WO2023240454A1 - 储能系统的控制方法、控制装置以及储能系统 - Google Patents

储能系统的控制方法、控制装置以及储能系统 Download PDF

Info

Publication number
WO2023240454A1
WO2023240454A1 PCT/CN2022/098708 CN2022098708W WO2023240454A1 WO 2023240454 A1 WO2023240454 A1 WO 2023240454A1 CN 2022098708 W CN2022098708 W CN 2022098708W WO 2023240454 A1 WO2023240454 A1 WO 2023240454A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage modules
module
modules
power
Prior art date
Application number
PCT/CN2022/098708
Other languages
English (en)
French (fr)
Inventor
梁李柳元
卢艳华
余东旭
李盟
吴国秀
徐祥祥
骆兵团
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/098708 priority Critical patent/WO2023240454A1/zh
Publication of WO2023240454A1 publication Critical patent/WO2023240454A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of energy storage, and in particular to a control method, control device and energy storage system of an energy storage system.
  • Energy storage systems generally consist of multiple energy storage modules connected in series. During the manufacturing and use process, various energy storage modules in the energy storage system will inevitably have inconsistencies in parameters such as voltage, capacity, and internal resistance. This results in one or more energy storage modules being faster or more expensive than other energy storage modules. The charging or discharging end is reached slowly, resulting in inconsistent performance of the energy storage module. If the battery is not balanced and managed, as the charge and discharge cycle proceeds, inconsistencies between energy storage modules will cause undercharge, overcharge, and overdischarge, seriously affecting the performance and life of the energy storage system, and causing serious safety hazards. Hidden danger.
  • embodiments of the present application provide a control method, a control device and an energy storage system for an energy storage system, which are beneficial to improving the safety and reliability of the energy storage system.
  • a control method for an energy storage system includes N energy storage modules connected in series, where N is a positive integer greater than 1.
  • the control method includes: obtaining each of the N energy storage modules.
  • the first parameter of each energy storage module is a parameter related to power; according to the first parameter of each energy storage module, the energy storage system is balanced and controlled.
  • the energy storage system is balanced and controlled.
  • the charging and discharging between each energy storage module in the energy storage system can be achieved.
  • the performance is balanced and the service life of the energy storage module is improved.
  • the parameters related to power are usually no longer single-dimensional parameters, they can respond to changes in the charge and discharge limit current, thus reducing the balance of the energy storage system. control limits, which in turn can improve the reliability of the energy storage system.
  • performing balanced control on the energy storage system according to the first parameter of each energy storage module includes: controlling the N storage devices according to the first parameter of each energy storage module.
  • M target energy storage modules in the energy module are put into the energy storage system.
  • the power of the M target energy storage modules meets the charge and discharge power requirements.
  • M is a positive integer, and M is less than or equal to N.
  • the power of the M target energy storage modules meets the charge and discharge power requirements, including: the power of each energy storage module in the M target energy storage modules meets the sub-module charge and discharge power requirement P1 , and/or, the sum of the powers of the M target energy storage modules meets the system charge and discharge power requirement P2.
  • the limitations of the charge and discharge power on the balance control can be fully considered, so that the balance control can be fully considered. Improve the reliability of energy storage systems.
  • the first parameter includes a power state SOP
  • the M target energy storage modules among the N energy storage modules are controlled to put into the energy storage according to the first parameter of each energy storage module.
  • the system includes: determining K candidate energy storage modules from the N energy storage modules according to the SOP of each energy storage module.
  • the power of the K candidate energy storage modules meets the charging and discharging power requirements, and K is a positive integer.
  • K is less than or equal to N; determine the M target energy storage modules from the K candidate energy storage modules, M is less than or equal to K; control the M target energy storage modules to be put into the energy storage system.
  • SOP is introduced as a reference factor for the balance control of the energy storage system, and the SOP is a parameter related to temperature. Therefore, the impact of temperature and charge and discharge power on balance control can be fully considered, so that the energy storage system The entire balancing control process is no longer limited by the charge and discharge power limit of a single energy storage module.
  • the method further includes: determining a number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; determining the number of energy storage modules from the K candidate energy storage modules.
  • the M target energy storage modules include: determining the M target energy storage modules from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system.
  • the number of energy storage modules that are ultimately put into the energy storage system is determined based on the number n of energy storage modules that need to be put into the energy storage system, which is beneficial to improving the reliability of the energy storage system.
  • the M target energy storage modules are determined from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system, including: when n is less than K
  • the M target energy storage modules are determined from the K candidate energy storage modules, and the SOE is related to the health state SOH. parameter.
  • M target energy storage modules are determined based on the SOE related to SOH of the energy storage module, which is helpful to solve the problem of different aging degrees of each energy storage module after long-term operation.
  • the problem of large parameter differences will help improve the reliability of the energy storage system.
  • the SOE is a parameter related to the SOH and the state of charge SOC.
  • the M candidate energy storage modules are determined from the K candidate energy storage modules.
  • the target energy storage module includes: when n is less than K and the energy storage system is in the charging state, the n energy storage modules with the smallest SOE among the K candidate energy storage modules are determined as the M target energy storage modules. module, or, when n is less than K and the energy storage system is in a discharge state, the n energy storage modules with the largest SOE among the K candidate energy storage modules are determined as the M target energy storage modules.
  • the n energy storage modules with the smallest SOE among the K candidate energy storage modules are put into the energy storage system, or, in the discharging state, the n energy storage modules with the largest SOE among the K candidate energy storage modules are put into the energy storage system.
  • Putting n energy storage modules into this energy storage system can solve the problem of different aging levels and large parameter differences of each energy storage module after long-term operation, thereby improving the reliability of the energy storage system.
  • the M target energy storage modules are determined from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system, including: when n is greater than or If equal to K, the K candidate energy storage modules are determined as the M target energy storage modules.
  • determining K candidate energy storage modules from the N energy storage modules according to the SOP of each energy storage module includes: obtaining the SOP of each energy storage module.
  • the power of the N energy storage modules is sorted from small to large; based on this sorting, the power of the i-th energy storage module among the N energy storage modules is greater than or equal to the sub-module charge and discharge power demand P1 and from the i-th energy storage module
  • the i-th energy storage module is moved to the The Nth energy storage module is determined as the K candidate energy storage modules, i is a positive integer, and 1 ⁇ i ⁇ N.
  • M target energy storage modules are obtained by sorting the power of the energy storage modules and judging whether the power of the energy storage modules meets the charging and discharging power requirements based on the sorting. There is no need to classify each energy storage module. By judging the power, M target energy storage modules can be obtained, which can reduce the complexity of controller operation and improve the operating efficiency of the controller.
  • the power of each energy storage module is the product of the SOP of the corresponding energy storage module and the rated power of the corresponding energy storage module, and the power of each energy storage module among the N energy storage modules is The rated power is the same.
  • the SOP of each energy storage module the power order of the N energy storage modules is obtained from small to large, including: according to the SOP of the N energy storage modules, the N energy storage modules are sorted from small to large. The power of the energy storage modules is sorted from small to large.
  • the ordering of the powers of the N energy storage modules is obtained by sorting the SOPs of the N energy storage modules.
  • the power of the N energy storage modules can be obtained without obtaining the power of all the energy storage modules. ordering, which can further reduce the complexity of controller operation.
  • control method also includes: determining the system charging and discharging current demand I and the number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; according to the system The charge and discharge current demand I and the number n of energy storage modules that need to be put into the energy storage system determine the charge and discharge power demand P1 of the sub-module and the charge and discharge power demand P2 of the system.
  • the sub-module charging and discharging power demand P1 and the system charging and discharging power demand are determined based on the system charging and discharging current demand I and the number n of energy storage modules that need to be put into the energy storage system.
  • determining the system charging and discharging current demand I and the number n of energy storage modules that need to be put into the energy storage system includes: according to the jth balance control process of the energy storage system , when the i j -th energy storage module is greater than or equal to the sub-module charge and discharge power demand P1 j and the (N-i+1) j energy storage modules from the i j -th energy storage module to the N j -th energy storage module The sum of the powers of the (N-i+1) j energy storage modules when the sum of the powers is less than the system charge and discharge power demand P2 j is determined when the (j+1)th balancing control of the energy storage system is carried out The system charging and discharging current demand I j+1 and the number of energy storage modules that need to be put into the energy storage system n j+1 , where the i j -th energy storage module is the j -th balancing of the energy storage system The i-th energy storage module determined
  • the charging and discharging power demand P2 of the system is the jth balancing control of the energy storage system.
  • the charging and discharging power demand P2 of the system in the process, the (N-i+1) j energy storage modules are the (N-i+1) determined during the jth balancing control process of the energy storage system ) energy storage module, the charging and discharging current demand I of the system j+1 is the charging and discharging current demand I of the system determined during the j+1th balancing control process of the energy storage system, and the energy storage needs to be invested
  • the number of energy storage modules n j+1 of the system is the number n of energy storage modules that need to be put into the energy storage system determined during the j+1th balancing control process of the energy storage system, and j is a positive integer. .
  • obtaining the first parameter of each energy storage module among the N energy storage modules includes: determining each energy storage module according to the temperature and state of charge SOC of each energy storage module. SOP for the module.
  • the SOP of the energy storage module is determined based on its temperature and SOC, and the final M target energy storage modules are determined based on the SOP of the energy storage module. That is, the SOC is considered in the balanced control process of the energy storage system. , and taking into account the temperature, it can avoid the problem that the balance control of the energy storage system is limited due to the inability to respond to changes in the charging and discharging limit current, thereby improving the utilization rate of the energy storage system.
  • a control device for an energy storage system includes N energy storage modules connected in series. N is a positive integer greater than 1.
  • the control device includes: an acquisition unit for acquiring the N energy storage modules.
  • the first parameter of each energy storage module in the energy storage module, the first parameter is a parameter related to power; the control unit is used to perform balanced control on the energy storage system according to the first parameter of each energy storage module. .
  • control unit is specifically configured to: control M target energy storage modules among the N energy storage modules to be put into the energy storage system according to the first parameter of each energy storage module, the The power of M target energy storage modules meets the charging and discharging power requirements, and M is a positive integer.
  • the power of the M target energy storage modules meets the charge and discharge power requirements, including: the power of each energy storage module in the M target energy storage modules meets the sub-module charge and discharge power requirement P1 , and/or, the sum of the powers of the M target energy storage modules meets the system charge and discharge power requirement P2.
  • the first parameter includes a power status SOP
  • the control unit is specifically configured to: determine a subunit for determining from the N energy storage modules according to the SOP of each energy storage module. K candidate energy storage modules, the power of the K candidate energy storage modules meets the charge and discharge power requirements, K is a positive integer, and the M target energy storage modules are determined from the K candidate energy storage modules; the control sub- Unit, used to control the M target energy storage modules to be put into the energy storage system.
  • control device further includes: a determination unit, used to determine the number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; the determination sub-unit specifically Used for: determining the M target energy storage modules from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system.
  • the determination subunit is specifically used to: when n is less than K, based on the energy state SOE of each energy storage module in the K candidate energy storage modules, determine the The M target energy storage modules are determined in the energy module, and the SOE is a parameter related to the health state SOH.
  • the SOE is a parameter related to the SOH and the state of charge SOC.
  • the determination subunit is specifically used to: when n is less than K and when the energy storage system is in the charging state, select the n storage modules with the smallest SOE among the K candidate energy storage modules.
  • the energy modules are determined as the M target energy storage modules, or, when n is less than K and the energy storage system is in a discharge state, the n energy storage modules with the largest SOE among the K candidate energy storage modules are determined. are the M target energy storage modules.
  • the determination subunit is specifically used to determine the K candidate energy storage modules as the M target energy storage modules when n is greater than or equal to K.
  • the determination subunit is specifically configured to: obtain a ranking of the powers of the N energy storage modules from small to large according to the SOP of each energy storage module; based on the ranking, in the The power of the i-th energy storage module among the N energy storage modules is greater than or equal to the sub-module charge and discharge power requirement P1 and (N-i+1) from the i-th energy storage module to the N-th energy storage module
  • the i-th energy storage module to the N-th energy storage module are determined as the K candidate energy storage modules, i is positive Integer, and 1 ⁇ i ⁇ N.
  • the power of each energy storage module is the product of the SOP of the corresponding energy storage module and the rated power of the corresponding energy storage module, and the power of each energy storage module among the N energy storage modules is The rated power is the same, and the determination subunit is specifically used to: obtain the power ordering of the N energy storage modules from small to large according to the SOP ordering of the N energy storage modules from small to large.
  • control device further includes: a determination unit, used to determine the system charging and discharging current demand I and the number n of energy storage modules to be put into the energy storage system, where n is a positive number less than or equal to N. Integer; and based on the charging and discharging current demand I of the system and the number n of energy storage modules that need to be put into the energy storage system, determine the charging and discharging power demand P1 of the sub-module and the charging and discharging power demand P2 of the system.
  • a determination unit used to determine the system charging and discharging current demand I and the number n of energy storage modules to be put into the energy storage system, where n is a positive number less than or equal to N. Integer; and based on the charging and discharging current demand I of the system and the number n of energy storage modules that need to be put into the energy storage system, determine the charging and discharging power demand P1 of the sub-module and the charging and discharging power demand P2 of the system.
  • the determination unit is specifically configured to: during the jth balancing control process of the energy storage system, the i jth energy storage module is greater than or equal to the sub-module charging and discharging power demand. P1 j and the sum of the powers of (N-i+1) j energy storage modules from the i jth energy storage module to the N jth energy storage module is less than the (N- i+1) The sum of the powers of j energy storage modules determines the system charge and discharge current demand I j+1 and the amount of energy that needs to be invested in the energy storage system during the (j+1)th balancing control of the energy storage system.
  • the number of energy storage modules n j+1 where the i j -th energy storage module is the i -th energy storage module determined during the j -th balancing control process of the energy storage system, and the P1 j is For the charge and discharge power demand P1 of the sub-module determined during the j-th balancing control process of the energy storage system, the N j- th energy storage module is in the j-th balancing control process of the energy storage system.
  • the charging and discharging power demand P2 of the system j is the charging and discharging power demand P2 of the system during the jth balancing control process of the energy storage system, and the (N-i+ 1)
  • the j energy storage modules are the (N-i+1) energy storage modules determined during the jth balancing control process of the energy storage system.
  • the charging and discharging current demand I j+1 of the system is The charging and discharging current demand I of the system determined during the j+1 balance control process of the energy storage system, and the number of energy storage modules that need to be put into the energy storage system n j+1 are The number n of energy storage modules that need to be put into the energy storage system is determined during the j+1th balancing control process, and j is a positive integer.
  • an energy storage system including N energy storage modules connected in series and a control device as in the above second aspect and any possible implementation of the second aspect.
  • the energy storage system is a high-voltage direct current direct-current energy storage system.
  • a control device for an energy storage system includes N energy storage modules connected in series. N is a positive integer greater than 1.
  • the control device includes a memory and a processor.
  • the memory is used to store
  • the processor is configured to read the instruction and execute the method in the first aspect and any possible implementation manner thereof according to the instruction.
  • a chip including a processor for calling and running a computer program from a memory, so that a device equipped with the chip executes the first aspect and any of the possible implementations of the first aspect. Methods.
  • a sixth aspect provides a computer program, characterized in that the computer program causes the computer to execute the method in the first aspect and any possible implementation manner of the first aspect.
  • a computer-readable storage medium which is characterized in that it is used to store a computer program, and the computer program causes the computer to execute the method in the first aspect and any possible implementation manner of the first aspect.
  • An eighth aspect provides a computer program product, which is characterized by including computer program instructions that enable a computer to execute the method of the first aspect and any possible implementation of the first aspect.
  • Figure 1 shows a schematic structural diagram of the DC energy storage system used in the embodiment of the present application.
  • FIG 2a shows a schematic structural diagram of the energy storage module in Figure 1.
  • Figure 2b shows a schematic structural diagram of the energy storage module in Figure 1.
  • FIG. 3 shows a schematic block diagram of the control method of the energy storage system according to the embodiment of the present application.
  • FIG. 4 shows another schematic block diagram of the control method of the energy storage system according to the embodiment of the present application.
  • FIG. 5 shows another schematic block diagram of the control method of the energy storage system according to the embodiment of the present application.
  • Figure 6 shows another schematic block diagram of the control method of the energy storage system according to the embodiment of the present application.
  • FIG. 7 shows another schematic block diagram of the control method of the energy storage system according to the embodiment of the present application.
  • Figure 8 shows a schematic flow chart of the control method of the energy storage system according to the embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of the control device of the energy storage system according to the embodiment of the present application.
  • FIG. 10 shows another schematic block diagram of the control device of the energy storage system according to the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the energy storage system in the embodiment of this application is composed of multiple energy storage modules and other auxiliary equipment connected in series.
  • Each energy storage module in the plurality of energy storage modules may include at least one energy storage element, and the energy storage element may be implemented in a variety of ways, such as batteries, supercapacitors, flywheel energy storage, gas compression energy storage, or their combinations. random combination.
  • other devices known in the art that can store electrical energy may also be selected.
  • the dynamic balance of the entire energy storage system is mainly achieved based on the sorting of the state of charge (SOC) of the energy storage module. That is, the input or withdrawal of each energy storage module is controlled in sequence according to the SOC of the energy storage module. Under system charging conditions, energy storage modules with low SOC are put in first, and energy storage modules with high SOC are switched out; while when the system is discharging Under working conditions, energy storage modules with high SOC are put in priority, and energy storage modules with low SOC are cut out, ultimately achieving dynamic balance of the entire energy storage system.
  • SOC state of charge
  • embodiments of the present application provide a control method for an energy storage system, which performs balanced control on the energy storage system based on the power-related parameters of each energy storage module in the energy storage system.
  • the power-related parameters are usually It is no longer a single-dimensional parameter. It can respond to changes in the charge and discharge limit current, thus reducing the restrictions on system balance control, thereby improving the reliability of the energy storage system.
  • FIG 1 shows a schematic architecture diagram of the DC direct-current energy storage system used in the embodiment of the present application.
  • the DC direct energy storage system 120 includes N energy storage modules 121 (121_1, 121_2,..., 121_N) connected in series.
  • Each energy storage module 121 may be composed of a power sub-module 1211 connected in parallel with a battery module 1212.
  • the power submodule 1211 may be a half-bridge power submodule as shown in Figure 2a, or a full-bridge power submodule as shown in Figure 2b.
  • the battery sub-module 1212 may be a single-branch series-connected battery sub-module or a multi-branch parallel-connected battery sub-module.
  • FIG. 3 shows a schematic block diagram of the control method 20 of the energy storage system according to the embodiment of the present application.
  • the energy storage system may include N energy storage modules connected in series, where N is a positive integer greater than 1.
  • the control method 20 can be executed by the control system in the high-voltage DC direct-connected energy storage system as shown in Figure 1 .
  • the control method 20 may include part or all of the following content.
  • the parameters related to power may be parameters that directly or indirectly characterize the power.
  • the first parameter may be power.
  • the first parameter may be a state of power (SOP).
  • the energy storage system is balanced and controlled.
  • the charging and discharging between each energy storage module in the energy storage system can be achieved.
  • the performance is balanced and the service life of the energy storage module is improved.
  • the parameters related to power are usually no longer single-dimensional parameters, they can respond to changes in the charge and discharge limit current, thus reducing the balance of the energy storage system. control limits, which in turn can improve the reliability of the energy storage system.
  • step S22 may include: S221, controlling M target energy storage modules among the N energy storage modules to be put into the energy storage system according to the first parameter of each energy storage module, The power of the M target energy storage modules meets the charge and discharge power requirements, M is a positive integer, and M is less than or equal to N.
  • the input of the energy storage module means that the energy storage module is connected to the energy storage system, that is, the power sub-module in the energy storage module is turned on.
  • cutting out the energy storage module means that the energy storage module is not connected to the energy storage system, that is, the power sub-module in the energy storage module is disconnected.
  • the controller can obtain various requirements during the charging and discharging process in advance, including charging and discharging power requirements.
  • the first parameter refers to a parameter related to power
  • the power of the corresponding energy storage module can be obtained through the first parameter. That is to say, in the embodiment of the present application, after obtaining the first parameter of each energy storage module, the power of each energy storage module can be obtained, and then it can be determined that the power of the N energy storage modules satisfies the charge and discharge requirements.
  • M target energy storage modules with power requirements For example, if the first parameter is power, M target energy storage modules that meet the charging and discharging power requirements can be directly determined based on the first parameter of each energy storage module. For another example, if the first parameter is SOP, then the power of each energy storage module can be determined first based on the SOP of each energy storage module, and then M target energy storage modules that meet the charging and discharging power requirements can be determined.
  • the power of the energy storage module can be determined by the SOP or by other methods.
  • the power of the energy storage module can be determined by the current and voltage. In the embodiment of the present application There are no restrictions on how to obtain the power of the energy storage module.
  • the power of the M target energy storage modules meets the charge and discharge power requirements, including: the power of each energy storage module in the M target energy storage modules meets the sub-module charge and discharge power.
  • the demand P1, and/or, the sum of the powers of the M target energy storage modules meets the system charging and discharging power demand P2.
  • the controller can obtain the charging and discharging power demand in advance, which can include the charging and discharging power demand of a single energy storage module, here called the sub-module charging and discharging power demand P1, which can also include The charging and discharging power demand of the energy storage system is here called the system charging and discharging power demand P2.
  • the controller can further determine M target energy storage modules that meet the charging and discharging power requirements from the N energy storage modules.
  • the controller can compare the power of each energy storage module in the N energy storage modules with the sub-module charge and discharge power requirement P1, and compare the M energy storage modules that are greater than or equal to the sub-module charge and discharge power requirement P1.
  • the modules are determined as the M target energy storage modules.
  • the controller can compare the sum of the powers of the M energy storage modules among the N energy storage modules with the system charging and discharging power requirement P2, and when the sum of the powers of the M energy storage modules is greater than or equal to When the charging and discharging power requirement of the system is P2, the M energy storage modules are determined as the M target energy storage modules.
  • the determined M target energy storage modules must not only satisfy the sub-module charge and discharge power requirement P1, but also satisfy the power of each of the M energy storage modules. The sum of the powers meets the system charge and discharge power requirement P2.
  • the restriction of the charging and discharging power on the balance control can be reduced, thereby improving energy storage. system reliability.
  • the first parameter includes a power state SOP.
  • step S221 may include part or all of the following content.
  • K candidate energy storage modules from the N energy storage modules.
  • the power of the K candidate energy storage modules meets the charge and discharge power requirements, K is a positive integer, and K is less than or equal to N;
  • the controller can first determine a candidate range based on the SOP, and then determine M target energy storage modules that ultimately need to be put into the energy storage system from the candidate range.
  • SOP is introduced as a reference factor for the balance control of the energy storage system, and usually SOP is a parameter related to temperature. Therefore, the influence of temperature and charge and discharge power on balance control can be fully considered, so that the energy storage system The entire balancing control process is no longer limited by the charge and discharge power limit of a single energy storage module.
  • obtaining the first parameter of each energy storage module among the N energy storage modules includes: determining the SOP of each energy storage module according to the temperature and SOC of each energy storage module.
  • a mapping table between SOP, temperature and SOC can be stored inside the controller. After the controller obtains the temperature and SOC of the energy storage module, it can search the mapping table and obtain the corresponding SOP. .
  • the SOP of the energy storage module is determined based on its temperature and SOC, and the final M target energy storage modules are determined based on the SOP of the energy storage module. That is, the SOC is considered in the balanced control process of the energy storage system. , and taking into account the temperature, it can avoid the problem that the balance control of the energy storage system is limited due to the inability to respond to changes in the charging and discharging limit current, thereby improving the utilization rate of the energy storage system.
  • the SOP may also be related to other parameters.
  • the SOP may be related to the state of health (SOH), which is not limited in the embodiments of the present application.
  • control method 20 also includes: determining the number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; further, as shown in Figure 6
  • step S2212 may include: S231, determining the M target energy storage modules from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system.
  • the number n of energy storage modules that need to be put into the energy storage system can also be included.
  • the M target energy storage modules determined from the K candidate energy storage modules must also meet the number n of energy storage modules that need to be put into the energy storage system. That is, M should be less than or equal to n.
  • step S231 may include: S2311, when K is greater than n, determine n energy storage modules among the K candidate energy storage modules as the M target energy storage modules.
  • step S231 may include: S2312, when K is less than or equal to n, determine the K candidate energy storage modules as the M target energy storage modules.
  • the number of energy storage modules that are ultimately put into the energy storage system is determined based on the number n of energy storage modules that need to be put into the energy storage system, which is beneficial to improving the reliability of the energy storage system.
  • step S2311 may include: S241, when n is less than K, based on the energy state (state of energy, SOE) of each energy storage module in the K candidate energy storage modules, from the K candidate energy storage modules
  • SOE state of energy
  • M target energy storage modules are further determined based on the SOE related to the SOH of the energy storage module, which is helpful to solve the problem of different aging degrees of each energy storage module after long-term operation.
  • the problem of large parameter differences will help improve the reliability of the energy storage system.
  • the SOE may be the SOH.
  • the SOE is a parameter related to SOH and SOC.
  • SOE (1-SOC)*SOH*C nom *V nom .
  • SOE SOC*SOH*C nom *V nom .
  • C nom is the rated capacity of a single energy storage module
  • V nom is the rated voltage of a single energy storage module. Normally, the rated capacities of different energy storage modules in the same energy storage system are the same, and the rated voltages of different energy storage modules in the same energy storage system are the same. In other words, when calculating SOE, only SOC and SOH are variables, and the rest are constants.
  • the SOE may also be related to various parameter combinations such as SOC, temperature, power, voltage, and current, which are not limited in the embodiments of the present application.
  • step S241 may include: S2411, when n is less than K and when the energy storage system is in the charging state, determine the n energy storage modules with the smallest SOE among the K candidate energy storage modules as M target energy storage modules. Or, S2412, when n is less than K and the energy storage system is in a discharge state, determine the n energy storage modules with the largest SOE among the K candidate energy storage modules as the M target energy storage modules.
  • the SOEs of the K candidate energy storage modules can be sorted.
  • the K candidate energy storage modules can be sorted from large to small.
  • the last n energy storage modules can be determined as the M target energy storage modules.
  • the first n energy storage modules can be determined as the M target energy storage modules.
  • the K candidate energy storage modules can be sorted from small to large.
  • the first n energy storage modules can be determined as the M target energy storage modules.
  • the last n energy storage modules can be determined as the M target energy storage modules.
  • the n energy storage modules with the smallest SOE among the K candidate energy storage modules are put into the energy storage system, or, in the discharging state, the n energy storage modules with the largest SOE among the K candidate energy storage modules are put into the energy storage system.
  • Putting n energy storage modules into this energy storage system can solve the problem of different aging levels and large parameter differences of each energy storage module after long-term operation, thereby improving the reliability of the energy storage system.
  • step S2211 may include: S251, according to the SOP of each energy storage module, obtain the power ranking of the N energy storage modules from small to large; S252, based on the ranking, in the The power of the i-th energy storage module among the N energy storage modules is greater than or equal to the sub-module charge and discharge power requirement P1 and (N-i+1) from the i-th energy storage module to the N-th energy storage module
  • the i-th energy storage module to the N-th energy storage module are determined as the K candidate energy storage modules, i is positive Integer, and 1 ⁇ i ⁇ N.
  • the power of the corresponding energy storage module can be obtained based on the SOP of each energy storage module. Then further sort the power of the N energy storage modules from small to large. In other examples, if the SOP of the energy storage module is proportional to the power of the energy storage module, then the SOPs of the N energy storage modules can be sorted from small to large to obtain the power of the N energy storage modules from small to large. Big sort.
  • the power of each energy storage module is greater than or equal to the sub-module charging and discharging power requirement P1.
  • the power of the module is greater than or equal to the sub-module charge and discharge power requirement P1
  • the power of all energy storage modules after the energy storage module is greater than or equal to the sub-module charge and discharge power requirement P1.
  • the sum of the power of all energy storage modules (including energy storage modules at both ends) from the first energy storage module whose power is greater than or equal to the sub-module charge and discharge power requirement P1 to the last energy storage module can be determined. Is it greater than or equal to the system charge and discharge power requirement P2? Once it is determined to be yes, the first energy storage module whose power is greater than or equal to the sub-module charge and discharge power requirement P1 and all subsequent energy storage modules can be determined as the M targets Energy storage module.
  • M target energy storage modules are obtained by sorting the power of the energy storage modules and judging whether the power of the energy storage modules meets the charging and discharging power requirements based on the sorting. There is no need to classify each energy storage module. By judging the power, M target energy storage modules can be obtained, which can reduce the complexity of controller operation and improve the operating efficiency of the controller.
  • the ordering of the SOPs of the N energy storage modules is the ordering of the power of the N energy storage modules.
  • the ordering of the powers of the N energy storage modules is obtained by sorting the SOPs of the N energy storage modules.
  • the power of the N energy storage modules can be obtained without obtaining the power of all the energy storage modules. ordering, which can further reduce the complexity of controller operation.
  • control method 20 also includes: determining the system charging and discharging current demand I and the number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; According to the charging and discharging current demand I of the system and the number n of energy storage modules that need to be put into the energy storage system, the charging and discharging power demand P1 of the sub-module and the charging and discharging power demand P2 of the system are determined.
  • the various demands in the charging and discharging process obtained by the controller in advance can include the number n of energy storage modules that need to be put into the energy storage system.
  • the system charging and discharging current demand I can also be included.
  • the controller can determine the sub-module charging and discharging power demand P1 and the system charging and discharging power demand based on the number n of energy storage modules to be put into the energy storage system and the system charging and discharging current demand I.
  • P1, P2 and V nom can refer to the above description, and for the sake of simplicity, they will not be described again here.
  • determining the system charging and discharging current demand I and the number n of energy storage modules that need to be put into the energy storage system includes: according to the jth balancing control of the energy storage system.
  • the i j -th energy storage module is greater than or equal to the sub-module charge and discharge power demand P1 j and the (N-i+1) j storage modules from the i j -th energy storage module to the N j -th energy storage module
  • the sum of the powers of the energy modules is less than the system charge and discharge power demand P2 j
  • the sum of the powers of the (N-i+1) j energy storage modules is determined to be balanced for the (j+1)th time on the energy storage system.
  • the j energy storage module is the Nth energy storage module determined during the jth balancing control process of the energy storage system.
  • the charging and discharging power demand P2 of the system is the jth energy storage module.
  • the charging and discharging power demand P2 of the system during the balancing control process, the (N-i+1) j energy storage modules are the (N-i) determined during the jth balancing control process of the energy storage system +1) energy storage module, the charging and discharging current demand I of the system j+1 is the charging and discharging current demand I of the system determined during the j+1th balancing control process of the energy storage system, which needs to be invested in
  • the number of energy storage modules n j+1 of the energy storage system is the number n of energy storage modules that need to be put into the energy storage system determined during the j+1th balancing control process of the energy storage system, and j is Positive integer.
  • the power of each energy storage module is greater than or equal to the sub-module charge and discharge power requirement P1.
  • the power of a certain energy storage module is greater than or equal to Only when it is equal to the sub-module charge and discharge power requirement P1 can it be further determined whether the sum of the power of the energy storage module and all subsequent energy storage modules is greater than or equal to the system charge and discharge power requirement P2.
  • the storage can be The system can perform power reduction charge and discharge control. For example, when the controller starts judging from the power of the first energy storage module, it will not be until the power of the i-th energy storage module is greater than or equal to the sub-module charge and discharge power requirement P1.
  • the system charge and discharge power demand P2 in the next balancing control process can be determined as The sum of the powers of the (N-i+1) energy storage modules from the i-th energy storage module to the N-th energy storage module is further determined based on the system charge and discharge power demand P2 in the next balancing control process.
  • the various demands during the charging and discharging process obtained by the controller in advance are updated periodically, and the controller can use the above various embodiments to perform balanced control on the energy storage system based on the updated various demands. That is, as long as the various requirements in the controller are updated, the technical solution provided by the embodiment of the present application will be used to perform balanced control on the energy storage system.
  • the control method of the energy storage system will be described in detail below with reference to FIG. 8 .
  • the energy storage system includes N energy storage modules connected in series, and N is a positive integer greater than 1.
  • the control method 300 includes some or all of the following steps.
  • S303 Collect the SOPs of each energy storage module in real time, and sort them from small to large based on the SOPs of the N energy storage modules.
  • SOP table (temperature, SOC), that is, SOP is obtained by looking up the table of temperature and SOC.
  • step S305 continue to determine whether the sum of the powers of the (N-i+1) energy storage modules between the i-th energy storage module and the N-th energy storage module is greater than or equal to P2. If it is determined that the (N-i+1 ) energy storage modules is greater than or equal to P2, then proceed to step S307; if it is determined that the sum of the powers of the (N-i+1) energy storage modules is less than P2, then proceed to step S306.
  • step S308 further determine whether N-i+1 ⁇ n is established. If N-i+1 ⁇ n is established, step S309 is executed. If N-i+1 ⁇ n is not established, step S310 is executed.
  • step S07 may be performed after step S308.
  • control method of the energy storage system in the embodiment of the present application has been described in detail above.
  • the control device of the energy storage system in the embodiment of the present application will be described in detail below with reference to Figures 9 and 10.
  • the technical features described in the method embodiment are applicable to the following Device Examples.
  • FIG 9 shows a schematic block diagram of the control device 400 of the energy storage system according to the embodiment of the present application.
  • the energy storage system includes N energy storage modules connected in series, and N is a positive integer greater than 1.
  • the control device includes some or all of the following contents.
  • the acquisition unit 410 is used to acquire the first parameter of each energy storage module in the N energy storage modules, where the first parameter is a parameter related to power.
  • the control unit 420 is configured to perform balanced control on the energy storage system according to the first parameter of each energy storage module.
  • control unit is specifically configured to: control M target energy storage modules among the N energy storage modules to be put into the energy storage system according to the first parameter of each energy storage module,
  • the power of the M target energy storage modules meets the charging and discharging power requirements, and M is a positive integer.
  • the power of the M target energy storage modules meets the charge and discharge power requirements, including: the power of each energy storage module in the M target energy storage modules meets the sub-module charge and discharge power.
  • the demand P1, and/or, the sum of the powers of the M target energy storage modules meets the system charging and discharging power demand P2.
  • the first parameter includes power status SOP
  • the control unit is specifically configured to: determine a subunit for, according to the SOP of each energy storage module, the N energy storage modules Determine K candidate energy storage modules, the power of the K candidate energy storage modules meets the charge and discharge power requirements, K is a positive integer, and determine the M target energy storage modules from the K candidate energy storage modules;
  • the control subunit is used to control the M target energy storage modules to be put into the energy storage system.
  • control device further includes: a determination unit, used to determine the number n of energy storage modules to be put into the energy storage system, where n is a positive integer less than or equal to N; the determiner The unit is specifically used to determine the M target energy storage modules from the K candidate energy storage modules according to the number n of energy storage modules that need to be put into the energy storage system.
  • the determination subunit is specifically used to: when n is less than K, based on the energy state SOE of each energy storage module in the K candidate energy storage modules, from the K candidate energy storage modules
  • the M target energy storage modules are determined among the candidate energy storage modules, and the SOE is a parameter related to the health state SOH.
  • the SOE is a parameter related to the SOH and the state of charge SOC.
  • the determination subunit is specifically used to: when n is less than K and when the energy storage system is in the charging state, determine the n with the smallest SOE among the K candidate energy storage modules.
  • the energy storage modules are determined as the M target energy storage modules, or, when n is less than K and the energy storage system is in the discharge state, the n energy storage modules with the largest SOE among the K candidate energy storage modules are The modules are determined as the M target energy storage modules.
  • the determination subunit is specifically used to determine the K candidate energy storage modules as the M target energy storage modules when n is greater than or equal to K.
  • the determination subunit is specifically configured to: obtain a ranking of the powers of the N energy storage modules from small to large according to the SOP of each energy storage module; based on the ranking, in the The power of the i-th energy storage module among the N energy storage modules is greater than or equal to the sub-module charge and discharge power requirement P1 and (N-i+1) from the i-th energy storage module to the N-th energy storage module
  • the i-th energy storage module to the N-th energy storage module are determined as the K candidate energy storage modules, i is positive Integer, and 1 ⁇ i ⁇ N.
  • the power of each energy storage module is the product of the SOP of the corresponding energy storage module and the rated power of the corresponding energy storage module.
  • Each energy storage module in the N energy storage modules The rated power of the modules is the same, and the determination subunit is specifically used to: obtain the power ordering of the N energy storage modules from small to large according to the SOP ordering of the N energy storage modules from small to large.
  • control device also includes: a determination unit, used to determine the system charging and discharging current demand I and the number n of energy storage modules that need to be put into the energy storage system, where n is less than or equal to N A positive integer of
  • the determination unit is specifically configured to: during the jth balancing control process of the energy storage system, the i jth energy storage module is greater than or equal to the sub-module charge and discharge The ( _ _ _ N-i+1)
  • the sum of the power of j energy storage modules determines the system charge and discharge current demand I j+ 1 and the energy storage required to be invested in the (j+1)th balancing control of the energy storage system.
  • the number of energy storage modules n j+1 in the system where the i j -th energy storage module is the i -th energy storage module determined during the j -th balancing control process of the energy storage system, and the P1 j is the charge and discharge power demand P1 of the sub-module determined during the j-th balancing control of the energy storage system, and the N j- th energy storage module is the j-th balancing control of the energy storage system.
  • the Nth energy storage module is determined in the process, and the charging and discharging power demand P2 of the system is the charging and discharging power demand P2 of the system during the jth balancing control process of the energy storage system, and the (N- The i+1) j energy storage modules are the (N-i+1) energy storage modules determined during the j-th balancing control process of the energy storage system.
  • the charging and discharging current requirements of the system are I j+1 is the charging and discharging current demand I of the system determined during the j+1th balancing control process of the energy storage system, and the number n j+1 of energy storage modules that need to be put into the energy storage system is The number n of energy storage modules that need to be put into the energy storage system is determined during the j+1th balancing control process of the energy system, and j is a positive integer.
  • the acquisition unit is specifically configured to determine the SOP of each energy storage module based on the temperature and state of charge SOC of each energy storage module.
  • the embodiment of the present application also provides an energy storage system, including N energy storage modules connected in series and the control device 400 provided in the above various embodiments.
  • the control device is used to uniformly control the N energy storage modules.
  • the energy storage system may be a high-voltage direct current direct-current energy storage system.
  • each module in the control device 400 is to implement the corresponding processes in the various methods of FIG. 3 to FIG. 8 , and for the sake of brevity, they will not be described again here.
  • FIG. 10 shows a schematic block diagram of the control device 500 of the energy storage system according to the embodiment of the present application.
  • the control device 500 includes a processor 510 and a memory 520 , where the memory 520 is used to store instructions, and the processor 510 is used to read instructions and execute the aforementioned methods of various embodiments of the present application based on the instructions.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated into the processor 510 .
  • the charging control device 500 may also include a transceiver 530 , and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, you can send information or data to other devices, or receive information or data sent by other devices.
  • Embodiments of the present application also provide a computer storage medium for storing a computer program, and the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the charging control device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the charging control device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the charging control device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the charging control device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the charging control device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the charging control device in each method of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the charging control device in each method of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种储能系统的控制方法、控制装置和储能系统,该储能系统包括串联的N个储能模块,N为大于1的正整数,该控制方法包括:获取该N个储能模块中每个储能模块的第一参数,该第一参数为与功率有关的参数;根据该每个储能模块的第一参数,对该储能系统进行均衡控制。本申请实施例的控制方法和控制装置,有利于提高储能系统的安全性和可靠性。

Description

储能系统的控制方法、控制装置以及储能系统 技术领域
本申请涉及储能领域,特别涉及一种储能系统的控制方法、控制装置以及储能系统。
背景技术
储能系统一般由多个串联的储能模块组成。在制造和使用过程中储能系统中的各个储能模块必然会存在电压、容量以及内阻等参数的不一致,这就导致总有一个或多个储能模块比其他储能模块更快或更慢地达到充电或放电截止,从而导致了储能模块的性能不一致的现象。如果没有对电池进行均衡管理,随着充放电循环进行,储能模块之间的不一致会造成欠充电、过充电和过放电,严重影响储能系统的使用性能和寿命,并且会造成严重的安全隐患。
发明内容
有鉴于此,本申请实施例提供了一种储能系统的控制方法、控制装置以及储能系统,有利于提高储能系统的安全性和可靠性。
第一方面,提供了一种储能系统的控制方法,该储能系统包括串联的N个储能模块,N为大于1的正整数,该控制方法包括:获取该N个储能模块中每个储能模块的第一参数,该第一参数为与功率有关的参数;根据该每个储能模块的第一参数,对该储能系统进行均衡控制。
在该实施例中,基于储能系统中各个储能模块的与功率有关的参数,对该储能系统进行均衡控制,一方面,可以使得储能系统中的各个储能模块之间的充放电性能达到均衡,提高储能模块的使用寿命,另一方面,由于与功率有关的参数通常不再是单一维度的参数,其可以响应充放电限制电流的变化,因而可以降低对储能系统的均衡控制的限制,进而可以提高储能系统的可靠性。
在一种可能的实现方式中,该根据该每个储能模块的第一参数,对该储能系统进行均衡控制,包括:根据该每个储能模块的第一参数,控制该N个储能模块中的M个目标储能模块投入该储能系统,该M个目标储能模块的功率满足充放电功率需求,M为正整数,且M小于或等于N。
在该实施例中,将N个储能模块中功率满足充放电需求的M个目标储能模块投入储能系统中,可以充分考虑充放电功率对均衡控制的限制,从而可以提高储能系统的可靠性。
在一种可能的实现方式中,该M个目标储能模块的功率满足充放电功率需求,包括:该M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,该M个目标储能模块的功率之和满足系统充放电功率需求P2。
在该实施例中,通过在确定M个目标储能模块时引入子模块充放电功率需求P 1和/或系统充放电功率需求P 2,可以充分考虑充放电功率对均衡控制的限制,从而可以提高储能系统的可靠性。
在一种可能的实现方式中,该第一参数包括功率状态SOP,该根据该每个储能模块的第一参数,控制该N个储能模块中的M个目标储能模块投入该储能系统,包括:根据该每个储能模块的SOP,从该N个储能模块中确定K个候选储能模块,该K个候选储能模块的功率满足该充放电功率需求,K为正整数,且K小于或等于N;从该K个候选储能模块中确定该M个目标储能模块,M小于或等于K;控制该M个目标储能模块投入该储能系统。
在该实施例中,引入SOP作为储能系统的均衡控制的参考因素,而通过SOP又是与温度有关的参数,因此,可以充分考虑温度和充放电功率对均衡控制的影响,从而储能系统的整个均衡控制过程不再受单个储能模块的充放电限制功率的限制。
在一种可能的实现方式,该方法还包括:确定需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;该从该K个候选储能模块中确定该M个目标储能模块,包括:根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块。
在该实施例中,基于需投入储能系统的储能模块的数量n,确定最终投入储能系统的储能模块的数量,有利于提高储能系统的可靠性。
在一种可能的实现方式中,该根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块,包括:在n小于K的情况下,基于该K个候选储能模块中每个储能模块的能量状态SOE,从该K个候选储能模块中确定该M个目标储能模块,该SOE是与健康状态SOH相关的参数。
在该实施例中,在K大于n的情况下,再基于储能模块的与SOH相关的SOE确定M个目标储能模块,有利于解决长时间运行后,各个储能模块老化程度不一,参数差异大的问题,从而有利于提高储能系统的可靠性。
在一种可能的实现方式中,该SOE是与该SOH和荷电状态SOC相关的参数。
在一种可能的实现方式中,该在n小于K的情况下,基于该K个候选储能模块中每个储能模块的能量状态SOE,从该K个候选储能模块中确定该M个目标储能模块,包括:在n小于K的情况下且在该储能系统处于充电状态时,将该K个候选储能模块中SOE最小的n个储能模块确定为该M个目标储能模块,或者,在n小于K的情况下且在该储能系统处于放电状态时,将该K个候选储能模块中SOE最大的n个储能模块确定为该M个目标储能模块。
在该实施例中,在充电状态下,将K个候选储能模块中SOE最小的n个储能模块投入该储能系统,或者,在放电状态下,将K个候选储能模块中SOE最大的n个储能模块投入该储能系统,可以解决长时间运行后,各个储能模块老化程度不一,参数差异大的问题,从而能够提高储能系统的可靠性。
在一种可能的实现方式中,该根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块,包括:在n大于或等于K的情况下,将该K个候选储能模块确定为该M个目标储能模块。
在一种可能的实现方式中,该根据该每个储能模块的SOP,从该N个储能模块中确定K个候选储能模块,包括:根据该每个储能模块的SOP,获取该N个储能模块的功率从小到大的排序;基于该排序,在该N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从该第i个储能模块至该第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将该第i个储能模块至该第N个储能模块确定为该K个候选储能模块,i为正整数,且1≤i≤N。
在该实施例中,通过对储能模块的功率进行排序,并基于该排序判断储能模块的功率是否满足充放电功率需求,以获取M个目标储能模块,不需要对每个储能模块的功率进行判断就可以获取M个目标储能模块,可以降低控制器运行的复杂性,并且可以提高控制器的运行效率。
在一种可能的实现方式中,该每个储能模块的功率为对应储能模块的SOP与该对应储能模块的额定功率的乘积,该N个储能模块中的每个储能模块的额定功率相同,该根据该每个储能模块的SOP,获取该N个储能模块的功率从小到大的排序,包括:根据该N个储能模块的SOP从小到大的排序,获取该N个储能模块的功率从小到大的排序。
在该实施例中,通过N个储能模块的SOP的排序来获取N个储能模块的功率的排序,不需要获取全部的储能模块的功率,就可以获取该N个储能模块的功率的排序,从而可以进一步降低控制器运行的复杂性。
在一种可能的实现方式中,该控制方法还包括:确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2。
在一种可能的实现方式中,该根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2,包括:根据以下公式确定该子模块充放电功率需求P1和该系统充放电功率需求P2:P1=I*V nom,以及P2=n*I*V nom;V nom为单个储能模块的额定电压。
在一种可能的实现方式中,该确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,包括:根据在对该储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等于子模块充放电功率需求P1 j且该第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的该(N-i+1) j个储能模块的功率之和,确定在对该储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入该储能系统的储能模块的数量n j+1,其中,该第i j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第i个储能模块,该P1 j为对在对该储能系统进行第j次均衡控制的过程中确定的该子模块充放电功率需求P1,该第N j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第N个储能模块,该系统充放电功率需求P2 j为对在该储能系统进行第j次均衡控制的过程中的该系统充放电功率需求P2,该(N-i+1) j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该(N-i+1)个储能模块,该系统充放电电流需求I j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该系统充放电电流需求I,该需投入该储能系统的储能模块的数量n j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该需投入该储能系统的储能模块的数量n,j为正整数。
在该实施例中,根据前一次均衡控制过程中储能模块的功率来确定后一次均衡控制过程中的系统充放电电流需求I和需投入该储能系统的储能模块的数量n,有利于进一步提高系统均衡控制的可靠性。
在一种可能的实现方式中,该SOE是基于以下公式确定的:在该储能系统处于充电状态时,SOE=(1-SOC)*SOH*C nom*V nom;在该储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom,其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。
在一种可能的实现方式中,该获取该N个储能模块中每个储能模块的第一参数,包括:根据该每个储能模块的温度和荷电状态SOC,确定该每个储能模块的SOP。
在该实施例中,基于储能模块的温度和SOC确定其SOP,并基于储能模块的SOP确定最终的M个目标储能模块,即在对储能系统的均衡控制过程中既考虑了SOC,又考虑了温度,可以避免由于无法响应充放电限制电流的变化,使得储能系统的均衡控制受到限制的问题,从而可以提高储能系统的利用率。
第二方面,提供了一种储能系统的控制装置,该储能系统包括串联的N个储能模块,N为大于1的正整数,该控制装置包括:获取单元,用于获取该N个储能模块中每个储能模块的第一参数,该第一参数为与功率有关的参数;控制单元,用于根据该每个储能模块的第一参数,对该储能系统进行均衡控制。
在一种可能的实现方式中,该控制单元具体用于:根据该每个储能模块的第一参数,控制该N个储能模块中的M个目标储能模块投入该储能系统,该M个目标储能模块的功率满足充放电功率需求,M为正整数。
在一种可能的实现方式中,该M个目标储能模块的功率满足充放电功率需求,包括:该M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,该M个目标储能模块的功率之和满足系统充放电功率需求P2。
在一种可能的实现方式中,该第一参数包括功率状态SOP,该控制单元具体用于:确定子单元,用于根据该每个储能模块的SOP,从该N个储能模块中确定K个候选储能模块,该K个候选储能模块的功率满足该充放电功率需求,K为正整数,以及,从该K个候选储能模块中确定该M个目标储能模块;控制子单元,用于控制该M个目标储能模块投入该储能系统。
在一种可能的实现方式中,该控制装置还包括:确定单元,用于确定需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;该确定子单元具体用于:根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块。
在一种可能的实现方式中,该确定子单元具体用于:在n小于K的情况下,基于该K个候选储能模块中每个储能模块的能量状态SOE,从该K个候选储能模块中确定该M个目标储能模块,该SOE是与健康状态SOH相关的参数。
在一种可能的实现方式中,该SOE是与该SOH和荷电状态SOC相关的参数。
在一种可能的实现方式中,该确定子单元具体用于:在n小于K的情况下且在该储能系统处于充电状态时,将该K个候选储能模块中SOE最小的n个储能模块确定为该M个目标储能模块,或者,在n小于K的情况下且在该储能系统处于放电状态时,将该K个候选储能模块中SOE最大的n个储能模块确定为该M个目标储能模块。
在一种可能的实现方式中,该确定子单元具体用于:在n大于或等于K的情况下,将该K个候选储能模块确定为该M个目标储能模块。
可选地,在本申请实施例中,该确定子单元具体用于:根据该每个储能模块的SOP,获取该N个储能模块的功率从小到大的排序;基于该排序,在该N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从该第i个储能模块至该第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将该第i个储能模块至该第N个储能模块确定为该K个候选储能模块,i为正整数,且1≤i≤N。
在一种可能的实现方式中,该每个储能模块的功率为对应储能模块的SOP与该对应储能模块的额定功率的乘积,该N个储能模块中的每个储能模块的额定功率相同,该确定子单元具体用于:根据该N个储能模块的SOP从小到大的排序,获取该N个储能模块的功率从小到大的排序。
在一种可能的实现方式中,该控制装置还包括:确定单元,用于确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;以及根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2。
在一种可能的实现方式中,该确定单元具体用于:根据以下公式确定该子模块充放电功率需求P1和该系统充放电功率需求P2:P1=I*V nom,以及P2=n*I*V nom;V nom为单个储能模块的额定电压。
在一种可能的实现方式中,该确定单元具体用于:根据在对该储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等于子模块充放电功率需求P1 j且该第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的该(N-i+1) j个储能模块的功率之和,确定在对该储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入该储能系统的储能模块的数量n j+1,其中,该第i j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第i个储能模块,该P1 j为对在对该储能系统进行第j次均衡控制的过程中确定的该子模块充放电功率需求P1,该第N j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第N个储能模块,该系统充放电功率需求P2 j为对在该储能系统进行第j次均衡控制的过程中的该系统充放电功率需求P2,该(N-i+1) j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该(N-i+1)个储能模块,该系统充放电电流需求I j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该系统充放电电流需求I,该需投入该储能系统的储能模块的数量n j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该需投入该储能系统的储能模块的数量n,j为正整数。
在一种可能的实现方式中,该SOE是基于以下公式确定的:在该储能系统处于充电状态时,SOE=(1-SOC)*SOH*C nom*V nom;在该储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom,其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。
第三方面,提供了一种储能系统,包括串联的N个储能模块以及如上述第二方面以及第二方面中任一种可能的实现方式中的控制装置。
在一种可能的实现方式中,该储能系统为高压直流直挂储能系统。
第四方面,提供了一种储能系统的控制装置,该储能系统包括串联的N个储能模块,N为大于1的正整数,该控制装置包括存储器和处理器,该存储器用于存储指令,该处理器用于读取该指令并根据该指令执行如第一方面及其第一方面任一种可能的实现方式中的方法。
第五方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第六方面,提供了一种计算机程序,其特征在于,该计算机程序使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第七方面,提供了一种计算机可读存储介质,其特征在于,用于存储计算机程序,该计算机程序使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第八方面,提供了一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例所使用的直流储能系统的示意性结构图。
图2a示出了图1中的储能模块的示意性结构图。
图2b示出了图1中的储能模块的示意性结构图。
图3示出了本申请实施例的储能系统的控制方法的示意性框图。
图4示出了本申请实施例的储能系统的控制方法的另一示意性框图。
图5示出了本申请实施例的储能系统的控制方法的再一示意性框图。
图6示出了本申请实施例的储能系统的控制方法的再一示意性框图。
图7示出了本申请实施例的储能系统的控制方法的再一示意性框图。
图8示出了本申请实施例的储能系统的控制方法的示意性流程图。
图9示出了本申请实施例的储能系统的控制装置的示意性框图。
图10示出了本申请实施例的储能系统的控制装置的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在 B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例中的储能系统是指由多个储能模块以及其他辅助设备串联组成。该多个储能模块中的每个储能模块可以包括至少一个储能元件,该储能元件可以有多种实现方式,例如,电池、超级电容、飞轮储能、气体压缩储能或者它们的任意组合。除此之外,也可以选择本领域已知的其他能够储存电能的器件。
通常,在制造和使用过程中储能系统中的各个储能模块必然会存在电压、容量以及内阻等参数的不一致,这就导致总有一个或多个储能模块的充放电性能比其他储能模块的更快或更慢,从而导致了不一致现象。并且随着使用过程中各储能模块之间的不一致性逐渐放大,导致某些储能模块的性能加速衰减,进而影响储能模块的使用寿命。因此,通常需要对储能系统中的各个储能模块进行均衡控制。即在充放电过程中,控制储能系统中各个储能模块的投入或切出,使得各个储能模块之间的充放电性能达到均衡。
目前,主要是基于储能模块的荷电状态(state of charge,SOC)的排序,实现整个储能系统的动态均衡。即根据储能模块的SOC进行排序控制各储能模块的投入或者切出,在系统充电工况下,低SOC的储能模块优先投入,高SOC的储能模块进行切出;而在系统放电工况下,高SOC的储能模块优先投入,低SOC的储能模块进行切出,最终实现整个储能系统的动态均衡。
但是,这种单一维度的均衡控制方法在实际应用中仍存在诸多问题。例如,电池充放电限制电流与温度有关,在极端高温或低温情况下,电池充放电限制电流会快速减小,基于SOC的储能模块的排序无法响应充放电限制电流的变化,因而系统均衡控制受到限制。再例如,长时间运行后,各个储能模块的老化程度不一,参数差异大,同样会限制储能系统的均衡控制。
有鉴于此,本申请实施例提供了一种储能系统的控制方法,基于储能系统中各个储能模块的与功率有关的参数,对储能系统进行均衡控制,而与功率有关的参数通常不再是单一维度的参数,其可以响应充放电限制电流的变化,因而可以降低对系统均衡控制的限制,进而可以提高储能系统的可靠性。
图1示出了本申请实施例所使用的直流直挂储能系统的示意性架构图。如图1所示,该直流直挂储能系统120包括N个串联的储能模块121(121_1,121_2,……,121_N)。其中,每个储能模块121可以是由功率子模块1211并联电池模块1212构成。具体地,功率子模块1211可以是如图2a所示的半桥式功率子模块,也可以是如图2b所示的全桥式功率子模块。电池子模块1212可以是单支路串联电池子模块,也可以是多支路并联电池子模块。
图3示出了本申请实施例的储能系统的控制方法20的示意性框图。该储能系统可以包括串联的N个储能模块,N为大于1的正整数。可选地,该控制方法20可以由如图1所示的高压直流直挂储能系统中的控制系统执行。具体地,如图3所示,该控制方法20可以包括以下部分或全部内容。
S21,获取该N个储能模块中每个储能模块的第一参数,该第一参数为与功率有关的参数。
S22,根据该每个储能模块的第一参数,对该储能系统进行均衡控制。
应理解,与功率有关的参数可以是直接或间接表征功率的参数。例如,该第一参数可以就是功率。再例如,该第一参数可以是功率状态(state of power,SOP)。
在该实施例中,基于储能系统中各个储能模块的与功率有关的参数,对该储能系统进行均衡控制,一方面,可以使得储能系统中的各个储能模块之间的充放电性能 达到均衡,提高储能模块的使用寿命,另一方面,由于与功率有关的参数通常不再是单一维度的参数,其可以响应充放电限制电流的变化,因而可以降低对储能系统的均衡控制的限制,进而可以提高储能系统的可靠性。
可选地,如图4所示,步骤S22可以包括:S221,根据该每个储能模块的第一参数,控制该N个储能模块中的M个目标储能模块投入该储能系统,该M个目标储能模块的功率满足充放电功率需求,M为正整数,且M小于或等于N。
需要说明的是,储能模块的投入是指该储能模块接入储能系统,即该储能模块中的功率子模块导通。与之对应的,储能模块的切出是指储能模块不接入储能系统,即该储能模块中的功率子模块断开。
通常,在储能系统充放电之前,控制器可以提前获取到充放电过程中的各种需求,其中,包括充放电功率需求。由于该第一参数是指与功率有关的参数,那么通过该第一参数可以获取相应储能模块的功率。也就是说,在本申请实施例中,在获取到每个储能模块的第一参数之后,可以获取每个储能模块的功率,进而就可以确定出N个储能模块中功率满足充放电功率需求的M个目标储能模块。例如,若该第一参数就是功率,可以直接基于每个储能模块的第一参数确定出满足充放电功率需求的M个目标储能模块。再例如,若该第一参数为SOP,那么可以先基于每个储能模块的SOP,确定出每个储能模块的功率,进而可以确定出满足充放电功率需求的M个目标储能模块。
在该实施例中,通过将N个储能模块中功率满足充放电需求的M个目标储能模块投入储能系统中,可以降低充放电功率对均衡控制的限制,从而可以提高储能系统的可靠性。
若该第一参数为功率,则储能模块的功率可以是由SOP确定的,也可以是通过其他方式确定的,例如,储能模块的功率可以是由电流和电压确定的,本申请实施例对储能模块的功率的获取方式不作限定。
可选地,在本申请实施例中,该M个目标储能模块的功率满足充放电功率需求,包括:该M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,该M个目标储能模块的功率之和满足系统充放电功率需求P2。
上文提到,在储能系统充放电之前,控制器可以提前获取充放电功率需求,可以包括单个储能模块的充放电功率需求,此处称为子模块充放电功率需求P1,还可以包括储能系统的充放电功率需求,此处称为系统充放电功率需求P2。控制器在获取到充放电功率需求之后,进一步地可以从N个储能模块中确定出满足充放电功率需求的M个目标储能模块。例如,控制器可以将该N个储能模块中的每个储能模块的功率与子模块充放电功率需求P1作比较,并且将大于或等于该子模块充放电功率需求P1的M个储能模块确定为该M个目标储能模块。再例如,控制器可以将该N个储能模块中的M个储能模块的功率之和与该系统充放电功率需求P2作比较,并且在该M个储能模块的功率之和大于或等于该系统充放电功率需求P2的情况下,将该M个储能模块确定为该M个目标储能模块。再例如,所确定的M个目标储能模块,既要满足该M个储能模块中的每个储能模块的功率均满足子模块充放电功率需求P1,又要满足该M个储能模块的功率之和满足系统充放电功率需求P2。
在该实施例中,通过在确定M个目标储能模块时引入子模块充放电功率需求P1和/或系统充放电功率需求P2,可以降低充放电功率对均衡控制的限制,从而可以提高储能系统的可靠性。
可选地,该第一参数包括功率状态SOP,如图5所示,步骤S221可以包括以下部分或全部内容。
S2211,根据该每个储能模块的SOP,从该N个储能模块中确定K个候选储能模块,该K个候选储能模块的功率满足该充放电功率需求,K为正整数,且K小于或等于N;
S2212,从该K个候选储能模块中确定该M个目标储能模块,M小于或等于K;
S2213,控制该M个目标储能模块投入该储能系统。
也就是说,控制器可以先基于SOP确定一个候选范围,然后再从该候选范围中确定出最终需要投入储能系统的M个目标储能模块。
在该实施例中,引入SOP作为储能系统的均衡控制的参考因素,而通常SOP又是与温度有关的参数,因此,可以充分考虑温度和充放电功率对均衡控制的影响,从而储能系统的整个均衡控制过程不再受单个储能模块的充放电限制功率的限制。
在一种示例中,该获取该N个储能模块中每个储能模块的第一参数,包括:根据该每个储能模块的温度和SOC,确定该每个储能模块的SOP。
具体地,在控制器的内部可以存储一张SOP、温度以及SOC这三者之间的映射表,当控制器获取到储能模块的温度和SOC之后,可以查找该映射表,获取对应的SOP。
在该实施例中,基于储能模块的温度和SOC确定其SOP,并基于储能模块的SOP确定最终的M个目标储能模块,即在对储能系统的均衡控制过程中既考虑了SOC,又考虑了温度,可以避免由于无法响应充放电限制电流的变化,使得储能系统的均衡控制受到限制的问题,从而可以提高储能系统的利用率。
在其他示例中,该SOP也可以与其他参数有关,例如,该SOP可以与健康状态(state of health,SOH)有关,本申请实施例对此不作限定。
可选地,在本申请实施例中,该控制方法20还包括:确定需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;进一步地,如图6所示,步骤S2212可以包括:S231,根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块。
控制器提前获取的充放电过程中的各种需求中,除了上述充放电功率需求之外,还可以包括需投入储能系统的储能模块的数量n。也就是说,从K个候选储能模块中确定的M个目标储能模块除了要满足上述充放电功率需求之外,还得满足需投入储能系统的储能模块的数量n。即,M应小于或等于n。
在一种示例中,步骤S231可以包括:S2311,在K大于n的情况下,将K个候选储能模块中的n个储能模块确定为该M个目标储能模块。而在另一种示例中,步骤S231可以包括:S2312,在K小于或等于n的情况下,将该K个候选储能模块确定为该M个目标储能模块。
在该实施例中,基于需投入储能系统的储能模块的数量n,确定最终投入储能系统的储能模块的数量,有利于提高储能系统的可靠性。
继续参见图6,步骤S2311可以包括:S241,在n小于K的情况下,基于该K个候选储能模块中每个储能模块的能量状态(state of energy,SOE),从该K个候选储能模块中确定该M个目标储能模块,该SOE是与健康状态SOH相关的参数。
在该实施例中,在K大于n的情况下,进一步基于储能模块的与SOH相关的SOE确定M个目标储能模块,有利于解决长时间运行后,各个储能模块老化程度不一,参数差异大的问题,从而有利于提高储能系统的可靠性。
在一种可能的示例中,该SOE可以就是SOH。
在其他可能的示例中,该SOE是与SOH与SOC相关的参数。
例如,在储能系统处于充电状态下,SOE=(1-SOC)*SOH*C nom*V nom。再例如,在储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom。其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。通常情况下,同一储能系统中的不同储能模块的额定容量是相同的,同一储能系统中的不同储能模块的额定电压是相同的。也就是说,在计算SOE时,只有SOC与SOH是变量,其余均为常量。但本领域技术人员应理解,本申请技术方案不排除同一储能系统的不同储能模块的额定容量不同,和/或同一储能系统的不同储能模块的额定电压不同的实施例。也就是说,在计算SOE时,除了SOC与SOH是变量之外,C nom和/或V nom也可能为变量。
在其他示例中,该SOE除了与SOH有关之外,还可以与SOC、温度、功率、电压以及电流等各种参数组合有关,本申请实施例对此不作限定。
继续参见图6,步骤S241可以包括:S2411,在n小于K的情况下且在该储能系统处于充电状态时,将该K个候选储能模块中SOE最小的n个储能模块确定为该M个目标储能模块。或者,S2412,在n小于K的情况下且在该储能系统处于放电状态时,将该K个候选储能模块中SOE最大的n个储能模块确定为该M个目标储能模块。
也就是说,在从N个储能模块中确定了K个候选储能模块之后,可以对该K个候选储能模块的SOE进行排序。例如,可以对该K个候选储能模块进行从大到小的排序。那么,在充电状态下,可以将后n个储能模块确定为该M个目标储能模块。在放电状态下,则可以将前n个储能模块确定为该M个目标储能模块。再例如,可以对该K个候选储能模块进行从小到大的排序。那么在充电状态下,可以将前n个储能模块确定为该M个目标储能模块。在放电状态下,则可以将后n个储能模块确定为该M个目标储能模块。
在该实施例中,在充电状态下,将K个候选储能模块中SOE最小的n个储能模块投入该储能系统,或者,在放电状态下,将K个候选储能模块中SOE最大的n个储能模块投入该储能系统,可以解决长时间运行后,各个储能模块老化程度不一,参数差异大的问题,从而能够提高储能系统的可靠性。
可选地,如图7所示,步骤S2211可以包括:S251,根据该每个储能模块的SOP,获取该N个储能模块的功率从小到大的排序;S252,基于该排序,在该N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从该第i个储能模块至该第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将该第i个储能模块至该第N个储能模块确定为该K个候选储能模块,i为正整数,且1≤i≤N。
在一种示例中,可以先基于每个储能模块的SOP,获取对应储能模块的功率。再进一步对N个储能模块的功率进行从小到大的排序。在其他示例中,若储能模块的SOP与储能模块的功率成正比,那么可以通过对N个储能模块的SOP进行从小到大的排序,从而获取到N个储能模块的功率从小到大的排序。
具体地,在获取到N个储能模块的功率的排序之后,可以基于该排序,依次判断每个储能模块的功率是否大于或等于子模块充放电功率需求P1,一旦确定了某个储能模块的功率大于或等于子模块充放电功率需求P1,就可以放弃对其他储能模块的功率的判断。也就是说,可以默认该储能模块之后的所有储能模块的功率均大于或等于子模块充放电功率需求P1。进一步地,可以判断从功率大于或等于子模块充放电功率需求P1的第一个储能模块开始到最后一个储能模块之间的所有储能模块(包括两端的储能模块)的功率之和是否大于或等于系统充放电功率需求P2,一旦判断为是,则可 以将功率大于或等于子模块充放电功率需求P1的第一个储能模块以及之后的所有储能模块确定为该M个目标储能模块。
在该实施例中,通过对储能模块的功率进行排序,并基于该排序判断储能模块的功率是否满足充放电功率需求,以获取M个目标储能模块,不需要对每个储能模块的功率进行判断就可以获取M个目标储能模块,可以降低控制器运行的复杂性,并且可以提高控制器的运行效率。
上文提到,若储能模块的SOP与储能模块的功率成正比,则N个储能模块的SOP的排序即为N个储能模块的功率的排序。可选地,可以将N个储能模块中的每个储能模块的功率设置为对应储能模块的SOP与所述对应储能模块的额定功率的乘积。即,对于N个储能模块中的第i个储能模块,该第i个储能模块的功率P i=SOP i*P nom,其中,SOP i为该第i个储能模块的SOP,P nom为储能模块的额定功率。需要说明的是,同一储能系统中的不同储能模块的P nom通常是相同的。但本领域技术人员理解,本申请技术方案不排除同一储能系统的不同储能模块的额定功率不同的实施例。
在该实施例中,通过N个储能模块的SOP的排序来获取N个储能模块的功率的排序,不需要获取全部的储能模块的功率,就可以获取该N个储能模块的功率的排序,从而可以进一步降低控制器运行的复杂性。
可选地,在本申请实施例中,该控制方法20还包括:确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2。
上文提到,控制器提前获取的充放电过程中的各种需求中,可以包括需投入储能系统的储能模块的数量n,另外,还可以包括系统充放电电流需求I。进一步地,控制器可以基于需投入储能系统的储能模块的数量n和系统充放电电流需求I确定上述子模块充放电功率需求P1和系统充放电功率需求。
进一步可选地,该根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2,包括:根据以下公式确定该子模块充放电功率需求P1和该系统充放电功率需求P2:P1=I*V nom,以及P2=n*I*V nom;V nom为单个储能模块的额定电压。
其中,P1、P2以及V nom可以参考上文中的描述,为了简洁,此处不再赘述。
可选地,在本申请实施例中,该确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,包括:根据在对该储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等于子模块充放电功率需求P1 j且该第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的该(N-i+1) j个储能模块的功率之和,确定在对该储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入该储能系统的储能模块的数量n j+1,其中,该第i j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第i个储能模块,该P1 j为对在对该储能系统进行第j次均衡控制的过程中确定的该子模块充放电功率需求P1,该第N j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第N个储能模块,该系统充放电功率需求P2 j为对在该储能系统进行第j次均衡控制的过程中的该系统充放电功率需求P2,该(N-i+1) j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该(N-i+1)个储能模块,该系统充放电电流需求I j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该系统充放电电流需求I,该需投入该储能系统的储能模块的数量n j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该需投入该储能系统的储能模块的数量n,j为正整数。
上文提到,在对N个储能模块的功率排序之后,可以依次判断每个储能模块的功率是否大于或等于子模块充放电功率需求P1,在判断某个储能模块的功率大于或等于子模块充放电功率需求P1的情况下,才能进一步判断该储能模块以及之后的所有储能模块的功率之和是否大于或等于系统充放电功率需求P2。而在判断某个储能模块的功率小于子模块充放电功率需求P1的情况下,则可以继续判断下一个储能模块的功率是否小于子模块充放电功率需求P1。而在判断某个储能模块的功率大于或等于子模块充放电功率需求P1而该储能模块以及之后的所有储能模块的功率之和小于系统充放电功率需求P2的情况下,可以对储能系统进行降功率充放电控制。例如,当控制器从第1个储能模块的功率开始判断,一直到第i个储能模块的功率才大于或等于子模块充放电功率需求P1,此时继续判断第i个储能模块至第N个储能模块的(N-i+1)个储能模块的功率之和小于或等于系统充放电功率需求P2,则可以将下一次均衡控制过程中的系统充放电功率需求P2确定为该第i个储能模块至第N个储能模块的(N-i+1)个储能模块的功率之和,并进一步地,根据下一次均衡控制过程中的系统充放电功率需求P2确定下次均衡过程中的系统充放电电流需求I和需投入该储能系统的储能模块的数量n。
也就是说,控制器提前获取的充放电过程中的各种需求是周期性更新的,控制器可以基于更新后的各种需求,采用上述各种实施例对储能系统进行均衡控制。即只要控制器中的各种需求有更新,就采用本申请实施例提供的技术方案对储能系统进行均衡控制。
在该实施例中,根据前一次均衡控制过程中储能模块的功率来确定后一次均衡控制过程中的系统充放电电流需求I和需投入该储能系统的储能模块的数量n,有利于进一步提高系统均衡控制的可靠性。
下面将结合图8详细描述本申请实施例的储能系统的控制方法。其中,该储能系统包括串联的N个储能模块,N为大于1的正整数。如图8所示,该控制方法300包括以下部分或全部步骤。
S301,确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,其中,n小于或等于N。
S302,根据在S301中确定的系统充放电电流需求I和需投入该储能系统的储能模块的数量n,计算出子模块充放电功率需求P1和系统充放电功率需求P2。具体地,P1=I*V nom,P2=n*I*V nom,其中,V nom为单个储能模块的额定电压。
S303,实时采集各个储能模块的SOP,并基于N个储能模块的SOP进行从小到大的排序。其中,SOP=table(温度,SOC),即,SOP是由温度和SOC查表获得的。
S304,基于S303中的排序,从第i=1开始,判断每一个储能模块的功率是否大于或等于P1,若判断第i个储能模块的功率大于或等于P1,则进入步骤S305;若判断第i个储能模块的功率小于P1,则令i=i+1,继续执行S304。其中,储能模块的功率等于储能模块的SOP与储能模块的额定功率的乘积。
S305,继续判断第i个储能模块至第N个储能模块之间的(N-i+1)个储能模块的功率之和是否大于或等于P2,若判断该(N-i+1)个储能模块的功率之和大于或等于P2,则进入步骤S307;若判断该(N-i+1)个储能模块的功率之和小于P2,则进入步骤S306。
S306,限制下一次均衡控制过程中的P2为该(N-i+1)个储能模块的功率之和,并以此作为下一次均衡控制过程中的步骤S301的基础。
S307,进一步地对该(N-i+1)个储能模块的SOE进行从大到小的排序。其中,充电时,SOE=(1-SOC)*SOH*C nom*V nom,放电时,SOE=SOC*SOH*C nom*V nom,C nom为储能模块的额定容量,而V nom为储能模块的额定电压。
S308,进一步判断N-i+1≥n是否成立。若N-i+1≥n成立,则执行步骤S309,若N-i+1≥n不成立,则执行步骤S310。
S309,基于S307中的排序,在充电状态下,将后n个储能模块投入储能系统中;在放电状态下,将前n个储能模块投入储能系统中。
S310,将从第i个储能模块至第N个储能模块全部投入储能系统中。
需要说明的是,在本申请实施例提供的控制方法中,“之间”是包括端点在内的。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。例如,步骤S07可以在步骤S308之后执行。
上文详细描述了本申请实施例的储能系统的控制方法,下面将结合图9和图10详细描述本申请实施例的储能系统的控制装置,方法实施例所描述的技术特征适用于以下装置实施例。
图9示出了本申请实施例的储能系统的控制装置400的示意性框图。其中,储能系统包括串联的N个储能模块,N为大于1的正整数。如图9所示,该控制装置包括以下部分或全部内容。
获取单元410,用于获取该N个储能模块中每个储能模块的第一参数,该第一参数为与功率有关的参数。
控制单元420,用于根据该每个储能模块的第一参数,对该储能系统进行均衡控制。
可选地,在本申请实施例中,控制单元具体用于:根据该每个储能模块的第一参数,控制该N个储能模块中的M个目标储能模块投入该储能系统,该M个目标储能模块的功率满足充放电功率需求,M为正整数。
可选地,在本申请实施例中,该M个目标储能模块的功率满足充放电功率需求,包括:该M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,该M个目标储能模块的功率之和满足系统充放电功率需求P2。
可选地,在本申请实施例中,该第一参数包括功率状态SOP,该控制单元具体用于:确定子单元,用于根据该每个储能模块的SOP,从该N个储能模块中确定K个候选储能模块,该K个候选储能模块的功率满足该充放电功率需求,K为正整数,以及,从该K个候选储能模块中确定该M个目标储能模块;控制子单元,用于控制该M个目标储能模块投入该储能系统。
可选地,在本申请实施例中,该控制装置还包括:确定单元,用于确定需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;该确定子单元具体用于:根据该需投入该储能系统的储能模块的数量n,从该K个候选储能模块中确定该M个目标储能模块。
可选地,在本申请实施例中,该确定子单元具体用于:在n小于K的情况下,基于该K个候选储能模块中每个储能模块的能量状态SOE,从该K个候选储能模块中确定该M个目标储能模块,该SOE是与健康状态SOH相关的参数。
可选地,在本申请实施例中,该SOE是与该SOH和荷电状态SOC相关的参数。
可选地,在本申请实施例中,该确定子单元具体用于:在n小于K的情况下且在该储能系统处于充电状态时,将该K个候选储能模块中SOE最小的n个储能模块确定为该M个目标储能模块,或者,在n小于K的情况下且在该储能系统处于放电状态时,将该K个候选储能模块中SOE最大的n个储能模块确定为该M个目标储能模块。
可选地,在本申请实施例中,该确定子单元具体用于:在n大于或等于K的情况下,将该K个候选储能模块确定为该M个目标储能模块。
可选地,在本申请实施例中,该确定子单元具体用于:根据该每个储能模块的SOP,获取该N个储能模块的功率从小到大的排序;基于该排序,在该N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从该第i个储能模块至该第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将该第i个储能模块至该第N个储能模块确定为该K个候选储能模块,i为正整数,且1≤i≤N。
可选地,在本申请实施例中,该每个储能模块的功率为对应储能模块的SOP与该对应储能模块的额定功率的乘积,该N个储能模块中的每个储能模块的额定功率相同,该确定子单元具体用于:根据该N个储能模块的SOP从小到大的排序,获取该N个储能模块的功率从小到大的排序。
可选地,在本申请实施例中,该控制装置还包括:确定单元,用于确定系统充放电电流需求I和需投入该储能系统的储能模块的数量n,n为小于或等于N的正整数;以及根据该系统充放电电流需求I和该需投入该储能系统的储能模块的数量n,确定该子模块充放电功率需求P1和该系统充放电功率需求P2。
可选地,在本申请实施例中,该确定单元具体用于:根据以下公式确定该子模块充放电功率需求P1和该系统充放电功率需求P2:P1=I*V nom,以及P2=n*I*V nom;V nom为单个储能模块的额定电压。
可选地,在本申请实施例中,该确定单元具体用于:根据在对该储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等于子模块充放电功率需求P1 j且该第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的该(N-i+1) j个储能模块的功率之和,确定在对该储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入该储能系统的储能模块的数量n j+1,其中,该第i j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第i个储能模块,该P1 j为对在对该储能系统进行第j次均衡控制的过程中确定的该子模块充放电功率需求P1,该第N j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该第N个储能模块,该系统充放电功率需求P2 j为对在该储能系统进行第j次均衡控制的过程中的该系统充放电功率需求P2,该(N-i+1) j个储能模块为在对该储能系统进行第j次均衡控制的过程中确定的该(N-i+1)个储能模块,该系统充放电电流需求I j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该系统充放电电流需求I,该需投入该储能系统的储能模块的数量n j+1为在对该储能系统进行第j+1次均衡控制的过程中确定的该需投入该储能系统的储能模块的数量n,j为正整数。
可选地,在本申请实施例中,该SOE是基于以下公式确定的:在该储能系统处于充电状态时,SOE=(1-SOC)*SOH*C nom*V nom;在该储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom,其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。
可选地,在本申请实施例中,该获取单元具体用于:根据该每个储能模块的温度和荷电状态SOC,确定该每个储能模块的SOP。
可选地,本申请实施例还提供了一种储能系统,包括串联的N个储能模块以及上述各种实施例提供的控制装置400。该控制装置用于均衡控制该N个储能模块。
可选地,该储能系统可以是高压直流直挂储能系统。
应理解,并且控制装置400中的各个模块的上述和其它操作和/或功能为了实现图3至图8的各个方法中的相应流程,为了简洁,在此不再赘述。
图10示出了本申请实施例的储能系统的控制装置500的示意性框图。如图10所示,该控制装置500包括处理器510和存储器520,其中,存储器520用于存储指令,处理器510用于读取指令并基于指令执行前述本申请各种实施例的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图10所示,该充电控制装置500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信。具体地,可以向其他设备发送信息或数据,或者接收其他设备发送的信息或数据。
本申请实施例还提供了一种计算机存储介质,用于存储计算机程序,计算机程序用于执行前述本申请各种实施例的方法。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的充电控制装置,并且该计算机程序使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的充电控制装置,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的充电控制装置,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种储能系统的控制方法,其特征在于,所述储能系统包括串联的N个储能模块,N为大于1的正整数,所述控制方法包括:
    获取所述N个储能模块中每个储能模块的第一参数,所述第一参数为与功率有关的参数;
    根据所述每个储能模块的第一参数,对所述储能系统进行均衡控制。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据所述每个储能模块的第一参数,对所述储能系统进行均衡控制,包括:
    根据所述每个储能模块的第一参数,控制所述N个储能模块中的M个目标储能模块投入所述储能系统,所述M个目标储能模块的功率满足充放电功率需求,M为正整数,且M小于或等于N。
  3. 根据权利要求2所述的控制方法,其特征在于,所述M个目标储能模块的功率满足充放电功率需求,包括:所述M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,所述M个目标储能模块的功率之和满足系统充放电功率需求P2。
  4. 根据权利要求2或3所述的控制方法,其特征在于,所述第一参数包括功率状态SOP,所述根据所述每个储能模块的第一参数,控制所述N个储能模块中的M个目标储能模块投入所述储能系统,包括:
    根据所述每个储能模块的SOP,从所述N个储能模块中确定K个候选储能模块,所述K个候选储能模块的功率满足所述充放电功率需求,K为正整数,且K小于或等于N;
    从所述K个候选储能模块中确定所述M个目标储能模块,M小于或等于K;
    控制所述M个目标储能模块投入所述储能系统。
  5. 根据权利要求4至所述的控制方法,其特征在于,所述方法还包括:
    确定需投入所述储能系统的储能模块的数量n,n为小于或等于N的正整数;
    所述从所述K个候选储能模块中确定所述M个目标储能模块,包括:
    根据所述需投入所述储能系统的储能模块的数量n,从所述K个候选储能模块中确定所述M个目标储能模块。
  6. 根据权利要求5所述的控制方法,其特征在于,所述根据所述需投入所述储能系统的储能模块的数量n,从所述K个候选储能模块中确定所述M个目标储能模块,包括:
    在n小于K的情况下,基于所述K个候选储能模块中每个储能模块的能量状态SOE,从所述K个候选储能模块中确定所述M个目标储能模块,所述SOE是与健康状态SOH相关的参数。
  7. 根据权利要求6所述的控制方法,其特征在于,所述SOE是与所述SOH和荷电状态SOC相关的参数。
  8. 根据权利要求6或7所述的控制方法,其特征在于,所述在n小于K的情况下, 基于所述K个候选储能模块中每个储能模块的能量状态SOE,从所述K个候选储能模块中确定所述M个目标储能模块,包括:
    在n小于K的情况下且在所述储能系统处于充电状态时,将所述K个候选储能模块中SOE最小的n个储能模块确定为所述M个目标储能模块,或者,在n小于K的情况下且在所述储能系统处于放电状态时,将所述K个候选储能模块中SOE最大的n个储能模块确定为所述M个目标储能模块。
  9. 根据权利要求5所述的控制方法,其特征在于,所述根据所述需投入所述储能系统的储能模块的数量n,从所述K个候选储能模块中确定所述M个目标储能模块,包括:
    在n大于或等于K的情况下,将所述K个候选储能模块确定为所述M个目标储能模块。
  10. 根据权利要求4至9中任一项所述的控制方法,其特征在于,所述根据所述每个储能模块的SOP,从所述N个储能模块中确定K个候选储能模块,包括:
    根据所述每个储能模块的SOP,获取所述N个储能模块的功率从小到大的排序;
    基于所述排序,在所述N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从所述第i个储能模块至所述第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将所述第i个储能模块至所述第N个储能模块确定为所述K个候选储能模块,i为正整数,且1≤i≤N。
  11. 根据权利要求10所述的控制方法,其特征在于,所述每个储能模块的功率为对应储能模块的SOP与所述对应储能模块的额定功率的乘积,所述N个储能模块中的每个储能模块的额定功率相同,所述根据所述每个储能模块的SOP,获取所述N个储能模块的功率从小到大的排序,包括:
    根据所述N个储能模块的SOP从小到大的排序,获取所述N个储能模块的功率从小到大的排序。
  12. 根据权利要求10或11所述的控制方法,其特征在于,所述控制方法还包括:
    确定系统充放电电流需求I和需投入所述储能系统的储能模块的数量n,n为小于或等于N的正整数;
    根据所述系统充放电电流需求I和所述需投入所述储能系统的储能模块的数量n,确定所述子模块充放电功率需求P1和所述系统充放电功率需求P2。
  13. 根据权利要求12所述的控制方法,其特征在于,所述根据所述系统充放电电流需求I和所述需投入所述储能系统的储能模块的数量n,确定所述子模块充放电功率需求P1和所述系统充放电功率需求P2,包括:
    根据以下公式确定所述子模块充放电功率需求P1和所述系统充放电功率需求P2:
    P1=I*V nom,以及P2=n*I*V nom
    V nom为单个储能模块的额定电压。
  14. 根据权利要求12或13所述的控制方法,其特征在于,所述确定系统充放电电流需求I和需投入所述储能系统的储能模块的数量n,包括:
    根据在对所述储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等 于子模块充放电功率需求P1 j且所述第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的所述(N-i+1) j个储能模块的功率之和,确定在对所述储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入所述储能系统的储能模块的数量n j+1,其中,所述第i j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述第i个储能模块,所述P1 j为对在对所述储能系统进行第j次均衡控制的过程中确定的所述子模块充放电功率需求P1,所述第N j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述第N个储能模块,所述系统充放电功率需求P2 j为对在所述储能系统进行第j次均衡控制的过程中的所述系统充放电功率需求P2,所述(N-i+1) j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述(N-i+1)个储能模块,所述系统充放电电流需求I j+1为在对所述储能系统进行第j+1次均衡控制的过程中确定的所述系统充放电电流需求I,所述需投入所述储能系统的储能模块的数量n j+1为在对所述储能系统进行第j+1次均衡控制的过程中确定的所述需投入所述储能系统的储能模块的数量n,j为正整数。
  15. 根据权利要求6至8中任一项所述的控制方法,其特征在于,所述SOE是基于以下公式确定的:在所述储能系统处于充电状态时,SOE=(1-SOC)*SOH*C nom*V nom;在所述储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom,其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。
  16. 根据权利要求4至15中任一项所述的控制方法,其特征在于,所述获取所述N个储能模块中每个储能模块的第一参数,包括:
    根据所述每个储能模块的温度和荷电状态SOC,确定所述每个储能模块的SOP。
  17. 一种储能系统的控制装置,其特征在于,所述储能系统包括串联的N个储能模块,N为大于1的正整数,所述控制装置包括:
    获取单元,用于获取所述N个储能模块中每个储能模块的第一参数,所述第一参数为与功率有关的参数;
    控制单元,用于根据所述每个储能模块的第一参数,对所述储能系统进行均衡控制。
  18. 根据权利要求17所述的控制装置,其特征在于,所述控制单元具体用于:
    根据所述每个储能模块的第一参数,控制所述N个储能模块中的M个目标储能模块投入所述储能系统,所述M个目标储能模块的功率满足充放电功率需求,M为正整数。
  19. 根据权利要求18所述的控制装置,其特征在于,所述M个目标储能模块的功率满足充放电功率需求,包括:所述M个目标储能模块中的每个储能模块的功率满足子模块充放电功率需求P1,和/或,所述M个目标储能模块的功率之和满足系统充放电功率需求P2。
  20. 根据权利要求18或19所述的控制装置,其特征在于,所述第一参数包括功率状态SOP,所述控制单元具体用于:
    确定子单元,用于根据所述每个储能模块的SOP,从所述N个储能模块中确定K 个候选储能模块,所述K个候选储能模块的功率满足所述充放电功率需求,K为正整数,以及,从所述K个候选储能模块中确定所述M个目标储能模块;
    控制子单元,用于控制所述M个目标储能模块投入所述储能系统。
  21. 根据权利要求20至所述的控制装置,其特征在于,所述控制装置还包括:
    确定单元,用于确定需投入所述储能系统的储能模块的数量n,n为小于或等于N的正整数;
    所述确定子单元具体用于:
    根据所述需投入所述储能系统的储能模块的数量n,从所述K个候选储能模块中确定所述M个目标储能模块。
  22. 根据权利要求21所述的控制装置,其特征在于,所述确定子单元具体用于:
    在n小于K的情况下,基于所述K个候选储能模块中每个储能模块的能量状态SOE,从所述K个候选储能模块中确定所述M个目标储能模块,所述SOE是与健康状态SOH相关的参数。
  23. 根据权利要求22所述的控制装置,其特征在于,所述SOE是与所述SOH和荷电状态SOC相关的参数。
  24. 根据权利要求22或23所述的控制装置,其特征在于,所述确定子单元具体用于:
    在n小于K的情况下且在所述储能系统处于充电状态时,将所述K个候选储能模块中SOE最小的n个储能模块确定为所述M个目标储能模块,或者,在n小于K的情况下且在所述储能系统处于放电状态时,将所述K个候选储能模块中SOE最大的n个储能模块确定为所述M个目标储能模块。
  25. 根据权利要求21所述的控制装置,其特征在于,所述确定子单元具体用于:
    在n大于或等于K的情况下,将所述K个候选储能模块确定为所述M个目标储能模块。
  26. 根据权利要求20至25中任一项所述的控制装置,其特征在于,所述确定子单元具体用于:
    根据所述每个储能模块的SOP,获取所述N个储能模块的功率从小到大的排序;
    基于所述排序,在所述N个储能模块中的第i个储能模块的功率大于或等于子模块充放电功率需求P1且从所述第i个储能模块至所述第N个储能模块的(N-i+1)个储能模块的功率之和大于或等于系统充放电功率需求P2的情况下,将所述第i个储能模块至所述第N个储能模块确定为所述K个候选储能模块,i为正整数,且1≤i≤N。
  27. 根据权利要求26所述的控制装置,其特征在于,所述每个储能模块的功率为对应储能模块的SOP与所述对应储能模块的额定功率的乘积,所述N个储能模块中的每个储能模块的额定功率相同,所述确定子单元具体用于:
    根据所述N个储能模块的SOP从小到大的排序,获取所述N个储能模块的功率从小到大的排序。
  28. 根据权利要求26或27所述的控制装置,其特征在于,所述控制装置还包括:
    确定单元,用于确定系统充放电电流需求I和需投入所述储能系统的储能模块的数 量n,n为小于或等于N的正整数;以及
    根据所述系统充放电电流需求I和所述需投入所述储能系统的储能模块的数量n,确定所述子模块充放电功率需求P1和所述系统充放电功率需求P2。
  29. 根据权利要求282所述的控制装置,其特征在于,所述确定单元具体用于:
    根据以下公式确定所述子模块充放电功率需求P1和所述系统充放电功率需求P2:
    P1=I*V nom,以及P2=n*I*V nom
    V nom为单个储能模块的额定电压。
  30. 根据权利要求28或29所述的控制装置,其特征在于,所述确定单元具体用于:
    根据在对所述储能系统进行第j次均衡控制的过程中,在第i j个储能模块大于或等于子模块充放电功率需求P1 j且所述第i j个储能模块至第N j个储能模块的(N-i+1) j个储能模块的功率之和小于系统充放电功率需求P2 j时的所述(N-i+1) j个储能模块的功率之和,确定在对所述储能系统进行第(j+1)次均衡控制时的系统充放电电流需求I j+1和需投入所述储能系统的储能模块的数量n j+1,其中,所述第i j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述第i个储能模块,所述P1 j为对在对所述储能系统进行第j次均衡控制的过程中确定的所述子模块充放电功率需求P1,所述第N j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述第N个储能模块,所述系统充放电功率需求P2 j为对在所述储能系统进行第j次均衡控制的过程中的所述系统充放电功率需求P2,所述(N-i+1) j个储能模块为在对所述储能系统进行第j次均衡控制的过程中确定的所述(N-i+1)个储能模块,所述系统充放电电流需求I j+1为在对所述储能系统进行第j+1次均衡控制的过程中确定的所述系统充放电电流需求I,所述需投入所述储能系统的储能模块的数量n j+1为在对所述储能系统进行第j+1次均衡控制的过程中确定的所述需投入所述储能系统的储能模块的数量n,j为正整数。
  31. 根据权利要求22至24中任一项所述的控制装置,其特征在于,所述SOE是基于以下公式确定的:在所述储能系统处于充电状态时,SOE=(1-SOC)*SOH*C nom*V nom;在所述储能系统处于放电状态时,SOE=SOC*SOH*C nom*V nom,其中,C nom为单个储能模块的额定容量,V nom为单个储能模块的额定电压。
  32. 根据权利要求20至31中任一项所述的控制装置,其特征在于,所述获取单元具体用于:
    根据所述每个储能模块的温度和荷电状态SOC,确定所述每个储能模块的SOP。
  33. 一种储能系统,其特征在于,包括串联的N个储能模块和如权利要求16至32中任一项所述的控制装置,N为大于1的正整数,所述控制装置用于均衡控制所述N个储能模块。
  34. 根据权利要求33所述的储能系统,其特征在于,所述储能系统为高压直流直挂储能系统。
  35. 一种储能系统的控制装置,其特征在于,所述储能系统包括串联的N个储能模块,N为大于1的正整数,所述控制装置包括存储器和处理器,所述存储器用于存储 指令,所述处理器用于读取所述指令并根据所述指令执行如权利要求1至16中任一项所述的方法。
  36. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2022/098708 2022-06-14 2022-06-14 储能系统的控制方法、控制装置以及储能系统 WO2023240454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098708 WO2023240454A1 (zh) 2022-06-14 2022-06-14 储能系统的控制方法、控制装置以及储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098708 WO2023240454A1 (zh) 2022-06-14 2022-06-14 储能系统的控制方法、控制装置以及储能系统

Publications (1)

Publication Number Publication Date
WO2023240454A1 true WO2023240454A1 (zh) 2023-12-21

Family

ID=89192984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098708 WO2023240454A1 (zh) 2022-06-14 2022-06-14 储能系统的控制方法、控制装置以及储能系统

Country Status (1)

Country Link
WO (1) WO2023240454A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048487A (zh) * 2019-05-16 2019-07-23 清华大学 一种电池充放电的控制方法及其系统
CN111756058A (zh) * 2019-03-29 2020-10-09 比亚迪股份有限公司 一种储能系统充放电功率分配方法
CN113629822A (zh) * 2021-09-02 2021-11-09 阳光电源股份有限公司 一种储能系统及其控制方法
CN114268155A (zh) * 2021-12-27 2022-04-01 杭州电子科技大学 一种考虑电池不一致性的电池储能系统功率分配方法
CN114498824A (zh) * 2022-01-12 2022-05-13 国能信控互联技术有限公司 一种可持续储能电池充放电功率均衡分配方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756058A (zh) * 2019-03-29 2020-10-09 比亚迪股份有限公司 一种储能系统充放电功率分配方法
CN110048487A (zh) * 2019-05-16 2019-07-23 清华大学 一种电池充放电的控制方法及其系统
CN113629822A (zh) * 2021-09-02 2021-11-09 阳光电源股份有限公司 一种储能系统及其控制方法
CN114268155A (zh) * 2021-12-27 2022-04-01 杭州电子科技大学 一种考虑电池不一致性的电池储能系统功率分配方法
CN114498824A (zh) * 2022-01-12 2022-05-13 国能信控互联技术有限公司 一种可持续储能电池充放电功率均衡分配方法及系统

Similar Documents

Publication Publication Date Title
US5920179A (en) System and method for balancing charge cycles for batteries or multiple-cell battery packs
US11374265B2 (en) Battery repair method and apparatus
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
WO2021056687A1 (zh) 充电方法、电子装置及存储介质
US20230179005A1 (en) Battery bank power control apparatus and method
CN111668894B (zh) 基于充电与均衡组合优化的锂电池组快速充电控制方法
CN107994278A (zh) 一种电池均衡装置、方法及无人机
WO2023207324A1 (zh) 一种动力电池自加热方法、系统、存储介质及电子设备
US20240151778A1 (en) Short-circuit current prediction device and method
WO2023240454A1 (zh) 储能系统的控制方法、控制装置以及储能系统
CN114156552A (zh) 一种考虑老化的串联电池组的均衡控制策略
CN109980306B (zh) 电池模组一致性的优化方法
CN109450051A (zh) 一种电池系统及其控制方法
TWI491141B (zh) 電池的充電系統及方法
US20230231405A1 (en) Charging method, electronic apparatus, and storage medium
US20230238818A1 (en) Charging method, electronic apparatus, and storage medium
CN117220366A (zh) 一种可快充储能电池的控制方法及储能电池控制设备
WO2023240474A1 (zh) 储能系统的控制方法、控制装置以及储能系统
CN114094676B (zh) 一种笔记本电池充电管理方法、系统
WO2021057833A1 (zh) 变步长均衡处理方法、设备、介质、电池包和车辆
US20220326308A1 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
CN115889245A (zh) 一种锂电池一致性分选方法
CN115800418A (zh) 电池控制方法、储能系统、装置、计算机设备和存储介质
CN115021365A (zh) 基于储能系统的电池均衡方法、装置、设备及存储介质
CN110867920B (zh) 电池系统的充电控制方法、装置、电子设备及电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946153

Country of ref document: EP

Kind code of ref document: A1