WO2023238831A1 - Paving photovoltaic module, solar photovoltaic power generation paving block, method for manufacturing paving photovoltaic module, glass plate, and laminated glass for glass floor - Google Patents

Paving photovoltaic module, solar photovoltaic power generation paving block, method for manufacturing paving photovoltaic module, glass plate, and laminated glass for glass floor Download PDF

Info

Publication number
WO2023238831A1
WO2023238831A1 PCT/JP2023/020887 JP2023020887W WO2023238831A1 WO 2023238831 A1 WO2023238831 A1 WO 2023238831A1 JP 2023020887 W JP2023020887 W JP 2023020887W WO 2023238831 A1 WO2023238831 A1 WO 2023238831A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
photovoltaic module
particles
paving
layer
Prior art date
Application number
PCT/JP2023/020887
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 石橋
祐 小野崎
恒 道又
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023238831A1 publication Critical patent/WO2023238831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules

Definitions

  • the present invention relates to a photovoltaic module for paving, a solar power generation paving block, a method for manufacturing a photovoltaic module for paving, a glass plate, and a laminated glass for glass floors.
  • Solar power generation is a power generation method that utilizes the phenomenon that electricity is generated when light hits various materials, such as silicon semiconductors, and directly converts the light energy of the sun into electricity using solar cells (semiconductor elements).
  • Solar power generation has become increasingly important because it uses renewable energy to generate electricity and does not emit or increase greenhouse gas emissions.
  • governments around the world have implemented policies to introduce solar power, and large-scale solar power generation facilities have been put into operation, increasing the total amount of power generated and achieving a track record of being able to withstand long-term operation.
  • Patent Document 1 describes a tile for road construction that has a cavity inside and holds a solar cell inside with an elastic body.
  • Patent Document 2 discloses a photovoltaic module in which a photovoltaic module is attached to one side of a translucent support member made of polycarbonate or the like, and a surface coating layer made of a resin containing fine particles is provided on the other side. is listed.
  • Patent Document 3 describes a flat substrate on which a glass coating layer is formed by heating a coating film containing a glass frit and particles having a size of 0.5 to 40 ⁇ m. Since the softening temperature or melting temperature of these particles is higher than the softening temperature of the glass component, protrusions formed by these particles are formed on the surface of the glass coating layer.
  • Patent Document 1 since a cavity is provided inside the road laying tile, there are problems such as there is a limit to the improvement in load capacity and it is difficult to increase the area.
  • the technology described in Patent Document 1 does not take into consideration the slip resistance performance when vehicles and pedestrians pass on the road, and ensures good power generation performance and driving performance even in actual use environments. It was difficult to do so.
  • Patent Document 3 is intended to be applied to doors, kitchen furniture, etc., for example, as a translucent panel for interior materials of buildings, and has excellent abrasion resistance, scratch resistance, and thermal stability in the home environment. and meet the requirements of the coating layer, such as chemical resistance.
  • the coating layer such as chemical resistance.
  • the present invention has been made in view of the above-mentioned conventional problems, and provides a photovoltaic module for pavement, a solar power generation pavement block, and a pavement block that can ensure good slip resistance performance even in actual use environments.
  • the present invention aims to provide a method for manufacturing a photovoltaic module, a glass plate, and a laminated glass for a glass floor.
  • Cover glass and a photovoltaic cell a sealing layer that seals the photovoltaic cell
  • a pavement photovoltaic module comprising: arranging the cover glass on the light-receiving surface side of the photovoltaic cell; the cover glass has a first side and a second side, and the photovoltaic cell is disposed on the second side;
  • the cover glass includes particles protruding from the surface on the first side, A photovoltaic module for pavement, wherein the particles have a particle size of 0.01 to 5 mm.
  • the cover glass includes a particle layer and a glass substrate, the particle layer being disposed on the first side, and the glass substrate being disposed on the second side,
  • the particle layer includes the particles and a binder,
  • the binder is a fired glass frit,
  • Electromotive force module [4] The photovoltaic module for pavement according to [2] or [3], wherein the particle layer has bubbles.
  • Thermal expansion coefficient of the glass substrate ⁇ thermal expansion coefficient of the binder ⁇ thermal expansion coefficient of the particles [10]
  • a solar power generation pavement block comprising the pavement photovoltaic module according to any one of [1] to [16].
  • the first side includes particles protruding from the surface; A glass plate, wherein the particles have a particle size of 0.01 to 5 mm.
  • the glass plate includes a particle layer and a glass substrate, the particle layer being disposed on the first side, and the glass substrate being disposed on the second side, The particle layer includes the particles and a binder, The binder is a fired glass frit, The glass plate according to [19], wherein the particles are bonded to the glass substrate using the binder.
  • a photovoltaic module for paving that can ensure good skid resistance performance even in an actual use environment, a solar power generation paving block, a method for manufacturing a photovoltaic module for paving, a glass plate, and Laminated glass for glass floors can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a photovoltaic module for pavement 100 according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 110 according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 120 according to a second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 130 according to a third embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 140 according to a fourth embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a solar power generation pavement block 500 according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a structural example of a photovoltaic cell-containing sealing layer 70 according to the first embodiment.
  • 1 is an optical micrograph (particle portion) of the light-receiving surface of the photovoltaic module for pavement obtained in Example 1.
  • 1 is an optical microscope photograph (binder layer portion) of the light-receiving surface of the photovoltaic module for pavement obtained in Example 1.
  • 9 is a schematic cross-sectional view for explaining FIG. 8.
  • FIG. 8 is a schematic cross-sectional view showing a first modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7.
  • FIG. 8 is a schematic cross-sectional view showing a first modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7.
  • FIG. 8 is a schematic cross-
  • FIG. 8 is a schematic cross-sectional view showing a second modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7.
  • FIG. 8 is a schematic cross-sectional view showing a third modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7.
  • FIG. FIG. 3 is a schematic cross-sectional view showing a structural example of a first glass plate. It is a schematic cross-sectional view which shows the structural example of a 2nd glass plate. It is a schematic cross-sectional view which shows the structural example of a 3rd glass plate.
  • FIG. 7 is a diagram for explaining Example 6.
  • FIG. 7 is a diagram for explaining Example 6.
  • FIG. 7 is a diagram for explaining Example 6.
  • FIG. 7 is a diagram for explaining Example 6.
  • means a value greater than or equal to the value before the description " ⁇ ” and less than or equal to the value after the description " ⁇ ".
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a photovoltaic module 100 for paving according to an embodiment of the present invention.
  • a paving photovoltaic module 100 according to an embodiment of the present invention includes a cover glass 50 and a photovoltaic cell-containing sealing layer 70.
  • the photovoltaic cell-containing sealing layer 70 includes a photovoltaic cell and a sealing layer that seals the photovoltaic cell.
  • a cover glass 50 is disposed on the light-receiving surface side of the paving photovoltaic module 100, and the cover glass 50 has a first side 50a and a second side 50b, and the photovoltaic cell-containing seal is disposed on the second side 50b.
  • the cover glass 50 includes particles 2 protruding from the surface on the first side 50a.
  • the particle size of the particles 2 is 0.01 to 5 mm.
  • the particle size of the present invention is determined by measuring the area of the particle in plan view using a surface image of a cover glass obtained using an optical microscope, etc., and calculating the particle size by measuring the area of the particle in a planar view. It is the diameter.
  • the particle size of the particles is 0.01 to 5 mm
  • the number of particles with a particle size of 0.01 to 5 mm is 70% or more, preferably 80% or more of the total number of particles, or more. It means preferably 90% or more.
  • the phrase "the cover glass includes particles protruding from the surface on the first side” of the present invention includes an embodiment in which the surface of the protruding particles is coated.
  • the particles protrude from the surface refers to the particles protruding from the region of the first side surface where no particles are provided, and the surface of the particles is For example, it may be covered with a binder layer (described later), or it may be exposed to the outside without being covered with any other member.
  • the cover glass 50 does not include particles protruding from the surface on the surface of the second side 50b, and particularly does not include a layer made of a fired glass frit on the surface of the second side 50b. .
  • the above-mentioned paving photovoltaic module 100 will be described in detail below using the first to fourth embodiments as examples.
  • FIG. 2 is a schematic cross-sectional view showing a structural example of the paving photovoltaic module 110 of this embodiment.
  • the paving photovoltaic module 110 of this embodiment includes a cover glass 51 and a photovoltaic cell-containing sealing layer 70.
  • the photovoltaic cell-containing sealing layer 70 includes a photovoltaic cell and a sealing layer that seals the photovoltaic cell.
  • a cover glass 51 is disposed on the light-receiving surface side of the paving photovoltaic module 100, and the cover glass 51 has a first side 51a and a second side 51b, and the photovoltaic cell-containing seal is disposed on the second side 51b.
  • a stop layer 70 is disposed.
  • the cover glass 51 includes particles 2 protruding from the surface on the first side 51a. The particle size of the particles 2 is 0.01 to 5 mm.
  • the paving photovoltaic module 110 of this embodiment further includes a cover glass 51, a plurality of photovoltaic cells 76, and a seal from the light-receiving surface side of the paving photovoltaic module 110. It is preferable to have a sealing layer 72 (including a first sealing layer 74 and a second sealing layer 78). All of the plurality of photovoltaic cells 76 are sealed with a sealing layer 72.
  • the cover glass 51 includes a particle layer 10 and a glass substrate 20.
  • the particle layer 10 is arranged on the first side 51a, and the glass substrate 20 is arranged on the second side 51b.
  • the slip resistance value BPN is preferably 30 or more, more preferably 40 or more. A method for evaluating the slip resistance value BPN will be explained in Examples below.
  • the thickness of the binder layer 6 in the peripheral part of the particles 2 is thicker than in the part away from the particles 2. That is, for example, as shown in FIGS. 8 and 10 of Example 1, it is preferable that a swell of the particle layer 10 is formed around the particles 2.
  • the density of the protruding particles 2 is preferably 1 particle/cm 2 or more, and preferably 5 particles/cm 2 or more with respect to the area of the particle layer 10. is more preferable, and even more preferably 10 pieces/cm 2 or more. Moreover, it is preferable that it is 1x10 ⁇ 5> pieces/cm ⁇ 2> or less.
  • the total ratio of the area of the particles 2 in plan view to the area of the particle layer 10 is preferably 1 to 80%. The lower limit is more preferably 10%, and even more preferably 20%.
  • the binder layer 6 includes a binder 4 that is a fired product of glass frit. This layer is formed by firing a coating layer containing glass frit.
  • the composition of the glass frit (referred to as second glass) is preferably different from the composition of the glass substrate 20 (referred to as first glass), which will be described later, and the strain point of the first glass is lower than the softening point of the second glass.
  • the temperature is preferably 20°C or more, more preferably 30°C or more, and even more preferably 50°C or more.
  • the glass for the glass frit include soda lime silicate glass, borosilicate glass, alkali-free glass, and quartz glass.
  • the layer thickness of the binder layer 6 is preferably 10 to 2000 ⁇ m, and the lower limit is more preferably 50 ⁇ m, even more preferably 100 ⁇ m.
  • the binder layer 6 may include particles 2 having a particle size smaller than the layer thickness of the binder layer 6 within the layer.
  • a glass plate can be mentioned.
  • materials constituting the glass plate include soda lime silicate glass, quartz glass, crystal glass, alkali-free glass, aluminosilicate glass, borosilicate glass, and barium borosilicate glass.
  • Soda lime silicate glass with reduced iron content is preferred.
  • Specific examples of soda lime silicate glass include 60 to 75% by mass of SiO 2 , 0 to 3% by mass of Al 2 O 3 , 0 to 15% by mass of CaO, 0 to 12% by mass of MgO, and glass having a composition of 5 to 20% by mass Na 2 O.
  • SiO 2 is the main component of soda lime silicate glass.
  • the soda lime silicate glass may further contain at least one material selected from the group consisting of K 2 O, TiO 2 , ZrO 2 , SrO, BaO and LiO 2 .
  • the soda lime silicate glass may further contain a refining agent (eg, SO 3 , SnO 2 , Sb 2 O 3 ).
  • the glass substrate 20 may be surface-treated from the viewpoint of adhesion to a photovoltaic cell-containing sealing layer 70 (for example, a first sealing layer 74 in FIG. 7, which will be described later), which will be described later.
  • a photovoltaic cell-containing sealing layer 70 for example, a first sealing layer 74 in FIG. 7, which will be described later
  • the surface treatment method known methods can be used, including activation treatment (plasma method, vapor deposition method, acid treatment, base treatment, etc.), chemical conversion treatment, material surface polishing, sanding treatment, pore sealing treatment, blasting treatment, and primer treatment. Examples include processing.
  • Specific examples of the primer include silane coupling agents (especially alkoxysilanes, etc.), epoxy resins, (meth)acrylic resins, and polyester resins.
  • the coefficient of thermal expansion of the glass substrate 20 is expressed by the following equation as the relationship between the binder 4 and the particles.
  • Thermal expansion coefficient of glass substrate ⁇ thermal expansion coefficient of binder ⁇ thermal expansion coefficient of particles If the thermal expansion coefficient of the glass substrate 20 has the above relationship, even after firing and cooling in the manufacturing process of the cover glass 51 described below, The particles 2 are strongly fixed to the surface of the cover glass 51, and sufficient durability can be obtained.
  • the resin in the first sealing layer is at least one resin selected from the group consisting of olefin resin (especially ethylene-vinyl acetate copolymer (EVA resin)), polyvinyl butyral resin (PVB resin), ionomer resin, and silicone resin.
  • olefin resin especially ethylene-vinyl acetate copolymer (EVA resin)
  • PVB resin polyvinyl butyral resin
  • ionomer resin ionomer resin
  • silicone resin silicone resin.
  • at least one resin selected from the group consisting of ethylene-vinyl acetate copolymer and polyvinyl butyral resin is particularly preferred.
  • the first sealing layer is formed by laminating the first sealing material with another material and bonding them under heat and pressure.
  • the first sealing material may contain the resin described above.
  • the first sealing material preferably contains an uncrosslinked resin and a crosslinking agent from the viewpoint of weather resistance of the first sealing layer. In this case, the uncrosslinked resin and the crosslinking agent in the first sealing material react with each other by heat and pressure bonding, and a first sealing layer containing the crosslinked resin is obtained.
  • the crosslinking agent known crosslinking agents such as organic peroxides can be used.
  • the first sealing material is preferably in the form of a film or a sheet when laminated.
  • the photovoltaic cell 76 has a function of converting light energy received by the first light receiving surface 76A of the photovoltaic cell into electrical energy.
  • the photovoltaic cell may have this function only on one light-receiving surface, or may have this function on the other light-receiving surface.
  • the thickness of the second sealing layer 78 is not particularly limited, but is preferably 50 to 2,000 ⁇ m, more preferably 70 to 1,500 ⁇ m, and even more preferably 100 to 1,200 ⁇ m. Particularly preferred is 150 to 1,000 ⁇ m. If the thickness of the second sealing layer 78 is 50 ⁇ m or more, it will be easy to follow the unevenness of the photovoltaic cell or wiring. If the thickness of the second sealing layer is 2,000 ⁇ m or less, it is economical and also has excellent robustness as a building material because deformation of the second sealing layer is suppressed.
  • the solar cell module 276 includes, for example, a second cover glass 81, a third sealing layer 84 that seals the photovoltaic cell 76, and a second back glass 82.
  • a second cover glass 81 As the second cover glass 81, the second back glass 82, and the third sealing layer 84, known ones can be used.
  • the second back glass 82 does not need to be made of glass, but may be a sheet-like material made of PET or the like.
  • FIG. 13 is a schematic cross-sectional view showing a third modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG.
  • the photovoltaic cell-containing sealing layer 70C shown in FIG. 13 uses a solar cell module 376 instead of the photovoltaic cell 76 of the photovoltaic cell-containing sealing layer 70 shown in FIG.
  • the solar cell module 376 is not particularly limited, but an existing solar cell module can be used.
  • Glass Frit Glass frit particle size is 1 ⁇ m to 10 ⁇ m. Fillers are sometimes added to control the hardness and thermal expansion of the fired film. Specifically, zircon, zirconia, silica, alumina, etc. are used as the filler, and the particle size is 0.1 ⁇ m to 20 ⁇ m.
  • the printed substrate is fired in a firing furnace.
  • Firing consists of a drying process for the solvent, a debinding process to decompose and eliminate the resin, and a firing process to sinter and soften the glass powder.
  • the debinding temperature is 350° C. to 400° C. for ethyl cellulose, 200° C. to 300° C. for nitrocellulose, and 300° C. to 350° C. for acrylic, and heated in air for 30 minutes to 1 hour. The temperature is then raised to sinter and soften the glass.
  • the firing temperature is from the softening temperature to the softening temperature +200°C, and the shape and size of the bubbles remaining inside vary depending on the processing temperature.
  • the process of sealing the photovoltaic cell 76 is, for example, a photovoltaic power generation method described in International Publication No. 2021/106869 ("Solar power generation module, manufacturing method thereof, and architectural exterior wall material using the same").
  • a method of sealing the photovoltaic cell 76 with reference to the module manufacturing method may be mentioned.
  • the sealing step S2 of the photovoltaic cell 76 of this embodiment includes, but is not particularly limited to, the cover glass 51 obtained in the cover glass manufacturing process, the first sealing material 74 containing an ultraviolet absorber, and the photovoltaic cell 76.
  • An example of this method is to arrange the power cell 76 and the second sealing material 78 in this order and heat and press them to seal the photovoltaic cell 76.
  • the photovoltaic module 110 for paving of this embodiment in which the cover glass 51, the first sealing layer 74, the photovoltaic cell 76, and the second sealing layer 78 are laminated in this order is obtained.
  • the heating temperature during thermocompression bonding is preferably 100 to 200°C, particularly preferably 130 to 170°C.
  • the heat-pressing time is preferably 2 to 120 minutes, particularly preferably 5 to 60 minutes.
  • FIG. 6 is a schematic cross-sectional view showing a structural example of a solar power generation pavement block 500 according to an embodiment of the present invention.
  • the photovoltaic pavement block 500 of the present embodiment is preferably a pavement block (for example, an interlocking block) comprising any one of the paving photovoltaic modules of the present embodiments 1 to 4 described above.
  • the solar power generation pavement block 500 of this embodiment is preferably one in which the paving photovoltaic module 150 of this embodiment is arranged on a known road paving material 200.
  • the photovoltaic pavement block 500 of this embodiment may further include a road adhesive layer (not shown) between the paving photovoltaic module of this embodiment and the road paving material 200.
  • the second glass plate 552 (FIG. 15) according to the present embodiment is the same as the cover glass 52 of the paving photovoltaic module according to the second embodiment shown in FIG. 3.
  • the method for manufacturing the second glass plate 552 according to this embodiment is the same as the method for manufacturing the cover glass 52 of the photovoltaic module for paving according to the second embodiment.
  • the third glass plate 553 (FIG. 16) according to this embodiment is the same as the cover glass 53 of the photovoltaic module for paving according to the third embodiment shown in FIG.
  • the method for manufacturing the third glass plate 553 according to this embodiment is the same as the method for manufacturing the cover glass 53 of the photovoltaic module for paving according to the third embodiment described above.
  • the glass substrate for laminated glass according to this embodiment is not particularly limited, and a glass plate used for known laminated glass can be used.
  • the glass substrate for laminated glass according to this embodiment can use the back glass described in the fourth embodiment of the photovoltaic module for paving of the present invention and its preferred embodiment.
  • slip resistance value BPN The slip resistance value BPN was measured according to ASTM E303 using a device manufactured by Daiwa Kenko Co., Ltd.
  • particle density The particle density was calculated by dividing the total mass of the scattered particles by the mass per particle to calculate the total number of particles, and then dividing it by the area of the particles to calculate the number per cm 2 .
  • the mass per particle is an approximate mass calculated by calculating the volume from the particle size of the particle and multiplying it by the density.
  • the particle size of the particles is sufficiently large compared to the thickness of the binder layer, it is considered that all of the scattered particles protrude from the surface.
  • the glass frit layer On top of the glass frit layer, 1.0 g of particles were sprinkled by hand while visually checking so that they were spread evenly within the surface.
  • the obtained substrate was placed in a firing furnace, and the temperature was first raised from room temperature to 250°C over 1.5 hours in an air atmosphere to volatilize the solvent, and then the temperature was raised to 400°C over 4 hours.
  • the resin was decomposed and disappeared by holding at °C for 4 hours, and the temperature was further increased to 680°C over 40 minutes, and the glass frit was melted and sintered by holding at 680°C for 10 minutes, and then the temperature was naturally cooled in the furnace. I let it happen. A cover glass was thus obtained.
  • FIG. 10 is a schematic cross-sectional view for explaining FIG. 8. Regarding the relationship between the particles and the binder layer in FIG. 8, as shown in the schematic cross-sectional view in FIG. 10, swelling of the binder layer was observed around the particles. Even though the binder layer (FIG. 9) was thin, the particles were well fixed to the glass substrate because of the raised areas around the particles.
  • Example 2 "Manufacture of photovoltaic modules for pavement”
  • a paving photovoltaic module P-2 was manufactured in the same manner as in Example 1, except that the particle density was (2.5 g). Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 3 "Manufacture of photovoltaic modules for pavement”
  • a paving photovoltaic module P-3 was manufactured in the same manner as in Example 1, except that the binder layer thickness was 180 ⁇ m. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 4 "Manufacture of photovoltaic modules for pavement”
  • a paving photovoltaic module P-4 was manufactured in the same manner as in Example 2, except that the binder layer thickness was 180 ⁇ m. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 5 "Optical properties of cover glass (Steps S1-1A, S1-2A, S1-3A)" In Example 5, the optical properties of the cover glass were evaluated.
  • Dispersant BYK-Chemie, BYK180 Glass substrate: soda lime glass, size: 65 x 150 mm, thickness: 3 mm, softening point: 740°C, strain point: 510°C, coefficient of thermal expansion: 85 x 10 -7 /°C (50°C - 350°C)
  • haze and total light transmittance were measured.
  • the device used was a haze meter HM-150L2N manufactured by Murakami Color Research Institute Co., Ltd. Since the particles were spread manually and the particle density varied within the plane, measurements were performed on two samples and the average value was taken. The results are shown in Table 2.
  • Example 6 "Laminated glass for glass floors (process S1-1B, S1-2B, S1-3B)" In Example 6, laminated glass for glass floors was evaluated. 17 to 19 are diagrams for explaining the sixth embodiment.
  • Dispersant BYK-Chemie, BYK180 Glass substrate: soda lime glass, size: 180 x 200 mm, thickness: 5 mm, softening point: 740°C Back glass: soda lime glass, size: 180 x 200mm, thickness: 5mm Interlayer film for laminated glass: VistaSolar, EVA resin, 521,68
  • FIGS. 18 and 19 show a microscopic image and a cross-sectional curve of a patterned sample in a striped steel plate.
  • a surfcom manufactured by Tokyo Seimitsu Co., Ltd. was used to measure the cross-sectional curve. From these results, it was confirmed that irregularities of about several hundred ⁇ m were formed on the surface, and it can be said that particles were protruding from the surface. Furthermore, the slip resistance BPN of the obtained samples was measured, and the results shown in the rightmost column of Table 4 were obtained.
  • Example 7 Photovoltaic module for pavement (2nd embodiment + 4th embodiment)
  • Example 7 a paving photovoltaic module was evaluated.
  • Dispersant BYK-Chemie, BYK180 Glass substrate: soda lime glass, size: 100 x 100 mm, thickness: 5 mm, softening point: 740°C Back glass: soda lime glass, size: 100 x 100mm, thickness: 3mm
  • Photovoltaic cell Polycrystalline silicon solar cell
  • First and second encapsulant VistaSolar, EVA resin, 521,68
  • a frit paste was prepared using particles with particle number 120, in which the volume ratio of particles in the solid content of frit and particles was 40%.
  • the prepared frit paste was pattern-printed on one surface of the glass substrate in the same manner as in Example 6.
  • a total of five patterns were used: the four types shown in Table 3 and the entire surface coating (solid). Note that the thickness of the mask used was 0.5 mm.
  • the obtained substrate was fired in the same manner as in Example 6 to obtain a cover glass.
  • the obtained cover glass, first encapsulant, photovoltaic cell whose power generation efficiency has been measured, second encapsulant, and back glass are laminated in this order, vacuum packaged, and then placed in an oven. The package was heated at 90° C.
  • the output characteristics of the solar cell were measured for the photovoltaic module obtained in this example.
  • a solar simulator manufactured by Yamashita Denso Co., Ltd. was used to irradiate simulated sunlight, and a source meter was used to measure the current-voltage characteristics. From the results, the output power Pmax at the optimum operating point where the product of current and voltage is the largest was determined. Furthermore, the change in Pmax value before and after modularization (the change between the photovoltaic cell alone and the state where a cover glass was placed on it) was also calculated. These results are shown in Table 5.

Abstract

Provided are a paving photovoltaic module and paving block, capable of ensuring good durability and traveling performance even in actual use environments. This paving photovoltaic module comprises a cover glass, a photovoltaic cell, and a sealing layer for sealing the photovoltaic cell. The cover glass is disposed on the light-receiving surface side of the photovoltaic module. The cover glass has a first side and a second side, and the sealing layer containing the photovoltaic cell is disposed on the second side. The cover glass includes particles protruding from the surface of the cover glass on the first side. The diameters of the particles are 0.01-5 mm.

Description

舗装用光起電力モジュール、太陽光発電舗装ブロック、舗装用光起電力モジュールの製造方法、ガラス板、及びガラス床用合わせガラスPhotovoltaic module for pavement, solar power generation pavement block, method for manufacturing photovoltaic module for pavement, glass plate, and laminated glass for glass floor
 本発明は、舗装用光起電力モジュール、太陽光発電舗装ブロック、舗装用光起電力モジュールの製造方法、ガラス板、及びガラス床用合わせガラスに関する。 The present invention relates to a photovoltaic module for paving, a solar power generation paving block, a method for manufacturing a photovoltaic module for paving, a glass plate, and a laminated glass for glass floors.
 太陽光発電は、シリコン半導体を代表とする様々な材料に光が当たると電気が発生する現象を利用し、太陽の光エネルギーを太陽電池(半導体素子)により直接電気に変換する発電方法である。太陽光発電は、再生可能エネルギーを用いた発電であり、温室効果ガスの排出がない、または増加させないため、重要視されるようになってきた。また、世界各国の政府による導入政策も実施され、大規模な太陽光発電施設も運用されて総発電量も増加し、長期間の運用にも耐えうる実績を上げている。 Solar power generation is a power generation method that utilizes the phenomenon that electricity is generated when light hits various materials, such as silicon semiconductors, and directly converts the light energy of the sun into electricity using solar cells (semiconductor elements). Solar power generation has become increasingly important because it uses renewable energy to generate electricity and does not emit or increase greenhouse gas emissions. In addition, governments around the world have implemented policies to introduce solar power, and large-scale solar power generation facilities have been put into operation, increasing the total amount of power generated and achieving a track record of being able to withstand long-term operation.
 そこで、自然破壊しないかつ設置面積を確保するために、道路の路面上に光起電力モジュールを配置することも提案されている。例えば、特許文献1には、内部に空洞を設け内部に太陽電池を弾性体で保持した道路敷設用タイルが記載されている。また、特許文献2には、ポリカーボネート等からなる透光性支持部材の一方の面に光発電モジュールを貼り付け、他方の面に、微粒子を含む樹脂からなる表面被覆層を設けた光起電力モジュールが記載されている。 Therefore, it has been proposed to place photovoltaic modules on the road surface in order to prevent natural destruction and to secure the installation area. For example, Patent Document 1 describes a tile for road construction that has a cavity inside and holds a solar cell inside with an elastic body. Further, Patent Document 2 discloses a photovoltaic module in which a photovoltaic module is attached to one side of a translucent support member made of polycarbonate or the like, and a surface coating layer made of a resin containing fine particles is provided on the other side. is listed.
 一方、特許文献3には、ガラスフリット及びサイズ0.5~40μmの粒子を含む塗膜を加熱し、ガラス被覆層が形成された平面基板が記載されている。これらの粒子の軟化温度または融解温度は、前記ガラス成分の軟化温度よりも高いため、ガラス被覆層の表面には、これらの粒子による凸部が形成されている。 On the other hand, Patent Document 3 describes a flat substrate on which a glass coating layer is formed by heating a coating film containing a glass frit and particles having a size of 0.5 to 40 μm. Since the softening temperature or melting temperature of these particles is higher than the softening temperature of the glass component, protrusions formed by these particles are formed on the surface of the glass coating layer.
特開2002-118279号公報Japanese Patent Application Publication No. 2002-118279 特許第6814445号公報Patent No. 6814445 米国特許第10,611,677号明細書US Patent No. 10,611,677
 しかし特許文献1の従来技術では、道路敷設用タイル内部に空洞を設けるため、耐荷重の性能向上に限界があることや、大面積化が困難であるなどの問題があった。
 また、特許文献1に記載された技術では、車両や歩行者が道路上を通行する際のすべり抵抗性能等については考慮されておらず、実使用環境においても良好な発電性能と走行性能を確保することは困難であった。
However, in the prior art disclosed in Patent Document 1, since a cavity is provided inside the road laying tile, there are problems such as there is a limit to the improvement in load capacity and it is difficult to increase the area.
In addition, the technology described in Patent Document 1 does not take into consideration the slip resistance performance when vehicles and pedestrians pass on the road, and ensures good power generation performance and driving performance even in actual use environments. It was difficult to do so.
 また、特許文献2の従来技術では、微粒子を含む樹脂からなる表面被覆層を有する光起電力モジュールは、車両や歩行者用道路に敷設する場合、耐久性等に問題があった。 Furthermore, in the prior art disclosed in Patent Document 2, a photovoltaic module having a surface coating layer made of a resin containing fine particles had problems with durability, etc. when installed on a vehicle or pedestrian road.
 一方、特許文献3の従来技術では、例えば、建築の内装材料用透光パネルとして、ドア、キッチン家具等への応用に想定し、家庭環境において、耐摩耗性、耐擦傷性、また熱安定性および耐薬品性などの被覆層の要件を満たしている。しかしながら、屋外の環境において、特に道路舗装面として応用する場合、車両や歩行者が道路上を通行する際のすべり抵抗性能等に課題があった。 On the other hand, the prior art disclosed in Patent Document 3 is intended to be applied to doors, kitchen furniture, etc., for example, as a translucent panel for interior materials of buildings, and has excellent abrasion resistance, scratch resistance, and thermal stability in the home environment. and meet the requirements of the coating layer, such as chemical resistance. However, when applied in an outdoor environment, particularly as a road pavement surface, there have been problems with the slip resistance performance when vehicles and pedestrians pass on the road.
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、実使用環境においても良好なすべり抵抗性能を確保することが可能な舗装用光起電力モジュール、太陽光発電舗装ブロック、舗装用光起電力モジュールの製造方法、ガラス板、及びガラス床用合わせガラスを提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and provides a photovoltaic module for pavement, a solar power generation pavement block, and a pavement block that can ensure good slip resistance performance even in actual use environments. The present invention aims to provide a method for manufacturing a photovoltaic module, a glass plate, and a laminated glass for a glass floor.
 本開示の内容は、以下の実施態様を含む。
[1] カバーガラスと、
 光起電力セルと、
 前記光起電力セルを封止する封止層と、
を含む舗装用光起電力モジュールであって、
 前記光起電力セルの受光面側において、前記カバーガラスを配置し、
 前記カバーガラスが第1側と第2側を有し、前記第2側において前記光起電力セルが配置され、
 前記カバーガラスは、前記第1側において、表面から突出する粒子を含み、
 前記粒子の粒径が0.01~5mmである、舗装用光起電力モジュール。
[2] 前記カバーガラスは、粒子層と、ガラス基板と、を含み、前記粒子層が前記第1側に配置され、前記ガラス基板が前記第2側に配置され、
 前記粒子層が、前記粒子と、バインダと、を含み、 
 前記バインダが、ガラスフリットの焼成物であり、
 前記粒子は、前記バインダを用いて前記ガラス基板と結合することを特徴とする、[1]に記載の舗装用光起電力モジュール。
[3] 前記粒子層が、前記ガラス基板の上に、前記バインダで形成されたバインダ層を含み、前記粒子が前記バインダ層を通して前記ガラス基板と結合する、[2]に記載の、舗装用光起電力モジュール。
[4] 前記粒子層が、気泡を有する、[2]又は[3]に記載の、舗装用光起電力モジュール。
[5] 前記粒子層に含まれる気泡の数が100個/mm以上である、[4]に記載の舗装用光起電力モジュール。
[6] 前記粒子層が上面視において円形、楕円形、多角形等の形状にパターニングされている、[2]~[5]のいずれかに記載の舗装用光起電力モジュール。
[7] 前記ガラス基板の組成と前記バインダの組成とが異なる、[2]~[6]のいずれかに記載の、舗装用光起電力モジュール。
[8] 前記ガラス基板の歪点が、前記バインダの軟化点よりも30℃以上高い、[7]に記載の、舗装用光起電力モジュール。
[9] 以下の式に示す関係を有する、[2]~[8]のいずれかに記載の舗装用光起電力モジュール。
 前記ガラス基板の熱膨張係数≧前記バインダの熱膨張係数≧前記粒子の熱膨張係数
[10]前記ガラス基板が合わせガラスである、[2]~[9]のいずれかに記載の舗装用光起電力モジュール。
[11] 前記粒子が、角が立った結晶性粒子である、[1]~[10]のいずれかに記載の、舗装用光起電力モジュール。
[12] 前記カバーガラスの前記第1側の表面に突出している前記粒子の密度が、1個/cm以上である、[1]~[11]のいずれかに記載の舗装用光起電力モジュール。
[13] 更にバックガラスを含み、
 前記カバーガラスと、前記光起電力セル及び前記封止層を有する光起電力セル含有封止層と、前記バックガラスをその順に含む、[1]~[12]のいずれかに記載の、舗装用光起電力モジュール。
[14] 前記カバーガラスの前記第1側の表面において、滑り抵抗値BPNが30以上である、[1]~[13]のいずれかに記載の舗装用光起電力モジュール。
[15] 前記光起電力セルは、単結晶もしくは多結晶シリコン系太陽電池セルを含む[1]~[14]のいずれかに記載の舗装用光起電力モジュール。
[16] 前記カバーガラスの前記第2側の表面において、ガラスフリットの焼成物からなる層を含まない、[1]~[15]のいずれかに記載の舗装用光起電力モジュール。
[17] [1]~[16]のいずれかに記載の舗装用光起電力モジュールを備えることを特徴とする太陽光発電舗装ブロック。
[18] [1]~[16]のいずれかに記載の舗装用光起電力モジュールを製造する方法であって、
 表面から突出する前記粒子を含む前記カバーガラスを製造するカバーガラス製造工程と、
 前記カバーガラスを用いて、前記封止層に含まれている前記光起電力セルを封止する封止工程と、を含む、舗装用光起電力モジュールの製造方法。
[19] 第1側と第2側を有し、
 前記第1側において、表面から突出する粒子を含み、
 前記粒子の粒径が0.01~5mmである、ガラス板。
[20] 前記ガラス板は、粒子層と、ガラス基板と、を含み、前記粒子層が前記第1側に配置され、前記ガラス基板が前記第2側に配置され、
 前記粒子層が、前記粒子と、バインダと、を含み、
 前記バインダが、ガラスフリットの焼成物であり、
 前記粒子は、前記バインダを用いて前記ガラス基板と結合することを特徴とする、[19]に記載のガラス板。
[21] [19]又は[20]に記載のガラス板と、
 合わせガラス用中間膜と、
 合わせガラス用ガラス基板と、をその順に積層されてなる、ガラス床用合わせガラスであって、
 前記ガラス板の前記第2側において、前記合わせガラス用中間膜を配置する、ガラス床用合わせガラス。
The content of this disclosure includes the following embodiments.
[1] Cover glass and
a photovoltaic cell;
a sealing layer that seals the photovoltaic cell;
A pavement photovoltaic module comprising:
arranging the cover glass on the light-receiving surface side of the photovoltaic cell;
the cover glass has a first side and a second side, and the photovoltaic cell is disposed on the second side;
The cover glass includes particles protruding from the surface on the first side,
A photovoltaic module for pavement, wherein the particles have a particle size of 0.01 to 5 mm.
[2] The cover glass includes a particle layer and a glass substrate, the particle layer being disposed on the first side, and the glass substrate being disposed on the second side,
The particle layer includes the particles and a binder,
The binder is a fired glass frit,
The photovoltaic module for paving according to [1], wherein the particles are bonded to the glass substrate using the binder.
[3] The paving light according to [2], wherein the particle layer includes a binder layer formed of the binder on the glass substrate, and the particles are bonded to the glass substrate through the binder layer. Electromotive force module.
[4] The photovoltaic module for pavement according to [2] or [3], wherein the particle layer has bubbles.
[5] The photovoltaic module for pavement according to [4], wherein the number of bubbles contained in the particle layer is 100/mm 3 or more.
[6] The photovoltaic module for paving according to any one of [2] to [5], wherein the particle layer is patterned in a circular, elliptical, polygonal, etc. shape when viewed from above.
[7] The photovoltaic module for paving according to any one of [2] to [6], wherein the composition of the glass substrate and the composition of the binder are different.
[8] The photovoltaic module for pavement according to [7], wherein the strain point of the glass substrate is 30° C. or more higher than the softening point of the binder.
[9] The photovoltaic module for pavement according to any one of [2] to [8], which has the relationship shown in the following formula.
Thermal expansion coefficient of the glass substrate≧thermal expansion coefficient of the binder≧thermal expansion coefficient of the particles [10] The photovoltaic material for pavement according to any one of [2] to [9], wherein the glass substrate is a laminated glass. power module.
[11] The photovoltaic module for pavement according to any one of [1] to [10], wherein the particles are crystalline particles with sharp edges.
[12] The photovoltaic power for paving according to any one of [1] to [11], wherein the density of the particles protruding from the surface of the first side of the cover glass is 1 particle/cm 2 or more. module.
[13] Further including a back glass,
The pavement according to any one of [1] to [12], comprising the cover glass, the photovoltaic cell-containing sealing layer having the photovoltaic cell and the sealing layer, and the back glass in that order. Photovoltaic module for use.
[14] The photovoltaic module for paving according to any one of [1] to [13], wherein the surface of the first side of the cover glass has a slip resistance value BPN of 30 or more.
[15] The photovoltaic module for paving according to any one of [1] to [14], wherein the photovoltaic cell includes a single crystal or polycrystalline silicon solar cell.
[16] The photovoltaic module for paving according to any one of [1] to [15], wherein the second surface of the cover glass does not include a layer made of a fired glass frit.
[17] A solar power generation pavement block comprising the pavement photovoltaic module according to any one of [1] to [16].
[18] A method for manufacturing the paving photovoltaic module according to any one of [1] to [16], comprising:
a cover glass manufacturing step of manufacturing the cover glass including the particles protruding from the surface;
A method for manufacturing a photovoltaic module for paving, including a sealing step of sealing the photovoltaic cells included in the sealing layer using the cover glass.
[19] having a first side and a second side,
The first side includes particles protruding from the surface;
A glass plate, wherein the particles have a particle size of 0.01 to 5 mm.
[20] The glass plate includes a particle layer and a glass substrate, the particle layer being disposed on the first side, and the glass substrate being disposed on the second side,
The particle layer includes the particles and a binder,
The binder is a fired glass frit,
The glass plate according to [19], wherein the particles are bonded to the glass substrate using the binder.
[21] The glass plate according to [19] or [20],
An interlayer film for laminated glass,
A laminated glass for a glass floor, comprising a glass substrate for laminated glass and a laminated glass substrate for laminated glass in that order,
A laminated glass for a glass floor, wherein the interlayer film for laminated glass is disposed on the second side of the glass plate.
 本発明によれば、実使用環境においても良好なすべり抵抗性能を確保することが可能な舗装用光起電力モジュール、太陽光発電舗装ブロック、舗装用光起電力モジュールの製造方法、ガラス板、及びガラス床用合わせガラスを提供することができる。 According to the present invention, there is provided a photovoltaic module for paving that can ensure good skid resistance performance even in an actual use environment, a solar power generation paving block, a method for manufacturing a photovoltaic module for paving, a glass plate, and Laminated glass for glass floors can be provided.
本発明の一実施形態の舗装用光起電力モジュール100の構造例を示す模式断面図である。1 is a schematic cross-sectional view showing a structural example of a photovoltaic module for pavement 100 according to an embodiment of the present invention. 第1実施形態の舗装用光起電力モジュール110の構造例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 110 according to a first embodiment. 第2実施形態の舗装用光起電力モジュール120の構造例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 120 according to a second embodiment. 第3実施形態の舗装用光起電力モジュール130の構造例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 130 according to a third embodiment. 第4実施形態の舗装用光起電力モジュール140の構造例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a structural example of a paving photovoltaic module 140 according to a fourth embodiment. 本発明の一実施形態の太陽光発電舗装ブロック500の構造例を示す模式断面図である。1 is a schematic cross-sectional view showing a structural example of a solar power generation pavement block 500 according to an embodiment of the present invention. 第1実施形態に係る光起電力セル含有封止層70の構造例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a structural example of a photovoltaic cell-containing sealing layer 70 according to the first embodiment. 実施例1で得られた舗装用光起電力モジュールの受光面の光学顕微鏡写真(粒子部分)である。1 is an optical micrograph (particle portion) of the light-receiving surface of the photovoltaic module for pavement obtained in Example 1. 実施例1で得られた舗装用光起電力モジュールの受光面の光学顕微鏡写真(バインダ層部分)である。1 is an optical microscope photograph (binder layer portion) of the light-receiving surface of the photovoltaic module for pavement obtained in Example 1. 図8を説明するための模式断面図である。9 is a schematic cross-sectional view for explaining FIG. 8. FIG. 図7に示す本実施形態に係る光起電力セル含有封止層70の第1変形例を示す概略断面図である。8 is a schematic cross-sectional view showing a first modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7. FIG. 図7に示す本実施形態に係る光起電力セル含有封止層70の第2変形例を示す概略断面図である。8 is a schematic cross-sectional view showing a second modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7. FIG. 図7に示す本実施形態に係る光起電力セル含有封止層70の第3変形例を示す概略断面図である。8 is a schematic cross-sectional view showing a third modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG. 7. FIG. 第1ガラス板の構造例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a structural example of a first glass plate. 第2ガラス板の構造例を示す模式断面図である。It is a schematic cross-sectional view which shows the structural example of a 2nd glass plate. 第3ガラス板の構造例を示す模式断面図である。It is a schematic cross-sectional view which shows the structural example of a 3rd glass plate. 実施例6を説明するための図である。FIG. 7 is a diagram for explaining Example 6. 実施例6を説明するための図である。FIG. 7 is a diagram for explaining Example 6. 実施例6を説明するための図である。FIG. 7 is a diagram for explaining Example 6.
 以下、本発明をさらに詳細に説明する。なお、本発明は以下に示す実施形態のみに限定されるものではない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。 Hereinafter, the present invention will be explained in more detail. Note that the present invention is not limited only to the embodiments shown below. Identical or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and redundant explanations will be omitted as appropriate.
 「~」は「~」という記載の前の値以上、「~」という記載の後の値以下を意味する。 "~" means a value greater than or equal to the value before the description "~" and less than or equal to the value after the description "~".
(舗装用光起電力モジュール)
 図1は、本発明の一実施形態の舗装用光起電力モジュール100の構造例を示す模式断面図である。本発明の一実施形態の舗装用光起電力モジュール100は、カバーガラス50と、光起電力セル含有封止層70と、を含む。前記光起電力セル含有封止層70が、光起電力セルと、前記光起電力セルを封止する封止層と、を含む。舗装用光起電力モジュール100の受光面側において、カバーガラス50を配置し、カバーガラス50が第1側50aと第2側50bを有し、前記第2側50bにおいて前記光起電力セル含有封止層70が配置される。前記カバーガラス50は、前記第1側50aにおいて、表面から突出する粒子2を含む。前記粒子2の粒径が0.01~5mmである。
 なお、本発明の粒径は、光学顕微鏡などを用いて得られたカバーガラスの表面画像を用いて、平面視の粒子の面積を測定し、同じ面積の円の直径を粒径とする円相当径である。また、「粒子の粒径が0.01~5mmである」とは、粒径が0.01~5mmである粒子の数が、全粒子の数の70%以上、好ましくは80%以上、より好ましくは90%以上であることを意味する。
 また、本発明の「カバーガラスは、第1側において、表面から突出する粒子を含む」とは、突出する粒子の表面が被覆されている実施形態を含む。すなわち、「粒子が表面から突出する」とは、第1側の表面のうちで粒子が設けられていない領域よりも、粒子が突出していることを指し、その粒子の表面は、他の部材(例えば後述するバインダ層)に被覆されていてもよいし、他の部材に被覆されずに外部に露出していてもよい。
 また、前記カバーガラス50は、前記第2側50bの表面において、表面から突出する粒子を含まなく、特に前記第2側50bの表面において、ガラスフリットの焼成物からなる層を含まないことが好ましい。
 以下、第1実施形態~第4実施形態を例として、上述の舗装用光起電力モジュール100を詳細に説明する。
(Photovoltaic module for pavement)
FIG. 1 is a schematic cross-sectional view showing a structural example of a photovoltaic module 100 for paving according to an embodiment of the present invention. A paving photovoltaic module 100 according to an embodiment of the present invention includes a cover glass 50 and a photovoltaic cell-containing sealing layer 70. The photovoltaic cell-containing sealing layer 70 includes a photovoltaic cell and a sealing layer that seals the photovoltaic cell. A cover glass 50 is disposed on the light-receiving surface side of the paving photovoltaic module 100, and the cover glass 50 has a first side 50a and a second side 50b, and the photovoltaic cell-containing seal is disposed on the second side 50b. A stop layer 70 is disposed. The cover glass 50 includes particles 2 protruding from the surface on the first side 50a. The particle size of the particles 2 is 0.01 to 5 mm.
In addition, the particle size of the present invention is determined by measuring the area of the particle in plan view using a surface image of a cover glass obtained using an optical microscope, etc., and calculating the particle size by measuring the area of the particle in a planar view. It is the diameter. Furthermore, "the particle size of the particles is 0.01 to 5 mm" means that the number of particles with a particle size of 0.01 to 5 mm is 70% or more, preferably 80% or more of the total number of particles, or more. It means preferably 90% or more.
Furthermore, the phrase "the cover glass includes particles protruding from the surface on the first side" of the present invention includes an embodiment in which the surface of the protruding particles is coated. In other words, "the particles protrude from the surface" refers to the particles protruding from the region of the first side surface where no particles are provided, and the surface of the particles is For example, it may be covered with a binder layer (described later), or it may be exposed to the outside without being covered with any other member.
Further, it is preferable that the cover glass 50 does not include particles protruding from the surface on the surface of the second side 50b, and particularly does not include a layer made of a fired glass frit on the surface of the second side 50b. .
The above-mentioned paving photovoltaic module 100 will be described in detail below using the first to fourth embodiments as examples.
[第1実施形態]
 図2は、本実施形態の舗装用光起電力モジュール110の構造例を示す模式断面図である。本実施形態の舗装用光起電力モジュール110は、カバーガラス51と、光起電力セル含有封止層70と、を含む。前記光起電力セル含有封止層70が、光起電力セルと、前記光起電力セルを封止する封止層と、を含む。舗装用光起電力モジュール100の受光面側において、カバーガラス51を配置し、カバーガラス51が第1側51aと第2側51bを有し、前記第2側51bにおいて前記光起電力セル含有封止層70が配置される。前記カバーガラス51は、前記第1側51aにおいて、表面から突出する粒子2を含む。前記粒子2の粒径が0.01~5mmである。
[First embodiment]
FIG. 2 is a schematic cross-sectional view showing a structural example of the paving photovoltaic module 110 of this embodiment. The paving photovoltaic module 110 of this embodiment includes a cover glass 51 and a photovoltaic cell-containing sealing layer 70. The photovoltaic cell-containing sealing layer 70 includes a photovoltaic cell and a sealing layer that seals the photovoltaic cell. A cover glass 51 is disposed on the light-receiving surface side of the paving photovoltaic module 100, and the cover glass 51 has a first side 51a and a second side 51b, and the photovoltaic cell-containing seal is disposed on the second side 51b. A stop layer 70 is disposed. The cover glass 51 includes particles 2 protruding from the surface on the first side 51a. The particle size of the particles 2 is 0.01 to 5 mm.
 本実施形態の舗装用光起電力モジュール110は、図7に示すように、更に、舗装用光起電力モジュール110の受光面側から、カバーガラス51と、複数の光起電力セル76と、封止層72(第1封止層74及び第2封止層78を含む)と、を有することが好ましい。複数の光起電力セル76はいずれも、封止層72によって封止されている。 As shown in FIG. 7, the paving photovoltaic module 110 of this embodiment further includes a cover glass 51, a plurality of photovoltaic cells 76, and a seal from the light-receiving surface side of the paving photovoltaic module 110. It is preferable to have a sealing layer 72 (including a first sealing layer 74 and a second sealing layer 78). All of the plurality of photovoltaic cells 76 are sealed with a sealing layer 72.
〔カバーガラス〕
 前記本実施形態にかかるカバーガラス51は、粒子層10と、ガラス基板20と、を含む。前記粒子層10が前記第1側51aに配置され、前記ガラス基板20が前記第2側51bに配置されている。
 前記カバーガラス51の第1側51aの表面において、滑り抵抗値BPNが30以上であることが好ましく、40以上であることがより好ましい。
 滑り抵抗値BPNの評価方法は、後述の実施例で説明する。
〔cover glass〕
The cover glass 51 according to the present embodiment includes a particle layer 10 and a glass substrate 20. The particle layer 10 is arranged on the first side 51a, and the glass substrate 20 is arranged on the second side 51b.
On the surface of the first side 51a of the cover glass 51, the slip resistance value BPN is preferably 30 or more, more preferably 40 or more.
A method for evaluating the slip resistance value BPN will be explained in Examples below.
<粒子層>
 前記本実施形態にかかる前記粒子層10が、前記粒子2と、バインダ4と、を含む。前記バインダ4が、ガラスフリットの焼成物である。前記粒子2は、前記バインダを用いて前記ガラス基板20と結合する。前記粒子層10が、前記ガラス基板20の上に、前記バインダ4で形成されたバインダ層6を含む。
<Particle layer>
The particle layer 10 according to the present embodiment includes the particles 2 and a binder 4. The binder 4 is a fired product of glass frit. The particles 2 are bonded to the glass substrate 20 using the binder. The particle layer 10 includes a binder layer 6 formed of the binder 4 on the glass substrate 20 .
 前記粒子層10(バインダ層6)が、気泡を有することが好ましい。前記気泡のサイズがバインダ層6の膜厚以下であることが好ましい。 It is preferable that the particle layer 10 (binder layer 6) has air bubbles. It is preferable that the size of the bubbles is less than or equal to the thickness of the binder layer 6.
 前記粒子層10に含まれる気泡の数が100個/mm以上であることが好ましく、1×10個/mm以上であることがより好ましく、1×10個/mm以上であることが更に好ましく、1×10個/mm以上であることが最も好ましい。また、1×1010個/mm以下であることが好ましい。
 前記粒子層10の層厚が、0.02~5mmであり、0.03~5mmであることが好ましく、0.05~5mmであることがより好ましく、0.1~5mmであることが更に好ましい。
The number of bubbles contained in the particle layer 10 is preferably at least 100 bubbles/mm 3 , more preferably at least 1×10 3 bubbles/mm 3 , and more preferably at least 1×10 4 bubbles/mm 3 More preferably, the number is 1×10 5 pieces/mm 3 or more, and most preferably 1×10 5 pieces/mm 3 or more. Further, it is preferable that the number of particles is 1×10 10 pieces/mm 3 or less.
The layer thickness of the particle layer 10 is 0.02 to 5 mm, preferably 0.03 to 5 mm, more preferably 0.05 to 5 mm, and even more preferably 0.1 to 5 mm. preferable.
 前記粒子2の周辺部分のバインダ層6の厚さが、粒子2から離れた部分より厚いことが好ましい。すなわち、例えば、実施例1の図8と10に示すように、前記粒子2の周辺において、前記粒子層10の盛り上がりが形成されることが好ましい。 It is preferable that the thickness of the binder layer 6 in the peripheral part of the particles 2 is thicker than in the part away from the particles 2. That is, for example, as shown in FIGS. 8 and 10 of Example 1, it is preferable that a swell of the particle layer 10 is formed around the particles 2.
<<粒子>>
 前記本実施形態にかかる粒子2は、結晶性粒子、ガラス粒子、セラミック粒子等を用いることができる。道路の路面としての必要な滑り抵抗値及び耐久性などの観点から、結晶性粒子が好ましい。結晶性粒子としては、例えば、SiO、Al、ZrO等酸化物の結晶性粒子が挙げられる。
 また、粒子層10において、バインダ4やガラス基板20との親和性などの観点から、ガラス粒子であってもよい。ガラス粒子の組成(第3ガラスという)としては、バインダ4のガラスフリットの組成(第2ガラスという)と異なることが好ましい。前記第3ガラスの歪点が、前記第2ガラスの軟化点よりも30℃以上高いことがより好ましい。
<<particles>>
As the particles 2 according to the present embodiment, crystalline particles, glass particles, ceramic particles, etc. can be used. Crystalline particles are preferred from the viewpoint of slip resistance and durability required as a road surface. Examples of the crystalline particles include crystalline particles of oxides such as SiO 2 , Al 2 O 3 , and ZrO 2 .
Further, in the particle layer 10, glass particles may be used from the viewpoint of affinity with the binder 4 and the glass substrate 20. The composition of the glass particles (referred to as the third glass) is preferably different from the composition of the glass frit of the binder 4 (referred to as the second glass). It is more preferable that the strain point of the third glass is higher than the softening point of the second glass by 30° C. or more.
 本実施形態にかかる粒子2の粒径は、0.01~5mmであり、下限値は、0.02mmであることが好ましく、0.03mmであることがより好ましく、0.04mmであることがさらに好ましく、0.05mmであることが最も好ましい。粒子2の粒径が0.02mm以上である場合、道路の路面としての必要な滑り抵抗値が得られることができる。また、粒子2の粒径の上限値は、2mmであることが好ましく、1mmであることがより好ましい。粒子2の粒径が5mm以下である場合、粒子2がカバーガラス51から脱落することが抑制され、十分な耐久性が得られる。
 本実施形態にかかる粒子2は、粒径範囲0.05~0.5mmの粒子を含むことが好ましい。
The particle size of the particles 2 according to this embodiment is 0.01 to 5 mm, and the lower limit is preferably 0.02 mm, more preferably 0.03 mm, and preferably 0.04 mm. More preferably, it is 0.05 mm. When the particle size of the particles 2 is 0.02 mm or more, a necessary slip resistance value for a road surface can be obtained. Further, the upper limit of the particle size of the particles 2 is preferably 2 mm, more preferably 1 mm. When the particle size of the particles 2 is 5 mm or less, the particles 2 are prevented from falling off the cover glass 51, and sufficient durability can be obtained.
The particles 2 according to this embodiment preferably include particles with a particle size range of 0.05 to 0.5 mm.
 本実施形態にかかる粒子の形状は、特に制限がなく、多角形状、板状、棒状、不定形状などが挙げられる。必要な滑り抵抗値が得られる観点から、球形のような滑らかな形状ではなく角が立った不定形状が好ましい。例えば、粒子2がSiO、Al、ZrO等酸化物の結晶性粒子である場合、酸化物の結晶を粉砕してなる不定形状粒子が挙げられる。例えば、粒子2がガラス粒子である場合、ガラスを粉砕してなる不定形状粒子が挙げられる。 The shape of the particles according to this embodiment is not particularly limited, and examples include polygonal, plate-like, rod-like, and irregular shapes. From the viewpoint of obtaining the necessary slip resistance value, it is preferable to have an irregular shape with sharp corners rather than a smooth shape such as a spherical shape. For example, when the particles 2 are crystalline particles of an oxide such as SiO 2 , Al 2 O 3 , or ZrO 2 , irregularly shaped particles obtained by crushing oxide crystals may be used. For example, when the particles 2 are glass particles, irregularly shaped particles obtained by crushing glass may be used.
 カバーガラス51の前記第1側の表面において、少なくとも一部の粒子2は、突出しているが、完全にバインダ層6に埋没している粒子2(図示なし)があってもよい。
 カバーガラス51の前記第1側の表面において、突出している前記粒子2の密度が、粒子層10の面積に対して1個/cm以上であることが好ましく、5個/cm以上であることがより好ましく、10個/cm以上であることが更に好ましい。また、1×10個/cm以下であることが好ましい。
 カバーガラス51の前記第1側の表面において、粒子層10の面積に対して、前記粒子2の平面視面積の合計比率が、1~80%であることが好ましい。下限値は、10%であることがより好ましく、20%であることが更に好ましい。
At least some of the particles 2 protrude from the first surface of the cover glass 51, but some particles 2 (not shown) may be completely buried in the binder layer 6.
On the surface of the first side of the cover glass 51, the density of the protruding particles 2 is preferably 1 particle/cm 2 or more, and preferably 5 particles/cm 2 or more with respect to the area of the particle layer 10. is more preferable, and even more preferably 10 pieces/cm 2 or more. Moreover, it is preferable that it is 1x10 <5> pieces/cm <2> or less.
On the surface of the first side of the cover glass 51, the total ratio of the area of the particles 2 in plan view to the area of the particle layer 10 is preferably 1 to 80%. The lower limit is more preferably 10%, and even more preferably 20%.
<<バインダ層>>
 前記本実施形態にかかるバインダ層6は、ガラスフリットの焼成物であるバインダ4を含む。ガラスフリットを含む塗布層を焼成してなる層である。
 前記ガラスフリットの組成(第2ガラスという)は、後述のガラス基板20の組成(第1ガラスという)と異なることが好ましく、前記第1ガラスの歪点が、前記第2ガラスの軟化点よりも20℃以上高いことが好ましく、30℃以上高いことがより好ましく、50℃以上高いことが更に好ましい。
 前記ガラスフリットのガラスとしては、ソーダライムシリケートガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラスなどが挙げられる。
<<Binder layer>>
The binder layer 6 according to the present embodiment includes a binder 4 that is a fired product of glass frit. This layer is formed by firing a coating layer containing glass frit.
The composition of the glass frit (referred to as second glass) is preferably different from the composition of the glass substrate 20 (referred to as first glass), which will be described later, and the strain point of the first glass is lower than the softening point of the second glass. The temperature is preferably 20°C or more, more preferably 30°C or more, and even more preferably 50°C or more.
Examples of the glass for the glass frit include soda lime silicate glass, borosilicate glass, alkali-free glass, and quartz glass.
 前記バインダ層6が、気泡を有することが好ましい。気泡があることによりバインダ層内での太陽光が散乱され、太陽光発電セル内に到達する光の量が増加する場合がある。前記気泡のサイズがバインダ層の膜厚以下であることがより好ましい。
 前記バインダ層6に含まれる気泡の数が100個/mm以上であることが更に好ましい。なお、気泡数のカウントは以下のように行った。まずバインダ層の厚みが15μm程度までなるまで研磨加工した。この程度の厚みであれば、光学顕微鏡で観察した際に、厚み方向に存在する全ての気泡が確認できるためである。次に、光学顕微鏡観察を行い、視野内の直径0.5μm以上の気泡を画像処理によって識別、カウントした。このようにして得られた気泡の数を、バインダ層厚みおよび視野面積で割ることによって、mmあたりの気泡の数に換算した。なお、気泡の数は場所によるばらつきがあるため、任意の3カ所について行い平均値をとった。
 前記バインダ層6の層厚が、10~2000μmであることが好ましく、下限値は、50μmであることがより好ましく、100μmであることが更に好ましい。
 前記バインダ層6は、層内において、バインダ層6の層厚より小さい粒径を有する粒子2を含んでも良い。
It is preferable that the binder layer 6 has air bubbles. The presence of air bubbles may scatter sunlight within the binder layer, increasing the amount of light reaching the photovoltaic cell. It is more preferable that the size of the bubbles is equal to or less than the thickness of the binder layer.
It is further preferable that the number of bubbles contained in the binder layer 6 is 100/mm 3 or more. Note that the number of bubbles was counted as follows. First, the binder layer was polished until it had a thickness of about 15 μm. This is because if the thickness is at this level, all bubbles existing in the thickness direction can be confirmed when observed with an optical microscope. Next, optical microscopic observation was performed, and bubbles with a diameter of 0.5 μm or more within the field of view were identified and counted by image processing. The number of bubbles thus obtained was converted into the number of bubbles per mm 3 by dividing by the binder layer thickness and viewing area. In addition, since the number of bubbles varies depending on the location, the measurement was performed at three arbitrary locations and the average value was taken.
The layer thickness of the binder layer 6 is preferably 10 to 2000 μm, and the lower limit is more preferably 50 μm, even more preferably 100 μm.
The binder layer 6 may include particles 2 having a particle size smaller than the layer thickness of the binder layer 6 within the layer.
<ガラス基板>
 本実施形態にかかるガラス基板20としては、ガラス板が挙げられる。ガラス板を構成する材料の具体例としては、ソーダライムシリケートガラス、石英ガラス、クリスタルガラス、無アルカリガラス、アルミノシリケートガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラスが挙げられ、透明性が高い点から、鉄の含有量を少なくしたソーダライムシリケートガラスが好ましい。
 ソーダライムシリケートガラスの具体例としては、酸化物基準で60~75質量%のSiO、0~3質量%のAl、0~15質量%のCaO、0~12質量%のMgO、及び、5~20質量%のNaOの組成を持つガラスが挙げられる。ここで、SiOは、ソーダライムシリケートガラスの主成分である。
 ソーダライムシリケートガラスは、上記材料の他に、KO、TiO、ZrO、SrO、BaO及びLiOからなる群より選択される少なくとも1種の材料を更に含んでいてもよい。
 また、ソーダライムシリケートガラスは、清澄剤(例えば、SO、SnO、Sb)を更に含んでいてもよい。
<Glass substrate>
As the glass substrate 20 according to this embodiment, a glass plate can be mentioned. Specific examples of materials constituting the glass plate include soda lime silicate glass, quartz glass, crystal glass, alkali-free glass, aluminosilicate glass, borosilicate glass, and barium borosilicate glass. Soda lime silicate glass with reduced iron content is preferred.
Specific examples of soda lime silicate glass include 60 to 75% by mass of SiO 2 , 0 to 3% by mass of Al 2 O 3 , 0 to 15% by mass of CaO, 0 to 12% by mass of MgO, and glass having a composition of 5 to 20% by mass Na 2 O. Here, SiO 2 is the main component of soda lime silicate glass.
In addition to the above materials, the soda lime silicate glass may further contain at least one material selected from the group consisting of K 2 O, TiO 2 , ZrO 2 , SrO, BaO and LiO 2 .
Moreover, the soda lime silicate glass may further contain a refining agent (eg, SO 3 , SnO 2 , Sb 2 O 3 ).
 ガラス基板20が合わせガラスであっても良い。合わせガラスは、一対のガラス板の間に樹脂などの中間膜を介在させて接着させることにより一体化された構造を有するものである。合わせガラスは、特に限定されなく、公知の合わせガラスを用いることができる。合わせガラスに含まれているガラス板の厚み、層数;合わせガラスに含まれている中間膜の材質、厚み等は、特に限定されなく、公知の合わせガラスと同程度であっても良い。 The glass substrate 20 may be laminated glass. Laminated glass has a structure in which a pair of glass plates are integrated by interposing an interlayer film such as resin between them and adhering them together. The laminated glass is not particularly limited, and any known laminated glass can be used. The thickness and number of layers of the glass plate included in the laminated glass; the material, thickness, etc. of the interlayer film included in the laminated glass are not particularly limited, and may be the same as those of known laminated glasses.
 ガラス基板20は、強化処理が施された強化ガラスであることが好ましい。強化ガラスからなるガラス基板20は、強化処理が施されていないガラス基板20と比較して割れ難くなるので好ましい。強化ガラス板には、例えば、残留圧縮応力を有する表面層と、残留圧縮応力を有する裏面層と、表面層と裏面層との間に形成され残留引張応力を有する中間層と、を有するガラス板が用いられる。
 強化処理の具体例としては、公知のイオン交換法等によって行われる化学強化処理、及び、公知の風冷強化法等によって行われる物理強化処理が挙げられる。化学強化処理したガラス板は、板厚が薄い場合であっても、表面層又は裏面層の残留圧縮応力の値を大きくできるので、十分な強度を有する。一方、板厚が3mm程度以上の厚い場合は、物理強化処理が有効である。
 ただし、ガラス基板20は、強化処理が施されていないことが好ましい場合もある。例えば、ガラス基板20が強化処理されていない場合、ガラス基板20が割れた際に蜘蛛の巣状に亀裂が入ることが抑制される。従って、ガラス基板20が割れた場合でも、光の散乱が大きくなってセルに届く光が減少することが抑制されて、発電効率の低下を抑制できる。また、ガラス基板20が強化処理されていなくても、例えば合わせガラスとしておくことで、破片が飛び散ることも抑制できる。
It is preferable that the glass substrate 20 is a tempered glass that has been subjected to a strengthening process. The glass substrate 20 made of tempered glass is preferable because it is less likely to break than the glass substrate 20 that has not been subjected to a strengthening process. The tempered glass plate includes, for example, a surface layer having residual compressive stress, a back layer having residual compressive stress, and an intermediate layer formed between the front layer and the back layer and having residual tensile stress. is used.
Specific examples of the strengthening treatment include chemical strengthening treatment performed by a known ion exchange method or the like, and physical strengthening treatment performed by a known air cooling strengthening method or the like. A chemically strengthened glass plate has sufficient strength even if the plate thickness is thin because the residual compressive stress value of the front layer or back layer can be increased. On the other hand, if the plate thickness is about 3 mm or more, physical strengthening treatment is effective.
However, it may be preferable that the glass substrate 20 is not subjected to any strengthening treatment. For example, if the glass substrate 20 is not strengthened, spider web-like cracks are suppressed when the glass substrate 20 is broken. Therefore, even if the glass substrate 20 is broken, the increase in light scattering and the reduction in light reaching the cell can be suppressed, and a decrease in power generation efficiency can be suppressed. Further, even if the glass substrate 20 is not strengthened, by using laminated glass, for example, scattering of fragments can be suppressed.
 ガラス基板20は、後述の光起電力セル含有封止層70(例えば、後述の図7の第1封止層74)との密着性の点から、表面処理されていてもよい。表面処理方法としては、公知の方法を使用でき、活性化処理(プラズマ法、蒸着法、酸処理、塩基処理等)、化成処理、材料表面の研磨、サンダー処理、封孔処理、ブラスト処理、プライマー処理等が挙げられる。
 プライマー剤の具体例としては、シランカップリング剤(特に、アルコキシシラン等)、エポキシ樹脂、(メタ)アクリル樹脂、ポリエステル樹脂が挙げられる。
The glass substrate 20 may be surface-treated from the viewpoint of adhesion to a photovoltaic cell-containing sealing layer 70 (for example, a first sealing layer 74 in FIG. 7, which will be described later), which will be described later. As the surface treatment method, known methods can be used, including activation treatment (plasma method, vapor deposition method, acid treatment, base treatment, etc.), chemical conversion treatment, material surface polishing, sanding treatment, pore sealing treatment, blasting treatment, and primer treatment. Examples include processing.
Specific examples of the primer include silane coupling agents (especially alkoxysilanes, etc.), epoxy resins, (meth)acrylic resins, and polyester resins.
 ガラス基板20は、酸化物基準の質量百分率表示でFeの濃度が1000ppm未満であることが好ましく、500ppm未満であることがより好ましく、100ppm未満であることがさらに好ましい。Feの含有量が上記範囲であれば、Feによる近赤外光の吸収を抑制できるため、近赤外光領域の透過率が高く、発電効率が向上する。したがって、Feの含有量が1000ppm未満のガラス基板20は、近赤外光に対する分光感度が高い光起電力セル76を有する光起電力セル含有封止層70に好適である。
 ここで、本明細書におけるFeの含有量は、ガラス基板20に含まれる全鉄の含有量をFeに換算した場合の含有量を意味し、蛍光X線測定法によって求められる。
The concentration of Fe 2 O 3 in the glass substrate 20 is preferably less than 1000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm, expressed as a mass percentage on an oxide basis. If the Fe 2 O 3 content is within the above range, absorption of near-infrared light by Fe 2 O 3 can be suppressed, resulting in high transmittance in the near-infrared light region and improved power generation efficiency. Therefore, the glass substrate 20 with an Fe 2 O 3 content of less than 1000 ppm is suitable for the photovoltaic cell-containing sealing layer 70 having the photovoltaic cell 76 with high spectral sensitivity to near-infrared light.
Here, the content of Fe 2 O 3 in this specification means the content when the total iron content contained in the glass substrate 20 is converted into Fe 2 O 3 , and is determined by fluorescent X-ray measurement method. It will be done.
 ガラス基板20の厚さは、敷設する道路の種類等から任意に設定できる。ガラス基板20の厚さとしては、1~70mmが好ましく、下限値は3mmがより好ましく、10mmが更に好ましく、15mmが特に好ましい。厚さが上記範囲であれば、耐久性が高く、ガラス基板20が割れにくくなる。厚さが70mm以下であれば、ガラス基板20が軽量になるため、本実施形態の舗装用光起電力モジュール110の敷設作業は、より好適に行われる。
 ガラス基板20の厚さは、厚み計を用いてカバーガラスを測定して得られる厚さの算術平均値である。
The thickness of the glass substrate 20 can be arbitrarily set depending on the type of road to be laid. The thickness of the glass substrate 20 is preferably 1 to 70 mm, the lower limit is more preferably 3 mm, even more preferably 10 mm, and particularly preferably 15 mm. If the thickness is within the above range, durability will be high and the glass substrate 20 will be difficult to break. If the thickness is 70 mm or less, the glass substrate 20 will be lightweight, so the installation work of the paving photovoltaic module 110 of this embodiment can be performed more suitably.
The thickness of the glass substrate 20 is the arithmetic mean value of the thicknesses obtained by measuring the cover glass using a thickness meter.
 ガラス基板20の熱膨張係数は、前記バインダ4と、前記粒子との関係は、以下の式で表すことが好ましい。
 ガラス基板の熱膨張係数≧バインダの熱膨張係数≧粒子の熱膨張係数
 ガラス基板20の熱膨張係数は上記の関係である場合、後述のカバーガラス51の製造工程において、焼成と冷却した後でも、粒子2がカバーガラス51の表面に強く固定され、十分の耐久性が得られる。
It is preferable that the coefficient of thermal expansion of the glass substrate 20 is expressed by the following equation as the relationship between the binder 4 and the particles.
Thermal expansion coefficient of glass substrate≧thermal expansion coefficient of binder≧thermal expansion coefficient of particles If the thermal expansion coefficient of the glass substrate 20 has the above relationship, even after firing and cooling in the manufacturing process of the cover glass 51 described below, The particles 2 are strongly fixed to the surface of the cover glass 51, and sufficient durability can be obtained.
〔光起電力セル含有封止層〕
 図7は、本実施形態に係る光起電力セル含有封止層70の一態様を示す概略断面図である。前記光起電力セル含有封止層70が、光起電力セル76と、光起電力セル76を封止する封止層72(第1封止層74及び第2封止層78を含む)と、を含む。本実施形態に係る光起電力セル含有封止層70は、光起電力セル含有封止層70の受光面側から、第1封止層74と、複数の光起電力セル76と、第2封止層78と、をこの順に有する。
 第1封止層72は、樹脂を含む。第1封止層における樹脂としては、オレフィン樹脂(特に、エチレン-酢酸ビニル共重合体(EVA樹脂))、ポリビニルブチラール樹脂(PVB樹脂)、アイオノマー樹脂及びシリコーン樹脂からなる群から選択される少なくとも1種の樹脂が好ましく、カバーガラスと意匠層との密着性の点で、エチレン-酢酸ビニル共重合体及びポリビニルブチラール樹脂からなる群から選択される少なくとも1種の樹脂が特に好ましい。
[Photovoltaic cell-containing sealing layer]
FIG. 7 is a schematic cross-sectional view showing one aspect of the photovoltaic cell-containing sealing layer 70 according to this embodiment. The photovoltaic cell-containing sealing layer 70 includes a photovoltaic cell 76 and a sealing layer 72 (including a first sealing layer 74 and a second sealing layer 78) that seals the photovoltaic cell 76. ,including. The photovoltaic cell-containing sealing layer 70 according to the present embodiment includes, from the light-receiving surface side of the photovoltaic cell-containing sealing layer 70, a first sealing layer 74, a plurality of photovoltaic cells 76, and a second and a sealing layer 78 in this order.
The first sealing layer 72 contains resin. The resin in the first sealing layer is at least one resin selected from the group consisting of olefin resin (especially ethylene-vinyl acetate copolymer (EVA resin)), polyvinyl butyral resin (PVB resin), ionomer resin, and silicone resin. In terms of adhesion between the cover glass and the design layer, at least one resin selected from the group consisting of ethylene-vinyl acetate copolymer and polyvinyl butyral resin is particularly preferred.
 第1封止層74は、透明であるのが好ましい。第1封止層74が透明であると、例えば図1の場合においては、カバーガラス50を透過した光が、光起電力セル76の第1受光面76Aに到達しやすくなる。 The first sealing layer 74 is preferably transparent. If the first sealing layer 74 is transparent, for example in the case of FIG. 1, the light transmitted through the cover glass 50 will easily reach the first light receiving surface 76A of the photovoltaic cell 76.
 第1封止層の厚さは、50~2,000μmであることが好ましく、70~1,500μmであることが好ましく、100~1,200μmであることがより好ましく、150~1,000μmであることが特に好ましい。第1封止層の厚さが50μm以上であれば、紫外線の吸収効率に優れ耐久性が優れる。第1封止層の厚さが2,000μm以下であれば、経済性に優れ、また第1の封止層の変形が抑制されることから建材としての堅牢性に優れる。 The thickness of the first sealing layer is preferably 50 to 2,000 μm, preferably 70 to 1,500 μm, more preferably 100 to 1,200 μm, and preferably 150 to 1,000 μm. It is particularly preferable that there be. When the thickness of the first sealing layer is 50 μm or more, the ultraviolet ray absorption efficiency is excellent and the durability is excellent. If the thickness of the first sealing layer is 2,000 μm or less, it is economical and has excellent robustness as a building material because deformation of the first sealing layer is suppressed.
 第1封止層は、第1封止材を他の材と積層し加熱圧着することで形成される。第1封止材は、上述した樹脂を含んでいればよい。第1封止材は、第1封止層の耐候性の点から、未架橋樹脂及び架橋剤を含むことが好ましい。この場合、加熱圧着により第1封止材における未架橋樹脂及び架橋剤が反応し、架橋樹脂を含む第1封止層が得られる。
 架橋剤としては、有機過酸化物等の公知の架橋剤を使用できる。
 第1封止材は、積層される際において、フィルム状又はシート状であるのが好ましい。
The first sealing layer is formed by laminating the first sealing material with another material and bonding them under heat and pressure. The first sealing material may contain the resin described above. The first sealing material preferably contains an uncrosslinked resin and a crosslinking agent from the viewpoint of weather resistance of the first sealing layer. In this case, the uncrosslinked resin and the crosslinking agent in the first sealing material react with each other by heat and pressure bonding, and a first sealing layer containing the crosslinked resin is obtained.
As the crosslinking agent, known crosslinking agents such as organic peroxides can be used.
The first sealing material is preferably in the form of a film or a sheet when laminated.
 本実施形態に係る光起電力セル76は、光起電力セルの第1受光面76Aで受光した光エネルギーを電気エネルギーに変換する機能を有する。光起電力セルは、一方の受光面のみに該機能を有してもよく、他方の受光面にも該機能を有してもよい。 The photovoltaic cell 76 according to this embodiment has a function of converting light energy received by the first light receiving surface 76A of the photovoltaic cell into electrical energy. The photovoltaic cell may have this function only on one light-receiving surface, or may have this function on the other light-receiving surface.
 光起電力セル76として、具体的には、単結晶シリコン、多結晶シリコン、もしくはアモルファスシリコン型太陽電池セル等により構成されるシリコン系太陽電池セル、及び、GaAs、CIS、CIGS、CdTe、InP、ZnもしくはCuSにより構成される化合物系太陽電池セル、またはペロブスカイト型、色素増感型といった有機系太陽電池セルなど、公知の太陽電池セルを用いることができる。単結晶もしくは多結晶シリコン系太陽電池セル、CIS系太陽電池セル及びCIGS系太陽電池セルが更に好ましく、単結晶シリコン系太陽電池セルが最も好ましい。 Specifically, the photovoltaic cell 76 includes a silicon-based solar cell composed of single crystal silicon, polycrystalline silicon, or an amorphous silicon type solar cell, and GaAs, CIS, CIGS, CdTe, InP, Known solar cells can be used, such as a compound solar cell composed of Zn 3 P 2 or Cu 2 S, or an organic solar cell such as a perovskite type or a dye-sensitized type. Single-crystalline or polycrystalline silicon-based solar cells, CIS-based solar cells, and CIGS-based solar cells are more preferred, and single-crystalline silicon-based solar cells are most preferred.
 第2封止層78に含まれる材料および含有量等の好適様態は第1封止層と同様である。第2封止層78の厚さは特に限定されないが、50~2,000μmであることが好ましく、70~1,500μmであることがより好ましく、100~1,200μmであることが更に好ましく、150~1,000μmであることが特に好ましい。第2封止層78の厚さが50μm以上であれば、光起電力セルや配線の凹凸への追従が容易となる。第2封止層の厚さが2,000μm以下であれば、経済性に優れ、また第2封止層の変形が抑制されることから建材としての堅牢性に優れる。  Preferable aspects such as materials and contents contained in the second sealing layer 78 are the same as those of the first sealing layer. The thickness of the second sealing layer 78 is not particularly limited, but is preferably 50 to 2,000 μm, more preferably 70 to 1,500 μm, and even more preferably 100 to 1,200 μm. Particularly preferred is 150 to 1,000 μm. If the thickness of the second sealing layer 78 is 50 μm or more, it will be easy to follow the unevenness of the photovoltaic cell or wiring. If the thickness of the second sealing layer is 2,000 μm or less, it is economical and also has excellent robustness as a building material because deformation of the second sealing layer is suppressed. 
<光起電力セル含有封止層の変形例>
 図11は、図7に示す本実施形態に係る光起電力セル含有封止層70の第1変形例を示す概略断面図である。
 図11に示す光起電力セル含有封止層70Aは、図7に示す光起電力セル含有封止層70の光起電力セル76の代わりに、太陽電池モジュール176を用いて、太陽電池モジュール176と、太陽電池モジュール176を封止する封止層72(第1封止層74及び第2封止層78を含む)と、を含む。太陽電池モジュール176は、特に限定されないが、既存の太陽電池モジュールを用いることができる。太陽電池モジュール176は、例えば、第2カバーガラス81と、光起電力セル76を封止する第3封止層84と、第2バックガラス82とを、含む。第2カバーガラス81、第2バックガラス82、及び第3封止層84は、公知のものを用いることができる。なお、第2バックガラス82は、ガラスでなくてもPETなどからなるシート状のものでも良い。
<Modifications of photovoltaic cell-containing sealing layer>
FIG. 11 is a schematic cross-sectional view showing a first modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG.
The photovoltaic cell-containing sealing layer 70A shown in FIG. 11 uses a solar cell module 176 instead of the photovoltaic cell 76 of the photovoltaic cell-containing sealing layer 70 shown in FIG. and a sealing layer 72 (including a first sealing layer 74 and a second sealing layer 78) that seals the solar cell module 176. The solar cell module 176 is not particularly limited, but an existing solar cell module can be used. The solar cell module 176 includes, for example, a second cover glass 81, a third sealing layer 84 that seals the photovoltaic cell 76, and a second back glass 82. As the second cover glass 81, the second back glass 82, and the third sealing layer 84, known ones can be used. Note that the second back glass 82 does not need to be made of glass, but may be a sheet-like material made of PET or the like.
 図12は、図7に示す本実施形態に係る光起電力セル含有封止層70の第2変形例を示す概略断面図である。
 図12に示す光起電力セル含有封止層70Bは、図7に示す光起電力セル含有封止層70の光起電力セル76の代わりに、太陽電池モジュール276を用い、かつ、第2封止層78の構成がなく、太陽電池モジュール276と、太陽電池モジュール276を封止する封止層72(第1封止層74のみを含む)と、を含む。太陽電池モジュール276は、特に限定されないが、既存の太陽電池モジュールを用いることができる。太陽電池モジュール276は、例えば、第2カバーガラス81と、光起電力セル76を封止する第3封止層84と、第2バックガラス82とを、含む。第2カバーガラス81、第2バックガラス82、及び第3封止層84は、公知のものを用いることができる。なお、第2バックガラス82は、ガラスでなくてもPETなどからなるシート状のものでも良い。
FIG. 12 is a schematic cross-sectional view showing a second modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG.
The photovoltaic cell-containing sealing layer 70B shown in FIG. 12 uses a solar cell module 276 instead of the photovoltaic cell 76 of the photovoltaic cell-containing sealing layer 70 shown in FIG. There is no structure of the sealing layer 78, and the solar cell module 276 and the sealing layer 72 (including only the first sealing layer 74) that seals the solar cell module 276 are included. The solar cell module 276 is not particularly limited, but an existing solar cell module can be used. The solar cell module 276 includes, for example, a second cover glass 81, a third sealing layer 84 that seals the photovoltaic cell 76, and a second back glass 82. As the second cover glass 81, the second back glass 82, and the third sealing layer 84, known ones can be used. Note that the second back glass 82 does not need to be made of glass, but may be a sheet-like material made of PET or the like.
 図13は、図7に示す本実施形態に係る光起電力セル含有封止層70の第3変形例を示す概略断面図である。
 図13に示す光起電力セル含有封止層70Cは、図7に示す光起電力セル含有封止層70の光起電力セル76の代わりに、太陽電池モジュール376を用い、かつ、第2封止層78の構成がなく、太陽電池モジュール376と、太陽電池モジュール376を封止する封止層72(第1封止層74のみを含む)と、を含む。太陽電池モジュール376は、特に限定されないが、既存の太陽電池モジュールを用いることができる。太陽電池モジュール376は、例えば、第2カバーガラス81と、第2カバーガラス81の上に薄膜を成膜して形成した光起電力セル76と、光起電力セル76を封止する第3封止層84と、第2バックガラス82とを、含む。第2カバーガラス81、第2バックガラス82、及び第3封止層84は、公知のものを用いることができる。なお、第2バックガラス82は、ガラスでなくてもPETなどからなるシート状のものでも良い。
 第3変形例と図12に示す上記変形例2との違いは、第2カバーガラス81と光起電力セル76との間に、封止層を含まないことである。例えば、光起電力セル76として、薄膜タイプの太陽電池セル(アモルファスシリコン、化合物系、有機系、などの多くが該当)を使用する場合は、第2カバーガラス81に薄膜を成膜して作製するので、第3封止層84が、図13に示すように、光起電力セル76の片側のみの構造となる。
FIG. 13 is a schematic cross-sectional view showing a third modification of the photovoltaic cell-containing sealing layer 70 according to the present embodiment shown in FIG.
The photovoltaic cell-containing sealing layer 70C shown in FIG. 13 uses a solar cell module 376 instead of the photovoltaic cell 76 of the photovoltaic cell-containing sealing layer 70 shown in FIG. There is no structure of the sealing layer 78, and the solar cell module 376 and the sealing layer 72 (including only the first sealing layer 74) that seals the solar cell module 376 are included. The solar cell module 376 is not particularly limited, but an existing solar cell module can be used. The solar cell module 376 includes, for example, a second cover glass 81 , a photovoltaic cell 76 formed by forming a thin film on the second cover glass 81 , and a third seal that seals the photovoltaic cell 76 . A stop layer 84 and a second back glass 82 are included. As the second cover glass 81, the second back glass 82, and the third sealing layer 84, known ones can be used. Note that the second back glass 82 does not need to be made of glass, but may be a sheet-like material made of PET or the like.
The difference between the third modification and the second modification shown in FIG. 12 is that a sealing layer is not included between the second cover glass 81 and the photovoltaic cell 76. For example, when using a thin film type solar cell (amorphous silicon, compound type, organic type, etc.) as the photovoltaic cell 76, a thin film is formed on the second cover glass 81. Therefore, the third sealing layer 84 forms only one side of the photovoltaic cell 76, as shown in FIG.
〔舗装用光起電力モジュールの製造方法〕
 本実施形態に係るカバーガラス51と本実施形態に係る太陽光発電モジュール70から、本実施形態の舗装用光起電力モジュールを製造する方法は、例えば、カバーガラス51を製造するカバーガラス製造工程S1と、カバーガラス51を用いて公知の方法で光起電力セル76を封止する封止工程S2とを含む。
[Method for manufacturing photovoltaic modules for pavement]
The method for manufacturing the paving photovoltaic module of this embodiment from the cover glass 51 of this embodiment and the solar power generation module 70 of this embodiment includes, for example, the cover glass manufacturing step S1 of manufacturing the cover glass 51. and a sealing step S2 of sealing the photovoltaic cell 76 using a cover glass 51 by a known method.
<カバーガラス製造工程S1>
 本実施形態に係るカバーガラス製造工程S1は、ガラス基板51の第1側51aの表面上に、前記バインダ4の原料であるガラスフリットの層を形成する工程S1-1Aと、前記粒子2は、前記工程S1-1Aで得られたガラスフリットの層の表面から一部突出した状態で埋め込まれる工程S1-2Aと、前記工程S1-2Aで得られた基板を焼成する工程S1-3Aを含むことが好ましい。
 前記工程S-1Aにおいて、ガラスフリットの層を形成する方法として、例えば、前記ガラスフリット、溶媒、樹脂、フィラーなどを含むフリットペーストを調製し、このペーストを前記第1側51aの表面上に所定の厚さで塗布する方法が挙げられる。以下技術概要を示す。
<Cover glass manufacturing process S1>
The cover glass manufacturing step S1 according to the present embodiment includes a step S1-1A of forming a layer of glass frit, which is a raw material for the binder 4, on the surface of the first side 51a of the glass substrate 51, and a step S1-1A in which the particles 2 are A step S1-2A of embedding the glass frit layer obtained in the step S1-1A in a state where it partially protrudes from the surface, and a step S1-3A of firing the substrate obtained in the step S1-2A. is preferred.
In the step S-1A, as a method for forming a layer of glass frit, for example, a frit paste containing the glass frit, a solvent, a resin, a filler, etc. is prepared, and this paste is applied to a predetermined area on the surface of the first side 51a. An example of this method is to apply the film to a thickness of . An overview of the technology is shown below.
(フリットペースト材料)
1.ガラスフリット
 ガラスフリット粒径は1μm~10μmである。焼成された膜の硬度や熱膨張を制御するため、フィラーを入れることがある。フィラーは、具体的には、ジルコン、ジルコニア、シリカ、アルミナなどが用いられ、粒径は0.1μm~20μmである。
(Frit paste material)
1. Glass Frit Glass frit particle size is 1 μm to 10 μm. Fillers are sometimes added to control the hardness and thermal expansion of the fired film. Specifically, zircon, zirconia, silica, alumina, etc. are used as the filler, and the particle size is 0.1 μm to 20 μm.
2.樹脂
 樹脂は、印刷後、塗膜中のガラスフリット、フィラーを支持する。具体例としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂などが用いられる。主剤として用いられるのは、エチルセルロース、ニトロセルロース、アクリル樹脂がある。なお、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂は塗膜強度向上のための添加として用いられる。焼成時の脱バインダー温度は、エチルセルロースで350℃から400℃、ニトロセルロースで200℃から300℃、アクリルで300℃から350℃である。
2. Resin Resin supports the glass frit and filler in the coating after printing. Specific examples include ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, and rosin resin. Ethyl cellulose, nitrocellulose, and acrylic resin are used as the main resin. Note that butyral resin, melamine resin, alkyd resin, and rosin resin are used as additives to improve the strength of the coating film. The binder removal temperature during firing is 350°C to 400°C for ethylcellulose, 200°C to 300°C for nitrocellulose, and 300°C to 350°C for acrylic.
3.溶媒
 樹脂を溶解しかつ印刷に必要な粘度を調整する。また印刷中には乾燥せず、乾燥工程では、すばやく乾燥する。沸点200℃から230℃のものが望ましい。粘度、固形分比、乾燥速度調整のためブレンドして用いる。具体例としては、印刷時のペーストの乾燥適合性からエーテル系溶剤(ブチルカルビトール(BC)、ブチルカルビトールアセテート(BCA)、ジエチレングリコールジ-n-ブチルエーテル、ジプロピレングリコールブチルエーテル、トリプロピレングリコールブチルエーテル、酢酸ブチルセロソルブ)、アルコール系溶剤(α-テルピネオール、パインオイル、ダワノール)、エステル系溶剤(2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、酢酸ブチル)、フタル酸エステル系溶剤(DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート))がある。主に用いられているのは、α-テルピネオールや2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート)である。なお、DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート)は、可塑剤としても機能する。
3. Solvent Dissolves the resin and adjusts the viscosity required for printing. Also, it does not dry during printing and dries quickly during the drying process. One with a boiling point of 200°C to 230°C is desirable. Blend and use to adjust viscosity, solid content ratio, and drying speed. Specific examples include ether solvents (butyl carbitol (BC), butyl carbitol acetate (BCA), diethylene glycol di-n-butyl ether, dipropylene glycol butyl ether, tripropylene glycol butyl ether, butyl acetate cellosolve), alcohol solvents (α-terpineol, pine oil, dowanol), ester solvents (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, butyl acetate), phthalate solvents (DBP (dibutyl phthalate), DMP (dimethyl phthalate), DOP (dioctyl phthalate)). The substances mainly used are α-terpineol and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate). Note that DBP (dibutyl phthalate), DMP (dimethyl phthalate), and DOP (dioctyl phthalate) also function as plasticizers.
4.その他
 粘度調整、フリット分散促進のため、界面活性剤を使用しても良い。フリット表面改質のため、シランカップリング剤を使用しても良い。
4. Others A surfactant may be used to adjust viscosity and promote frit dispersion. A silane coupling agent may be used to modify the surface of the frit.
(フリットペーストの作製方法)
 ガラスフリットとビヒクルを準備する。ここで、ビヒクルとは、樹脂、溶剤、界面活性剤を混合したものをいう。具体的には、50℃~80℃に加熱した溶剤中に樹脂、界面活性剤などを投入し、その後4時間から12時間程度静置したのち、ろ過し、得られる。
(Method for making frit paste)
Prepare glass frit and vehicle. Here, the vehicle refers to a mixture of a resin, a solvent, and a surfactant. Specifically, the resin, surfactant, etc. are poured into a solvent heated to 50° C. to 80° C., and then allowed to stand for about 4 to 12 hours, and then filtered.
 次に、ガラスフリットとビヒクルとを、プラネタリーミキサーで混合させる。その後粘度調整のため、混練機で混練する。通常ガラスフリット70~80wt%に対してビヒクル20~30wt%とする。 Next, the glass frit and vehicle are mixed using a planetary mixer. After that, the mixture is kneaded using a kneader to adjust the viscosity. Usually, the glass frit is 70 to 80 wt% and the vehicle is 20 to 30 wt%.
(フリットペーストの塗布方法)
 前記フリットペーストを前記第1側51aの表面上塗布する方法としては、特に限定されなく、公知の方法が用いることができる。例えば、バーコーター印刷、アプリケーター印刷、ドクターブレード印刷、スクリーン印刷、ダイコート印刷等が挙げられる。
(How to apply frit paste)
The method for applying the frit paste on the surface of the first side 51a is not particularly limited, and any known method can be used. Examples include bar coater printing, applicator printing, doctor blade printing, screen printing, die coat printing, and the like.
 前記工程S1-2Aにおいて、前記粒子2を前記ガラスフリット層の表面に散布する方法としては、例えば、粒子を篩等を使って撒く方法や、粒子と溶媒とを混ぜたものをスプレーで散布する方法などが挙げられる。 In step S1-2A, the particles 2 can be scattered on the surface of the glass frit layer, for example, by using a sieve or the like, or by spraying a mixture of particles and a solvent. Examples include methods.
 前記工程S1-3Aにおいて、印刷した基板を焼成炉にて焼成する。焼成は、溶媒の乾燥処理、樹脂を分解・消失させる脱バインダー処理とガラス粉末を焼結、軟化させる焼成処理からなる。脱バインダー温度は、エチルセルロースで350℃~400℃、ニトロセルロースで200℃~300℃、アクリルで300℃~350℃であり、30分から1時間大気雰囲気で加熱する。その後温度を上げて、ガラスを焼結、軟化させる。焼成温度は軟化温度~軟化温度+200℃であり、処理温度により内部に残存する気泡の形状、大きさが異なる。その後、冷却して基板上にガラス膜が形成される。
 なお、グリーンシート印刷と呼ばれる手法を用いるとより厚い膜形成が可能となる。PETフィルム等の上にドクターブレード印刷法、ダイコート印刷法を用いて膜を形成した後、乾燥するとグリーンシートが得られる。次いでローラー等によりグリーンシートを基板上に熱圧着し、フリットペーストと同様の焼成行程を経て焼成膜を得る。積層して用いることにより、さらに厚いガラス膜が形成可能である。
In the step S1-3A, the printed substrate is fired in a firing furnace. Firing consists of a drying process for the solvent, a debinding process to decompose and eliminate the resin, and a firing process to sinter and soften the glass powder. The debinding temperature is 350° C. to 400° C. for ethyl cellulose, 200° C. to 300° C. for nitrocellulose, and 300° C. to 350° C. for acrylic, and heated in air for 30 minutes to 1 hour. The temperature is then raised to sinter and soften the glass. The firing temperature is from the softening temperature to the softening temperature +200°C, and the shape and size of the bubbles remaining inside vary depending on the processing temperature. Thereafter, the glass film is formed on the substrate by cooling.
Note that a thicker film can be formed using a technique called green sheet printing. A green sheet is obtained by forming a film on a PET film or the like using a doctor blade printing method or a die coat printing method and then drying it. Next, the green sheet is thermocompressed onto the substrate using a roller or the like, and subjected to the same firing process as the frit paste to obtain a fired film. By stacking them together, a thicker glass film can be formed.
 本実施形態に係るカバーガラス製造工程S1は、ガラス基板51の第1側51aの表面上に、前記バインダ4の原料であるガラスフリットと前記粒子2とを含む混合物ペーストを調製する工程S1-1Bと、ガラス基板51の第1側51aの表面上に、前記S1-1Bで得られた前記混合物ペーストを用いて、ガラスフリットの層の表面から一部突出した状態で埋め込まれた前記粒子2を有する層を形成する工程S1-2Bと、前記工程S1-2Bで得られた基板を焼成する工程S1-3Bを含むことが好ましい。 The cover glass manufacturing process S1 according to the present embodiment is a process S1-1B of preparing a mixture paste containing glass frit, which is a raw material of the binder 4, and the particles 2 on the surface of the first side 51a of the glass substrate 51. Then, on the surface of the first side 51a of the glass substrate 51, using the mixture paste obtained in S1-1B, the particles 2 are embedded with a portion protruding from the surface of the glass frit layer. It is preferable to include a step S1-2B of forming a layer having the above-mentioned structure, and a step S1-3B of firing the substrate obtained in the step S1-2B.
 前記工程S1-1Bにおいて、前記ガラスフリットと前記粒子2と溶媒と樹脂とを含むペーストを調製する方法が挙げられる。
 前記溶媒、樹脂、その他の含有物については、前記工程S1-1Aで説明したものと同じである。
 前記ペーストにおいて、前記粒子2の含有量は、1~70wt%であることが好ましく、5~50wt%であることがより好ましい。
In the step S1-1B, there is a method of preparing a paste containing the glass frit, the particles 2, a solvent, and a resin.
The solvent, resin, and other ingredients are the same as those described in step S1-1A.
In the paste, the content of the particles 2 is preferably 1 to 70 wt%, more preferably 5 to 50 wt%.
 前記工程S1-2Bにおいて、前記混合物ペーストを前記第1側51aの表面上塗布する方法としては、特に限定されなく、公知の方法が用いることができる。例えば、前記工程S1-1Aで説明したものと同じである。 In the step S1-2B, the method for applying the mixture paste on the surface of the first side 51a is not particularly limited, and any known method can be used. For example, it is the same as that described in step S1-1A above.
 前記工程S1-3Bは、前記工程S1-3Aと同じである。 The step S1-3B is the same as the step S1-3A.
<封止工程S2>
 光起電力セル76を封止する工程としては、例えば、国際公報第2021/106869(「太陽光発電モジュール、その製造方法及びそれを用いた建築用外壁材」)に記載されている太陽光発電モジュールの製造方法を参考して光起電力セル76を封止する方法が挙げられる。
 本実施形態の光起電力セル76の封止工程S2は、特に限定されないが、カバーガラス製造工程で得られたカバーガラス51と、紫外線吸収剤を含む、第1封止材74と、光起電力セル76と、第2封止材78と、をこの順に配置し、加熱圧着して光起電力セル76を封止する方法が挙げられる。
 これにより、カバーガラス51と、第1封止層74と、光起電力セル76と、第2封止層78、がこの順に積層された本実施形態の舗装用光起電力モジュール110が得られる。
 加熱圧着する際の加熱温度としては、100~200℃が好ましく、130~170℃が特に好ましい。
 加熱圧着の時間は、2~120分が好ましく、5~60分が特に好ましい。
<Sealing process S2>
The process of sealing the photovoltaic cell 76 is, for example, a photovoltaic power generation method described in International Publication No. 2021/106869 ("Solar power generation module, manufacturing method thereof, and architectural exterior wall material using the same"). A method of sealing the photovoltaic cell 76 with reference to the module manufacturing method may be mentioned.
The sealing step S2 of the photovoltaic cell 76 of this embodiment includes, but is not particularly limited to, the cover glass 51 obtained in the cover glass manufacturing process, the first sealing material 74 containing an ultraviolet absorber, and the photovoltaic cell 76. An example of this method is to arrange the power cell 76 and the second sealing material 78 in this order and heat and press them to seal the photovoltaic cell 76.
Thereby, the photovoltaic module 110 for paving of this embodiment in which the cover glass 51, the first sealing layer 74, the photovoltaic cell 76, and the second sealing layer 78 are laminated in this order is obtained. .
The heating temperature during thermocompression bonding is preferably 100 to 200°C, particularly preferably 130 to 170°C.
The heat-pressing time is preferably 2 to 120 minutes, particularly preferably 5 to 60 minutes.
[第2実施形態]
 図3は、本実施形態の舗装用光起電力モジュール120の構造例を示す模式断面図である。第2実施形態においては、本実施形態に係る粒子層11(バインダ層7)が上面視において円形、楕円形、多角形等の形状にパターニングされていることは、前記第1実施形態と異なる。
 本実施形態のパターンは、ガラス基板20の表面の全面積において、粒子層11(バインダ層7)が形成されている部分の面積の比率は、2~95%であることが好ましい。下限値は5%であることがより好ましく、10%であることが更に好ましい。上限値は95%であることがより好ましく、90%であることが更に好ましい。
 本実施形態の舗装用光起電力モジュール120の製造方法は、粒子層11(バインダ層7)の製造方法以外に、第1実施形態と同様な方法で製造することができる。
 粒子層11(バインダ層7)の製造方法としては、例えば、第1実施形態においてガラスフリットの層を形成する際に、スクリーン印刷、メタルマスクを用いたスキージー印刷、塗液定量吐出装置(ディスペンサー)等で所定のパターンを有するガラスフリットの層を形成することが挙げられる。
[Second embodiment]
FIG. 3 is a schematic cross-sectional view showing a structural example of the paving photovoltaic module 120 of this embodiment. The second embodiment differs from the first embodiment in that the particle layer 11 (binder layer 7) according to the present embodiment is patterned into a circular, elliptical, polygonal, etc. shape when viewed from above.
In the pattern of this embodiment, the ratio of the area of the part where the particle layer 11 (binder layer 7) is formed to the total area of the surface of the glass substrate 20 is preferably 2 to 95%. The lower limit is more preferably 5%, even more preferably 10%. The upper limit is more preferably 95%, and even more preferably 90%.
The method for manufacturing the paving photovoltaic module 120 of this embodiment can be performed by the same method as in the first embodiment, in addition to the method for manufacturing the particle layer 11 (binder layer 7).
As a manufacturing method for the particle layer 11 (binder layer 7), for example, when forming the glass frit layer in the first embodiment, screen printing, squeegee printing using a metal mask, and coating liquid metering dispensing device (dispenser) are used. For example, a layer of glass frit having a predetermined pattern may be formed using a method such as the following.
[第3実施形態]
 図4は、本実施形態の舗装用光起電力モジュール130の構造例を示す模式断面図である。
 本実施形態の舗装用光起電力モジュール130は、第1実施形態の舗装用光起電力モジュール110と対比して、粒子層12においてバインダ層を形成されなく、代わりに、バインダ4を用いて、粒子2をガラス基板20の上に固定されている。
 粒子2の使用量及び密度は、第1実施形態と同じである。
 前記バインダ4は、粒子2とガラス基板との間のみが存在してもよく、粒子2の一部もしく全部を被覆してもよい。
 本実施形態の舗装用光起電力モジュール130の製造方法は、粒子層12の形成方法の以外に、第1実施形態の舗装用光起電力モジュール110の製造方法と同じである。
 本実施形態にかかる粒子層12の製造方法としては、例えば、まず、粒子2をバインダ4で一部もしくは全部被覆し、被覆された粒子2を直接にガラス基板20の表面に散布してから、基板を焼成する方法が挙げられる。
[Third embodiment]
FIG. 4 is a schematic cross-sectional view showing a structural example of the paving photovoltaic module 130 of this embodiment.
In contrast to the paving photovoltaic module 110 of the first embodiment, the paving photovoltaic module 130 of this embodiment does not have a binder layer formed in the particle layer 12, but instead uses the binder 4, Particles 2 are fixed on a glass substrate 20.
The amount and density of particles 2 used are the same as in the first embodiment.
The binder 4 may exist only between the particles 2 and the glass substrate, or may cover part or all of the particles 2.
The method of manufacturing the photovoltaic module for pavement 130 of this embodiment is the same as the method of manufacturing the photovoltaic module for pavement 110 of the first embodiment, except for the method of forming the particle layer 12.
As a method for manufacturing the particle layer 12 according to the present embodiment, for example, first, part or all of the particles 2 are coated with the binder 4, and the coated particles 2 are directly sprinkled on the surface of the glass substrate 20, and then, One example is a method of firing the substrate.
[第4実施形態]
 図5は、本実施形態の舗装用光起電力モジュール140の構造例を示す模式断面図である。
 本実施形態の舗装用光起電力モジュール140と第1実施形態の舗装用光起電力モジュール110との異なる点は、バックガラス80を更に有することである。バックガラス80を有する場合、カバーガラス50は、合わせガラスであることが好ましい。
[Fourth embodiment]
FIG. 5 is a schematic cross-sectional view showing a structural example of the paving photovoltaic module 140 of this embodiment.
The difference between the paving photovoltaic module 140 of this embodiment and the paving photovoltaic module 110 of the first embodiment is that it further includes a back glass 80. When having the back glass 80, the cover glass 50 is preferably laminated glass.
〔バックガラス〕
 本実施形態に係るバックガラス80は、本実施形態に係るガラス基板20と同じであっても良く、異なっても良い。製造原料の単一化の観点から、ガラス基板20と同じであることが好ましい。すなわち、本実施形態にかかるバックガラス80は、第1実施形態に記載のガラス基板20と同じであることが好ましい。
[Back glass]
The back glass 80 according to this embodiment may be the same as or different from the glass substrate 20 according to this embodiment. From the viewpoint of unification of manufacturing raw materials, it is preferable to use the same material as the glass substrate 20. That is, the back glass 80 according to this embodiment is preferably the same as the glass substrate 20 described in the first embodiment.
 本実施形態に係るバックガラス80は、本実施形態に係るガラス基板20と異なる場合、本実施形態にかかるバックガラス80としては、ソーダライムシリケートガラス、石英ガラス、クリスタルガラス、無アルカリガラス、アルミノシリケートガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラスが挙げられる。透明性が高くないガラスも使用することができる。 If the back glass 80 according to the present embodiment is different from the glass substrate 20 according to the present embodiment, the back glass 80 according to the present embodiment may be made of soda lime silicate glass, quartz glass, crystal glass, alkali-free glass, or aluminosilicate glass. Examples include glass, borosilicate glass, and barium borosilicate glass. Glasses that are not highly transparent can also be used.
 バックガラス80は、強化処理が施された強化ガラスであることが好ましい。 It is preferable that the back glass 80 is a tempered glass that has been subjected to a strengthening process.
 バックガラス80は、前述の光起電力セル含有封止層70(例えば、前述の図7の第2封止層78)との密着性の点から、表面処理されていてもよい。 The back glass 80 may be surface-treated in terms of adhesion to the photovoltaic cell-containing sealing layer 70 (for example, the second sealing layer 78 in FIG. 7 described above).
 バックガラス80の厚さは、敷設する道路の種類等から任意に設定できる。ガラス基板20の厚さとしては、1~70mmが好ましい。厚さが1mm以上であれば、耐久性が高く、ガラス基板20が割れにくくなる。厚さが70mm以下であれば、バックガラス80が軽量になるため、本実施形態の舗装用光起電力モジュール110の敷設作業は、より好適に行われる。 The thickness of the back glass 80 can be arbitrarily set depending on the type of road to be constructed. The thickness of the glass substrate 20 is preferably 1 to 70 mm. If the thickness is 1 mm or more, durability is high and the glass substrate 20 becomes difficult to break. If the thickness is 70 mm or less, the back glass 80 will be lightweight, so the installation work of the paving photovoltaic module 110 of this embodiment can be performed more suitably.
 バックガラス80の熱膨張係数は、ガラス基板20と同じであることが好ましい。 It is preferable that the back glass 80 has the same coefficient of thermal expansion as the glass substrate 20.
〔舗装用光起電力モジュールの製造方法〕
 本実施形態の舗装用光起電力モジュール140を製造する方法は、第1実施形態の封止工程S2と異なる以外は、第1実施形態の製造方法と同じである。
 本実施形態の光起電力セル76の封止工程S2Bは、特に限定されないが、カバーガラス製造工程で得られたカバーガラス51と、紫外線吸収剤を含む第1封止層74と、光起電力セル76と、第2封止層78と、バックガラス80と、をこの順に配置し、加熱圧着して光起電力セル76を封止する方法が挙げられる。
 これにより、カバーガラス51と、第1封止層74と、光起電力セル76と、第2封止層78と、バックガラス80とがこの順に積層された本実施形態に係る舗装用光起電力モジュール140が得られる。
 加熱圧着する際の加熱温度としては、100~200℃が好ましく、130~170℃が特に好ましい。
 加熱圧着の時間は、2~120分が好ましく、5~60分が特に好ましい。
[Method for manufacturing photovoltaic modules for pavement]
The method of manufacturing the paving photovoltaic module 140 of this embodiment is the same as the manufacturing method of the first embodiment except that it is different from the sealing step S2 of the first embodiment.
The sealing process S2B of the photovoltaic cell 76 of this embodiment includes, but is not particularly limited to, the cover glass 51 obtained in the cover glass manufacturing process, the first sealing layer 74 containing an ultraviolet absorber, and the photovoltaic cell 76. An example of a method is to arrange the cell 76, the second sealing layer 78, and the back glass 80 in this order, and heat and press them to seal the photovoltaic cell 76.
Thereby, the photovoltaic material for pavement according to the present embodiment in which the cover glass 51, the first sealing layer 74, the photovoltaic cell 76, the second sealing layer 78, and the back glass 80 are laminated in this order. A power module 140 is obtained.
The heating temperature during thermocompression bonding is preferably 100 to 200°C, particularly preferably 130 to 170°C.
The heat-pressing time is preferably 2 to 120 minutes, particularly preferably 5 to 60 minutes.
(太陽光発電舗装ブロック)
 図6は、本発明の一実施形態の太陽光発電舗装ブロック500の構造例を示す模式断面図である。本実施形態の太陽光発電舗装ブロック500は、好ましく、上述の本実施形態1~4の何れか1種の舗装用光起電力モジュールを備える舗装ブロック(例えば、インターロッキングブロック)である。本実施形態の太陽光発電舗装ブロック500は、公知の道路用舗装材200の上において、本実施形態の舗装用光起電力モジュール150を配置してからなるものが好ましい。本実施形態の太陽光発電舗装ブロック500は、本実施形態の舗装用光起電力モジュールと前記道路用舗装材200との間において、道路用接着材層(図示なし)を更に含んでもよい。前記道路用舗装材200の上に、公知の道路用接着材等を塗布した後、本実施形態の舗装用光起電力モジュール150を固定する方法が挙げられる。
 前記道路用舗装材200としては、例えば、道路の路面に用いられる公知な材料で構成されたものが挙げられる。前記道路用舗装材200を構成する材料としては、例えば、多孔質セラミックスの粒状物及びセメントを含む舗装材があげられる。前記道路用舗装材200を構成する材料としては、歩行者や車両の通行が可能な硬度と耐久性を有するものであればよく、例えばアスファルト舗装体やコンクリート舗装体が挙げられる。前記道路用舗装材の厚みは、歩行者や車両の通行に耐えられる必要がある。50mm以上の厚みを有することが好ましい。
(Solar power generation pavement block)
FIG. 6 is a schematic cross-sectional view showing a structural example of a solar power generation pavement block 500 according to an embodiment of the present invention. The photovoltaic pavement block 500 of the present embodiment is preferably a pavement block (for example, an interlocking block) comprising any one of the paving photovoltaic modules of the present embodiments 1 to 4 described above. The solar power generation pavement block 500 of this embodiment is preferably one in which the paving photovoltaic module 150 of this embodiment is arranged on a known road paving material 200. The photovoltaic pavement block 500 of this embodiment may further include a road adhesive layer (not shown) between the paving photovoltaic module of this embodiment and the road paving material 200. An example of this method is to apply a known road adhesive or the like onto the road paving material 200 and then fix the paving photovoltaic module 150 of this embodiment.
Examples of the road paving material 200 include those made of known materials used for road surfaces. Examples of the material constituting the road paving material 200 include a paving material containing porous ceramic particles and cement. The material constituting the road paving material 200 may be any material as long as it has hardness and durability that allow pedestrians and vehicles to pass through, and examples thereof include asphalt pavement and concrete pavement. The thickness of the road paving material needs to be able to withstand the passage of pedestrians and vehicles. It is preferable to have a thickness of 50 mm or more.
 前記道路用接着材としては、電気的絶縁性を有し施工が容易な樹脂製材料を用いることが好ましく、例えばエポキシ樹脂を用いることができる。前記道路用接着剤(図示なし)層の厚みは、道路用舗装材と舗装用光起電力モジュール150を強固に接着して機械的強度を確保する必要があり、1~20mm程度の厚みを有することが好ましい。 As the road adhesive material, it is preferable to use a resin material that has electrical insulation properties and is easy to apply. For example, epoxy resin can be used. The thickness of the road adhesive (not shown) layer is approximately 1 to 20 mm, as it is necessary to firmly adhere the road paving material and the paving photovoltaic module 150 to ensure mechanical strength. It is preferable.
(ガラス板)
 本発明の一実施形態のガラス板(本実施形態のガラス板)は、第1側と第2側を有し、前記第1側において、表面から突出する粒子を含む。本実施形態のガラス板は、舗装用光起電力モジュールのカバーガラスとして用いることが好ましい。
 図14、15、16は、それぞれ第1ガラス板551、第2ガラス板552、第3ガラス板553の構造例を示す模式断面図である。本実施形態のガラス板としては、例えば、図14、15、16に示す第1ガラス板551、第2ガラス板552、第3ガラス板553が挙げられる。
(Glass plate)
A glass plate according to an embodiment of the present invention (a glass plate according to the present embodiment) has a first side and a second side, and includes particles protruding from the surface on the first side. The glass plate of this embodiment is preferably used as a cover glass of a photovoltaic module for paving.
14, 15, and 16 are schematic cross-sectional views showing structural examples of a first glass plate 551, a second glass plate 552, and a third glass plate 553, respectively. Examples of the glass plates of this embodiment include a first glass plate 551, a second glass plate 552, and a third glass plate 553 shown in FIGS. 14, 15, and 16.
 本実施形態に係る第1ガラス板551(図14)は、図2に示す前述第1実施形態舗装用光起電力モジュールのカバーガラス51と同じである。例えば、前記本実施形態にかかる第1ガラス板551は、粒子層10と、ガラス基板20と、を含む。前記粒子層10が前記第1側51aに配置されている。本実施形態に係る第1ガラス板551に含まれている、粒子層10、その粒子層10を構成する粒子2とバインダ層6は、第1実施形態舗装用光起電力モジュールのカバーガラス51に含まれている、粒子層10、その粒子層10を構成する粒子2とバインダ層6と同じである。
 本実施形態に係る第1ガラス板551の製造方法は、前述第1実施形態舗装用光起電力モジュールのカバーガラス51の製造方法と同じである。
The first glass plate 551 (FIG. 14) according to this embodiment is the same as the cover glass 51 of the photovoltaic module for paving according to the first embodiment shown in FIG. For example, the first glass plate 551 according to the present embodiment includes a particle layer 10 and a glass substrate 20. The particle layer 10 is arranged on the first side 51a. The particle layer 10, the particles 2 and binder layer 6 constituting the particle layer 10, which are included in the first glass plate 551 according to the present embodiment, are included in the cover glass 51 of the photovoltaic module for paving according to the first embodiment. The particle layer 10, the particles 2 and the binder layer 6 constituting the particle layer 10 are the same.
The method for manufacturing the first glass plate 551 according to this embodiment is the same as the method for manufacturing the cover glass 51 of the photovoltaic module for pavement according to the first embodiment.
 同様に、本実施形態に係る第2ガラス板552(図15)は、図3に示す前述第2実施形態舗装用光起電力モジュールのカバーガラス52と同じである。本実施形態に係る第2ガラス板552の製造方法は、前述第2実施形態舗装用光起電力モジュールのカバーガラス52の製造方法と同じである。 Similarly, the second glass plate 552 (FIG. 15) according to the present embodiment is the same as the cover glass 52 of the paving photovoltaic module according to the second embodiment shown in FIG. 3. The method for manufacturing the second glass plate 552 according to this embodiment is the same as the method for manufacturing the cover glass 52 of the photovoltaic module for paving according to the second embodiment.
 本実施形態に係る第3ガラス板553(図16)は、図4に示す前述第3実施形態舗装用光起電力モジュールのカバーガラス53と同じである。本実施形態に係る第3ガラス板553の製造方法は、前述第3実施形態舗装用光起電力モジュールのカバーガラス53の製造方法と同じである。 The third glass plate 553 (FIG. 16) according to this embodiment is the same as the cover glass 53 of the photovoltaic module for paving according to the third embodiment shown in FIG. The method for manufacturing the third glass plate 553 according to this embodiment is the same as the method for manufacturing the cover glass 53 of the photovoltaic module for paving according to the third embodiment described above.
 本実施形態のガラス板は、優れた滑り防止性の表面を有するため、舗装用光起電力モジュールのカバーガラスとして用いる以外に、建築物のガラス床、家具としてのガラステーブルのような滑り防止性が要求される箇所への利用に適するガラス板としても、使用してもよい。 The glass plate of this embodiment has an excellent anti-slip surface, so in addition to being used as a cover glass for photovoltaic modules for pavement, it can also be used for glass floors in buildings and glass tables used as furniture. It may also be used as a glass plate suitable for use in places where high performance is required.
(ガラス床用合わせガラス)
 本発明の一実施形態のガラス床用合わせガラス(本実施形態のガラス床用合わせガラス)は、ガラス床として使用することができる合わせガラスである。本実施形態のガラス床用合わせガラスは、前述の本実施形態のガラス板と、合わせガラス用中間膜と、合わせガラス用ガラス基板と、をその順に積層されてなる。前記ガラス板の第2側において、前記合わせガラス用中間膜を配置する。
(Laminated glass for glass floors)
The laminated glass for a glass floor of one embodiment of the present invention (the laminated glass for a glass floor of this embodiment) is a laminated glass that can be used as a glass floor. The laminated glass for a glass floor of this embodiment is formed by laminating the above-described glass plate of this embodiment, an interlayer film for laminated glass, and a glass substrate for laminated glass in that order. The interlayer film for laminated glass is disposed on the second side of the glass plate.
[ガラス板]
 本実施形態にかかるガラス板としては、前述の本実施形態のガラス板、及びその好ましい実施態様のガラス板が挙げられる。
[Glass plate]
Examples of the glass plate according to this embodiment include the glass plate of this embodiment described above and the glass plate of its preferred embodiment.
[合わせガラス用中間膜]
 本実施形態にかかる合わせガラス用中間膜は、特に限定されなく、公知の合わせガラス用中間膜を用いることができる。本実施形態にかかる合わせガラス用中間膜としては、例えば、遮音性を高める素材、熱線反射性を高める素材などを含むポリビニルブチラールなどの樹脂が挙げられる。
[Interlayer film for laminated glass]
The interlayer film for laminated glass according to this embodiment is not particularly limited, and any known interlayer film for laminated glass can be used. Examples of the interlayer film for laminated glass according to this embodiment include resins such as polyvinyl butyral containing materials that increase sound insulation, materials that increase heat ray reflection, and the like.
[合わせガラス用ガラス基板]
 本実施形態にかかる合わせガラス用ガラス基板は、特に限定されなく、公知の合わせガラスに用いるガラス板を用いることができる。本実施形態にかかる合わせガラス用ガラス基板は、本発明の舗装用光起電力モジュールの第4実施形態に記載されている前記バックガラス、及びその好ましい態様を用いることができる。
[Glass substrate for laminated glass]
The glass substrate for laminated glass according to this embodiment is not particularly limited, and a glass plate used for known laminated glass can be used. The glass substrate for laminated glass according to this embodiment can use the back glass described in the fourth embodiment of the photovoltaic module for paving of the present invention and its preferred embodiment.
[実施例]
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
(滑り抵抗値BPN)
 滑り抵抗値BPNは、大和建工株式会社製装置を用いて、ASTM E303に従って測定した。
[Example]
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.
(Slip resistance value BPN)
The slip resistance value BPN was measured according to ASTM E303 using a device manufactured by Daiwa Kenko Co., Ltd.
(粒子2の粒径)
 入手した富士フィルム和光純薬株式会社製海砂、粒径425~850μmのものを使用した。
(Particle size of particle 2)
Sea sand obtained from Fuji Film Wako Pure Chemical Industries, Ltd. and having a particle size of 425 to 850 μm was used.
(粒子密度)
 粒子密度は、撒いた粒子の全質量を粒子1個当たりの質量で割ることで撒いた粒子の全個数を算出し、さらにそれを撒いた面積で割ることで1cmあたりの個数を算出した。ここで、粒子1個あたりの質量は、粒子の粒径から体積を計算し密度を掛けることで算出したおよその質量である。なお、本実施例では、粒子の粒径がバインダ層厚と比較して十分大きいため、撒いた粒子は全て表面に突出していると考えられる。
(particle density)
The particle density was calculated by dividing the total mass of the scattered particles by the mass per particle to calculate the total number of particles, and then dividing it by the area of the particles to calculate the number per cm 2 . Here, the mass per particle is an approximate mass calculated by calculating the volume from the particle size of the particle and multiplying it by the density. In this example, since the particle size of the particles is sufficiently large compared to the thickness of the binder layer, it is considered that all of the scattered particles protrude from the surface.
(原料)
 粒子:富士フィルム和光純薬株式会社製、海砂、粒径425~850μm
 ガラスフリット:AGCエレクトロニクス株式会社製、ASF6003、軟化点:565℃
 溶媒:酢酸ブチル
 樹脂:共栄社化学株式会社製、焼結用アクリルバインダーKC-7000F
 分散剤:BYK-Chemie社製、BYK180
 ガラス基板:ソーダライムガラス、サイズ:220×120mm、厚さ:5mm、軟化点:740℃
 光起電力セル:単結晶シリコン型太陽電池セル
 第1および第2封止材:VistaSolar社製、521,68
(material)
Particles: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., sea sand, particle size 425-850 μm
Glass frit: manufactured by AGC Electronics Co., Ltd., ASF6003, softening point: 565°C
Solvent: Butyl acetate Resin: Acrylic binder for sintering KC-7000F, manufactured by Kyoeisha Chemical Co., Ltd.
Dispersant: BYK-Chemie, BYK180
Glass substrate: soda lime glass, size: 220 x 120 mm, thickness: 5 mm, softening point: 740°C
Photovoltaic cell: Single crystal silicon solar cell First and second sealing material: VistaSolar, 521,68
(実施例1)
「舗装用光起電力モジュールの製造」
(I)カバーガラス製造工程S1
 まず、樹脂の比率が30質量%になるように樹脂と溶媒とを秤量し、熱湯で湯煎しながらホモジナイザーを用いて混合し、ビヒクルを作製した。次に、ガラスフリット40g、溶媒11.3g、分散剤0.6gをプラネタリーミキサーで混合した後、ビヒクル6.72gを追加して更に混合し、フリットペーストを調整した。
 調整したガラスフリットのペーストを、ガラス基板の一面に、バーコーターを用いて塗布した。塗布量は、焼成後のバインダ層の厚さが60μmになるように調製した。
 ガラスフリット層の上に、粒子1.0gを面内に均等に広がるように目視確認しながら手で散布した。
 得られた基板を焼成炉に投入し、大気雰囲気にて、まず室温から250℃まで1.5時間かけて昇温させて溶媒を揮発させ、次に400℃まで4時間かけて昇温させ400℃で4時間保持することで樹脂を分解・消失させ、さらに680℃まで40分かけて昇温させ680℃で10分保持することでガラスフリットを溶解・焼結させ、その後炉内で自然降温させた。これによりカバーガラスが得られた。
(Example 1)
"Manufacture of photovoltaic modules for pavement"
(I) Cover glass manufacturing process S1
First, a resin and a solvent were weighed so that the resin ratio was 30% by mass, and mixed using a homogenizer while being boiled in boiling water to prepare a vehicle. Next, 40 g of glass frit, 11.3 g of solvent, and 0.6 g of dispersant were mixed using a planetary mixer, and then 6.72 g of vehicle was added and further mixed to prepare a frit paste.
The prepared glass frit paste was applied to one surface of a glass substrate using a bar coater. The coating amount was adjusted so that the thickness of the binder layer after firing was 60 μm.
On top of the glass frit layer, 1.0 g of particles were sprinkled by hand while visually checking so that they were spread evenly within the surface.
The obtained substrate was placed in a firing furnace, and the temperature was first raised from room temperature to 250°C over 1.5 hours in an air atmosphere to volatilize the solvent, and then the temperature was raised to 400°C over 4 hours. The resin was decomposed and disappeared by holding at ℃ for 4 hours, and the temperature was further increased to 680℃ over 40 minutes, and the glass frit was melted and sintered by holding at 680℃ for 10 minutes, and then the temperature was naturally cooled in the furnace. I let it happen. A cover glass was thus obtained.
(II)封止工程S2
 工程S1で得られたカバーガラス、ガラス基板(バックガラスとして)、太陽光セルを用いて、舗装用光起電力モジュールを製造した。図5と図7に示すように、上記第1実施形態で記載した方法で光起電力セル76を封止し、粒子層10を含むカバーガラス51と、光起電力セル76と、バックガラス80を含む発電モジュール40とを有する舗装用光起電力モジュールP-1を製造した。
 本実施例で得られた舗装用光起電力モジュールP-1に対して、受光面の光学顕微鏡写真を撮った。また、滑り抵抗値BPNを測定した。その結果を表1、図8と9に示す。図8と9の結果から、バインダ層が気泡を含むことが観測された。
 図10は、図8を説明するための模式断面図である。図8の粒子とバインダ層との関係は、図10の模式断面図に示すように、粒子の周辺において、バインダ層の盛り上がりが観測された。バインダ層(図9)が薄くても、粒子の周辺の盛り上がり部分があるため、粒子をガラス基板によく固定された。
(II) Sealing process S2
A paving photovoltaic module was manufactured using the cover glass, glass substrate (as a back glass), and solar cell obtained in step S1. As shown in FIGS. 5 and 7, the photovoltaic cell 76 is sealed by the method described in the first embodiment, and a cover glass 51 including the particle layer 10, the photovoltaic cell 76, and a back glass 80 are sealed. A paving photovoltaic module P-1 having a power generation module 40 containing the following was manufactured.
An optical microscope photograph of the light-receiving surface of the paving photovoltaic module P-1 obtained in this example was taken. In addition, the slip resistance value BPN was measured. The results are shown in Table 1 and FIGS. 8 and 9. From the results shown in FIGS. 8 and 9, it was observed that the binder layer contained air bubbles.
FIG. 10 is a schematic cross-sectional view for explaining FIG. 8. Regarding the relationship between the particles and the binder layer in FIG. 8, as shown in the schematic cross-sectional view in FIG. 10, swelling of the binder layer was observed around the particles. Even though the binder layer (FIG. 9) was thin, the particles were well fixed to the glass substrate because of the raised areas around the particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
「舗装用光起電力モジュールの製造」
 粒子密度が(2.5g)以外は、実施例1と同じ方法で舗装用光起電力モジュールP-2を製造した。実施例1と同じ方法で評価し、その結果を表1に示す。
(Example 2)
"Manufacture of photovoltaic modules for pavement"
A paving photovoltaic module P-2 was manufactured in the same manner as in Example 1, except that the particle density was (2.5 g). Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
(実施例3)
「舗装用光起電力モジュールの製造」
 バインダ層厚が180μm以外は、実施例1と同じ方法で舗装用光起電力モジュールP-3を製造した。実施例1と同じ方法で評価し、その結果を表1に示す。
(Example 3)
"Manufacture of photovoltaic modules for pavement"
A paving photovoltaic module P-3 was manufactured in the same manner as in Example 1, except that the binder layer thickness was 180 μm. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
(実施例4)
「舗装用光起電力モジュールの製造」
 バインダ層厚が180μm以外は、実施例2と同じ方法で舗装用光起電力モジュールP-4を製造した。実施例1と同じ方法で評価し、その結果を表1に示す。
(Example 4)
"Manufacture of photovoltaic modules for pavement"
A paving photovoltaic module P-4 was manufactured in the same manner as in Example 2, except that the binder layer thickness was 180 μm. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
(実施例5)
「カバーガラスの光学特性(工程S1-1A、S1-2A、S1-3A)」
 実施例5においては、カバーガラスの光学特性を評価した。
(Example 5)
"Optical properties of cover glass (Steps S1-1A, S1-2A, S1-3A)"
In Example 5, the optical properties of the cover glass were evaluated.
(原料)
 粒子:富士フィルム和光純薬株式会社製 海砂
   :株式会社不二製作所製 アルミナ粒子(商品名:フジランダムWA)
 ガラスフリット:AGCエレクトロニクス株式会社製、YFT-531E、軟化点:589℃、熱膨張係数:76×10-7/℃(50℃-350℃)
 溶媒:酢酸ブチル
 樹脂:共栄社化学株式会社製、焼結用アクリルバインダーKC7000
 分散剤:BYK-Chemie社製、BYK180
 ガラス基板:ソーダライムガラス、サイズ:65×150mm、厚さ:3mm、軟化点:740℃、歪点:510℃、熱膨張係数:85×10-7/℃(50℃-350℃)
(material)
Particles: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. Sea sand: manufactured by Fuji Seisakusho Co., Ltd. Alumina particles (product name: Fuji Random WA)
Glass frit: manufactured by AGC Electronics Co., Ltd., YFT-531E, softening point: 589°C, thermal expansion coefficient: 76 × 10 -7 /°C (50°C - 350°C)
Solvent: Butyl acetate Resin: Acrylic binder for sintering KC7000, manufactured by Kyoeisha Chemical Co., Ltd.
Dispersant: BYK-Chemie, BYK180
Glass substrate: soda lime glass, size: 65 x 150 mm, thickness: 3 mm, softening point: 740°C, strain point: 510°C, coefficient of thermal expansion: 85 x 10 -7 /°C (50°C - 350°C)
 前述の実施例と同様にビヒクルを作製した。次に、ガラスフリット20g、溶媒7.65g、分散剤0.40gをプラネタリーミキサーで混合した後、ビヒクル3.36gを追加して更に混合し、フリットペーストを調整した。
 調整したフリットペーストを前述の実施例と同様にガラス基板の一面に塗布し、その上に粒子0.5gを面内に均一に広がるように目視確認しながら手で散布した。使用した粒子の種類を表2に示す。
 得られた基板を前述の実施例と同様に焼成し、カバーガラスを得た。
Vehicles were made as in the previous examples. Next, 20 g of glass frit, 7.65 g of solvent, and 0.40 g of dispersant were mixed using a planetary mixer, and then 3.36 g of vehicle was added and further mixed to prepare a frit paste.
The prepared frit paste was coated on one surface of a glass substrate in the same manner as in the previous example, and 0.5 g of particles were sprinkled thereon by hand while visually checking to ensure that they spread uniformly within the surface. Table 2 shows the types of particles used.
The obtained substrate was fired in the same manner as in the above example to obtain a cover glass.
 こうして得られたカバーガラスについて光学特性を調べるために、ヘーズと全光線透過率の測定を行った。用いた装置は、株式会社村上色彩技術研究所製のヘーズメーターHM-150L2Nである。粒子の散布が手作業であり粒子密度の面内ばらつきがあるため、測定は2サンプルについて行い平均値をとった。結果を表2に示す。 In order to examine the optical properties of the cover glass thus obtained, haze and total light transmittance were measured. The device used was a haze meter HM-150L2N manufactured by Murakami Color Research Institute Co., Ltd. Since the particles were spread manually and the particle density varied within the plane, measurements were performed on two samples and the average value was taken. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例6)
「ガラス床用合わせガラス(工程S1-1B、S1-2B、S1-3B)」
 実施例6においては、ガラス床用合わせガラスを評価した。図17から図19は、実施例6を説明するための図である。
(Example 6)
"Laminated glass for glass floors (process S1-1B, S1-2B, S1-3B)"
In Example 6, laminated glass for glass floors was evaluated. 17 to 19 are diagrams for explaining the sixth embodiment.
(原料)
 粒子:株式会社不二製作所製 アルミナ粒子 フジランダムWA 粒番号60(中心粒径250~212μm)、粒番号120(中心粒径125~90μm)、粒番号180(中心粒径63~53μm)
 ガラスフリット:AGCエレクトロニクス株式会社製、YFT-531E、軟化点:589℃
 溶媒:ブチルカルビトールアセテート(BCA)
 樹脂:共栄社化学株式会社製、焼結用アクリルバインダーKC-1700P
 分散剤:BYK-Chemie社製、BYK180
 ガラス基板:ソーダライムガラス、サイズ:180×200mm、厚さ:5mm、軟化点:740℃ 
 バックガラス:ソーダライムガラス、サイズ:180×200mm、厚さ:5mm
 合わせガラス用中間膜:VistaSolar社製、EVA樹脂、521,68 
(material)
Particles: Fuji Seisakusho Co., Ltd. Alumina particles Fuji Random WA Particle number 60 (center particle size 250-212 μm), particle number 120 (center particle size 125-90 μm), particle number 180 (center particle size 63-53 μm)
Glass frit: manufactured by AGC Electronics Co., Ltd., YFT-531E, softening point: 589°C
Solvent: Butyl carbitol acetate (BCA)
Resin: Acrylic binder for sintering KC-1700P manufactured by Kyoeisha Chemical Co., Ltd.
Dispersant: BYK-Chemie, BYK180
Glass substrate: soda lime glass, size: 180 x 200 mm, thickness: 5 mm, softening point: 740°C
Back glass: soda lime glass, size: 180 x 200mm, thickness: 5mm
Interlayer film for laminated glass: VistaSolar, EVA resin, 521,68
 フリットペーストをガラス基板の一面にパターン印刷するため、まず所望のパターン形状の開口部を有するメタルマスクを準備した。次に、樹脂の比率が40質量%になるように樹脂と溶媒を秤量し、ホモジナイザーで混合し、ビヒクルを作製した。更に、得られたビヒクル25gと、分散剤1g、フリット32.73g、粒番号120の粒子17.27gをプラネタリーミキサーを用いて混合し、フリットペーストを作製した。なお、このときフリットと粒子を合わせた固形分中の粒子の体積比率は40%となる。同様にして、体積比率30,50%のフリットペーストを作製し、さらに粒番号60および180の粒子にて体積比率が50%となるフリットペーストを作製した。
 次に、ガラス基板上にメタルマスクを載せ、上からフリットペーストを適量垂らし、ウレタン製スキージをメタルマスクに押し当てながら動かすことでフリットペーストをマスク開口部に隙間なく埋め込み、その後メタルマスクを取り外した。こうしてガラス基板上にフリットペーストによるパターンを形成した。今回用いたパターンは表3に示す4種類である。なお、メタルマスクの厚みは1.0mmおよび0.5mmを用いた。
 なお、表3における縞鋼板の長さ、幅、ピッチは、図17に示したように測定した。また、表3におけるドットの長さ、幅は、ドットの径を指し、ドットのピッチとは、隣り合うドットの中心位置同士の距離である。
 得られた基板を焼成炉に投入し、大気雰囲気にて、まず室温から250℃まで1.5時間かけて昇温させて溶媒を揮発させ、次に400℃まで4時間かけて昇温させ400℃で4時間保持することで樹脂を分解・消失させ、その後炉内で自然降温させた。その後、680℃に加熱したベルト炉に投入してガラスフリットを溶解・焼結した。ベルト炉内では、室温状態の入口から3分かけて680℃の炉内へ移動し、炉内で9分間滞在し、炉内から室温状態の出口に6分かけて移動させている。これによりカバーガラスを得た。なお、作製したカバーガラスについて、粒子の粒番号、メタルマスクのパターンと厚み、固形分中の粒子の体積比率、の組み合わせを表4に示す。
In order to pattern-print the frit paste on one surface of a glass substrate, a metal mask having openings in the desired pattern shape was first prepared. Next, the resin and solvent were weighed so that the resin ratio was 40% by mass, and mixed using a homogenizer to prepare a vehicle. Further, 25 g of the obtained vehicle, 1 g of dispersant, 32.73 g of frit, and 17.27 g of particles with particle number 120 were mixed using a planetary mixer to prepare a frit paste. At this time, the volume ratio of particles in the solid content including the frit and particles is 40%. Similarly, frit pastes with a volume ratio of 30% and 50% were produced, and further frit pastes with a volume ratio of 50% were produced using particles with particle numbers 60 and 180.
Next, a metal mask was placed on the glass substrate, an appropriate amount of frit paste was dripped from above, and a urethane squeegee was moved while pressing against the metal mask to embed the frit paste into the mask opening without any gaps, and then the metal mask was removed. . In this way, a pattern of frit paste was formed on the glass substrate. The four patterns used this time are shown in Table 3. Note that the thickness of the metal mask used was 1.0 mm and 0.5 mm.
Note that the length, width, and pitch of the striped steel plates in Table 3 were measured as shown in FIG. 17. Further, the length and width of the dots in Table 3 refer to the diameter of the dots, and the pitch of the dots is the distance between the center positions of adjacent dots.
The obtained substrate was placed in a firing furnace, and the temperature was first raised from room temperature to 250°C over 1.5 hours in an air atmosphere to volatilize the solvent, and then the temperature was raised to 400°C over 4 hours. The resin was decomposed and disappeared by holding at ℃ for 4 hours, and then the temperature was allowed to fall naturally in the furnace. Thereafter, the glass frit was melted and sintered by placing it in a belt furnace heated to 680°C. In the belt furnace, it takes 3 minutes to move from the entrance at room temperature to the furnace at 680°C, stays in the furnace for 9 minutes, and then moves from the inside of the furnace to the exit at room temperature over 6 minutes. A cover glass was thus obtained. Table 4 shows the combinations of the particle number, the pattern and thickness of the metal mask, and the volume ratio of particles in the solid content for the produced cover glass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施例で得られたガラス床用合わせガラスに対して、表面形状の観察と測定を行った。図18及び図19に、縞鋼板中パターンのサンプルの、顕微鏡像と断面曲線を示す。断面曲線の測定には、株式会社東京精密製サーフコムを用いた。これらの結果より、表面に数百μm程度の凹凸が形成されていることが確認され、表面から粒子が突出した状態であると言える。さらに、得られたサンプルについて、滑り抵抗BPNの測定を行い、表4の最右列に示す結果が得られた。 The surface shape of the laminated glass for glass floors obtained in this example was observed and measured. FIGS. 18 and 19 show a microscopic image and a cross-sectional curve of a patterned sample in a striped steel plate. A surfcom manufactured by Tokyo Seimitsu Co., Ltd. was used to measure the cross-sectional curve. From these results, it was confirmed that irregularities of about several hundred μm were formed on the surface, and it can be said that particles were protruding from the surface. Furthermore, the slip resistance BPN of the obtained samples was measured, and the results shown in the rightmost column of Table 4 were obtained.
(実施例7)
「舗装用光起電モジュール(第2実施形態+第4実施形態)」
 実施例7においては、舗装用光起電モジュールを評価した。
(Example 7)
"Photovoltaic module for pavement (2nd embodiment + 4th embodiment)"
In Example 7, a paving photovoltaic module was evaluated.
(原料)
 粒子:株式会社不二製作所製 アルミナ粒子 フジランダムWA 粒番号120(中心粒径125~90μm)
 ガラスフリット:AGCエレクトロニクス株式会社製、YFT-531E、軟化点:589℃
 溶媒:ブチルカルビトールアセテート(BCA)
 樹脂:共栄社化学株式会社製、焼結用アクリルバインダーKC-1700P
 分散剤:BYK-Chemie社製、BYK180
 ガラス基板:ソーダライムガラス、サイズ:100×100mm、厚さ:5mm、軟化点:740℃ 
 バックガラス:ソーダライムガラス、サイズ:100×100mm、厚さ:3mm
 光起電力セル:多結晶シリコン型太陽電池セル
 第1および第2封止材:VistaSolar社製、EVA樹脂、521,68 
(material)
Particles: Fuji Seisakusho Co., Ltd. Alumina particles Fuji Random WA Particle number 120 (center particle size 125 to 90 μm)
Glass frit: manufactured by AGC Electronics Co., Ltd., YFT-531E, softening point: 589°C
Solvent: Butyl carbitol acetate (BCA)
Resin: Acrylic binder for sintering KC-1700P manufactured by Kyoeisha Chemical Co., Ltd.
Dispersant: BYK-Chemie, BYK180
Glass substrate: soda lime glass, size: 100 x 100 mm, thickness: 5 mm, softening point: 740°C
Back glass: soda lime glass, size: 100 x 100mm, thickness: 3mm
Photovoltaic cell: Polycrystalline silicon solar cell First and second encapsulant: VistaSolar, EVA resin, 521,68
 実施例6と同様の方法で、粒番号120の粒子にて、フリットと粒子を合わせた固形分中の粒子の体積比率が40%となるフリットペーストを作製した。
 次に、調整したフリットペーストを、実施例6と同様の方法でガラス基板の一面にパターン印刷した。用いたパターンは表3の4種類と、全面塗布(ベタ)の計5種類とした。なお、マスクの厚みは0.5mmを用いた。
 得られた基板について実施例6と同様に焼成し、カバーガラスを得た。
 次に、得られたカバーガラス、第1封止材、発電効率測定済の光起電力セル、第2封止材、バックガラス、をこの順で積層し、真空包装した後、オーブンを使用して90℃で45分間加熱して仮接着させ、その後包装材を取り除いて再度オーブンを使用して130℃で30分間加熱した。このようにして舗装用光起電力モジュールを完成させた。なお、粒子層のないガラス基板のみのカバーガラスを用いた光起電力モジュールも、リファレンスとして作製した。
In the same manner as in Example 6, a frit paste was prepared using particles with particle number 120, in which the volume ratio of particles in the solid content of frit and particles was 40%.
Next, the prepared frit paste was pattern-printed on one surface of the glass substrate in the same manner as in Example 6. A total of five patterns were used: the four types shown in Table 3 and the entire surface coating (solid). Note that the thickness of the mask used was 0.5 mm.
The obtained substrate was fired in the same manner as in Example 6 to obtain a cover glass.
Next, the obtained cover glass, first encapsulant, photovoltaic cell whose power generation efficiency has been measured, second encapsulant, and back glass are laminated in this order, vacuum packaged, and then placed in an oven. The package was heated at 90° C. for 45 minutes for temporary adhesion, and then the packaging material was removed and heated again at 130° C. for 30 minutes using an oven. In this way, a photovoltaic module for pavement was completed. Note that a photovoltaic module using a cover glass with only a glass substrate without a particle layer was also produced as a reference.
 本実施例で得られた光起電力モジュールに対して、太陽電池の出力特性の測定を行った。出力特性の測定には、山下電装株式会社製のソーラーシミュレーターを用い疑似太陽光を照射させ、ソースメータ―を用いて電流ー電圧特性を測定した。その結果から、電流と電圧の積が最も大きくなる最適動作点における出力電力Pmaxを求めた。さらに、モジュール化前後でのPmax値の変化(光起電力セル単体状態とその上にカバーガラスが載っている状態での変化)も算出した。これらの結果を表5に示す。なお、カバーガラスを平面視したとき、光起電力セルの有効エリアにおけるパターンに覆われていない部分の面積比率を、パターン開口率として表した。パターン開口率とリファレンスで規格化したPmaxとの間にはほぼ比例関係があることが確認された。
 なお、本実施例で得られたカバーガラスは実施例6の一部と同じであるため、その滑り抵抗BPNも表5に示した。
The output characteristics of the solar cell were measured for the photovoltaic module obtained in this example. To measure the output characteristics, a solar simulator manufactured by Yamashita Denso Co., Ltd. was used to irradiate simulated sunlight, and a source meter was used to measure the current-voltage characteristics. From the results, the output power Pmax at the optimum operating point where the product of current and voltage is the largest was determined. Furthermore, the change in Pmax value before and after modularization (the change between the photovoltaic cell alone and the state where a cover glass was placed on it) was also calculated. These results are shown in Table 5. Note that, when the cover glass is viewed in plan, the area ratio of the portion not covered by the pattern in the effective area of the photovoltaic cell was expressed as the pattern aperture ratio. It was confirmed that there is a nearly proportional relationship between the pattern aperture ratio and Pmax normalized with the reference.
Note that since the cover glass obtained in this example is the same as a part of Example 6, its slip resistance BPN is also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
2:粒子
4:バインダ
6、7:バインダ層
10、11、12:粒子層
20:ガラス基板
50、51、52、53:カバーガラス
50a:第1側
50b:第2側
70:光起電力セル含有封止層
70A、70B、70C:光起電力セル含有封止層の変形例
72:封止層
74:第1封止層
76:光起電力セル
76A:第1受光面
76B:第2受光面
78:第2封止層
81:第2カバーガラス
82:第2バックガラス
84:第3封止層
100、110、120、130、140、150:舗装用光起電力モジュール
176、276、376:太陽電池モジュール
200:道路用舗装材
500:太陽光発電舗装ブロック
551、552、553:第1ガラス板、第2ガラス板、第3ガラス板
2: Particles 4: Binder 6, 7: Binder layer 10, 11, 12: Particle layer 20: Glass substrate 50, 51, 52, 53: Cover glass 50a: First side 50b: Second side 70: Photovoltaic cell Containing sealing layers 70A, 70B, 70C: Modification example 72 of photovoltaic cell-containing sealing layer: Sealing layer 74: First sealing layer 76: Photovoltaic cell 76A: First light-receiving surface 76B: Second light-receiving surface Surface 78: Second sealing layer 81: Second cover glass 82: Second back glass 84: Third sealing layer 100, 110, 120, 130, 140, 150: Paving photovoltaic module 176, 276, 376 : Solar cell module 200: Road paving material 500: Solar power generation pavement blocks 551, 552, 553: First glass plate, second glass plate, third glass plate

Claims (21)

  1.  カバーガラスと、
     光起電力セルと、
     前記光起電力セルを封止する封止層と、
    を含む舗装用光起電力モジュールであって、
     前記光起電力セルの受光面側において、前記カバーガラスを配置し、
     前記カバーガラスが第1側と第2側を有し、前記第2側において前記光起電力セルが配置され、
     前記カバーガラスは、前記第1側において、表面から突出する粒子を含み、
     前記粒子の粒径が0.01~5mmである、舗装用光起電力モジュール。
    cover glass and
    a photovoltaic cell;
    a sealing layer that seals the photovoltaic cell;
    A pavement photovoltaic module comprising:
    arranging the cover glass on the light-receiving surface side of the photovoltaic cell;
    the cover glass has a first side and a second side, and the photovoltaic cell is disposed on the second side;
    The cover glass includes particles protruding from the surface on the first side,
    A photovoltaic module for pavement, wherein the particles have a particle size of 0.01 to 5 mm.
  2.  前記カバーガラスは、粒子層と、ガラス基板と、を含み、前記粒子層が前記第1側に配置され、前記ガラス基板が前記第2側に配置され、
     前記粒子層が、前記粒子と、バインダと、を含み、
     前記バインダが、ガラスフリットの焼成物であり、
     前記粒子は、前記バインダを用いて前記ガラス基板と結合することを特徴とする、請求項1に記載の舗装用光起電力モジュール。
    The cover glass includes a particle layer and a glass substrate, the particle layer is disposed on the first side, and the glass substrate is disposed on the second side,
    The particle layer includes the particles and a binder,
    The binder is a fired glass frit,
    The paving photovoltaic module according to claim 1, wherein the particles are bonded to the glass substrate using the binder.
  3.  前記粒子層が、前記ガラス基板の上に、前記バインダで形成されたバインダ層を含み、前記粒子が前記バインダ層を通して前記ガラス基板と結合する、請求項2に記載の、舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 2, wherein the particle layer includes a binder layer formed of the binder on the glass substrate, and the particles are bonded to the glass substrate through the binder layer. .
  4.  前記粒子層が、気泡を有する、請求項2又は3に記載の、舗装用光起電力モジュール。 The photovoltaic module for pavement according to claim 2 or 3, wherein the particle layer has air bubbles.
  5.  前記粒子層に含まれる気泡の数が100個/mm以上である、請求項4に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 4, wherein the number of bubbles contained in the particle layer is 100/mm 3 or more.
  6.  前記粒子層が上面視において円形、楕円形、多角形等の形状にパターニングされている、請求項2又は3に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 2 or 3, wherein the particle layer is patterned into a circular, elliptical, polygonal, etc. shape when viewed from above.
  7.  前記ガラス基板の組成と前記バインダの組成とが異なる、請求項2又は3に記載の、舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 2 or 3, wherein the composition of the glass substrate and the composition of the binder are different.
  8.  前記ガラス基板の歪点が、前記バインダの軟化点よりも30℃以上高い、請求項2又は3に記載の、舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 2 or 3, wherein the strain point of the glass substrate is 30° C. or more higher than the softening point of the binder.
  9.  以下の式に示す関係を有する、請求項2又は3に記載の舗装用光起電力モジュール。 前記ガラス基板の熱膨張係数≧前記バインダの熱膨張係数≧前記粒子の熱膨張係数 The photovoltaic module for pavement according to claim 2 or 3, which has the relationship shown in the following formula. Thermal expansion coefficient of the glass substrate ≧ Thermal expansion coefficient of the binder ≧ Thermal expansion coefficient of the particles
  10.  前記ガラス基板が合わせガラスである、請求項2又は3に記載の舗装用光起電力モジュール。 The photovoltaic module for pavement according to claim 2 or 3, wherein the glass substrate is laminated glass.
  11.  前記粒子が、角が立った結晶性粒子である、請求項1又は2に記載の、舗装用光起電力モジュール。 The photovoltaic module for pavement according to claim 1 or 2, wherein the particles are crystalline particles with sharp edges.
  12.  前記カバーガラスの前記第1側の表面に突出している前記粒子の密度が、1個/cm以上である、請求項1又は2に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 1 or 2, wherein the density of the particles protruding on the surface of the first side of the cover glass is 1 particle/cm 2 or more.
  13.  更にバックガラスを含み、
     前記カバーガラスと、前記光起電力セル及び前記封止層を有する光起電力セル含有封止層と、前記バックガラスをその順に含む、請求項1又は2に記載の、舗装用光起電力モジュール。
    Furthermore, including the back glass,
    The photovoltaic module for paving according to claim 1 or 2, comprising the cover glass, a photovoltaic cell-containing sealing layer having the photovoltaic cell and the sealing layer, and the back glass in that order. .
  14.  前記カバーガラスの前記第1側の表面において、滑り抵抗値BPNが30以上である、請求項1又は2に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 1 or 2, wherein the surface of the first side of the cover glass has a slip resistance value BPN of 30 or more.
  15.  前記光起電力セルは、単結晶もしくは多結晶シリコン系太陽電池セルを含む請求項1又は2に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 1 or 2, wherein the photovoltaic cell includes a single crystal or polycrystalline silicon solar cell.
  16.  前記カバーガラスの前記第2側の表面において、ガラスフリットの焼成物からなる層を含まない、請求項1又は2に記載の舗装用光起電力モジュール。 The photovoltaic module for paving according to claim 1 or 2, wherein the second surface of the cover glass does not include a layer made of a fired glass frit.
  17.  請求項1又は2に記載の舗装用光起電力モジュールを備えることを特徴とする太陽光発電舗装ブロック。 A solar power generation pavement block comprising the pavement photovoltaic module according to claim 1 or 2.
  18.  請求項1又は2に記載の舗装用光起電力モジュールを製造する方法であって、
     表面から突出する前記粒子を含む前記カバーガラスを製造するカバーガラス製造工程と、
     前記カバーガラスを用いて、前記封止層に含まれている前記光起電力セルを封止する封止工程と、を含む、舗装用光起電力モジュールの製造方法。
    A method for manufacturing the paving photovoltaic module according to claim 1 or 2, comprising:
    a cover glass manufacturing step of manufacturing the cover glass including the particles protruding from the surface;
    A method for manufacturing a photovoltaic module for pavement, including a sealing step of sealing the photovoltaic cells included in the sealing layer using the cover glass.
  19.  第1側と第2側を有し、
     前記第1側において、表面から突出する粒子を含み、
     前記粒子の粒径が0.01~5mmである、ガラス板。
    having a first side and a second side;
    The first side includes particles protruding from the surface;
    A glass plate, wherein the particles have a particle size of 0.01 to 5 mm.
  20.  前記ガラス板は、粒子層と、ガラス基板と、を含み、前記粒子層が前記第1側に配置され、前記ガラス基板が前記第2側に配置され、
     前記粒子層が、前記粒子と、バインダと、を含み、
     前記バインダが、ガラスフリットの焼成物であり、
     前記粒子は、前記バインダを用いて前記ガラス基板と結合することを特徴とする、請求項19に記載のガラス板。
    The glass plate includes a particle layer and a glass substrate, the particle layer is disposed on the first side, and the glass substrate is disposed on the second side,
    The particle layer includes the particles and a binder,
    The binder is a fired glass frit,
    20. The glass plate of claim 19, wherein the particles are bonded to the glass substrate using the binder.
  21.  請求項19又は20に記載のガラス板と、
     合わせガラス用中間膜と、
     合わせガラス用ガラス基板と、をその順に積層されてなる、ガラス床用合わせガラスであって、
     前記ガラス板の前記第2側において、前記合わせガラス用中間膜を配置する、ガラス床用合わせガラス。
    The glass plate according to claim 19 or 20,
    An interlayer film for laminated glass,
    A laminated glass for a glass floor, comprising a glass substrate for laminated glass and a laminated glass substrate for laminated glass in that order,
    A laminated glass for a glass floor, wherein the interlayer film for laminated glass is disposed on the second side of the glass plate.
PCT/JP2023/020887 2022-06-09 2023-06-05 Paving photovoltaic module, solar photovoltaic power generation paving block, method for manufacturing paving photovoltaic module, glass plate, and laminated glass for glass floor WO2023238831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093774 2022-06-09
JP2022-093774 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238831A1 true WO2023238831A1 (en) 2023-12-14

Family

ID=89118432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020887 WO2023238831A1 (en) 2022-06-09 2023-06-05 Paving photovoltaic module, solar photovoltaic power generation paving block, method for manufacturing paving photovoltaic module, glass plate, and laminated glass for glass floor

Country Status (1)

Country Link
WO (1) WO2023238831A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008591A (en) * 1998-06-23 2000-01-11 Fujita Corp Solar battery floor
US20050199282A1 (en) * 2004-03-11 2005-09-15 Oleinick Energy, Llc Photovoltaic-embedded surface
JP2010018458A (en) * 2008-07-08 2010-01-28 Sanshiba Shozai Kk Plate glass
WO2010084923A1 (en) * 2009-01-26 2010-07-29 旭硝子株式会社 Substrate for electronic device and electronic device using same
US20160035911A1 (en) * 2013-02-12 2016-02-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic structure for a roadway
JP2017524253A (en) * 2014-07-28 2017-08-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Assembly comprising a photovoltaic module affixed to the passing zone
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
JP2020036514A (en) * 2018-08-31 2020-03-05 Mirai−Labo株式会社 Photovoltaic power generation panel, pavement structure, and wall structure
WO2022045027A1 (en) * 2020-08-26 2022-03-03 Agc株式会社 Glass plate structure, diaphragm and opening member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008591A (en) * 1998-06-23 2000-01-11 Fujita Corp Solar battery floor
US20050199282A1 (en) * 2004-03-11 2005-09-15 Oleinick Energy, Llc Photovoltaic-embedded surface
JP2010018458A (en) * 2008-07-08 2010-01-28 Sanshiba Shozai Kk Plate glass
WO2010084923A1 (en) * 2009-01-26 2010-07-29 旭硝子株式会社 Substrate for electronic device and electronic device using same
US20160035911A1 (en) * 2013-02-12 2016-02-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic structure for a roadway
JP2017524253A (en) * 2014-07-28 2017-08-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Assembly comprising a photovoltaic module affixed to the passing zone
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
JP2020036514A (en) * 2018-08-31 2020-03-05 Mirai−Labo株式会社 Photovoltaic power generation panel, pavement structure, and wall structure
WO2022045027A1 (en) * 2020-08-26 2022-03-03 Agc株式会社 Glass plate structure, diaphragm and opening member

Similar Documents

Publication Publication Date Title
DK2595802T3 (en) A hermetically sealed electronic device having coated glass flakes
JP7328341B2 (en) Power generation building material and its manufacturing method
EP3726592A1 (en) Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
US20100270919A1 (en) Flat plate encapsulation assembly for electronic devices
TW201202163A (en) Electronic device
KR20060113710A (en) Encapsulation assembly for electronic devices
CN105359291B (en) Laminate for light-emitting device and preparation method thereof
WO2013187682A1 (en) Inorganic adhesive composition and hermetic sealing method using same
CN102458836A (en) Laminated glass pane and use thereof
CN1636911A (en) Thick film getter paste compositions for use in moisture control
KR102205984B1 (en) Method for manufacturing color photovoltaic module with self-cleaning properties
EP4186102A1 (en) Photovoltaic panel
WO2023238831A1 (en) Paving photovoltaic module, solar photovoltaic power generation paving block, method for manufacturing paving photovoltaic module, glass plate, and laminated glass for glass floor
EP2814078B1 (en) Transparent diffusive oled substrate and method for producing such a substrate
RU2656264C2 (en) Transparent diffusive oled substrate and method for producing such substrate
JP6595452B2 (en) Low melting point glass composition, method for producing seal, method for producing device, and electronic device or electronic circuit
RU2656261C2 (en) Transparent diffusive oled substrate and method for producing such substrate
JP2019172568A (en) Production method for thermally strengthened glass substrate, and solar cell module
CN109860316B (en) Power generation board adopting optical regulation and control layer and preparation method thereof
JP2014038118A (en) Reflector and method of manufacturing the same
CA2881380A1 (en) Building material and method for producing the same
CN111276556A (en) Natural stone imitated solar cell module and preparation method thereof
KR101581798B1 (en) Sealing frit composition for oled display with enhanced adhesion and paste composition containing the same
KR20230070119A (en) Building-integrated high-insulation multi-storey color BIPV manufacturing method with output reduction prevention function
KR20230070120A (en) Building-integrated color junction BIPV manufacturing method with power drop prevention function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819811

Country of ref document: EP

Kind code of ref document: A1