WO2023238817A1 - Battery system and charging method for battery - Google Patents

Battery system and charging method for battery Download PDF

Info

Publication number
WO2023238817A1
WO2023238817A1 PCT/JP2023/020792 JP2023020792W WO2023238817A1 WO 2023238817 A1 WO2023238817 A1 WO 2023238817A1 JP 2023020792 W JP2023020792 W JP 2023020792W WO 2023238817 A1 WO2023238817 A1 WO 2023238817A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
charging
heater
control unit
Prior art date
Application number
PCT/JP2023/020792
Other languages
French (fr)
Japanese (ja)
Inventor
保 大森
均 丸山
英訓 梶山
卓矢 佐藤
亮輔 鯉江
翠梨 青木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023238817A1 publication Critical patent/WO2023238817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • a battery system including a charging mechanism, a temperature increasing mechanism, and a control section is described in Patent Document 1.
  • the control unit prohibits the temperature raising process and executes the charging process, so that the SOC of the battery reaches the charging reference value.
  • the control unit stops the temperature raising process and charges the battery to the charging stop value.
  • the SOC is estimated from the open circuit voltage (OCV) of the battery in many cases.
  • the fully charged state can also be detected based on the terminal voltage and charging current of the battery.
  • a current may flow to raise the temperature even when the battery is nearly fully charged. For this reason, it is difficult to manage the charging current, and it is difficult to accurately determine whether a fully charged state has been reached.
  • An object of one aspect of the present disclosure is to provide a method for accurately determining whether a battery has reached a fully charged state in a battery system having a function of increasing the temperature of the battery.
  • a battery system includes a battery, a temperature sensor configured to detect the temperature of the battery, a heater configured to heat the battery, and a state of the battery. and a battery control unit configured to control an operation of charging the battery and an operation of increasing the temperature of the battery using the heater.
  • the battery control unit controls the heater according to a comparison between the temperature of the battery and a preset threshold temperature. and further configured to monitor whether the battery has reached a fully charged state with the heater stopped when the charging rate or voltage of the battery is higher than the threshold level.
  • a method of charging a battery includes determining whether a charging rate or voltage of the battery is lower than a predetermined threshold level; and, during charging of the battery, when the charging rate or voltage of the battery is lower than a predetermined threshold level.
  • the heater is controlled according to a comparison between the temperature of the battery and a preset threshold temperature, and when the charging rate or voltage of the battery is equal to or higher than the threshold level, the heater is stopped. and monitoring whether the battery has reached a fully charged state.
  • the heater when the charging rate or voltage of the battery is lower than the threshold level, the heater is controlled according to the comparison between the battery temperature and the threshold temperature. Therefore, the battery is charged in a temperature range with good charging efficiency. In addition, since the heater is stopped when monitoring whether the battery has reached a fully charged state, the effect of the current consumed by the heater on a method that determines full charge based on the current supplied to the battery system Therefore, the accuracy of full charge determination is good.
  • the battery control unit stops the charging operation of the battery and further controls the heater to generate heat.
  • the battery may be configured. According to this configuration, the battery can always be charged in a temperature range with good charging efficiency.
  • a battery system includes a battery, a temperature sensor configured to detect the temperature of the battery, a heater configured to heat the battery, and a state of the battery. and a battery control unit configured to control the operation of charging the battery and the operation of increasing the temperature of the battery using the heater, as well as detecting the outside temperature of the device in which the battery is mounted. It may further include a second temperature sensor.
  • the battery control unit obtains a charge start target temperature corresponding to the outside temperature and the battery charging rate when starting battery charging, and when the battery temperature is lower than the charge start target temperature, , further configured to raise the temperature of the battery to a charging start target temperature using a heater, and to monitor whether the battery has reached a fully charged state with the heater stopped while the battery is being charged. may be done.
  • a method of charging a battery includes obtaining, when starting charging the battery, a charging start target temperature corresponding to an outside temperature of a device in which the battery is mounted and a charging rate of the battery, and a temperature of the battery that corresponds to the charging start target. determining whether or not the battery temperature is lower than the charging start target temperature; and if the battery temperature is lower than the charging start target temperature, the battery temperature is raised to the charging start target temperature using a heater before charging the battery starts. and monitoring whether or not the battery has reached a fully charged state while the heater is stopped while the battery is being charged.
  • the battery since the temperature of the battery at the time of starting charging is equal to or higher than the charging start target temperature, the battery is charged in a temperature range with good charging efficiency. In addition, since the heater is stopped during charging, the accuracy of full charge determination is good.
  • FIG. 6 is a diagram (depending on outside temperature) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure.
  • FIG. 6 is a diagram (SOC dependent) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure.
  • FIG. 6 is a diagram (SOC dependent) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a charging start target temperature table included in a battery system according to a variation of the embodiment of the present disclosure.
  • 12 is a flowchart illustrating an example of charging control and temperature control by the battery system according to a variation of the embodiment of the present disclosure.
  • FIG. 1 shows an example of a battery system 10 according to an embodiment of the present disclosure.
  • the battery system 10 includes a battery 11, a heater 12, a voltage sensor V, a current sensor I, a temperature sensor T1, a temperature sensor T2, a relay RL, and a battery control section 13. Note that the battery system 10 may include other circuits or devices not shown in FIG.
  • the battery 11 is not particularly limited, in this embodiment, it is a lithium ion battery. Moreover, the battery 11 is composed of a plurality of battery packs connected in series and/or in parallel, although the battery 11 is not particularly limited. In this case, each battery pack may be composed of a plurality of battery cells connected in series.
  • the heater 12 is provided near the battery 11 and generates heat in response to instructions from the battery control unit 13. That is, the heater 12 can raise the temperature of the battery 11 according to instructions from the battery control section 13.
  • the heater 12 is realized, for example, by a resistance wire. In this case, the heater 12 generates heat by passing a current through this resistance wire. Furthermore, the battery control unit 13 switches the heater 12 between the on state and the off state by controlling the current flowing through the resistance wire.
  • the voltage sensor V detects the voltage of the battery 11. Note that the voltage sensor V may detect the voltage between the positive terminal and the negative terminal of the battery 11, may detect the voltage of each battery pack, or may detect the voltage of each battery cell. Good too.
  • Current sensor I detects the current flowing through battery 11. However, when using the heater 12, the current sensor I detects the sum of the current flowing through the battery 11 and the current flowing through the heater 12. That is, current sensor I detects the current supplied from charger 20 to battery system 10 . Note that in a configuration in which the current flowing through the battery 11 and the current flowing through the heater 12 are individually detected, the number of current sensors increases and the cost of parts increases. Therefore, in the embodiment of the present disclosure, the sum of the current flowing through the battery 11 and the current flowing through the heater 12 is detected.
  • the temperature sensor T1 is provided near the battery 11 and detects the temperature of the battery 11. Temperature sensor T2 detects outside temperature. For example, in a case where the battery system 10 is mounted on a vehicle, the temperature sensor T2 is configured to detect the temperature around the vehicle. Relay RL can conduct or disconnect the power line connected to battery 11 according to instructions from battery control unit 13 .
  • the battery control unit 13 which is a processing circuit, includes (1) one or more processors that operate according to a computer program (software), and (2) an application-specific integrated circuit (ASIC) that executes at least some of various processes. or (3) a combination thereof.
  • a processor includes a CPU and memory, such as RAM and ROM, where the memory stores program codes or instructions configured to cause the CPU to perform processing.
  • Memory or non-transitory computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • Various controls by the battery control unit 13 are executed by the CPU executing programs stored in the memory at predetermined calculation cycles.
  • the battery control unit 13 controls the charging operation of the battery 11. At this time, the battery control unit 13 may control the charging current and charging voltage of the battery 11 while exchanging control signals with the charger 20. For example, the battery control unit 13 may transmit a current command value representing the current required by the battery system 10 to the charger 20. Further, the battery control unit 13 detects the state of charge of the battery 11. As the state of charge, for example, the SOC of the battery 11 is calculated. SOC is an index representing the charging rate, and 100 percent and 0 percent represent a fully charged state and a completely discharged state, respectively.
  • CCCV charging the battery 11 is charged with a predetermined constant target current until the voltage of the battery 11 reaches a predetermined target voltage.
  • the operation of charging the battery 11 with a constant current may be referred to as "CC charging.”
  • the current command value representing the target current is notified from the battery control section 13 to the charger control section 22.
  • the charger control unit 22 controls the power circuit 21 so that the current supplied from the charger 20 to the battery system 10 approaches the target current.
  • the battery control section 13 and the charger control section 22 increase the charging current in stages from zero to the target current.
  • the target current may be, for example, the maximum current of the charger 20.
  • the battery control unit 13 monitors the voltage of the battery 11 using the output signal of the voltage sensor V. After the voltage of the battery 11 reaches the target voltage, the battery control unit 13 generates a current command value and transmits it to the charger 20 so as to maintain the target voltage. Then, since the charger control unit 22 controls the power circuit 21 according to the current command value, the battery 11 is charged with a predetermined constant voltage.
  • the operation of charging the battery 11 with a constant voltage may be referred to as "CV charging.”
  • CV charging the operation of charging the battery 11 with a constant voltage
  • FIG. 3 shows an example of CV charging.
  • the voltage of the battery 11 increases due to the CC charging described with reference to FIG. 2, and the voltage of the battery 11 reaches the target voltage at time T0. That is, at time T0, CC charging is switched to CV charging. Therefore, after time T0, the battery control section 13 generates a current command value for maintaining the voltage of the battery 11 at the target voltage and sends it to the charger control section 22. Charger 20 then controls the current supplied to battery 11 according to the current command value.
  • the battery control unit 13 and charger control unit 22 reduce the charging current by ⁇ I at time T0. Then, the voltage of the battery 11 temporarily decreases. After this, the charging operation continues at "target current - ⁇ I". Therefore, the voltage of the battery 11 increases and reaches the target voltage again at time T1. Subsequently, the battery control unit 13 and charger control unit 22 further reduce the charging current by ⁇ I at time T1. Then, the voltage of the battery 11 temporarily decreases. After this, the charging operation continues at "target current -2 ⁇ I". Then, the voltage of the battery 11 reaches the target voltage again at time T2.
  • the battery control unit 13 determines that the battery 11 has reached a fully charged state, and notifies the charger 20 of an instruction to end the charging operation. . At this time, the battery control unit 13 may determine whether the battery 11 is fully charged based on the current command value calculated by itself, or may determine whether the battery 11 is fully charged based on the current value detected using the current sensor I. It may also be determined whether the battery 11 is fully charged.
  • the battery system 10 When increasing the temperature of the battery 11, a portion of the current supplied from the charger 20 is consumed by the heater 12. That is, when the charger 20 generates a current according to the current command value, if the heater 12 is used, the current that actually flows through the battery 11 becomes smaller than the current represented by the current command value. For this reason, when a full charge determination is made based on the charging current, the determination accuracy may deteriorate. Therefore, the battery system 10 according to the embodiment of the present disclosure has a function of stopping the heater 12 and determining full charge as necessary even when the temperature of the battery 11 is low.
  • FIG. 4 is a flowchart showing an example of charging control and temperature control.
  • the battery control unit 13 starts charging control and temperature control.
  • the battery control unit 13 detects the temperature of the battery 11 using the output signal of the temperature sensor T1. Thereafter, the battery control unit 13 monitors the temperature of the battery 11 until charging is completed. In S2, the battery control unit 13 calculates the SOC of the battery 11. Note that the current SOC value is recorded, for example, in a memory (not shown). Further, the battery control unit 13 estimates the SOC of the battery 11 by constantly integrating the charging current and the discharging current measured using the current sensor I.
  • the battery control unit 13 In S3, the battery control unit 13 generates a current command value.
  • the current command value represents a predetermined target current during the period in which CC charging is performed. This target current may be, for example, the maximum current of charger 20. Further, during the period when CV charging is performed, for example, a current command value that realizes the current control described with reference to FIG. 3 is generated. The current command value generated by the battery control unit 13 is notified to the charger 20. Charger 20 then generates a charging current according to the current command value.
  • the battery control unit 13 compares the temperature of the battery 11 with a predetermined threshold temperature X1.
  • the threshold temperature X1 is set, for example, based on the temperature at which the charging efficiency of the battery 11 begins to decrease. Although it depends on the characteristics of the battery 11, the threshold temperature X1 is, for example, about 5°C.
  • the battery control unit 13 compares the SOC of the battery 11 with a predetermined threshold SOC.
  • the threshold SOC is set to a value lower than a region where full charge determination may be affected. For example, in the charging methods shown in FIGS. 2 and 3, it is determined that the battery 11 has reached a fully charged state when the charging current decreases to a predetermined charging end current. Furthermore, after transitioning from CC charging to CV charging, the charging current begins to decrease. Therefore, when monitoring whether a fully charged state has been reached based on the charging current, transition from CC charging to CV charging may affect the full charging determination. That is, the period during which CV charging is performed corresponds to a region where full charge determination may be affected. Therefore, the threshold SOC may be set to a value slightly smaller than the SOC value at which CC charging shifts to CV charging. Alternatively, the threshold SOC may be about 60%, although it is not particularly limited.
  • the battery control unit 13 When the SOC of the battery 11 is lower than the threshold SOC and the temperature of the battery 11 is lower than the threshold temperature X1, the battery control unit 13 operates the temperature raising function. That is, the battery control unit 13 causes current to flow through the heater 12 to generate heat. On the other hand, when the SOC of the battery 11 is equal to or higher than the threshold SOC and/or when the temperature of the battery 11 is equal to or higher than the threshold temperature X1, the battery control unit 13 stops the temperature increasing function. That is, the battery control unit 13 stops supplying current to the heater 12.
  • the temperature increase function is stopped when the SOC of the battery 11 is equal to or higher than the threshold SOC.
  • the temperature raising function is stopped, the current flowing through the battery 11 substantially matches the current represented by the current command value. Therefore, the battery control unit 13 can realize accurate full charge determination using the current command value.
  • the battery control unit 13 may determine whether to use the temperature increase function based on the voltage of the battery 11. That is, when the SOC or voltage of the battery 11 is lower than a predetermined threshold level, the battery control unit 13 controls the heater 12 according to the comparison between the temperature of the battery 11 and the threshold temperature X1.
  • the battery control unit 13 may preferentially increase the temperature of the battery 11 over charging the battery 11 when the SOC of the battery 11 is equal to or higher than the threshold SOC. For example, in the embodiment shown in FIG. 5, when the temperature of the battery 11 falls below the threshold temperature X1 when the SOC of the battery 11 is equal to or higher than the threshold SOC, the battery control unit 13 executes S11 to S13. That is, the battery control unit 13 causes the heater 12 to generate heat while the charging operation is stopped. Then, when the temperature of the battery 11 becomes equal to or higher than the threshold temperature X1, the battery control unit 13 restarts the charging operation in S14, and stops the heater 12 in S7.
  • the battery control unit 13 may charge the battery 11 while controlling the temperature according to the procedure shown in FIG.
  • the heater 12 if the temperature of the battery 11 is low at the start of charging, the heater 12 is used to warm the battery 11 before actually charging. After that, the heater 12 is stopped and charging is performed. At this time, it is preferable that the temperature of the battery 11 is maintained at the threshold temperature X1 or higher until the battery is fully charged with the heater 12 stopped. However, if the outside temperature is high, the temperature of the battery 11 is less likely to drop during charging, but when the outside temperature is low, the temperature of the battery 11 is more likely to drop during charging. Therefore, the battery control unit 13 takes the outside temperature into consideration and determines to what extent the battery 11 should be warmed before starting charging.
  • FIGS. 6A to 7B are diagrams illustrating temperature control according to variations of the embodiment of the present disclosure.
  • X1 corresponds to the threshold temperature of the embodiment shown in FIGS. 4-5. That is, when the temperature of the battery 11 is lower than X1, charging efficiency is poor.
  • the temperature of the battery 11 is lower than X1 when the instruction to start charging is given (ie, time T11).
  • the battery control unit 13 warms the battery 11 using the heater 12 before starting charging. As a result, the temperature of the battery 11 rises to X2 as shown in FIG. 6A or FIG. 7A. Thereafter, the battery control unit 13 stops the heater 12 and starts charging the battery 11.
  • the temperature of the battery 11 gradually decreases.
  • the rate at which the temperature of the battery 11 decreases depends on the outside temperature. Specifically, as shown in FIG. 6A, when the outside temperature is high, the temperature of the battery 11 decreases slowly, but when the outside temperature is low, the temperature of the battery 11 decreases quickly. Furthermore, in the case shown in FIG. 6A, it is assumed that the battery 11 becomes fully charged at time T12. The time it takes for the battery 11 to reach a fully charged state depends on the SOC of the battery 11 at the time of starting charging.
  • the temperature of the battery 11 When the outside temperature is high, the temperature of the battery 11 remains at or above X1 at time T12 (that is, when the battery 11 is fully charged). That is, the temperature of the battery 11 is equal to or higher than X1 throughout the charging period. In this case, charging efficiency is good.
  • the outside temperature when the outside temperature is low, the temperature of the battery 11 is lower than X1 at time T12. That is, the temperature of the battery 11 is lower than X1 during part of the charging period. In this case, charging efficiency deteriorates.
  • This problem can be solved by setting the temperature of the battery 11 at the start of charging according to the outside temperature. Specifically, when the outside temperature is high, there is no need to increase the temperature of the battery 11 so much at the start of charging. On the other hand, when the outside temperature is low, it is necessary to sufficiently raise the temperature of the battery 11 when starting charging.
  • the temperature of the battery 11 at the start of charging may be set so that the temperature of the battery 11 does not become lower than X1 at the time when the battery 11 is expected to reach a fully charged state.
  • the outside temperature when the outside temperature is high, if the temperature of the battery 11 is set to X21 or higher at the start of charging, the temperature of the battery 11 will be higher than X1 throughout the charging period.
  • the outside temperature when the outside temperature is low, if the temperature of the battery 11 is set to X22 or higher at the start of charging, the temperature of the battery 11 will be higher than X1 throughout the charging period.
  • the charging time required to bring the battery 11 to a fully charged state depends on the SOC at the time of starting charging. Specifically, the larger the SOC at the start of charging, the shorter the charging time, and the smaller the SOC at the start of charging, the longer the charging time.
  • the charging end time in the case where the SOC at the start of charging is large is T13
  • the charging end time in the case where the SOC at the start of charging is small is T14.
  • the temperature of the battery 11 is raised to X2 at the start of charging.
  • the SOC at the start of charging is large, the temperature of the battery 11 remains equal to or higher than X1 when the battery 11 becomes fully charged at time T13. That is, since the temperature of the battery 11 is equal to or higher than X1 throughout the charging period, charging efficiency is good.
  • the SOC at the start of charging is small, the temperature of the battery 11 is lower than X1 when the battery 11 becomes fully charged at time T14. That is, the temperature of the battery 11 becomes lower than X1 during a part of the charging period, resulting in poor charging efficiency.
  • the charging start target temperature is set so that the temperature at the end of charging is equal to or higher than X1.
  • the SOC at the start of charging is large, if the temperature of the battery 11 is set at X23 or higher at the start of charging, the temperature of the battery 11 becomes X1 or higher throughout the charging period.
  • the SOC at the start of charging is small, if the temperature of the battery 11 is set to X24 or higher at the start of charging, the temperature of the battery 11 will be equal to or higher than X1 during the entire charging period.
  • the charging start target temperature is set based on the outside temperature and the SOC of the battery 11 at the time of starting charging.
  • the battery control unit 13 includes a charging start target temperature table shown in FIG.
  • charge start target temperatures are recorded for combinations of "temperature difference between threshold temperature ing. As described with reference to FIGS. 6A to 7B, the charging start target temperature decreases as the outside temperature increases, and also decreases as the SOC increases. It is assumed that the charging start target temperature is determined in advance by measurement or simulation. Note that the threshold temperature X1 is a fixed value for the battery 11, so “outside temperature” may be used instead of "the temperature difference between the threshold temperature X1 at which the charging efficiency of the battery 11 begins to decrease and the outside air temperature.” . That is, a charging start target temperature table may be created for a combination of "outside temperature” and "SOC at the time of charging start”.
  • FIG. 9 is a flowchart illustrating an example of charging control and temperature control by the battery system according to a variation of the embodiment of the present disclosure. Similar to the procedure shown in FIG. 4 or 5, when the user gives an instruction to start charging, the battery control unit 13 starts charging control and temperature control.
  • the battery control unit 13 detects the temperature of the battery 11 using the output signal of the temperature sensor T1.
  • the battery control unit 13 detects the outside temperature using the output signal of the temperature sensor T2.
  • the battery control unit 13 acquires the SOC of the battery 11. Note that the current SOC value is recorded, for example, in a memory (not shown). In this case, the battery control unit 13 acquires the current SOC value from the memory. Alternatively, the battery control unit 13 may estimate the SOC based on the OCV of the battery 11.
  • the battery control unit 13 obtains a charging start target temperature corresponding to the outside air temperature detected in S22 and the SOC obtained in S23.
  • the charge start target temperature can be obtained from the charge start target temperature table shown in FIG.
  • the battery control unit 13 may calculate the charging start target temperature by applying the outside temperature and SOC to a calculation formula prepared in advance.
  • the battery control unit 13 compares the temperature of the battery 11 detected in S21 with the charging start target temperature. Then, when the temperature of the battery 11 is equal to or higher than the charging start target temperature, the process of the battery control unit 13 proceeds to S29. On the other hand, when the temperature of the battery 11 is lower than the charging start target temperature, the battery control unit 13 causes the heater 12 to generate heat in S26. As a result, the temperature of the battery 11 increases. Thereafter, the battery control unit 13 monitors the temperature of the battery 11 in S27. Then, when the temperature of the battery 11 becomes equal to or higher than the charging start target temperature, the battery control unit 13 stops the heater 12 in S28.
  • the temperature of the battery 11 during charging when the outside temperature is sufficiently high does not decrease or decreases slowly even if the heater 12 is stopped. Therefore, when the outside temperature is sufficiently high, it is not necessarily necessary to use the heater 12 even if the temperature of the battery 11 at the time of starting charging is below the charging start target temperature. That is, the battery control unit 13 may cause the heater 12 to generate heat in S25 to S26 only when the temperature of the battery 11 is lower than the charging start target temperature and the outside temperature is lower than a predetermined threshold value.
  • the battery control unit 13 charges the battery 11.
  • the charging method is not particularly limited, but may be the CCCV method described with reference to FIGS. 2 and 3. Then, when the current command value (or the current supplied from the charger 20 to the battery system 10) decreases to a predetermined charging end current, the battery control unit 13 determines that the battery 11 is in a fully charged state and starts charging. end.
  • the process of S29 is executed when it is determined in S25 that the temperature of the battery 11 is equal to or higher than the charging start target temperature. Further, when it is determined in S25 that the temperature of the battery 11 is lower than the charge start target temperature, S29 is executed after the temperature of the battery 11 is warmed to the charge start target temperature or higher in S26 and S27. That is, in either case, the temperature of the battery 11 is equal to or higher than the charging start target temperature at the time when the battery control unit 13 executes charging of the battery 11.
  • the heater 12 is stopped. Therefore, the temperature of the battery 11 gradually decreases during charging.
  • the temperature of the battery 11 at the time when charging is actually performed is equal to or higher than the charging start target temperature.
  • the charging start target temperature is determined according to the outside temperature and the SOC at the time of charging start so that the temperature of the battery 11 at the end of charging is equal to or higher than a threshold temperature X1 at which charging efficiency starts to decrease. Therefore, the temperature of the battery 11 is maintained in a region with good charging efficiency throughout the charging period. In other words, efficient charging is realized.
  • the heater 12 since the heater 12 is stopped during charging, the charging current flowing through the battery 11 substantially matches the current represented by the current command value. Therefore, when determining full charge using the current command value, the determination accuracy is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Physics & Mathematics (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

This battery system (10) comprises: a battery (11), a temperature sensor (T1) that is configured so as to detect the temperature of the battery; a heater (12) that is configured so as to heat the battery; and a battery control unit (13). The battery control unit is configured so as to detect the state of the battery and control an operation for charging the battery and an operation for raising the temperature of the battery by using the heater. The battery control unit is further configured so as to, when the charging rate or voltage of the battery is below a prescribed threshold level during charging of the battery, control the heater in accordance with a comparison between the temperature of the battery and a preset threshold temperature and, when the charging rate or voltage of the battery is above the threshold level, monitor whether the battery has reached a fully charged state in a state in which the heater has been stopped.

Description

バッテリシステムおよびバッテリの充電方法Battery system and battery charging method
 本開示は、バッテリの温度を上昇させる昇温機能を備えるバッテリシステムおよびバッテリの充電方法に係わる。 The present disclosure relates to a battery system equipped with a temperature raising function that increases the temperature of a battery, and a battery charging method.
 バッテリは、一般に、所定の温度領域で動作することが好ましい。例えば、リチウムイオン電池は、低温環境下では、充電効率が低下する。このため、低温環境下で充電効率が低下するバッテリを充電する際には、バッテリの温度を上昇させる昇温制御が行われることがある。 It is generally preferable for batteries to operate within a predetermined temperature range. For example, charging efficiency of lithium ion batteries decreases in low temperature environments. For this reason, when charging a battery whose charging efficiency decreases in a low-temperature environment, temperature increase control is sometimes performed to increase the temperature of the battery.
 例えば、充電機構、昇温機構、および制御部を備えるバッテリシステムが特許文献1に記載されている。このバッテリシステムにおいて、制御部は、バッテリの充電状態(SOC:State of Charge)が充電基準値未満であるときは、昇温処理を禁止すると共に充電処理を実行し、バッテリのSOCが充電基準値より大きくなったときに、バッテリの温度が基準温度未満であれば昇温処理を実行する。また、制御部は、昇温処理中にバッテリのSOCが充電基準値未満に低下すると、昇温処理を停止すると共にバッテリを充電停止値まで充電する。この方法によれば、バッテリを昇温することで充電効率を高めながら、昇温処理を実行することで満充電までの時間が長くなることを回避できる。 For example, a battery system including a charging mechanism, a temperature increasing mechanism, and a control section is described in Patent Document 1. In this battery system, when the state of charge (SOC) of the battery is less than the charging reference value, the control unit prohibits the temperature raising process and executes the charging process, so that the SOC of the battery reaches the charging reference value. When the battery temperature becomes higher than the reference temperature, if the battery temperature is less than the reference temperature, temperature raising processing is executed. Further, when the SOC of the battery falls below the charging reference value during the temperature raising process, the control unit stops the temperature raising process and charges the battery to the charging stop value. According to this method, while increasing the charging efficiency by increasing the temperature of the battery, it is possible to avoid prolonging the time until full charge by executing the temperature increasing process.
特許第6225977号公報Patent No. 6225977
 上述したバッテリシステムにおいては、SOCに基づいてバッテリの充電処理および昇温処理が制御される。ここで、SOCは、多くのケースにおいて、バッテリの開放電圧または開回路電圧(OCV:Open Circuit Voltage)から推定される。 In the battery system described above, battery charging processing and temperature raising processing are controlled based on the SOC. Here, the SOC is estimated from the open circuit voltage (OCV) of the battery in many cases.
 ところが、近年普及しているリン酸鉄系リチウムイオン電池のSOC-OCV曲線は、フラット領域(または、プラトー領域)を有する。フラット領域においては、SOCに対してOCVがほぼ一定なので、OCVからSOCを精度よく推定することは困難である。このため、SOC-OCV曲線がフラット領域を有するバッテリにおいては、満充電状態に達したか否かを精度よく判定することが困難である。 However, the SOC-OCV curve of iron phosphate-based lithium ion batteries, which have become popular in recent years, has a flat region (or plateau region). In a flat region, since OCV is almost constant with respect to SOC, it is difficult to accurately estimate SOC from OCV. Therefore, in a battery whose SOC-OCV curve has a flat region, it is difficult to accurately determine whether the battery has reached a fully charged state.
 満充電状態は、バッテリの端子間電圧および充電電流に基づいて検出することも可能である。ただし、上述したバッテリシステムにおいては、満充電に近い状態であっても、昇温のための電流が流れることがある。このため、充電電流の管理が難しく、満充電状態に達したか否かを精度よく判定することが困難である。 The fully charged state can also be detected based on the terminal voltage and charging current of the battery. However, in the above-mentioned battery system, a current may flow to raise the temperature even when the battery is nearly fully charged. For this reason, it is difficult to manage the charging current, and it is difficult to accurately determine whether a fully charged state has been reached.
 本開示の1つの側面に係る目的は、バッテリを昇温する機能を有するバッテリシステムにおいて、バッテリが満充電状態に達したか否かを精度良く判定する方法を提供することである。 An object of one aspect of the present disclosure is to provide a method for accurately determining whether a battery has reached a fully charged state in a battery system having a function of increasing the temperature of the battery.
 本開示の1つの態様に係わるバッテリシステムは、バッテリと、前記バッテリの温度を検出するように構成される温度センサと、前記バッテリを加熱するように構成されるヒータと、前記バッテリの状態を検出すると共に、前記バッテリを充電する動作および前記ヒータを用いて前記バッテリを昇温する動作を制御するように構成されるバッテリ制御部と、を備える。前記バッテリ制御部は、前記バッテリの充電中に、前記バッテリの充電率または電圧が所定の閾値レベルより低いときは、前記バッテリの温度と予め設定された閾値温度との比較に応じて前記ヒータを制御し、前記バッテリの充電率または電圧が前記閾値レベルより高いときは、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタする、ようにさらに構成される。 A battery system according to one aspect of the present disclosure includes a battery, a temperature sensor configured to detect the temperature of the battery, a heater configured to heat the battery, and a state of the battery. and a battery control unit configured to control an operation of charging the battery and an operation of increasing the temperature of the battery using the heater. During charging of the battery, when the charging rate or voltage of the battery is lower than a predetermined threshold level, the battery control unit controls the heater according to a comparison between the temperature of the battery and a preset threshold temperature. and further configured to monitor whether the battery has reached a fully charged state with the heater stopped when the charging rate or voltage of the battery is higher than the threshold level. .
 本開示の別の態様によれば、バッテリの充電方法が提供される。前記充電方法は、前記バッテリの充電率または電圧が所定の閾値レベルより低いか否かを判定することと、前記バッテリの充電中に、前記バッテリの充電率または電圧が所定の閾値レベルより低いときは、前記バッテリの温度と予め設定された閾値温度との比較に応じてヒータを制御することと、前記バッテリの充電率または電圧が前記閾値レベル以上であるときは、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタすることと、を含む。 According to another aspect of the present disclosure, a method of charging a battery is provided. The charging method includes determining whether a charging rate or voltage of the battery is lower than a predetermined threshold level; and, during charging of the battery, when the charging rate or voltage of the battery is lower than a predetermined threshold level. The heater is controlled according to a comparison between the temperature of the battery and a preset threshold temperature, and when the charging rate or voltage of the battery is equal to or higher than the threshold level, the heater is stopped. and monitoring whether the battery has reached a fully charged state.
 上記各構成によれば、バッテリの充電率または電圧が閾値レベルより低いときは、バッテリの温度と閾値温度との比較に応じてヒータが制御される。よって、充電効率の良い温度領域でバッテリが充電される。また、バッテリが満充電状態に達したか否かをモニタするときにはヒータが停止しているので、バッテリシステムに供給される電流に基づいて満充電判定を行う方式において、ヒータが消費する電流の影響を受けないので、満充電判定の精度は良好である。 According to each of the above configurations, when the charging rate or voltage of the battery is lower than the threshold level, the heater is controlled according to the comparison between the battery temperature and the threshold temperature. Therefore, the battery is charged in a temperature range with good charging efficiency. In addition, since the heater is stopped when monitoring whether the battery has reached a fully charged state, the effect of the current consumed by the heater on a method that determines full charge based on the current supplied to the battery system Therefore, the accuracy of full charge determination is good.
 上記バッテリシステムにおいて、バッテリの充電率または電圧が閾値レベルより高いときに、バッテリの温度が閾値温度より低下すると、バッテリ制御部は、バッテリの充電動作を停止すると共に、ヒータを発熱させるようにさらに構成されてもよい。この構成によれば、常時、充電効率の良い温度領域でバッテリを充電することができる。 In the above battery system, when the battery temperature falls below the threshold temperature while the charging rate or voltage of the battery is higher than the threshold level, the battery control unit stops the charging operation of the battery and further controls the heater to generate heat. may be configured. According to this configuration, the battery can always be charged in a temperature range with good charging efficiency.
 本開示の他の態様に係わるバッテリシステムは、バッテリと、前記バッテリの温度を検出するように構成される温度センサと、前記バッテリを加熱するように構成されるヒータと、前記バッテリの状態を検出すると共に、前記バッテリを充電する動作および前記ヒータを用いて前記バッテリを昇温する動作を制御するように構成されるバッテリ制御部とに加え、前記バッテリが実装される装置の外気温を検出する第2の温度センサをさらに備えてもよい。この場合、バッテリ制御部は、バッテリの充電開始時に、外気温およびバッテリの充電率に対応する充電開始目標温度を取得し、バッテリの温度が充電開始目標温度より低いときには、バッテリの充電開始前に、ヒータを用いてバッテリの温度を充電開始目標温度以上に上昇させ、バッテリの充電中は、ヒータを停止させた状態で、バッテリが満充電状態に達したか否かをモニタするようにさらに構成されてもよい。 A battery system according to another aspect of the present disclosure includes a battery, a temperature sensor configured to detect the temperature of the battery, a heater configured to heat the battery, and a state of the battery. and a battery control unit configured to control the operation of charging the battery and the operation of increasing the temperature of the battery using the heater, as well as detecting the outside temperature of the device in which the battery is mounted. It may further include a second temperature sensor. In this case, the battery control unit obtains a charge start target temperature corresponding to the outside temperature and the battery charging rate when starting battery charging, and when the battery temperature is lower than the charge start target temperature, , further configured to raise the temperature of the battery to a charging start target temperature using a heater, and to monitor whether the battery has reached a fully charged state with the heater stopped while the battery is being charged. may be done.
 本開示のさらなる態様によれば、バッテリの充電方法が提供される。前記充電方法は、前記バッテリの充電開始時に、前記バッテリが実装される装置の外気温および前記バッテリの充電率に対応する充電開始目標温度を取得することと、前記バッテリの温度が前記充電開始目標温度より低いか否かを判定することと、前記バッテリの温度が前記充電開始目標温度より低いときには、前記バッテリの充電開始前に、ヒータを用いて前記バッテリの温度を前記充電開始目標温度以上に上昇させることと、前記バッテリの充電中は、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタすることと、を含む。 According to further aspects of the present disclosure, a method of charging a battery is provided. The charging method includes obtaining, when starting charging the battery, a charging start target temperature corresponding to an outside temperature of a device in which the battery is mounted and a charging rate of the battery, and a temperature of the battery that corresponds to the charging start target. determining whether or not the battery temperature is lower than the charging start target temperature; and if the battery temperature is lower than the charging start target temperature, the battery temperature is raised to the charging start target temperature using a heater before charging the battery starts. and monitoring whether or not the battery has reached a fully charged state while the heater is stopped while the battery is being charged.
 上記各構成によれば、充電開始時のバッテリの温度が充電開始目標温度以上なので、充電効率の良い温度領域でバッテリが充電される。加えて、充電中はヒータが停止しているので、満充電判定の精度は良好である。 According to each of the above configurations, since the temperature of the battery at the time of starting charging is equal to or higher than the charging start target temperature, the battery is charged in a temperature range with good charging efficiency. In addition, since the heater is stopped during charging, the accuracy of full charge determination is good.
 上述の態様によれば、バッテリを昇温する機能を有するバッテリシステムにおいて、バッテリが満充電状態に達したか否かを精度良く判定できる。 According to the above aspect, in a battery system having a function of increasing the temperature of the battery, it is possible to accurately determine whether the battery has reached a fully charged state.
本開示の実施形態に係わるバッテリシステムの一例を示す図である。1 is a diagram illustrating an example of a battery system according to an embodiment of the present disclosure. 図1のバッテリシステムによるバッテリを充電する方法の一例を示す図である。2 is a diagram illustrating an example of a method for charging a battery using the battery system of FIG. 1. FIG. 図2のCV充電の一例を示す図である。FIG. 3 is a diagram showing an example of CV charging in FIG. 2; 図1のバッテリシステムによる充電制御および温度制御の一例を示すフローチャートである。2 is a flowchart showing an example of charging control and temperature control by the battery system of FIG. 1. FIG. 図1のバッテリシステムによるバッテリの温度制御を優先しながら充電を行う方法を示すフローチャートである。2 is a flowchart showing a method of charging while giving priority to battery temperature control by the battery system of FIG. 1. FIG. 本開示の実施形態のバリエーションに係わるバッテリシステムによる温度制御を説明する図(外気温依存)である。FIG. 6 is a diagram (depending on outside temperature) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure. 本開示の実施形態のバリエーションに係わるバッテリシステムによる温度制御を説明する図(外気温依存)である。FIG. 6 is a diagram (depending on outside temperature) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure. 本開示の実施形態のバリエーションに係わるバッテリシステムによる温度制御を説明する図(SOC依存)である。FIG. 6 is a diagram (SOC dependent) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure. 本開示の実施形態のバリエーションに係わるバッテリシステムによる温度制御を説明する図(SOC依存)である。FIG. 6 is a diagram (SOC dependent) for explaining temperature control by the battery system according to a variation of the embodiment of the present disclosure. 本開示の実施形態のバリエーションに係わるバッテリシステムが備える充電開始目標温度テーブルの一例を示す図である。FIG. 7 is a diagram illustrating an example of a charging start target temperature table included in a battery system according to a variation of the embodiment of the present disclosure. 本開示の実施形態のバリエーションに係わるバッテリシステムによる充電制御および温度制御の一例を示すフローチャートである。12 is a flowchart illustrating an example of charging control and temperature control by the battery system according to a variation of the embodiment of the present disclosure.
 図1は、本開示の実施形態に係わるバッテリシステム10の一例を示す。バッテリシステム10は、バッテリ11、ヒータ12、電圧センサV、電流センサI、温度センサT1、温度センサT2、リレーRL、およびバッテリ制御部13を備える。なお、バッテリシステム10は、図1に示してない他の回路またはデバイスを備えてもよい。 FIG. 1 shows an example of a battery system 10 according to an embodiment of the present disclosure. The battery system 10 includes a battery 11, a heater 12, a voltage sensor V, a current sensor I, a temperature sensor T1, a temperature sensor T2, a relay RL, and a battery control section 13. Note that the battery system 10 may include other circuits or devices not shown in FIG.
 バッテリ11は、特に限定されるものではないが、この実施例では、リチウムイオン電池である。また、バッテリ11は、特に限定されるものではないが、直列および/または並列に接続される複数の電池パックから構成される。この場合、各電池パックは、直列に接続される複数の電池セルから構成されてもよい。 Although the battery 11 is not particularly limited, in this embodiment, it is a lithium ion battery. Moreover, the battery 11 is composed of a plurality of battery packs connected in series and/or in parallel, although the battery 11 is not particularly limited. In this case, each battery pack may be composed of a plurality of battery cells connected in series.
 ヒータ12は、バッテリ11の近傍に設けられ、バッテリ制御部13からの指示に応じて発熱する。すなわち、ヒータ12は、バッテリ制御部13からの指示に応じてバッテリ11を昇温することができる。ヒータ12は、たとえば、抵抗線により実現される。この場合、この抵抗線に電流を流すことでヒータ12が発熱する。また、バッテリ制御部13は、抵抗線を流れる電流を制御することでヒータ12をオン状態とオフ状態との間で切り替える。 The heater 12 is provided near the battery 11 and generates heat in response to instructions from the battery control unit 13. That is, the heater 12 can raise the temperature of the battery 11 according to instructions from the battery control section 13. The heater 12 is realized, for example, by a resistance wire. In this case, the heater 12 generates heat by passing a current through this resistance wire. Furthermore, the battery control unit 13 switches the heater 12 between the on state and the off state by controlling the current flowing through the resistance wire.
 電圧センサVは、バッテリ11の電圧を検出する。なお、電圧センサVは、バッテリ11の正極端子と負極端子との間の電圧を検出してもよいし、各電池パックの電圧を検出してもよいし、各電池セルの電圧を検出してもよい。電流センサIは、バッテリ11を流れる電流を検出する。ただし、ヒータ12を使用するときは、電流センサIは、バッテリ11を流れる電流およびヒータ12を流れる電流の和を検出する。すなわち、電流センサIは、充電器20からバッテリシステム10に供給される電流を検出する。なお、バッテリ11を流れる電流およびヒータ12を流れる電流を個々に検出する構成では、電流センサの個数が増加し、部品コストが上昇する。そのため、本開示の実施形態では、バッテリ11を流れる電流およびヒータ12を流れる電流の和が検出される。 The voltage sensor V detects the voltage of the battery 11. Note that the voltage sensor V may detect the voltage between the positive terminal and the negative terminal of the battery 11, may detect the voltage of each battery pack, or may detect the voltage of each battery cell. Good too. Current sensor I detects the current flowing through battery 11. However, when using the heater 12, the current sensor I detects the sum of the current flowing through the battery 11 and the current flowing through the heater 12. That is, current sensor I detects the current supplied from charger 20 to battery system 10 . Note that in a configuration in which the current flowing through the battery 11 and the current flowing through the heater 12 are individually detected, the number of current sensors increases and the cost of parts increases. Therefore, in the embodiment of the present disclosure, the sum of the current flowing through the battery 11 and the current flowing through the heater 12 is detected.
 温度センサT1は、バッテリ11の近傍に設けられ、バッテリ11の温度を検出する。温度センサT2は、外気温を検出する。例えば、バッテリシステム10が車両に搭載されるケースでは、温度センサT2は車両の周辺の温度を検出するように構成される。リレーRLは、バッテリ制御部13からの指示に応じて、バッテリ11に接続する電力線を導通または遮断することができる。 The temperature sensor T1 is provided near the battery 11 and detects the temperature of the battery 11. Temperature sensor T2 detects outside temperature. For example, in a case where the battery system 10 is mounted on a vehicle, the temperature sensor T2 is configured to detect the temperature around the vehicle. Relay RL can conduct or disconnect the power line connected to battery 11 according to instructions from battery control unit 13 .
 処理回路であるバッテリ制御部13は、(1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、(2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、あるいは(3)それらの組み合わせによって構成することができる。プロセッサは、CPU並びに、RAMおよびROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわち非一時的なコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。バッテリ制御部13による各種制御は、メモリに記憶されたプログラムをCPUが所定の演算周期ごとで実行することによって実行される。 The battery control unit 13, which is a processing circuit, includes (1) one or more processors that operate according to a computer program (software), and (2) an application-specific integrated circuit (ASIC) that executes at least some of various processes. or (3) a combination thereof. A processor includes a CPU and memory, such as RAM and ROM, where the memory stores program codes or instructions configured to cause the CPU to perform processing. Memory or non-transitory computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer. Various controls by the battery control unit 13 are executed by the CPU executing programs stored in the memory at predetermined calculation cycles.
 バッテリ制御部13は、バッテリ11の充電動作を制御する。このとき、バッテリ制御部13は、充電器20との間で制御信号を交換しながらバッテリ11の充電電流および充電電圧を制御してもよい。例えば、バッテリ制御部13は、バッテリシステム10が必要とする電流を表す電流指令値を充電器20に送信してもよい。また、バッテリ制御部13は、バッテリ11の充電状態を検出する。充電状態としては、例えば、バッテリ11のSOCが計算される。SOCは、充電率を表す指標であり、100パーセントおよび0パーセントがそれぞれ満充電状態および完全放電状態を表す。 The battery control unit 13 controls the charging operation of the battery 11. At this time, the battery control unit 13 may control the charging current and charging voltage of the battery 11 while exchanging control signals with the charger 20. For example, the battery control unit 13 may transmit a current command value representing the current required by the battery system 10 to the charger 20. Further, the battery control unit 13 detects the state of charge of the battery 11. As the state of charge, for example, the SOC of the battery 11 is calculated. SOC is an index representing the charging rate, and 100 percent and 0 percent represent a fully charged state and a completely discharged state, respectively.
 SOCは、公知の技術で計算または推定することができる。例えば、バッテリ制御部13は、電流センサIにより検出される電流の積算値に基づいてSOCを計算することができる。ただし、この方法は、誤差が蓄積することがある。よって、電流の積算値に基づいてSOCを計算する場合、所定の契機に応じてSOCをリセットすることが好ましい。例えば、バッテリ11が満充電状態とみなせるときにSOCを「100パーセント」にリセットしてもよいし、或いは、バッテリ11が完全放電状態とみなせるときにSOCを「0パーセント」にリセットしてもよい。なお、SOCの値は、バッテリ制御部13がアクセス可能なメモリに記録されることが好ましい。また、バッテリ制御部13は、他の方法でSOCを推定してもよい。例えば、バッテリ制御部13は、バッテリ11のOCVに基づいてSOCを推定してもよい。 SOC can be calculated or estimated using known techniques. For example, the battery control unit 13 can calculate the SOC based on the integrated value of the current detected by the current sensor I. However, this method may accumulate errors. Therefore, when calculating the SOC based on the integrated value of current, it is preferable to reset the SOC according to a predetermined trigger. For example, the SOC may be reset to "100 percent" when the battery 11 is considered to be in a fully charged state, or the SOC may be reset to "0 percent" when the battery 11 is considered to be in a fully discharged state. . Note that the SOC value is preferably recorded in a memory that can be accessed by the battery control unit 13. Furthermore, the battery control unit 13 may estimate the SOC using other methods. For example, the battery control unit 13 may estimate the SOC based on the OCV of the battery 11.
 充電器20は、電力回路21および充電器制御部22を備える。電力回路21は、充電器制御部22からの指示に応じて、不図示の系統電源から供給される電力を直流電力に変換する。充電器制御部22のハードウェア構成は、例えばバッテリ制御部13と同様であってもよい。充電器制御部22は、バッテリシステム10のバッテリ制御部13との間で制御信号を交換しながら電力回路21を制御する。例えば、充電器制御部22は、バッテリ制御部13から受信する電流指令値が指示する電流を生成するように電力回路21を制御する。 The charger 20 includes a power circuit 21 and a charger control section 22. The power circuit 21 converts power supplied from a system power supply (not shown) into DC power in response to instructions from the charger control unit 22. The hardware configuration of the charger control section 22 may be the same as that of the battery control section 13, for example. Charger control section 22 controls power circuit 21 while exchanging control signals with battery control section 13 of battery system 10 . For example, the charger control unit 22 controls the power circuit 21 to generate the current specified by the current command value received from the battery control unit 13.
 図2は、バッテリ11を充電する方法の一例を示す。バッテリ制御部13および充電器20は、例えば、CCCV(Constant-Current Constant-Voltage)方式でバッテリシステム10のバッテリ11を充電する。 FIG. 2 shows an example of a method for charging the battery 11. The battery control unit 13 and the charger 20 charge the battery 11 of the battery system 10 using, for example, a CCCV (Constant-Current Constant-Voltage) method.
 CCCV充電においては、バッテリ11の電圧が所定の目標電圧に達するまでは、予め決められた一定の目標電流でバッテリ11が充電される。以下の記載では、一定の電流でバッテリ11を充電する動作を「CC充電」と呼ぶことがある。なお、目標電流を表す電流指令値は、バッテリ制御部13から充電器制御部22に通知される。そうすると、充電器制御部22は、充電器20からバッテリシステム10に供給される電流が目標電流に近づくように電力回路21を制御する。なお、この実施例では、バッテリ制御部13および充電器制御部22は、充電電流をゼロから目標電流まで段階的に増加させる。また、目標電流は、例えば、充電器20の最大電流であってもよい。 In CCCV charging, the battery 11 is charged with a predetermined constant target current until the voltage of the battery 11 reaches a predetermined target voltage. In the following description, the operation of charging the battery 11 with a constant current may be referred to as "CC charging." Note that the current command value representing the target current is notified from the battery control section 13 to the charger control section 22. Then, the charger control unit 22 controls the power circuit 21 so that the current supplied from the charger 20 to the battery system 10 approaches the target current. Note that in this embodiment, the battery control section 13 and the charger control section 22 increase the charging current in stages from zero to the target current. Further, the target current may be, for example, the maximum current of the charger 20.
 充電動作中は、バッテリ制御部13は、電圧センサVの出力信号を利用してバッテリ11の電圧をモニタする。そして、バッテリ11の電圧が目標電圧に達した後は、バッテリ制御部13は、目標電圧を保持するように電流指令値を生成して充電器20に送信する。そうすると、充電器制御部22は電流指令値に応じて電力回路21を制御するので、予め決められた一定の電圧でバッテリ11が充電される。以下の記載では、一定の電圧でバッテリ11を充電する動作を「CV充電」と呼ぶことがある。ここで、バッテリ11の電圧を一定の値に保持したままバッテリ11の充電を継続すると、充電電流は必然的に減少していく。そして、充電電流が予め決められた充電終了電流まで減少すると、バッテリ制御部13および充電器制御部22は充電動作を終了する。 During the charging operation, the battery control unit 13 monitors the voltage of the battery 11 using the output signal of the voltage sensor V. After the voltage of the battery 11 reaches the target voltage, the battery control unit 13 generates a current command value and transmits it to the charger 20 so as to maintain the target voltage. Then, since the charger control unit 22 controls the power circuit 21 according to the current command value, the battery 11 is charged with a predetermined constant voltage. In the following description, the operation of charging the battery 11 with a constant voltage may be referred to as "CV charging." Here, if charging of the battery 11 is continued while the voltage of the battery 11 is held at a constant value, the charging current will inevitably decrease. Then, when the charging current decreases to a predetermined charging end current, the battery control section 13 and the charger control section 22 end the charging operation.
 図3は、CV充電の一例を示す。この実施例では、図2を参照して説明したCC充電によりバッテリ11の電圧が上昇してゆき、時刻T0においてバッテリ11の電圧が目標電圧に達している。すなわち、時刻T0において、CC充電からCV充電に切り替わる。よって、時刻T0以降、バッテリ制御部13は、バッテリ11の電圧を目標電圧に保持する電流指令値を生成して充電器制御部22に送る。そして、充電器20は、電流指令値に従ってバッテリ11に供給する電流を制御する。 Figure 3 shows an example of CV charging. In this embodiment, the voltage of the battery 11 increases due to the CC charging described with reference to FIG. 2, and the voltage of the battery 11 reaches the target voltage at time T0. That is, at time T0, CC charging is switched to CV charging. Therefore, after time T0, the battery control section 13 generates a current command value for maintaining the voltage of the battery 11 at the target voltage and sends it to the charger control section 22. Charger 20 then controls the current supplied to battery 11 according to the current command value.
 バッテリ制御部13および充電器制御部22は、時刻T0において充電電流をΔIだけ減少させる。そうすると、バッテリ11の電圧は一時的に低下する。この後、「目標電流-ΔI」で充電動作が継続する。したがって、バッテリ11の電圧は上昇してゆき、時刻T1において再び目標電圧に達する。続いて、バッテリ制御部13および充電器制御部22は、時刻T1において充電電流をさらにΔIだけ減少させる。そうすると、バッテリ11の電圧は一時的に低下する。この後、「目標電流-2ΔI」で充電動作が継続する。そして、バッテリ11の電圧は、時刻T2において再び目標電圧に達する。 The battery control unit 13 and charger control unit 22 reduce the charging current by ΔI at time T0. Then, the voltage of the battery 11 temporarily decreases. After this, the charging operation continues at "target current - ΔI". Therefore, the voltage of the battery 11 increases and reaches the target voltage again at time T1. Subsequently, the battery control unit 13 and charger control unit 22 further reduce the charging current by ΔI at time T1. Then, the voltage of the battery 11 temporarily decreases. After this, the charging operation continues at "target current -2ΔI". Then, the voltage of the battery 11 reaches the target voltage again at time T2.
 上述のようにして充電電流を段階的に減少させることにより、バッテリ11の電圧は実質的に目標電圧に保持される。そして、充電電流が図2に示す充電終了電流まで減少すると、バッテリ制御部13は、バッテリ11が満充電状態に達したと判定し、充電動作を終了する旨の指示を充電器20に通知する。このとき、バッテリ制御部13は、自分で算出した電流指令値に基づいてバッテリ11が満充電になったか否かを判定してもよいし、電流センサIを用いて検出する電流値に基づいてバッテリ11が満充電になったか否かを判定してもよい。 By reducing the charging current in stages as described above, the voltage of the battery 11 is substantially maintained at the target voltage. Then, when the charging current decreases to the charging end current shown in FIG. 2, the battery control unit 13 determines that the battery 11 has reached a fully charged state, and notifies the charger 20 of an instruction to end the charging operation. . At this time, the battery control unit 13 may determine whether the battery 11 is fully charged based on the current command value calculated by itself, or may determine whether the battery 11 is fully charged based on the current value detected using the current sensor I. It may also be determined whether the battery 11 is fully charged.
 このように、バッテリ制御部13は、充電動作を制御する。このとき、バッテリ制御部13は、充電制御と並行して、ヒータ12を用いてバッテリ11の温度を調整する温度制御を実行する。例えば、バッテリ11の温度が所定の閾値温度より低いときは、充電効率が悪くなる。よって、バッテリ11の温度が閾値温度より低いときは、バッテリ制御部13は、ヒータ12を用いてバッテリ11を昇温する。 In this way, the battery control unit 13 controls the charging operation. At this time, the battery control unit 13 executes temperature control to adjust the temperature of the battery 11 using the heater 12 in parallel with the charging control. For example, when the temperature of the battery 11 is lower than a predetermined threshold temperature, charging efficiency deteriorates. Therefore, when the temperature of the battery 11 is lower than the threshold temperature, the battery control unit 13 uses the heater 12 to raise the temperature of the battery 11.
 バッテリ11の温度を上昇させるときは、充電器20から供給される電流の一部がヒータ12により消費される。すなわち、電流指令値に従って充電器20が電流を生成するとき、ヒータ12を使用すると、バッテリ11に実際に流れる電流は、電流指令値が表す電流より少なくなる。このため、充電電流に基づいて満充電判定を行う場合、判定精度が悪くなるおそれがある。そこで、本開示の実施形態に係わるバッテリシステム10は、バッテリ11の温度が低い場合であっても、必要に応じてヒータ12を停止して満充電判定を行う機能を備える。 When increasing the temperature of the battery 11, a portion of the current supplied from the charger 20 is consumed by the heater 12. That is, when the charger 20 generates a current according to the current command value, if the heater 12 is used, the current that actually flows through the battery 11 becomes smaller than the current represented by the current command value. For this reason, when a full charge determination is made based on the charging current, the determination accuracy may deteriorate. Therefore, the battery system 10 according to the embodiment of the present disclosure has a function of stopping the heater 12 and determining full charge as necessary even when the temperature of the battery 11 is low.
 図4は、充電制御および温度制御の一例を示すフローチャートである。この例では、ユーザから充電開始の指示が与えられたときに、バッテリ制御部13が充電制御および温度制御を開始する。 FIG. 4 is a flowchart showing an example of charging control and temperature control. In this example, when the user gives an instruction to start charging, the battery control unit 13 starts charging control and temperature control.
 S1において、バッテリ制御部13は、温度センサT1の出力信号を利用してバッテリ11の温度を検出する。以降、バッテリ制御部13は、充電が終了するまでバッテリ11の温度をモニタする。S2において、バッテリ制御部13は、バッテリ11のSOCを計算する。なお、現在のSOCの値は、例えば、不図示のメモリに記録されている。また、バッテリ制御部13は、常時、電流センサIを利用して測定される充電電流および放電電流を積算することにより、バッテリ11のSOCを推定するものとする。 In S1, the battery control unit 13 detects the temperature of the battery 11 using the output signal of the temperature sensor T1. Thereafter, the battery control unit 13 monitors the temperature of the battery 11 until charging is completed. In S2, the battery control unit 13 calculates the SOC of the battery 11. Note that the current SOC value is recorded, for example, in a memory (not shown). Further, the battery control unit 13 estimates the SOC of the battery 11 by constantly integrating the charging current and the discharging current measured using the current sensor I.
 S3において、バッテリ制御部13は、電流指令値を生成する。例えば、図2に示すCCCV充電において、CC充電が行われる期間は、電流指令値は予め決められた目標電流を表す。この目標電流は、例えば、充電器20の最大電流であってもよい。また、CV充電が行われる期間は、例えば、図3を参照して説明した電流制御を実現する電流指令値が生成される。バッテリ制御部13により生成される電流指令値は、充電器20に通知される。そして、充電器20は、電流指令値に従って充電電流を生成する。 In S3, the battery control unit 13 generates a current command value. For example, in the CCCV charging shown in FIG. 2, the current command value represents a predetermined target current during the period in which CC charging is performed. This target current may be, for example, the maximum current of charger 20. Further, during the period when CV charging is performed, for example, a current command value that realizes the current control described with reference to FIG. 3 is generated. The current command value generated by the battery control unit 13 is notified to the charger 20. Charger 20 then generates a charging current according to the current command value.
 S4において、バッテリ制御部13は、バッテリ11の温度を所定の閾値温度X1と比較する。閾値温度X1は、例えば、バッテリ11の充電効率が低下しはじめる温度に基づいて設定される。バッテリ11の特性にもよるが、閾値温度X1は、例えば5℃程度である。 In S4, the battery control unit 13 compares the temperature of the battery 11 with a predetermined threshold temperature X1. The threshold temperature X1 is set, for example, based on the temperature at which the charging efficiency of the battery 11 begins to decrease. Although it depends on the characteristics of the battery 11, the threshold temperature X1 is, for example, about 5°C.
 S5において、バッテリ制御部13は、バッテリ11のSOCを所定の閾値SOCと比較する。閾値SOCは、満充電判定に影響が生じ得る領域よりも低い値に設定される。例えば、図2~図3に示す充電方式においては、充電電流が所定の充電終了電流まで減少したときにバッテリ11が満充電状態に達したと判定される。また、CC充電からCV充電に移行した後に、充電電流が減少し始める。よって、充電電流に基づいて満充電状態に達したか否かをモニタする場合、CC充電からCV充電に移行すると、満充電判定に影響が生じ得る。すなわち、CV充電が行われる期間は、満充電判定に影響が生じ得る領域に相当する。したがって、閾値SOCとして、CC充電からCV充電に移行するSOC値より少しだけ小さい値を設定してもよい。或いは、特に限定されるものではないが、閾値SOCは60パーセント程度であってもよい。 In S5, the battery control unit 13 compares the SOC of the battery 11 with a predetermined threshold SOC. The threshold SOC is set to a value lower than a region where full charge determination may be affected. For example, in the charging methods shown in FIGS. 2 and 3, it is determined that the battery 11 has reached a fully charged state when the charging current decreases to a predetermined charging end current. Furthermore, after transitioning from CC charging to CV charging, the charging current begins to decrease. Therefore, when monitoring whether a fully charged state has been reached based on the charging current, transition from CC charging to CV charging may affect the full charging determination. That is, the period during which CV charging is performed corresponds to a region where full charge determination may be affected. Therefore, the threshold SOC may be set to a value slightly smaller than the SOC value at which CC charging shifts to CV charging. Alternatively, the threshold SOC may be about 60%, although it is not particularly limited.
 バッテリ11のSOCが閾値SOCより小さく、且つ、バッテリ11の温度が閾値温度X1より低いときは、バッテリ制御部13は昇温機能を動作させる。すなわち、バッテリ制御部13はヒータ12に電流を流して発熱させる。一方、バッテリ11のSOCが閾値SOC以上である場合、および/または、バッテリ11の温度が閾値温度X1以上である場合には、バッテリ制御部13は昇温機能を停止する。すなわち、バッテリ制御部13はヒータ12への電流の供給を停止する。 When the SOC of the battery 11 is lower than the threshold SOC and the temperature of the battery 11 is lower than the threshold temperature X1, the battery control unit 13 operates the temperature raising function. That is, the battery control unit 13 causes current to flow through the heater 12 to generate heat. On the other hand, when the SOC of the battery 11 is equal to or higher than the threshold SOC and/or when the temperature of the battery 11 is equal to or higher than the threshold temperature X1, the battery control unit 13 stops the temperature increasing function. That is, the battery control unit 13 stops supplying current to the heater 12.
 S8~S9において、バッテリ制御部13は、バッテリ11が満充電状態まで充電されたか否かを判定する。このとき、バッテリ制御部13は、例えば、電流指令値が表す電流が上述した充電終了電流まで減少しているか否かを判定する。そして、電流指令値が表す電流が充電終了電流まで減少していなければ、バッテリ制御部13は、バッテリ11が未だ満充電状態まで充電されていないと判定する。この場合、バッテリ制御部13は、S3に戻って電流指令値を更新する。すなわち、バッテリ11が満充電状態になるまでS3~S9の処理が繰り返し実行される。そして、バッテリ11が満充電状態になると、充電処理は終了する。 In S8 to S9, the battery control unit 13 determines whether the battery 11 has been charged to a fully charged state. At this time, the battery control unit 13 determines, for example, whether the current represented by the current command value has decreased to the above-mentioned charge end current. Then, if the current represented by the current command value has not decreased to the charge end current, the battery control unit 13 determines that the battery 11 has not yet been charged to a fully charged state. In this case, the battery control unit 13 returns to S3 and updates the current command value. That is, the processes of S3 to S9 are repeatedly executed until the battery 11 is fully charged. Then, when the battery 11 becomes fully charged, the charging process ends.
 このように、本開示の実施形態においては、バッテリ11の温度が閾値温度X1より低い場合であっても、バッテリ11のSOCが閾値SOC以上であるときには、昇温機能を停止する。ここで、昇温機能を停止すれば、バッテリ11に流れる電流は、電流指令値が表す電流と実質的に一致する。よって、バッテリ制御部13は、電流指令値を利用して精度のよい満充電判定を実現できる。 As described above, in the embodiment of the present disclosure, even if the temperature of the battery 11 is lower than the threshold temperature X1, the temperature increase function is stopped when the SOC of the battery 11 is equal to or higher than the threshold SOC. Here, if the temperature raising function is stopped, the current flowing through the battery 11 substantially matches the current represented by the current command value. Therefore, the battery control unit 13 can realize accurate full charge determination using the current command value.
 なお、上述の実施例では、バッテリ11のSOCに基づいて昇温機能を使用するか否かが判定されるが、本開示の実施形態はこの方式に限定されるものではない。例えば、バッテリ11の電圧は、バッテリ11のSOCと相関を有する。よって、バッテリ制御部13は、バッテリ11の電圧に基づいて昇温機能を使用するか否かを決定してもよい。すなわち、バッテリ制御部13は、バッテリ11のSOCまたは電圧が所定の閾値レベルより低いときに、バッテリ11の温度と閾値温度X1との比較に応じてヒータ12を制御する。 Note that in the above embodiment, it is determined whether or not to use the temperature increase function based on the SOC of the battery 11, but the embodiments of the present disclosure are not limited to this method. For example, the voltage of battery 11 has a correlation with the SOC of battery 11. Therefore, the battery control unit 13 may determine whether to use the temperature increase function based on the voltage of the battery 11. That is, when the SOC or voltage of the battery 11 is lower than a predetermined threshold level, the battery control unit 13 controls the heater 12 according to the comparison between the temperature of the battery 11 and the threshold temperature X1.
 また、バッテリ制御部13は、バッテリ11のSOCが閾値SOC以上であるときに、バッテリ11の充電よりバッテリ11の昇温を優先的に実行してもよい。例えば、図5に示す実施例では、バッテリ11のSOCが閾値SOC以上であるときにバッテリ11の温度が閾値温度X1より低下すると、バッテリ制御部13は、S11~S13を実行する。すなわち、バッテリ制御部13は、充電動作を停止した状態でヒータ12を発熱させる。そして、バッテリ11の温度が閾値温度X1以上になると、バッテリ制御部13は、S14において充電動作を再開し、S7においてヒータ12を停止する。この後、バッテリ11が満充電状態になるまで、ヒータ12を停止してバッテリ11を充電する動作、または、バッテリ11の充電を停止してヒータ12を発熱させる動作が行われる。なお、バッテリ11のSOCが閾値SOCより小さいときは、図4に示す手順と同様に、バッテリ11の温度に基づいてヒータ12を発熱させるか否かが決定される。 Furthermore, the battery control unit 13 may preferentially increase the temperature of the battery 11 over charging the battery 11 when the SOC of the battery 11 is equal to or higher than the threshold SOC. For example, in the embodiment shown in FIG. 5, when the temperature of the battery 11 falls below the threshold temperature X1 when the SOC of the battery 11 is equal to or higher than the threshold SOC, the battery control unit 13 executes S11 to S13. That is, the battery control unit 13 causes the heater 12 to generate heat while the charging operation is stopped. Then, when the temperature of the battery 11 becomes equal to or higher than the threshold temperature X1, the battery control unit 13 restarts the charging operation in S14, and stops the heater 12 in S7. Thereafter, an operation of stopping the heater 12 to charge the battery 11 or an operation of stopping charging of the battery 11 and causing the heater 12 to generate heat is performed until the battery 11 is fully charged. Note that when the SOC of the battery 11 is smaller than the threshold SOC, it is determined whether or not to cause the heater 12 to generate heat based on the temperature of the battery 11, similarly to the procedure shown in FIG.
 図5に示すフローチャートの手順によれば、バッテリ11の温度が閾値温度X1より低い状態で充電が行われることはない。よって、常に、効率のよい状態でバッテリ11が充電される。なお、バッテリ11が満充電状態に達した後にバッテリ11の温度が低下し、ヒータ12を使用することでSOCが低下したときには、再充電が実行される。この場合、バッテリ制御部13は、図5に示す手順で温度制御を行いながらバッテリ11を充電してもよい。 According to the procedure of the flowchart shown in FIG. 5, charging will not be performed when the temperature of the battery 11 is lower than the threshold temperature X1. Therefore, the battery 11 is always charged in an efficient manner. Note that when the temperature of the battery 11 decreases after the battery 11 reaches a fully charged state and the SOC decreases by using the heater 12, recharging is performed. In this case, the battery control unit 13 may charge the battery 11 while controlling the temperature according to the procedure shown in FIG.
 <バリエーション>
 図4に示す手順では、充電開始時にバッテリ11のSOCが閾値SOC以上であるときには、バッテリ11の温度が低い場合であってもヒータ12は停止したままである。この場合、バッテリ11の温度が低い状態で充電が行われる。ただし、例えば、リン酸鉄系リチウムイオン電池は、低温領域で充電性能が劣化するので、充電時間が長くなるか、或いは、充電が困難になることがある。
<Variations>
In the procedure shown in FIG. 4, when the SOC of the battery 11 is equal to or higher than the threshold SOC at the start of charging, the heater 12 remains stopped even if the temperature of the battery 11 is low. In this case, charging is performed while the temperature of the battery 11 is low. However, for example, iron phosphate-based lithium ion batteries deteriorate in charging performance in a low temperature region, so charging time may become longer or charging may become difficult.
 そこで、本開示の実施形態のバリエーションでは、充電開始時にバッテリ11の温度が低いときには、実際に充電を行う前に、ヒータ12を用いてバッテリ11を暖める。その後、ヒータ12を停止して充電を行う。このとき、ヒータ12を停止した状態で、満充電状態までバッテリ11の温度が閾値温度X1以上に維持されていることが好ましい。ただし、外気温が高ければ、充電中にバッテリ11の温度が低下しにくいが、外気温が低いときには、充電中にバッテリ11の温度が低下しやすくなる。したがって、バッテリ制御部13は、外気温を考慮して、充電開始前にバッテリ11をどの程度まで温めておくのかを決定する。 Therefore, in a variation of the embodiment of the present disclosure, if the temperature of the battery 11 is low at the start of charging, the heater 12 is used to warm the battery 11 before actually charging. After that, the heater 12 is stopped and charging is performed. At this time, it is preferable that the temperature of the battery 11 is maintained at the threshold temperature X1 or higher until the battery is fully charged with the heater 12 stopped. However, if the outside temperature is high, the temperature of the battery 11 is less likely to drop during charging, but when the outside temperature is low, the temperature of the battery 11 is more likely to drop during charging. Therefore, the battery control unit 13 takes the outside temperature into consideration and determines to what extent the battery 11 should be warmed before starting charging.
 図6A~図7Bは、本開示の実施形態のバリエーションに係わる温度制御を説明する図である。この例では、時刻T11に充電を開始する旨の指示がバッテリ制御部13に与えられるものとする。X1は、図4~図5に示す実施例の閾値温度に相当する。すなわち、バッテリ11の温度がX1より低いときは、充電効率が悪い。また、充電開始の指示が与えられたとき(すなわち、時刻T11)に、バッテリ11の温度がX1より低いものとする。この場合、バッテリ制御部13は、充電開始前に、ヒータ12を用いてバッテリ11を暖める。これにより、図6Aまたは図7Aに示すように、バッテリ11の温度がX2まで上昇するものとする。この後、バッテリ制御部13は、ヒータ12を停止し、バッテリ11の充電を開始する。 FIGS. 6A to 7B are diagrams illustrating temperature control according to variations of the embodiment of the present disclosure. In this example, it is assumed that an instruction to start charging is given to the battery control unit 13 at time T11. X1 corresponds to the threshold temperature of the embodiment shown in FIGS. 4-5. That is, when the temperature of the battery 11 is lower than X1, charging efficiency is poor. Further, it is assumed that the temperature of the battery 11 is lower than X1 when the instruction to start charging is given (ie, time T11). In this case, the battery control unit 13 warms the battery 11 using the heater 12 before starting charging. As a result, the temperature of the battery 11 rises to X2 as shown in FIG. 6A or FIG. 7A. Thereafter, the battery control unit 13 stops the heater 12 and starts charging the battery 11.
 この例では、充電中は、ヒータ12が停止しているので、バッテリ11の温度は徐々に低下してゆく。ここで、バッテリ11の温度が低下してゆく速度は外気温に依存する。具体的には、図6Aに示すように、外気温が高ければバッテリ11の温度はゆっくりと低下するが、外気温が低いときはバッテリ11の温度は速く低下する。また、図6Aに示すケースでは、時刻T12においてバッテリ11が満充電状態になるものとする。バッテリ11が満充電状態になるまでの時間は、充電開始時のバッテリ11のSOCに依存する。 In this example, since the heater 12 is stopped during charging, the temperature of the battery 11 gradually decreases. Here, the rate at which the temperature of the battery 11 decreases depends on the outside temperature. Specifically, as shown in FIG. 6A, when the outside temperature is high, the temperature of the battery 11 decreases slowly, but when the outside temperature is low, the temperature of the battery 11 decreases quickly. Furthermore, in the case shown in FIG. 6A, it is assumed that the battery 11 becomes fully charged at time T12. The time it takes for the battery 11 to reach a fully charged state depends on the SOC of the battery 11 at the time of starting charging.
 外気温が高いときは、時刻T12(即ち、バッテリ11が満充電状態になったとき)において、バッテリ11の温度がX1以上のままである。すなわち、充電期間全体にわたって、バッテリ11の温度がX1以上である。この場合、充電効率がよい。これに対して、外気温が低いときは、時刻T12においてバッテリ11の温度がX1よりも低下している。すなわち、充電期間の一部でバッテリ11の温度がX1よりも低くなっている。この場合、充電効率が悪くなる。 When the outside temperature is high, the temperature of the battery 11 remains at or above X1 at time T12 (that is, when the battery 11 is fully charged). That is, the temperature of the battery 11 is equal to or higher than X1 throughout the charging period. In this case, charging efficiency is good. On the other hand, when the outside temperature is low, the temperature of the battery 11 is lower than X1 at time T12. That is, the temperature of the battery 11 is lower than X1 during part of the charging period. In this case, charging efficiency deteriorates.
 この問題は、充電開始時のバッテリ11の温度を外気温に応じて設定すれば解決され得る。具体的には、外気温が高いときには、充電開始時にバッテリ11の温度をさほど上昇させる必要はない。一方、外気温が低いときには、充電開始時にバッテリ11の温度を十分に上昇させる必要がある。 This problem can be solved by setting the temperature of the battery 11 at the start of charging according to the outside temperature. Specifically, when the outside temperature is high, there is no need to increase the temperature of the battery 11 so much at the start of charging. On the other hand, when the outside temperature is low, it is necessary to sufficiently raise the temperature of the battery 11 when starting charging.
 一例としては、ヒータ12を停止した状態でバッテリ11を充電したときに、バッテリ11が満充電状態に達すると見込まれる時点でのバッテリ11の温度がX1より低くならないように、充電開始時のバッテリ11の温度を設定する。図6Bに示す例では、外気温が高いときには、充電開始時にバッテリ11の温度をX21以上に設定すれば、充電期間全体にわたってバッテリ11の温度がX1よりも高くなる。外気温が低いときには、充電開始時にバッテリ11の温度をX22以上に設定すれば、充電期間全体にわたってバッテリ11の温度がX1よりも高くなる。なお、以下の記載では、ヒータ12を停止した状態でバッテリ11を充電したときに、バッテリ11が満充電状態に達すると見込まれる時点でのバッテリ11の温度がX1より低くならないように、充電開始時に設定すべきバッテリ11の温度を「充電開始目標温度」と呼ぶことがある。 For example, when charging the battery 11 with the heater 12 stopped, the temperature of the battery 11 at the start of charging may be set so that the temperature of the battery 11 does not become lower than X1 at the time when the battery 11 is expected to reach a fully charged state. Set the temperature of 11. In the example shown in FIG. 6B, when the outside temperature is high, if the temperature of the battery 11 is set to X21 or higher at the start of charging, the temperature of the battery 11 will be higher than X1 throughout the charging period. When the outside temperature is low, if the temperature of the battery 11 is set to X22 or higher at the start of charging, the temperature of the battery 11 will be higher than X1 throughout the charging period. In addition, in the following description, when the battery 11 is charged with the heater 12 stopped, charging is started so that the temperature of the battery 11 does not become lower than X1 at the time when the battery 11 is expected to reach a fully charged state. The temperature of the battery 11 that should be set at times is sometimes referred to as a "charging start target temperature."
 他方、バッテリ11を満充電状態にするまでに要する充電時間は、充電開始時のSOCに依存する。具体的には、充電開始時のSOCが大きければ充電時間は短くなり、充電開始時のSOCが小さければ充電時間は長くなる。図7Aに示す例では、充電開始時のSOCが大きいケースでの充電終了時刻はT13であり、充電開始時のSOCが小さいケースでの充電終了時刻はT14である。 On the other hand, the charging time required to bring the battery 11 to a fully charged state depends on the SOC at the time of starting charging. Specifically, the larger the SOC at the start of charging, the shorter the charging time, and the smaller the SOC at the start of charging, the longer the charging time. In the example shown in FIG. 7A, the charging end time in the case where the SOC at the start of charging is large is T13, and the charging end time in the case where the SOC at the start of charging is small is T14.
 ここで、充電開始時にバッテリ11の温度をX2まで上昇させるものとする。この場合、充電開始時のSOCが大きければ、時刻T13においてバッテリ11が満充電状態になったときに、バッテリ11の温度がX1以上のままである。すなわち、充電期間全体にわたってバッテリ11の温度がX1以上であるので、充電効率がよい。これに対して、充電開始時のSOCが小さいときは、時刻T14においてバッテリ11が満充電状態になったときに、バッテリ11の温度がX1よりも低下している。すなわち、充電期間の一部でバッテリ11の温度がX1よりも低くなり、充電効率が悪くなる。 Here, it is assumed that the temperature of the battery 11 is raised to X2 at the start of charging. In this case, if the SOC at the start of charging is large, the temperature of the battery 11 remains equal to or higher than X1 when the battery 11 becomes fully charged at time T13. That is, since the temperature of the battery 11 is equal to or higher than X1 throughout the charging period, charging efficiency is good. On the other hand, when the SOC at the start of charging is small, the temperature of the battery 11 is lower than X1 when the battery 11 becomes fully charged at time T14. That is, the temperature of the battery 11 becomes lower than X1 during a part of the charging period, resulting in poor charging efficiency.
 この問題は、充電開始時のSOCに応じて上述の充電開始目標温度を設定すれば解決され得る。具体的には、SOCが大きいときは、充電開始目標温度は、さほど高くなくてもよい。一方、SOCが小さいときは、高い充電開始目標温度を設定する必要がある。 This problem can be solved by setting the above-mentioned charging start target temperature according to the SOC at the time of charging start. Specifically, when the SOC is large, the charging start target temperature does not need to be very high. On the other hand, when the SOC is small, it is necessary to set a high charging start target temperature.
 一例としては、ヒータ12を停止した状態でバッテリ11を充電したときに、充電終了時の温度がX1以上なるように充電開始目標温度が設定される。図7Bに示すケースでは、充電開始時のSOCが大きいときは、充電開始時にバッテリ11の温度をX23以上に設定すれば、充電期間全体にわたってバッテリ11の温度がX1以上になる。充電開始時のSOCが小さいときには、充電開始時にバッテリ11の温度をX24以上に設定すれば、充電期間全体にわたってバッテリ11の温度がX1以上になる。 As an example, when the battery 11 is charged with the heater 12 stopped, the charging start target temperature is set so that the temperature at the end of charging is equal to or higher than X1. In the case shown in FIG. 7B, when the SOC at the start of charging is large, if the temperature of the battery 11 is set at X23 or higher at the start of charging, the temperature of the battery 11 becomes X1 or higher throughout the charging period. When the SOC at the start of charging is small, if the temperature of the battery 11 is set to X24 or higher at the start of charging, the temperature of the battery 11 will be equal to or higher than X1 during the entire charging period.
 したがって、本開示の実施形態のバリエーションにおいては、外気温および充電開始時のバッテリ11のSOCに基づいて充電開始目標温度が設定される。そして、バッテリ制御部13は、図8に示す充電開始目標温度テーブルを備える。 Therefore, in a variation of the embodiment of the present disclosure, the charging start target temperature is set based on the outside temperature and the SOC of the battery 11 at the time of starting charging. The battery control unit 13 includes a charging start target temperature table shown in FIG.
 充電開始目標温度テーブルには、「バッテリ11の充電効率が低下しはじめる閾値温度X1と外気温との温度差」および「充電開始時のSOC」の組合せに対して、充電開始目標温度が記録されている。充電開始目標温度は、図6A~図7Bを参照して説明したように、外気温が高くなるほど低くなり、また、SOCが大きくなるほど低くなる。充電開始目標温度は、予め測定またはシミュレーションにより求められているものとする。なお、閾値温度X1は、バッテリ11に対して固定値なので、「バッテリ11の充電効率が低下しはじめる閾値温度X1と外気温との温度差」の代わりに「外気温」を使用してもよい。すなわち、「外気温」および「充電開始時のSOC」の組合せに対して充電開始目標温度テーブルを作成してもよい。 In the charge start target temperature table, charge start target temperatures are recorded for combinations of "temperature difference between threshold temperature ing. As described with reference to FIGS. 6A to 7B, the charging start target temperature decreases as the outside temperature increases, and also decreases as the SOC increases. It is assumed that the charging start target temperature is determined in advance by measurement or simulation. Note that the threshold temperature X1 is a fixed value for the battery 11, so "outside temperature" may be used instead of "the temperature difference between the threshold temperature X1 at which the charging efficiency of the battery 11 begins to decrease and the outside air temperature." . That is, a charging start target temperature table may be created for a combination of "outside temperature" and "SOC at the time of charging start".
 図9は、本開示の実施形態のバリエーションに係わるバッテリシステムによる充電制御および温度制御の一例を示すフローチャートである。図4または図5に示す手順と同様に、ユーザから充電開始の指示が与えられたときに、バッテリ制御部13が充電制御および温度制御を開始する。 FIG. 9 is a flowchart illustrating an example of charging control and temperature control by the battery system according to a variation of the embodiment of the present disclosure. Similar to the procedure shown in FIG. 4 or 5, when the user gives an instruction to start charging, the battery control unit 13 starts charging control and temperature control.
 S21において、バッテリ制御部13は、温度センサT1の出力信号を利用してバッテリ11の温度を検出する。S22において、バッテリ制御部13は、温度センサT2の出力信号を利用して外気温を検出する。S23において、バッテリ制御部13は、バッテリ11のSOCを取得する。なお、現在のSOCの値は、例えば、不図示のメモリに記録されている。この場合、バッテリ制御部13は、メモリから現在のSOCの値を取得する。或いは、バッテリ制御部13は、バッテリ11のOCVに基づいてSOCを推定してもよい。 In S21, the battery control unit 13 detects the temperature of the battery 11 using the output signal of the temperature sensor T1. In S22, the battery control unit 13 detects the outside temperature using the output signal of the temperature sensor T2. In S23, the battery control unit 13 acquires the SOC of the battery 11. Note that the current SOC value is recorded, for example, in a memory (not shown). In this case, the battery control unit 13 acquires the current SOC value from the memory. Alternatively, the battery control unit 13 may estimate the SOC based on the OCV of the battery 11.
 S24において、バッテリ制御部13は、S22で検出した外気温およびS23で取得したSOCに対応する充電開始目標温度を取得する。充電開始目標温度は、図8に示す充電開始目標温度テーブルから取得することができる。ただし、バッテリ制御部13は、予め用意されている計算式に外気温およびSOCを与えることで充電開始目標温度を算出してもよい。 In S24, the battery control unit 13 obtains a charging start target temperature corresponding to the outside air temperature detected in S22 and the SOC obtained in S23. The charge start target temperature can be obtained from the charge start target temperature table shown in FIG. However, the battery control unit 13 may calculate the charging start target temperature by applying the outside temperature and SOC to a calculation formula prepared in advance.
 S25において、バッテリ制御部13は、S21で検出したバッテリ11の温度を充電開始目標温度と比較する。そして、バッテリ11の温度が充電開始目標温度以上であるときは、バッテリ制御部13の処理はS29に進む。一方、バッテリ11の温度が充電開始目標温度より低いときには、バッテリ制御部13は、S26においてヒータ12を発熱させる。これにより、バッテリ11の温度が上昇してゆく。この後、バッテリ制御部13は、S27においてバッテリ11の温度をモニタする。そして、バッテリ11の温度が充電開始目標温度以上になると、バッテリ制御部13は、S28においてヒータ12を停止する。 In S25, the battery control unit 13 compares the temperature of the battery 11 detected in S21 with the charging start target temperature. Then, when the temperature of the battery 11 is equal to or higher than the charging start target temperature, the process of the battery control unit 13 proceeds to S29. On the other hand, when the temperature of the battery 11 is lower than the charging start target temperature, the battery control unit 13 causes the heater 12 to generate heat in S26. As a result, the temperature of the battery 11 increases. Thereafter, the battery control unit 13 monitors the temperature of the battery 11 in S27. Then, when the temperature of the battery 11 becomes equal to or higher than the charging start target temperature, the battery control unit 13 stops the heater 12 in S28.
 なお、外気温が十分に高いときの充電中のバッテリ11の温度は、ヒータ12が停止していても、低下しないか、或いは、ゆっくりと低下する。よって、外気温が十分に高いときには、充電開始時のバッテリ11の温度が充電開始目標温度以下であっても、必ずしもヒータ12を使用する必要はない。すなわち、バッテリ制御部13は、バッテリ11の温度が充電開始目標温度より低く、且つ、外気温が所定の閾値より低いときに限って、S25~S26においてヒータ12を発熱させるようにしてもよい。 Note that the temperature of the battery 11 during charging when the outside temperature is sufficiently high does not decrease or decreases slowly even if the heater 12 is stopped. Therefore, when the outside temperature is sufficiently high, it is not necessarily necessary to use the heater 12 even if the temperature of the battery 11 at the time of starting charging is below the charging start target temperature. That is, the battery control unit 13 may cause the heater 12 to generate heat in S25 to S26 only when the temperature of the battery 11 is lower than the charging start target temperature and the outside temperature is lower than a predetermined threshold value.
 S29~S30において、バッテリ制御部13は、バッテリ11の充電を実行する。この実施例では、充電方式は、特に限定されるものではないが、図2~図3を参照して説明したCCCV方式でもよい。そして、電流指令値(または、充電器20からバッテリシステム10に供給される電流)が所定の充電終了電流まで減少すると、バッテリ制御部13は、バッテリ11が満充電状態になったと判定して充電を終了する。 In S29 to S30, the battery control unit 13 charges the battery 11. In this embodiment, the charging method is not particularly limited, but may be the CCCV method described with reference to FIGS. 2 and 3. Then, when the current command value (or the current supplied from the charger 20 to the battery system 10) decreases to a predetermined charging end current, the battery control unit 13 determines that the battery 11 is in a fully charged state and starts charging. end.
 上記手順において、S29の処理は、S25においてバッテリ11の温度が充電開始目標温度以上であると判定されたときに実行される。また、S25においてバッテリ11の温度が充電開始目標温度より低いと判定されたときには、S26~S27においてバッテリ11の温度が充電開始目標温度以上にまで温められた後にS29が実行される。すなわち、いずれのケースであっても、バッテリ制御部13がバッテリ11の充電を実行する時点では、バッテリ11の温度は充電開始目標温度以上である。 In the above procedure, the process of S29 is executed when it is determined in S25 that the temperature of the battery 11 is equal to or higher than the charging start target temperature. Further, when it is determined in S25 that the temperature of the battery 11 is lower than the charge start target temperature, S29 is executed after the temperature of the battery 11 is warmed to the charge start target temperature or higher in S26 and S27. That is, in either case, the temperature of the battery 11 is equal to or higher than the charging start target temperature at the time when the battery control unit 13 executes charging of the battery 11.
 ここで、充電中は、ヒータ12は停止している。このため、バッテリ11の温度は充電中に徐々に低下してゆく。ただし、充電が実際に実行される時点でのバッテリ11の温度は、充電開始目標温度以上である。また、充電開始目標温度は、充電終了時のバッテリ11の温度が、充電効率が低下しはじめる閾値温度X1以上になるように、外気温および充電開始時のSOCに応じて決定されている。したがって、バッテリ11の温度は、充電期間全体にわたって充電効率の良い領域に保持される。すなわち、効率の良い充電が実現される。 Here, during charging, the heater 12 is stopped. Therefore, the temperature of the battery 11 gradually decreases during charging. However, the temperature of the battery 11 at the time when charging is actually performed is equal to or higher than the charging start target temperature. Further, the charging start target temperature is determined according to the outside temperature and the SOC at the time of charging start so that the temperature of the battery 11 at the end of charging is equal to or higher than a threshold temperature X1 at which charging efficiency starts to decrease. Therefore, the temperature of the battery 11 is maintained in a region with good charging efficiency throughout the charging period. In other words, efficient charging is realized.
 加えて、充電中はヒータ12が停止しているので、バッテリ11に流れる充電電流は、電流指令値が表す電流と実質的に一致する。このため、電流指令値を利用して満充電判定を行う場合、判定精度が良い。 Additionally, since the heater 12 is stopped during charging, the charging current flowing through the battery 11 substantially matches the current represented by the current command value. Therefore, when determining full charge using the current command value, the determination accuracy is good.

Claims (7)

  1.  バッテリと、
     前記バッテリの温度を検出するように構成される温度センサと、
     前記バッテリを加熱するように構成されるヒータと、
     前記バッテリの状態を検出すると共に、前記バッテリを充電する動作および前記ヒータを用いて前記バッテリを昇温する動作を制御するように構成されるバッテリ制御部と、を備え、
     前記バッテリ制御部は、
      前記バッテリの充電中に、前記バッテリの充電率または電圧が所定の閾値レベルより低いときは、前記バッテリの温度と予め設定された閾値温度との比較に応じて前記ヒータを制御し、
      前記バッテリの充電率または電圧が前記閾値レベル以上であるときは、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタする、ようにさらに構成される、バッテリシステム。
    battery and
    a temperature sensor configured to detect the temperature of the battery;
    a heater configured to heat the battery;
    a battery control unit configured to detect the state of the battery and control an operation of charging the battery and an operation of increasing the temperature of the battery using the heater,
    The battery control unit includes:
    during charging of the battery, when the charging rate or voltage of the battery is lower than a predetermined threshold level, controlling the heater in response to a comparison between the temperature of the battery and a preset threshold temperature;
    The battery is further configured to monitor whether or not the battery has reached a fully charged state with the heater stopped when the charging rate or voltage of the battery is equal to or higher than the threshold level. system.
  2.  前記バッテリの充電率または電圧が前記閾値レベル以上であるときに、前記バッテリの温度が前記閾値温度より低下すると、前記バッテリ制御部は、前記バッテリの充電動作を停止すると共に、前記ヒータを発熱させる、ようにさらに構成される、請求項1に記載のバッテリシステム。 When the temperature of the battery falls below the threshold temperature when the charging rate or voltage of the battery is equal to or higher than the threshold level, the battery control unit stops the charging operation of the battery and causes the heater to generate heat. The battery system of claim 1, further configured to: .
  3.  バッテリと、
     前記バッテリの温度を検出するように構成される温度センサと、
     前記バッテリを加熱するように構成されるヒータと、
     前記バッテリが実装される装置の外気温を検出するように構成される第2の温度センサと、
     前記バッテリの状態を検出すると共に、前記バッテリを充電する動作および前記ヒータを用いて前記バッテリを昇温する動作を制御するように構成されるバッテリ制御部と、を備え、
     前記バッテリ制御部は、
      前記バッテリの充電開始時に、前記外気温および前記バッテリの充電率に対応する充電開始目標温度を取得し、
      前記バッテリの温度が前記充電開始目標温度より低いときには、前記バッテリの充電開始前に、前記ヒータを用いて前記バッテリの温度を前記充電開始目標温度以上に上昇させ、
      前記バッテリの充電中は、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタする、ようにさらに構成される、バッテリシステム。
    battery and
    a temperature sensor configured to detect the temperature of the battery;
    a heater configured to heat the battery;
    a second temperature sensor configured to detect an outside temperature of a device in which the battery is mounted;
    a battery control unit configured to detect the state of the battery and control an operation of charging the battery and an operation of increasing the temperature of the battery using the heater,
    The battery control unit includes:
    At the time of starting charging of the battery, obtaining a charging start target temperature corresponding to the outside temperature and the charging rate of the battery,
    When the temperature of the battery is lower than the charge start target temperature, use the heater to raise the temperature of the battery to the charge start target temperature or more before starting charge of the battery,
    The battery system is further configured to monitor whether or not the battery has reached a fully charged state with the heater stopped while the battery is being charged.
  4.  前記充電開始目標温度は、前記ヒータを停止させた状態で前記バッテリを充電したときに、前記バッテリが満充電状態に達すると見込まれる時点での前記バッテリの温度が、前記バッテリの充電効率が低下しはじめる閾値温度より低くならないように設定される、請求項3に記載のバッテリシステム。 The charging start target temperature is such that when the battery is charged with the heater stopped, the temperature of the battery at the time when the battery is expected to reach a fully charged state is such that the charging efficiency of the battery decreases. 4. The battery system according to claim 3, wherein the battery system is set so as not to become lower than a threshold temperature at which the temperature starts to decrease.
  5.  前記バッテリ制御部は、前記バッテリの充電開始時に、前記バッテリの温度が前記充電開始目標温度より低く、且つ、前記外気温が第2の閾値温度より低いときに、前記バッテリの充電開始前に、前記ヒータを用いて前記バッテリの温度を前記充電開始目標温度以上に上昇させる、ようにさらに構成される、請求項3に記載のバッテリシステム。 When the temperature of the battery is lower than the charging start target temperature and the outside air temperature is lower than a second threshold temperature, before starting charging of the battery, the battery control unit is configured to: The battery system according to claim 3, further configured to use the heater to raise the temperature of the battery above the charging start target temperature.
  6.  バッテリの充電方法であって、前記充電方法は、
     前記バッテリの充電率または電圧が所定の閾値レベルより低いか否かを判定することと、
     前記バッテリの充電中に、前記バッテリの充電率または電圧が所定の閾値レベルより低いときは、前記バッテリの温度と予め設定された閾値温度との比較に応じてヒータを制御することと、
     前記バッテリの充電率または電圧が前記閾値レベル以上であるときは、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタすることと、を含む、バッテリの充電方法。
    A method for charging a battery, the charging method comprising:
    determining whether the charging rate or voltage of the battery is below a predetermined threshold level;
    controlling a heater in response to a comparison between a temperature of the battery and a preset threshold temperature when the charging rate or voltage of the battery is lower than a predetermined threshold level while charging the battery;
    Charging the battery, including monitoring whether the battery has reached a fully charged state with the heater stopped when the charging rate or voltage of the battery is equal to or higher than the threshold level. Method.
  7.  バッテリの充電方法であって、前記充電方法は、
     前記バッテリの充電開始時に、前記バッテリが実装される装置の外気温および前記バッテリの充電率に対応する充電開始目標温度を取得することと、
     前記バッテリの温度が前記充電開始目標温度より低いか否かを判定することと、
     前記バッテリの温度が前記充電開始目標温度より低いときには、前記バッテリの充電開始前に、ヒータを用いて前記バッテリの温度を前記充電開始目標温度以上に上昇させることと、
     前記バッテリの充電中は、前記ヒータを停止させた状態で、前記バッテリが満充電状態に達したか否かをモニタすることと、を含む、バッテリの充電方法。
    A method for charging a battery, the charging method comprising:
    At the time of starting charging of the battery, acquiring a charging start target temperature corresponding to an outside temperature of a device in which the battery is mounted and a charging rate of the battery;
    determining whether the temperature of the battery is lower than the charging start target temperature;
    When the temperature of the battery is lower than the charge start target temperature, using a heater, raise the temperature of the battery to the charge start target temperature or more before starting charge of the battery;
    A method for charging a battery, comprising monitoring whether or not the battery has reached a fully charged state while the heater is stopped while the battery is being charged.
PCT/JP2023/020792 2022-06-09 2023-06-05 Battery system and charging method for battery WO2023238817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093690 2022-06-09
JP2022093690A JP2023180402A (en) 2022-06-09 2022-06-09 battery system

Publications (1)

Publication Number Publication Date
WO2023238817A1 true WO2023238817A1 (en) 2023-12-14

Family

ID=89118435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020792 WO2023238817A1 (en) 2022-06-09 2023-06-05 Battery system and charging method for battery

Country Status (3)

Country Link
JP (1) JP2023180402A (en)
TW (1) TW202401886A (en)
WO (1) WO2023238817A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225782A (en) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 Power storage system
JP2021141775A (en) * 2020-03-09 2021-09-16 トヨタ自動車株式会社 In-vehicle battery charging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225782A (en) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 Power storage system
JP2021141775A (en) * 2020-03-09 2021-09-16 トヨタ自動車株式会社 In-vehicle battery charging system

Also Published As

Publication number Publication date
JP2023180402A (en) 2023-12-21
TW202401886A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US11658503B2 (en) Charging time computation method and charge control device
US11919415B2 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
TWI425737B (en) Charging apparatus and charging method
TWI473323B (en) Charging method for charging battery and related charging structure
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
JP2019517234A (en) Charge control apparatus and method capable of energy saving and quick cell balancing
JP6520124B2 (en) Deterioration state estimation device for secondary battery
KR101996974B1 (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
TW201507239A (en) Systems, controllers and methods for battery controlling
US10328807B2 (en) Method for operating a battery charger, and a battery charger
JP6738738B2 (en) How to manage battery charge status
JP2004172058A (en) Battery management system and battery pack
JP6531501B2 (en) Battery control unit
TWI542115B (en) Charging apparatus and charging method thereof
JP5851514B2 (en) Battery control device, secondary battery system
WO2023238817A1 (en) Battery system and charging method for battery
JP2004015876A (en) Charging voltage setting device for lithium ion battery
JP2011061947A (en) Device and method for charge control
JP2007267499A (en) Charger, charging system and electric apparatus
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JP2005245056A (en) Battery pack and rechargeable electric appliance set
KR101742737B1 (en) Method for controlling sodium based secondary battery
US11828806B2 (en) Apparatus and method for calculating battery power
CN116345647B (en) Battery charging method and system based on self-learning of internal resistance of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819797

Country of ref document: EP

Kind code of ref document: A1