本体10的材料的热膨胀系数的差异很小,因此,壳体本体10和第一透光部20相连的部分不容易出现开裂的现象,从而可以提升壳体110的机械强度。
请参阅图7,图7为本申请实施例提供的壳体的第七种结构示意图,可以看出,图7与图1相比,区别之处在于,图1中,第一挡墙41与第一透光部20相连,而图7中,第一挡墙41与第一透光部20间隔设置,可以理解的是,当第一挡墙41与第一透光部20间隔设置时,第一透光部20上对应于第一挡墙41的区域与壳体本体10直接相连,也即是说,第一透光部20的外周边缘的所有区域均与壳体本体10相连,从而可以进一步提升壳体110的机械强度。
请参阅图8,图8为本申请实施例提供的壳体的第八种结构示意图,可以看出,图8与图3相比,区别之处在于,图3中,第三挡墙43与第一透光部20相连,而图8中,第三挡墙43与第一透光部20间隔设置,可以理解的是,当第三挡墙43与第一透光部20间隔设置时,第一透光部20上对应于第三挡墙43的区域与壳体本体10直接相连,也即是说,第一透光部20的外周边缘的所有区域均与壳体本体10相连,从而可以进一步提升壳体110的机械强度。
请参阅图9,图9为本申请实施例提供的壳体的第九种结构示意图,可以看出,图9与图3相比,区别之处在于,图3中,第四挡墙44与第二透光部30相连,而图9中,第四挡墙44与第二透光部30间隔设置,可以理解的是,当第四挡墙44与第二透光部30间隔设置时,第二透光部30上对应于第四挡墙44的区域与壳体本体10直接相连,也即是说,第二透光部30的外周边缘的所有区域均与壳体本体10相连,从而可以进一步提升壳体110的机械强度。
请参阅图10,图10为本申请实施例提供的壳体的第十种结构示意图,可以看出,图10与图3相比,区别之处在于,图3中,第三挡墙43与第一透光部20相连,第四挡墙44与第二透光部30相连,而图10中,第三挡墙43与第一透光部20间隔设置,可以理解的是,当第三挡墙43与第一透光部20间隔设置时,第一透光部20上对应于第三挡墙43的区域与壳体本体10直接相连,当第四挡墙44与第二透光部30间隔设置时,第二透光部30上对应于第四挡墙44的区域与壳体本体10直接相连,也即是说,第一透光部20的外周边缘的所有区域均与壳体本体10相连,第二透光部30的外周边缘的所有区域均与壳体本体10相连,从而可以进一步提升壳体110的机械强度。
请参阅图11,图11为本申请实施例提供的壳体的第十一种结构示意图,可以看出,图11与图5相比,区别之处在于,图5中,第五挡墙45与第二透光部30相连,而图11中,第五挡墙45与第二透光部30间隔设置,可以理解的是, 当第五挡墙45与第二透光部30间隔设置时,第二透光部30上对应于第五挡墙45的区域与壳体本体10直接相连,也即是说,第二透光部30的外周边缘的所有区域均与壳体本体10相连,从而可以进一步提升壳体110的机械强度。
示例性地,壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73中的任意一种的热膨胀系数与遮光挡墙40的材料74的热膨胀系数之间的差值的绝对值为第二差值,第二差值与遮光挡墙40的材料74的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等),和/或,第二差值与壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73中的任意一种的热膨胀系数的比值小于或等于20%(例如比值为20%、17%、15%、12%、10%、8%、5%、3%、1%、0.5%、0等)。
可以理解的是,通过设置第二差值与遮光挡墙40的材料74的热膨胀系数的比值小于或等于20%,和/或,第二差值与壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73中的任意一种的热膨胀系数的比值小于或等于20%,可以使壳体本体10的材料71、第二透光部30的材料73、第一透光部20的材料72以及遮光挡墙40的材料74经过加热软化和挤压在一起之后,不容易出现开裂的现象。
示例性地,壳体本体10、第一透光部20、第二透光部30以及遮光挡墙40均由棒状材料挤压得到。
示例性地,壳体110的整体结构可以为平板状、曲面状、弯折状等各种形状,壳体110的横截面可以呈圆形、椭圆形、扇形、正方形、长方形、等边三角形、正六边形、正五边形、不规则形状等各种形状。
请结合图1至图11,本申请实施例提供的壳体110,通过在第一透光部20与第二透光部30之间设置遮光挡墙40,可以利用遮光挡墙40来阻挡第一透光部20中的光线进入第二透光部30中,因此可以避免第一透光部20内的光线与第二透光部30内的光线发生串扰,当该壳体110应用于电子设备中,第一透光部20对应光发射器设置,第二透光部30对应光检测器设置时,可以避免第一透光部20内的发射光信号对第二透光部30内的接收光信号造成干扰,从而提高光检测器检测的光信号的准确性,进而提高电子设备的检测结果的准确度;另外,本申请实施例通过将第一透光部20和/或第二透光部30设置为与壳体本体10直接相连(即第一透光部20和/或第二透光部30与壳体本体10为一体结构),并且将与壳体本体10直接相连的第一透光部20和/或第二透光部30的材料的热膨胀系数设置为与壳体本体10的材料的热膨胀系数接近,可以显著提升壳体110的机械强度,使壳体110具有较好的耐冲击性能,从而提升包含该壳体110的电子设备的使用寿命。
请结合图1至图11,可以看出,本申请实施例提供的壳体110中,遮光挡墙40的占用面积较小,由于遮光挡墙40的材料通常为黑玻璃,壳体本体10、第一透光部20、第二透光部30的材料通常为透明玻璃,并且,黑玻璃的成本远高于透明玻璃,因此本申请实施例通过降低遮光挡墙40的占用面积,可以减少黑玻璃的使用量,进而降低壳体110的生产成本。
请参阅图12,图12为本申请实施例提供的壳体的制作方法的流程图。本申请实施例还提供一种壳体的制作方法, 用于制作上述任一实施例中的壳体110,壳体的制作方法可以包括:
S100,将壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料按照壳体本体、第一透光部、第二透光部、遮光挡墙的位置进行排列。
请参阅图13,同时结合图1,将壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74按照图1中壳体本体10、第一透光部20、第二透光部30、遮光挡墙40的位置进行排列,之后对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压,可以得到如图1所示的壳体110。
请参阅图14,同时结合图3,将壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74按照图3中壳体本体10、第一透光部20、第二透光部30、遮光挡墙40的位置进行排列,之后对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压,可以得到如图1所示的壳体110。
请参阅图15,同时结合图5,将壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74按照图5中壳体本体10、第一透光部20、第二透光部30、遮光挡墙40的位置进行排列,之后对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压,可以得到如图1所示的壳体110。
需要说明的是,图13至图15中,第一透光部2020的材料72外围的黑色加粗线条仅用来示意材料72的设置区域范围,第二透光部3030的材料73外围的黑色加粗线条仅用来示意材料73的设置区域范围。
可以理解的是,当壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74在常温下为非软化状态时,在对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压之前,需要对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行软化处理。
示例性地,当壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74为玻璃或树脂等加热可以软化的材质时,可以采用加热的方法对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行软化处理。
示例性地,壳体本体10的材料71、第一透光部20的材料72和第二透光部30的材料73中的任意一种的软化点温度与遮光挡墙40的材料74的软化点温度之间的差值的绝对值小于或等于5℃(例如差值的绝对值为5℃、4℃、3℃、2℃、1℃、0.5℃、0等),以避免在加热的过程中,当一种材料已经达到软化状态时,另一种材料已经熔化或者还处于硬化状态。
示例性地,壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74均为棒状材料。
可以理解的是,棒状材料指的是在延伸方向上的长度大于横截面上任意方向的宽度的材料。
本申请实施例中,棒状材料的直径可以为0.01mm~50mm,例如0.01mm、0.03mm、0.05mm、0.07mm、0.1mm、0.3mm、0.5mm、0.7mm、1mm、3mm、5mm、7mm、10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm等。
示例性地,壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74的直径可以相同,也可以不相同,即,每种材料可以包括多种不同直径的棒状材料,从而可以通过不同直径的棒状材料的搭配,在大的棒状材料之间填充小的棒状材料,以最大程度的缩小棒状材料之间的间隙,提升挤压之后棒状材料之间的紧密度,防止制得的壳体110出现开裂的现象。示例性地,壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74均可以包括直径3mm的棒状材料和直径0.46mm的棒状材料,直径0.46mm的棒状材料可以填充于直径3mm的棒状材料之间的间隙中,提升挤压之后棒状材料之间的紧密度。
S200,对壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料进行挤压,使壳体本体的材料、第一透光部的材料、第二透光部的材料以及遮光挡墙的材料相连,得到壳体。
请参阅图16,图16为本申请实施例提供的复合棒体的结构示意图。对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压,使壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74相连之后,可以得到复合棒体80,对复合棒体80进行处理后,得到壳体110。示例性地,可以采用切割或者切削等方式对复合棒体80进行处理,以得到壳体110。
示例性地,得到复合棒体80之后,还可以对复合棒体80进行拉拔,以缩小复合棒体80的截面尺寸,从而得到符合产品设计的尺寸,拉拔之后可以对复合棒体80进行处理,以得到壳体110。经过拉拔后,复合棒体80的直径可以缩小为1.2mm、1mm等。
示例性地,“将壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74按照壳体本体10、第一透光部20、第二透光部30、遮光挡墙40的位置进行排列,对壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74进行挤压”可以分一次或多次进行,即通过一次排棒或多次排棒形成复合棒体80,例如,在一些实施例中,可以通过一次排棒形成复合棒体80,即将壳体本体10的所有棒材、第一透光部20的所有棒材、第二透光部30的所有棒材以及遮光挡墙40的所有棒材排列在一起(一次排棒),经过一次挤压形成复合棒体80;在另外一些实施例中,可以通过二次排棒形成复合棒体80,即,首先将壳体本体10的材料71、第一透光部20的材料72、第二透光部30的材料73以及遮光挡墙40的材料74各自分为多份,将每份棒材排 列在一起(第一次排棒)之后挤压形成第一棒体(第一次挤压),对多个第一棒体进行排列(第二次排棒),之后对多个第一棒体进行挤压(第二次挤压),形成复合棒体80,或者,还可以根据实际生产需求进行三次排棒、四次排棒等。可以理解的是,通过多次排棒可以缩小棒材之间的空气间隙,提升挤压之后的棒材之间的紧密度。
请参阅图17,同时结合图1至图5,图17为本申请实施例提供的电子设备的部分结构示意图。本申请实施例还提供一种电子设备100,包括壳体110、光发射器50以及光检测器60,壳体110可以为上述任一实施例中的壳体110;光发射器50设置于壳体110的一侧,光发射器50发出的光线射入第一透光部20后经由第一透光部20传输至壳体110上远离光发射器50的一侧;光检测器60与光发射器50设置于壳体110的同一侧,从壳体110上远离光检测器60的一侧入射至第二透光部30中的光线经由第二透光部30传输后进入光检测器60。
示例性地,电子设备100可以为智能穿戴设备,例如手表、手环、戒指、臂套、服装等;电子设备100可以具有健康监测功能,健康监测功能包括但不限于血氧监测功能、心率监测功能等,电子设备100的健康监测功能可以通过光电容积脉搏波描记法(PPG)实现。
示例性地,壳体110可以作为智能穿戴设备(例如智能手表)的后盖(即靠近皮肤一侧的盖板)。
示例性地,光发射器50可以包括LED(light-emitting diode,发光二极管)灯,光检测器60可以包括光传感器。
请结合图17,电子设备100的工作原理为:光发射器50发射的光线穿过壳体110的第一透光部20后进入皮肤,一部分光线被皮肤吸收,一部分光线在皮肤表面发生反射,反射光穿过壳体110的第二透光部30后进入光检测器60中,通过对光检测器60接收的光信号进行换算后可以获得人体的相关生理信息,例如心率和血氧饱和度等数据。
本申请实施例提供的电子设备100,通过采用上述壳体110,可以避免光发射器50发射的光线从第一透光部20串入第二透光部30中进而被光检测器60接收,提升了检测结果的准确性。
请结合图17,电子设备100还可以包括遮挡件90,遮挡件90与光发射器50、光检测器60设置于壳体110的同一侧,并且,遮挡件90设置于光发射器50与光检测器60之间,以避免光发射器50发出的光线直接进入光检测器60中造成串光;示例性地,遮挡件90的顶面可以与壳体110的底面抵接,以最大程度的起到遮光作用;示例性地,遮挡件90的材料可以为玻璃、陶瓷或塑料等。
以上对本申请实施例提供的壳体、壳体的制作方法及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种壳体,其中,包括:
    壳体本体;
    第一透光部;
    第二透光部,所述第二透光部与所述第一透光部间隔设置;
    遮光挡墙,所述遮光挡墙设于所述第一透光部与所述第二透光部之间;
    其中,所述第一透光部和/或所述第二透光部的外周边缘的至少一部分与所述壳体本体直接相连;
    与所述壳体本体直接相连的所述第一透光部和/或所述第二透光部的材料的热膨胀系数与所述壳体本体的材料的热膨胀系数的差值的绝对值为第一差值,所述第一差值与所述壳体本体的材料的热膨胀系数的比值小于或等于20%。
  2. 根据权利要求1所述的壳体,其中,所述壳体本体的材料、所述第一透光部的材料和所述第二透光部的材料相同。
  3. 根据权利要求1所述的壳体,其中,所述第二透光部的数量为多个,多个所述第二透光部环绕所述第一透光部排列。
  4. 根据权利要求3所述的壳体,其中,所述遮光挡墙包括第一挡墙和第二挡墙;
    所述第一挡墙环绕所述第一透光部设置,所述第一挡墙上设有一个或多个第一缺口;
    每两个相邻的所述第二透光部之间均设有所述第二挡墙。
  5. 根据权利要求4所述的壳体,其中,所述第二挡墙与所述第一挡墙不相连。
  6. 根据权利要求4所述的壳体,其中,所述第一挡墙与所述第一透光部相连,所述第一透光部于所述第一缺口处与所述壳体本体相连;
    所述第二透光部的外周边缘的所有区域与所述壳体本体相连。
  7. 根据权利要求4所述的壳体,其中,所述第一挡墙与所述第一透光部间隔设置,所述第一透光部的外周边缘的所有区域均与所述壳体本体相连;
    所述第二透光部的外周边缘的所有区域与所述壳体本体相连。
  8. 根据权利要求1所述的壳体,其中,所述遮光挡墙包括第三挡墙和第四挡墙;
    所述第三挡墙环绕所述第一透光部设置,并且,所述第三挡墙上设有一个或多个第三缺口;
    所述第四挡墙环绕所述第二透光部设置,并且,所述第四挡墙上设有一个或多个第四缺口。
  9. 根据权利要求8所述的壳体,其中,所述第三挡墙与所述第一透光部相连,所述第一透光部于所述第三缺口处与所述壳体本体相连;
    所述第四挡墙与所述第二透光部相连,所述第二透光部于所述第四缺口处与所述壳体本体相连。
  10. 根据权利要求8所述的壳体,其中,所述第三挡墙与所述第一透光部相连,所述第一透光部于所述第三缺口处与所述壳体本体相连;
    所述第四挡墙与所述第二透光部间隔设置,所述第二透光部的外周边缘的所有区域均与所述壳体本体相连。
  11. 根据权利要求8所述的壳体,其中,所述第三挡墙与所述第一透光部间隔设置,所述第一透光部的外周边缘的所有区域均与所述壳体本体相连;
    所述第四挡墙与所述第二透光部相连,所述第二透光部于所述第四缺口处与所述壳体本体相连。
  12. 根据权利要求8所述的壳体,其中,所述第三挡墙与所述第一透光部间隔设置,所述第一透光部的外周边缘的所有区域均与所述壳体本体相连;
    所述第四挡墙与所述第二透光部间隔设置,所述第二透光部的外周边缘的所有区域均与所述壳体本体相连。
  13. 根据权利要求1所述的壳体,其中,所述遮光挡墙包括第五挡墙,所述第五挡墙环绕所述第二透光部设置,并且,所述第五挡墙上设有一个或多个第五缺口;
    所述第一透光部的外周边缘的所有区域与所述壳体本体相连。
  14. 根据权利要求13所述的壳体,其中,所述第五挡墙与所述第二透光部相连,所述第二透光部于所述第五缺口处与所述壳体本体直接相连。
  15. 根据权利要求13所述的壳体,其中,所述第五挡墙与所述第二透光部间隔设置,所述第二透光部的外周边缘的所有区域均与所述壳体本体相连。
  16. 根据权利要求1所述的壳体,其中,所述壳体本体的材料、所述第一透光部的材料和所述第二透光部的材料中的任意一种的热膨胀系数与所述遮光挡墙的材料的热膨胀系数之间的差值的绝对值为第二差值,所述第二差值与所述遮光挡墙的材料的热膨胀系数的比值小于或等于20%,和/或,所述第二差值与所述壳体本体的材料、所述第一透光部的材料和所述第二透光部的材料中的任意一种的热膨胀系数的比值小于或等于20%。
  17. 一种壳体的制作方法,用于制作权利要求1所述的壳体,其中,包括:
    将所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料按照所述壳体本体、所述第一透光部、所述第二透光部、所述遮光挡墙的位置进行排列;
    对所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料进行挤压,使所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料相连,得到所述壳体。
  18. 根据权利要求17所述的壳体的制作方法,其中,在对所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料进行挤压之前,对所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料进行软化处理。
  19. 根据权利要求17所述的壳体的制作方法,其中,所述壳体本体的材料、所述第一透光部的材料、所述第二透光部的材料以及所述遮光挡墙的材料均为棒状材料。
  20. 一种电子设备,其中,包括:
    壳体,所述壳体为如权利要求1所述的壳体;
    光发射器,设置于所述壳体的一侧,所述光发射器发出的光线射入所述第一透光部后经由所述第一透光部传输至所述壳体上远离所述光发射器的一侧;
    光检测器,与所述光发射器设置于所述壳体的同一侧,从所述壳体上远离所述光检测器的一侧入射至所述第二透光部中的光线经由所述第二透光部传输后进入所述光检测器。
PCT/CN2022/138785 2022-06-14 2022-12-13 壳体、壳体的制作方法及电子设备 WO2023240960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210672787.0A CN117395902A (zh) 2022-06-14 2022-06-14 壳体、壳体的制作方法及电子设备
CN202210672787.0 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023240960A1 true WO2023240960A1 (zh) 2023-12-21

Family

ID=89193022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138785 WO2023240960A1 (zh) 2022-06-14 2022-12-13 壳体、壳体的制作方法及电子设备

Country Status (2)

Country Link
CN (1) CN117395902A (zh)
WO (1) WO2023240960A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973167A (zh) * 2020-08-19 2020-11-24 青岛歌尔智能传感器有限公司 可穿戴设备、光学装置、光学模组及其封装方法
CN113179605A (zh) * 2021-05-14 2021-07-27 Oppo广东移动通信有限公司 壳体、其制备方法、可穿戴设备及电子设备
CN113301753A (zh) * 2021-06-01 2021-08-24 Oppo广东移动通信有限公司 盖板的制备方法、盖板以及电子设备
CN215017347U (zh) * 2021-02-04 2021-12-07 Oppo广东移动通信有限公司 壳体组件及电子设备
CN114466550A (zh) * 2022-03-15 2022-05-10 Oppo广东移动通信有限公司 玻璃盖板及其制备方法、壳体及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973167A (zh) * 2020-08-19 2020-11-24 青岛歌尔智能传感器有限公司 可穿戴设备、光学装置、光学模组及其封装方法
CN215017347U (zh) * 2021-02-04 2021-12-07 Oppo广东移动通信有限公司 壳体组件及电子设备
CN113179605A (zh) * 2021-05-14 2021-07-27 Oppo广东移动通信有限公司 壳体、其制备方法、可穿戴设备及电子设备
CN113301753A (zh) * 2021-06-01 2021-08-24 Oppo广东移动通信有限公司 盖板的制备方法、盖板以及电子设备
CN114466550A (zh) * 2022-03-15 2022-05-10 Oppo广东移动通信有限公司 玻璃盖板及其制备方法、壳体及电子设备

Also Published As

Publication number Publication date
CN117395902A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6219989B2 (ja) 多方向反射光学センサモジュール、多方向反射光学センサアクセサリー、及び多方向反射光学センサデバイス
CN212118134U (zh) 穿戴设备
WO2022252783A1 (zh) 盖板的制备方法、盖板以及电子设备
JPWO2014045774A1 (ja) 生体センサ、及び、生体センサの製造方法
WO2023240960A1 (zh) 壳体、壳体的制作方法及电子设备
US20210251509A1 (en) Electronic device that can be worn on the body and method for producing same
WO2023173860A1 (zh) 盖板及其制备方法、壳体、及电子设备
WO2022252988A1 (zh) 盖板的制备方法、盖板及电子设备
KR20200093247A (ko) Ppg 센서 패키지
CN1320221A (zh) 可变耦合器光纤传感器与使用该传感器的传感装置
CN216310299U (zh) 一种菲涅尔透镜及血氧测量装置
CN209847168U (zh) 具有心率检测功能的智能腕戴设备
CN117377238A (zh) 壳体、壳体的制作方法及电子设备
WO2020215730A1 (zh) 一种心率模组以及采集心率的电子设备
CN213843570U (zh) 防眩光板
CN209574673U (zh) 一种弹性光电传感器模组
CN208548349U (zh) 心率传感器
TWI631723B (zh) Photoelectric sensor module packaging method and wearable device thereof
CN217693963U (zh) 底壳组件及可穿戴设备
TWM644805U (zh) 具有內埋透鏡之光遮斷裝置
KR20200130962A (ko) Ppg 센서 패키지
CN213957859U (zh) 手表
CN217360362U (zh) 一种球面阵列菲涅尔透镜、探测器及安防系统
CN213364034U (zh) 一种带红外测温探头的电子设备
TW202424459A (zh) 生醫檢測光電模組及其製程方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946626

Country of ref document: EP

Kind code of ref document: A1