WO2023238887A1 - Light-emitting element drive circuit and lighting device using same, display device, and electronic apparatus - Google Patents

Light-emitting element drive circuit and lighting device using same, display device, and electronic apparatus Download PDF

Info

Publication number
WO2023238887A1
WO2023238887A1 PCT/JP2023/021137 JP2023021137W WO2023238887A1 WO 2023238887 A1 WO2023238887 A1 WO 2023238887A1 JP 2023021137 W JP2023021137 W JP 2023021137W WO 2023238887 A1 WO2023238887 A1 WO 2023238887A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
channels
channel
drive circuit
Prior art date
Application number
PCT/JP2023/021137
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 鷲見
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023238887A1 publication Critical patent/WO2023238887A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/33Pulse-amplitude modulation [PAM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/335Pulse-frequency modulation [PFM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • the invention disclosed herein relates to a drive circuit for a light emitting element.
  • CCFL Cold Cathode Fluorescent Lamp
  • EEFL External Electrode Fluorescent Lamp
  • a white light emitting diode (hereinafter abbreviated as LED) having special characteristics is used.
  • Patent Document 1 can be mentioned as an example of the conventional technology related to the above.
  • Current dimming analog dimming
  • PWM dimming are known as methods for controlling the brightness of LEDs for backlights.
  • current dimming the amount of drive current flowing through the light emitting element is adjusted according to target brightness.
  • PWM dimming the effective brightness of the light emitting element is controlled by switching the drive current and adjusting the time ratio (duty ratio) between the lighting period in which the drive current flows and the lighting period in which the drive current is cut off. .
  • the contrast ratio required for lighting devices has been increasing more and more.
  • the contrast ratio is 1000:1.
  • the duty ratio is changed in the range of 100% to 0.1% by PWM dimming, the contrast ratio is 1000:1.
  • the contrast ratio of a lighting device is constrained in current dimming by the minimum amount of current that the current driver can generate, and in PWM dimming by the minimum pulse width.
  • the light emitting device driving circuit disclosed herein includes a plurality of current drivers connected to each of the plurality of channels of light emitting devices, and a controller configured to control the plurality of current drivers, The controller is configured to turn on the current driver of one channel when the number of channels of the plurality of channels is N and the dimming rate is a first dimming rate that is greater than 100 ⁇ (N-1)/N% and smaller than 100%. /OFF switching, and the on-duty of the current drivers of the remaining channels is set to 100%.
  • the lighting device disclosed in this specification includes a plurality of channels of light emitting elements and a light emitting element driving circuit having the above configuration for driving the plurality of channels of light emitting elements.
  • the electronic device disclosed herein includes a display panel and a lighting device configured as described above.
  • the display device disclosed herein includes a display panel and a lighting device configured as described above.
  • the light emitting element drive circuit, lighting device, electronic device, and display device disclosed in this specification it is possible to reduce noise, reduce cost, and reduce switching noise.
  • FIG. 1 is a diagram showing the configuration of a display device including a backlight device according to an embodiment.
  • FIG. 2A is a diagram illustrating an example of an arrangement layout of light emitting elements of a lighting device.
  • FIG. 2B is a diagram showing a substrate on which a light emitting element is mounted.
  • FIG. 3 is a diagram showing another example of the arrangement layout of light emitting elements of the lighting device.
  • FIG. 4 is a diagram showing an example of dimming control when the dimming rate is 90%.
  • FIG. 5 is a diagram showing an example of dimming control when the dimming rate is 50%.
  • FIG. 6 is a diagram showing an example of dimming control when the dimming rate is 0.25%.
  • FIG. 1 is a diagram showing the configuration of a display device including a backlight device according to an embodiment.
  • FIG. 2A is a diagram illustrating an example of an arrangement layout of light emitting elements of a lighting device.
  • FIG. 2B is a diagram showing
  • FIG. 7 is a diagram showing changes in load when the dimming rate is 20%.
  • FIG. 8 is a diagram showing a comparison with the prior art.
  • FIG. 9A is a diagram illustrating an example of an electronic device including a lighting device.
  • FIG. 9B is a diagram illustrating an example of an electronic device including a lighting device.
  • FIG. 1 is a diagram showing the configuration of a display device including a lighting device according to an embodiment.
  • the display device 100 includes an LCD (Liquid Crystal Display) panel 101 and a lighting device 1.
  • the illumination device 1 is configured to emit backlight from the back surface of the LCD panel 101.
  • the lighting device 1 has a multi-channel configuration, and includes N (N is an integer of 2 or more) channel light emitting element strings 10_1 to 10_N, a light emitting element drive circuit 2, a capacitor C1, and a light guide plate (not shown in FIG. 1). and.
  • Each of the N light emitting element strings 10_1 to 10_N includes M light emitting units 11 (M is an integer of 2 or more) connected in series.
  • each light emitting unit 11 includes one light emitting element or a plurality of light emitting elements connected in series.
  • the light emitting element is, for example, an LED.
  • the M light emitting units 11 included in the same light emitting element string 10 (channel) are configured to have substantially the same size (light emitting area) so that they emit light with the same brightness.
  • the i-th light-emitting unit 11 of the light-emitting element string 10_j of the j-th (1 ⁇ j ⁇ N) channel CHj will be referred to as a light-emitting unit (11_j, i).
  • a light-emitting unit (11_j, i) In this embodiment, for the purpose of simplifying the description and facilitating understanding, a case will be described in which all the light emitting units (11_1, 1) to (11_N, M) have the same size (light emitting area).
  • the LCD panel 101 is divided into a plurality of M regions 102_1 to 102_M in the direction of one side thereof (in the present embodiment, the X direction in the figure). Dividing here does not mean that the LCD panel 101 is physically divided, but rather that it is divided into virtual areas.
  • One side of the LCD panel 101 (the i-th light emitting units (11_1, i) to (11_N, i) included in each of the N light-emitting element strings 10_1 to 10_N in this embodiment are allocated to the i-th area 102_i).
  • the light emitting units (11_1,i) to (11_N,i) of the plurality of channels CH1 to CHN assigned to the i-th region 102_i are arranged as the light emitting module 12_i. to be called.
  • a dimming signal PWMCLK that instructs the brightness of the backlight is input to the light emitting element drive circuit 2 from the outside.
  • the light emitting element drive circuit 2 is configured to be able to independently turn on and off the light emission of each of the N light emitting element strings 10_1 to 10_N in accordance with the dimming signal PWMCLK.
  • the light emitting element drive circuit 2 includes a plurality of current drivers 3_1 to 3_N connected to each of the plurality of channels of light emitting elements, a DC/DC converter 4 configured to supply voltage to the plurality of channels of light emitting elements, and a plurality of current drivers 3_1 to 3_N connected to each of the plurality of channels of light emitting elements.
  • a controller 5 is provided, configured to control the current driver and the DC/DC converter.
  • N current drivers 3_1 to 3_N are provided for each light emitting element string 10_1 to 10_N.
  • the j-th (1 ⁇ j ⁇ N) current driver 3_j is provided in series with the corresponding light emitting element string 10_j.
  • the current driver 3_j is provided between the cathode of the corresponding light emitting element string 10_j and the ground line.
  • the current driver 3_j may be provided between the light emitting element string 10_j and the output line of the DC/DC converter 4.
  • Current driver 3_j generates drive current I LEDj .
  • the current driver 3 may use any known technology, and its configuration is not limited.
  • the controller 5 performs PWM (pulse width modulation) dimming by controlling the current drivers 3_1 to 3_N in accordance with the dimming signal PWMCLK.
  • PWM dimming the time ratio over which the drive current I LED flows is controlled.
  • the controller 5 is capable of independently turning on and off each of the current drivers 3_1 to 3_N for the purpose of brightness adjustment according to the dimming signal PWMCLK.
  • the DC/DC converter 4 supplies a driving voltage V CC across the pair of light emitting element string 10 and current driver 3 of each channel CH1 to CHN, that is, between its output line and the ground line.
  • Capacitor C1 suppresses ripple in drive voltage V CC .
  • the controller 5 controls the DC/DC so that the voltage drop of the N current drivers 3_1 to 3_N, that is, the lowest voltage among the cathode voltages V LED1 to V LEDN of the light emitting element strings 10_1 to 10_N approaches a predetermined reference voltage. Controls converter 4.
  • FIG. 2A is a diagram showing an example of the arrangement layout of light emitting elements of a lighting device.
  • FIG. 2A is a diagram showing an example of an arrangement layout when the number of channels is four.
  • the lighting device 1 includes light emitting element strings 10_1 to 10_4 provided for each of a plurality of channels CH1 to CH4, a light emitting element drive circuit 2 for driving the light emitting element strings 10_1 to 10_4, and a light guide plate 103.
  • the light emitting modules 12_i are arranged to illuminate the corresponding area 102_i (see FIG.
  • the light emitting element strings 10_1 to 10_4 are arranged to illuminate the corresponding area 102_i (see FIG. 1). ) and has all-channel light emitting elements.
  • the light emitting elements are shown arranged in four rows for each of the plurality of channels CH1 to CH4 in order to make it easier to understand the electrical connection state of the light emitting element strings 10_1 to 10_4.
  • FIG. 2B it is desirable that the light emitting elements of the plurality of channels CH1 to CH4 (all the light emitting elements connected to the light emitting element drive circuit 2) are lined up in a line.
  • the board 6 is preferably a flexible circuit board.
  • the board 6 is a flexible circuit board, the work of attaching the board 6 to the casing of the display device 100 becomes easier.
  • FIG. 2A illustrates the light guide plate 103, which is not shown in FIG.
  • Each of the light emitting element strings 10_1 to 10_4 includes a plurality of LEDs connected in series, and by entering the light from the light emitting element strings 10_1 to 10_4 driven by the light emitting element drive circuit 2 from the side of the light guide plate 103,
  • the LCD panel 101 (see FIG. 1) can be illuminated uniformly.
  • the LCD panel 101 is arranged in front of the light guide plate 103 and facing the light guide plate 103. Further, the light emitting element drive circuit 2 is housed in a semiconductor package 7.
  • terminals T1 to T4 which are exposed from the semiconductor package 7 and output drive currents I LED1 to I LED4 for each of the plurality of channels CH1 to CH4, are adjacent to each other.
  • the arrangement of the plurality of terminals that output drive current is not limited to the example shown in FIG. 2A, it is desirable that at least two of the plurality of terminals that output drive current are adjacent to each other. This facilitates wiring between the light emitting element drive circuit 2 and the light emitting elements.
  • the lighting device according to the embodiment does not adopt the arrangement layout of the light emitting elements as shown in FIG. 3.
  • FIG. 4 is a diagram showing an example of dimming control when the dimming rate is 90%.
  • a dimming signal PWMCLK adjusted to have an on-duty of 90% is input to the controller 5.
  • FIG. 4 shows the case of the prior art, in which the ratio of on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK in all channels CH1 to CH4, and the controller 5 controls the current Turns ON/OFF the drivers 3_1 to 3_4.
  • the right side of FIG. 4 shows the case of a method controlled by the configuration of the present embodiment, in which the ratio of on-duty and off-duty of the duty cycle is different from that of the prior art and different from the dimming signal PWMCLK.
  • the controller 5 turns on the current drivers 3_1 to 3_3 with an on duty of 100% for channels CH1 to CH3, and switches ON/OFF the current driver 3_4 only for channel CH4 with an on duty of 60%.
  • the total on-duty of the four channels is 360%, and when the total on-duty is divided by the number of channels, 4, the dimming rate is 90%.
  • FIG. 4 shows the case where the number of channels is 4, when the number of channels is N, the controller 5 has a dimming rate of 100 ⁇ (N-1)/N% (N is the number of channels).
  • N is the number of channels.
  • the first dimming rate is larger and smaller than 100%, the current driver of one channel is switched ON/OFF in the duty cycles of multiple current drivers, and the on-duty of the current drivers of the remaining channels is set to 100%. configured to do so.
  • the first dimming rate is greater than 75% and less than 100%.
  • FIG. 5 is a diagram showing an example of dimming control when the dimming rate is 50%.
  • the left side of FIG. 5 shows the case of the prior art, in which the ratio of the on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK, and the controller 5 controls channels CH1 to The current drivers 3_1 to 3_4 of CH4 are switched ON/OFF.
  • FIG. 5 shows the case of the control method according to the configuration of this embodiment, in which the controller 5 turns on the current drivers 3_1 to 3_2 with an on-duty of 100% for channels CH1 to CH2, and turns on the current drivers 3_1 to 3_2 for channels CH1 to CH2. Since the on-duty for ⁇ CH4 is 0%, the current drivers 3_3 to 3_4 are turned off.
  • the controller is configured to control the plurality of current drivers such that at the third dimming rate, there are both a channel with an on-duty of 0% and a channel with an on-duty of 100%. be done.
  • the third dimming rate is 75%, 50%, 25%, etc.
  • the third light control rate is smaller than the first light control rate, is 100/N% or more, and is divisible by 100/N%.
  • FIG. 6 is a diagram showing an example of dimming control when the dimming rate is 0.25%.
  • the left side of FIG. 6 shows the case of the prior art, in which the ratio of the on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK, and the controller 5 controls channels CH1 to The current drivers 3_1 to 3_4 of CH4 are switched ON/OFF.
  • FIG. 6 shows the case of the control method according to the configuration of this embodiment, in which the controller 5 switches the current driver 3_1 ON/OFF with the on-time duty of only channel CH1 being 1%, and channels CH2 to Since the on-duty of CH4 is 0%, current drivers 3_2 to 3_4 are turned off.
  • the total on-time duty of the four channels is 1%, and when the total on-time duty is divided by the number of channels, the dimming rate is 0.25%.
  • FIG. 6 shows the case where the number of channels is 4, the dimming rate when the minimum value of the on-duty of the dimming signal PWMCLK is 1% and the number of channels is N is the total on-time of N channels.
  • the duty is 1%, and if the duty of the total on-time is divided by the number of channels, the dimming rate can be set to 1/N%. In this way, the dimming rate can be narrowed down to the value obtained by dividing the minimum value of the duty setting range of the on-time of the duty cycle by the number of channels.
  • the controller switches the current driver of one channel ON/OFF when the dimming rate is a fourth dimming rate smaller than 100/N%, and sets the on-duty of the current drivers of the remaining channels to 0. % of the current driver. For example, when the number of channels is 4, the fourth dimming rate is less than 25%.
  • the fourth light control rate is a light control rate smaller than 100/N%.
  • the controller controls a channel with an on-duty of 0%, a channel with an on-duty of 100%, and a channel that performs ON/OFF switching at the second dimming rate.
  • the device is configured to control a plurality of current drivers such that one channel exists. For example, when the number of channels is 4, the second dimming rate is greater than 50% and less than 75%.
  • the second light control rate is a light control rate that is smaller than the first light control rate and larger than 100/N% and produces a remainder when divided by 100/N%.
  • the channel for ON/OFF switching of the current driver may be configured to be fixed.
  • the controller receives the abnormality detection signal output from the abnormality detection section, determines which channel of the light emitting element in which the abnormality has occurred based on the abnormality detection signal, and then A current driver connected to an element may be excluded from candidates for lighting.
  • the channel for ON/OFF switching of the current driver is configured to be fixed at the same dimming rate, only the same channel will be switched, so there is a risk that element deterioration will occur only in a specific channel. Therefore, for example, a configuration may be adopted in which the channel for ON/OFF switching of the current driver is switched every time the current driver is activated or every specific cycle using a counter. Alternatively, if the controller receives a frame switching signal from the display panel, it is also possible to switch in synchronization with the frame cycle of the display panel. When the current driver is configured to switch between ON/OFF channels at the same dimming rate, it is possible to reduce element deterioration in only a specific channel.
  • the controller receives the abnormality detection signal output from the abnormality detection section and detects the abnormality, just as when fixing the channel for ON/OFF switching of the current driver at the same dimming rate. Based on the signal, the controller may determine which channel of the light emitting element the abnormality has occurred in, and remove the current driver connected to the light emitting element in which the abnormality has occurred from the candidates for lighting.
  • FIG. 7 is a diagram showing changes in load when the dimming rate is 20%. Switching the current driver ON causes a load variation of 100 mA per channel.
  • the left side of FIG. 7 shows the case of the prior art, and when the number of channels is four, all four channels switch at the same timing, so the total load is 400 mA.
  • the input/output ripple voltage increases. Therefore, noise occurs.
  • the middle side of Figure 7 shows the case of the conventional technology (Phase Shift), which differs from the conventional technology on the left side of Figure 7 in that all channels are not switched at the same timing, but each channel is switched at different timings. Perform switching. By performing switching channel by channel in this manner, the TOTAL load becomes 100 mA, and the load fluctuation becomes small. By reducing the load fluctuation, the input/output ripple voltage becomes smaller, and noise is reduced. However, since the number of times of switching is not reduced, it cannot be expected that switching noise will be reduced.
  • FIG. 7 shows a method controlled by the configuration of this embodiment, in which only one channel is switched, and the remaining channels are turned off because their on-duty is 0%.
  • the TOTAL load is 100 mA.
  • the number of switching times can be significantly reduced compared to the case of the conventional technology (Phase Shift). Therefore, it is possible to reduce noise and also to suppress the occurrence of switching noise. Further, when a capacitor is used to suppress ripple, the capacitance of the capacitor can be reduced, and costs can be reduced.
  • FIG. 8 is a diagram showing a comparison with the conventional technology.
  • the control method according to the configuration of this embodiment only one channel is switched, so that load fluctuations are small and input/output ripple voltages are small. Therefore, noise can also be suppressed and the size of the capacitor can be reduced. Furthermore, since the number of times of switching is small, generation of switching noise can also be suppressed. It can be seen that there are advantages compared to the conventional technique and the conventional technique (Phase Shift). Furthermore, it is also possible to expand the range of dimming ratios compared to the conventional technology.
  • PWM dimming pulse modulation dimming other than PWM dimming
  • pulse modulation dimming other than PWM dimming include PFM (pulse frequency modulation) dimming and PDM (pulse density modulation) dimming.
  • PFM dimming pulse frequency modulation
  • PDM pulse density modulation
  • analog dimming is performed. It can be made even brighter by changing the current from XmA to YmA. Note that Y only needs to be a larger value than X.
  • FIG. 9A and 9B are diagrams showing an example of an electronic device including the lighting device 1.
  • the electronic device 200 in FIG. 9A is a display device such as a television, a car navigation system, or a PC.
  • the electronic device 200 is a tablet PC, a PDA (Personal Digital Assistant), a mobile phone terminal, or the like.
  • Electronic device 200 includes a housing 201 and an LCD panel 101.
  • the light emitting element string 10 is placed on the back of the LCD panel 101 as a backlight.
  • the light emitting element drive circuit described above includes a plurality of current drivers connected to each of the plurality of channels of light emitting elements, and a controller configured to control the plurality of current drivers.
  • N when the dimming rate is the first dimming rate greater than 100 ⁇ (N-1)/N% and less than 100%, the current driver of one channel is switched ON/OFF, and the current driver of the remaining channels is switched on/off.
  • the current driver is configured to have an on-duty of 100% (first configuration).
  • the controller turns on the light at a second dimming rate which is smaller than the first dimming rate and is larger than 100/N% and produces a remainder when divided by 100/N%.
  • a plurality of current drivers are configured to be controlled so that there are a channel with a duty of 0%, a channel with an on-duty of 100%, and a channel that performs ON/OFF switching (second configuration). .
  • the controller controls the controller at a third dimming rate which is smaller than the first dimming rate and is 100/N% or more and is divisible by 100/N%.
  • a plurality of current drivers are controlled so that there are both a channel with an on-duty of 0% and a channel with an on-duty of 100% (third configuration).
  • the controller controls ON/OFF switching of the current driver of one channel when the fourth dimming rate is smaller than 100/N%. (fourth configuration).
  • the controller controls the current driver connected to the abnormal light emitting element to turn off the light. (fifth configuration).
  • the channel for switching ON/OFF of the current driver is configured to be fixed (sixth configuration).
  • the channel for switching ON/OFF of the current driver is configured to be switched (seventh configuration).
  • the light emitting element drive circuit having the seventh configuration is configured to switch the channel for ON/OFF switching of the current driver each time it is activated or at a specific cycle using a counter. (Eighth configuration).
  • the light emitting element drive circuit having the seventh configuration has a channel for switching the current driver ON/OFF in synchronization with the frame period of the display panel. configured to switch (ninth configuration).
  • the light emitting element driving circuit having any one of the first to ninth configurations, is housed in a semiconductor package, exposed from the semiconductor package, and generated by each of the plurality of current drivers. At least two of the plurality of terminals that output each of the plurality of drive currents are configured to be adjacent to each other (tenth configuration).
  • the lighting device described above has a configuration (eleventh configuration) including a light emitting element drive circuit having any one of the first to tenth configurations and the plurality of channels of light emitting elements.
  • the electronic device described above has a configuration (twelfth configuration) that includes a display panel and a lighting device that is the eleventh configuration.
  • the electronic device having the twelfth configuration includes a plurality of light emitting units, the display panel is divided into a plurality of virtual regions, and each of the plurality of light emitting units illuminates the corresponding region.
  • the light emitting device is arranged as shown in FIG.
  • the plurality of channels of light emitting elements are arranged in a line (fourteenth configuration).
  • the display device described above has a configuration (fifteenth configuration) that includes a display panel and a lighting device that is the eleventh configuration.
  • the display device having the fifteenth configuration includes a plurality of light emitting units, the display panel is divided into a plurality of virtual regions, and each of the plurality of light emitting units illuminates the corresponding region.
  • the light emitting device is arranged as shown in FIG.
  • the plurality of channels of light emitting elements are arranged in a line (seventeenth configuration).
  • Lighting device 2 Light emitting element drive circuit 3_1 ⁇ 3_N Current driver 4 DC/DC converter 5 Controller 6 Substrate 7 Semiconductor package 10_1 ⁇ 10_N Light emitting element string 11 Light emitting unit 12_1 ⁇ 12_M Light emitting module 100 Display device 101 LCD panel 102_1 ⁇ 102_M Area 103 Light guide plate 200 Electronic equipment 201 Housing C1 Capacitor T1 ⁇ T4 Terminal

Abstract

This light-emitting element drive circuit comprises a plurality of current drivers respectively connected to light-emitting elements of a plurality of channels, and a controller configured to control the plurality of current drivers. The controller is configured to perform ON/OFF switching of the current drivers of one channel and to set the on-duty of the current drivers of the remaining channels to 100% if the light control ratio is a first light control ratio greater than 100×(N-1)/N% and less than 100%, where N is the number of channels in the plurality of channels.

Description

発光素子駆動回路ならびにそれを用いた照明装置、ディスプレイ装置、および電子機器Light-emitting element drive circuits, lighting devices, display devices, and electronic devices using the same
 本明細書中に開示されている発明は、発光素子の駆動回路に関する。 The invention disclosed herein relates to a drive circuit for a light emitting element.
 液晶ディスプレイ(LCD)パネルのバックライトとして、従来のCCFL(Cold  Cathode Fluorescent  Lamp)やEEFL(External Electrode  Fluorescent Lamp)に代えて、長寿命化、低消費電力化、広色域化の観点で優れた特性を有する白色発光ダイオード(以下、LEDと略す)が用いられている。 As a backlight for liquid crystal display (LCD) panels, it is an excellent alternative to conventional CCFL (Cold Cathode Fluorescent Lamp) and EEFL (External Electrode Fluorescent Lamp) in terms of long life, low power consumption, and wide color gamut. A white light emitting diode (hereinafter abbreviated as LED) having special characteristics is used.
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。 Incidentally, Patent Document 1 can be mentioned as an example of the conventional technology related to the above.
特開2014-207204号公報JP2014-207204A
 バックライト用のLEDの輝度を制御する方式としては、電流調光(アナログ調光)と、PWM調光が知られている。電流調光では、目標輝度に応じて、発光素子に流れる駆動電流の電流量を調節する。PWM調光では、駆動電流をスイッチングし、駆動電流が流れる点灯期間と、駆動電流が遮断される消灯期間の時間比率(デューティ比)を調節することにより、発光素子の実効的な輝度を制御する。 Current dimming (analog dimming) and PWM dimming are known as methods for controlling the brightness of LEDs for backlights. In current dimming, the amount of drive current flowing through the light emitting element is adjusted according to target brightness. In PWM dimming, the effective brightness of the light emitting element is controlled by switching the drive current and adjusting the time ratio (duty ratio) between the lighting period in which the drive current flows and the lighting period in which the drive current is cut off. .
 近年、照明装置に要求されるコントラスト比はますます高まっている。たとえば電流調光によって、駆動電流ILEDを、最大輝度に対応する最大電流からその0.1%の最小電流まで変化させた場合、そのコントラスト比は1000:1となる。また、PWM調光により、デューティ比を100%~0.1%の範囲で変化させた場合、そのコントラスト比は1000:1となる。 In recent years, the contrast ratio required for lighting devices has been increasing more and more. For example, when the drive current I LED is changed by current dimming from a maximum current corresponding to maximum brightness to a minimum current of 0.1% thereof, the contrast ratio is 1000:1. Further, when the duty ratio is changed in the range of 100% to 0.1% by PWM dimming, the contrast ratio is 1000:1.
 したがって、照明装置のコントラスト比は、電流調光においては、電流ドライバが生成可能な最小電流量により制約を受け、PWM調光においては、最小パルス幅によって制約を受ける。あるいは、アナログ調光とPWM調光を組み合わせることにより、コントラスト比を拡大することも可能であるが、この場合であっても、コントラスト比には上限がある。 Therefore, the contrast ratio of a lighting device is constrained in current dimming by the minimum amount of current that the current driver can generate, and in PWM dimming by the minimum pulse width. Alternatively, it is possible to increase the contrast ratio by combining analog dimming and PWM dimming, but even in this case, there is an upper limit to the contrast ratio.
 また、LEDを駆動して調光する場合において、PWM調光にて全LEDの調光を同時に行う手法がある。全LEDを同時に調光する場合、PWM調光に伴う負荷変動が大きくなるため、音鳴りが発生してしまう。出力電圧のリップルを抑えてこの音鳴りを改善しようとする場合、コンデンサの容量を大きくする必要があり、コスト増大につながる。 Furthermore, when driving and dimming LEDs, there is a method of simultaneously dimming all LEDs using PWM dimming. When all LEDs are dimmed at the same time, the load fluctuation associated with PWM dimming increases, resulting in noise. In order to suppress the output voltage ripple and improve this noise, it is necessary to increase the capacitance of the capacitor, which leads to an increase in cost.
 全LEDを同時に調光するのではなく、Phase Shiftにより異なるタイミングで調光すると、ある程度は負荷変動を抑制することができる。したがって、出力コンデンサの容量を小さくしても音鳴りを抑えることができ、コスト低減につながる。しかしながら、Phase Shiftが実施されてもスイッチングの回数自体は減少しないため、スイッチングノイズの低減は期待できない。 Rather than dimming all LEDs at the same time, by dimming them at different timings using Phase Shift, load fluctuations can be suppressed to some extent. Therefore, even if the capacitance of the output capacitor is reduced, noise can be suppressed, leading to cost reduction. However, even if Phase Shift is implemented, the number of times of switching itself does not decrease, so a reduction in switching noise cannot be expected.
 本明細書中に開示されている発光素子駆動回路は、複数チャンネルの発光素子それぞれに接続される複数の電流ドライバと、前記複数の電流ドライバを制御するように構成されるコントローラと、備え、前記コントローラは、前記複数チャンネルのチャンネル数をNとし、調光率が100×(N-1)/N%より大きく100%より小さい第1調光率のときに、1チャンネルの前記電流ドライバのON/OFF切替を行い、残りのチャンネルの前記電流ドライバのオンデューティを100%にするように構成される。 The light emitting device driving circuit disclosed herein includes a plurality of current drivers connected to each of the plurality of channels of light emitting devices, and a controller configured to control the plurality of current drivers, The controller is configured to turn on the current driver of one channel when the number of channels of the plurality of channels is N and the dimming rate is a first dimming rate that is greater than 100×(N-1)/N% and smaller than 100%. /OFF switching, and the on-duty of the current drivers of the remaining channels is set to 100%.
 本明細書中に開示されている照明装置は、複数チャンネルの発光素子と、前記複数チャンネルの発光素子を駆動する上記構成の発光素子駆動回路を備える。 The lighting device disclosed in this specification includes a plurality of channels of light emitting elements and a light emitting element driving circuit having the above configuration for driving the plurality of channels of light emitting elements.
 本明細書中に開示されている電子機器は、表示パネルと、上記構成の照明装置を備える。 The electronic device disclosed herein includes a display panel and a lighting device configured as described above.
 本明細書中に開示されているディスプレイ装置は、表示パネルと、上記構成の照明装置を備える。 The display device disclosed herein includes a display panel and a lighting device configured as described above.
 本明細書中に開示されている発光素子駆動回路、照明装置、電子機器、ディスプレイ装置によれば、音鳴りの低減、コストの低減及びスイッチングノイズの低減を行うことができる。 According to the light emitting element drive circuit, lighting device, electronic device, and display device disclosed in this specification, it is possible to reduce noise, reduce cost, and reduce switching noise.
図1は、実施の形態に係るバックライト装置を備えるディスプレイ装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a display device including a backlight device according to an embodiment. 図2Aは、照明装置の発光素子の配置レイアウトの一例を示す図である。FIG. 2A is a diagram illustrating an example of an arrangement layout of light emitting elements of a lighting device. 図2Bは、発光素子が実装される基板を示す図である。FIG. 2B is a diagram showing a substrate on which a light emitting element is mounted. 図3は、照明装置の発光素子の配置レイアウトの別の一例を示す図である。FIG. 3 is a diagram showing another example of the arrangement layout of light emitting elements of the lighting device. 図4は、調光率が90%の場合の調光制御の一例を示す図である。FIG. 4 is a diagram showing an example of dimming control when the dimming rate is 90%. 図5は、調光率が50%の場合の調光制御の一例を示す図である。FIG. 5 is a diagram showing an example of dimming control when the dimming rate is 50%. 図6は、調光率が0.25%の場合の調光制御の一例を示す図である。FIG. 6 is a diagram showing an example of dimming control when the dimming rate is 0.25%. 図7は、調光率が20%の場合の負荷の変動を示す図である。FIG. 7 is a diagram showing changes in load when the dimming rate is 20%. 図8は、従来技術との比較を示す図である。FIG. 8 is a diagram showing a comparison with the prior art. 図9Aは、照明装置を備える電子機器の一例を示す図である。FIG. 9A is a diagram illustrating an example of an electronic device including a lighting device. 図9Bは、照明装置を備える電子機器の一例を示す図である。FIG. 9B is a diagram illustrating an example of an electronic device including a lighting device.
 図1は、実施の形態に係る照明装置を備えるディスプレイ装置の構成を示す図である。 FIG. 1 is a diagram showing the configuration of a display device including a lighting device according to an embodiment.
 ディスプレイ装置100は、LCD(Liquid Crystal  Display)パネル101および照明装置1を備える。照明装置1は、LCDパネル101の裏面から、バックライトを照射するよう構成される。 The display device 100 includes an LCD (Liquid Crystal Display) panel 101 and a lighting device 1. The illumination device 1 is configured to emit backlight from the back surface of the LCD panel 101.
 照明装置1は、マルチチャンネルで構成され、N(Nは2以上の整数)チャンネルの発光素子ストリング10_1~10_Nと、発光素子駆動回路2と、コンデンサC1と、導光板(図1において不図示)と、を備える。 The lighting device 1 has a multi-channel configuration, and includes N (N is an integer of 2 or more) channel light emitting element strings 10_1 to 10_N, a light emitting element drive circuit 2, a capacitor C1, and a light guide plate (not shown in FIG. 1). and.
 N個の発光素子ストリング10_1~10_Nはそれぞれ、直列に接続されたM個(Mは2以上の整数)の発光ユニット11を含む。たとえば各発光ユニット11は、ひとつの、あるいは直列に接続された複数の発光素子を含む。発光素子はたとえばLEDである。 Each of the N light emitting element strings 10_1 to 10_N includes M light emitting units 11 (M is an integer of 2 or more) connected in series. For example, each light emitting unit 11 includes one light emitting element or a plurality of light emitting elements connected in series. The light emitting element is, for example, an LED.
 同じ発光素子ストリング10(チャンネル)に含まれるM個の発光ユニット11は、同じ輝度で発光するように、そのサイズ(発光面積)は実質的に等しく構成される。 The M light emitting units 11 included in the same light emitting element string 10 (channel) are configured to have substantially the same size (light emitting area) so that they emit light with the same brightness.
 以下、j番目(1≦j≦N)のチャンネルCHjの発光素子ストリング10_jのi番目の発光ユニット11を、発光ユニット(11_j,i)と表記する。本実施の形態では、説明の簡潔化と理解の容易化を目的として、すべての発光ユニット(11_1,1)~(11_N,M)のサイズ(発光面積)が等しい場合を説明する。 Hereinafter, the i-th light-emitting unit 11 of the light-emitting element string 10_j of the j-th (1≦j≦N) channel CHj will be referred to as a light-emitting unit (11_j, i). In this embodiment, for the purpose of simplifying the description and facilitating understanding, a case will be described in which all the light emitting units (11_1, 1) to (11_N, M) have the same size (light emitting area).
 LCDパネル101は、その一辺(本実施の形態では、図中、X方向)の方向に対して、複数M個の領域102_1~102_Mに分割されている。ここでの分割とは、LCDパネル101が物理的に分割されていることを意味するのではなく、仮想的な領域に分割されることを意味する。 The LCD panel 101 is divided into a plurality of M regions 102_1 to 102_M in the direction of one side thereof (in the present embodiment, the X direction in the figure). Dividing here does not mean that the LCD panel 101 is physically divided, but rather that it is divided into virtual areas.
 LCDパネル101は、その一辺(本実施のN個の発光素子ストリング10_1~10_Nそれぞれに含まれる第i番目の発光ユニット(11_1,i)~(11_N,i)は、i番目の領域102_iに割り当てられ、対応する領域102_iを照射するよう配置される。i番目の領域102_iに割り当てられた複数のチャンネルCH1~CHNそれぞれの発光ユニット(11_1,i)~(11_N,i)を、発光モジュール12_iと称する。 One side of the LCD panel 101 (the i-th light emitting units (11_1, i) to (11_N, i) included in each of the N light-emitting element strings 10_1 to 10_N in this embodiment are allocated to the i-th area 102_i). The light emitting units (11_1,i) to (11_N,i) of the plurality of channels CH1 to CHN assigned to the i-th region 102_i are arranged as the light emitting module 12_i. to be called.
 発光素子駆動回路2には、外部から、バックライトの輝度を指示する調光信号PWMCLKが入力される。発光素子駆動回路2は、調光信号PWMCLKに応じて、N個の発光素子ストリング10_1~10_Nそれぞれの発光を独立にオン、オフ可能に構成される。 A dimming signal PWMCLK that instructs the brightness of the backlight is input to the light emitting element drive circuit 2 from the outside. The light emitting element drive circuit 2 is configured to be able to independently turn on and off the light emission of each of the N light emitting element strings 10_1 to 10_N in accordance with the dimming signal PWMCLK.
 発光素子駆動回路2は、複数チャンネルの発光素子それぞれに接続される複数の電流ドライバ3_1~3_Nと、複数チャンネルの発光素子に電圧を供給するように構成されるDC/DCコンバータ4と、複数の電流ドライバ及びDC/DCコンバータを制御するように構成されるコントローラ5を備える。 The light emitting element drive circuit 2 includes a plurality of current drivers 3_1 to 3_N connected to each of the plurality of channels of light emitting elements, a DC/DC converter 4 configured to supply voltage to the plurality of channels of light emitting elements, and a plurality of current drivers 3_1 to 3_N connected to each of the plurality of channels of light emitting elements. A controller 5 is provided, configured to control the current driver and the DC/DC converter.
 N個の電流ドライバ3_1~3_Nは発光素子ストリング10_1~10_Nごとに設けられる。j番目(1≦j≦N)の電流ドライバ3_jは、対応する発光素子ストリング10_jと直列に設けられる。具体的には電流ドライバ3_jは、対応する発光素子ストリング10_jのカソードと接地ラインの間に設けられる。あるいは電流ドライバ3_jは、発光素子ストリング10_jと、DC/DCコンバータ4の出力ラインの間に設けられてもよい。電流ドライバ3_jは、駆動電流ILEDjを生成する。電流ドライバ3は、公知技術を用いればよく、その構成は限定されない。 N current drivers 3_1 to 3_N are provided for each light emitting element string 10_1 to 10_N. The j-th (1≦j≦N) current driver 3_j is provided in series with the corresponding light emitting element string 10_j. Specifically, the current driver 3_j is provided between the cathode of the corresponding light emitting element string 10_j and the ground line. Alternatively, the current driver 3_j may be provided between the light emitting element string 10_j and the output line of the DC/DC converter 4. Current driver 3_j generates drive current I LEDj . The current driver 3 may use any known technology, and its configuration is not limited.
 コントローラ5は、調光信号PWMCLKに応じて、電流ドライバ3_1~3_Nを制御することにより、PWM(パルス幅変調)調光する。PWM調光では、駆動電流ILEDが流れる時間比率が制御される。 The controller 5 performs PWM (pulse width modulation) dimming by controlling the current drivers 3_1 to 3_N in accordance with the dimming signal PWMCLK. In PWM dimming, the time ratio over which the drive current I LED flows is controlled.
 コントローラ5は、調光信号PWMCLKに応じて、輝度調節を目的として、電流ドライバ3_1~3_Nそれぞれを独立にオン、オフ可能となっている。 The controller 5 is capable of independently turning on and off each of the current drivers 3_1 to 3_N for the purpose of brightness adjustment according to the dimming signal PWMCLK.
 DC/DCコンバータ4は、各チャンネルCH1~CHNの発光素子ストリング10および電流ドライバ3のペアの両端間、つまりその出力ラインと接地ラインの間に、駆動電圧VCCを供給する。コンデンサC1は、駆動電圧VCCのリップルを抑制する。 The DC/DC converter 4 supplies a driving voltage V CC across the pair of light emitting element string 10 and current driver 3 of each channel CH1 to CHN, that is, between its output line and the ground line. Capacitor C1 suppresses ripple in drive voltage V CC .
 コントローラ5は、N個の電流ドライバ3_1~3_Nの電圧降下、すなわち発光素子ストリング10_1~10_Nそれぞれのカソード電圧VLED1~VLEDNのうち最も低い電圧が所定の基準電圧に近づくように、DC/DCコンバータ4を制御する。 The controller 5 controls the DC/DC so that the voltage drop of the N current drivers 3_1 to 3_N, that is, the lowest voltage among the cathode voltages V LED1 to V LEDN of the light emitting element strings 10_1 to 10_N approaches a predetermined reference voltage. Controls converter 4.
 図2Aは、照明装置の発光素子の配置レイアウトの一例を示す図である。図2Aは、チャンネル数が4である場合の配置レイアウトの一例を示す図である。照明装置1は、複数のチャンネルCH1~CH4ごとに設けられた発光素子ストリング10_1~10_4と、発光素子ストリング10_1~10_4を駆動する発光素子駆動回路2と、導光板103と、を備える。図2Aに示す配置レイアウト例では、発光モジュール12_iは、対応する領域102_i(図1参照)を照射するよう配置され、発光素子ストリング10_1~10_4(発光素子駆動回路2に接続される全ての発光素子)の一部であって且つ且つ全チャンネルの発光素子を有する。図2Aに示す配置レイアウト例では、発光素子ストリング10_1~10_4の電気的接続状態を分かり易くするために、発光素子を複数のチャンネルCH1~CH4ごとに4列に並べて図示している。しかしながら、実際には、図2Bに示すように、複数のチャンネルCH1~CH4の発光素子(発光素子駆動回路2に接続される全ての発光素子)は一列に並ぶことが望ましい。これにより、複数のチャンネルCH1~CH4の発光素子(発光素子駆動回路2に接続される全ての発光素子)が搭載される基板6の面積を小さくすることができる。基板6は、フレキシブル回路基板であることが望ましい。基板6がフレキシブル回路基板である場合、ディスプレイ装置100の筐体に基板6を取り付ける作業が容易になる。 FIG. 2A is a diagram showing an example of the arrangement layout of light emitting elements of a lighting device. FIG. 2A is a diagram showing an example of an arrangement layout when the number of channels is four. The lighting device 1 includes light emitting element strings 10_1 to 10_4 provided for each of a plurality of channels CH1 to CH4, a light emitting element drive circuit 2 for driving the light emitting element strings 10_1 to 10_4, and a light guide plate 103. In the arrangement layout example shown in FIG. 2A, the light emitting modules 12_i are arranged to illuminate the corresponding area 102_i (see FIG. 1), and the light emitting element strings 10_1 to 10_4 (all the light emitting elements connected to the light emitting element drive circuit 2) are arranged to illuminate the corresponding area 102_i (see FIG. 1). ) and has all-channel light emitting elements. In the arrangement layout example shown in FIG. 2A, the light emitting elements are shown arranged in four rows for each of the plurality of channels CH1 to CH4 in order to make it easier to understand the electrical connection state of the light emitting element strings 10_1 to 10_4. However, in reality, as shown in FIG. 2B, it is desirable that the light emitting elements of the plurality of channels CH1 to CH4 (all the light emitting elements connected to the light emitting element drive circuit 2) are lined up in a line. This makes it possible to reduce the area of the substrate 6 on which the light emitting elements of the plurality of channels CH1 to CH4 (all the light emitting elements connected to the light emitting element drive circuit 2) are mounted. The board 6 is preferably a flexible circuit board. When the board 6 is a flexible circuit board, the work of attaching the board 6 to the casing of the display device 100 becomes easier.
 図2Aは、図1で図示が省略されていた導光板103を図示している。各発光素子ストリング10_1~10_4は、直列に接続された複数のLEDを備えており、発光素子駆動回路2により駆動された発光素子ストリング10_1~10_4の光を導光板103の側面から入れることにより、LCDパネル101(図1参照)を均一に光らすことができる。LCDパネル101は、導光板103の前方に導光板103と対向して配置される。また、発光素子駆動回路2は、半導体パッケージ7に収容される。半導体パッケージ7から露出し、複数のチャンネルCH1~CH4ごとの駆動電流ILED1~ILED4を出力する4つの端子T1~T4それぞれは隣接している。駆動電流を出力する複数の端子の配置は、図2Aに示す例に限定されないが、駆動電流を出力する複数の端子の少なくとも二つは隣接していることが望ましい。これにより、発光素子駆動回路2と発光素子との間の配線が容易になる。 FIG. 2A illustrates the light guide plate 103, which is not shown in FIG. Each of the light emitting element strings 10_1 to 10_4 includes a plurality of LEDs connected in series, and by entering the light from the light emitting element strings 10_1 to 10_4 driven by the light emitting element drive circuit 2 from the side of the light guide plate 103, The LCD panel 101 (see FIG. 1) can be illuminated uniformly. The LCD panel 101 is arranged in front of the light guide plate 103 and facing the light guide plate 103. Further, the light emitting element drive circuit 2 is housed in a semiconductor package 7. Four terminals T1 to T4, which are exposed from the semiconductor package 7 and output drive currents I LED1 to I LED4 for each of the plurality of channels CH1 to CH4, are adjacent to each other. Although the arrangement of the plurality of terminals that output drive current is not limited to the example shown in FIG. 2A, it is desirable that at least two of the plurality of terminals that output drive current are adjacent to each other. This facilitates wiring between the light emitting element drive circuit 2 and the light emitting elements.
 仮にチャンネルCH1に異常が発生し、消灯した場合でも、残りのチャンネルCH2~CH4にて、分割している全ての領域を光らすことができる。このように図2Aのような発光素子の配置レイアウトにすると、仮にあるチャンネルに異常が発生した場合においても、目標としていた調光よりも暗くはなるが、LCDパネル101の全体を照らすことができる。 Even if an abnormality occurs in channel CH1 and the light goes out, all the divided areas can be illuminated using the remaining channels CH2 to CH4. With the light emitting element arrangement layout as shown in FIG. 2A, even if an abnormality occurs in a certain channel, the entire LCD panel 101 can be illuminated, although the dimming will be darker than the target dimming. .
 一方、図3のような発光素子の配置レイアウトにすると、あるチャンネルに異常が発生し、消灯した場合、ある特定の領域が暗くなってしまう。そのため、LCDパネル101の場所により、明るさが異なってしまう。このようなデメリットに鑑み、実施の形態に係る照明装置は、図3のような発光素子の配置レイアウトを採用しない。 On the other hand, if the light emitting elements are arranged in a layout as shown in FIG. 3, if an abnormality occurs in a certain channel and the light is turned off, a certain specific area will become dark. Therefore, the brightness differs depending on the location of the LCD panel 101. In view of such disadvantages, the lighting device according to the embodiment does not adopt the arrangement layout of the light emitting elements as shown in FIG. 3.
 図4は、調光率が90%の場合の調光制御の一例を示す図である。オンデューティが90%であるように調整された調光信号PWMCLKがコントローラ5に入力される。 FIG. 4 is a diagram showing an example of dimming control when the dimming rate is 90%. A dimming signal PWMCLK adjusted to have an on-duty of 90% is input to the controller 5.
 図4の左側は従来技術の場合を示しており、デューティ・サイクルのオンデューティとオフデューティの比率がチャンネルCH1~CH4の全てのチャンネルにおいて、調光信号PWMCLKと同じデューティ比でコントローラ5は、電流ドライバ3_1~3_4のON/OFF切替を行う。 The left side of FIG. 4 shows the case of the prior art, in which the ratio of on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK in all channels CH1 to CH4, and the controller 5 controls the current Turns ON/OFF the drivers 3_1 to 3_4.
 図4の右側は本実施形態の構成により制御される方式の場合を示しており、デューティ・サイクルのオンデューティとオフデューティの比率が従来技術の場合とは違い、調光信号PWMCLKとは異なる。コントローラ5は、チャンネルCH1~CH3については、オンデューティが100%で電流ドライバ3_1~3_3をONし、チャンネルCH4のみ、オンデューティ60%で電流ドライバ3_4のON/OFF切替を行う。この場合、4チャンネルの合計のオンデューティは360%であり、合計のオンデューティをチャンネル数の4で割ると、調光率は90%となる。 The right side of FIG. 4 shows the case of a method controlled by the configuration of the present embodiment, in which the ratio of on-duty and off-duty of the duty cycle is different from that of the prior art and different from the dimming signal PWMCLK. The controller 5 turns on the current drivers 3_1 to 3_3 with an on duty of 100% for channels CH1 to CH3, and switches ON/OFF the current driver 3_4 only for channel CH4 with an on duty of 60%. In this case, the total on-duty of the four channels is 360%, and when the total on-duty is divided by the number of channels, 4, the dimming rate is 90%.
 図4では、チャンネル数が4である場合を示したが、チャンネル数がNである場合、コントローラ5は、調光率が100×(N-1)/N%(ただし、Nはチャンネル数)より大きく100%より小さい第1調光率のときに、複数の電流ドライバのデューティ・サイクルにおいて、1チャンネルの電流ドライバのON/OFF切替を行い、残りのチャンネルの電流ドライバのオンデューティを100%にするように構成される。例えば、チャンネル数が4である場合、第1調光率は75%より大きく、100%より小さい調光率になる。 Although FIG. 4 shows the case where the number of channels is 4, when the number of channels is N, the controller 5 has a dimming rate of 100×(N-1)/N% (N is the number of channels). When the first dimming rate is larger and smaller than 100%, the current driver of one channel is switched ON/OFF in the duty cycles of multiple current drivers, and the on-duty of the current drivers of the remaining channels is set to 100%. configured to do so. For example, when the number of channels is 4, the first dimming rate is greater than 75% and less than 100%.
 図5は、調光率が50%の場合の調光制御の一例を示す図である。図5の左側は従来技術の場合を示しており、図4の場合と同様、デューティ・サイクルのオンデューティとオフデューティの比率が調光信号PWMCLKと同じデューティ比で、コントローラ5は、チャンネルCH1~CH4の電流ドライバ3_1~3_4のON/OFF切替を行う。 FIG. 5 is a diagram showing an example of dimming control when the dimming rate is 50%. The left side of FIG. 5 shows the case of the prior art, in which the ratio of the on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK, and the controller 5 controls channels CH1 to The current drivers 3_1 to 3_4 of CH4 are switched ON/OFF.
 図5の右側は、本実施形態の構成により制御される方式の場合を示しており、コントローラ5は、チャンネルCH1~CH2についてはオンデューティが100%で電流ドライバ3_1~3_2をONし、チャンネルCH3~CH4についてはオンデューティが0%であるため、電流ドライバ3_3~3_4をOFFする。 The right side of FIG. 5 shows the case of the control method according to the configuration of this embodiment, in which the controller 5 turns on the current drivers 3_1 to 3_2 with an on-duty of 100% for channels CH1 to CH2, and turns on the current drivers 3_1 to 3_2 for channels CH1 to CH2. Since the on-duty for ~CH4 is 0%, the current drivers 3_3 to 3_4 are turned off.
 この場合、4チャンネルの合計のオンデューティは200%であり、合計のオンデューティをチャンネル数の4で割ると、調光率は50%となる。図5では、コントローラは、第3調光率において、オンデューティが0%であるチャンネル、及び、オンデューティが100%であるチャンネルの双方が存在するように複数の電流ドライバを制御するように構成される。例えば、チャンネル数が4である場合、第3調光率は75%、50%、25%などになる。第3調光率は、第1調光率より小さく100/N%以上であり100/N%で割り切れる調光率である。 In this case, the total on-duty of the four channels is 200%, and when the total on-duty is divided by the number of channels, 4, the dimming rate is 50%. In FIG. 5, the controller is configured to control the plurality of current drivers such that at the third dimming rate, there are both a channel with an on-duty of 0% and a channel with an on-duty of 100%. be done. For example, when the number of channels is 4, the third dimming rate is 75%, 50%, 25%, etc. The third light control rate is smaller than the first light control rate, is 100/N% or more, and is divisible by 100/N%.
 図6は、調光率が0.25%の場合の調光制御の一例を示す図である。図6の左側は従来技術の場合を示しており、図4の場合と同様、デューティ・サイクルのオンデューティとオフデューティの比率が調光信号PWMCLKと同じデューティ比で、コントローラ5は、チャンネルCH1~CH4の電流ドライバ3_1~3_4のON/OFF切替を行う。 FIG. 6 is a diagram showing an example of dimming control when the dimming rate is 0.25%. The left side of FIG. 6 shows the case of the prior art, in which the ratio of the on-duty and off-duty of the duty cycle is the same as that of the dimming signal PWMCLK, and the controller 5 controls channels CH1 to The current drivers 3_1 to 3_4 of CH4 are switched ON/OFF.
 図6の右側は本実施形態の構成により制御される方式の場合を示しており、コントローラ5はチャンネルCH1のみオン時間のデューティが1%で電流ドライバ3_1のON/OFF切替を行い、チャンネルCH2~CH4についてはオンデューティが0%であるため、電流ドライバ3_2~3_4をOFFする。4チャンネルの合計のオン時間のデューティは1%であり、合計のオン時間のデューティをチャンネル数で割ると、調光率は0.25%となる。 The right side of FIG. 6 shows the case of the control method according to the configuration of this embodiment, in which the controller 5 switches the current driver 3_1 ON/OFF with the on-time duty of only channel CH1 being 1%, and channels CH2 to Since the on-duty of CH4 is 0%, current drivers 3_2 to 3_4 are turned off. The total on-time duty of the four channels is 1%, and when the total on-time duty is divided by the number of channels, the dimming rate is 0.25%.
 図6では、チャンネル数が4である場合を示したが、調光信号PWMCLKのオンデューティの最小値が1%でチャンネル数がNである場合の調光率は、Nチャンネルの合計のオン時間のデューティは1%であり、合計のオン時間のデューティをチャンネル数で割ると、調光率は1/N%とすることができる。このようにデューティ・サイクルのオン時間のデューティ設定範囲の最小値をチャンネル数で割った値まで調光率を絞ることができる。 Although FIG. 6 shows the case where the number of channels is 4, the dimming rate when the minimum value of the on-duty of the dimming signal PWMCLK is 1% and the number of channels is N is the total on-time of N channels. The duty is 1%, and if the duty of the total on-time is divided by the number of channels, the dimming rate can be set to 1/N%. In this way, the dimming rate can be narrowed down to the value obtained by dividing the minimum value of the duty setting range of the on-time of the duty cycle by the number of channels.
 図6では、コントローラは、調光率が100/N%より小さい第4調光率のときにおいて、1チャンネルの電流ドライバのON/OFF切替を行い、残りのチャンネルの電流ドライバのオンデューティを0%にするように複数の電流ドライバを制御するように構成される。例えば、チャンネル数が4である場合、第4調光率は25%より小さくなる。第4調光率は、100/N%より小さい調光率である。 In FIG. 6, the controller switches the current driver of one channel ON/OFF when the dimming rate is a fourth dimming rate smaller than 100/N%, and sets the on-duty of the current drivers of the remaining channels to 0. % of the current driver. For example, when the number of channels is 4, the fourth dimming rate is less than 25%. The fourth light control rate is a light control rate smaller than 100/N%.
 本明細書中には図示してはいないが、コントローラは、第2調光率において、オンデューティが0%であるチャンネル、オンデューティが100%であるチャンネル、及びON/OFF切替を行うチャンネルが1チャンネル存在するように複数の電流ドライバを制御するように構成される。例えば、チャンネル数が4である場合、第2調光率は50%より大きく、75%より小さい調光率などになる。第2調光率は、第1調光率より小さく100/N%より大きく100/N%で割ると余りが生じる調光率である。 Although not illustrated in this specification, the controller controls a channel with an on-duty of 0%, a channel with an on-duty of 100%, and a channel that performs ON/OFF switching at the second dimming rate. The device is configured to control a plurality of current drivers such that one channel exists. For example, when the number of channels is 4, the second dimming rate is greater than 50% and less than 75%. The second light control rate is a light control rate that is smaller than the first light control rate and larger than 100/N% and produces a remainder when divided by 100/N%.
 同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを固定するように構成しても良い。この構成にする場合、異常検知部から出力される異常検知信号をコントローラが受け取り、異常検知信号に基づき、どのチャンネルの発光素子に異常が発生したかを判断し、コントローラは、異常が発生した発光素子に接続される電流ドライバを、点灯を行う候補から外すことを行なっても良い。 At the same dimming rate, the channel for ON/OFF switching of the current driver may be configured to be fixed. When using this configuration, the controller receives the abnormality detection signal output from the abnormality detection section, determines which channel of the light emitting element in which the abnormality has occurred based on the abnormality detection signal, and then A current driver connected to an element may be excluded from candidates for lighting.
 同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを固定するように構成した場合、同じチャンネルのみスイッチングが行われるため、特定のチャンネルのみ素子劣化が生じるおそれがある。そこで、例えば、起動を行う度、またはカウンタを使用して、特定の周期毎に電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成してもよい。または、表示パネルからフレームの切り替え信号をコントローラが受け取る場合は、表示パネルのフレーム周期に同期させて、切り替えることも可能である。同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成する場合、特定のチャンネルのみ素子劣化することを低減することができる。 If the channel for ON/OFF switching of the current driver is configured to be fixed at the same dimming rate, only the same channel will be switched, so there is a risk that element deterioration will occur only in a specific channel. Therefore, for example, a configuration may be adopted in which the channel for ON/OFF switching of the current driver is switched every time the current driver is activated or every specific cycle using a counter. Alternatively, if the controller receives a frame switching signal from the display panel, it is also possible to switch in synchronization with the frame cycle of the display panel. When the current driver is configured to switch between ON/OFF channels at the same dimming rate, it is possible to reduce element deterioration in only a specific channel.
 また、異常が発生した場合には、同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを固定するときと同様、異常検知部から出力される異常検知信号をコントローラが受け取り、異常検知信号に基づき、どのチャンネルの発光素子に異常が発生したかを判断し、コントローラは、異常が発生した発光素子に接続される電流ドライバを、点灯を行う候補から外すことを行っても良い。 In addition, when an abnormality occurs, the controller receives the abnormality detection signal output from the abnormality detection section and detects the abnormality, just as when fixing the channel for ON/OFF switching of the current driver at the same dimming rate. Based on the signal, the controller may determine which channel of the light emitting element the abnormality has occurred in, and remove the current driver connected to the light emitting element in which the abnormality has occurred from the candidates for lighting.
 図7は、調光率が20%の場合の負荷の変動を示す図である。電流ドライバをONにスイッチングすると、1チャンネル当たり100mAの負荷変動が発生する。図7の左側は従来技術の場合を示しており、チャンネル数が4であると、4チャンネル全てが同時のタイミングでスイッチングを行うため、TOTAL負荷が400mAとなる。このように従来技術の場合、負荷変動が大きくなることにより、入出力リップル電圧が大きくなる。そのため、音鳴りは発生する。 FIG. 7 is a diagram showing changes in load when the dimming rate is 20%. Switching the current driver ON causes a load variation of 100 mA per channel. The left side of FIG. 7 shows the case of the prior art, and when the number of channels is four, all four channels switch at the same timing, so the total load is 400 mA. As described above, in the case of the conventional technology, as the load fluctuation increases, the input/output ripple voltage increases. Therefore, noise occurs.
 図7の中側は、従来技術(Phase Shift)の場合を示しており、図7の左側の従来技術とは異なり、全チャンネルを同じタイミングでスイッチングするのではなく、1チャンネルずつ、異なるタイミングでスイッチングを行う。このように、1チャンネルずつスイッチングを行うことで、TOTAL負荷は100mAとなり、負荷変動は小さくなる。負荷変動が小さくなることにより、入出力リップル電圧が小さくなり、音鳴りが低減される。ただし、スイッチングの回数は低減されていないため、スイッチングノイズの低減は期待できない。 The middle side of Figure 7 shows the case of the conventional technology (Phase Shift), which differs from the conventional technology on the left side of Figure 7 in that all channels are not switched at the same timing, but each channel is switched at different timings. Perform switching. By performing switching channel by channel in this manner, the TOTAL load becomes 100 mA, and the load fluctuation becomes small. By reducing the load fluctuation, the input/output ripple voltage becomes smaller, and noise is reduced. However, since the number of times of switching is not reduced, it cannot be expected that switching noise will be reduced.
 図7の右側は、本実施形態の構成により制御される方式の場合を示しており、1チャンネルのみスイッチングを行い、残りのチャンネルはオンデューティが0%であるため、OFFする。本実施形態の構成により制御される方式の場合は、スイッチングが1チャンネルのみになるため、TOTAL負荷は100mAとなる。スイッチング回数は、従来技術(Phase Shift)の場合に比べて、非常に少なくすることができる。そのため、音鳴りを低減することができ、スイッチングノイズの発生も抑制することができる。また、リップルを抑制するためにコンデンサを使用していた場合には、コンデンサの容量を小さくすることができ、低コストを図ることができる。 The right side of FIG. 7 shows a method controlled by the configuration of this embodiment, in which only one channel is switched, and the remaining channels are turned off because their on-duty is 0%. In the case of the method controlled by the configuration of this embodiment, since only one channel is switched, the TOTAL load is 100 mA. The number of switching times can be significantly reduced compared to the case of the conventional technology (Phase Shift). Therefore, it is possible to reduce noise and also to suppress the occurrence of switching noise. Further, when a capacitor is used to suppress ripple, the capacitance of the capacitor can be reduced, and costs can be reduced.
 図8は、従来技術との比較を示す図である。図7で説明した内容をまとめると、本実施形態の構成により制御される方式の場合は、スイッチングが1チャンネルのみになるため、負荷変動が少なく、入出力リップル電圧が小さくなる。そのため、音鳴りも抑制でき、コンデンサのサイズを小さくすることができる。またスイッチングの回数も少ないため、スイッチングノイズの発生も抑制することができる。従来技術と、従来技術(Phase Shift)に比べて、メリットがあることがわかる。また、従来技術よりも、調光率の範囲を拡げることも可能である。 FIG. 8 is a diagram showing a comparison with the conventional technology. To summarize the contents explained with reference to FIG. 7, in the case of the control method according to the configuration of this embodiment, only one channel is switched, so that load fluctuations are small and input/output ripple voltages are small. Therefore, noise can also be suppressed and the size of the capacitor can be reduced. Furthermore, since the number of times of switching is small, generation of switching noise can also be suppressed. It can be seen that there are advantages compared to the conventional technique and the conventional technique (Phase Shift). Furthermore, it is also possible to expand the range of dimming ratios compared to the conventional technology.
<その他の変形例>
 PWM調光で説明を行ったが、PWM調光に限定されず、PWM調光以外のパルス変調調光でも構わない。PWM調光以外のパルス変調調光としては、例えばPFM(パルス周波数変調)調光、PDM(パルス密度変調)調光などがある。またPWM調光とアナログ調光を組み合わせたことにより、更にコントラスト比を上げることも可能である。4チャンネルを例とした場合、XmAの電流を流しており、4チャンネル全てオンデューティが調光信号PWMCLKのオンデューティの最大値と同一値(例えば100%)になったときに、アナログ調光で電流をXmAからYmAにすることにより、さらに明るくすることができる。なお、YはXより大きい値であればよい。
<Other variations>
Although the explanation has been given using PWM dimming, the present invention is not limited to PWM dimming, and pulse modulation dimming other than PWM dimming may be used. Examples of pulse modulation dimming other than PWM dimming include PFM (pulse frequency modulation) dimming and PDM (pulse density modulation) dimming. Furthermore, by combining PWM dimming and analog dimming, it is possible to further increase the contrast ratio. Taking 4 channels as an example, when a current of XmA is flowing and the on-duty of all 4 channels becomes the same value (for example, 100%) as the maximum on-duty of the dimming signal PWMCLK, analog dimming is performed. It can be made even brighter by changing the current from XmA to YmA. Note that Y only needs to be a larger value than X.
 また、4チャンネルを例とした場合、XmAの電流を流しており、4チャンネルの合計のオンデューティが調光信号PWMCLKのオンデューティの最小値と同一値(例えば1%)になったときに、アナログ調光で電流をXmAからZmAにすることにより、さらに暗くすることもできる。なお、ZはXより小さい値であればよい。 Furthermore, in the case of 4 channels as an example, when a current of XmA is flowing and the total on-duty of the 4 channels becomes the same value as the minimum value of the on-duty of the dimming signal PWMCLK (for example, 1%), It is also possible to make it even darker by changing the current from XmA to ZmA using analog dimming. Note that Z may be a value smaller than X.
 続いて照明装置1の用途を説明する。図9A、図9Bは、照明装置1を備える電子機器の一例を示す図である。図9Aの電子機器200はテレビ、カーナビゲーションシステム、PCなどのディスプレイ装置である。図9Bは、電子機器200は、タブレットPC、PDA(Personal Digital  Assistant)、携帯電話端末などである。電子機器200は、筐体201およびLCDパネル101を備える。発光素子ストリング10は、LCDパネル101の背面にバックライトとして配置される。 Next, the application of the lighting device 1 will be explained. 9A and 9B are diagrams showing an example of an electronic device including the lighting device 1. The electronic device 200 in FIG. 9A is a display device such as a television, a car navigation system, or a PC. In FIG. 9B, the electronic device 200 is a tablet PC, a PDA (Personal Digital Assistant), a mobile phone terminal, or the like. Electronic device 200 includes a housing 201 and an LCD panel 101. The light emitting element string 10 is placed on the back of the LCD panel 101 as a backlight.
 本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。 In addition to the above embodiments, the configuration of the present invention can be modified in various ways without departing from the spirit of the invention. The above embodiments should be considered to be illustrative in all respects and not restrictive, and the technical scope of the present invention is indicated by the claims rather than the description of the above embodiments. It should be understood that all changes that come within the meaning and range of equivalence of the claims are included.
 以上説明した発光素子駆動回路は、複数チャンネルの発光素子それぞれに接続される複数の電流ドライバと、複数の電流ドライバを制御するように構成されるコントローラと、備え、コントローラは、複数チャンネルのチャンネル数をNとし、調光率が100×(N-1)/N%より大きく100%より小さい第1調光率のときに、1チャンネルの電流ドライバのON/OFF切替を行い、残りのチャンネルの電流ドライバのオンデューティを100%にするように構成される(第1の構成)。 The light emitting element drive circuit described above includes a plurality of current drivers connected to each of the plurality of channels of light emitting elements, and a controller configured to control the plurality of current drivers. is N, and when the dimming rate is the first dimming rate greater than 100×(N-1)/N% and less than 100%, the current driver of one channel is switched ON/OFF, and the current driver of the remaining channels is switched on/off. The current driver is configured to have an on-duty of 100% (first configuration).
 また、上記第1の構成である発光素子駆動回路は、コントローラは、前記第1調光率より小さく100/N%より大きく100/N%で割ると余りが生じる第2調光率において、オンデューティが0%であるチャンネル、オンデューティが100%であるチャンネル、及びON/OFF切替を行うチャンネルが1チャンネル存在するように複数の電流ドライバを制御するように構成される(第2の構成)。 Further, in the light emitting element drive circuit having the first configuration, the controller turns on the light at a second dimming rate which is smaller than the first dimming rate and is larger than 100/N% and produces a remainder when divided by 100/N%. A plurality of current drivers are configured to be controlled so that there are a channel with a duty of 0%, a channel with an on-duty of 100%, and a channel that performs ON/OFF switching (second configuration). .
 また、上記第1の構成または第2の構成である発光素子駆動回路は、コントローラは、前記第1調光率より小さく100/N%以上であり100/N%で割り切れる第3調調光率において、オンデューティが0%であるチャンネル、及び、オンデューティが100%であるチャンネルの双方が存在するように複数の電流ドライバを制御するように構成される(第3の構成)。 Further, in the light emitting element drive circuit having the first configuration or the second configuration, the controller controls the controller at a third dimming rate which is smaller than the first dimming rate and is 100/N% or more and is divisible by 100/N%. , a plurality of current drivers are controlled so that there are both a channel with an on-duty of 0% and a channel with an on-duty of 100% (third configuration).
 また、上記第1から第3のいずれかの構成である発光素子駆動回路は、コントローラは、100/N%より小さい第4調光率のときにおいて、1チャンネルの電流ドライバのON/OFF切替を行い、残りのチャンネルの電流ドライバのオンデューティを0%にするように構成される(第4の構成)。 Further, in the light emitting element drive circuit having any of the first to third configurations above, the controller controls ON/OFF switching of the current driver of one channel when the fourth dimming rate is smaller than 100/N%. (fourth configuration).
 また、上記第1から第4のいずれかの構成である発光素子駆動回路は、発光素子の異常が発生した際に、コントローラは、異常が発生した発光素子に接続される電流ドライバを、点灯を行う候補から外すように構成される(第5の構成)。 In addition, in the light emitting element drive circuit having any of the first to fourth configurations above, when an abnormality occurs in the light emitting element, the controller controls the current driver connected to the abnormal light emitting element to turn off the light. (fifth configuration).
 また、上記第1から第5のいずれかの構成である同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを固定するように構成される(第6の構成)。 Further, in the same rate dimming ratio that is any one of the first to fifth configurations, the channel for switching ON/OFF of the current driver is configured to be fixed (sixth configuration).
 また、上記第1から第5のいずれかの構成である同率調光率において、電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される(第7の構成)。 In addition, in the same rate dimming ratio that is any one of the first to fifth configurations, the channel for switching ON/OFF of the current driver is configured to be switched (seventh configuration).
 また、上記第7の構成である発光素子駆動回路は、起動を行う度、またはカウンタを使用して、特定の周期毎に前記電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される(第8の構成)。 Further, the light emitting element drive circuit having the seventh configuration is configured to switch the channel for ON/OFF switching of the current driver each time it is activated or at a specific cycle using a counter. (Eighth configuration).
 また、上記第7の構成である発光素子駆動回路は、コントローラが表示パネルからフレームの切り替え信号を受け取る場合において、表示パネルのフレーム周期に同期させて、電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される(第9の構成)。 Furthermore, in the case where the controller receives a frame switching signal from the display panel, the light emitting element drive circuit having the seventh configuration has a channel for switching the current driver ON/OFF in synchronization with the frame period of the display panel. configured to switch (ninth configuration).
 また、上記第1から第9いずれかの構成である発光素子駆動回路は、前記発光素子駆動回路は、半導体パッケージに収容され、前記半導体パッケージから露出し、前記複数の電流ドライバそれぞれによって生成される複数の駆動電流それぞれを出力する複数の端子のうち少なくとも二つは隣接しているように構成される(第10の構成)。 Further, in the light emitting element driving circuit having any one of the first to ninth configurations, the light emitting element driving circuit is housed in a semiconductor package, exposed from the semiconductor package, and generated by each of the plurality of current drivers. At least two of the plurality of terminals that output each of the plurality of drive currents are configured to be adjacent to each other (tenth configuration).
 また、以上説明した照明装置は、上記第1から第10のいずれかの構成である発光素子駆動回路と、前記複数チャンネルの発光素子と、を備える構成(第11の構成)である。 Furthermore, the lighting device described above has a configuration (eleventh configuration) including a light emitting element drive circuit having any one of the first to tenth configurations and the plurality of channels of light emitting elements.
 また、以上説明した電子機器は、表示パネルと、上記第11の構成である照明装置と、を備える構成(第12の構成)である。 Furthermore, the electronic device described above has a configuration (twelfth configuration) that includes a display panel and a lighting device that is the eleventh configuration.
 また、上記第12の構成である電子機器は、複数の発光ユニットを備え、前記表示パネルは、複数の仮想的な領域に分割され、複数の前記発光ユニットそれぞれは、対応する前記領域を照射するよう配置され、前記複数チャンネルの発光素子の一部であって且つ全チャンネルの発光素子を有するように構成される(第13の構成)。 Further, the electronic device having the twelfth configuration includes a plurality of light emitting units, the display panel is divided into a plurality of virtual regions, and each of the plurality of light emitting units illuminates the corresponding region. The light emitting device is arranged as shown in FIG.
 また、上記第13の構成である電子機器は、前記複数チャンネルの発光素子は一列に並ぶように構成される(第14の構成)。 Further, in the electronic device having the thirteenth configuration, the plurality of channels of light emitting elements are arranged in a line (fourteenth configuration).
 また、以上説明したディスプレイ装置は、表示パネルと、上記第11の構成である照明装置と、を備える構成(第15の構成)である。 Furthermore, the display device described above has a configuration (fifteenth configuration) that includes a display panel and a lighting device that is the eleventh configuration.
 また、上記第15の構成であるディスプレイ装置は、複数の発光ユニットを備え、前記表示パネルは、複数の仮想的な領域に分割され、複数の前記発光ユニットそれぞれは、対応する前記領域を照射するよう配置され、前記複数チャンネルの発光素子の一部であって且つ全チャンネルの発光素子を有するように構成される(第16の構成)。 Further, the display device having the fifteenth configuration includes a plurality of light emitting units, the display panel is divided into a plurality of virtual regions, and each of the plurality of light emitting units illuminates the corresponding region. The light emitting device is arranged as shown in FIG.
 また、上記第16の構成であるディスプレイ装置は、前記複数チャンネルの発光素子は一列に並ぶように構成される(第17の構成)。 Further, in the display device having the sixteenth configuration, the plurality of channels of light emitting elements are arranged in a line (seventeenth configuration).
   1 照明装置
   2 発光素子駆動回路
   3_1~3_N 電流ドライバ
   4 DC/DCコンバータ
   5 コントローラ
   6 基板
   7 半導体パッケージ
   10_1~10_N 発光素子ストリング
   11 発光ユニット
   12_1~12_M 発光モジュール
   100 ディスプレイ装置
   101 LCDパネル
   102_1~102_M 領域
   103 導光板
   200 電子機器
   201 筐体
   C1 コンデンサ
   T1~T4 端子
1 Lighting device 2 Light emitting element drive circuit 3_1~3_N Current driver 4 DC/DC converter 5 Controller 6 Substrate 7 Semiconductor package 10_1~10_N Light emitting element string 11 Light emitting unit 12_1~12_M Light emitting module 100 Display device 101 LCD panel 102_1~102_M Area 103 Light guide plate 200 Electronic equipment 201 Housing C1 Capacitor T1~T4 Terminal

Claims (17)

  1.  複数チャンネルの発光素子それぞれに接続される複数の電流ドライバと、
     前記複数の電流ドライバを制御するように構成されるコントローラと、
     備え、
     前記コントローラは、前記複数チャンネルのチャンネル数をNとし、調光率が100×(N-1)/N%より大きく100%より小さい第1調光率のときに、1チャンネルの前記電流ドライバのON/OFF切替を行い、残りのチャンネルの前記電流ドライバのオンデューティを100%にするように構成される、発光素子駆動回路。
    a plurality of current drivers connected to each of the light emitting elements of the plurality of channels;
    a controller configured to control the plurality of current drivers;
    Prepare,
    The controller controls the current driver of one channel when the number of channels of the plurality of channels is N and the dimming rate is a first dimming rate that is larger than 100×(N-1)/N% and smaller than 100%. A light emitting element drive circuit configured to perform ON/OFF switching and set the on-duty of the current driver of the remaining channels to 100%.
  2.  前記コントローラは、前記第1調光率より小さく100/N%より大きく100/N%で割ると余りが生じる第2調光率において、オンデューティが0%であるチャンネル、オンデューティが100%であるチャンネル、及びON/OFF切替を行うチャンネルが1チャンネル存在するように前記複数の電流ドライバを制御するように構成される、請求項1に記載の発光素子駆動回路。 The controller controls the channel where the on-duty is 0% and the on-duty is 100% at a second dimming rate that is smaller than the first dimming rate and larger than 100/N% and produces a remainder when divided by 100/N%. The light emitting element drive circuit according to claim 1, configured to control the plurality of current drivers so that there is one channel and one channel that performs ON/OFF switching.
  3.  前記コントローラは、前記第1調光率より小さく100/N%以上であり100/N%で割り切れる第3調光率において、少なくとも1つのチャンネルの前記電流ドライバのオンデューティを0%にし、残りのチャンネルの前記電流ドライバのオンデューティを100%にするように前記複数の電流ドライバを制御するように構成される、請求項1又は請求項2に記載の発光素子駆動回路。 The controller sets the on-duty of the current driver of at least one channel to 0% at a third dimming rate that is smaller than the first dimming rate, is 100/N% or more and is divisible by 100/N%, and sets the on-duty of the current driver of at least one channel to 0%; The light emitting element drive circuit according to claim 1 or 2, configured to control the plurality of current drivers so that the on-duty of the current driver of the channel is 100%.
  4.  前記コントローラは、100/N%より小さい第4調光率のときにおいて、1チャンネルの前記電流ドライバのON/OFF切替を行い、残りのチャンネルの前記電流ドライバのオンデューティを0%にするように構成される、請求項1~3のいずれか一項に記載の発光素子駆動回路。 The controller is configured to turn on/off the current driver of one channel and set the on-duty of the current drivers of the remaining channels to 0% when a fourth dimming rate is smaller than 100/N%. The light emitting element driving circuit according to claim 1, wherein the light emitting element driving circuit is configured.
  5.  前記発光素子の異常が発生した際に、前記コントローラは、異常が発生した前記発光素子に接続される前記電流ドライバを、点灯を行う候補から外すように構成される、請求項1~4のいずれか一項に記載の発光素子駆動回路。 Any one of claims 1 to 4, wherein when an abnormality occurs in the light emitting element, the controller is configured to remove the current driver connected to the light emitting element in which the abnormality has occurred from candidates for lighting. 2. The light emitting element drive circuit according to item 1.
  6.  同率調光率において、前記電流ドライバのON/OFF切替を行うチャンネルを固定するように構成される、請求項1~5のいずれか一項に記載の発光素子駆動回路。 The light emitting element drive circuit according to any one of claims 1 to 5, configured to fix a channel for ON/OFF switching of the current driver at the same dimming rate.
  7.  同率調光率において、前記電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される、請求項1~5のいずれか一項に記載の発光素子駆動回路。 The light emitting element drive circuit according to any one of claims 1 to 5, configured to switch a channel for ON/OFF switching of the current driver at the same dimming rate.
  8.  起動を行う度、またはカウンタを使用して、特定の周期毎に前記電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される、請求項7に記載の発光素子駆動回路。 The light emitting element drive circuit according to claim 7, wherein the light emitting element drive circuit is configured to switch the channel for ON/OFF switching of the current driver every time the current driver is activated or every specific cycle using a counter.
  9.  前記コントローラが表示パネルからフレームの切り替え信号を受け取る場合において、表示パネルのフレーム周期に同期させて、前記電流ドライバのON/OFF切替を行うチャンネルを切り替えるように構成される、請求項7に記載の発光素子駆動回路。 8. The controller according to claim 7, wherein when the controller receives a frame switching signal from a display panel, the controller is configured to switch a channel for ON/OFF switching of the current driver in synchronization with a frame period of the display panel. Light emitting element drive circuit.
  10.  前記発光素子駆動回路は、半導体パッケージに収容され、
     前記半導体パッケージから露出し、前記複数の電流ドライバそれぞれによって生成される複数の駆動電流それぞれを出力する複数の端子のうち少なくとも二つは隣接している、請求項1~9のいずれか一項に記載の発光素子駆動回路。
    The light emitting element driving circuit is housed in a semiconductor package,
    10. At least two of the plurality of terminals exposed from the semiconductor package and outputting each of the plurality of drive currents generated by each of the plurality of current drivers are adjacent to each other. The light emitting element drive circuit described above.
  11.  請求項1~10のいずれか一項に記載の発光素子駆動回路と、
     前記複数チャンネルの発光素子と、
     を備える、照明装置。
    A light emitting element drive circuit according to any one of claims 1 to 10,
    the multi-channel light emitting device;
    A lighting device comprising:
  12.  表示パネルと、
     請求項11に記載の照明装置と、
     を備える、電子機器。
    a display panel;
    The lighting device according to claim 11;
    Electronic equipment.
  13.  複数の発光ユニットを備え、
     前記表示パネルは、複数の仮想的な領域に分割され、
     複数の前記発光ユニットそれぞれは、対応する前記領域を照射するよう配置され、前記複数チャンネルの発光素子の一部であって且つ全チャンネルの発光素子を有する、請求項12に記載の電子機器。
    Equipped with multiple light emitting units,
    The display panel is divided into a plurality of virtual areas,
    13. The electronic device according to claim 12, wherein each of the plurality of light emitting units is arranged so as to illuminate the corresponding region, is part of the plurality of channels of light emitting elements, and has light emitting elements of all channels.
  14.  前記複数チャンネルの発光素子は一列に並ぶ、請求項13に記載の電子機器。 The electronic device according to claim 13, wherein the plurality of channels of light emitting elements are arranged in a line.
  15.  表示パネルと、
     請求11に記載の照明装置と、
     を備える、ディスプレイ装置。
    a display panel;
    The lighting device according to claim 11,
    A display device comprising:
  16.  複数の発光ユニットを備え、
     前記表示パネルは、複数の仮想的な領域に分割され、
     複数の前記発光ユニットそれぞれは、対応する前記領域を照射するよう配置され、前記複数チャンネルの発光素子の一部であって且つ全チャンネルの発光素子を有する、請求項15に記載のディスプレイ装置。
    Equipped with multiple light emitting units,
    The display panel is divided into a plurality of virtual areas,
    16. The display device according to claim 15, wherein each of the plurality of light emitting units is arranged to illuminate the corresponding region, is part of the plurality of channels of light emitting elements, and has light emitting elements of all channels.
  17.  前記複数チャンネルの発光素子は一列に並ぶ、請求項16に記載のディスプレイ装置。 The display device according to claim 16, wherein the plurality of channels of light emitting elements are arranged in a line.
PCT/JP2023/021137 2022-06-08 2023-06-07 Light-emitting element drive circuit and lighting device using same, display device, and electronic apparatus WO2023238887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022092742 2022-06-08
JP2022-092742 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238887A1 true WO2023238887A1 (en) 2023-12-14

Family

ID=89118328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021137 WO2023238887A1 (en) 2022-06-08 2023-06-07 Light-emitting element drive circuit and lighting device using same, display device, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2023238887A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221262A (en) * 2010-04-09 2011-11-04 Rohm Co Ltd Control circuit device for light-emitting element and method of controlling the same
WO2012020615A1 (en) * 2010-08-09 2012-02-16 シャープ株式会社 Light emitting device, display device and drive method of light emitting device
JP2014207204A (en) * 2013-04-16 2014-10-30 ローム株式会社 Backlight device, display device using the same, and electronic device
JP2017010810A (en) * 2015-06-23 2017-01-12 ローム株式会社 Luminaire, control circuit for the same, control method and display device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221262A (en) * 2010-04-09 2011-11-04 Rohm Co Ltd Control circuit device for light-emitting element and method of controlling the same
WO2012020615A1 (en) * 2010-08-09 2012-02-16 シャープ株式会社 Light emitting device, display device and drive method of light emitting device
JP2014207204A (en) * 2013-04-16 2014-10-30 ローム株式会社 Backlight device, display device using the same, and electronic device
JP2017010810A (en) * 2015-06-23 2017-01-12 ローム株式会社 Luminaire, control circuit for the same, control method and display device using the same

Similar Documents

Publication Publication Date Title
KR100691628B1 (en) Apparatus for driving led arrays
US9699845B2 (en) Control circuit and control method for illumination apparatus
TWI386708B (en) Light emitting diode driving device
US7518525B2 (en) Light emitting diode and display device using the same
US8288969B2 (en) Driving apparatus of light emitting diode and driving method thereof
CN2735494Y (en) Inverter controller with automatic brightness adjusting circuit
US7649326B2 (en) Highly efficient series string LED driver with individual LED control
US7498754B2 (en) Architecture for driving multiple loads at constant current
US8120288B2 (en) Light emitting diode (LED) driving circuit
EP2168118B1 (en) Driving circuit for driving a plurality of light sources arranged in a series configuration
KR101153219B1 (en) PWM signal generating circuit and method for DC-DC converter using diming signal and LED driving circuit for back light having the same
US8159148B2 (en) Light emitting diode light source module
TW200713165A (en) LED light source for backlighting with integrated electronics
WO2009019634A1 (en) Solid state lighting system and a driver integrated circuit for driving light emitting semiconductor devices
JP5952630B2 (en) Driving circuit and driving method of backlight LED string, and backlight device and electronic apparatus using the same
KR100798111B1 (en) Apparatus of controlling backlight and apparatus of driving backlight comprising the same
US9113520B2 (en) Light emitting diode backlight system the driving apparatus and driving method thereof
US20100103091A1 (en) Light emitting diode array, driving system thereof and liquid crystal display using the same
KR20070000963A (en) Device for driving light emitting diode
JP6152290B2 (en) BACKLIGHT DEVICE AND DISPLAY DEVICE AND ELECTRONIC DEVICE USING THE SAME
WO2023238887A1 (en) Light-emitting element drive circuit and lighting device using same, display device, and electronic apparatus
CN101909378A (en) LED driving device and method
CN101998725A (en) Drive circuit of light-emitting diode
CN100562911C (en) LED drive and use its display device
JP2011009564A (en) Backlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819867

Country of ref document: EP

Kind code of ref document: A1