WO2021057833A1 - 变步长均衡处理方法、设备、介质、电池包和车辆 - Google Patents

变步长均衡处理方法、设备、介质、电池包和车辆 Download PDF

Info

Publication number
WO2021057833A1
WO2021057833A1 PCT/CN2020/117324 CN2020117324W WO2021057833A1 WO 2021057833 A1 WO2021057833 A1 WO 2021057833A1 CN 2020117324 W CN2020117324 W CN 2020117324W WO 2021057833 A1 WO2021057833 A1 WO 2021057833A1
Authority
WO
WIPO (PCT)
Prior art keywords
equalization
balance
soc
battery
difference
Prior art date
Application number
PCT/CN2020/117324
Other languages
English (en)
French (fr)
Inventor
冯天宇
邓林旺
刘思佳
李晓倩
康斌
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP20868885.3A priority Critical patent/EP4024652A4/en
Priority to US17/763,943 priority patent/US20220352728A1/en
Publication of WO2021057833A1 publication Critical patent/WO2021057833A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present disclosure relates to the technical field of equalization of series battery packs, and in particular to a variable step-length equalization processing method, equipment, medium, battery pack, and vehicle.
  • the balance difference is usually calculated separately according to one of the voltage and the SOC value to determine whether to turn on the balance, and each time the balance is a fixed value.
  • the above scheme has the following shortcomings: when the equalization amount is a fixed value, if the fixed value is set to be large, problems of repeated equalization, low equalization efficiency, and poor equalization accuracy will occur; if the fixed value is set to a small value, The problems of more full charge times, longer equalization time, and slow equalization speed will appear. That is, when the single equalization amount is a fixed value, it is difficult to balance equalization accuracy and speed. At the same time, calculating the balance difference separately based on one of the voltage and the SOC value will further reduce the balance accuracy.
  • the embodiments of the present disclosure provide a variable-step equalization processing method, equipment, medium, battery pack, and vehicle.
  • coarse adjustment equalization and fine adjustment equalization are combined, which can be used quickly and efficiently. While accurately achieving the equalization target, the equalization accuracy and equalization speed are improved, and the scope of application of the present disclosure is wider.
  • the first aspect of the embodiments of the present disclosure provides a variable step-size equalization processing method for series-connected battery packs, including:
  • the coarse adjustment balance of the single battery is turned on; wherein, the initial balance difference is based on each single battery in the series battery pack.
  • the first SOC value of the battery is determined;
  • the first SOC balance difference is determined according to the first voltage value of the single cell after the coarse adjustment and equalization, and Start the fine adjustment and balance of the single-cell battery at a first balance step based on the first SOC balance difference; wherein, the first balance step size is smaller than the first SOC balance difference;
  • a second aspect of the embodiments of the present disclosure provides a computer device, including a memory, a processor, and computer-readable instructions stored in the memory and executable on the processor, and the processor executes the computer When the instruction is readable, the variable step-size equalization processing method of the series-connected battery pack is realized.
  • a third aspect of the embodiments of the present disclosure provides a computer-readable storage medium, the computer-readable storage medium stores computer-readable instructions, and when the computer-readable instructions are executed by a processor, the series battery pack is realized The variable step-size equalization processing method.
  • a fourth aspect of the embodiments of the present disclosure provides a battery pack including a series-connected battery pack, and the battery pack performs the SOC state balance of a single battery through the variable step-size equalization processing method of the series-connected battery pack.
  • a fifth aspect of the embodiments of the present disclosure provides a vehicle, including a series battery pack and a control module communicatively connected with the series battery pack, the control module is configured to perform the variable step equalization processing of the series battery pack method.
  • the variable step equalization processing method, equipment, medium, battery pack, and vehicle provided by the embodiments of the present disclosure combine coarse adjustment equalization (according to each unit in the series battery pack) in the equalization process of the single cells in the series battery pack.
  • the first SOC value of the battery determines the initial balance difference, and according to the initial balance difference, it is determined whether the preset coarse adjustment requirements are met, and coarse adjustment equalization is turned on) and fine adjustment equalization (the single-cell battery after the coarse adjustment equalization)
  • the first true balance difference reaches the preset fine adjustment requirement
  • the first SOC balance difference is determined according to the first voltage value of the single cell after coarse adjustment and balance
  • the first balance difference is determined based on the first SOC balance difference.
  • the step size turns on the fine adjustment and equalization of the single-cell battery, which can quickly and accurately achieve the equalization target while improving the equalization accuracy and equalization speed, and the application scope of the present disclosure is wider.
  • FIG. 1 is a flowchart of a variable step-size equalization processing method for series-connected battery packs in an embodiment of the present disclosure
  • step S10 is a flowchart of step S10 in the variable step-size equalization processing method of series-connected battery packs in an embodiment of the present disclosure
  • FIG. 3 is a flowchart of step S20 in the variable step-size equalization processing method of series-connected battery packs in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the voltage curve of each single cell in the series battery pack before the SOC state is equalized in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the voltage curve of each single cell in the series battery pack after completing the SOC state equalization in an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the structure of a computer device in an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a computer device in another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a computer-readable storage medium in an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the structure of a battery pack in an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a vehicle in an embodiment of the present disclosure.
  • variable step-size equalization processing method for series-connected battery packs can be applied in an application environment where a client (computer device) communicates with a server through a network.
  • the client computer equipment
  • the server can be implemented as an independent server or a server cluster composed of multiple servers.
  • a variable step-size equalization processing method for series-connected battery packs is provided, which includes the following steps S10-S30:
  • the initial balance difference is determined according to the first SOC (State of Charge, battery state of charge) value of each single battery in the series battery pack.
  • the first SOC value refers to the SOC value corresponding to each single battery in the current series battery pack, and the first SOC value can be directly obtained through a BMS (Battery Management System, battery management system). Understandably, assuming that there are N (N is a positive integer) single-cell batteries in the series battery pack, then the N single-cell batteries correspond to N first SOC values.
  • the initial equilibrium difference is the difference between the first SOC value and the minimum first SOC value of one of the single cells.
  • the initial balance difference is calculated based on the first SOC value of the single battery, and the balance is turned on according to it, which can be applied in the full SOC range.
  • the accuracy of the equalization is related to the accuracy of the SOC algorithm, so the error is relatively large, and it is suitable for coarse adjustment equalization when the equalization difference is relatively large (the initial equalization difference is greater than or equal to the preset coarse adjustment equalization value), and The process can be carried out without waiting for full charge or other specific working conditions, so it has a wide range of applicability.
  • the first SOC balance difference is determined according to the first voltage value of the single battery after the coarse adjustment and equalization, and based on the first real balance difference of the single battery.
  • a SOC equalization difference starts the fine adjustment and equalization of a single battery at the first equalization step; wherein, the first equalization step is smaller than the first SOC equalization difference.
  • the first true balance difference of the single battery is the SOC accuracy of the single battery. At this time, it can be judged whether the first true balance difference of the single battery meets the preset fine adjustment requirements, and When the first true balance difference of a single-cell battery reaches the preset fine adjustment requirement, according to the current first voltage value of the single-cell battery (the first voltage value refers to the first voltage value of the single-cell battery in the preset state , The preset state may refer to the voltage value when a single battery is fully charged, discharged, or at a certain point voltage), and the first SOC balance difference is determined.
  • the first equalization step size for adjusting the equalization needs to be less than or equal to the first SOC equalization difference), and then the selected first equalization step size is fine-tuned and equalized.
  • the fine equalization is turned on according to the first voltage value of the single battery.
  • Its equalization accuracy is related to the voltage sampling accuracy and the battery OCV (Open Circuit Voltage) curve characteristics, so the equalization accuracy is high and the error Smaller, suitable for fine-tuning equalization when the balance difference is small.
  • the first true balance difference is equal to the first SOC balance difference.
  • the first true balance difference of a single battery meets the preset fine adjustment requirement
  • the first true balance difference of the single battery does not meet the preset fine adjustment requirement, that is, the single battery
  • the SOC accuracy of the battery cannot meet the preset fine adjustment requirements (the first true equilibrium difference is always greater than the preset coarse adjustment equalization value), indicating that the fine adjustment requirements are too high for the single battery, and the fine adjustment requirements are required
  • Make adjustments for example, increase the preset coarse adjustment equalization value so that the fine adjustment equalization process can proceed smoothly.
  • the second true balance difference is equal to the difference between the first SOC balance difference and the first balance step.
  • the second true balance difference of a single battery is less than or equal to the target balance value, it represents a single cell
  • the battery has completed the SOC state balancing process.
  • the second true balance difference of a single battery is still greater than the target balance value, it means that the SOC state balance has not been completed, and the second (or more) fine-tuned balance needs to be continued until the final true balance difference of the single battery is obtained. Less than or equal to the target equilibrium value.
  • the variable step-size equalization processing method of the series battery pack in the above embodiment combines coarse adjustment equalization in the equalization process of the single cells of the series battery pack (the initial SOC value is determined according to the first SOC value of each single cell in the series battery pack.
  • Balance difference according to the initial balance difference to determine whether the preset coarse adjustment requirements are met, and the coarse adjustment balance is turned on
  • fine adjustment balance the first true balance difference of a single battery after the coarse adjustment balance meets the preset fine adjustment requirements
  • the first SOC balance difference is determined according to the first voltage value of the single cell battery after coarse adjustment and equalization, and the first balance step is used to start the fine adjustment balance of the single cell based on the first SOC balance difference.
  • step S10 that is, when the initial balance difference of the single battery in the series battery pack reaches the preset coarse adjustment requirement, the coarse adjustment equalization of the single battery is turned on, including:
  • the first SOC value refers to the SOC value corresponding to each single cell in the current battery pack in series.
  • the first SOC value is stored in the BMS, so it can be directly obtained from the BMS.
  • S102 Determine a minimum first SOC value among the first SOC values of each single-cell battery, and obtain an initial equilibrium difference between the first SOC value and the minimum first SOC value of each single-cell battery.
  • the N single-cell batteries correspond to N first SOC values.
  • the initial equilibrium difference is the difference between the first SOC value and the minimum first SOC value of one of the single cells.
  • the initial equilibrium difference is determined according to the first SOC value of each single cell in the series battery pack.
  • the preset coarse adjustment requirement can be: the initial balance difference is greater than or equal to the preset coarse balance value, and the preset coarse balance value can be set and modified according to requirements
  • the single cell in the series battery pack is roughly adjusted and balanced.
  • the accuracy of coarse adjustment equalization is related to the accuracy of the SOC algorithm, so the error is relatively large.
  • the target equalization value is less than the SOC accuracy of a single cell
  • the target equalization value cannot be achieved only through the coarse adjustment equalization (final coarse).
  • the first real balance difference after the adjustment is completed is the SOC accuracy.
  • the SOC accuracy of each single cell battery is pre-stored in the BMS. Therefore, you only need to directly query the SOC accuracy of the single cell from the BMS to get the accuracy.
  • the first true balance difference after the coarse adjustment equalization is completed but the coarse adjustment equalization can be used in the full SOC range without waiting for full charge or other specific working conditions, so it has wide applicability (can be done at any time, not Will be affected by working conditions).
  • the above calculation is based on the first SOC value of a single cell to obtain the initial equilibrium difference, and according to its turn-on equilibrium, it can be applied in the full SOC range, and is suitable for situations where the equilibrium difference is relatively large (the initial equilibrium difference is greater than or equal to the preset Set coarse adjustment equalization value) to perform coarse adjustment equalization.
  • step S20 that is, when the first true balance difference of the single battery after coarse adjustment and equalization reaches the preset fine adjustment requirement, according to the single battery after coarse adjustment and equalization Determine the first SOC equalization difference based on the first voltage value of, and start the fine adjustment and equalization of the single-cell battery with the first equalization step based on the first SOC equalization difference, including:
  • S201 Obtain a first true balance difference of a single battery after coarse adjustment and balance; the first true balance difference is equal to the SOC accuracy of the single battery.
  • the first true balance difference of the single-cell battery is the SOC accuracy of the single-cell battery, and the SOC accuracy of each single-cell battery is pre-stored in the BMS. Therefore, it only needs to be directly By querying the SOC accuracy of a single battery from the BMS, the first true balance difference after the rough adjustment is completed can be obtained.
  • the completion of coarse adjustment and equalization can be based on the duration of coarse adjustment (whether the specified equalization duration is reached, if yes, represents the completion of coarse adjustment) or the capacity of the coarse adjustment (whether the specified equalization capacity is reached, if yes, it represents coarse adjustment) Equilibrium is complete) to determine.
  • S202 When the first real balance difference is less than or equal to a preset coarse adjustment balance value, obtain a second SOC value of a single battery after the coarse adjustment balance.
  • the second SOC value refers to the SOC value corresponding to a single battery after coarse adjustment and balance, and the SOC value can be directly obtained from the BMS.
  • the single-cell battery needs to be further balanced by fine-tuning the balance.
  • the second SOC value is in the preset SOC segment, which means that the second SOC value corresponding to the single battery after coarse adjustment falls within the preset SOC segment, and the preset SOC segment can be adjusted according to the balance target type for fine adjustment and balance. (Including voltage top alignment, voltage bottom alignment, preset point voltage alignment, etc.) to determine.
  • the preset state refers to the current state of the single battery when the first voltage value or the second voltage value needs to be collected when the second SOC value is in the preset SOC segment.
  • the preset state can also be correspondingly determined according to the balance target type of the fine-tuned balance.
  • the preset state includes the fully charged state of the single battery, the empty state of the single battery, and the state when the voltage of the single battery is equal to the voltage at the preset point.
  • the first voltage value refers to the voltage value of a single cell that has been coarse-tuned and balanced before in the preset state
  • the second voltage value refers to each of the other single-cell batteries except for the single-cell battery that has been coarse-tuned and balanced before. The voltage value in the preset state.
  • the first SOC balance difference refers to the SOC difference represented by the first voltage difference converted into the battery capacity.
  • the OCV-SOC curve is pre-stored in the BMS, and the SOC balance difference corresponding to the first voltage difference can be directly queried from the OCV-SOC curve.
  • the SOC value corresponding to the first voltage value can be obtained from the OCV-SOC curve first, and the minimum value of all the second voltage values (that is, the minimum second voltage value) can be determined, and then, from Obtain the SOC value corresponding to the minimum second voltage value from the OCV-SOC curve, and obtain the difference between the SOC value corresponding to the first voltage value and the SOC value corresponding to the minimum second voltage value, and record it as the first of a single battery Poor SOC balance.
  • the first true balance difference is equal to the first SOC balance difference.
  • S205 Start the fine adjustment and equalization of the single battery at the first equalization step based on the first SOC equalization difference.
  • the first equalization step can be selected from a preset equalization step list (the equalization step list lists multiple possible equalization steps) according to the first SOC equalization difference.
  • the first equalization step size of the fine adjustment equalization needs to be less than or equal to the first SOC equalization difference, and then the fine adjustment and equalization is performed according to the selected first equalization step.
  • the equalization is turned on according to the first voltage value of the single battery.
  • the equalization accuracy is related to the voltage sampling accuracy and the battery OCV curve characteristics. Therefore, the equalization accuracy is high, the error is small, and it is suitable for small balance differences.
  • the number of full charges per day is at most once, so the actual number of days required will far exceed the total balance time ( For example, the duration of a fine adjustment of balance is 10 hours, but it needs to be fully charged once. In actual use, since the number of full charges is at most once per day, it will take at least one day to complete the 10 hours of fine balance).
  • step S203 before step S203, that is, when the second SOC value is in the preset SOC segment, the first voltage value of the single battery in the preset state is obtained, and the other single battery in the series battery pack is Before the second voltage value in the preset state, it includes:
  • the preset SOC segment is the high SOC segment of the first preset range, and the preset state is the fully charged state of the single battery.
  • the high SOC section of the first preset range can be set according to requirements, for example, set to a high SOC section above 90%.
  • the preset SOC segment is the low SOC segment of the second preset range
  • the preset state is the empty state of the single battery.
  • the low SOC section of the second preset range can be set according to requirements, for example, set to a low SOC section below 10%.
  • the preset SOC segment is the SOC segment of the third preset range containing the SOC value corresponding to the preset point voltage
  • the preset state is the single-cell battery The state when the voltage is equal to the voltage at the preset point.
  • the SOC segment of the third preset range can be set according to requirements, for example, it can be set to a SOC segment containing a 10% range of the SOC value corresponding to the voltage at the preset point (optionally, it can be set with the preset point
  • the SOC value corresponding to the voltage is the midpoint of the SOC segment).
  • the preset SOC segment is determined according to the balance target type (including voltage top alignment, voltage bottom alignment, preset point voltage alignment, etc.) of the fine adjustment and equalization, and the preset state is also determined according to the fine adjustment and equalization.
  • the balance target type of is correspondingly determined, and the preset state includes the fully charged state of the single battery, the empty state of the single battery, and the state when the voltage of the single battery is equal to the voltage at the preset point.
  • the precision of fine adjustment and balance can be further improved.
  • the preset SOC segment is determined to be the high SOC segment of the first preset range, and the voltage value is obtained in the fully charged state, and the first SOC balance determined at this time
  • the size of the difference will be relatively small, so the calculation accuracy will also be improved, the same is true in the case of other balanced target types.
  • step S102 the smallest first SOC value among the first SOC values of each single battery is determined, and the difference between the first SOC value and the smallest first SOC value of each single battery is obtained.
  • the initial equilibrium difference including:
  • the first SOC value is in the preset SOC segment, which means that the first SOC value obtained by the single battery from the BMS falls within the range of the preset SOC segment, and the preset SOC segment can be adjusted according to the balance target type for fine adjustment and balance. (Including voltage top alignment, voltage bottom alignment, preset point voltage alignment, etc.) to determine.
  • the preset state refers to the current state of each single battery when the third voltage value or the fourth voltage value needs to be collected when the first SOC value is in the preset SOC segment.
  • the preset state can also be correspondingly determined according to the balance target type of the fine-tuned balance.
  • the preset state includes the fully charged state of the single battery, the empty state of the single battery, and the state when the voltage of the single battery is equal to the voltage at the preset point.
  • the third voltage value refers to the voltage value of the single cell battery in the preset state before it is balanced
  • the fourth voltage value refers to the voltage value of the single cell battery in the preset state before the other single cell battery is not balanced. Voltage value.
  • the second voltage difference between the third voltage value and the smallest fourth voltage value is obtained, and the second SOC equilibrium difference of the single battery is obtained according to the second voltage difference.
  • the second SOC balance difference refers to the SOC difference represented by the second voltage difference converted into the battery capacity.
  • the OCV-SOC curve is pre-stored in the BMS, and the SOC balance difference corresponding to the second voltage difference can be directly queried from the OCV-SOC curve.
  • the SOC value corresponding to the third voltage value may be obtained from the OCV-SOC curve first, and the minimum value of all the fourth voltage values (that is, the minimum fourth voltage value) may be determined, and then, from Obtain the SOC value corresponding to the minimum fourth voltage value from the OCV-SOC curve, and obtain the difference between the SOC value corresponding to the third voltage value and the SOC value corresponding to the minimum fourth voltage value, and record it as the second of a single battery Poor SOC balance.
  • the fine adjustment and balance of the single cell is started with the second balance step.
  • the second equalization step size is smaller than the second SOC equalization difference.
  • the second equalization step can be selected from the preset equalization step list (the equalization step list lists multiple possible equalization steps) according to the second SOC equalization difference. (The second equalization step size of the fine adjustment equalization needs to be less than or equal to the second SOC equalization difference), and then the fine adjustment and equalization is performed according to the selected second equalization step.
  • the equalization is turned on according to the third voltage value of the single battery, and its equalization accuracy is related to the voltage sampling accuracy and the battery OCV curve characteristics. Therefore, the equalization accuracy is high, the error is small, and it is suitable for small balance differences.
  • the second equalization step size may be equal to or not equal to the first equalization step size.
  • the SOC balance difference after this fine adjustment and balance is still greater than the target balance value, it means that the SOC state balance has not been completed, and it is necessary to continue the second or more fine adjustment and balance (for the specific process, please refer to the subsequent second fine adjustment. The description of adjusting the balance will not be repeated here), until the final real balance difference obtained by a single battery is less than or equal to the target balance value. If the SOC balance difference after this fine adjustment and balance is less than or equal to the target balance value, it means that the SOC state balance of the single battery has been completed.
  • step S30 that is, when the second true balance difference of the single-cell battery after fine adjustment and balance is less than or equal to the target balance value, determining that the SOC state balance of the single-cell battery is completed includes:
  • the second true balance difference is equal to the difference between the first SOC balance difference and the first balance step; when the second true balance difference is less than or equal to the target balance value, Make sure to complete the SOC state balance of the single-cell battery.
  • the second true balance difference is equal to the difference between the first SOC balance difference and the first balance step.
  • the second true balance difference of a single battery is less than or equal to the target balance value, it represents a single cell
  • the battery has completed the SOC state balancing process.
  • the second true balance difference of a single battery is still greater than the target balance value, it means that the SOC state balance has not been completed, and the second (or more) fine-tuned balance needs to be continued until the final true balance difference of the single battery is obtained. Less than or equal to the target equilibrium value.
  • the method further includes:
  • the third SOC value of the single battery after the fine adjustment and balance is obtained.
  • the third SOC value refers to the SOC value corresponding to a single battery after the first fine adjustment and balance, and the SOC value can be directly obtained from the BMS.
  • the second true equilibrium difference is greater than the target equilibrium value, it indicates that the equilibrium goal has not been reached after the first fine-tuning and balancing, that is, the SOC state of the single battery has not been balanced, so a second fine-tuning and balancing is required.
  • the third SOC value is in the preset SOC segment, which means that the corresponding third SOC value of the single battery after the first fine adjustment and balance falls within the preset SOC segment, and the preset SOC segment can be adjusted according to the fine adjustment and balance.
  • the balance target type (including voltage top alignment, voltage bottom alignment, preset point voltage alignment, etc.) is determined.
  • the preset state refers to the current state of the single cell battery when the fifth or sixth voltage value needs to be collected when the third SOC value is in the preset SOC segment.
  • the preset state can also be adjusted according to the balance target type of fine-tuning balance
  • the preset state includes the fully charged state of the single battery, the empty state of the single battery, and the state when the voltage of the single battery is equal to the voltage of the preset point.
  • the fifth voltage value refers to the voltage value of a single cell that has completed the first fine adjustment and equalization before in the preset state
  • the sixth voltage value refers to the other single cell except the single cell that has completed the first fine adjustment and equalization before.
  • the voltage value of the battery in the preset state is the fully charged state of the single battery, the empty state of the single battery, and the state when the voltage of the single battery is equal to the voltage of the preset point.
  • the fifth voltage value refers to the voltage value of a single cell that has completed the first fine adjustment and equalization before in the preset state
  • the sixth voltage value refers to the other single cell except the single cell that has completed the first fine adjustment and equalization before.
  • the third voltage difference between the fifth voltage value and the smallest sixth voltage value is obtained, and the third SOC balance difference of the single battery is obtained according to the third voltage difference.
  • the third SOC balance difference refers to the SOC difference represented by the third voltage difference converted into the battery capacity.
  • the OCV-SOC curve is pre-stored in the BMS, and the SOC balance difference corresponding to the third voltage difference can be directly queried from the OCV-SOC curve.
  • the SOC value corresponding to the fifth voltage value may be obtained from the OCV-SOC curve first, and the minimum value of all the sixth voltage values (that is, the minimum sixth voltage value) may be determined, and then, from Obtain the SOC value corresponding to the minimum sixth voltage value from the OCV-SOC curve, and obtain the difference between the SOC value corresponding to the fifth voltage value and the SOC value corresponding to the minimum sixth voltage value, and record it as the third of a single battery Poor SOC balance. Understandably, in some embodiments, the second true balance difference is equal to the third SOC balance difference.
  • a third balance step is used to start the second fine adjustment balance of the single cell, where the third balance step is smaller than the third SOC balance difference.
  • the third can be selected from the preset equalization step length list (the equalization step length list lists multiple possible equalization step lengths) according to the third SOC equalization difference.
  • Balance step size the third balance step size of the second fine-tuning balance needs to be less than or equal to the third SOC balance difference, and the third balance step size is less than or equal to the first balance step size of the first fine-tuning balance before
  • the selected third equalization step size performs a second fine adjustment and equalization on it.
  • the equalization is started according to the fifth voltage value of the single battery.
  • the equalization accuracy is related to the voltage sampling accuracy and the battery OCV curve characteristics. Therefore, the equalization accuracy is high, the error is small, and it is suitable for small balance differences. In the case of fine adjustment and balance.
  • the SOC balance difference after the second fine adjustment equalization is still greater than the target equilibrium value, it means that the SOC state equalization has not been completed, and the fine adjustment equalization needs to be continued (refer to the second fine adjustment equalization process, which will not be repeated here. ), until the real equilibrium difference finally obtained by a single battery is less than or equal to the target equilibrium value.
  • the method before starting the second fine-tuning and equalization of the single-cell battery at the third equalization step based on the third SOC equalization difference, the method includes:
  • the third equalization step size may be selected according to the third SOC equalization difference.
  • the third balance step size is set equal to the first balance step size. That is, when the third SOC equalization difference is greater than the first equalization step, it means that the second equalization can be continued according to the first equalization step selected in the first fine-tuning equalization, and there is no need to select other third equalization steps again. , But directly set the third equalization step length to be equal to the first equalization step length.
  • a third balance step size smaller than the third SOC balance difference is selected. That is, when the third SOC equalization difference is less than the first equalization step, it means that the first equalization step selected during the first fine-tuning equalization is no longer suitable for the second fine-tuning equalization process. Therefore, it needs to be selected from the preset In the list of equalization steps, select a third equalization step that is less than or equal to the third SOC equalization difference (because the third SOC equalization difference is less than or equal to the first equalization step, the third equalization step must also be smaller than the first equalization step Long), and then perform a second fine adjustment and equalization on the selected third equalization step size.
  • turning on the coarse adjustment of the single-cell battery includes: obtaining the SOH (State of Health, battery state of health) value of the single-cell battery and the battery nominal capacity; according to the initial balance difference and the SOH value of the single-cell battery Determine the balanced capacity of a single battery with the nominal capacity of the battery; turn on the coarse adjustment and balance of the single battery's capacity until the coarse adjustment and balance capacity of the single battery reaches the equilibrium capacity, complete the coarse adjustment and balance.
  • SOH State of Health, battery state of health
  • the initial equilibrium difference is calculated based on the SOC value of a single cell
  • the equilibrium capacity is determined according to the initial equilibrium difference, the SOH value, and the battery nominal capacity
  • the coarse adjustment equilibrium process is determined according to the equilibrium capacity. carry out.
  • the coarse adjustment equalization process can be applied in the whole SOC range, but its accuracy is related to the SOC value and the accuracy of the SOH algorithm. Therefore, the equalization error is relatively large, and it is suitable for coarse adjustment equalization when the equalization difference is relatively large.
  • turning on the coarse adjustment of the single-cell battery includes: obtaining the SOH value of the single-cell battery, the nominal battery capacity, and the effective equalization current; according to the initial balance difference, the SOH value, and the nominal battery capacity of the single-cell battery And the effective equalization current to determine the first equalization duration of the single battery; the time for turning on the single battery is coarsely adjusted and equalized, and the coarse adjustment equalization is completed when the time for the coarse adjustment of the single battery reaches the first equalization duration.
  • the initial equilibrium difference is calculated based on the SOC value of a single cell, and the first equilibrium duration is determined according to the initial equilibrium difference, the SOH value, the nominal battery capacity, and the effective equilibrium current.
  • the equalization duration determines whether the coarse adjustment equalization process is completed.
  • the coarse adjustment equalization process can be applied in the entire SOC range, but its accuracy is related to the SOC value and the accuracy of the SOH algorithm. Therefore, the equalization error is relatively large, and it is only suitable for coarse adjustment equalization when the equalization difference is relatively large.
  • enabling the fine-tuning and equalization of the single-cell battery at the first equalization step based on the first SOC balance difference includes: obtaining the nominal battery capacity and the effective equalization current of the single-cell battery; and according to the first equalization step, The nominal capacity of the battery and the effective equalization current determine the second equalization duration of the single battery; the time to turn on the single battery is fine-tuned and equalized, and the time for the single-cell battery fine-tuned and equalized reaches the second equalization duration, complete this time Fine-tune the balance.
  • the second equalization duration is determined based on the first equalization step size of the single battery, the nominal capacity of the battery, and the effective equalization current, and the second balance duration is used to determine whether the fine-tuning equalization process is completed.
  • the precision of its fine-tuning equalization is related to the voltage sampling accuracy and battery OCV curve characteristics, so the equalization accuracy is high, the error is small, and it is suitable for fine-tuning equalization when the balance difference is small.
  • the equalization duration can also be calculated with reference to this embodiment. In this way, it can be realized that the end of the fine-tuning and equalization process can be confirmed when the equalization duration ends.
  • FIG. 4 is a schematic diagram of the voltage curve of each single cell in the series battery pack before performing SOC state equalization in an embodiment of the present disclosure
  • FIG. 5 is the voltage curve diagram of the series battery pack in an embodiment of the present disclosure.
  • Schematic diagram of the voltage curve of each single-cell battery after the SOC state is balanced. Among them, 1, 2, and 3 respectively represent a single cell in the series battery pack. Obviously, before the SOC state is equalized, the remaining capacity of each single cell in the series battery pack is different, which causes the remaining capacity to be misaligned, which in turn leads to a reduction in the available capacity of the series battery pack. After the SOC state equalization is completed, each single-cell battery no longer has the problem of capacity misalignment, and the usable capacity of the series battery pack is improved compared with before the equalization.
  • the initial balance difference of a single cell in the series battery pack is 8%, the SOC accuracy of the single cell is ⁇ 3% (NCM), the SOH value is 100%, and the preset coarse balance value is 5%.
  • the nominal capacity is 200Ah, the effective equalization current is 0.1A, and the target equalization value is 0.5%.
  • the coarse adjustment balance of the single battery can be turned on.
  • the coarse adjustment and equalization process does not need to wait for full charge (because the first SOC value of the single battery used to calculate the initial balance difference can be directly obtained from the BMS at any time, so there is no need for this process Fully charged) or other specific working conditions can be carried out, so the applicability is wide.
  • the first true balance difference of the single-cell battery is equal to the absolute value of the SOC accuracy of the single-cell battery, that is, 3% (SOC balance difference).
  • the preset fine adjustment requirement 3% of the first true balance difference is less than the preset coarse balance value 5%
  • the second SOC value when the second SOC value is in the preset SOC segment, obtain the first voltage value of the single cell battery in the preset state and the second voltage value of the other single cell batteries in the series battery pack in the preset state from the BMS
  • the first voltage difference between the first voltage value and the smallest second voltage value is obtained, and the first SOC equilibrium difference of the single battery is determined to be 3% from the OCV-SOC curve according to the first voltage difference.
  • the equalization is turned on according to the preset first equalization step size of 1%.
  • the second true balance difference of the single battery is equal to the difference between the first SOC balance difference of 3% and the first balance step size 1%, that is, 2% (SOC balance difference).
  • the second real equalization difference 2% is greater than the target equalization value 0.5% (and it is smaller than the preset coarse equalization value 5% compared to the first real equalization difference), therefore, the second fine-tuning equalization needs to be turned on .
  • the third SOC value is in the preset SOC segment, the fifth voltage value of the single cell battery in the preset state and the sixth voltage value of the other single cell batteries in the series battery pack in the preset state are obtained from the BMS
  • the third voltage difference between the fifth voltage value and the smallest sixth voltage value is acquired, and the third SOC equilibrium difference of the single battery is determined to be 2% from the OCV-SOC curve according to the third voltage difference.
  • the equalization is continued at the third equalization step size of 1% equal to the first equalization step size.
  • the SOC equilibrium difference of the single-cell battery is obtained equal to the difference between the third SOC equilibrium difference of 2% and the third equilibrium step size of 1%, that is, 1% (SOC equilibrium difference).
  • the SOC balance difference of the single battery is 1%, and it is equal to the third balance step size 1%, therefore, it is necessary to select the fourth balance step size less than 1% of the third balance step size from the preset balance step size list.
  • Balance step size the fourth balance step size less than 1% of the third balance step size from the preset balance step size list.
  • the SOC equilibrium difference of the single-cell battery is equal to the difference between the SOC equilibrium difference after the second fine adjustment 1% and the fourth equilibrium step size 0.5%, that is, 0.5% (SOC equilibrium difference) .
  • the SOC balance difference is equal to the target balance value of 0.5%, it is determined that the SOC state balance of the single-cell battery is completed.
  • the total equalization time is 210h, and the number of full charge is 3 times (corresponding to the three fine adjustment equalization processes), that is, the above process takes 9 days to complete.
  • the coarse adjustment equalization is first used to reduce the SOC equilibrium difference to 3% of the first true equilibrium difference (the limit of the coarse adjustment equalization is this The first true equilibrium difference, so the target equilibrium value cannot be achieved only by coarse adjustment, but it can be performed under any working conditions without waiting for a specific working condition, so the actual total time-consuming length can be shortened, which is suitable for the equilibrium difference. If it is large, perform coarse adjustment equalization); then, perform fine adjustment equalization. In fine adjustment equalization, a fixed equalization step size is not selected at the beginning, but a larger first equalization step size of 1% is selected first.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 6.
  • the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer readable instructions, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer-readable instructions in the non-volatile storage medium.
  • a computer device is provided.
  • the internal structure diagram of the computer device may be as shown in FIG. 7.
  • the computer device includes a memory, a processor, and computer readable instructions stored in the memory and running on the processor, When the processor executes the computer-readable instructions, the above-mentioned variable-step-size equalization processing method of the series-connected battery pack is realized.
  • a computer-readable storage medium is also provided. As shown in FIG. 8, the computer-readable storage medium stores computer-readable instructions, and the computer-readable instructions are executed by a processor to realize the above-mentioned series battery. Group's variable step-size equalization processing method.
  • a battery pack is also provided.
  • the battery pack includes a series-connected battery pack, and the battery pack performs the SOC state balance of a single battery by performing a variable-step equalization processing method of the series-connected battery pack .
  • the specific limitation of the above series battery pack please refer to the above limitation on the variable step-size equalization processing method of the series battery pack, which will not be repeated here.
  • a vehicle is also provided. As shown in FIG. 10, the vehicle includes a series battery pack and a control module communicatively connected with the series battery pack, and the control module is used to perform variable step equalization of the series battery pack. Approach.
  • control module For the specific limitation of the control module, please refer to the above limitation of the variable step-size equalization processing method of the series-connected battery pack, which will not be repeated here.
  • Each of the above-mentioned control modules can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road DRAM (SLDRAM), memory bus direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种变步长均衡处理方法、设备、介质、电池包和车辆。方法包括:在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启单节电池的粗调均衡;在粗调均衡之后的单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的单节电池的第一电压值确定第一SOC均衡差,并基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡;在精调均衡后的单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成单节电池的SOC状态均衡。

Description

变步长均衡处理方法、设备、介质、电池包和车辆
相关申请的交叉引用
本公开要求于2019年09月25日提交的申请号为201910912716.1,名称为“变步长均衡处理方法、设备、介质、电池包和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及串联电池组的均衡技术领域,具体涉及一种变步长均衡处理方法、设备、介质、电池包和车辆。
背景技术
在串联电池组使用过程中,由于串联电池组中的各单节电池的自放电率和老化程度不同,造成各单节电池剩余容量不同,从而造成各单节电池的剩余容量错位,进而导致串联电池组可用容量减少。因此,需要对各单节电池进行SOC状态调节,即对各单节电池进行均衡。
相关技术中,对串联电池组中的各单节电池进行均衡时,通常根据电压和SOC值中的一项来单独计算均衡差,进而确定是否开启均衡,且每次均衡量均为固定值。
以上方案存在以下不足之处:在均衡量为固定值时,若该固定值设置的较大,则会出现反复均衡、均衡效率低和均衡精度差的问题;若该固定值设置的较小,则会出现需要的满充次数较多、均衡时长较长和均衡速度慢的问题。也即,在单次的均衡量为固定值的情况下,难以兼顾均衡精度和速度。同时,根据电压和SOC值中的一项单独计算均衡差,会进一步导致均衡精度降低。
公开内容
本公开实施例提供一种变步长均衡处理方法、设备、介质、电池包和车辆,在串联电池组的单节电池的均衡过程中,结合了粗调均衡和精调均衡,可在快速且准确地达到均衡目标的同时,提升均衡精度和均衡速度,且本公开的适用范围更广。
本公开实施例的第一方面提供了一种串联电池组的变步长均衡处理方法,包括:
在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启所述单节电池的粗调均衡;其中,所述初始均衡差根据所述串联电池组中各单节电池的第一SOC值确定;
在粗调均衡之后的所述单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的所述单节电池的第一电压值确定第一SOC均衡差,并基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡;其中,所述第一均衡步长小于所述第一SOC均衡差;
在精调均衡后的所述单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成所述单节电池的SOC状态均衡。
本公开实施例的第二方面提供了一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,所述处理器执行所述计算机可读指令时实现所述的串联电池组的变步长均衡处理方法。
本公开实施例的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,所述计算机可读指令被处理器执行时实现所述的串联电池组的变步长均衡处理方法。
本公开实施例的第四方面提供了一种电池包,包括串联电池组,所述电池包通过所述的串联电池组的变步长均衡处理方法进行单节电池的SOC状态均衡。
本公开实施例的第五方面提供了一种车辆,包括串联电池组以及与所述串联电池组通信连接的控制模块,所述控制模块用于执行所述的串联电池组的变步长均衡处理方法。
本公开实施例提供的变步长均衡处理方法、设备、介质、电池包和车辆,在串联电池组的单节电池的均衡过程中,结合了粗调均衡(根据所述串联电池组中各单节电池的第一SOC值确定初始均衡差,并根据初始均衡差确定是否达到预设的粗调要求,并开启粗调均衡)和精调均衡(在粗调均衡之后的所述单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的所述单节电池的第一电压值确定第一SOC均衡差,并基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡),可在快速且准确地达到均衡目标的同时,提升均衡精度和均衡速度,且本公开的适用范围更广。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例中串联电池组的变步长均衡处理方法的流程图;
图2是本公开一实施例中串联电池组的变步长均衡处理方法中步骤S10的流程图;
图3是本公开一实施例中串联电池组的变步长均衡处理方法中步骤S20的流程图;
图4是本公开一实施例中串联电池组中各单节电池在进行SOC状态均衡之前的电压曲线示意图;
图5是本公开一实施例中串联电池组中各单节电池在完成SOC状态均衡之后的电压曲线示意图;
图6是本公开一实施例中计算机设备的结构示意图;
图7是本公开另一实施例中计算机设备的结构示意图;
图8是本公开一实施例中计算机可读存储介质的结构示意图;
图9是本公开一实施例中电池包的结构示意图;
图10是本公开一实施例中车辆的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供的串联电池组的变步长均衡处理方法,可应用在客户端(计算机设备)通过网络与服务器进行通信的应用环境中。其中,客户端(计算机设备)包括但不限于为各种个人计算机、笔记本电脑、智能手机、平板电脑、摄像头和便携式可穿戴设备。服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一实施例中,如图1所示,提供一种串联电池组的变步长均衡处理方法,包括以下步骤S10-S30:
S10,在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启单节电池的粗调均衡。
其中,初始均衡差根据串联电池组中各单节电池的第一SOC(State of Charge,电池荷电状态)值确定。第一SOC值是指当前串联电池组中每一个单节电池对应的SOC值,该第一SOC值可以通过BMS(Battery Management System,电池管理系统)直接获取。可理解地,假设串联电池组中有N(N为正整数)个单节电池,那么N个单节电池对应N个第一SOC值,此时,先确定N个单节电池对应的N个第一SOC值中的最小值(可称为最小第一SOC值),进而,初始均衡差为其中一个单节电池的第一SOC值与最小第一SOC值之间的差值。在初始均衡差达到预设的粗调要求(预设粗调要求可以为:初始均衡差大于或等于预设粗调均衡值)时,对串联电池组中的该单节电池进行粗调均衡。
可理解地,基于单节电池的第一SOC值计算得到初始均衡差,并根据其开启均衡,可在全SOC范围适用。该过程中,均衡的精度与SOC算法精度相关,因此误差相对较大,适于在均衡差相对较大的情况下(初始均衡差大于或等于预设粗调均衡值)进行粗调均衡,且该过程无需等待满充或其他特定工况即可进行,因此适用性广。
S20,在粗调均衡之后的单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的单节电池的第一电压值确定第一SOC均衡差,并基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡;其中,第一均衡步长小于第一SOC均衡差。
在粗调均衡完成之后,该单节电池的第一真实均衡差为该单节电池的SOC精度,此时,可以判断单节电池的第一真实均衡差是否达到预设的精调要求,并在单节电池的第一真实均衡差达到预设的精调要求时,根据当前该单节电池的第一电压值(第一电压值是指单节电池在预设状态下的第一电压值,预设状态可以是指单节电池满充、放空或者为某一点电压时的电压值),确定第一SOC均衡差。此后,在进行精调均衡之前,先根据第一SOC均衡差从预设的均衡步长列表(该均衡步长列表中列举了多种可能的均衡步长)中选取第一均衡步长(精调均衡的第一均衡步长需要小于或等于第一SOC均衡差),进而根据选取的第一均衡步长对其进行精调均衡。
在上述精调均衡过程中,根据单节电池的第一电压值开启精均衡,其均衡精度与电压采样精度和电池OCV(Open Circuit Voltage,电池开路电压)曲线特性相关,因此均衡精度高,误差较小,适于在均衡差较小的情况下进行精调均衡。可理解地,在一些实施例中,第一真实均衡差等于第一SOC均衡差。
可理解地,在上述判断单节电池的第一真实均衡差是否达到预设的精调要求之后,若单节电池的第一真实均衡差未达到预设的精调要求,也即,该单节电池的SOC精度无法满足预设的精调要求(第一真实均衡差始终大于预设粗调均衡值),说明精调要求对于该单节电池来说要求过高,需要对该精调要求进行调整,比如,调大预设粗调均衡值,以便于该精调均衡过程可以顺利进行。
S30,在精调均衡后的单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成单节电池的SOC状态均衡。
也即,在精调均衡之后,第二真实均衡差等于第一SOC均衡差与第一均衡步长之差,在单节电池的第二真实均衡差小于或等于目标均衡值时,代表单节电池已经完成SOC状态均衡过程。而在单节电池的第二真实均衡差依旧大于目标均衡值时,代表尚未完成SOC状态均衡,需要继续进行二次(或者更多次)精调均衡,直至单节电池最终得到的真实均衡差小于或等于目标均衡值为止。
上述实施例的串联电池组的变步长均衡处理方法,在串联电池组的单节电池的均衡过程中,结合了粗调均衡(根据串联电池组中各单节电池的第一SOC值确定初始均衡差,根据初始均衡差确定是否达到预设的粗调要求,并开启粗调均衡)和精调均衡(在粗调均衡之后的单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的单节电池的第一电压值确定第一SOC均衡差,并基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡),可在快速且准确地达到均衡目标的同时,减少充电天数(需要的在特定工况下进行的精调均衡次数较少,意味着均衡过程中的均衡天数越少,对用户的充电和使用习惯的依赖更少,可以更快达到均衡目标),提升了均衡精度和均衡速度,且本公开的适用范围更广。
在一实施例中,如图2所示,步骤S10,也即在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启单节电池的粗调均衡,包括:
S101,获取串联电池组中的每一个单节电池的第一SOC值。
第一SOC值是指当前串联电池组中每一个单节电池对应的SOC值,该第一SOC值存储在BMS中,因此可以直接从BMS中获取。
S102,确定各单节电池的第一SOC值中的最小第一SOC值,并获取各单节电池的第一SOC值与最小第一SOC值之间的初始均衡差。
可理解地,假设串联电池组中有N(N为正整数)个单节电池,那么N个单节电池对应N个第一SOC值,此时,在确定N个单节电池对应的N个第一SOC值中的最小值(也即最小第一SOC值)之后,初始均衡差为其中一个单节电池的第一SOC值与最小第一SOC值之间的差值。
S103,在单节电池的初始均衡差大于或等于预设的预设粗调均衡值时,开启单节电池的粗调均衡。
在本实施例中,初始均衡差根据串联电池组中各单节电池的第一SOC值确定。在初始均衡差达到预设的粗调要求(预设粗调要求可以为:初始均衡差大于或等于预设粗调均衡值,预设粗调均衡值可以根据需求设定和修改)时,对串联电池组中的该单节电池进行粗调均衡。
可理解地,粗调均衡的精度与SOC算法精度相关,因此误差相对较大,对于目标均衡值小于单节电池的SOC精度的情况来说,仅通过粗调均衡无法达到目标均衡值(最终粗调均衡完成之后的第一真实均衡差即为SOC精度,每一个单节电池的SOC精度均被预先存储在BMS中,因此,仅需要直接从BMS中查询单节电池的SOC精度,即可获知其粗调均衡完成之后的第一真实均衡差),但是,粗调均衡可以在全SOC范围中使用,无需等待满充或其他特定工况即可进行,因此适用性广(可以随时进行,不会受到工况的影响)。因此,上述基于单节电池的第一SOC值计算得到初始均衡差,并根据其开启均衡,可在全SOC范围适用,适于在均衡差相对较大的情况下(初始均衡差大于或等于预设粗调均衡值)进行粗调均衡。
在一实施例中,如图3所示,步骤S20,也即在粗调均衡之后的单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的单节电池的第一电压值确定第一SOC均衡差,并基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡,包括:
S201,获取粗调均衡之后的单节电池的第一真实均衡差;第一真实均衡差等于单节电池的SOC精度。
也即,在粗调均衡完成之后,该单节电池的第一真实均衡差为该单节电池的SOC精度,每一个单节电池的SOC精度均被预先存储在BMS中,因此,仅需要直接从BMS中查询单节电池的SOC精度,即可获知其粗调均衡完成之后的第一真实均衡差。
可理解地,粗调均衡完成可以根据粗调均衡的时长(是否达到指定的均衡时长,若是,代表粗调均衡完成)或者粗调均衡的容量(是否达到指定的均衡容量,若是,代表粗调均衡完成)来进行确定。
S202,在第一真实均衡差小于或等于预设粗调均衡值时,获取粗调均衡之后的单节电池的第二SOC值。其中,第二SOC值是指粗调均衡之后的单节电池对应的SOC值,该SOC值可以直接从BMS中获取。
在第一真实均衡差小于或等于预设粗调均衡值时,说明粗调已经最大程度上地完成了均衡(已经达到预设的精调要求),无法更进一步通过粗调均衡去缩小均衡差,因此,需要通过精调均衡对单节电池做进一步均衡。
S203,在第二SOC值处于预设SOC段时,获取单节电池在预设状态下的第一电压值,以及串联电池组中的其他单节电池在预设状态下的第二电压值。
其中,第二SOC值处于预设SOC段,是指单节电池粗调之后对应的第二SOC值落入预设SOC段的范围内,该预设SOC段可以根据精调均衡的均衡目标类型(包括电压顶端对齐、 电压底端对齐、预设点电压对齐等)进行确定。
预设状态是指当第二SOC值处于预设SOC段时,需要采集第一电压值或者第二电压值时的单节电池当前的状态。预设状态也可根据精调均衡的均衡目标类型对应确定,预设状态包括单节电池的满充状态、单节电池的放空状态,以及单节电池的电压等于预设点电压时的状态。
第一电压值是指此前已完成粗调均衡的单节电池在预设状态下的电压值,第二电压值是指除此前已完成粗调均衡的单节电池之外的其他单节电池各自在预设状态下的电压值。
S204,获取第一电压值与最小的第二电压值之间的第一电压差,并根据第一电压差获取单节电池的第一SOC均衡差。其中,第一SOC均衡差是指第一电压差转换为电池容量之后所代表的SOC差值。
在一实施例中,BMS中预先存储有OCV-SOC曲线,可以直接从该OCV-SOC曲线中查询与第一电压差对应的SOC均衡差。
在另一实施例中,可以先从OCV-SOC曲线中获取第一电压值对应的SOC值,并确定出所有第二电压值中的最小值(也即最小第二电压值),之后,从OCV-SOC曲线中获取最小第二电压值对应的SOC值,并获取第一电压值对应的SOC值与最小第二电压值对应的SOC值之差,以及将其记录为单节电池的第一SOC均衡差。
可理解地,在一些实施例中,第一真实均衡差等于第一SOC均衡差。
S205,基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡。
可理解地,在进行精调均衡之前,可先根据第一SOC均衡差从预设的均衡步长列表(该均衡步长列表中列举了多种可能的均衡步长)中选取第一均衡步长(精调均衡的第一均衡步长需要小于或等于第一SOC均衡差),进而根据选取的第一均衡步长对其进行精调均衡。
在上述精调均衡过程中,根据单节电池的第一电压值开启均衡,其均衡精度与电压采样精度和电池OCV曲线特性相关,因此均衡精度高,误差较小,适于在均衡差较小的情况下进行精调均衡,否则,由于每次均衡均需要1次完全充电,对于实际工况来说,每天满充次数最多为一次,因此需要的实际天数将会远远超过总均衡时长(比如,一次精调均衡时长为10小时,但是需要满充一次,在实际使用中,由于每天满充次数最多为一次,因此将会需要耗费至少一天,才可以完成10小时的精调均衡)。
在一实施例中,步骤S203之前,也即在第二SOC值处于预设SOC段时,获取单节电池在预设状态下的第一电压值,以及串联电池组中的其他单节电池在预设状态下的第二电压值之前,包括:
获取精调均衡的均衡目标类型。
在精调均衡的均衡目标类型为电压顶端对齐时,确定预设SOC段为第一预设范围的高SOC段,预设状态为单节电池的满充状态。可理解地,第一预设范围的高SOC段可以根据需求设定,比如设定为90%以上的高SOC段。
在精调均衡的均衡目标类型为电压底端对齐时,确定预设SOC段为第二预设范围的低SOC段,预设状态为单节电池的放空状态。可理解地,第二预设范围的低SOC段可以根据需 求设定,比如设定为10%以下的低SOC段。
在精调均衡的均衡目标类型为预设点电压对齐时,确定预设SOC段为包含与预设点电压对应的SOC值的第三预设范围的SOC段,预设状态为单节电池的电压等于预设点电压时的状态。可理解地,第三预设范围的SOC段可以根据需求设定,比如设定为包含与预设点电压对应的SOC值的10%大小范围的SOC段(可选的,以与预设点电压对应的SOC值为该SOC段的中点)。
也即,在本实施例中,预设SOC段根据精调均衡的均衡目标类型(包括电压顶端对齐、电压底端对齐、预设点电压对齐等)进行确定,预设状态也根据精调均衡的均衡目标类型对应确定,预设状态包括单节电池的满充状态、单节电池的放空状态,以及单节电池的电压等于预设点电压时的状态。
通过上述对预设SOC段和预设状态的确定,可以进一步提升精调均衡的精度。比如,在精调均衡的均衡目标类型为电压顶端对齐时,确定预设SOC段为第一预设范围的高SOC段,且在满充状态下获取电压值,此时确定的第一SOC均衡差的大小将会相对较小,因此计算精度也会得到提升,其他均衡目标类型情况下也同理。
在一实施例中,步骤S102之后,也即确定各单节电池的第一SOC值中的最小第一SOC值,并获取各单节电池的第一SOC值与最小第一SOC值之间的初始均衡差之后,包括:
在单节电池的初始均衡差小于预设粗调均衡值时,在单节电池的第一SOC值处于预设SOC段时,获取单节电池在预设状态下的第三电压值,以及串联电池组中的其他单节电池在预设状态下的第四电压值。
在本实施例中,若单节电池的初始均衡差小于预设粗调均衡值,代表该单节电池已经不适用于粗调均衡,而是直接满足了预设的精调要求,因此,可以直接对其进行精调均衡。其中,第一SOC值处于预设SOC段,是指单节电池从BMS中获取的第一SOC值落入预设SOC段的范围内,该预设SOC段可以根据精调均衡的均衡目标类型(包括电压顶端对齐、电压底端对齐、预设点电压对齐等)进行确定。预设状态是指当第一SOC值处于预设SOC段时,需要采集第三电压值或者第四电压值时的各单节电池当前的状态。预设状态也可根据精调均衡的均衡目标类型对应确定,预设状态包括单节电池的满充状态、单节电池的放空状态,以及单节电池的电压等于预设点电压时的状态。第三电压值是指单节电池未进行均衡之前在预设状态下的电压值,第四电压值是指除该单节电池之外的其他单节电池未进行均衡之前在预设状态下的电压值。
获取第三电压值与最小的第四电压值之间的第二电压差,并根据第二电压差获取单节电池的第二SOC均衡差。其中,第二SOC均衡差是指第二电压差转换为电池容量之后所代表的SOC差值。在一实施例中,BMS中预先存储有OCV-SOC曲线,可以直接从该OCV-SOC曲线中查询与第二电压差对应的SOC均衡差。在另一实施例中,可以先从OCV-SOC曲线中获取第三电压值对应的SOC值,并确定出所有第四电压值中的最小值(也即最小第四电压值),之后,从OCV-SOC曲线中获取最小第四电压值对应的SOC值,并获取第三电压值对应的SOC值与最小第四电压值对应的SOC值之差,以及将其记录为单节电池的第二SOC均衡差。
基于第二SOC均衡差以第二均衡步长开启单节电池的精调均衡。其中,第二均衡步长小于第二SOC均衡差。可理解地,在进行精调均衡之前,可先根据第二SOC均衡差从预设的均衡步长列表(该均衡步长列表中列举了多种可能的均衡步长)中选取第二均衡步长(精调均衡的第二均衡步长需要小于或等于第二SOC均衡差),进而根据选取的第二均衡步长对其进行精调均衡。
在上述精调均衡过程中,根据单节电池的第三电压值开启均衡,其均衡精度与电压采样精度和电池OCV曲线特性相关,因此均衡精度高,误差较小,适于在均衡差较小的情况下进行精调均衡。可理解地,第二均衡步长可以等于或者不等于第一均衡步长。
可理解地,若本次精调均衡之后的SOC均衡差依旧大于目标均衡值,代表尚未完成SOC状态均衡,需要继续进行二次或者更多次精调均衡(具体过程可以参照后续对于二次精调均衡的描述,在此不再赘述),直至单节电池最终得到的真实均衡差小于或等于目标均衡值为止。而若本次精调均衡之后的SOC均衡差小于或等于目标均衡值,代表已经完成单节电池的SOC状态均衡。
在一实施例中,步骤S30,也即在精调均衡后的单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成单节电池的SOC状态均衡,包括:
获取精调均衡后的单节电池的第二真实均衡差,第二真实均衡差等于第一SOC均衡差与第一均衡步长之差;在第二真实均衡差小于或等于目标均衡值时,确定完成单节电池的SOC状态均衡。
也即,在精调均衡之后,第二真实均衡差等于第一SOC均衡差与第一均衡步长之差,在单节电池的第二真实均衡差小于或等于目标均衡值时,代表单节电池已经完成SOC状态均衡过程。而在单节电池的第二真实均衡差依旧大于目标均衡值时,代表尚未完成SOC状态均衡,需要继续进行二次(或者更多次)精调均衡,直至单节电池最终得到的真实均衡差小于或等于目标均衡值为止。
在一实施例中,获取精调均衡后的单节电池的第二真实均衡差之后,还包括:
在第二真实均衡差大于目标均衡值时,获取精调均衡后的单节电池的第三SOC值。其中,第三SOC值是指初次进行精调均衡之后的单节电池对应的SOC值,该SOC值可以直接从BMS中获取。可理解地,在第二真实均衡差大于目标均衡值时,说明经过一次精调均衡尚未达到均衡目标,也即未完成单节电池的SOC状态均衡,因此需要进行二次精调均衡。
在第三SOC值处于预设SOC段时,获取单节电池在预设状态下的第五电压值,以及串联电池组中的其他单节电池在预设状态下的第六电压值。其中,第三SOC值处于预设SOC段,是指单节电池初次进行精调均衡之后对应的第三SOC值落入预设SOC段的范围内,该预设SOC段可以根据精调均衡的均衡目标类型(包括电压顶端对齐、电压底端对齐、预设点电压对齐等)进行确定。预设状态是指当第三SOC值处于预设SOC段时,需要采集第五电压值或者第六电压值时的单节电池当前的状态,预设状态也可根据精调均衡的均衡目标类型对应确定,预设状态包括单节电池的满充状态、单节电池的放空状态,以及单节电池的电压等于预设点电压时的状态。第五电压值是指此前已完成初次精调均衡的单节电池在 预设状态下的电压值,第六电压值是指除此前已完成初次精调均衡的单节电池之外的其他单节电池在预设状态下的电压值。
获取第五电压值与最小的第六电压值之间的第三电压差,并根据第三电压差获取单节电池的第三SOC均衡差。其中,第三SOC均衡差是指第三电压差转换为电池容量之后所代表的SOC差值。在一实施例中,BMS中预先存储有OCV-SOC曲线,可以直接从该OCV-SOC曲线中查询与第三电压差对应的SOC均衡差。在另一实施例中,可以先从OCV-SOC曲线中获取第五电压值对应的SOC值,并确定出所有第六电压值中的最小值(也即最小第六电压值),之后,从OCV-SOC曲线中获取最小第六电压值对应的SOC值,并获取第五电压值对应的SOC值与最小第六电压值对应的SOC值之差,以及将其记录为单节电池的第三SOC均衡差。可理解地,在一些实施例中,第二真实均衡差等于第三SOC均衡差。
基于第三SOC均衡差以第三均衡步长开启单节电池的二次精调均衡,其中,第三均衡步长小于第三SOC均衡差。可理解地,在进行二次精调均衡之前,可先根据第三SOC均衡差从预设的均衡步长列表(该均衡步长列表中列举了多种可能的均衡步长)中选取第三均衡步长(二次精调均衡的第三均衡步长需要小于或等于第三SOC均衡差,且第三均衡步长小于或等于此前进行首次精调均衡的第一均衡步长),进而根据选取的第三均衡步长对其进行二次精调均衡。
在上述精调均衡过程中,根据单节电池的第五电压值开启均衡,其均衡精度与电压采样精度和电池OCV曲线特性相关,因此均衡精度高,误差较小,适于在均衡差较小的情况下进行精调均衡。
可理解地,若二次精调均衡之后的SOC均衡差依旧大于目标均衡值,代表尚未完成SOC状态均衡,需要继续进行精调均衡(参照该二次精调均衡过程进行,在此不再赘述),直至单节电池最终得到的真实均衡差小于或等于目标均衡值为止。
在一实施例中,基于第三SOC均衡差以第三均衡步长开启单节电池的二次精调均衡之前,包括:
判断第三SOC均衡差是否大于第一均衡步长。也即,在本实施例中,在进行二次精调均衡之前,可先根据第三SOC均衡差选取第三均衡步长。
在第三SOC均衡差大于第一均衡步长时,设定第三均衡步长等于第一均衡步长。也即,在第三SOC均衡差大于第一均衡步长时,说明可以继续根据初次精调均衡时选取的第一均衡步长进行二次均衡,此时无需再次选取其他的第三均衡步长,而是直接将第三均衡步长设定为等于第一均衡步长即可。
在第三SOC均衡差小于或等于第一均衡步长时,选取小于第三SOC均衡差的第三均衡步长。也即,在第三SOC均衡差小于第一均衡步长时,说明此前在初次精调均衡时选取的第一均衡步长已经不适用于该二次精调均衡过程,因此需要从预设的均衡步长列表中选取小于或等于第三SOC均衡差的第三均衡步长(由于第三SOC均衡差小于或等于第一均衡步长,因此该第三均衡步长也必然小于第一均衡步长),进而根据选取的该第三均衡步长对其进行二次精调均衡。
在一实施例中,开启单节电池的粗调均衡,包括:获取单节电池的SOH(State of Health,电池健康状态)值和电池标称容量;根据单节电池的初始均衡差、SOH值和电池标称容量,确定单节电池的均衡容量;开启单节电池的容量粗调均衡,直至单节电池的粗调均衡的容量达到均衡容量时,完成粗调均衡。
也即,在该实施例中,基于单节电池SOC值计算得到初始均衡差,根据初始均衡差、SOH值和电池标称容量一并确定均衡容量,进而根据该均衡容量确定粗调均衡过程是否完成。该粗调均衡过程可在全SOC范围适用,但其精度与SOC值和SOH算法精度均相关,因此均衡误差相对较大,适于均衡差相对较大的情况下进行粗调均衡。
在一实施例中,开启单节电池的粗调均衡,包括:获取单节电池的SOH值、电池标称容量和有效均衡电流;根据单节电池的初始均衡差、SOH值、电池标称容量和有效均衡电流,确定单节电池的第一均衡时长;开启单节电池的时间粗调均衡,并在单节电池的粗调均衡的时长达到第一均衡时长时,完成粗调均衡。
也即,在该实施例中,基于单节电池SOC值计算得到初始均衡差,根据初始均衡差、SOH值、电池标称容量和有效均衡电流一并确定第一均衡时长,进而根据该第一均衡时长确定粗调均衡过程是否完成。该粗调均衡过程可在全SOC范围适用,但其精度与SOC值和SOH算法精度均相关,因此均衡误差相对较大,仅适于均衡差相对较大的情况下进行粗调均衡。
在一实施例中,基于第一SOC均衡差以第一均衡步长开启单节电池的精调均衡,包括:获取单节电池的电池标称容量和有效均衡电流;根据第一均衡步长、电池标称容量和有效均衡电流,确定单节电池的第二均衡时长;开启单节电池的时间精调均衡,并在单节电池的精调均衡的时长达到第二均衡时长时,完成本次精调均衡。
也即,在该实施例中,基于单节电池的第一均衡步长、电池标称容量和有效均衡电流一并确定第二均衡时长,进而根据该第二均衡时长确定精调均衡过程是否完成。其精调均衡精度与电压采样精度和电池OCV曲线特性相关,因此均衡精度高,误差较小,适于在均衡差较小的情况下进行精调均衡。同理,在其他的精调均衡过程中(比如二次精调均衡等),亦可参照该实施例计算均衡时长,如此,可以实现在均衡时长结束时,确认精调均衡过程结束。
如图4和图5所示,图4是本公开一个实施例中串联电池组中各单节电池在进行SOC状态均衡之前的电压曲线示意图;图5是本公开一个实施例中串联电池组中各单节电池在完成SOC状态均衡之后的电压曲线示意图。其中,1、2、3分别代表串联电池组中的一个单节电池。显然,进行SOC状态均衡之前,串联电池组中各单节电池的剩余容量不同,造成剩余容量错位,进而导致串联电池组的可用容量减少。而在完成SOC状态均衡之后的各单节电池不再存在容量错位的问题,串联电池组的可用容量较均衡之前得到提升。
为便于理解本方案,特例举以下实例说明本公开:
串联电池组中的某一单节电池的初始均衡差为8%,该单节电池的SOC精度为±3%(NCM),SOH值为100%,预设粗调均衡值为5%,电池标称容量为200Ah,有效均衡电流为0.1A,目标均衡值为0.5%。
由以上可知,上述单节电池的初始均衡差达到预设的粗调要求(初始均衡差8%大于预设粗调均衡值5%)时,可以开启单节电池的粗调均衡。并且,上述粗调均衡若按照均衡容量来确定粗调均衡是否完成,那么均衡容量为8%*100%*200Ah=16Ah;若按照第一均衡时长确定粗调均衡过程是否完成,那么第一均衡时长为16Ah/0.1A=160h。在上述粗调均衡过程中,粗调均衡过程无需等待满充(由于用于计算初始均衡差的单节电池的第一SOC值可以在任何时候从BMS中直接获取,因此该过程中并不需要完全充电)或其他特定工况即可进行,因此适用性广。在上述粗调均衡完成之后,得到该单节电池的第一真实均衡差等于该单节电池的SOC精度的绝对值,也即3%(SOC均衡差)。
之后,由于第一真实均衡差达到预设的精调要求(第一真实均衡差3%小于预设粗调均衡值5%),此时,如果获知该串联电池组中的精调均衡的均衡目标类型为电压顶端对齐,那么可以确定预设SOC段为90%以上的高SOC段,预设状态为单节电池的满充状态。之后,在第二SOC值处于预设SOC段时,从BMS中获取单节电池在预设状态下的第一电压值以及串联电池组中的其他单节电池在预设状态下的第二电压值,并获取第一电压值与最小的第二电压值之间的第一电压差,以及根据第一电压差从OCV-SOC曲线中确定该单节电池的第一SOC均衡差为3%。
之后,按预设的第一均衡步长1%开启均衡,此时,精调均衡过程的第二均衡时长为1%*200Ah/0.1A=20h,且在该过程中,需要1次完全充电方可完成(因为预设状态为满充状态,因此需要在满充状态下方可去获取第一电压值和第二电压值)。在上述精调均衡完成之后,得到该单节电池的第二真实均衡差等于第一SOC均衡差3%与第一均衡步长1%之差,也即2%(SOC均衡差)。
此后,由于第二真实均衡差2%大于目标均衡值0.5%(且其相对于第一真实均衡差相比,更加小于预设粗调均衡值5%),因此,需要开启二次精调均衡。进而,在第三SOC值处于预设SOC段时,从BMS中获取单节电池在预设状态下的第五电压值以及串联电池组中的其他单节电池在预设状态下的第六电压值,并获取第五电压值与最小的第六电压值之间的第三电压差,以及根据第三电压差从OCV-SOC曲线中确定该单节电池的第三SOC均衡差为2%。
之后,由于第三SOC均衡差大于第一均衡步长1%,因此,继续按照等于第一均衡步长的第三均衡步长1%开启均衡,此时,精调均衡过程的均衡时长为1%*200Ah/0.1A=20h,且在该过程中,需要1次完全充电方可完成(因为预设状态为满充状态,因此需要在满充状态下方可去获取第五电压值和第六电压值)。在上述二次精调均衡完成之后,得到该单节电池的SOC均衡差等于第三SOC均衡差2%与第三均衡步长1%之差,也即1%(SOC均衡差)。
此时,由于二次精调均衡完成之后的该单节电池的SOC均衡差为1%,大于目标均衡值0.5%(且其相对于第二真实均衡差相比,更加小于预设粗调均衡值5%),因此,需要进一步进行精调均衡,此时,参照上述精调均衡和二次精调均衡过程中在高SOC段通过电压差计算SOC均衡差的方法,计算二次精调均衡完成之后的该单节电池的SOC均衡差为1%,且其等于第三均衡步长1%,因此,需要从预设的均衡步长列表中选取小于第三均衡步长1%的第四均衡步长。
在本实例中,选取第四均衡步长0.5%之后,开启再次精调均衡,此时精调均衡过程的均衡时长为0.5%*200Ah/0.1A=10h,且在该过程中,需要1次完全充电方可完成(因为预设状态为满充状态)。在上述再次精调均衡完成之后,得到该单节电池的SOC均衡差等于二次精调之后的SOC均衡差1%与第四均衡步长0.5%之差,也即0.5%(SOC均衡差)。此时,由于该SOC均衡差等于目标均衡值0.5%,确定完成单节电池的SOC状态均衡。
在上述的单节电池的均衡过程中,总均衡时间为210h,完全充电次数为3次(与三次精调均衡过程对应),也即上述过程需要9天可完成。
可理解地,在上述实例中,在初始均衡差相对于目标均衡值较大时,先采用粗调均衡将其SOC均衡差降低至第一真实均衡差3%(粗调均衡的极限即为该第一真实均衡差,因此仅通过粗调均衡无法达到该目标均衡值,但其可以在任何工况下进行,无需等待特定工况,因此可以缩短实际的总耗时长,适合于在均衡差较大的情况下进行粗调均衡);之后,进行精调均衡,在精调均衡中,并不是在一开始即选取固定的均衡步长,而是先选用较大的第一均衡步长1%进行均衡,如此可以减少精调均衡的次数(由于上述实例中的精调均衡需要在满充状态下进行,因此每一次精调均衡均需要一次满充,至少需要一天,因此在一次精调均衡的时长少于一天时,应尽量减少精调均衡的天数,并根据该原则选取第一均衡步长);之后,直至二次精调均衡之后的SOC均衡差等于1%时,采用小于1%的第四均衡步长0.5%最终实现达到目标均衡值,如此,本公开通过粗调均衡加精调均衡的方式,缩短了均衡的总耗时长。
在一实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图6所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机可读指令和数据库。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机可读指令被处理器执行时以实现一种串联电池组的变步长均衡处理方法。
在一实施例中,提供了一种计算机设备,其内部结构图可以如图7所示,该计算机设备包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机可读指令,处理器执行计算机可读指令时实现上述的串联电池组的变步长均衡处理方法。
在一实施例中,还提供了一种计算机可读存储介质,参考图8所示,该计算机可读存储介质存储有计算机可读指令,计算机可读指令被处理器执行时实现上述的串联电池组的变步长均衡处理方法。
在一实施例中,还提供了一种电池包,参考图9所示,该电池包包括串联电池组,电池包通过执行串联电池组的变步长均衡处理方法进行单节电池的SOC状态均衡。关于上述串联电池组的具体限定可以参见上文中对于串联电池组的变步长均衡处理方法的限定,在此不再赘述。
在一实施例中,还提供了一种车辆,参考图10所示,该车辆包括串联电池组以及与串联电池组通信连接的控制模块,控制模块用于执行的串联电池组的变步长均衡处理方法。
关于所述控制模块的具体限定可以参见上文中对于串联电池组的变步长均衡处理方法的限定,在此不再赘述。上述控制模块中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本公开所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路DRAM(SLDRAM)、存储器总线直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元或模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元或模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种串联电池组的变步长均衡处理方法,包括:
    在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启所述单节电池的粗调均衡;其中,所述初始均衡差根据所述串联电池组中各单节电池的第一SOC值确定;
    在粗调均衡之后的所述单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的所述单节电池的第一电压值确定第一SOC均衡差,并基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡;其中,所述第一均衡步长小于所述第一SOC均衡差;
    在精调均衡后的所述单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成所述单节电池的SOC状态均衡。
  2. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,所述在粗调均衡之后的所述单节电池的第一真实均衡差达到预设的精调要求时,根据粗调均衡之后的所述单节电池的第一电压值确定第一SOC均衡差,并基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡,包括:
    获取粗调均衡之后的所述单节电池的第一真实均衡差;所述第一真实均衡差等于所述单节电池的SOC精度;
    在所述第一真实均衡差小于或等于预设粗调均衡值时,获取粗调均衡之后的所述单节电池的第二SOC值;
    在所述第二SOC值处于预设SOC段时,获取所述单节电池在预设状态下的第一电压值,以及获取所述串联电池组中的其他单节电池在所述预设状态下的第二电压值;
    获取所述第一电压值与最小的所述第二电压值之间的第一电压差,并根据所述第一电压差获取所述单节电池的第一SOC均衡差;
    基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡。
  3. 如权利要求2所述的串联电池组的变步长均衡处理方法,其中,所述在所述第二SOC值处于预设SOC段时,获取所述单节电池在预设状态下的第一电压值,以及获取所述串联电池组中的其他单节电池在所述预设状态下的第二电压值之前,包括:
    获取精调均衡的均衡目标类型;
    在精调均衡的均衡目标类型为电压顶端对齐时,确定所述预设SOC段为第一预设范围的高SOC段;所述预设状态为单节电池的满充状态;
    在精调均衡的均衡目标类型为电压底端对齐时,确定所述预设SOC段为第二预设范围的低SOC段;所述预设状态为单节电池的放空状态;
    在精调均衡的均衡目标类型为预设点电压对齐时,确定所述预设SOC段为包含与预设点电压对应的SOC值的第三预设范围的SOC段,所述预设状态为单节电池的电压等于所述预设点电压时的状态。
  4. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,所述在串联电池组中的单节电池的初始均衡差达到预设的粗调要求时,开启所述单节电池的粗调均衡,包括:
    获取串联电池组中的每一个单节电池的第一SOC值;
    确定各单节电池的第一SOC值中的最小第一SOC值,并获取各单节电池的第一SOC值与所述最小第一SOC值之间的初始均衡差;
    在单节电池的初始均衡差大于或等于预设的预设粗调均衡值时,开启所述单节电池的粗调均衡。
  5. 如权利要求4所述的串联电池组的变步长均衡处理方法,其中,所述确定各单节电池的第一SOC值中的最小第一SOC值,并获取各单节电池的第一SOC值与所述最小第一SOC值之间的初始均衡差之后,包括:
    在单节电池的初始均衡差小于所述预设粗调均衡值时,在所述单节电池的第一SOC值处于预设SOC段时,获取所述单节电池在预设状态下的第三电压值,以及所述串联电池组中的其他单节电池在所述预设状态下的第四电压值;
    获取所述第三电压值与最小的所述第四电压值之间的第二电压差,并根据所述第二电压差获取所述单节电池的第二SOC均衡差;
    基于所述第二SOC均衡差以第二均衡步长开启所述单节电池的精调均衡;其中,所述第二均衡步长小于所述第二SOC均衡差。
  6. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,
    所述在精调均衡后的所述单节电池的第二真实均衡差小于或等于目标均衡值时,确定完成所述单节电池的SOC状态均衡,包括:
    获取精调均衡后的所述单节电池的第二真实均衡差,所述第二真实均衡差等于所述第一SOC均衡差与第一均衡步长之差;
    在所述第二真实均衡差小于或等于目标均衡值时,确定完成所述单节电池的SOC状态均衡。
  7. 如权利要求6所述的串联电池组的变步长均衡处理方法,其中,所述获取精调均衡后的所述单节电池的第二真实均衡差之后,还包括:
    在所述第二真实均衡差大于所述目标均衡值时,获取精调均衡后的所述单节电池的第三SOC值;
    在所述第三SOC值处于预设SOC段时,获取所述单节电池在预设状态下的第五电压值,以及所述串联电池组中的其他单节电池在所述预设状态下的第六电压值;
    获取所述第五电压值与最小的所述第六电压值之间的第三电压差,并根据所述第三电压差获取所述单节电池的第三SOC均衡差;
    基于所述第三SOC均衡差以第三均衡步长开启所述单节电池的二次精调均衡;其中,所述第三均衡步长小于所述第三SOC均衡差。
  8. 如权利要求7所述的串联电池组的变步长均衡处理方法,其中,所述基于所述第三SOC均衡差以第三均衡步长开启所述单节电池的二次精调均衡之前,包括:
    判断所述第三SOC均衡差是否大于所述第一均衡步长;
    在所述第三SOC均衡差大于所述第一均衡步长时,设定第三均衡步长等于所述第一均衡步长;
    在所述第三SOC均衡差小于或等于所述第一均衡步长时,选取小于所述第三SOC均衡差的第三均衡步长。
  9. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,所述开启所述单节电池的粗调均衡,包括:
    获取所述单节电池的SOH值和电池标称容量;
    根据所述单节电池的所述初始均衡差、SOH值和电池标称容量,确定所述单节电池的均衡容量;
    开启所述单节电池的容量粗调均衡,直至所述单节电池的粗调均衡的容量达到所述均衡容量时,完成粗调均衡。
  10. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,所述开启所述单节电池的粗调均衡,包括:
    获取所述单节电池的SOH值、电池标称容量和有效均衡电流;
    根据所述单节电池的所述初始均衡差、SOH值、电池标称容量和有效均衡电流,确定所述单节电池的第一均衡时长;
    开启所述单节电池的时间粗调均衡,并在所述单节电池的粗调均衡的时长达到所述第一均衡时长时,完成粗调均衡。
  11. 如权利要求1所述的串联电池组的变步长均衡处理方法,其中,所述基于所述第一SOC均衡差以第一均衡步长开启所述单节电池的精调均衡,包括:
    获取所述单节电池的电池标称容量和有效均衡电流;
    根据所述第一均衡步长、电池标称容量和有效均衡电流,确定所述单节电池的第二均衡时长;
    开启所述单节电池的时间精调均衡,并在所述单节电池的精调均衡的时长达到所述第二均衡时长时,完成本次精调均衡。
  12. 一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,其特征在于,所述处理器执行所述计算机可读指令时实现如权利要求1至11任一项所述的串联电池组的变步长均衡处理方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现如权利要求1至11任一项所述的串联电池组的变步长均衡处理方法。
  14. 一种电池包,包括串联电池组,所述电池包通过如权利要求1至11任一项所述的串联电池组的变步长均衡处理方法进行单节电池的SOC状态均衡。
  15. 一种车辆,包括串联电池组以及与所述串联电池组通信连接的控制模块,所述控制模块用于执行如权利要求1至11任一项所述的串联电池组的变步长均衡处理方法。
PCT/CN2020/117324 2019-09-25 2020-09-24 变步长均衡处理方法、设备、介质、电池包和车辆 WO2021057833A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20868885.3A EP4024652A4 (en) 2019-09-25 2020-09-24 VARIABLE PITCH SIZE EQUALIZATION TREATMENT METHOD, AND DEVICE, HOLDER, BATTERY BOX AND VEHICLE
US17/763,943 US20220352728A1 (en) 2019-09-25 2020-09-24 Variable step size equalization processing method, and device, medium, battery package, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910912716.1A CN112550068B (zh) 2019-09-25 2019-09-25 变步长均衡处理方法、设备、介质、电池包和车辆
CN201910912716.1 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021057833A1 true WO2021057833A1 (zh) 2021-04-01

Family

ID=75029602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117324 WO2021057833A1 (zh) 2019-09-25 2020-09-24 变步长均衡处理方法、设备、介质、电池包和车辆

Country Status (4)

Country Link
US (1) US20220352728A1 (zh)
EP (1) EP4024652A4 (zh)
CN (1) CN112550068B (zh)
WO (1) WO2021057833A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301125A (zh) * 2021-12-28 2022-04-08 科华数据股份有限公司 用于串联电池包被动均衡控制的方法、终端及存储介质
CN115372848A (zh) * 2021-05-19 2022-11-22 宁德时代新能源科技股份有限公司 电池自放电性能的检测方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908775A (zh) * 2010-08-13 2010-12-08 烟台东方电子玉麟电气有限公司 一种锂离子电池组充电控制方法及系统
CN102868000A (zh) * 2012-09-05 2013-01-09 浙江众泰新能源汽车科技有限公司 一种电动汽车动力源均衡方法
DE102012214090A1 (de) * 2012-08-08 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausgleichen von Ladungsunterschieden zwischen Batteriemodulen
CN104852441A (zh) * 2015-06-12 2015-08-19 安徽江淮汽车股份有限公司 一种锂电池组车载充电控制方法
CN105140981A (zh) * 2015-06-17 2015-12-09 广西科技大学 锂电池主动均衡控制方法
CN106300545A (zh) * 2016-09-22 2017-01-04 华中科技大学 一种用于液态金属电池的主动均衡控制装置及控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472977B2 (en) * 2014-05-08 2016-10-18 Ford Global Technologies, Llc Battery cell state of charge estimation
CN105811500B (zh) * 2016-03-17 2018-03-16 哈尔滨工业大学 一种锂离子电池组均衡控制方法
CN108832612B (zh) * 2018-07-02 2020-04-03 东北大学 一种基于分层管理的直流微电网控制方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908775A (zh) * 2010-08-13 2010-12-08 烟台东方电子玉麟电气有限公司 一种锂离子电池组充电控制方法及系统
DE102012214090A1 (de) * 2012-08-08 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausgleichen von Ladungsunterschieden zwischen Batteriemodulen
CN102868000A (zh) * 2012-09-05 2013-01-09 浙江众泰新能源汽车科技有限公司 一种电动汽车动力源均衡方法
CN104852441A (zh) * 2015-06-12 2015-08-19 安徽江淮汽车股份有限公司 一种锂电池组车载充电控制方法
CN105140981A (zh) * 2015-06-17 2015-12-09 广西科技大学 锂电池主动均衡控制方法
CN106300545A (zh) * 2016-09-22 2017-01-04 华中科技大学 一种用于液态金属电池的主动均衡控制装置及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024652A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115372848A (zh) * 2021-05-19 2022-11-22 宁德时代新能源科技股份有限公司 电池自放电性能的检测方法、装置、设备及介质
CN114301125A (zh) * 2021-12-28 2022-04-08 科华数据股份有限公司 用于串联电池包被动均衡控制的方法、终端及存储介质

Also Published As

Publication number Publication date
CN112550068B (zh) 2022-08-09
EP4024652A1 (en) 2022-07-06
US20220352728A1 (en) 2022-11-03
EP4024652A4 (en) 2023-05-24
CN112550068A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2020259008A1 (zh) 电池的荷电状态修正方法、装置、系统和存储介质
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
WO2020259355A1 (zh) 电池荷电状态确定方法、装置、管理系统以及存储介质
US10886766B2 (en) Method and device for multi-stage battery charging
TWI473323B (zh) 充電電池的充電方法及其相關的充電架構
KR102418791B1 (ko) 동적 컷오프 전압 기반의 배터리 고속 충전 시스템 및 방법
WO2021057833A1 (zh) 变步长均衡处理方法、设备、介质、电池包和车辆
KR101084828B1 (ko) 배터리팩의 충전제어방법
WO2021238198A1 (zh) 一种充电方法、充电芯片和终端设备
GB2564951A (en) Lithium-ion battery cut-off voltage adjustment
CN115932605A (zh) 储能电池剩余电量校正方法、装置及电池管理系统
CN105634063A (zh) 一种基于电池历史数据的主动均衡方法
CN115808624A (zh) 一种电池的健康度检测方法、设备和存储介质
US20080211460A1 (en) Charging method and system for adjusting charging current
US10630083B2 (en) Real time active multi-cell balancing
EP4270714A1 (en) Charging method, electronic device, and storage medium
US12027905B2 (en) Method and apparatus for charging, device, and storage medium
US20220326308A1 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
WO2023240474A1 (zh) 储能系统的控制方法、控制装置以及储能系统
EP4270715A1 (en) Charging method, electronic device, and storage medium
CN115001094A (zh) 一种电池防过充的充电方法、装置、设备及存储介质
JP7250914B2 (ja) 充電方法、電子装置及び記憶媒体
US20210194071A1 (en) Secondary battery management device, secondary battery management method, and non-transitory computer readable storage medium
WO2018014285A1 (zh) 电池的充电控制方法及终端
WO2023245392A1 (zh) 电池充电方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868885

Country of ref document: EP

Effective date: 20220330