WO2023240625A1 - 发射功率的确定方法、装置、设备及存储介质 - Google Patents

发射功率的确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023240625A1
WO2023240625A1 PCT/CN2022/099552 CN2022099552W WO2023240625A1 WO 2023240625 A1 WO2023240625 A1 WO 2023240625A1 CN 2022099552 W CN2022099552 W CN 2022099552W WO 2023240625 A1 WO2023240625 A1 WO 2023240625A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network device
scheduling rate
scheduling
transmission power
Prior art date
Application number
PCT/CN2022/099552
Other languages
English (en)
French (fr)
Inventor
王德乾
张华�
刘水
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280004708.7A priority Critical patent/CN117597892A/zh
Priority to PCT/CN2022/099552 priority patent/WO2023240625A1/zh
Publication of WO2023240625A1 publication Critical patent/WO2023240625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • This application relates to the field of communication technology, and in particular to methods, devices, equipment and storage media for determining transmission power.
  • a terminal When a terminal provides services by sending signals, it will radiate electromagnetic signals to the outside through the antenna. When the radiation antenna of the terminal is close to the human body, the human body will absorb electromagnetic energy, thus causing safety problems to the human body. Therefore, Specific Absorption Rate (SAR) regulations have emerged to limit the transmit power of terminals and thereby limit the electromagnetic energy absorbed by the human body.
  • SAR Specific Absorption Rate
  • the terminal when a terminal is at the edge of a serving cell and a neighboring cell, the terminal needs to adjust the terminal's maximum allowable transmit power according to the resource scheduling types of the serving cell and neighboring cells, which may cause the terminal's services to be affected.
  • the terminal there is no mechanism to predict the maximum allowed transmit power of a terminal.
  • Embodiments of the present application provide a method, device, equipment, and storage medium for determining transmission power, and provide a mechanism for predicting the maximum allowable transmission power of a terminal, thereby reducing the possibility that the terminal's business will be affected.
  • the technical solutions are as follows:
  • a method for determining transmission power is provided, which method is performed by a terminal.
  • the method includes:
  • the resource scheduling indication and the scheduling rate prediction value are obtained by the first network device from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the terminal's sub-strong cell. network equipment.
  • a method for determining transmit power is provided.
  • the method is executed by a first network device.
  • the first network device is a network device corresponding to the serving cell of the terminal.
  • the method includes:
  • the resource scheduling indication and the scheduling rate prediction value are used to determine the maximum allowed transmission power of the terminal.
  • a method for determining transmit power is provided.
  • the method is executed by a second network device.
  • the second network device is a network device corresponding to the second-strongest cell of the terminal.
  • the method includes:
  • the resource scheduling indication and the scheduling rate prediction value are sent by the first network device to the terminal, so as to determine the maximum allowed transmission power of the terminal.
  • a device for determining transmission power includes:
  • a determination module used to determine the maximum allowable transmit power of the terminal based on the resource scheduling indication and the scheduling rate prediction value
  • the resource scheduling indication and the scheduling rate prediction value are obtained by the first network device from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the terminal's sub-strong cell. network equipment.
  • a device for determining transmission power includes:
  • a receiving module configured to receive resource scheduling instructions and scheduling rate prediction values sent by a second network device, where the second network device is a network device corresponding to the terminal's second-strongest cell;
  • the resource scheduling indication and the scheduling rate prediction value are used to determine the maximum allowed transmission power of the terminal.
  • a device for determining transmission power includes:
  • a sending module configured to send resource scheduling instructions and scheduling rate prediction values to a first network device, where the first network device is a network device corresponding to the terminal's serving cell;
  • the resource scheduling indication and the scheduling rate prediction value are sent by the first network device to the terminal, so as to determine the maximum allowed transmission power of the terminal.
  • a terminal including a processor
  • a processor configured to determine the maximum allowable transmit power of the terminal based on the resource scheduling indication and the scheduling rate prediction value
  • the resource scheduling indication and the scheduling rate prediction value are obtained by the first network device from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the terminal's sub-strong cell. network equipment.
  • a first network device is provided.
  • the first network device is a network device corresponding to the serving cell of the terminal.
  • the first network device includes a processor;
  • a processor configured to receive resource scheduling instructions and scheduling rate prediction values sent by a second network device, where the second network device is a network device corresponding to the terminal's second-strongest cell;
  • the resource scheduling indication and the scheduling rate prediction value are used to determine the maximum allowed transmission power of the terminal.
  • a second network device is provided.
  • the second network device is a network device corresponding to the second-strongest cell of the terminal.
  • the second network device includes a processor;
  • a processor configured to send resource scheduling instructions and scheduling rate prediction values to a first network device, where the first network device is a network device corresponding to the terminal's serving cell;
  • the resource scheduling indication and the scheduling rate prediction value are sent by the first network device to the terminal, so as to determine the maximum allowed transmission power of the terminal.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the above method for determining transmission power.
  • a chip includes programmable logic circuits and/or program instructions, and is used to implement the above determination method of transmit power when the chip is running.
  • a computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer instructions from the computer-readable storage medium to implement The method of determining the transmit power as above.
  • the terminal can predict the maximum allowable transmission power of the terminal according to the resource scheduling indication and the scheduling rate prediction value obtained by the first network device from the second network device.
  • Figure 1 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • Figure 2 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application
  • Figure 3 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application
  • Figure 4 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application
  • Figure 5 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application
  • Figure 6 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic diagram of the change of transmission power over time provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic diagram for calculating the maximum transmit power of a terminal provided by an exemplary embodiment of the present application.
  • Figure 9 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 10 is a schematic diagram of node interaction provided by an exemplary embodiment of the present application.
  • Figure 11 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 12 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 13 is a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 14 is a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 15 is a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • the first information may also be called second information, and similarly, the second information may also be called first information.
  • Figure 1 shows a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include a terminal 20 located within the signal coverage of the primary cell 10.
  • the main cell 10 is the serving cell corresponding to the terminal 20.
  • the main cell 10 corresponds to a network device for providing wireless communication functions for the terminal 20.
  • network equipment for providing wireless communication functions for the terminal 20.
  • each neighboring cell there are one or more neighboring cells on the surrounding side of the main cell 10, such as the first neighboring cell 31 and the second neighboring cell 32.
  • each neighboring cell also corresponds to a network device.
  • Two adjacent network devices can also communicate through wired or wireless methods, such as through the X2 interface.
  • Network equipment can include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communications technology evolves, the name “network device” may change.
  • the number of terminals 20 may be one or more.
  • the terminal 20 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (User Equipment, UE), mobile Station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the network device corresponding to the primary cell 10 is the first network device
  • the network device corresponding to the first neighboring cell 31 is the second network device.
  • the terminal 20 When the terminal 20 is in the main cell 10, it establishes a communication connection with the first network device; while the terminal 20 moves in the direction of the arrow, the terminal 20 gradually moves away from the first network device; until the terminal 20 moves to the first neighboring cell 31, The terminal 20 disconnects the communication connection with the first network device and establishes a communication connection with the second network device.
  • the terminal 20 needs to adjust the maximum transmit power of the terminal 20 according to the resource scheduling type of the primary cell 10 and the first neighboring cell 31 .
  • SAR Specific Absorption Rate
  • Figure 2 shows a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application. The method is executed by a terminal and includes the following steps:
  • Step 102 Determine the maximum allowable transmit power of the terminal according to the resource scheduling indication and the scheduling rate prediction value.
  • the resource scheduling indication and the scheduling rate prediction value are obtained by the first network device from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the terminal's sub-strong cell. The corresponding network device.
  • the terminal's serving cell refers to the cell corresponding to the terminal at the current moment, and the terminal establishes a communication connection with the first network device at the current moment;
  • the terminal's second-strongest cell is one of the terminal's neighboring cells, which can also be understood as the terminal's location in In a cell that may be entered in the future, the terminal has not established a communication connection with the second network device at the current moment, but may establish a communication connection with the second network device in the future.
  • the second-strongest cell is determined by the first network device based on signal measurement data sent by the terminal.
  • the terminal's second-strongest cell is the neighboring cell with the strongest signal strength among neighboring cells.
  • the resource scheduling indication is used to indicate the resource scheduling type corresponding to the next strongest cell.
  • the resource scheduling type corresponding to the resource scheduling indication and the resource scheduling type corresponding to the serving cell may be the same or different.
  • the prediction value of the scheduling rate is used to indicate the prediction value of the scheduling rate corresponding to the terminal when accessing the sub-strong cell.
  • the prediction value of the scheduling rate can be estimated by the second network device. Different maximum scheduling rates can be calculated based on different prediction values of the scheduling rate. Allowed transmit power.
  • the value may be the same as the value of the scheduling rate corresponding to the terminal when it is serving the cell, or it may be different.
  • the second network device may determine the scheduling rate prediction value based on the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • the service type of the terminal is sent by the first network device to the second network device.
  • the first network device sends the service type of the terminal to the second network device through the X2 interface.
  • different service types correspond to different dispatch rates.
  • the dispatch rate corresponding to voice services is less than 20%.
  • the idle resources of the second-strongest cell are random at different times. For example, at the current moment, there are multiple terminals in the second-strongest cell that need to use resources, so the idle resources of the second-strongest cell are relatively few.
  • TTI-bundling Transmission Time Interval-bundling
  • the second network device may determine the minimum value among the above three scheduling rates as the scheduling rate prediction value, that is, the scheduling rate prediction value is 60%.
  • the second network device before the terminal accesses the second-strongest cell, the second network device can estimate the scheduling rate prediction value of the terminal, and send the scheduling rate prediction value and the resource scheduling instruction to the terminal via the first network device, so as to facilitate The terminal determines its own maximum allowed transmit power. Among them, according to the resource scheduling indication and the scheduling rate prediction value, the terminal can determine to maintain the original maximum allowed transmission power of the terminal, or update the maximum allowed transmission power.
  • the original maximum allowable transmit power of the terminal is maintained; when the resource scheduling indication is different from the resource scheduling type of the terminal and/or the predicted value of the scheduling rate is different from the original scheduling rate of the terminal.
  • the maximum allowable transmit power is updated based on the predicted value of the scheduling rate.
  • the terminal can maintain the original maximum allowable transmit power to avoid the terminal's instantaneous transmit power exceeding the transmit power specified by SAR regulations and causing service failure.
  • the resource scheduling type of the terminal refers to the resource scheduling type when the terminal is in the serving cell.
  • the resource scheduling indication is used to indicate the resource scheduling type of the terminal when it is in the second strongest cell. If the resource scheduling indication is different from the resource scheduling type of the terminal, the terminal will The resource scheduling type when the strong cell is strong is inconsistent with the resource scheduling type when the terminal is serving the cell. Therefore, there is a possibility that the terminal's original scheduling rate and the predicted scheduling rate are different. At this time, the maximum allowable transmit power of the terminal needs to be updated.
  • the terminal can update the maximum allowable transmit power according to the scheduling rate prediction value to avoid the terminal's instantaneous The transmission power exceeds the transmission power specified in SAR regulations, resulting in service failure.
  • the maximum allowable transmit power updated by the terminal according to the scheduling rate prediction value can be determined in a variety of ways. Taking the terminal accessing the second-strongest cell at the first moment and T as the time window for calculating the average SAR value as an example, an implementation method for updating the maximum allowed transmit power is given below:
  • the first moment is any point in time within T period.
  • the first moment is the middle time point within T period, or the penultimate time point within T period.
  • the average SAR value within the T period should not exceed the specified value.
  • the average SAR value is determined by the average of all instantaneous transmit powers within the T period.
  • the transmission power of the terminal before the first moment is known, and the terminal can obtain it based on historical transmission records.
  • the transmission power of the terminal before the first moment is recorded as the first transmission power.
  • the first transmission power may be one or more transmission powers.
  • the terminal's transmission power after the first moment may be determined based on the scheduling rate prediction value.
  • the transmission power of the terminal after the first moment is recorded as the second transmission power.
  • the second transmission power may be one or more transmission powers.
  • the calculation formula of the average SAR value in the T period is as follows:
  • P average (t) is used to indicate the average transmission power in the time period [tT/2, t+T/2], and P(i) is used to indicate the transmission power at time i.
  • the first transmission power is the transmission power of the terminal from time t-T/2 to time t- ⁇ T, where ⁇ T is used to indicate the sampling time interval, and the transmission power within this time period is known;
  • the second transmission power is the transmit power of the terminal from time t+ ⁇ T to time t+T/2.
  • the transmit power in this time period is determined based on the predicted value of the scheduling rate, and from time t+1 to time t+T/2
  • the transmit power at each moment is the same. Subsequently, based on the above calculation formula, the predicted transmission power P(t) corresponding to the first time t can be calculated.
  • P average (t) is defined as the maximum allowable peak power (Maximum Allowable Peak Power) for calculation.
  • the maximum allowable peak power is used to indicate the upper limit of the average transmit power within the T period specified by the operator, which can be recorded as P limit .
  • the maximum transmit power of the terminal is also specified, and the maximum transmit power of the terminal can be recorded as PcMAX.
  • P(t) needs to be compared with PcMAX to update the maximum allowable transmit power of the terminal. For example, when P(t) ⁇ PcMAX, the maximum transmission power of the terminal is updated to the maximum allowable transmission power; when P(t) ⁇ PcMAX, the preset transmission power is updated to the maximum allowable transmission power.
  • the predicted transmission power P(t) corresponding to the first time t can also be calculated by referring to the above example, and then Update the maximum allowed transmit power and will not go into details.
  • the method for determining the transmission power provides a mechanism for predicting the maximum allowable transmission power of the terminal, based on the resource scheduling indication and scheduling obtained by the first network device from the second network device. rate prediction value, so that the terminal can determine the maximum allowable transmit power of the terminal in advance before accessing the next strongest cell, thereby reducing the possibility that the terminal's service will be affected.
  • Figure 3 shows a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • the method is executed by a first network device, which is a network device corresponding to the serving cell of the terminal.
  • the method includes the following steps:
  • Step 202 Receive the resource scheduling indication and scheduling rate prediction value sent by the second network device.
  • the second network device is the network device corresponding to the second strongest cell of the terminal.
  • the relevant descriptions of the serving cell and the sub-strong cell can refer to the foregoing content and will not be described again.
  • the first network device may determine the second-strongest cell based on the signal measurement data sent by the terminal, thereby determining the second network device corresponding to the second-strongest cell.
  • the signal measurement data is used to indicate the signal strength measured by the terminal in real time, and different neighboring cells correspond to different signal strengths.
  • the terminal can update the neighboring cell list in real time.
  • the neighbor cell list includes at least one neighbor cell and its corresponding signal strength, and one neighbor cell corresponds to one signal strength. Subsequently, the terminal determines the neighboring cell with the strongest signal strength in the neighboring cell list as the second strongest cell, thereby determining the second network device corresponding to the second strongest cell.
  • network devices can communicate through the X2 interface.
  • the resource scheduling instruction and scheduling rate prediction value sent by the second network device are received through the X2 interface.
  • the resource scheduling indication is used to indicate the resource scheduling type corresponding to the second-strongest cell; the scheduling rate prediction value is used to indicate the predicted value of the scheduling rate corresponding to the terminal when accessing the second-strongest cell.
  • the second network device may determine the scheduling rate prediction value based on the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • the service type of the terminal is sent by the first network device to the second network device.
  • the first network device sends scheduling rate prediction information to the second network device, and the scheduling rate prediction information at least carries the service type of the terminal.
  • resource scheduling instructions scheduling rate prediction values, and scheduling rate prediction value determination methods, please refer to the foregoing content and will not be described again.
  • Step 204 Send resource scheduling instructions and scheduling rate prediction values to the terminal.
  • the resource scheduling indication and the scheduling rate prediction value are used to determine the maximum allowed transmission power of the terminal.
  • the first network device After acquiring the resource scheduling indication and scheduling rate prediction value sent by the second network device, the first network device forwards them to the terminal so that the terminal can determine its own maximum allowable transmit power. Among them, according to the resource scheduling indication and the scheduling rate prediction value, the terminal can determine to maintain the original maximum allowed transmission power of the terminal, or update the maximum allowed transmission power.
  • the original maximum allowable transmit power of the terminal is maintained; when the resource scheduling indication is different from the resource scheduling type of the terminal and/or the predicted value of the scheduling rate is different from the original scheduling rate of the terminal.
  • the maximum allowable transmit power is updated based on the predicted value of the scheduling rate.
  • the terminal can maintain the original maximum allowable transmit power to avoid the terminal's instantaneous transmit power exceeding the transmit power specified by SAR regulations and causing service failure.
  • the terminal can update the maximum allowable transmit power based on the predicted scheduling rate to avoid the terminal's instantaneous transmit power exceeding the SAR.
  • the transmission power specified by regulations may cause service failure.
  • the method for determining the transmission power provides a mechanism for predicting the maximum allowable transmission power of the terminal.
  • the first network device forwards the resource scheduling instruction obtained from the second network device to the terminal. and the scheduling rate prediction value, so that the terminal can determine the maximum allowable transmit power of the terminal in advance before accessing the next strongest cell, thereby reducing the possibility that the terminal's business will be affected.
  • Figure 4 shows a flowchart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • the method is executed by a second network device.
  • the second network device is a network device corresponding to the terminal's second-strongest cell.
  • the method includes the following steps:
  • Step 302 Send the resource scheduling indication and the scheduling rate prediction value to the first network device.
  • the first network device is a network device corresponding to the terminal's serving cell, and the resource scheduling indication and the scheduling rate prediction value are sent to the terminal by the first network device to determine the maximum allowed transmission power of the terminal.
  • the resource scheduling indication is used to indicate the resource scheduling type corresponding to the second-strongest cell; the scheduling rate prediction value is used to indicate the predicted value of the scheduling rate corresponding to the terminal when accessing the second-strongest cell.
  • the second network device may determine the scheduling rate prediction value based on the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • resource scheduling instructions scheduling rate prediction values, and scheduling rate prediction value determination methods, please refer to the foregoing content and will not be described again.
  • the first network device After acquiring the resource scheduling indication and scheduling rate prediction value sent by the second network device, the first network device forwards them to the terminal so that the terminal can determine its own maximum allowable transmit power. Among them, according to the resource scheduling indication and the scheduling rate prediction value, the terminal can determine to maintain the original maximum allowed transmission power of the terminal, or update the maximum allowed transmission power.
  • the original maximum allowable transmit power of the terminal is maintained; when the resource scheduling indication is different from the resource scheduling type of the terminal and/or the predicted value of the scheduling rate is different from the original scheduling rate of the terminal.
  • the maximum allowable transmit power is updated based on the predicted value of the scheduling rate.
  • the terminal can maintain the original maximum allowable transmit power to avoid the terminal's instantaneous transmit power exceeding the transmit power specified by SAR regulations and causing service failure.
  • the terminal can update the maximum allowable transmit power based on the predicted scheduling rate to avoid the terminal's instantaneous transmit power exceeding the SAR.
  • the transmission power specified by regulations may cause service failure.
  • the method for determining the transmission power provides a mechanism for predicting the maximum allowable transmission power of the terminal.
  • the second network device sends a resource scheduling indication and a scheduling rate prediction value to the first network device.
  • the terminal can determine the maximum allowable transmit power of the terminal in advance before accessing the next strongest cell, thereby reducing the possibility that the terminal's service is affected.
  • Figure 5 shows a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application. The method includes the following steps:
  • Step 401 The second network device sends a resource scheduling instruction and a scheduling rate prediction value to the first network device.
  • the first network device is the network device corresponding to the serving cell of the terminal
  • the second network device is the network device corresponding to the second-strongest cell of the terminal.
  • the resource scheduling indication is used to indicate the resource scheduling type corresponding to the second-strongest cell; the scheduling rate prediction value is used to indicate the predicted value of the scheduling rate corresponding to the terminal when accessing the second-strongest cell.
  • the second network device may determine the scheduling rate prediction value based on the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • resource scheduling instructions scheduling rate prediction values, and scheduling rate prediction value determination methods, please refer to the foregoing content and will not be described again.
  • Step 402 The first network device sends a resource scheduling indication and a scheduling rate prediction value to the terminal.
  • the first network device After acquiring the resource scheduling indication and scheduling rate prediction value sent by the second network device, the first network device forwards them to the terminal so that the terminal can determine its own maximum allowable transmit power.
  • Step 403 The terminal determines the maximum allowable transmit power of the terminal based on the resource scheduling indication and the scheduling rate prediction value.
  • resource scheduling instructions and scheduling rate prediction values please refer to the foregoing content and will not be described again.
  • the terminal may determine to maintain the terminal's original maximum allowed transmission power, or update the maximum allowed transmission power.
  • the original maximum allowable transmit power of the terminal is maintained; when the resource scheduling indication is different from the resource scheduling type of the terminal and/or the predicted value of the scheduling rate is different from the original scheduling rate of the terminal.
  • the maximum allowable transmit power is updated based on the predicted value of the scheduling rate.
  • the terminal can maintain the original maximum allowable transmit power to avoid the terminal's instantaneous transmit power exceeding the transmit power specified by SAR regulations and causing service failure.
  • the terminal can update the maximum allowable transmit power based on the predicted scheduling rate to avoid the terminal's instantaneous transmit power exceeding the SAR.
  • the transmission power specified by regulations may cause service failure.
  • the method for determining the transmission power provides a mechanism for predicting the maximum allowable transmission power of the terminal, based on the resource scheduling indication and scheduling obtained by the first network device from the second network device. Rate prediction value, the terminal can determine the maximum allowable transmit power of the terminal in advance before accessing the next strongest cell, thereby reducing the possibility that the terminal's business will be affected.
  • the terminal may determine to maintain the original maximum allowed transmission power of the terminal, or update the maximum allowed transmission power.
  • Step 403 can be implemented as step 4031 and step 4032.
  • Step 4031 and step 4032 can be executed alternatively, but cannot be executed at the same time. The details are as follows:
  • Step 4031 When the predicted value of the scheduling rate is the same as the original scheduling rate of the terminal, maintain the original maximum allowable transmit power of the terminal.
  • the original scheduling rate of the terminal is in compliance with SAR regulations. If the predicted value of the scheduling rate is the same as the original scheduling rate of the terminal, the terminal can maintain the original maximum allowable transmit power to avoid the terminal's instantaneous transmit power. Exceeding the transmission power specified in SAR regulations will cause service failure.
  • Step 4032 When the resource scheduling indication is different from the resource scheduling type of the terminal and/or the predicted scheduling rate is different from the original scheduling rate of the terminal, update the maximum allowed transmit power according to the predicted scheduling rate.
  • the resource scheduling indication is used to indicate the resource scheduling type of the terminal when it is in the second strongest cell, and the resource scheduling type of the terminal refers to the resource scheduling type of the terminal when it is in the serving cell.
  • the resource scheduling type when the terminal is in the sub-strong cell is inconsistent with the resource scheduling type when the terminal is in the serving cell, which may cause the terminal's original scheduling rate and scheduling rate prediction value to be inconsistent. are different, which may cause the original maximum allowable transmit power of the terminal to no longer comply with SAR regulations.
  • the resource scheduling type of the terminal is semi-static scheduling or TTI-bundling, and the resource scheduling type corresponding to the resource scheduling indication is simultaneous transmission of PUSCH and PUCCH.
  • the maximum allowable transmit power of the terminal needs to be updated to prevent the terminal's instantaneous transmit power from exceeding the transmit power specified by SAR regulations and causing service failure.
  • the predicted scheduling rate is different from the original scheduling rate of the terminal, there is also the possibility that the original maximum allowable transmit power of the terminal no longer complies with SAR regulations, so the maximum allowable transmit power of the terminal needs to be updated to avoid the terminal's instantaneous transmission. The power exceeds the transmission power specified in SAR regulations, resulting in service failure.
  • step 4032 can be implemented as follows:
  • the maximum allowed transmission power is updated based on the predicted transmission power and the maximum transmission power of the terminal.
  • the maximum transmission power of the terminal is the upper limit of the transmission power corresponding to the terminal.
  • determining the predicted transmission power of the terminal at the first moment based on the first transmission power and the second transmission power can be achieved through the calculation formula of the average SAR value within the T period, where T is the time window for calculating the average SAR value.
  • the first moment is any time point within the T period.
  • the first moment is the middle time point within T period, or the penultimate time point within T period.
  • the average SAR value within the T period should not exceed the specified value.
  • the average SAR value is determined by the average of all instantaneous transmit powers within the T period.
  • the transmission power of the terminal before the first moment is known, and the terminal can obtain it based on historical transmission records.
  • the transmission power of the terminal before the first moment is recorded as the first transmission power.
  • the first transmission power may be one or more transmission powers.
  • the terminal's transmission power after the first moment may be determined based on the scheduling rate prediction value.
  • the transmission power of the terminal after the first moment is recorded as the second transmission power.
  • the second transmission power may be one or more transmission powers.
  • Figure 7 shows a schematic diagram of the change of transmission power over time provided by an exemplary embodiment of the present application.
  • PcMAX is used to indicate the maximum transmit power of the terminal
  • the maximum allowable peak power (Maximum Allowable Peak Power) is used to indicate the upper limit of the average transmit power within the T period specified by the operator, which can be recorded as P limit ; the terminal is within the T period.
  • the actual transmit power of the terminal changes according to the service type and other influencing factors, and can also be called the instantaneous power of the terminal.
  • Figure 8 shows a schematic diagram for calculating the maximum transmit power of a terminal provided by an exemplary embodiment of the present application.
  • ⁇ T is used to indicate the sampling time interval, and the number of samplings within the T period is N.
  • P average (t) is used to indicate the average transmission power in the time period [tT/2, t+T/2], and P(i) is used to indicate the transmission power at time i.
  • the first transmission power is the transmission power of the terminal from time t-T/2 to time t- ⁇ T, and the transmission power in this time period is known;
  • the second transmission power is the transmission power of the terminal from time t+ ⁇ T to time t
  • the transmit power in this time period is determined based on the predicted value of the scheduling rate, and the transmit power at each time from time t+1 to time t+T/2 is the same. .
  • the predicted transmission power P(t) corresponding to the first time t can be calculated.
  • the maximum transmit power of the terminal is also specified, and the maximum transmit power of the terminal can be recorded as PcMAX. After the predicted transmit power P(t) is calculated, P(t) needs to be compared with PcMAX to update the maximum allowable transmit power of the terminal.
  • update the maximum allowed transmit power based on the predicted transmit power and the maximum transmit power of the terminal which can be implemented as follows:
  • the maximum transmit power of the terminal is updated to the maximum allowed transmit power; when the predicted transmit power is less than the maximum transmit power of the terminal, the preset transmit power is updated to the maximum Allowed transmit power.
  • the predicted transmission power P(t) corresponding to the first time t can also be calculated by referring to the above example, and then Update the maximum allowed transmit power and will not go into details.
  • the method for determining the transmission power shows that under different circumstances, the terminal can maintain the original maximum allowed transmission power, or update the maximum allowed transmission power.
  • the embodiment of this application also provides an implementation method of updating the maximum allowed transmission power according to the scheduling rate prediction value.
  • the second transmit power is determined according to the predicted value of the scheduling rate
  • the predicted transmit power of the terminal at the first moment is determined according to the known first transmit power and the second transmit power, and it is determined by comparing it with the maximum transmit power of the terminal.
  • Updated maximum allowed transmit power Based on the above update method, the terminal can predict the updated maximum allowable transmit power based on the known first transmit power and the predicted second transmit power, so that the terminal's transmit power can comply with SAR regulations and reduce the risk of the terminal's business being affected. possibility.
  • the scheduling rate prediction value may be determined by the second network device according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second-strongest cell, and the maximum scheduling rate supported by the second network device.
  • the service type of the terminal is sent by the first network device to the second network device.
  • FIG. 9 shows a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • the method also includes steps 404 and 405, specifically as follows:
  • Step 404 The first network device sends scheduling rate prediction information to the second network device.
  • the scheduling rate prediction information carries at least the service type of the terminal, and the scheduling rate prediction information is used by the second network device to determine the scheduling rate prediction value.
  • a service type corresponds to a scheduling rate, and a scheduling rate can be uniquely determined according to the service type of the terminal.
  • the theoretical scheduling rate corresponding to the service type of the terminal can be determined.
  • the theoretical scheduling rate refers to the terminal being in the corresponding serving cell at a certain moment without considering other influencing factors.
  • the service type of the terminal at that moment corresponds to Dispatch rate.
  • the scheduling rate prediction information also carries at least one of the following information: the resource scheduling type of the terminal; the duty cycle of the terminal; the RSRP value of the terminal; and the next strongest RSRP value of the terminal.
  • the duty cycle is used to indicate the proportion of the terminal's power-on time relative to the total time within a pulse cycle.
  • the duty cycle can also be understood as the original scheduling rate of the terminal.
  • network devices can communicate with each other through the X2 interface.
  • the first network device sends scheduling rate prediction information to the second network device through the X2 interface, and the scheduling rate prediction information at least carries the service type of the terminal.
  • Figure 10 shows a schematic diagram of node interaction provided by an exemplary embodiment of the present application.
  • the target node can send exchange information to the source node through the Xn interface.
  • the X2 interface is one of the Xn interfaces.
  • the Xn interface has the following specifications (The Xn interface specifications facilitate the following):
  • Step 405 The second network device determines the scheduling rate prediction value based on the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second-strongest cell, and the maximum scheduling rate supported by the second network device.
  • a scheduling rate can be uniquely determined according to the service type of the terminal; by referring to the resource scheduling type of the cell where the terminal is located, the theoretical scheduling rate corresponding to the service type of the terminal can be determined.
  • different service types correspond to different dispatch rates. For example, the dispatch rate corresponding to voice services is less than 20%; the dispatch rate corresponding to WeChat voice services is less than 30%.
  • the second network device After obtaining the scheduling rate prediction information sent by the first network device, the second network device can obtain the service type of the terminal; and then, the second network device can determine the scheduling rate prediction value accordingly.
  • step 405 can be implemented as follows:
  • the service type of the terminal and the resource scheduling type corresponding to the next strongest cell, determine the theoretical scheduling rate corresponding to the service type of the terminal;
  • the minimum value among the theoretical scheduling rate, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device is determined as the scheduling rate prediction value.
  • the idle resources of the second-strongest cell are random at different times. For example, at the current moment, there are multiple terminals in the second-strongest cell that need to use resources, so the idle resources of the second-strongest cell are relatively few.
  • the service type of the terminal is voice service
  • the resource scheduling type corresponding to the second strongest cell is TTI-bundling.
  • the service type and the resource scheduling type corresponding to the second-strongest cell it can be determined that the theoretical scheduling rate corresponding to the service type should be 80%.
  • the second-strongest cell has more idle resources, and the maximum scheduling rate supported can reach 80%; while the maximum scheduling rate supported by the second network device is only 60%.
  • the second network device may determine the minimum value among the above three scheduling rates as the scheduling rate prediction value, that is, the scheduling rate prediction value is 60%.
  • the service type of the terminal is WeChat voice service
  • the resource scheduling type corresponding to the second strongest cell is semi-static scheduling.
  • the service type and the resource scheduling type corresponding to the second-strongest cell it can be determined that the theoretical scheduling rate corresponding to the service type should be 30%.
  • the second-strongest cell has fewer idle resources, and the maximum scheduling rate supported can only reach 20%; while the maximum scheduling rate supported by the second network device is 50%.
  • the second network device may determine the minimum value among the above three scheduling rates as the scheduling rate prediction value, that is, the scheduling rate prediction value is 20%.
  • the method for determining the transmission power provides a method for determining the predicted value of the scheduling rate.
  • the second network device can determine the scheduling rate prediction value according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device, so as to send it through the first network device to the terminal.
  • the scheduling rate prediction value is the minimum value among the theoretical scheduling rate corresponding to the terminal's service type, the maximum scheduling rate supported by the idle resources of the second-strongest cell, and the maximum scheduling rate supported by the second network device to avoid deterministic scheduling.
  • the rate prediction value exceeds the idle resources of the second strongest cell or the maximum scheduling rate supported by the second network device, thereby reducing the possibility that the terminal's service is affected.
  • Figure 11 is a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application.
  • the method also includes step 406, step 407 and step 408, as follows:
  • Step 406 When the timing advance (Timing Advance, TA) value of the terminal continues to increase, the first network device determines that the terminal is far away from the first network device.
  • Timing Advance Timing Advance
  • the TA value of the terminal is configured by the first network device and is used to indicate the amount of time that the terminal needs to advance during uplink transmission.
  • the first network device can determine the change in the distance between the terminal and the first network device.
  • the first network device can determine that the terminal is moving away from the first network device.
  • the first network device when determining that the terminal is far away from the first network device, sends a resource scheduling indication and a scheduling rate prediction value to the terminal to avoid incorrectly changing the maximum allowed transmission power of the terminal. For example, when the terminal moves in the serving cell, it may move to the intersection area between the serving cell and the second-strongest cell. However, the terminal always moves in the intersection area and does not approach the second-strongest cell. The value determines that the terminal is not far away from the first network device. At this time, the first network device does not send the resource scheduling indication and the scheduling rate prediction value to the terminal to avoid erroneous changes to the maximum allowed transmission power of the terminal.
  • step 402 can be implemented as follows:
  • the terminal's Reference Signal Received Power (RSRP) is less than the RSRP threshold
  • the terminal's power headroom report (Power Headroom Report, PHR) is less than the PHR threshold.
  • the first network device sends a resource scheduling indication and a scheduling rate prediction value to the terminal.
  • the RSRP of the terminal is less than the RSRP threshold, and the PHR of the terminal is less than the PHR threshold, which is used to improve the accuracy of judging that the terminal is far away from the first network device.
  • the RSRP threshold value and the PHR threshold value can be set according to actual needs, and are not limited here in this application.
  • the first network device may determine the second-strongest cell based on the signal measurement data sent by the terminal, thereby determining the second network device corresponding to the second-strongest cell.
  • Step 407 The terminal sends signal measurement data to the first network device.
  • the signal measurement data is used to indicate the signal strength measured by the terminal in real time, and different neighboring cells correspond to different signal strengths.
  • the terminal can update the neighboring cell list in real time.
  • the neighbor cell list includes at least one neighbor cell and its corresponding signal strength, and one neighbor cell corresponds to one signal strength.
  • Step 408 The first network device determines the next strongest cell based on the signal measurement data.
  • the first network device can obtain the neighbor cell list updated in real time. Subsequently, the terminal can determine the next strongest cell from the neighbor cell list. For example, the first network device determines the neighboring cell with the strongest signal strength in the neighbor cell list as the second strongest cell, thereby determining the second network device corresponding to the second strongest cell.
  • the method for determining the transmission power provides the timing for the first network device to send the resource scheduling instruction and the scheduling rate prediction value to the terminal, so as to improve the accuracy of predicting the maximum allowable transmission power of the terminal. sex.
  • the embodiment of the present application also provides an implementation method for the first network device to determine the second strongest cell.
  • the first network device can determine the second strongest cell through the signal measurement data sent by the terminal, and then determine the second strongest cell corresponding to the second strongest cell.
  • the network device is configured to obtain the resource scheduling indication and the scheduling rate prediction value from the second network device.
  • Figure 12 shows a flow chart of a method for determining transmission power provided by an exemplary embodiment of the present application. The method includes the following steps:
  • Step 501 The terminal determines the maximum transmit power of the terminal.
  • the terminal needs to determine its maximum transmit power in real time to meet SAR regulations and avoid service failure.
  • step 501 at the current time, the terminal needs to determine the maximum transmit power at time 2; at that time.
  • the maximum transmission power of the terminal at time 2 may be the same as the maximum transmission power at time 1, or may be different from the maximum transmission power at time 1.
  • the embodiment of this application takes predicting the maximum transmission power at time 3 as an example.
  • Step 502 The first network device determines that the terminal is moving away according to the TA value, and the RSRP and PHR are lower than the corresponding threshold values.
  • the TA value of the terminal is used to indicate the amount of time the terminal needs to advance during uplink transmission; the larger the TA value, the greater the distance between the terminal and the first network device, and conversely the distance between the terminal and the first network device. The smaller the distance.
  • RSRP and PHR are lower than the corresponding thresholds, which are used to indicate that the RSRP of the terminal is less than the RSRP threshold, and the PHR of the terminal is less than the PHR threshold; the RSRP threshold and PHR threshold can be limited according to actual needs.
  • the first network device determines that the terminal is far away from the first network device.
  • Step 503 The first network device searches the signal measurement data reported by the terminal to determine the next strongest cell.
  • the signal measurement data is used to indicate the signal strength measured by the terminal in real time, and different neighboring cells correspond to different signal strengths.
  • the terminal can update the neighboring cell list in real time.
  • the neighbor cell list includes at least one neighbor cell and its corresponding signal strength, and one neighbor cell corresponds to one signal strength.
  • the terminal can determine the next strongest cell from the neighbor cell list. For example, the first network device determines the neighboring cell with the strongest signal strength in the neighbor cell list as the second strongest cell, thereby determining the second network device corresponding to the second strongest cell.
  • Step 504 Through the X2 interface, the first network device sends the scheduling rate prediction information to the second network device.
  • the scheduling rate prediction information carries at least the service type of the terminal, and the scheduling rate prediction information is used by the second network device to determine the scheduling rate prediction value.
  • the scheduling rate prediction information also carries at least one of the following information: the resource scheduling type of the terminal; the duty cycle of the terminal; the RSRP value of the terminal; and the next strongest RSRP value of the terminal.
  • Step 505 The second network device determines the scheduling rate prediction value.
  • the second network device After obtaining the scheduling rate prediction information, the second network device can determine the service type of the terminal to determine the scheduling rate prediction value.
  • the scheduling rate prediction value is used to indicate the prediction value of the scheduling rate corresponding to the terminal when accessing the sub-strong cell.
  • the scheduling rate prediction value can be estimated by the second network device. Different scheduling rate prediction values can be calculated according to different scheduling rate prediction values. the maximum allowable transmit power. The value may be the same as the value of the scheduling rate corresponding to the terminal when it is serving the cell, or it may be different.
  • the scheduling rate prediction value is determined by the second network device according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • step 505 can be implemented as follows:
  • the second network device determines the theoretical scheduling rate corresponding to the terminal's service type based on the terminal's service type and the resource scheduling type corresponding to the next strongest cell;
  • the second network device determines the minimum value of the theoretical scheduling rate, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device as the scheduling rate prediction value.
  • the service type of the terminal is voice service
  • the resource scheduling type corresponding to the second strongest cell is TTI-bundling.
  • the service type and the resource scheduling type corresponding to the second-strongest cell it can be determined that the theoretical scheduling rate corresponding to the service type should be 80%.
  • the second-strongest cell has more idle resources, and the maximum scheduling rate supported can reach 80%; while the maximum scheduling rate supported by the second network device is only 60%.
  • the second network device may determine the minimum value among the above three scheduling rates as the scheduling rate prediction value, that is, the scheduling rate prediction value is 60%.
  • the service type of the terminal is WeChat voice service
  • the resource scheduling type corresponding to the second strongest cell is semi-static scheduling.
  • the service type and the resource scheduling type corresponding to the second-strongest cell it can be determined that the theoretical scheduling rate corresponding to the service type should be 30%.
  • the second-strongest cell has fewer idle resources, and the maximum scheduling rate supported can only reach 20%; while the maximum scheduling rate supported by the second network device is 50%.
  • the second network device may determine the minimum value among the above three scheduling rates as the scheduling rate prediction value, that is, the scheduling rate prediction value is 20%.
  • Step 506 The first network device forwards the resource scheduling indication and the scheduling rate prediction value to the terminal.
  • the second network device may send the scheduling rate prediction value and the resource scheduling indication to the first network device through the X2 interface; then, the first network device forwards the resource scheduling indication and the scheduling rate prediction value to the terminal.
  • the resource scheduling indication is used to indicate the resource scheduling type corresponding to the next strongest cell.
  • the resource scheduling type corresponding to the resource scheduling indication and the resource scheduling type corresponding to the serving cell may be the same or different.
  • Step 507 The terminal determines whether the resource scheduling type is consistent with the scheduling rate prediction value.
  • the terminal After obtaining the resource scheduling indication and the scheduling rate prediction value, the terminal can make a judgment based on the resource scheduling type and scheduling rate prediction value indicated by the resource scheduling indication to determine whether to maintain the original maximum transmission power or update the maximum transmission power.
  • the resource scheduling type is consistent with the scheduling rate prediction value, which is used to indicate that the scheduling rate prediction value is the same as the terminal's original scheduling rate; the resource scheduling type is inconsistent with the scheduling rate prediction value, which is used to indicate that the resource scheduling indication is consistent with the terminal's resource scheduling type.
  • the predicted value of the scheduling rate is different and/or different from the original scheduling rate of the terminal.
  • moment 1 Take moment 1 as the historical moment, moment 2 as the current moment, and moment 3 as the future moment as an example.
  • step 501 is executed, and the maximum transmission power corresponding to time 3 is determined as the maximum transmission power corresponding to time 2.
  • step 508 is executed to update the maximum allowable transmit power according to the predicted value of the scheduling rate, and update the maximum transmit power corresponding to time 3 to the new maximum transmit power.
  • the new maximum transmit power is The power may be the same as or different from the maximum transmit power corresponding to time 2.
  • Step 508 The terminal updates the maximum transmit power.
  • the terminal updates the maximum allowable transmit power based on the predicted value of the scheduling rate to avoid service failure caused by the terminal's instantaneous transmit power exceeding the transmit power specified in the SAR regulations.
  • step 508 can be implemented as follows:
  • the terminal obtains the first transmission power of the terminal before the first moment
  • the terminal determines the second transmission power of the terminal after the first moment according to the scheduling rate prediction value
  • the terminal determines the predicted transmission power of the terminal at the first moment based on the first transmission power and the second transmission power;
  • the terminal updates the maximum allowed transmission power based on the predicted transmission power and the maximum transmission power of the terminal.
  • the maximum transmission power of the terminal is the upper limit of the transmission power corresponding to the terminal.
  • determining the predicted transmission power of the terminal at the first moment based on the first transmission power and the second transmission power can be achieved through the calculation formula of the average SAR value within the T period, where T is the time window for calculating the average SAR value.
  • the first moment is any time point within the T period.
  • the first moment is the middle time point within T period, or the penultimate time point within T period.
  • the transmission power of the terminal before the first time is known and can be obtained by the terminal based on historical transmission records; the transmission power of the terminal after the first time can be determined based on the scheduling rate prediction value.
  • the calculation process of the predicted transmission power P(t) corresponding to the first time t can refer to the foregoing content and will not be described again.
  • P(t) After the predicted transmit power P(t) is calculated, P(t) needs to be compared with PcMAX to update the maximum allowable transmit power of the terminal. For example, when P(t) ⁇ PcMAX, the maximum transmission power of the terminal is updated to the maximum allowable transmission power; when P(t) ⁇ PcMAX, the preset transmission power is updated to the maximum allowable transmission power.
  • the method for determining the transmission power provides a mechanism for predicting the maximum allowable transmission power of the terminal, based on the resource scheduling indication and scheduling obtained by the first network device from the second network device. rate prediction value, so that the terminal can determine the maximum allowable transmit power of the terminal in advance before accessing the next strongest cell, thereby reducing the possibility that the terminal's service will be affected.
  • Figure 13 shows a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • the device includes:
  • the determination module 1310 is used to determine the maximum allowable transmission power of the terminal according to the resource scheduling indication and the scheduling rate prediction value;
  • the resource scheduling indication and the scheduling rate prediction value are obtained by the first network device from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the terminal's sub-strong cell. network equipment.
  • the determination module 1310 is configured to maintain the original maximum allowable transmit power of the terminal when the predicted scheduling rate value is the same as the original scheduling rate of the terminal; when the resource scheduling indication is different from the resource scheduling type of the terminal and/ Or when the predicted value of the scheduling rate is different from the original scheduling rate of the terminal, the maximum allowable transmit power is updated based on the predicted value of the scheduling rate.
  • the determination module 1310 is used to obtain the first transmission power of the terminal before the first time; determine the second transmission power of the terminal after the first time according to the scheduling rate prediction value; and determine the second transmission power of the terminal after the first time according to the first transmission power and the second time. Transmit power, determine the predicted transmit power of the terminal at the first moment; update the maximum allowed transmit power based on the predicted transmit power and the maximum transmit power of the terminal, which is the upper limit of the transmit power corresponding to the terminal.
  • the determination module 1310 is configured to update the maximum transmission power of the terminal to the maximum allowed transmission power when the predicted transmission power is not less than the maximum transmission power of the terminal; when the predicted transmission power is less than the maximum transmission power of the terminal , update the preset transmit power to the maximum allowed transmit power.
  • the scheduling rate prediction value is determined by the second network device according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • the service type of the terminal is sent by the first network device to the second network device.
  • the apparatus also includes: a receiving module 1320, configured to receive the resource scheduling indication and the scheduling rate prediction value sent by the first network device.
  • the second-strongest cell is determined by the first network device based on signal measurement data sent by the terminal.
  • the second strongest cell is the neighboring cell with the strongest signal strength in the signal measurement data.
  • Figure 14 shows a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 1410 is configured to receive the resource scheduling indication and the scheduling rate prediction value sent by the second network device.
  • the second network device is the network device corresponding to the second-strongest cell of the terminal;
  • the resource scheduling indication and the scheduling rate prediction value are used to determine the maximum allowed transmission power of the terminal.
  • the scheduling rate prediction value is determined by the second network device according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • the apparatus further includes: a sending module 1420, configured to send scheduling rate prediction information to the second network device, where the scheduling rate prediction information at least carries the service type of the terminal.
  • a sending module 1420 configured to send scheduling rate prediction information to the second network device, where the scheduling rate prediction information at least carries the service type of the terminal.
  • the scheduling rate prediction information also carries at least one of the following information: the resource scheduling type of the terminal; the duty cycle of the terminal; the RSRP value of the terminal; and the next strongest RSRP value of the terminal.
  • the second-strongest cell is determined by the first network device based on signal measurement data sent by the terminal.
  • the second strongest cell is the neighboring cell with the strongest signal strength in the signal measurement data.
  • the sending module is configured to send the signal to the terminal when the terminal is far away from the first network device, the reference signal received power RSRP of the terminal is less than the RSRP threshold, and the power headroom report PHR of the terminal is less than the PHR threshold.
  • Resource scheduling instructions and scheduling rate prediction values are configured to send the signal to the terminal when the terminal is far away from the first network device, the reference signal received power RSRP of the terminal is less than the RSRP threshold, and the power headroom report PHR of the terminal is less than the PHR threshold.
  • the apparatus further includes: a determination module 1430, configured to determine that the terminal is far away from the first network device when the terminal's timing advance TA value continues to increase.
  • a determination module 1430 configured to determine that the terminal is far away from the first network device when the terminal's timing advance TA value continues to increase.
  • Figure 15 shows a schematic diagram of a device for determining transmission power provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 1510 is configured to send the resource scheduling indication and the scheduling rate prediction value to the first network device, which is the network device corresponding to the serving cell of the terminal;
  • the resource scheduling indication and the scheduling rate prediction value are sent by the first network device to the terminal, so as to determine the maximum allowed transmission power of the terminal.
  • the apparatus further includes: a receiving module 1520, configured to receive the scheduling rate prediction information sent by the first network device, where the scheduling rate prediction information at least carries the service type of the terminal.
  • a receiving module 1520 configured to receive the scheduling rate prediction information sent by the first network device, where the scheduling rate prediction information at least carries the service type of the terminal.
  • the scheduling rate prediction information also carries at least one of the following information: the resource scheduling type of the terminal; the duty cycle of the terminal; the RSRP value of the terminal; and the next strongest RSRP value of the terminal.
  • the second-strongest cell is determined by the first network device based on signal measurement data sent by the terminal.
  • the second strongest cell is the neighboring cell with the strongest signal strength in the signal measurement data.
  • the device also includes: a determination module 1530, configured to determine the scheduling rate prediction value according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • a determination module 1530 configured to determine the scheduling rate prediction value according to the service type of the terminal, the maximum scheduling rate supported by the idle resources of the second strongest cell, and the maximum scheduling rate supported by the second network device.
  • the determination module 1530 is used to determine the theoretical scheduling rate corresponding to the service type of the terminal according to the service type of the terminal and the resource scheduling type corresponding to the second-strongest cell; and combine the theoretical scheduling rate and the maximum idle resource support of the second-strongest cell.
  • the minimum value of the scheduling rate and the maximum scheduling rate supported by the second network device is determined as the scheduling rate prediction value.
  • Figure 16 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1601, a receiver 1602, a transmitter 1603, a memory 1604 and a bus 1605.
  • the processor 1601 includes one or more processing cores.
  • the processor 1601 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1602 and the transmitter 1603 can be implemented as a communication component, and the communication component can be a communication chip.
  • Memory 1604 is connected to processor 1601 through bus 1605.
  • the memory 1604 may be used to store at least one instruction, and the processor 1601 is used to execute the at least one instruction to implement each step of the information determination method mentioned in the above method embodiment, or each step of the information sending method.
  • memory 1604 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory
  • An embodiment of the present application also provides a terminal, which includes a processor; the processor is configured to determine the maximum allowable transmit power of the terminal according to the resource scheduling indication and the scheduling rate prediction value; wherein the resource scheduling indication and the scheduling rate prediction value
  • the first network device is obtained from the second network device.
  • the first network device is the network device corresponding to the terminal's serving cell
  • the second network device is the network device corresponding to the terminal's second-strongest cell.
  • Embodiments of the present application also provide a first network device.
  • the first network device is a network device corresponding to the serving cell of the terminal.
  • the first network device includes a processor; the processor is configured to receive the data sent by the second network device.
  • Resource scheduling indication and scheduling rate prediction value the second network device is the network device corresponding to the terminal's second strongest cell; send the resource scheduling indication and scheduling rate prediction value to the terminal; wherein the resource scheduling indication and scheduling rate prediction value are used to determine The maximum allowed transmit power of the terminal.
  • Embodiments of the present application also provide a second network device.
  • the second network device is a network device corresponding to the second-strongest cell of the terminal.
  • the second network device includes a processor; the processor is configured to send a message to the first network device.
  • the resource scheduling indication and the scheduling rate prediction value, the first network device is the network device corresponding to the terminal's serving cell; wherein the resource scheduling indication and the scheduling rate prediction value are sent by the first network device to the terminal to determine the terminal's maximum Allowed transmit power.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the above method for determining transmission power.
  • An embodiment of the present application also provides a chip.
  • the chip includes a programmable logic circuit and/or program instructions, and is used to implement the above method of determining the transmission power when the chip is running.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer instructions from the computer-readable storage medium to implement the above. How to determine transmit power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发射功率的确定方法、装置、设备及存储介质,涉及通信技术领域。所述方法由终端执行,该方法包括:根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。

Description

发射功率的确定方法、装置、设备及存储介质 技术领域
本申请涉及通信技术领域,特别涉及发射功率的确定方法、装置、设备及存储介质。
背景技术
终端在通过发送信号提供业务时,会通过天线对外部进行电磁信号的辐射。在终端的辐射天线靠近人体时,人体将吸收电磁能量,从而对人体造成安全问题。因此,出现了比吸收率(Specific Absorption Rate,SAR)法规,以对终端的发射功率进行限制,进而约束人体吸收的电磁能量。
相关技术中,在终端处于服务小区和邻小区的边缘时,终端需要根据服务小区和邻小区的资源调度类型调整终端的最大允许发射功率,由此导致终端的业务可能受到影响。目前,尚未有预测终端的最大允许发射功率的机制。
发明内容
本申请实施例提供了一种发射功率的确定方法、装置、设备及存储介质,提供了一种预测终端的最大允许发射功率的机制,从而降低终端的业务受到影响的可能性。所述技术方案如下:
根据本申请的一个方面,提供了一种发射功率的确定方法,该方法由终端执行,该方法包括:
根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;
其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
根据本申请的一个方面,提供了一种发射功率的确定方法,该方法由第一网络设备执行,第一网络设备是终端的服务小区所对应的网络设备,该方法包括:
接收第二网络设备发送的资源调度指示和调度率预测值,第二网络设备是终端的次强小区所对应的网络设备;
向终端发送资源调度指示和调度率预测值;
其中,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种发射功率的确定方法,该方法由第二网络设备执行,第二网络设备是终端的次强小区所对应的网络设备,该方法包 括:
向第一网络设备发送资源调度指示和调度率预测值,第一网络设备是终端的服务小区所对应的网络设备;
其中,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种发射功率的确定装置,装置包括:
确定模块,用于根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;
其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
根据本申请的一个方面,提供了一种发射功率的确定装置,装置包括:
接收模块,用于接收第二网络设备发送的资源调度指示和调度率预测值,第二网络设备是终端的次强小区所对应的网络设备;
向终端发送资源调度指示和调度率预测值;
其中,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种发射功率的确定装置,装置包括:
发送模块,用于向第一网络设备发送资源调度指示和调度率预测值,第一网络设备是终端的服务小区所对应的网络设备;
其中,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种终端,该终端包括处理器;
处理器,用于根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;
其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
根据本申请的一个方面,提供了一种第一网络设备,第一网络设备是终端的服务小区所对应的网络设备,该第一网络设备包括处理器;
处理器,用于接收第二网络设备发送的资源调度指示和调度率预测值,第二网络设备是终端的次强小区所对应的网络设备;
向终端发送资源调度指示和调度率预测值;
其中,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种第二网络设备,第二网络设备是终端的次强小区所对应的网络设备,该第二网络设备包括处理器;
处理器,用于向第一网络设备发送资源调度指示和调度率预测值,第一网 络设备是终端的服务小区所对应的网络设备;
其中,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
根据本申请的一个方面,提供了一种计算机可读存储介质,存储介质中存储有计算机程序,计算机程序用于被处理器执行,以实现如上的发射功率的确定方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片运行时,用于实现如上的发射功率的确定方法。
根据本申请的一个方面,提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上的发射功率的确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
提供了一种预测终端的最大允许发射功率的机制,以提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。其中,根据第一网络设备从第二网络设备处获取到的资源调度指示和调度率预测值,终端可预测终端的最大允许发射功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的示意图;
图2是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图3是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图4是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图5是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图6是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图7是本申请一个示例性实施例提供的发射功率随时间变化的示意图;
图8是本申请一个示例性实施例提供的计算终端的最大发射功率的示意图;
图9是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图10是本申请一个示例性实施例提供的节点交互的示意图;
图11是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图12是本申请一个示例性实施例提供的发射功率的确定方法的流程图;
图13是本申请一个示例性实施例提供的发射功率的确定装置的示意图;
图14是本申请一个示例性实施例提供的发射功率的确定装置的示意图;
图15是本申请一个示例性实施例提供的发射功率的确定装置的示意图;
图16是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
图1示出了本申请一个示例性实施例提供的通信系统的示意图,该通信系统可以包括位于主小区10的信号覆盖范围内的终端20。
主小区10是终端20所对应的服务小区,主小区10对应有一个网络设备,用于为终端20提供无线通信功能。为方便描述,本申请实施例中,上述为终端20提供无线通信功能的装置统称为网络设备。
示意性的,主小区10的周侧具有一个或多个邻小区,比如第一邻小区31和第二邻小区32。相应的,每个邻小区也对应有一个网络设备。两个邻近的网络设备之间也可以通过有线或者无线的方式进行通信,比如通过X2接口进行通信。在终端20从主小区10的信号覆盖范围之内移动到某一个邻小区的信号覆盖范围之内时,终端20可以在对应的网络设备之间进行切换,也即终端20可以与不同的网络设备建立连接。
网络设备可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有 所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。
终端20的数量可以是一个或多个。其中,终端20可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端20。
参考图1,以终端20沿箭头方向从主小区10向第一邻小区31移动为例。假设主小区10对应的网络设备为第一网络设备,第一邻小区31对应的网络设备为第二网络设备。
终端20在主小区10中时,与第一网络设备建立通信连接;在终端20沿箭头方向移动的过程中,终端20逐渐远离第一网络设备;直至终端20移动到第一邻小区31中,终端20断开与第一网络设备的通信连接,与第二网络设备建立通信连接。
在这一过程中,考虑到比吸收率(Specific Absorption Rate,SAR)法规,终端20需要根据主小区10和第一邻小区31的资源调度类型调整终端20的最大发射功率。目前,尚未有预测终端的最大允许发射功率的机制。
图2示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图,该方法由终端执行,包括如下步骤:
步骤102:根据资源调度指示和调度率预测值,确定终端的最大允许发射功率。
示意性的,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
其中,终端的服务小区是指终端在当前时刻所对应的小区,终端在当前时刻与第一网络设备建立通信连接;终端的次强小区是终端的邻小区中的一个,也可理解为终端在未来时刻可能进入的小区,终端在当前时刻并未与第二网络设备建立通信连接,可能在未来时刻与第二网络设备建立通信连接。可选的,次强小区是第一网络设备根据终端发送的信号测量数据确定的。比如,终端的次强小区是邻小区中信号强度最强的邻小区。
资源调度指示用于指示次强小区所对应的资源调度类型。其中,资源调度指示所对应的资源调度类型与服务小区所对应的资源调度类型可以是相同的,也可以是不同的。
调度率预测值用于指示终端在接入次强小区时所对应的调度率的预测值, 调度率预测值可由第二网络设备预估得到,根据不同的调度率预测值能够计算得到不同的最大允许发射功率。其中,其数值可能与终端在服务小区时所对应的调度率的数值是相同的,也可以是不同的。
可选的,第二网络设备可根据终端的业务类型、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率确定调度率预测值。可选的,终端的业务类型由第一网络设备向第二网络设备发送,比如,第一网络设备通过X2接口向第二网络设备发送终端的业务类型。其中,不同的业务类型对应有不同的调度率,比如,语音业务对应的调度率是低于20%。次强小区的空闲资源在不同时刻是随机的,比如,在当前时刻,次强小区中有多个终端需要使用资源,则次强小区的空闲资源相对较少。
以终端的业务类型是语音业务,次强小区对应的资源调度类型是传输时间间隔绑定(Transmission Time Interval-bundling,TTI-bundling)为例。根据业务类型和次强小区对应的资源调度类型,能够确定业务类型对应的理论调度率应当是80%。此时,次强小区的空闲资源较多,所支持的最大调度率能够达到80%;而第二网络设备支持的最大调度率仅为60%。基于此,第二网络设备可将上述三个调度率中的最小值确定为调度率预测值,也即调度率预测值为60%。
根据前述举例,在终端接入次强小区之前,第二网络设备能够预估得到终端的调度率预测值,并将该调度率预测值和资源调度指示经第一网络设备发送给终端,以便于终端确定自身的最大允许发射功率。其中,根据资源调度指示和调度率预测值,终端可确定维持终端原有的最大允许发射功率,或者更新最大允许发射功率。
可选的,在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率;在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
其中,若调度率预测值与终端原有的调度率相同,则终端可维持原有的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
终端的资源调度类型是指终端在服务小区时的资源调度类型,资源调度指示用于指示终端在次强小区时的资源调度类型,若资源调度指示与终端的资源调度类型不同,则终端在次强小区时的资源调度类型与终端在服务小区时的资源调度类型不一致,由此存在终端原有的调度率与调度率预测值不同的可能性。此时,需要更新终端的最大允许发射功率。
根据上述内容,若资源调度指示与终端的资源调度类型不同,和/或调度率预测值与终端原有的调度率不同,终端可根据调度率预测值更新最大允许发射 功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
其中,终端根据调度率预测值更新最大允许发射功率可通过多种方式确定。以终端在第一时刻接入次强小区,T为计算平均SAR值的时间窗口为例,以下给出一种更新最大允许发射功率的实现方式:
第一时刻是T时段内的任意一个时点。比如,第一时刻是T时段内的中间时点,或者是T时段内的倒数第二个时点。根据SAR法规,在T时段内的平均SAR值应当不超过规定数值,平均SAR值由T时段内的所有瞬时发射功率的平均值确定。
应当理解的是,终端在第一时刻之前的发射功率是已知的,终端可根据历史发射记录获取得到。将终端在第一时刻之前的发射功率记为第一发射功率,第一发射功率可以是一个或多个发射功率。
终端在第一时刻之后的发射功率可根据调度率预测值确定。将终端在第一时刻之后的发射功率记为第二发射功率,第二发射功率可以是一个或多个发射功率。
示例性的,以第一时刻是T时段内的中间时点t为例,T时段内的平均SAR值的计算公式如下:
Figure PCTCN2022099552-appb-000001
其中,P average(t)用于指示时间段[t-T/2,t+T/2]的平均发射功率,P(i)用于指示i时刻的发射功率。
根据前述内容,第一发射功率为终端在t-T/2时刻到t-△T时刻的发射功率,△T用于指示抽样时间间隔,该时间段内的发射功率是已知的;第二发射功率为终端在t+△T时刻到t+T/2时刻的发射功率,该时间段内的发射功率是根据调度率预测值确定得到的,且在t+1时刻到t+T/2时刻内的每个时刻的发射功率是相同的。随后,基于上述计算公式,能够计算得到第一时刻t所对应的预测发射功率P(t)。
比如,将P average(t)定义为最大允许峰值功率(Maximum Allowable Peak Power)以进行计算,最大允许峰值功率用于指示运营商规定的T时段内的平均发射功率的上限,可记为P limit。基于上述计算公式,使得P average(t)=P limit,根据已知的第一发射功率和预测得到的第二发射功率,能够计算得到第一时刻t所对应的预测发射功率P(t)。
在SAR机制中,还规定了终端的最大发射功率,终端的最大发射功率可记为PcMAX。在计算得到预测发射功率P(t)后,还需要将P(t)与PcMAX进行比较,以更新终端的最大允许发射功率。比如,在P(t)≥PcMAX的情况下,将终 端的最大发射功率更新为最大允许发射功率;在P(t)<PcMAX的情况下,将预设发射功率更新为最大允许发射功率。
应当理解的是,在第一时刻是T时段内的倒数第二个时点的情况下,也可参考前述举例的方式,计算得到第一时刻t所对应的预测发射功率P(t),进而更新最大允许发射功率,不再赘述。
综上所述,本申请实施例提供的发射功率的确定方法,提供了一种预测终端的最大允许发射功率的机制,根据第一网络设备从第二网络设备处获取到的资源调度指示和调度率预测值,以便于终端在接入次强小区之前能够提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。
图3示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图,该方法由第一网络设备执行,第一网络设备是终端的服务小区所对应的网络设备。该方法包括如下步骤:
步骤202:接收第二网络设备发送的资源调度指示和调度率预测值。
示意性的,第二网络设备是终端的次强小区所对应的网络设备。
其中,服务小区、次强小区的相关描述可参考前述内容,不再赘述。
可选的,在终端从服务小区的移动过程中,第一网络设备可根据终端发送的信号测量数据确定次强小区,从而确定次强小区对应的第二网络设备。其中,信号测量数据用于指示终端实时测量得到的信号强度,不同的邻小区对应有不同的信号强度。
比如,终端在实时测量得到不同邻小区的信号强度后,可实时更新邻区列表清单。其中,邻区列表清单中包括至少一个邻小区及其对应的信号强度,一个邻小区对应于一个信号强度。随后,终端将邻区列表清单中信号强度最强的邻小区确定为次强小区,从而确定与次强小区对应的第二网络设备。
示意性的,网络设备之间可通过X2接口进行通信连接。比如,通过X2接口,接收第二网络设备发送的资源调度指示和调度率预测值。
其中,资源调度指示用于指示次强小区所对应的资源调度类型;调度率预测值用于指示终端在接入次强小区时所对应的调度率的预测值。
可选的,第二网络设备可根据终端的业务类型、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率确定调度率预测值。其中,终端的业务类型由第一网络设备向第二网络设备发送。比如,第一网络设备向第二网络设备发送调度率预测信息,调度率预测信息至少携带有终端的业务类型。
资源调度指示、调度率预测值以及调度率预测值确定方式的相关描述可参考前述内容,不再赘述。
步骤204:向终端发送资源调度指示和调度率预测值。
示意性的,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
第一网络设备在获取到第二网络设备发送的资源调度指示和调度率预测值,将其转发给终端,以便于终端确定自身的最大允许发射功率。其中,根据资源调度指示和调度率预测值,终端可确定维持终端原有的最大允许发射功率,或者更新最大允许发射功率。
可选的,在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率;在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
其中,若调度率预测值与终端原有的调度率相同,则终端可维持原有的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
若资源调度指示与终端的资源调度类型不同,和/或调度率预测值与终端原有的调度率不同,终端可根据调度率预测值更新最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
终端更新最大允许发射功率的相关描述可参考前述内容,不再赘述。
综上所述,本申请实施例提供的发射功率的确定方法,提供了一种预测终端的最大允许发射功率的机制,第一网络设备向终端转发从第二网络设备处获取到的资源调度指示和调度率预测值,以便于终端在接入次强小区之前能够提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。
图4示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图,该方法由第二网络设备执行,第二网络设备是终端的次强小区所对应的网络设备。该方法包括如下步骤:
步骤302:向第一网络设备发送资源调度指示和调度率预测值。
示意性的,第一网络设备是终端的服务小区所对应的网络设备,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
其中,资源调度指示用于指示次强小区所对应的资源调度类型;调度率预测值用于指示终端在接入次强小区时所对应的调度率的预测值。
可选的,第二网络设备可根据终端的业务类型、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率确定调度率预测值。
资源调度指示、调度率预测值以及调度率预测值确定方式的相关描述可参考前述内容,不再赘述。
第一网络设备在获取到第二网络设备发送的资源调度指示和调度率预测值,将其转发给终端,以便于终端确定自身的最大允许发射功率。其中,根据资源调度指示和调度率预测值,终端可确定维持终端原有的最大允许发射功率,或者更新最大允许发射功率。
可选的,在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率;在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
其中,若调度率预测值与终端原有的调度率相同,则终端可维持原有的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
若资源调度指示与终端的资源调度类型不同,和/或调度率预测值与终端原有的调度率不同,终端可根据调度率预测值更新最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
终端更新最大允许发射功率的相关描述可参考前述内容,不再赘述。
综上所述,本申请实施例提供的发射功率的确定方法,提供了一种预测终端的最大允许发射功率的机制,第二网络设备向第一网络设备发送资源调度指示和调度率预测值,以便于第一网络设备向终端转发,使得终端在接入次强小区之前能够提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。
图5示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图。该方法包括如下步骤:
步骤401:第二网络设备向第一网络设备发送资源调度指示和调度率预测值。
示意性的,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
其中,资源调度指示用于指示次强小区所对应的资源调度类型;调度率预测值用于指示终端在接入次强小区时所对应的调度率的预测值。
可选的,第二网络设备可根据终端的业务类型、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率确定调度率预测值。
资源调度指示、调度率预测值以及调度率预测值确定方式的相关描述可参考前述内容,不再赘述。
步骤402:第一网络设备向终端发送资源调度指示和调度率预测值。
第一网络设备在获取到第二网络设备发送的资源调度指示和调度率预测值,将其转发给终端,以便于终端确定自身的最大允许发射功率。
步骤403:终端根据资源调度指示和调度率预测值,确定终端的最大允许发射功率。
其中,资源调度指示和调度率预测值的相关描述可参考前述内容,不再赘述。
在获取到资源调度指示和调度率预测值后,终端可确定维持终端原有的最大允许发射功率,或者更新最大允许发射功率。
可选的,在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率;在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
其中,若调度率预测值与终端原有的调度率相同,则终端可维持原有的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
若资源调度指示与终端的资源调度类型不同,和/或调度率预测值与终端原有的调度率不同,终端可根据调度率预测值更新最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
终端更新最大允许发射功率的相关描述可参考前述内容,不再赘述。
综上所述,本申请实施例提供的发射功率的确定方法,提供了一种预测终端的最大允许发射功率的机制,根据第一网络设备从第二网络设备处获取到的资源调度指示和调度率预测值,终端在接入次强小区之前能够提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。
根据前述内容,在获取到资源调度指示和调度率预测值后,终端可确定维持终端原有的最大允许发射功率,或者更新最大允许发射功率。
参考图5,图6示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图,步骤403可实现为步骤4031和步骤4032。步骤4031和步骤4032可择一执行,不能同时执行,具体如下:
步骤4031:在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率。
应当理解的是,终端原有的调度率是符合SAR法规的,若调度率预测值与终端原有的调度率相同,则终端可维持原有的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
步骤4032:在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
其中,资源调度指示用于指示终端在次强小区时的资源调度类型,终端的资源调度类型是指终端在服务小区时的资源调度类型。
若资源调度指示与终端的资源调度类型不同,则终端在次强小区时的资源调度类型与终端在服务小区时的资源调度类型不一致,由此可能导致终端原有的调度率与调度率预测值是不同的,从而可能导致终端原有的最大允许发射功率不再符合SAR法规。比如,终端的资源调度类型是半静态调度或者TTI-bundling,资源调度指示对应的资源调度类型是simultaneous transmission of PUSCH and PUCCH。此时,需要更新终端的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
若调度率预测值与终端原有的调度率不同,则同样存在终端原有的最大允许发射功率不再符合SAR法规的可能性,从而需要更新终端的最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发射功率而导致业务失败。
终端根据调度率预测值更新最大允许发射功率可通过多种方式确定。可选的,步骤4032可实现为如下:
在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,获取终端在第一时刻之前的第一发射功率;
根据调度率预测值,确定终端在第一时刻之后的第二发射功率;
根据第一发射功率和第二发射功率,确定终端在第一时刻的预测发射功率;
根据预测发射功率和终端的最大发射功率,更新最大允许发射功率,终端的最大发射功率是终端对应的发射功率的上限值。
根据前述内容,根据第一发射功率和第二发射功率来确定终端在第一时刻的预测发射功率,可通过T时段内的平均SAR值的计算公式实现,T为计算平均SAR值的时间窗口。
示意性的,第一时刻是T时段内的任意一个时点。比如,第一时刻是T时段内的中间时点,或者是T时段内的倒数第二个时点。根据SAR法规,在T时段内的平均SAR值应当不超过规定数值,平均SAR值由T时段内的所有瞬时发射功率的平均值确定。
应当理解的是,终端在第一时刻之前的发射功率是已知的,终端可根据历史发射记录获取得到。将终端在第一时刻之前的发射功率记为第一发射功率,第一发射功率可以是一个或多个发射功率。
终端在第一时刻之后的发射功率可根据调度率预测值确定。将终端在第一时刻之后的发射功率记为第二发射功率,第二发射功率可以是一个或多个发射功率。
图7示出了本申请一个示例性实施例提供的发射功率随时间变化的示意图。 其中,PcMAX用于指示终端的最大发射功率;最大允许峰值功率(Maximum Allowable Peak Power)用于指示运营商规定的T时段内的平均发射功率的上限,可记为P limit;终端在T时段内的实际发射功率根据业务类型等影响因素发生变化,也可称之为终端的瞬时功率(instantaneous Power)。
示例性的,以第一时刻是T时段内的中间时点t为例。
参考图7,图8示出了本申请一个示例性实施例提供的计算终端的最大发射功率的示意图,△T用于指示抽样时间间隔,T时段内的抽样次数为N。
其中,T时段内的平均SAR值的计算公式如下:
Figure PCTCN2022099552-appb-000002
其中,P average(t)用于指示时间段[t-T/2,t+T/2]的平均发射功率,P(i)用于指示i时刻的发射功率。
根据前述内容,第一发射功率为终端在t-T/2时刻到t-△T时刻的发射功率,该时间段内的发射功率是已知的;第二发射功率为终端在t+△T时刻到t+T/2时刻的发射功率,该时间段内的发射功率是根据调度率预测值确定得到的,且在t+1时刻到t+T/2时刻内的每个时刻的发射功率是相同的。随后,基于上述计算公式,能够计算得到第一时刻t所对应的预测发射功率P(t)。
比如,将P average(t)定义为最大允许峰值功率,即P average(t)=P limit,基于上述计算公式,根据已知的第一发射功率和预测得到的第二发射功率,能够计算得到第一时刻t所对应的预测发射功率P(t)。
在SAR机制中,还规定了终端的最大发射功率,终端的最大发射功率可记为PcMAX。在计算得到预测发射功率P(t)后,还需要将P(t)与PcMAX进行比较,以更新终端的最大允许发射功率。
可选的,根据预测发射功率和终端的最大发射功率,更新最大允许发射功率,可实现为如下:
在预测发射功率不小于终端的最大发射功率的情况下,将终端的最大发射功率更新为最大允许发射功率;在预测发射功率小于终端的最大发射功率的情况下,将预设发射功率更新为最大允许发射功率。
也即,在P(t)≥PcMAX的情况下,将终端的最大发射功率更新为最大允许发射功率;在P(t)<PcMAX的情况下,将预设发射功率更新为最大允许发射功率。
应当理解的是,在第一时刻是T时段内的倒数第二个时点的情况下,也可参考前述举例的方式,计算得到第一时刻t所对应的预测发射功率P(t),进而更新最大允许发射功率,不再赘述。
综上所述,本申请实施例提供的发射功率的确定方法,给出了在不同情况下,终端可维持原有的最大允许发射功率,或者更新最大允许发射功率。
可选的,本申请实施例还给出了根据调度率预测值更新最大允许发射功率的实现方式。其中,根据调度率预测值确定第二发射功率,根据已知的第一发射功率和第二发射功率确定终端在第一时刻的预测发射功率,将其与终端的最大发射功率相比,来确定更新后的最大允许发射功率。基于上述更新方式,终端可根据已知的第一发射功率和预测的第二发射功率来预测更新后的最大允许发射功率,从而使得终端的发射功率能够符合SAR法规,降低终端的业务受到影响的可能性。
根据前述内容,调度率预测值可由第二网络设备根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率确定。可选的,终端的业务类型由第一网络设备向第二网络设备发送。
以下将对调度率预测值的确定展开描述:
参考图5,图9示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图。在步骤401之前,该方法还包括步骤404和步骤405,具体如下:
步骤404:第一网络设备向第二网络设备发送调度率预测信息。
示意性的,调度率预测信息中至少携带有终端的业务类型,调度率预测信息用于第二网络设备确定调度率预测值。
一个业务类型对应有一个调度率,根据终端的业务类型能够唯一确定一个调度率。参考终端所在的小区的资源调度类型,能够确定终端的业务类型所对应的理论调度率。其中,理论调度率是指在不考虑其他影响因素的情况下,终端在某一时刻下处于对应的服务小区中,根据该服务小区的资源调度类型,终端在该时刻下的业务类型所对应的调度率。
可选的,调度率预测信息中还携带有如下信息中的至少一种:终端的资源调度类型;终端的占空比;终端的RSRP值;终端的次强RSRP值。
其中,占空比用于指示在一个脉冲循环内,终端的通电时间相对于总时间所占的比例,占空比也可理解为终端原有的调度率。
可选的,网络设备之间可通过X2接口进行通信连接。比如,第一网络设备通过X2接口向第二网络设备发送调度率预测信息,调度率预测信息中至少携带有终端的业务类型。
图10示出了本申请一个示例性实施例提供的节点交互的示意图,目标节点能够通过Xn接口向源节点发送交换信息,X2接口是Xn接口中的一种。
示意性的,Xn接口有如下规范(The Xn interface specifications facilitate the following):
不同厂商提供的NG-RAN节点互联(inter-connection of NG-RAN nodes supplied by different manufacturers);
支持通过NG接口提供的NG-RAN服务的NG-RAN节点之间的延续(support of continuation between NG-RAN nodes of the NG-RAN services offered via the NG interface);
分离Xn接口无线电网络功能和传输网络功能,以促进未来技术的引入(separation of Xn interface Radio Network functionality and Transport Network functionality to facilitate introduction of future technology)。
步骤405:第二网络设备根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率,确定调度率预测值。
根据前述内容,根据终端的业务类型能够唯一确定一个调度率;参考终端所在的小区的资源调度类型,能够确定终端的业务类型所对应的理论调度率。其中,不同的业务类型对应有不同的调度率,比如,语音业务对应的调度率是低于20%;微信语音业务对应的调度率是低于30%。
在获取到第一网络设备发送的调度率预测信息后,第二网络设备能够获取到终端的业务类型;随后,第二网络设备可据此确定调度率预测值。
可选的,步骤405可实现为如下:
根据终端的业务类型和次强小区对应的资源调度类型,确定终端的业务类型对应的理论调度率;
将理论调度率、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率中的最小值,确定为调度率预测值。
其中,次强小区的空闲资源在不同时刻是随机的,比如,在当前时刻,次强小区中有多个终端需要使用资源,则次强小区的空闲资源相对较少。
比如,终端的业务类型是语音业务,次强小区对应的资源调度类型是TTI-bundling。根据业务类型和次强小区对应的资源调度类型,能够确定业务类型对应的理论调度率应当是80%。此时,次强小区的空闲资源较多,所支持的最大调度率能够达到80%;而第二网络设备支持的最大调度率仅为60%。基于此,第二网络设备可将上述三个调度率中的最小值确定为调度率预测值,也即调度率预测值为60%。
又如,终端的业务类型是微信语音业务,次强小区对应的资源调度类型是半静态调度。根据业务类型和次强小区对应的资源调度类型,能够确定业务类型对应的理论调度率应当是30%。此时,次强小区的空闲资源较少,所支持的最大调度率仅能达到20%;而第二网络设备支持的最大调度率为50%。基于此,第二网络设备可将上述三个调度率中的最小值确定为调度率预测值,也即调度率预测值为20%。
综上所述,本申请实施例提供的发射功率的确定方法中,给出了调度率预测值的确定方式。其中,第二网络设备可根据终端的业务类型、次强小区的空 闲资源支持的最大调度率、第二网络设备支持的最大调度率,来确定调度率预测值,以便于通过第一网络设备发送给终端。
可选的,调度率预测值是终端的业务类型对应的理论调度率、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率中的最小值,以避免确定的调度率预测值超过次强小区的空闲资源或者第二网络设备支持的最大调度率,进而降低终端的业务受到影响的可能性。
参考图9,图11是本申请一个示例性实施例提供的发射功率的确定方法的流程图,该方法还包括步骤406、步骤407和步骤408,具体如下:
步骤406:在终端的定时提前(Timing Advance,TA)值持续变大的情况下,第一网络设备确定终端远离第一网络设备。
终端的TA值由第一网络设备配置,用于指示终端在上行传输时需要提前的时间量。其中,TA值越大,终端与第一网络设备之间的距离越大,反之终端与第一网络设备之间的距离越小。
根据第一网络设备向终端配置的TA值,第一网络设备能够判断出终端与第一网络设备之间的距离的变化。在终端的TA值持续变大的情况下,第一网络设备能够确定终端正在远离第一网络设备。
在一种可选的实施场景下,第一网络设备在确定终端远离第一网络设备的情况下,向终端发送资源调度指示和调度率预测值,以避免错误更改终端的最大允许发射功率。比如,终端在服务小区中移动,可能会移动到服务小区和次强小区的交叉区域内,但终端始终在该交叉区域内移动,并未向次强小区靠近,第一网络设备可根据终端的TA值确定终端未远离第一网络设备。此时,第一网络设备不向终端发送资源调度指示和调度率预测值,以避免对终端的最大允许发射功率进行错误更改。
可选的,步骤402可实现为如下:
在终端远离第一网络设备,终端的参考信号接收功率(Reference Signal Received Power,RSRP)小于RSRP门限值,且终端的功率余量报告(Power Headroom Report,PHR)小于PHR门限值的情况下,第一网络设备向终端发送资源调度指示和调度率预测值。
其中,终端远离第一网络设备的相关描述可参考前述内容,不再赘述。
终端的RSRP小于RSRP门限值,且终端的PHR小于PHR门限值,用于提高判断终端远离第一网络设备的准确度。其中,RSRP门限值和PHR门限值可根据实际需要进行设置,本申请在此不做限定。
可选的,在终端从服务小区的移动过程中,第一网络设备可根据终端发送的信号测量数据确定次强小区,从而确定次强小区对应的第二网络设备。
步骤407:终端向第一网络设备发送信号测量数据。
示意性的,信号测量数据用于指示终端实时测量得到的信号强度,不同的邻小区对应有不同的信号强度。
比如,终端在实时测量得到不同邻小区的信号强度后,可实时更新邻区列表清单。其中,邻区列表清单中包括至少一个邻小区及其对应的信号强度,一个邻小区对应于一个信号强度。
步骤408:第一网络设备根据信号测量数据确定次强小区。
根据终端发送的信号测量数据,第一网络设备能够获取到实时更新后的邻区列表清单。随后,终端可从邻区列表清单确定出次强小区。比如,第一网络设备将邻区列表清单中信号强度最强的邻小区确定为次强小区,从而确定与次强小区对应的第二网络设备。
综上所述,本申请实施例提供的发射功率的确定方法中,给出了第一网络设备向终端发送资源调度指示和调度率预测值的时机,以提高预测终端的最大允许发射功率的准确性。
可选的,本申请实施例还给出了第一网络设备确定次强小区的实现方式,第一网络设备可通过终端发送的信号测量数据确定次强小区,进而确定次强小区对应的第二网络设备,以便于从第二网络设备处获取到资源调度指示和调度率预测值。
图12示出了本申请一个示例性实施例提供的发射功率的确定方法的流程图,该方法包括如下步骤:
步骤501:终端确定终端的最大发射功率。
在终端的移动过程中,终端需要实时确定自身的最大发射功率,以满足SAR法规,避免业务失败。
以时刻1是历史时刻,时刻2是当前时刻,时刻3是未来时刻为例。根据步骤501,在当前时刻下,终端需要确定时刻2的最大发射功率;当时。其中,终端在时刻2的最大发射功率可以与时刻1的最大发射功率相同,也可以与时刻1的最大发射功率不同。
本申请实施例以预测时刻3的最大发射功率为例。
步骤502:第一网络设备根据TA值确定终端正在远离,且RSRP和PHR低于对应的门限值。
示意性的,终端的TA值用于指示终端在上行传输时需要提前的时间量;TA值越大,终端与第一网络设备之间的距离越大,反之终端与第一网络设备之间的距离越小。RSRP和PHR低于对应的门限值,用于指示终端的RSRP小于RSRP门限值,且终端的PHR小于PHR门限值;RSRP门限值和PHR门限值可 根据实际需要进行限定。
可选的,在终端的TA值持续变大的情况下,第一网络设备确定终端远离第一网络设备。
步骤503:第一网络设备查找终端上报的信号测量数据,以确定次强小区。
示意性的,信号测量数据用于指示终端实时测量得到的信号强度,不同的邻小区对应有不同的信号强度。
比如,终端在实时测量得到不同邻小区的信号强度后,可实时更新邻区列表清单。其中,邻区列表清单中包括至少一个邻小区及其对应的信号强度,一个邻小区对应于一个信号强度。
随后,终端可从邻区列表清单确定出次强小区。比如,第一网络设备将邻区列表清单中信号强度最强的邻小区确定为次强小区,从而确定与次强小区对应的第二网络设备。
步骤504:通过X2接口,第一网络设备向第二网络设备发送调度率预测信息。
示意性的,调度率预测信息中至少携带有终端的业务类型,调度率预测信息用于第二网络设备确定调度率预测值。
可选的,调度率预测信息中还携带有如下信息中的至少一种:终端的资源调度类型;终端的占空比;终端的RSRP值;终端的次强RSRP值。
调度率预测信息和X2接口的相关描述可参考前述内容,不再赘述。
步骤505:第二网络设备确定调度率预测值。
在获取到调度率预测信息后,第二网络设备能够确定终端的业务类型,以确定调度率预测值。
其中,调度率预测值用于指示终端在接入次强小区时所对应的调度率的预测值,调度率预测值可由第二网络设备预估得到,根据不同的调度率预测值能够计算得到不同的最大允许发射功率。其中,其数值可能与终端在服务小区时所对应的调度率的数值是相同的,也可以是不同的。
可选的,调度率预测值由第二网络设备根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率确定。
可选的,步骤505可实现为如下:
第二网络设备根据终端的业务类型和次强小区对应的资源调度类型,确定终端的业务类型对应的理论调度率;
第二网络设备将理论调度率、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率中的最小值,确定为调度率预测值。
比如,终端的业务类型是语音业务,次强小区对应的资源调度类型是TTI-bundling。根据业务类型和次强小区对应的资源调度类型,能够确定业务类 型对应的理论调度率应当是80%。此时,次强小区的空闲资源较多,所支持的最大调度率能够达到80%;而第二网络设备支持的最大调度率仅为60%。基于此,第二网络设备可将上述三个调度率中的最小值确定为调度率预测值,也即调度率预测值为60%。
又如,终端的业务类型是微信语音业务,次强小区对应的资源调度类型是半静态调度。根据业务类型和次强小区对应的资源调度类型,能够确定业务类型对应的理论调度率应当是30%。此时,次强小区的空闲资源较少,所支持的最大调度率仅能达到20%;而第二网络设备支持的最大调度率为50%。基于此,第二网络设备可将上述三个调度率中的最小值确定为调度率预测值,也即调度率预测值为20%。
步骤506:第一网络设备向终端转发资源调度指示和调度率预测值。
在确定调度率预测值之后,第二网络设备可通过X2接口将调度率预测值和资源调度指示发送给第一网络设备;随后,第一网络设备向终端转发资源调度指示和调度率预测值。
其中,资源调度指示用于指示次强小区所对应的资源调度类型。其中,资源调度指示所对应的资源调度类型与服务小区所对应的资源调度类型可以是相同的,也可以是不同的。
步骤507:终端判断资源调度类型与调度率预测值是否一致。
终端在获取到资源调度指示和调度率预测值,可根据资源调度指示所指示的资源调度类型与调度率预测值进行判断,以确定维持原有的最大发射功率,或者更新最大发射功率。
其中,资源调度类型与调度率预测值一致,用于指示调度率预测值与终端原有的调度率相同;资源调度类型与调度率预测值不一致,用于指示资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同。
以时刻1是历史时刻,时刻2是当前时刻,时刻3是未来时刻为例。
在资源调度类型与调度率预测值一致的情况下,维持原有的最大发射功率,执行步骤501,将时刻3对应的最大发射功率确定为时刻2所对应的最大发射功率。
在资源调度类型与调度率预测值不一致的情况下,执行步骤508,根据调度率预测值,更新最大允许发射功率,将时刻3对应的最大发射功率更新为新的最大发射功率,新的最大发射功率与时刻2所对应的最大发射功率可以相同或不同。
步骤508:终端更新最大发射功率。
在资源调度类型与调度率预测值不一致的情况下,终端根据调度率预测值,更新最大允许发射功率,以避免终端的瞬时发射功率超过SAR法规所规定的发 射功率而导致业务失败。
可选的,步骤508可实现为如下:
终端获取终端在第一时刻之前的第一发射功率;
终端根据调度率预测值,确定终端在第一时刻之后的第二发射功率;
终端根据第一发射功率和第二发射功率,确定终端在第一时刻的预测发射功率;
终端根据预测发射功率和终端的最大发射功率,更新最大允许发射功率,终端的最大发射功率是终端对应的发射功率的上限值。
根据前述内容,根据第一发射功率和第二发射功率来确定终端在第一时刻的预测发射功率,可通过T时段内的平均SAR值的计算公式实现,T为计算平均SAR值的时间窗口。
示意性的,第一时刻是T时段内的任意一个时点。比如,第一时刻是T时段内的中间时点,或者是T时段内的倒数第二个时点。应当理解的是,终端在第一时刻之前的发射功率是已知的,终端可根据历史发射记录获取得到;终端在第一时刻之后的发射功率可根据调度率预测值确定。
示例性的,以第一时刻是T时段内的中间时点t为例,第一时刻t所对应的预测发射功率P(t)的计算过程可参考前述内容,不再赘述。
在计算得到预测发射功率P(t)后,还需要将P(t)与PcMAX进行比较,以更新终端的最大允许发射功率。比如,在P(t)≥PcMAX的情况下,将终端的最大发射功率更新为最大允许发射功率;在P(t)<PcMAX的情况下,将预设发射功率更新为最大允许发射功率。
综上所述,本申请实施例提供的发射功率的确定方法,提供了一种预测终端的最大允许发射功率的机制,根据第一网络设备从第二网络设备处获取到的资源调度指示和调度率预测值,以便于终端在接入次强小区之前能够提前确定终端的最大允许发射功率,从而降低终端的业务受到影响的可能性。
以下为本申请的装置实施例,对于装置实施例中未详细描述的细节,可以结合参考上述方法实施例中相应的记载,本文不再赘述。
图13示出了本申请一个示例性实施例提供的发射功率的确定装置的示意图,该装置包括:
确定模块1310,用于根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;
其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
可选的,确定模块1310,用于在调度率预测值与终端原有的调度率相同的情况下,维持终端原有的最大允许发射功率;在资源调度指示与终端的资源调度类型不同和/或调度率预测值与终端原有的调度率不同的情况下,根据调度率预测值,更新最大允许发射功率。
可选的,确定模块1310,用于获取终端在第一时刻之前的第一发射功率;根据调度率预测值,确定终端在第一时刻之后的第二发射功率;根据第一发射功率和第二发射功率,确定终端在第一时刻的预测发射功率;根据预测发射功率和终端的最大发射功率,更新最大允许发射功率,终端的最大发射功率是终端对应的发射功率的上限值。
可选的,确定模块1310,用于在预测发射功率不小于终端的最大发射功率的情况下,将终端的最大发射功率更新为最大允许发射功率;在预测发射功率小于终端的最大发射功率的情况下,将预设发射功率更新为最大允许发射功率。
可选的,调度率预测值由第二网络设备根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率确定。
可选的,终端的业务类型由第一网络设备向第二网络设备发送。
可选的,装置还包括:接收模块1320,用于接收第一网络设备发送的资源调度指示和调度率预测值。
可选的,次强小区是第一网络设备根据终端发送的信号测量数据确定的。
可选的,次强小区是信号测量数据中的信号强度最强的邻小区。
图14示出了本申请一个示例性实施例提供的发射功率的确定装置的示意图,该装置包括:
接收模块1410,用于接收第二网络设备发送的资源调度指示和调度率预测值,第二网络设备是终端的次强小区所对应的网络设备;
向终端发送资源调度指示和调度率预测值;
其中,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
可选的,调度率预测值由第二网络设备根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率确定。
可选的,装置还包括:发送模块1420,用于向第二网络设备发送调度率预测信息,调度率预测信息中至少携带有终端的业务类型。
可选的,调度率预测信息中还携带有如下信息中的至少一种:终端的资源调度类型;终端的占空比;终端的RSRP值;终端的次强RSRP值。
可选的,次强小区是第一网络设备根据终端发送的信号测量数据确定的。
可选的,次强小区是信号测量数据中的信号强度最强的邻小区。
可选的,发送模块,用于在终端远离第一网络设备,终端的参考信号接收 功率RSRP小于RSRP门限值,且终端的功率余量报告PHR小于PHR门限值的情况下,向终端发送资源调度指示和调度率预测值。
可选的,装置还包括:确定模块1430,用于在终端的定时提前TA值持续变大的情况下,确定终端远离第一网络设备。
图15示出了本申请一个示例性实施例提供的发射功率的确定装置的示意图,该装置包括:
发送模块1510,用于向第一网络设备发送资源调度指示和调度率预测值,第一网络设备是终端的服务小区所对应的网络设备;
其中,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
可选的,装置还包括:接收模块1520,用于接收第一网络设备发送的调度率预测信息,调度率预测信息中至少携带有终端的业务类型。
可选的,调度率预测信息中还携带有如下信息中的至少一种:终端的资源调度类型;终端的占空比;终端的RSRP值;终端的次强RSRP值。
可选的,次强小区是第一网络设备根据终端发送的信号测量数据确定的。
可选的,次强小区是信号测量数据中的信号强度最强的邻小区。
可选的,装置还包括:确定模块1530,用于根据终端的业务类型、次强小区的空闲资源支持的最大调度率、第二网络设备支持的最大调度率,确定调度率预测值。
可选的,确定模块1530,用于根据终端的业务类型和次强小区对应的资源调度类型,确定终端的业务类型对应的理论调度率;将理论调度率、次强小区的空闲资源支持的最大调度率和第二网络设备支持的最大调度率中的最小值,确定为调度率预测值。
图16示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器1601、接收器1602、发射器1603、存储器1604和总线1605。
处理器1601包括一个或者一个以上处理核心,处理器1601通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1602和发射器1603可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1604通过总线1605与处理器1601相连。
存储器1604可用于存储至少一个指令,处理器1601用于执行该至少一个指令,以实现上述方法实施例中提到的信息确定方法的各个步骤,或者,信息 发送方法的各个步骤。
此外,存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请实施例还提供了一种终端,该终端包括处理器;处理器,用于根据资源调度指示和调度率预测值,确定终端的最大允许发射功率;其中,资源调度指示和调度率预测值由第一网络设备从第二网络设备处获取,第一网络设备是终端的服务小区所对应的网络设备,第二网络设备是终端的次强小区所对应的网络设备。
本申请实施例还提供了一种第一网络设备,第一网络设备是终端的服务小区所对应的网络设备,该第一网络设备包括处理器;处理器,用于接收第二网络设备发送的资源调度指示和调度率预测值,第二网络设备是终端的次强小区所对应的网络设备;向终端发送资源调度指示和调度率预测值;其中,资源调度指示和调度率预测值用于确定终端的最大允许发射功率。
本申请实施例还提供了一种第二网络设备,第二网络设备是终端的次强小区所对应的网络设备,该第二网络设备包括处理器;处理器,用于向第一网络设备发送资源调度指示和调度率预测值,第一网络设备是终端的服务小区所对应的网络设备;其中,资源调度指示和调度率预测值由第一网络设备向终端发送,以用于确定终端的最大允许发射功率。
本申请实施例还提供了一种计算机可读存储介质,存储介质中存储有计算机程序,计算机程序用于被处理器执行,以实现如上的发射功率的确定方法。
本申请实施例还提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片运行时,用于实现如上的发射功率的确定方法。
本申请实施例还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上的发射功率的确定方法。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (54)

  1. 一种发射功率的确定方法,其特征在于,所述方法由终端执行,所述方法包括:
    根据资源调度指示和调度率预测值,确定所述终端的最大允许发射功率;
    其中,所述资源调度指示和所述调度率预测值由第一网络设备从第二网络设备处获取,所述第一网络设备是所述终端的服务小区所对应的网络设备,所述第二网络设备是所述终端的次强小区所对应的网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述根据资源调度指示和调度率预测值,确定所述终端的最大允许发射功率,包括:
    在所述调度率预测值与所述终端原有的调度率相同的情况下,维持所述终端原有的最大允许发射功率;
    在所述资源调度指示与所述终端的资源调度类型不同和/或所述调度率预测值与所述终端原有的调度率不同的情况下,根据所述调度率预测值,更新所述最大允许发射功率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述调度率预测值,更新所述最大允许发射功率,包括:
    获取所述终端在第一时刻之前的第一发射功率;
    根据所述调度率预测值,确定所述终端在所述第一时刻之后的第二发射功率;
    根据所述第一发射功率和所述第二发射功率,确定所述终端在所述第一时刻的预测发射功率;
    根据所述预测发射功率和所述终端的最大发射功率,更新所述最大允许发射功率,所述终端的最大发射功率是所述终端对应的发射功率的上限值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述预测发射功率和所述终端的最大发射功率,更新所述最大允许发射功率,包括:
    在所述预测发射功率不小于所述终端的最大发射功率的情况下,将所述终端的最大发射功率更新为所述最大允许发射功率;
    在所述预测发射功率小于所述终端的最大发射功率的情况下,将所述预设发射功率更新为所述最大允许发射功率。
  5. 根据权利要求1至4任一所述的方法,其特征在于,
    所述调度率预测值由所述第二网络设备根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率确定。
  6. 根据权利要求5所述的方法,其特征在于,所述终端的业务类型由所述第 一网络设备向所述第二网络设备发送。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的所述资源调度指示和所述调度率预测值。
  8. 根据权利要求1至4任一所述的方法,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  9. 根据权利要求8所述的方法,其特征在于,所述次强小区是所述信号测量数据中的信号强度最强的邻小区。
  10. 一种发射功率的确定方法,其特征在于,所述方法由第一网络设备执行,所述第一网络设备是终端的服务小区所对应的网络设备,所述方法包括:
    接收第二网络设备发送的资源调度指示和调度率预测值,所述第二网络设备是所述终端的次强小区所对应的网络设备;
    向所述终端发送所述资源调度指示和所述调度率预测值;
    其中,所述资源调度指示和所述调度率预测值用于确定所述终端的最大允许发射功率。
  11. 根据权利要求10所述的方法,其特征在于,
    所述调度率预测值由所述第二网络设备根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率确定。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备发送调度率预测信息,所述调度率预测信息中至少携带有所述终端的业务类型。
  13. 根据权利要求12所述的方法,其特征在于,所述调度率预测信息中还携带有如下信息中的至少一种:
    所述终端的资源调度类型;
    所述终端的占空比;
    所述终端的参考信号接收功率RSRP值;
    所述终端的次强RSRP值。
  14. 根据权利要求10或11所述的方法,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述次强小区是所述信号测 量数据中的信号强度最强的邻小区。
  16. 根据权利要求10或11所述的方法,其特征在于,所述向所述终端发送资源调度指示和调度率预测值,包括:
    在所述终端远离所述第一网络设备,所述终端的参考信号接收功率RSRP小于RSRP门限值,且所述终端的功率余量报告PHR小于PHR门限值的情况下,向所述终端发送所述资源调度指示和所述调度率预测值。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    在所述终端的定时提前TA值持续变大的情况下,确定所述终端远离所述第一网络设备。
  18. 一种发射功率的确定方法,其特征在于,所述方法由第二网络设备执行,所述第二网络设备是终端的次强小区所对应的网络设备,所述方法包括:
    向第一网络设备发送资源调度指示和调度率预测值,所述第一网络设备是所述终端的服务小区所对应的网络设备;
    其中,所述资源调度指示和所述调度率预测值由所述第一网络设备向所述终端发送,以用于确定所述终端的最大允许发射功率。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的调度率预测信息,所述调度率预测信息中至少携带有所述终端的业务类型。
  20. 根据权利要求19所述的方法,其特征在于,所述调度率预测信息中还携带有如下信息中的至少一种:
    所述终端的资源调度类型;
    所述终端的占空比;
    所述终端的参考信号接收功率RSRP值;
    所述终端的次强RSRP值。
  21. 根据权利要求18至20任一所述的方法,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  22. 根据权利要求21所述的方法,其特征在于,所述次强小区是所述信号测量数据中的信号强度最强的邻小区。
  23. 根据权利要求18至20任一所述的方法,其特征在于,所述方法还包括:
    根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率,确定所述调度率预测值。
  24. 根据权利要求23所述的方法,其特征在于,所述根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率,确定所述调度率预测值,包括:
    根据所述终端的业务类型和所述次强小区对应的资源调度类型,确定所述终端的业务类型对应的理论调度率;
    将所述理论调度率、所述次强小区的空闲资源支持的最大调度率和所述第二网络设备支持的最大调度率中的最小值,确定为所述调度率预测值。
  25. 一种发射功率的确定装置,其特征在于,所述装置包括:
    确定模块,用于根据资源调度指示和调度率预测值,确定所述终端的最大允许发射功率;
    其中,所述资源调度指示和所述调度率预测值由第一网络设备从第二网络设备处获取,所述第一网络设备是所述终端的服务小区所对应的网络设备,所述第二网络设备是所述终端的次强小区所对应的网络设备。
  26. 根据权利要求25所述的装置,其特征在于,
    所述确定模块,用于在所述调度率预测值与所述终端原有的调度率相同的情况下,维持所述终端原有的最大允许发射功率;
    在所述资源调度指示与所述终端的资源调度类型不同和/或所述调度率预测值与所述终端原有的调度率不同的情况下,根据所述调度率预测值,更新所述最大允许发射功率。
  27. 根据权利要求26所述的装置,其特征在于,
    所述确定模块,用于获取所述终端在第一时刻之前的第一发射功率;
    根据所述调度率预测值,确定所述终端在所述第一时刻之后的第二发射功率;
    根据所述第一发射功率和所述第二发射功率,确定所述终端在所述第一时刻的预测发射功率;
    根据所述预测发射功率和所述终端的最大发射功率,更新所述最大允许发射功率,所述终端的最大发射功率是所述终端对应的发射功率的上限值。
  28. 根据权利要求27所述的装置,其特征在于,
    所述确定模块,用于在所述预测发射功率不小于所述终端的最大发射功率的情况下,将所述终端的最大发射功率更新为所述最大允许发射功率;
    在所述预测发射功率小于所述终端的最大发射功率的情况下,将所述预设发射功率更新为所述最大允许发射功率。
  29. 根据权利要求25至28任一所述的装置,其特征在于,
    所述调度率预测值由所述第二网络设备根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率确定。
  30. 根据权利要求29所述的装置,其特征在于,所述终端的业务类型由所述第一网络设备向所述第二网络设备发送。
  31. 根据权利要求25至28任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第一网络设备发送的所述资源调度指示和所述调度率预测值。
  32. 根据权利要求25至28任一所述的装置,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  33. 根据权利要求32所述的装置,其特征在于,所述次强小区是所述信号测量数据中的信号强度最强的邻小区。
  34. 一种发射功率的确定装置,其特征在于,所述装置包括:
    接收模块,用于接收第二网络设备发送的资源调度指示和调度率预测值,所述第二网络设备是终端的次强小区所对应的网络设备;
    向所述终端发送所述资源调度指示和所述调度率预测值;
    其中,所述资源调度指示和所述调度率预测值用于确定所述终端的最大允许发射功率。
  35. 根据权利要求34所述的装置,其特征在于,
    所述调度率预测值由所述第二网络设备根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率确定。
  36. 根据权利要求34或35所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述第二网络设备发送调度率预测信息,所述调度率预测信息中至少携带有所述终端的业务类型。
  37. 根据权利要求36所述的装置,其特征在于,所述调度率预测信息中还携带有如下信息中的至少一种:
    所述终端的资源调度类型;
    所述终端的占空比;
    所述终端的参考信号接收功率RSRP值;
    所述终端的次强RSRP值。
  38. 根据权利要求34或35所述的装置,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  39. 根据权利要求38所述的装置,其特征在于,所述次强小区是所述信号测量数据中的信号强度最强的邻小区。
  40. 根据权利要求34或35所述的装置,其特征在于,
    所述发送模块,用于在所述终端远离所述第一网络设备,所述终端的参考信号接收功率RSRP小于RSRP门限值,且所述终端的功率余量报告PHR小于PHR门限值的情况下,向所述终端发送所述资源调度指示和所述调度率预测值。
  41. 根据权利要求40所述的装置,其特征在于,所述装置还包括:
    确定模块,用于在所述终端的定时提前TA值持续变大的情况下,确定所述终端远离所述第一网络设备。
  42. 一种发射功率的确定装置,其特征在于,所述装置包括:
    发送模块,用于向第一网络设备发送资源调度指示和调度率预测值,所述第一网络设备是终端的服务小区所对应的网络设备;
    其中,所述资源调度指示和所述调度率预测值由所述第一网络设备向所述终端发送,以用于确定所述终端的最大允许发射功率。
  43. 根据权利要求42所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第一网络设备发送的调度率预测信息,所述调度率预测信息中至少携带有所述终端的业务类型。
  44. 根据权利要求43所述的装置,其特征在于,所述调度率预测信息中还携带有如下信息中的至少一种:
    所述终端的资源调度类型;
    所述终端的占空比;
    所述终端的参考信号接收功率RSRP值;
    所述终端的次强RSRP值。
  45. 根据权利要求42至44任一所述的装置,其特征在于,所述次强小区是所述第一网络设备根据所述终端发送的信号测量数据确定的。
  46. 根据权利要求45所述的装置,其特征在于,所述次强小区是所述信号测量数据中的信号强度最强的邻小区。
  47. 根据权利要求42至44任一所述的装置,其特征在于,所述装置还包括:
    确定模块,用于根据所述终端的业务类型、所述次强小区的空闲资源支持的最大调度率、所述第二网络设备支持的最大调度率,确定所述调度率预测值。
  48. 根据权利要求47所述的装置,其特征在于,
    所述确定模块,用于根据所述终端的业务类型和所述次强小区对应的资源调度类型,确定所述终端的业务类型对应的理论调度率;
    将所述理论调度率、所述次强小区的空闲资源支持的最大调度率和所述第二网络设备支持的最大调度率中的最小值,确定为所述调度率预测值。
  49. 一种终端,其特征在于,所述终端包括处理器;
    所述处理器,用于根据资源调度指示和调度率预测值,确定所述终端的最大允许发射功率;
    其中,所述资源调度指示和所述调度率预测值由第一网络设备从第二网络设备处获取,所述第一网络设备是所述终端的服务小区所对应的网络设备,所述第二网络设备是所述终端的次强小区所对应的网络设备。
  50. 一种第一网络设备,其特征在于,所述第一网络设备是终端的服务小区所对应的网络设备,所述第一网络设备包括处理器;
    所述处理器,用于接收第二网络设备发送的资源调度指示和调度率预测值,所述第二网络设备是所述终端的次强小区所对应的网络设备;
    向所述终端发送所述资源调度指示和所述调度率预测值;
    其中,所述资源调度指示和所述调度率预测值用于确定所述终端的最大允许发射功率。
  51. 一种第二网络设备,其特征在于,所述第二网络设备是终端的次强小区所对应的网络设备,所述第二网络设备包括处理器;
    所述处理器,用于向第一网络设备发送资源调度指示和调度率预测值,所述第一网络设备是所述终端的服务小区所对应的网络设备;
    其中,所述资源调度指示和所述调度率预测值由所述第一网络设备向所述终端发送,以用于确定所述终端的最大允许发射功率。
  52. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至24中任一项所述的发射功率的确定方法。
  53. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至24中任一项所述的发射功率的确定方法。
  54. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至24中任一项所述的发射功率的确定方法。
PCT/CN2022/099552 2022-06-17 2022-06-17 发射功率的确定方法、装置、设备及存储介质 WO2023240625A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004708.7A CN117597892A (zh) 2022-06-17 2022-06-17 发射功率的确定方法、装置、设备及存储介质
PCT/CN2022/099552 WO2023240625A1 (zh) 2022-06-17 2022-06-17 发射功率的确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099552 WO2023240625A1 (zh) 2022-06-17 2022-06-17 发射功率的确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023240625A1 true WO2023240625A1 (zh) 2023-12-21

Family

ID=89192962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099552 WO2023240625A1 (zh) 2022-06-17 2022-06-17 发射功率的确定方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117597892A (zh)
WO (1) WO2023240625A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256154A (zh) * 2014-08-29 2016-12-21 华为技术有限公司 确定最大发送功率的方法、终端及基站
WO2019134100A1 (zh) * 2018-01-04 2019-07-11 Oppo广东移动通信有限公司 功率控制的方法、终端设备和网络设备
CN111052809A (zh) * 2017-09-08 2020-04-21 株式会社Ntt都科摩 用户装置及发送功率控制方法
CN111935778A (zh) * 2020-07-09 2020-11-13 RealMe重庆移动通信有限公司 一种功率调节方法、装置、存储介质及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256154A (zh) * 2014-08-29 2016-12-21 华为技术有限公司 确定最大发送功率的方法、终端及基站
CN111052809A (zh) * 2017-09-08 2020-04-21 株式会社Ntt都科摩 用户装置及发送功率控制方法
WO2019134100A1 (zh) * 2018-01-04 2019-07-11 Oppo广东移动通信有限公司 功率控制的方法、终端设备和网络设备
CN111935778A (zh) * 2020-07-09 2020-11-13 RealMe重庆移动通信有限公司 一种功率调节方法、装置、存储介质及网络设备

Also Published As

Publication number Publication date
CN117597892A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
JP6019233B2 (ja) 端末アクセス方法、システム及び端末
US9253685B2 (en) Mobile communication system, base station, and communication method
CN111034162A (zh) 一种降低电磁辐射比吸收率的方法及设备
US20200015283A1 (en) Random access method and apparatus
US20140113630A1 (en) Wireless Device Based Inter Radio Access Technology Handover Initiation
CN111431639A (zh) 无线通信方法和无线通信设备
JPWO2012046391A1 (ja) 無線通信装置、無線通信方法、及び処理回路
US10080173B1 (en) Method and system for use of operating temperature as basis to control handover
US20210168642A1 (en) Interference Processing Method, Apparatus, And System
EP3125639A1 (en) Communication control method, device and system for mobile terminal
EP3488633B1 (en) Decentralized base station load balancing
CN113329423B (zh) 网络连接的控制方法、装置、终端设备及计算机存储介质
EP2879448B1 (en) Efficient small cell activation
CN111066350B (zh) 安全控制方法及装置
JP2011019039A (ja) 基地局制御法、基地局、および基地局制御装置
CN113329482B (zh) 一种功耗控制方法、装置、设备及计算机存储介质
US20240107628A1 (en) Method, device and computer program product for wireless communication
EP4239917A1 (en) Beam measurement method and device, and storage medium
CN115516878A (zh) 定位增强机制
WO2023240625A1 (zh) 发射功率的确定方法、装置、设备及存储介质
WO2023092283A1 (zh) 条件性主辅小区添加的优化方法、装置、设备及存储介质
TW201644294A (zh) 針對功率及效能最佳化裝置中的應用程式行為
EP4171120A1 (en) Migration method under hybrid networking, storage medium, and electronic device
KR20170062985A (ko) 사용자 협력 통신을 통한 wlan 통신 커버리지 확대를 위한 단말간 연결생성 기법
US20240121687A1 (en) Apparatus, method, and computer program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004708.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946308

Country of ref document: EP

Kind code of ref document: A1