WO2023240730A1 - Commande d'angle de réseau photovoltaïque de génération électrique pour structure de commande à double couche - Google Patents
Commande d'angle de réseau photovoltaïque de génération électrique pour structure de commande à double couche Download PDFInfo
- Publication number
- WO2023240730A1 WO2023240730A1 PCT/CN2022/105428 CN2022105428W WO2023240730A1 WO 2023240730 A1 WO2023240730 A1 WO 2023240730A1 CN 2022105428 W CN2022105428 W CN 2022105428W WO 2023240730 A1 WO2023240730 A1 WO 2023240730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- photovoltaic power
- generation array
- angle
- array
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 159
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003491 array Methods 0.000 claims abstract description 21
- 238000005457 optimization Methods 0.000 claims abstract description 14
- 239000013598 vector Substances 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000009434 installation Methods 0.000 claims description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/18—Manufacturability analysis or optimisation for manufacturability
Definitions
- the invention belongs to the field of photovoltaic power generation, and in particular relates to a photovoltaic power generation array angle control method with a double-layer control structure.
- the main method of photovoltaic power generation is to use a rotatable bracket to control the angle of the photovoltaic power generation array so that it faces the direction of the sun as much as possible to obtain maximum power generation efficiency.
- the Chinese patent document with publication number CN108270395A discloses a new type of photovoltaic power generation bracket, which includes a photovoltaic power generation bracket body.
- the photovoltaic power generation bracket body is connected to an angle conversion control system, and the angle conversion control system is connected to a computer control system.
- the computer control system is connected with the timing device.
- This new type of photovoltaic power generation bracket can adjust the angle, track the sun's irradiation in real time, improve the absorption rate of sunlight, and increase power generation.
- the Chinese patent document with publication number CN105207599A discloses a photovoltaic power generation device and a working method, including: a solar panel, which is composed of at least four power generation chips forming a square array; and an optical component, which is flat-shaped and is located on the light-receiving surface of the solar panel. Directly in front of and parallel to the solar panel, when the sunlight is perpendicular to the light-receiving surface, the optical component is used to focus the sunlight and produce a square light spot on the light-receiving surface, and the shape and area of the light spot are consistent with the light-receiving surface.
- the power detection unit is used to detect the output power of each power generation chip
- the driving mechanism is used to control the rotation angle of the solar panel with the sun
- the processor unit is connected to the power detection unit and the driving mechanism, It is used to generate a corresponding angle control signal according to the received output power value of each power generation chip, and control the driving mechanism to drive the solar panel to rotate at a corresponding angle so that the sunlight is perpendicular to the light-receiving surface.
- the invention provides a photovoltaic power generation array angle control method with a double-layer control structure.
- the upper layer obtains the optimal power generation range by calculating the virtual width of the power generation array, and the lower layer further optimizes the power generation array angle within the range so that the power generation array maintains a higher power generation range. Generating power.
- a photovoltaic power generation array angle control method with a double-layer control structure performs the following steps at certain intervals:
- every certain period is specifically 1 second to 30 minutes.
- step (2) the formula for calculating the virtual width of the photovoltaic power generation array is:
- w l represents the width of the left side of the central axis of the photovoltaic power generation array
- w r represents the width of the right side of the central axis of the photovoltaic power generation array
- ⁇ represents the expansion coefficient
- D l represents the shortest distance between the photovoltaic power generation array and the adjacent photovoltaic power generation array on the left
- D r represents the shortest distance between the photovoltaic power generation array and the adjacent photovoltaic power generation array on the right distance.
- step (3) the method of calculating the rotation angle ⁇ 1 of the photovoltaic array under the real width is to construct and solve the following optimization problem:
- ⁇ 1 represents the rotation angle of the power generation array
- ⁇ represents the tilt angle of the central axis of the power generation array
- the calculation method of A j and k j is as follows: project the vertex of the power generation array under the real width to the ground according to the position of the sun.
- the coefficients in the projection matrix and the projection vector are calculated from the polygonal outline of the shadow. The formula is:
- x represents the abscissa of any point within the shadow
- y represents the ordinate of any point within the shadow
- step (4) the method of calculating the rotation angle ⁇ 2 of the photovoltaic power generation array under the virtual width is to solve the following optimization problem:
- ⁇ 2 represents the rotation angle of the power generation array under the virtual width
- ⁇ represents the tilt angle of the central axis of the power generation array
- the calculation method is: project the vertex of the power generation array under the virtual width to the ground according to the sun position.
- the coefficients in the projection matrix and the projection vector are calculated from the polygonal outline of the shadow. The formula is:
- x represents the abscissa of any point within the shadow
- y represents the ordinate of any point within the shadow
- step (5) the conditions for stopping rotation are:
- ⁇ min represents the smaller of the calculated angles in step (3) and step (4)
- ⁇ max represents the larger of the calculated angles in step (3) and step (4)
- P represents the generated power
- a PID controller is used to control the angle adjustment of the photovoltaic power generation array.
- the PID controller rotates the photovoltaic power generation array with an initial preset step size ⁇ d .
- the present invention has the following beneficial effects:
- the width of the power generation array is expanded to obtain the optimal power generation range.
- the power generation array angle is fine-tuned with the power generation power as the target, so that The power generation array maintains high power generation.
- the method of the present invention can be combined with existing photovoltaic power generation array angle optimization methods, can be deployed on various edge computing devices such as industrial computers and microcontrollers, and has high implementability.
- Figure 1 is a flow chart of a photovoltaic power generation array angle control method with a double-layer control structure according to the present invention
- Figure 2 is a top view of three photovoltaic power generation arrays in an embodiment of the present invention.
- Figure 3 is a front view of three photovoltaic power generation arrays in the embodiment of the present invention.
- Figure 4 is a PID control structure diagram used in the embodiment of the present invention.
- a photovoltaic power generation array angle control method with a double-layer control structure performs the following steps every certain period (a typical period is 1 second to 30 minutes):
- S1 Obtain the configuration information of the photovoltaic power generation array, including the length, width, installation height and central axis position of the photovoltaic power generation array.
- photovoltaic power generation arrays there are three photovoltaic power generation arrays.
- the length of the photovoltaic power generation array is 50 meters, the width is 2 meters, the installation height is 2 meters, and the north and south central axis positions are (0 ,0,2) and (0,50,2), (6,0,2) and (6,50,2), (15,0,2) and (15,50,2).
- S2 Calculate the shortest distance between adjacent photovoltaic power generation arrays when placed horizontally, set the expansion coefficient, and calculate the virtual width of the photovoltaic power generation array;
- the expansion coefficient is set to 0.2 (Typical range 0 ⁇ 0.5)
- the left virtual width is The virtual width on the right is
- the first and third photovoltaic power generation arrays are located at the edge, and only the virtual width on the side with adjacent photovoltaic power generation arrays needs to be calculated.
- For the first photovoltaic power generation array For the second photovoltaic array,
- ⁇ 1 represents the rotation angle of the power generation array, and ⁇ represents the tilt angle of the central axis of the power generation array;
- ⁇ , ⁇ > represents the angle between two vectors
- a j , k j respectively represent the projection matrix and projection vector under the real width of the j-th photovoltaic array;
- ⁇ j , ⁇ j represent the j-th auxiliary Variable
- N represents the number of photovoltaic power generation arrays.
- the calculation method of A j and k j is as follows: project the vertex of the power generation array under the real width to the ground according to the position of the sun.
- the coefficients in the projection matrix and the projection vector are calculated from the polygonal outline of the shadow.
- the formula is:
- the sun position is
- the calculated rotation angles of the three photovoltaic power generation arrays are:
- ⁇ 2 represents the rotation angle of the power generation array under the virtual width
- ⁇ represents the tilt angle of the central axis of the power generation array
- ⁇ , ⁇ > represents the angle between two vectors
- ⁇ j and ⁇ j indicate the j-th auxiliary variable
- N indicates the number of photovoltaic power generation arrays.
- the calculation method is: project the vertex of the power generation array under the virtual width to the ground according to the sun position.
- the coefficients in the projection matrix and the projection vector are calculated from the polygonal outline of the shadow. The formula is:
- the sun position is
- the calculated rotation angles of the three photovoltaic power generation arrays are:
- ⁇ min represents the smaller of the calculated angles in steps S3 and S4
- ⁇ max represents the larger of the calculated angles in steps S3 and S4
- P represents the generated power
- PID control is used to achieve angle adjustment.
- the PID controller rotates the photovoltaic power generation array with an initial step, calculates the power generation differential, and serves as the input of the PID controller, and further calculates the photovoltaic power generation array rotation angle step. Structure The diagram is shown in Figure 4.
- the method of the present invention can re-optimize the angle of the local power generation array on the basis of global optimization, thereby increasing the overall power generation power of the array and improving economic benefits.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
L'invention concerne un commande d'angle de réseau photovoltaïque de génération électrique pour une structure de commande à double couche, les étapes suivantes étant exécutées à intervalles d'une certaine période : (1) obtenir des informations de configuration de chaque réseau photovoltaïque de génération électrique, les informations de configuration comportant une longueur réelle, une largeur réelle, une hauteur de montage, et la position d'un axe médian du réseau photovoltaïque de génération électrique; (2) calculer la plus courte distance entre des réseaux photovoltaïques adjacents de génération électrique pendant une mise en place horizontale, spécifier un coefficient de dilatation, et calculer une largeur virtuelle de chaque réseau photovoltaïque de génération électrique; (3) calculer un angle de rotation θ1 du réseau photovoltaïque de génération électrique à la largeur réelle; (4) calculer un angle de rotation θ2 du réseau photovoltaïque de génération électrique à la largeur virtuelle; et (5) pivoter de l'angle θ2 à l'angle θ1 à une taille de pas prédéfinie, si la puissance générée augmente, continuer à pivoter, sinon, stopper le pivotement, pour achever la commande d'optimisation d'angle du réseau photovoltaïque de génération électrique. La largeur virtuelle du réseau de génération électrique est calculée, une plage optimale de puissance générée est obtenue, et un angle de réseau de génération électrique est en outre optimisé, de sorte qu'une puissance générée élevée du réseau de génération électriques est maintenue.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210686254.8 | 2022-06-16 | ||
CN202210686254 | 2022-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240730A1 true WO2023240730A1 (fr) | 2023-12-21 |
Family
ID=89193040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/105428 WO2023240730A1 (fr) | 2022-06-16 | 2022-07-13 | Commande d'angle de réseau photovoltaïque de génération électrique pour structure de commande à double couche |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023240730A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120283995A1 (en) * | 2011-05-03 | 2012-11-08 | Atomic Energy Council-Institute Of Nuclear Energy Research | Method for Proposing a Layout of a High Concentration Photovoltaic System |
CN104281741A (zh) * | 2014-09-10 | 2015-01-14 | 长江勘测规划设计研究有限责任公司 | 光伏组件倾角和阵列间距交叉反馈多因素综合计算方法 |
CN105242693A (zh) * | 2015-10-27 | 2016-01-13 | 中信博新能源科技(苏州)有限公司 | 光伏系统跟踪及逆跟踪的方法 |
CN109270981A (zh) * | 2018-11-16 | 2019-01-25 | 东北大学 | 一种基于改进型萤火虫算法的光伏阵列mppt控制方法 |
CN109615693A (zh) * | 2018-12-14 | 2019-04-12 | 江苏辉伦太阳能科技有限公司 | 一种平单轴支架间距与跟踪范围的优化计算方法 |
CN110533230A (zh) * | 2019-08-13 | 2019-12-03 | 浙江工业大学 | 一种光伏阵列辐照度传感器的位置优化方法 |
-
2022
- 2022-07-13 WO PCT/CN2022/105428 patent/WO2023240730A1/fr unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120283995A1 (en) * | 2011-05-03 | 2012-11-08 | Atomic Energy Council-Institute Of Nuclear Energy Research | Method for Proposing a Layout of a High Concentration Photovoltaic System |
CN104281741A (zh) * | 2014-09-10 | 2015-01-14 | 长江勘测规划设计研究有限责任公司 | 光伏组件倾角和阵列间距交叉反馈多因素综合计算方法 |
CN105242693A (zh) * | 2015-10-27 | 2016-01-13 | 中信博新能源科技(苏州)有限公司 | 光伏系统跟踪及逆跟踪的方法 |
CN109270981A (zh) * | 2018-11-16 | 2019-01-25 | 东北大学 | 一种基于改进型萤火虫算法的光伏阵列mppt控制方法 |
CN109615693A (zh) * | 2018-12-14 | 2019-04-12 | 江苏辉伦太阳能科技有限公司 | 一种平单轴支架间距与跟踪范围的优化计算方法 |
CN110533230A (zh) * | 2019-08-13 | 2019-12-03 | 浙江工业大学 | 一种光伏阵列辐照度传感器的位置优化方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mi et al. | Open-loop solar tracking strategy for high concentrating photovoltaic systems using variable tracking frequency | |
CN103149947B (zh) | 一种带反阴影跟踪的太阳能跟踪方法 | |
US20150076319A1 (en) | Real-time Solar Tracking System | |
CN105760590A (zh) | 一种基于阴影辐射分析的屋顶式光伏阵列间距优化方法 | |
CN106933255B (zh) | 不同地形自适应太阳能跟踪方法 | |
CN103235603A (zh) | 自动跟踪太阳装置及控制方法 | |
CN102354222A (zh) | 一种双轴太阳能光伏阵列发电系统的无阴影跟踪方法 | |
CN105242693A (zh) | 光伏系统跟踪及逆跟踪的方法 | |
WO2023087645A1 (fr) | Appareil de production d'énergie solaire et son procédé de commande | |
CN104216419A (zh) | 一种双轴太阳能光伏发电系统的无遮挡跟踪方法 | |
CN113419567B (zh) | 一种跟踪支架的跟踪角度优化方法及系统 | |
CN106100546A (zh) | 用于光伏太阳能板准确转向调整的方法 | |
US11888435B2 (en) | Systems and methods for array level terrain based backtracking | |
KR20130092020A (ko) | 발전 효율을 향상시키는 태양광 발전 시스템의 제어 방법 | |
WO2023240730A1 (fr) | Commande d'angle de réseau photovoltaïque de génération électrique pour structure de commande à double couche | |
CN103116363B (zh) | 光伏发电机太阳轨迹跟踪方法及系统 | |
CN110764536A (zh) | 一种平单轴光伏跟踪系统优化方法 | |
CN104460705B (zh) | 一种单轴光伏发电机反跟踪方法 | |
CN111399548A (zh) | 一种可识别天气类型的跟踪式光伏发电系统控制方法 | |
CN103441185B (zh) | 一种在东西向斜坡上安装光伏阵列的方法及装置 | |
WO2023206822A1 (fr) | Procédé de réglage dynamique auto-adaptatif pour angle de réseau de production d'énergie photovoltaïque | |
CN109615693A (zh) | 一种平单轴支架间距与跟踪范围的优化计算方法 | |
CN117371245A (zh) | 一种基于模拟退火优化算法的定日镜场分布方法 | |
CN102566600B (zh) | 跟踪式太阳能光伏发电系统的自动校正系统及其实现方法 | |
CN115237168B (zh) | 一种基于反向光线追踪的光伏板传动角度控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946403 Country of ref document: EP Kind code of ref document: A1 |