WO2023238791A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2023238791A1
WO2023238791A1 PCT/JP2023/020630 JP2023020630W WO2023238791A1 WO 2023238791 A1 WO2023238791 A1 WO 2023238791A1 JP 2023020630 W JP2023020630 W JP 2023020630W WO 2023238791 A1 WO2023238791 A1 WO 2023238791A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
strain
holder
axial direction
connecting portion
Prior art date
Application number
PCT/JP2023/020630
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 村上
幸嗣 癸生川
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2023238791A1 publication Critical patent/WO2023238791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • the present invention relates to a sensor device.
  • Patent Document 1 As a sensor device for detecting forces in multiple directions applied to a shaft, a sensor device configured to connect multiple strain gauges attached to a strain generating part to each other and detect strain according to the force is known.
  • An example of the present invention is to provide a sensor device having a simple configuration.
  • the sensor device of the present invention includes a shaft, a bearing disposed directly or indirectly on the shaft, and a holder disposed on the bearing, and the holder includes an inner peripheral member, an outer peripheral member, a connecting portion connecting the inner circumferential member and the outer circumferential member; and a first strain sensor disposed in the connecting portion, wherein the inner circumferential member is disposed outside the bearing in the radial direction.
  • the connecting portion rotatably supports the inner peripheral member with respect to the outer peripheral member.
  • FIG. 1 is a perspective view of a sensor device according to a first embodiment, which is an example of the present invention.
  • 1 is a schematic diagram showing an example of a usage state of a sensor device according to a first embodiment, which is an example of the present invention
  • FIG. 3 is a perspective view of a sensor device according to a second embodiment, which is an example of the present invention.
  • FIG. 7 is a perspective view of a sensor device according to a third embodiment, which is an example of the present invention.
  • the direction of arrow b along the central axis (axis X) of the shaft S will be referred to as the back side or one side in the axial direction.
  • the direction of arrow a along axis X is defined as the front side or the other axial side.
  • the direction along the axis X that is, the direction of the arrow ab is referred to as the depth direction or the axial direction.
  • the direction of arrow c that is, the direction perpendicular to the axial direction
  • the direction of arrow c which moves away from axis X
  • the direction of arrow d which approaches axis
  • the direction along the tangent of the circle around the axis X is referred to as the tangential direction.
  • FIG. 1 is a perspective view showing the external configuration of a sensor device 1 according to the present embodiment. However, the shaft S and the boss portion G2 of the output gear G are shown in cross section.
  • FIG. 2 is a schematic diagram showing an example of how the sensor device 1 is used.
  • the sensor device 1 includes a shaft S, a holder 10, and a bearing 20.
  • the bearing 20 is a ball bearing having an inner ring 21, an outer ring 22, and rolling elements.
  • the inner ring 21 is fixed integrally with a shaft S and a boss portion G2 of an output gear G, which will be described later, and is arranged to be rotatable with respect to the outer ring 22.
  • the bearing 20 is not limited to a ball bearing, and may be a variety of other bearings such as a sleeve bearing.
  • the shaft S is a substantially cylindrical member extending in the axial direction.
  • an output gear G is fixed to the outside (radially one side) of the shaft S.
  • the output gear G includes a gear part G1 (see FIG. 2) and a substantially cylindrical boss part G2, which is provided coaxially with the gear part G1 and projects from the gear part G1 to the back side (one side in the axial direction). It is a member.
  • the output gear G is glued or press-fitted onto the outer circumferential surface (radially outer surface) of the shaft S. Thereby, the output gear G is fixed to the shaft S and rotates together with the shaft S.
  • a bearing 20 is arranged outside the boss portion G2 of the output gear G in the radial direction. That is, in the radial direction, the bearing 20 is arranged outside the shaft S with other members interposed therebetween. Specifically, the bearing 20 is indirectly arranged on the outside of the shaft S via the output gear G.
  • the inner ring 21 of the bearing 20 is bonded or press-fitted to the outer circumferential surface (radially outer surface) of the boss portion G2 of the output gear G. Thereby, the inner ring 21 of the bearing 20 is fixed to the boss portion G2 of the output gear G, and rotates together with the shaft S and the output gear G.
  • the holder 10 is arranged outside the bearing 20 in the radial direction.
  • the holder 10 has a substantially square cylindrical shape when viewed in the axial direction (plan view), and includes an inner circumferential member 11 and an outer circumferential member 12 .
  • the inner circumferential member 11 is a substantially cylindrical member that extends in the axial direction and has a cylindrical inner circumferential surface 11i and a substantially cylindrical outer circumferential surface 11o around the axis X.
  • the inner peripheral member 11 is arranged outside the bearing 20.
  • the outer ring 22 of the bearing 20 is press-fitted or bonded to the inner circumferential surface 11i of the inner circumferential member 11 of the holder 10.
  • the bearing 20 supports the inner peripheral member 11 of the holder 10 from inside.
  • the bearing 20 rotatably supports the shaft S and the output gear G with respect to the holder 10.
  • the outer circumferential member 12 is a cylindrical member that has a substantially cylindrical inner circumferential surface 12i around the axis X and is substantially square when viewed in the axial direction (plan view).
  • the outer circumferential member 12 is arranged outside the inner circumferential member 11 in the radial direction.
  • the dimensions of the inner peripheral member 11 are the same as the dimensions of the outer peripheral member 12.
  • the front end face (the other side) and the back end face (one side) of the inner circumferential member 11 are on the same plane as the front end face and the back end face of the outer circumferential member 12, respectively.
  • the outer circumferential member 12 has four outer circumferential surfaces (radially outer surfaces, respectively referred to as surfaces 12a, 12b, 12c, and 12d in the clockwise axial direction (plan view)) extending in the axial direction.
  • surfaces 12a, 12b, 12c, and 12d are parallel to each other, and surface 12b and surface 12d are parallel to each other.
  • two adjacent surfaces are orthogonal to each other. .
  • a total of four circular fixing holes 12h when viewed in the axial direction (plan view) are provided near the four corners of the outer peripheral member, one each.
  • Each fixing hole 12h passes through the outer peripheral member 12 in the axial direction.
  • the holder 10 (outer peripheral member 12) is fixed to the housing H in which the sensor device 1 is arranged by a bolt B inserted into the fixing hole 12h.
  • the inner peripheral member 11 and the outer peripheral member 12 are integrally connected by two connecting parts 13.
  • the two connecting parts 13 are arranged at symmetrical positions with respect to the axis X.
  • the two connecting portions 13 are arranged on the side closer to the surface 12a and the side closer to the surface 12c, respectively.
  • the two connecting portions 13 are arranged point-symmetrically with respect to the axis X, in other words, the center of the shaft S.
  • the end face on the front side (the other side) and the end face on the back side (one side) of the connecting portion 13 are the same as the end face on the front side and the end face on the back side of the inner peripheral member 11 (and outer peripheral member 12), respectively. Extends on a plane.
  • An axis Y connecting the two connecting parts 13 passes through the axis X and is perpendicular to the axis X.
  • Each connecting portion 13 has an extending direction perpendicular to the axial direction (direction along the axis X), that is, an extending direction along the axis Y.
  • each of the two connecting portions 13 each have a shape that is line symmetrical with respect to the axis Y when viewed in the axial direction (viewed in the axial direction with respect to the axis X).
  • each of the two connecting portions 13 has a width in the tangential direction of the portion connected to the inner circumferential member 11 and a width in the tangential direction of the portion connected to the outer circumferential member 12, respectively, when viewed in the axial direction (viewed in the axial direction with respect to the axis X).
  • the width is larger than the width in the tangential direction of the portion between the portion connected to the inner peripheral member 11 and the portion connected to the outer peripheral member 12.
  • each of the two connecting portions 13 has a concave portion recessed in the tangential direction in a portion between a portion connecting to the inner circumferential member 11 and a portion connecting to the outer circumferential member 12 when viewed in the axial direction.
  • the outer circumferential surface 11o of the inner circumferential member 11 and the inner circumferential surface 12i of the outer circumferential member 12 are opposed to each other via two substantially semicylindrical grooves 14, except for a portion connected by the connecting portion 13. are doing.
  • the two grooves 14 are formed symmetrically with respect to the axis X. Each groove 14 passes through the holder 10 in the axial direction.
  • the two grooves 14 are arranged on the side closer to the surface 12b and the side closer to the surface 12d, respectively.
  • each groove 14 Both ends of each groove 14 are connected to a total of four circular through holes 15 when viewed in the axial direction (plan view), which penetrate the holder 10 in the axial direction. That is, the through holes 15 are connected to both ends of one groove 14, and the groove 14 and the two through holes 15 are in communication.
  • the diameter of the through hole 15 is the same or approximately the same as the diameter of the fixing hole 12h of the outer circumferential member 12, and is larger than the width of the groove 14 (the distance between the inner circumferential member 11 and the outer circumferential member 12 in the radial direction). .
  • two of the four fixing holes 12h and two of the four through holes 15 are located near the surface 12a of the outer peripheral member 12. They are arranged on a straight line parallel to the surface 12a.
  • the other two fixing holes 12h among the four fixing holes 12h and the other two through holes 15 among the four through holes 15 are located in the outer peripheral member 12. In the vicinity of the surface 12c, they are arranged on a straight line parallel to the surface 12c.
  • the connecting portion 13 is formed as a region between two adjacent through holes 15.
  • the connecting portion 13 is a deformable portion that undergoes elastic deformation or plastic deformation when subjected to stress.
  • the connecting portion 13 rotatably supports the inner peripheral member 11 with respect to the outer peripheral member 12.
  • the connecting portion 13 supports the inner circumferential member 11 with respect to the outer circumferential member 12 so as to be able to twist and rotate.
  • the connecting portion 13 is arranged to be twisted and rotatable with respect to the inner circumferential member 11 or the outer circumferential member 12.
  • the torsional rotation referred to herein is a torsional rotation in the circumferential direction (direction indicated by arrow e) about the axis Y connecting the two connecting portions 13.
  • the inner circumferential member 11 can be twisted and displaced in the direction of arrow e with respect to the outer circumferential member 12.
  • a first strain sensor 16 is disposed on each of the two connecting portions 13 on the front surface in the axial direction. That is, a total of two first strain sensors 16 are installed at symmetrical positions with respect to the axis X.
  • the first strain sensor 16 can detect strain deformation of the connecting portion 13 due to twisting.
  • each of the first strain sensors 16 is arranged obliquely with respect to the extending direction of the connecting portion 13 (direction along the axis Y). This inclination angle and the like will be described later.
  • the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is relative to the extending direction of the connecting portion 13 (direction along axis Y). It is attached to the connecting part 13 so as to be inclined.
  • strain deformation of the connecting portion 13 is detected as a change in resistance value.
  • the first strain sensor 16 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
  • each of the first strain sensors 16 is attached so as to be inclined at 45 degrees with respect to the axis Y connecting the two connecting parts 13.
  • the two first strain sensors 16 are mounted so as to be inclined in the same direction.
  • the angle of inclination is not limited to 45°.
  • the angle of inclination may be within the range of 5° to 85° relative to axis Y, may be within the range of 10° to 80° relative to axis Y, and may be within the range of 10° to 80° relative to axis Y. It may be within the range of 20° to 70°, it may be within the range of 30° to 60° with respect to axis Y, and it may be within the range of 40° to 50° with respect to axis Y.
  • the angle of inclination here refers to the smaller of the angles formed by the axis Y and the extending direction of the first strain sensor 16.
  • the two first strain sensors 16 may be inclined at different angles.
  • the two first strain sensors 16 may be mounted so as to be inclined in different directions.
  • a total of four second strain sensors 17, two each on the surface 12a and surface 12c of the outer peripheral member 12, are arranged.
  • Each second strain sensor 17 is attached near the through hole 15. Specifically, in the direction along the axis Y, the second strain sensor 17 is arranged at a position facing the through hole 15.
  • the second strain sensor 17 is attached so as to be able to detect the strain of the surfaces 12a and 12c in a direction along a plane perpendicular to the axial direction (direction along the axis X).
  • the second strain sensor 17 can detect deformation of the holder 10 in a direction perpendicular to the axial direction (direction along the axis X).
  • the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is along the longitudinal direction (direction perpendicular to the axial direction) of surfaces 12a and 12c. It is installed like this.
  • strain in the holder 10 is detected as a change in resistance value.
  • the second strain sensor 17 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
  • FIG. 2 is a schematic diagram showing a state in which the sensor device 1 is attached to a power-assisted bicycle.
  • the holder 10 is fixed by a bolt B to a housing H of a drive unit 5 of the electrically assisted bicycle.
  • the sensor device 1 is mounted with the axial back side (one axial side) of the holder 10 facing the housing H.
  • the sensor device 1 may be mounted with the axial front side (the other axial side) of the holder 10 facing the housing H.
  • the shaft S and the boss portion G2 of the output gear G penetrate and protrude.
  • a pedal (not shown) is fixed to the end of the shaft S.
  • a chain ring (load member) 30 is fixed to the outer peripheral surface (radially outer surface) of the boss portion G2 of the output gear G via a hub (not shown) or the like.
  • the chain ring (load member) 30 is arranged on one side of the shaft S in the axial direction. In the axial direction, the chain ring (load member) 30 and the holder 10 are separated from each other.
  • the electrically assisted bicycle has a rear wheel (not shown) centered around a rear wheel shaft 3, and a cassette sprocket 2 including five sprockets 2a, 2b, 2c, 2d, and 2e with different diameters is mounted on the rear wheel shaft 3 (not shown). It is fixed via a hub etc.
  • a roller chain 4 is stretched across the chain ring (load member) 30 and one of the sprockets of the cassette sprocket 2.
  • the rotation of the chain ring (load member) 30 is transmitted by the roller chain 4 to the cassette sprocket 2 and, in turn, to the rear wheel.
  • the sprocket on which the roller chain 4 is mounted is changed by a derailleur (not shown).
  • the roller chain 4 is shown hanging on the sprocket 2a, which has the largest diameter among the five sprockets and is located closest to the rear wheel (4a), and the state where the roller chain 4 is mounted on the sprocket 2a, which has the largest diameter among the five sprockets and is located closest to the rear wheel (4a);
  • the state (4e) in which the sprocket 2e is small and is placed over the sprocket 2e located furthest from the rear wheel is shown by imaginary lines.
  • a load Fa derived from the tension of the roller chain 4 is applied to the chain ring (load member) 30.
  • the direction of the load Fa is different from the direction in which the connecting portion 13 of the holder 10 extends (the direction along the axis Y).
  • the load Fa has an axial component Fa1 (direction along the axis X) and a component Fa2 in a direction perpendicular to the axial direction.
  • a load Fe derived from the tension of the roller chain 4 is applied to the chain ring (load member) 30.
  • the load Fe has an axial component Fe1 (direction along the axis X) and a component Fe2 in a direction perpendicular to the axial direction.
  • the axial component Fa1 of the load Fa and the axial component Fe1 of the load Fe face opposite directions in the axial direction (direction along the axis X).
  • the loads Fa and Fe have components Fa1 and Fe1 in the axial direction (direction along the axis X)
  • stress that tilts the chain ring (load member) 30 in the axial direction (direction along the axis X) is generated. do.
  • Such stress is transmitted to the inner peripheral member 11 of the holder 10 via the output gear G and the bearing 20.
  • the inner circumferential member 11 slightly rotates (twists) with respect to the outer circumferential member 12 at an angle corresponding to the stress.
  • the rotation can be detected by the first strain sensor 16.
  • the first strain sensor 16 can detect the load applied to the chain ring (load member) 30 via the output gear G and the bearing 20.
  • the inner peripheral member 11 is adjusted accordingly.
  • the angle of rotation is also different. Therefore, the first strain sensor 16 can detect which sprocket of the cassette sprocket 2 the roller chain 4 is mounted on (that is, which gear shift stage the electrically assisted bicycle is in).
  • the shaft S is a crankshaft provided with pedals.
  • a force is applied that tends to tilt the pedal side of the shaft S downward in the vertical direction, so the bearing 20 tends to move in the radial direction, causing a part of the holder 10 to move outward in the radial direction (in the vertical direction). (lower side).
  • stress is concentrated near the through hole 15 of the outer peripheral member 12, and elastic strain deformation is likely to occur. This strain deformation can be detected by the second strain sensor 17.
  • the connecting portion 13 rotatably supports the inner circumferential member 11 of the holder 10 with respect to the outer circumferential member 12, and the first strain sensor 16 is attached to the connecting portion 13. Due to the simple arrangement, the load applied to the chain ring (load member) 30 can be detected as torsion. Further, the sensor device 1 according to the present embodiment can also detect the force of pressing the pedal as a strain by the second strain sensor 17 arranged on the outer peripheral member 12 of the holder 10. In this way, the sensor device 1 can detect multiple types of forces simultaneously with a simple configuration.
  • each first strain sensor 16 is attached so as to be inclined with respect to the axis Y connecting the two connecting parts 13. This makes the first strain sensor 16 less susceptible to slight strain in the connecting portion 13 that may occur due to the force of pressing the pedal downward in the vertical direction. Strain in the connecting portion 13 caused by the rotation of the connecting portion 13 can be detected with higher accuracy.
  • a total of four second strain sensors 17, two each on the surface 12a and the opposite surface 12c of the outer peripheral member 12, are arranged, so that when the pedal is Stress in the direction along the axis Y (typically stress in the vertical direction), which is likely to occur when stepping on the pedal, can be detected with high sensitivity. Depending on the detected stress, the output of the motor of the electrically assisted bicycle can be adjusted.
  • FIG. 3 is a perspective view showing the external configuration of sensor device 100 according to this embodiment. However, the shaft S and the output gear G are shown in cross section.
  • the sensor device 100 has the same configuration as the sensor device 1 according to the first embodiment, except that it includes a first strain sensor 116 instead of the first strain sensor 16.
  • members and components having the same functions and configurations as those in the first embodiment will be designated by the same reference numerals as in the first embodiment, and detailed description thereof will be omitted.
  • a first strain sensor 116 is arranged on the front surface of each connecting portion 13 in the axial direction. That is, a total of two first strain sensors 116 are installed at symmetrical positions with respect to the axis X. Each first strain sensor 116 can detect strain deformation of each connecting portion 13 due to torsional rotation. When viewed in the axial direction, each first strain sensor 116 is arranged to extend perpendicularly to the extending direction of the connecting portion 13 (direction along the axis Y).
  • the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is relative to the extending direction of the connecting portion 13 (direction along axis Y). They are attached to the connecting portion 13 so as to be perpendicular to each other.
  • strain deformation of the connecting portion 13 is detected as a change in resistance value.
  • the first strain sensor 116 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
  • each first strain sensor 116 is tilted with respect to the axis Y connecting the two connecting parts 13. It is not installed to do so. Therefore, in the sensor device 100 according to the present embodiment, the first strain sensor 116 detects slight strain in the connecting portion 13 that may occur due to the force of pressing the pedal downward in the vertical direction. There may be some impact.
  • the sensor device 100 according to the present embodiment can still simultaneously detect the load applied to the chain ring (load member) 30 and the pedal depression force with a simple configuration. Further, the sensor device 100 according to the present embodiment similarly has the other characteristics described above for the sensor device 1 according to the first embodiment.
  • each first strain sensor 116 so as to be inclined with respect to the axis Y connecting the two connecting portions 13. Therefore, when manufacturing the sensor device 100, the work of attaching the first strain sensor 116 is simplified and work efficiency is improved.
  • FIG. 4 is a perspective view showing the external configuration of sensor device 200 according to this embodiment.
  • the shaft S and the output gear G are shown in cross section.
  • the sensor device 200 has the same configuration as the sensor device 1 according to the first embodiment, except that it includes a holder 210 instead of the holder 10.
  • members and components having the same functions and configurations as those in the first embodiment will be designated by the same reference numerals as in the first embodiment, and detailed description thereof will be omitted.
  • a holder 210 is arranged on the radially outer side of the bearing 20.
  • the holder 210 is a part of the outer peripheral member 12 (between the two fixing holes 12h near the surface 12b, extending along the surface 12b). The portion extending along the surface 12d between the two fixing holes 12h near the surface 12d is cut off.
  • the holder 210 has a substantially square cylindrical shape when viewed in the axial direction (plan view), and includes an inner circumferential member 11 and two outer circumferential members 212.
  • the outer peripheral member 212 is arranged outside the inner peripheral member 11 in the radial direction.
  • the dimensions of the inner peripheral member 11 are the same as the dimensions of the outer peripheral member 212.
  • the front end face (the other side) and the back end face (one side) of the inner circumferential member 11 are on the same plane as the front end face and the back end face of the outer circumferential member 212, respectively.
  • the two outer circumferential members 212 are each connected to the inner circumferential member 11 by the connecting portions 13 so as to have mirror symmetry with respect to a plane including the axis X.
  • Each outer circumferential member 212 has a substantially rectangular parallelepiped shape with the tangential direction as the longitudinal direction, and has a substantially circular arc shape along the outer circumferential surface 11o of the inner circumferential member 11 up to about half of the radial dimension at the central portion in the longitudinal direction. It has a chipped shape. Since the two outer circumferential members 212 have the same configuration, only one outer circumferential member 212 will be described in detail hereafter, and detailed explanations of the other outer circumferential members 212 will be omitted.
  • One fixing hole 212h which is circular when viewed in the axial direction (planar view), is provided near both ends of the outer peripheral member. Each fixing hole 212h passes through the outer peripheral member 212 in the axial direction.
  • the holder 210 (outer peripheral member 212) can be fixed to the housing H (not shown) by a bolt B (not shown) inserted into the fixing hole 212h.
  • the outer circumferential member 212 has two inner circumferential surfaces 212i that face the outer circumferential surface 11o of the inner circumferential member 11 and have an arcuate shape when viewed in the axial direction (planar view) with the axis X as the center.
  • each inner circumferential surface 212i of the outer circumferential member 212 is formed through an arcuate groove 214 when viewed in the axial direction, except for a portion connected by the connecting portion 13 and a portion where a through hole 215, which will be described later, is present. It faces the outer peripheral surface 11o of the inner peripheral member 11.
  • Each groove 214 extends axially through the holder 210.
  • each groove 214 (the end portion on the side closer to the connecting portion 13) is connected to a through hole 215 that passes through the holder 10 in the axial direction and is circular in axial direction (plan view). That is, the through hole 215 is connected to the end of one groove 214, and the groove 214 and the through hole 215 communicate with each other.
  • the diameter of the through hole 215 is the same or approximately the same as the diameter of the fixing hole 212h of the outer circumferential member 212, and is larger than the width of the groove 214 (the distance between the inner circumferential member 11 and the outer circumferential member 212 in the radial direction). .
  • the two fixing holes 212h and the two through holes 215 are arranged in a straight line in the longitudinal direction of the outer peripheral member 212.
  • the connecting portion 13 is formed as a region between two adjacent through holes 215.
  • Two second strain sensors 17 are arranged on a surface 212a of the outer peripheral member 212 opposite to the side connected to the inner peripheral member 11. Each second strain sensor 17 is attached near the through hole 215. Specifically, in the direction along the axis Y, the second strain sensor 17 is arranged at a position facing the through hole 215. The second strain sensor 17 is attached so as to be able to detect the strain of the surface 212a in a direction along a plane perpendicular to the axial direction (direction along the axis X). The second strain sensor 17 can detect deformation of the holder 210 in a direction perpendicular to the axial direction (direction along the axis X). Note that since there are two outer peripheral members 212, the sensor device 200 has a total of four second strain sensors 17 as a whole.
  • the second strain sensor 17 When the second strain sensor 17 is a strain gauge, it is installed so that the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is along the longitudinal direction (direction perpendicular to the axial direction) of the surface 212a. It is being When the second strain sensor 17 is a strain gauge, strain in the holder 210 is detected as a change in resistance value. Note that the second strain sensor 17 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
  • the sensor device according to this embodiment similarly has the characteristics described above with respect to the sensor device 1 according to the first embodiment.
  • the holder 210 is lighter than the holder 10 of the sensor device 1 according to the first embodiment, so that the device can be made lighter.
  • the sensor device of the present invention has been described above with reference to preferred embodiments, the sensor device of the present invention is not limited to the configuration of the above embodiments.
  • the sensor devices 1, 100, and 200 according to the embodiments described above are used for electrically assisted bicycles, but the sensor device of the present invention is not limited to that used for electrically assisted bicycles.
  • the load member is the chain ring 30, but the load member may be any other member as long as it generates stress that causes it to tilt in the axial direction due to the load. It may be.
  • the second strain sensor 17 is attached to the outer peripheral member 12, 212 of the holder 10, 210, but the sensor device of the present invention The strain sensor 17 may not be provided.
  • the bearing 20 was fixed to the shaft S via the boss portion G2 of the output gear G, but in the sensor device of the present invention, the bearing is directly attached to the shaft S. may be fixed. In this case, a load member such as a chain ring is also fixed to the shaft S without intervening the boss portion G2 of the output gear G.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided is a sensor device with a simple configuration. A sensor device (1, 100, 200) comprises: a shaft (S), a bearing (20) directly or indirectly disposed on the shaft (S); and a holder (10, 210) disposed on the bearing (20). The holder (10, 210) includes: an inner circumferential member (11); an outer circumferential member (12, 212); a connecting portion (13) that connects the inner circumferential member (11) and the outer circumferential member (12, 212); and a first strain sensor (16) disposed on the connecting portion (13). In the radial direction, the inner circumferential member (11) is disposed outside of the bearing (20), and the connecting portion (13) rotatably supports the inner circumferential member (11) relative to the outer circumferential member (12, 212).

Description

センサ装置sensor device
 本発明は、センサ装置に関する。 The present invention relates to a sensor device.
 シャフトにかかる複数方向の力を検出するためのセンサ装置として、従来、ひずみ発生部に貼り付けた複数のひずみゲージを互いに接続し、力に応じたひずみを検出するように構成したセンサ装置が知られている(特許文献1)。 Conventionally, as a sensor device for detecting forces in multiple directions applied to a shaft, a sensor device configured to connect multiple strain gauges attached to a strain generating part to each other and detect strain according to the force is known. (Patent Document 1).
特開平10-78360号公報Japanese Patent Application Publication No. 10-78360
 従来のセンサ装置は、機構が複雑化し、また、装置全体が大型化する傾向にあった。本発明は、簡易な構成を有するセンサ装置の提供を課題の一例とする。 Conventional sensor devices tend to have complicated mechanisms, and the overall size of the device tends to increase. An example of the present invention is to provide a sensor device having a simple configuration.
 本発明のセンサ装置は、シャフトと、前記シャフトに直接的または間接的に配置された軸受と、前記軸受に配置されたホルダと、を備え、前記ホルダは、内周部材と、外周部材と、前記内周部材と前記外周部材とを接続する接続部と、前記接続部に配置された第1のひずみセンサと、を有し、径方向において、前記内周部材は、前記軸受の外側に配置され、前記接続部は、前記内周部材を、前記外周部材に対して回動可能に支持する。 The sensor device of the present invention includes a shaft, a bearing disposed directly or indirectly on the shaft, and a holder disposed on the bearing, and the holder includes an inner peripheral member, an outer peripheral member, a connecting portion connecting the inner circumferential member and the outer circumferential member; and a first strain sensor disposed in the connecting portion, wherein the inner circumferential member is disposed outside the bearing in the radial direction. The connecting portion rotatably supports the inner peripheral member with respect to the outer peripheral member.
本発明の一例である第1の実施の形態にかかるセンサ装置の斜視図である。FIG. 1 is a perspective view of a sensor device according to a first embodiment, which is an example of the present invention. 本発明の一例である第1の実施の形態にかかるセンサ装置の使用状態の一例を示す模式図である。1 is a schematic diagram showing an example of a usage state of a sensor device according to a first embodiment, which is an example of the present invention; FIG. 本発明の一例である第2の実施の形態にかかるセンサ装置の斜視図である。FIG. 3 is a perspective view of a sensor device according to a second embodiment, which is an example of the present invention. 本発明の一例である第3の実施の形態にかかるセンサ装置の斜視図である。FIG. 7 is a perspective view of a sensor device according to a third embodiment, which is an example of the present invention.
 本発明の各実施の形態の説明において、説明の便宜上、シャフトSの中心軸(軸X)に沿った矢印b方向を背面側または軸方向一方側とする。軸Xに沿った矢印a方向を正面側または軸方向他方側とする。ここで、軸Xに沿った方向、すなわち矢印ab方向を奥行き方向または軸方向と称する。また、矢印cd方向、すなわち軸方向に直交する方向を径方向と称し、軸Xから離れる矢印c方向を外側または径方向一方側、軸Xに近づく矢印d方向を内側または径方向他方側と称する。さらに、軸Xの周りの円の接線に沿った方向を接線方向と称する。 In the description of each embodiment of the present invention, for convenience of explanation, the direction of arrow b along the central axis (axis X) of the shaft S will be referred to as the back side or one side in the axial direction. The direction of arrow a along axis X is defined as the front side or the other axial side. Here, the direction along the axis X, that is, the direction of the arrow ab is referred to as the depth direction or the axial direction. Further, the direction of arrow c, that is, the direction perpendicular to the axial direction, is referred to as the radial direction, the direction of arrow c, which moves away from axis X, is referred to as the outside or one radial side, and the direction of arrow d, which approaches axis . Furthermore, the direction along the tangent of the circle around the axis X is referred to as the tangential direction.
[第1の実施の形態]
 以下、本発明の一例である第1の実施の形態について図面を参照しながら説明する。図1は、本実施の形態にかかるセンサ装置1の外観構成を示す斜視図である。ただし、シャフトSと、出力ギヤGのボス部G2は断面で示されている。図2は、センサ装置1の使用状態の一例を示す模式図である。
[First embodiment]
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment, which is an example of the present invention, will be described below with reference to the drawings. FIG. 1 is a perspective view showing the external configuration of a sensor device 1 according to the present embodiment. However, the shaft S and the boss portion G2 of the output gear G are shown in cross section. FIG. 2 is a schematic diagram showing an example of how the sensor device 1 is used.
 センサ装置1は、シャフトSと、ホルダ10と、軸受20とを有する。本実施の形態において、軸受20は、内輪21、外輪22および転動体を有するボールベアリングである。内輪21はシャフトSおよび後述する出力ギヤGのボス部G2と一体に固定されており、外輪22に対して回転可能に配置されている。なお、軸受20は、ボールベアリングに限られず、例えばスリーブベアリング等、その他種々の軸受であってもよい。 The sensor device 1 includes a shaft S, a holder 10, and a bearing 20. In this embodiment, the bearing 20 is a ball bearing having an inner ring 21, an outer ring 22, and rolling elements. The inner ring 21 is fixed integrally with a shaft S and a boss portion G2 of an output gear G, which will be described later, and is arranged to be rotatable with respect to the outer ring 22. Note that the bearing 20 is not limited to a ball bearing, and may be a variety of other bearings such as a sleeve bearing.
 シャフトSは、軸方向に延びる略円柱状の部材である。径方向において、シャフトSの外側(径方向一方側)には、出力ギヤGが固定されている。出力ギヤGは、歯車部G1(図2参照)と、歯車部G1と同軸に設けられた、歯車部G1から背面側(軸方向一方側)へ突出する略円筒状のボス部G2とを有する部材である。出力ギヤGは、シャフトSの外周面(径方向外側の面)に、接着または圧入されている。これにより、出力ギヤGは、シャフトSに固定され、シャフトSと一体に回転する。 The shaft S is a substantially cylindrical member extending in the axial direction. In the radial direction, an output gear G is fixed to the outside (radially one side) of the shaft S. The output gear G includes a gear part G1 (see FIG. 2) and a substantially cylindrical boss part G2, which is provided coaxially with the gear part G1 and projects from the gear part G1 to the back side (one side in the axial direction). It is a member. The output gear G is glued or press-fitted onto the outer circumferential surface (radially outer surface) of the shaft S. Thereby, the output gear G is fixed to the shaft S and rotates together with the shaft S.
 径方向において、出力ギヤGのボス部G2の外側には、軸受20が配置されている。すなわち、径方向において、軸受20は、シャフトSの外側に、他の部材を介して配置されている。具体的には、軸受20は、シャフトSの外側に、出力ギヤGを介して間接的に配置されている。軸受20の内輪21は、出力ギヤGのボス部G2の外周面(径方向外側の面)に接着または圧入されている。これにより、軸受20の内輪21は、出力ギヤGのボス部G2に固定され、シャフトSおよび出力ギヤGと一体に回転する。 A bearing 20 is arranged outside the boss portion G2 of the output gear G in the radial direction. That is, in the radial direction, the bearing 20 is arranged outside the shaft S with other members interposed therebetween. Specifically, the bearing 20 is indirectly arranged on the outside of the shaft S via the output gear G. The inner ring 21 of the bearing 20 is bonded or press-fitted to the outer circumferential surface (radially outer surface) of the boss portion G2 of the output gear G. Thereby, the inner ring 21 of the bearing 20 is fixed to the boss portion G2 of the output gear G, and rotates together with the shaft S and the output gear G.
 径方向において、軸受20の外側には、ホルダ10が配置されている。ホルダ10は、軸方向視(平面視)略正方形の筒形状であり、内周部材11および外周部材12を有する。内周部材11は、軸Xの周りに円筒状の内周面11iおよび略円筒状の外周面11oを有する、軸方向に延びる略円筒状の部材である。 The holder 10 is arranged outside the bearing 20 in the radial direction. The holder 10 has a substantially square cylindrical shape when viewed in the axial direction (plan view), and includes an inner circumferential member 11 and an outer circumferential member 12 . The inner circumferential member 11 is a substantially cylindrical member that extends in the axial direction and has a cylindrical inner circumferential surface 11i and a substantially cylindrical outer circumferential surface 11o around the axis X.
 径方向において、内周部材11は、軸受20の外側に配置されている。軸受20の外輪22は、ホルダ10の内周部材11の内周面11iに圧入または接着されている。これにより、軸受20は、ホルダ10の内周部材11を内側から支持している。また、軸受20は、シャフトSおよび出力ギヤGを、ホルダ10に対して回転可能に支持している。 In the radial direction, the inner peripheral member 11 is arranged outside the bearing 20. The outer ring 22 of the bearing 20 is press-fitted or bonded to the inner circumferential surface 11i of the inner circumferential member 11 of the holder 10. Thereby, the bearing 20 supports the inner peripheral member 11 of the holder 10 from inside. Further, the bearing 20 rotatably supports the shaft S and the output gear G with respect to the holder 10.
 外周部材12は、軸Xの周りに略円筒状の内周面12iを有する、軸方向視(平面視)略正方形の筒状の部材である。外周部材12は、径方向において、内周部材11よりも外側に配置されている。軸方向において、内周部材11の寸法は、外周部材12の寸法と同一である。軸方向において、内周部材11の正面側(他方側)の端面および背面側(一方側)の端面は、それぞれ外周部材12の正面側の端面および背面側の端面と同一平面上にある。 The outer circumferential member 12 is a cylindrical member that has a substantially cylindrical inner circumferential surface 12i around the axis X and is substantially square when viewed in the axial direction (plan view). The outer circumferential member 12 is arranged outside the inner circumferential member 11 in the radial direction. In the axial direction, the dimensions of the inner peripheral member 11 are the same as the dimensions of the outer peripheral member 12. In the axial direction, the front end face (the other side) and the back end face (one side) of the inner circumferential member 11 are on the same plane as the front end face and the back end face of the outer circumferential member 12, respectively.
 外周部材12は、軸方向に延在する4つの外周面(径方向外側の面であり、軸方向視(平面視)時計回りにそれぞれ面12a、面12b、面12c、面12dと称する)を有する。面12aと面12cは互いに平行であり、面12bと面12dは互いに平行である。面12a、面12b、面12c、面12dのうち、隣り合う2つの面(面12aと面12b、面12bと面12c、面12cと面12d、面12dと面12a)は互いに直交している。 The outer circumferential member 12 has four outer circumferential surfaces (radially outer surfaces, respectively referred to as surfaces 12a, 12b, 12c, and 12d in the clockwise axial direction (plan view)) extending in the axial direction. have Surface 12a and surface 12c are parallel to each other, and surface 12b and surface 12d are parallel to each other. Among the surfaces 12a, 12b, 12c, and 12d, two adjacent surfaces (surface 12a and surface 12b, surface 12b and surface 12c, surface 12c and surface 12d, and surface 12d and surface 12a) are orthogonal to each other. .
 外周部材の4つの角部の近傍には、それぞれ1つずつ、合計4つの軸方向視(平面視)円形の固定孔12hが設けられている。それぞれの固定孔12hは、外周部材12を軸方向に貫通する。図2に示すように、固定孔12hに挿通されたボルトBにより、ホルダ10(外周部材12)は、センサ装置1が配置されるハウジングHに固定される。 A total of four circular fixing holes 12h when viewed in the axial direction (plan view) are provided near the four corners of the outer peripheral member, one each. Each fixing hole 12h passes through the outer peripheral member 12 in the axial direction. As shown in FIG. 2, the holder 10 (outer peripheral member 12) is fixed to the housing H in which the sensor device 1 is arranged by a bolt B inserted into the fixing hole 12h.
 内周部材11と、外周部材12とは、2つの接続部13によって一体に接続されている。2つの接続部13は、軸Xに関して対称となる位置に配置されている。2つの接続部13は、面12aに近い側と、面12cに近い側に、それぞれ配置されている。具体的には、本実施の形態において、2つの接続部13は、軸X、言い換えると、シャフトSの中心に関して点対称に配置されている。軸方向において、接続部13の正面側(他方側)の端面および背面側(一方側)の端面は、それぞれ内周部材11(および外周部材12)の正面側の端面および背面側の端面と同一平面上に延在している。2つの接続部13を結ぶ軸Yは、軸Xを通り、軸Xと直交する。それぞれの接続部13は、軸方向(軸Xに沿った方向)に対して直交する延び方向、すなわち軸Yに沿った延び方向を有する。 The inner peripheral member 11 and the outer peripheral member 12 are integrally connected by two connecting parts 13. The two connecting parts 13 are arranged at symmetrical positions with respect to the axis X. The two connecting portions 13 are arranged on the side closer to the surface 12a and the side closer to the surface 12c, respectively. Specifically, in this embodiment, the two connecting portions 13 are arranged point-symmetrically with respect to the axis X, in other words, the center of the shaft S. In the axial direction, the end face on the front side (the other side) and the end face on the back side (one side) of the connecting portion 13 are the same as the end face on the front side and the end face on the back side of the inner peripheral member 11 (and outer peripheral member 12), respectively. Extends on a plane. An axis Y connecting the two connecting parts 13 passes through the axis X and is perpendicular to the axis X. Each connecting portion 13 has an extending direction perpendicular to the axial direction (direction along the axis X), that is, an extending direction along the axis Y.
 また、2つの接続部13は、それぞれ、軸方向視(軸Xに関する軸方向視)において、軸Yに関して線対称の形状をしている。また、2つの接続部13は、それぞれ、軸方向視(軸Xに関する軸方向視)において、内周部材11と接続する部分の接線方向の幅および、外周部材12と接続する部分の接線方向の幅が、内周部材11と接続する部分と外周部材12と接続する部分の間の部分の接線方向の幅よりも大きい。言い換えると、2つの接続部13は、それぞれ、軸方向視において、内周部材11と接続する部分と外周部材12と接続する部分の間の部分に、接線方向に凹んだ凹部を有する。 Furthermore, the two connecting portions 13 each have a shape that is line symmetrical with respect to the axis Y when viewed in the axial direction (viewed in the axial direction with respect to the axis X). In addition, each of the two connecting portions 13 has a width in the tangential direction of the portion connected to the inner circumferential member 11 and a width in the tangential direction of the portion connected to the outer circumferential member 12, respectively, when viewed in the axial direction (viewed in the axial direction with respect to the axis X). The width is larger than the width in the tangential direction of the portion between the portion connected to the inner peripheral member 11 and the portion connected to the outer peripheral member 12. In other words, each of the two connecting portions 13 has a concave portion recessed in the tangential direction in a portion between a portion connecting to the inner circumferential member 11 and a portion connecting to the outer circumferential member 12 when viewed in the axial direction.
 径方向において、内周部材11の外周面11oと、外周部材12の内周面12iとは、接続部13によって接続されている部分を除き、2つの略半円筒状の溝14を介して対向している。2つの溝14は、軸Xに関して対称に形成されている。それぞれの溝14は、ホルダ10を軸方向に貫通している。2つの溝14は、面12bに近い側と、面12dに近い側に、それぞれ配置されている。 In the radial direction, the outer circumferential surface 11o of the inner circumferential member 11 and the inner circumferential surface 12i of the outer circumferential member 12 are opposed to each other via two substantially semicylindrical grooves 14, except for a portion connected by the connecting portion 13. are doing. The two grooves 14 are formed symmetrically with respect to the axis X. Each groove 14 passes through the holder 10 in the axial direction. The two grooves 14 are arranged on the side closer to the surface 12b and the side closer to the surface 12d, respectively.
 それぞれの溝14の両端は、ホルダ10を軸方向に貫通する、合計4つの軸方向視(平面視)円形の貫通孔15に接続されている。すなわち、一つの溝14の両端にそれぞれ貫通孔15が接続されており、溝14と2つの貫通孔15とは連通している。貫通孔15の直径は、外周部材12の固定孔12hの直径と同一または略同一であり、溝14の幅(径方向における、内周部材11と外周部材12との間の距離)よりも大きい。 Both ends of each groove 14 are connected to a total of four circular through holes 15 when viewed in the axial direction (plan view), which penetrate the holder 10 in the axial direction. That is, the through holes 15 are connected to both ends of one groove 14, and the groove 14 and the two through holes 15 are in communication. The diameter of the through hole 15 is the same or approximately the same as the diameter of the fixing hole 12h of the outer circumferential member 12, and is larger than the width of the groove 14 (the distance between the inner circumferential member 11 and the outer circumferential member 12 in the radial direction). .
 軸方向視(平面視)において、4つの固定孔12hのうちの2つの固定孔12hと、4つの貫通孔15のうちの2つの貫通孔15とは、外周部材12の面12aの近傍において、面12aと平行に、直線上に並んで配置されている。また、軸方向視(平面視)において、4つの固定孔12hのうちの他の2つの固定孔12hと、4つの貫通孔15のうちの他の2つの貫通孔15とは、外周部材12の面12cの近傍において、面12cと平行に、直線上に並んで配置されている。接続部13は、隣接する2つの貫通孔15の間の領域として形成されている。 In the axial direction (plan view), two of the four fixing holes 12h and two of the four through holes 15 are located near the surface 12a of the outer peripheral member 12. They are arranged on a straight line parallel to the surface 12a. In addition, in the axial direction (plan view), the other two fixing holes 12h among the four fixing holes 12h and the other two through holes 15 among the four through holes 15 are located in the outer peripheral member 12. In the vicinity of the surface 12c, they are arranged on a straight line parallel to the surface 12c. The connecting portion 13 is formed as a region between two adjacent through holes 15.
 接続部13は、応力を受けることにより弾性変形または塑性変形をする変形部分である。接続部13は、内周部材11を、外周部材12に対して、回動可能に支持している。具体的には、接続部13は、内周部材11を、外周部材12に対して、ねじれ回転可能に支持している。言い換えると、接続部13は、内周部材11または外周部材12に対して、ねじれ回転可能に配置されている。ここでいうねじれ回転とは、2つの接続部13を結ぶ軸Yを中心とする周方向(矢印eで示された方向)のねじれ回転である。これにより、内周部材11は、外周部材12に対して、矢印e方向にねじれて変位できるようになっている。 The connecting portion 13 is a deformable portion that undergoes elastic deformation or plastic deformation when subjected to stress. The connecting portion 13 rotatably supports the inner peripheral member 11 with respect to the outer peripheral member 12. Specifically, the connecting portion 13 supports the inner circumferential member 11 with respect to the outer circumferential member 12 so as to be able to twist and rotate. In other words, the connecting portion 13 is arranged to be twisted and rotatable with respect to the inner circumferential member 11 or the outer circumferential member 12. The torsional rotation referred to herein is a torsional rotation in the circumferential direction (direction indicated by arrow e) about the axis Y connecting the two connecting portions 13. Thereby, the inner circumferential member 11 can be twisted and displaced in the direction of arrow e with respect to the outer circumferential member 12.
 2つの接続部13における軸方向正面側の面には、それぞれ第1のひずみセンサ16が配置されている。すなわち、合計2つの第1のひずみセンサ16が、軸Xに関して対称となる位置に取り付けられている。第1のひずみセンサ16は、接続部13の、ねじれによるひずみ変形を検出できる。軸方向視において、それぞれの第1のひずみセンサ16は、接続部13の延び方向(軸Yに沿った方向)に対して傾斜して配置されている。この傾斜角度等については後述する。 A first strain sensor 16 is disposed on each of the two connecting portions 13 on the front surface in the axial direction. That is, a total of two first strain sensors 16 are installed at symmetrical positions with respect to the axis X. The first strain sensor 16 can detect strain deformation of the connecting portion 13 due to twisting. When viewed in the axial direction, each of the first strain sensors 16 is arranged obliquely with respect to the extending direction of the connecting portion 13 (direction along the axis Y). This inclination angle and the like will be described later.
 第1のひずみセンサ16がひずみゲージである場合、グリッド(ゲージ)の向き(典型的には、ひずみゲージの長手方向)が、接続部13の延び方向(軸Yに沿った方向)に対して傾斜するように、接続部13に取り付けられている。第1のひずみセンサ16がひずみゲージである場合、接続部13のひずみ変形は抵抗値の変化として検出される。なお、第1のひずみセンサ16は、ひずみゲージに限られず、圧電素子等の、その他種々のセンサであってもよい。 When the first strain sensor 16 is a strain gauge, the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is relative to the extending direction of the connecting portion 13 (direction along axis Y). It is attached to the connecting part 13 so as to be inclined. When the first strain sensor 16 is a strain gauge, strain deformation of the connecting portion 13 is detected as a change in resistance value. Note that the first strain sensor 16 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
 本実施の形態において、それぞれの第1のひずみセンサ16は、2つの接続部13を結ぶ軸Yに対して45°傾斜するように取り付けられている。2つの第1のひずみセンサ16は、同じ方向に傾斜するように取り付けられている。ただし、傾斜の角度は45°に限られない。例えば、傾斜の角度は、軸Yに対して5°~85°の範囲内であってもよく、軸Yに対して10°~80°の範囲内であってもよく、軸Yに対して20°~70°の範囲内であってもよく、軸Yに対して30°~60°の範囲内であってもよく、軸Yに対して40°~50°の範囲内であってもよい。なお、ここでいう傾斜の角度とは、軸Yと第1のひずみセンサ16の延び方向がなす角度のうち、小さいほうの角度を指す。また、2つの第1のひずみセンサ16がそれぞれ異なった角度で傾斜していてもよい。さらに、2つの第1のひずみセンサ16は、異なる方向に傾斜するように取り付けられていてもよい。 In this embodiment, each of the first strain sensors 16 is attached so as to be inclined at 45 degrees with respect to the axis Y connecting the two connecting parts 13. The two first strain sensors 16 are mounted so as to be inclined in the same direction. However, the angle of inclination is not limited to 45°. For example, the angle of inclination may be within the range of 5° to 85° relative to axis Y, may be within the range of 10° to 80° relative to axis Y, and may be within the range of 10° to 80° relative to axis Y. It may be within the range of 20° to 70°, it may be within the range of 30° to 60° with respect to axis Y, and it may be within the range of 40° to 50° with respect to axis Y. good. Note that the angle of inclination here refers to the smaller of the angles formed by the axis Y and the extending direction of the first strain sensor 16. Furthermore, the two first strain sensors 16 may be inclined at different angles. Furthermore, the two first strain sensors 16 may be mounted so as to be inclined in different directions.
 外周部材12の面12aおよび面12cには、それぞれ2つずつ、合計4つの第2のひずみセンサ17が配置されている。それぞれの第2のひずみセンサ17は、貫通孔15の近傍に取り付けられている。具体的には、軸Yに沿った方向において、第2のひずみセンサ17は、貫通孔15と対向する位置に配置されている。第2のひずみセンサ17は、面12aおよび面12cの、軸方向(軸Xに沿った方向)に対して垂直な平面に沿った方向のひずみを検出できるように取り付けられている。第2のひずみセンサ17は、ホルダ10の、軸方向(軸Xに沿った方向)と直交する方向の変形を検出することができる。 A total of four second strain sensors 17, two each on the surface 12a and surface 12c of the outer peripheral member 12, are arranged. Each second strain sensor 17 is attached near the through hole 15. Specifically, in the direction along the axis Y, the second strain sensor 17 is arranged at a position facing the through hole 15. The second strain sensor 17 is attached so as to be able to detect the strain of the surfaces 12a and 12c in a direction along a plane perpendicular to the axial direction (direction along the axis X). The second strain sensor 17 can detect deformation of the holder 10 in a direction perpendicular to the axial direction (direction along the axis X).
 第2のひずみセンサ17がひずみゲージである場合、グリッド(ゲージ)の向き(典型的には、ひずみゲージの長手方向)が面12aおよび面12cの長手方向(軸方向に直交する方向)に沿うように取り付けられている。第2のひずみセンサ17がひずみゲージである場合、ホルダ10のひずみは抵抗値の変化として検出される。なお、第2のひずみセンサ17は、ひずみゲージに限られず、圧電素子等の、その他種々のセンサであってもよい。 When the second strain sensor 17 is a strain gauge, the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is along the longitudinal direction (direction perpendicular to the axial direction) of surfaces 12a and 12c. It is installed like this. When the second strain sensor 17 is a strain gauge, strain in the holder 10 is detected as a change in resistance value. Note that the second strain sensor 17 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
 図2は、センサ装置1が電動アシスト自転車に装着された状態を示す模式図である。ホルダ10は、ボルトBにより、電動アシスト自転車のドライブユニット5のハウジングHに固定されている。図2においては、センサ装置1は、ホルダ10の軸方向背面側(軸方向一方側)がハウジングHに対向する向きで装着されている。ただし、センサ装置1は、ホルダ10の軸方向正面側(軸方向他方側)がハウジングHに対向する向きで装着されていてもよい。ハウジングHを挟んでホルダ10の反対側(以下、「ドライブユニット5の外側」とも称する)には、シャフトSおよび出力ギヤGのボス部G2が貫通して突出している。ドライブユニット5の外側において、シャフトSの端部には、図示しないペダルが固定されている。 FIG. 2 is a schematic diagram showing a state in which the sensor device 1 is attached to a power-assisted bicycle. The holder 10 is fixed by a bolt B to a housing H of a drive unit 5 of the electrically assisted bicycle. In FIG. 2, the sensor device 1 is mounted with the axial back side (one axial side) of the holder 10 facing the housing H. However, the sensor device 1 may be mounted with the axial front side (the other axial side) of the holder 10 facing the housing H. On the opposite side of the holder 10 across the housing H (hereinafter also referred to as "the outside of the drive unit 5"), the shaft S and the boss portion G2 of the output gear G penetrate and protrude. On the outside of the drive unit 5, a pedal (not shown) is fixed to the end of the shaft S.
 ドライブユニット5の外側において、出力ギヤGのボス部G2の外周面(径方向外側の面)には、チェーンリング(負荷部材)30が、図示しないハブ等を介して固定されている。チェーンリング(負荷部材)30は、シャフトSの軸方向一方側に配置されている。軸方向において、チェーンリング(負荷部材)30とホルダ10とは離間している。電動アシスト自転車は後輪シャフト3を軸とする図示しない後輪を有し、後輪シャフト3には、径の異なる5つのスプロケット2a,2b,2c,2d,2eを含むカセットスプロケット2が、図示しないハブ等を介して固定されている。 On the outside of the drive unit 5, a chain ring (load member) 30 is fixed to the outer peripheral surface (radially outer surface) of the boss portion G2 of the output gear G via a hub (not shown) or the like. The chain ring (load member) 30 is arranged on one side of the shaft S in the axial direction. In the axial direction, the chain ring (load member) 30 and the holder 10 are separated from each other. The electrically assisted bicycle has a rear wheel (not shown) centered around a rear wheel shaft 3, and a cassette sprocket 2 including five sprockets 2a, 2b, 2c, 2d, and 2e with different diameters is mounted on the rear wheel shaft 3 (not shown). It is fixed via a hub etc.
 チェーンリング(負荷部材)30と、カセットスプロケット2のいずれかのスプロケットとを跨るように、ローラーチェーン4が架けられている。チェーンリング(負荷部材)30の回転は、ローラーチェーン4により、カセットスプロケット2、ひいては後輪に伝達される。変速時には、図示しないディレーラーにより、ローラーチェーン4が架けられるスプロケットが変更される。 A roller chain 4 is stretched across the chain ring (load member) 30 and one of the sprockets of the cassette sprocket 2. The rotation of the chain ring (load member) 30 is transmitted by the roller chain 4 to the cassette sprocket 2 and, in turn, to the rear wheel. During gear shifting, the sprocket on which the roller chain 4 is mounted is changed by a derailleur (not shown).
 図2においては、ローラーチェーン4が、5つのスプロケットのうち最も径が大きく、また最も後輪に近い側に配置されたスプロケット2aに架けられた状態(4a)と、5つのスプロケットのうち最も径が小さく、また最も後輪から遠い側に配置されたスプロケット2eに架けられた状態(4e)とが、それぞれ仮想線で示されている。 In FIG. 2, the roller chain 4 is shown hanging on the sprocket 2a, which has the largest diameter among the five sprockets and is located closest to the rear wheel (4a), and the state where the roller chain 4 is mounted on the sprocket 2a, which has the largest diameter among the five sprockets and is located closest to the rear wheel (4a); The state (4e) in which the sprocket 2e is small and is placed over the sprocket 2e located furthest from the rear wheel is shown by imaginary lines.
 ローラーチェーン4が4aの位置にあるとき、チェーンリング(負荷部材)30には、ローラーチェーン4の張力に由来する荷重Faがかかる。荷重Faの方向は、ホルダ10の接続部13の延び方向(軸Yに沿った方向)とは異なる。荷重Faは、軸方向(軸Xに沿った方向)の成分Fa1と、軸方向に対して直交する方向の成分Fa2とを有する。また、ローラーチェーン4が4eの位置にあるとき、チェーンリング(負荷部材)30には、ローラーチェーン4の張力に由来する荷重Feがかかる。荷重Feは、軸方向(軸Xに沿った方向)の成分Fe1と、軸方向に対して直交する方向の成分Fe2とを有する。荷重Faの軸方向の成分Fa1と、荷重Feの軸方向の成分Fe1とは、軸方向(軸Xに沿った方向)において互いに反対方向を向いている。 When the roller chain 4 is in position 4a, a load Fa derived from the tension of the roller chain 4 is applied to the chain ring (load member) 30. The direction of the load Fa is different from the direction in which the connecting portion 13 of the holder 10 extends (the direction along the axis Y). The load Fa has an axial component Fa1 (direction along the axis X) and a component Fa2 in a direction perpendicular to the axial direction. Further, when the roller chain 4 is in the position 4e, a load Fe derived from the tension of the roller chain 4 is applied to the chain ring (load member) 30. The load Fe has an axial component Fe1 (direction along the axis X) and a component Fe2 in a direction perpendicular to the axial direction. The axial component Fa1 of the load Fa and the axial component Fe1 of the load Fe face opposite directions in the axial direction (direction along the axis X).
 荷重Fa,Feは、軸方向(軸Xに沿った方向)の成分Fa1,Fe1を有するため、チェーンリング(負荷部材)30を軸方向(軸Xに沿った方向)に傾けるような応力が発生する。このような応力は、出力ギヤGおよび軸受20を介してホルダ10の内周部材11に伝達される。すると、内周部材11が、外周部材12に対し、当該応力に応じた角度で僅かに回動する(ねじれる)。当該回動は、第1のひずみセンサ16により検出することができる。以上のようにして、第1のひずみセンサ16は、チェーンリング(負荷部材)30にかかる荷重を、出力ギヤGおよび軸受20を介して検出することができる。 Since the loads Fa and Fe have components Fa1 and Fe1 in the axial direction (direction along the axis X), stress that tilts the chain ring (load member) 30 in the axial direction (direction along the axis X) is generated. do. Such stress is transmitted to the inner peripheral member 11 of the holder 10 via the output gear G and the bearing 20. Then, the inner circumferential member 11 slightly rotates (twists) with respect to the outer circumferential member 12 at an angle corresponding to the stress. The rotation can be detected by the first strain sensor 16. As described above, the first strain sensor 16 can detect the load applied to the chain ring (load member) 30 via the output gear G and the bearing 20.
 ローラーチェーン4がカセットスプロケット2のいずれのスプロケットに架けられているかによって、チェーンリング(負荷部材)30にかかる荷重の軸方向の成分の大きさおよび向きは異なるため、それに応じて内周部材11の回動の角度も異なる。したがって、第1のひずみセンサ16によって、ローラーチェーン4がカセットスプロケット2のいずれのスプロケットに架けられているか(すなわち、電動アシスト自転車がいずれの変速段階にあるか)を検出することが可能である。 Since the magnitude and direction of the axial component of the load applied to the chain ring (load member) 30 differ depending on which sprocket of the cassette sprocket 2 the roller chain 4 is mounted on, the inner peripheral member 11 is adjusted accordingly. The angle of rotation is also different. Therefore, the first strain sensor 16 can detect which sprocket of the cassette sprocket 2 the roller chain 4 is mounted on (that is, which gear shift stage the electrically assisted bicycle is in).
 また、センサ装置1が電動アシスト自転車に用いられる場合、シャフトSはペダルを備えるクランクシャフトである。一方のペダルが踏まれると、シャフトSの当該ペダル側が鉛直方向下向きに傾こうとする力が作用するため、軸受20が径方向に移動しようとし、ホルダ10の一部が径方向外側(鉛直方向下側)に向かって押圧される。ホルダ10においては、外周部材12の貫通孔15付近に応力が集中し、弾性的なひずみ変形が生じやすくなっている。このひずみ変形は、第2のひずみセンサ17により検出することが可能である。 Furthermore, when the sensor device 1 is used for an electrically assisted bicycle, the shaft S is a crankshaft provided with pedals. When one of the pedals is stepped on, a force is applied that tends to tilt the pedal side of the shaft S downward in the vertical direction, so the bearing 20 tends to move in the radial direction, causing a part of the holder 10 to move outward in the radial direction (in the vertical direction). (lower side). In the holder 10, stress is concentrated near the through hole 15 of the outer peripheral member 12, and elastic strain deformation is likely to occur. This strain deformation can be detected by the second strain sensor 17.
 本実施の形態にかかるセンサ装置1は、接続部13がホルダ10の内周部材11を外周部材12に対して回動可能に支持しており、接続部13に、第1のひずみセンサ16が配置されているという簡易な構成によって、チェーンリング(負荷部材)30にかかる荷重をねじれとして検出することができる。また、本実施の形態にかかるセンサ装置1は、ホルダ10の外周部材12に配置された第2のひずみセンサ17によって、ペダルを踏みこむ力をひずみとして検出することもできる。このように、センサ装置1は、簡易な構成によって、複数種類の力を同時に検出することができる。 In the sensor device 1 according to the present embodiment, the connecting portion 13 rotatably supports the inner circumferential member 11 of the holder 10 with respect to the outer circumferential member 12, and the first strain sensor 16 is attached to the connecting portion 13. Due to the simple arrangement, the load applied to the chain ring (load member) 30 can be detected as torsion. Further, the sensor device 1 according to the present embodiment can also detect the force of pressing the pedal as a strain by the second strain sensor 17 arranged on the outer peripheral member 12 of the holder 10. In this way, the sensor device 1 can detect multiple types of forces simultaneously with a simple configuration.
 本実施の形態にかかるセンサ装置1においては、それぞれの第1のひずみセンサ16が、2つの接続部13を結ぶ軸Yに対して傾斜するように取り付けられている。これにより、第1のひずみセンサ16が、ペダルを鉛直方向下向きに踏みこむ力に起因して発生する可能性のある、接続部13の僅かなひずみの影響を受けにくくなるため、内周部材11の回動に起因する接続部13のひずみをより精度よく検出することができる。 In the sensor device 1 according to the present embodiment, each first strain sensor 16 is attached so as to be inclined with respect to the axis Y connecting the two connecting parts 13. This makes the first strain sensor 16 less susceptible to slight strain in the connecting portion 13 that may occur due to the force of pressing the pedal downward in the vertical direction. Strain in the connecting portion 13 caused by the rotation of the connecting portion 13 can be detected with higher accuracy.
 本実施の形態にかかるセンサ装置1においては、外周部材12の面12aおよびその反対側の面12cに、それぞれ2つずつ、合計4つの第2のひずみセンサ17が配置されているため、ペダルを踏みこむ際に生じやすい、軸Yに沿った方向の応力(典型的には鉛直方向の応力)を高感度に検出することができる。検出された応力に応じて、電動アシスト自転車のモータの出力を調節することができる。 In the sensor device 1 according to the present embodiment, a total of four second strain sensors 17, two each on the surface 12a and the opposite surface 12c of the outer peripheral member 12, are arranged, so that when the pedal is Stress in the direction along the axis Y (typically stress in the vertical direction), which is likely to occur when stepping on the pedal, can be detected with high sensitivity. Depending on the detected stress, the output of the motor of the electrically assisted bicycle can be adjusted.
[第2の実施の形態]
 続いて、本発明の一例である第2の実施の形態について図面を参照しながら説明する。図3は、本実施の形態にかかるセンサ装置100の外観構成を示す斜視図である。ただし、シャフトSおよび出力ギヤGは断面で示されている。センサ装置100は、第1のひずみセンサ16の代わりに第1のひずみセンサ116を備える点を除き、第1の実施の形態にかかるセンサ装置1と同様の構成を有する。以下、第1の実施の形態と同一の機能および構成を有する部材および部品については、第1の実施の形態と同一の符号を付して、その詳細な説明を省略する。
[Second embodiment]
Next, a second embodiment, which is an example of the present invention, will be described with reference to the drawings. FIG. 3 is a perspective view showing the external configuration of sensor device 100 according to this embodiment. However, the shaft S and the output gear G are shown in cross section. The sensor device 100 has the same configuration as the sensor device 1 according to the first embodiment, except that it includes a first strain sensor 116 instead of the first strain sensor 16. Hereinafter, members and components having the same functions and configurations as those in the first embodiment will be designated by the same reference numerals as in the first embodiment, and detailed description thereof will be omitted.
 本実施の形態において、それぞれの接続部13の、軸方向正面側の面には、第1のひずみセンサ116が配置されている。すなわち、合計2つの第1のひずみセンサ116が、軸Xに関して対称となる位置に取り付けられている。それぞれの第1のひずみセンサ116は、それぞれの接続部13の、ねじれ回転によるひずみ変形を検出できる。軸方向視において、それぞれの第1のひずみセンサ116は、接続部13の延び方向(軸Yに沿った方向)に対して垂直に延在するように配置されている。 In this embodiment, a first strain sensor 116 is arranged on the front surface of each connecting portion 13 in the axial direction. That is, a total of two first strain sensors 116 are installed at symmetrical positions with respect to the axis X. Each first strain sensor 116 can detect strain deformation of each connecting portion 13 due to torsional rotation. When viewed in the axial direction, each first strain sensor 116 is arranged to extend perpendicularly to the extending direction of the connecting portion 13 (direction along the axis Y).
 第1のひずみセンサ116がひずみゲージである場合、グリッド(ゲージ)の向き(典型的には、ひずみゲージの長手方向)が、接続部13の延び方向(軸Yに沿った方向)に対して直交するように、接続部13に取り付けられている。第1のひずみセンサ116がひずみゲージである場合、接続部13のひずみ変形は抵抗値の変化として検出される。なお、第1のひずみセンサ116は、ひずみゲージに限られず、圧電素子等の、その他種々のセンサであってもよい。 When the first strain sensor 116 is a strain gauge, the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is relative to the extending direction of the connecting portion 13 (direction along axis Y). They are attached to the connecting portion 13 so as to be perpendicular to each other. When the first strain sensor 116 is a strain gauge, strain deformation of the connecting portion 13 is detected as a change in resistance value. Note that the first strain sensor 116 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
 本実施の形態にかかるセンサ装置100においては、第1の実施の形態にかかるセンサ装置1とは異なり、それぞれの第1のひずみセンサ116が、2つの接続部13を結ぶ軸Yに対して傾斜するようには取り付けられていない。したがって、本実施の形態にかかるセンサ装置100においては、第1のひずみセンサ116が、ペダルを鉛直方向下向きに踏みこむ力に起因して発生する可能性のある、接続部13の僅かなひずみの影響を多少受ける可能性はある。 In the sensor device 100 according to the present embodiment, unlike the sensor device 1 according to the first embodiment, each first strain sensor 116 is tilted with respect to the axis Y connecting the two connecting parts 13. It is not installed to do so. Therefore, in the sensor device 100 according to the present embodiment, the first strain sensor 116 detects slight strain in the connecting portion 13 that may occur due to the force of pressing the pedal downward in the vertical direction. There may be some impact.
 しかしながら、本実施の形態にかかるセンサ装置100は、依然として、簡易な構成によって、チェーンリング(負荷部材)30にかかる荷重およびペダルを踏みこむ力を同時に検出することができる。また、本実施の形態にかかるセンサ装置100は、第1の実施の形態にかかるセンサ装置1について上記したその他の特性も同様に有する。 However, the sensor device 100 according to the present embodiment can still simultaneously detect the load applied to the chain ring (load member) 30 and the pedal depression force with a simple configuration. Further, the sensor device 100 according to the present embodiment similarly has the other characteristics described above for the sensor device 1 according to the first embodiment.
 また、本実施の形態にかかるセンサ装置100においては、それぞれの第1のひずみセンサ116を、2つの接続部13を結ぶ軸Yに対して傾斜するように取り付ける必要がない。したがって、センサ装置100を製造する際、第1のひずみセンサ116の取り付け作業が単純化し、作業効率が向上する。 Furthermore, in the sensor device 100 according to the present embodiment, there is no need to attach each first strain sensor 116 so as to be inclined with respect to the axis Y connecting the two connecting portions 13. Therefore, when manufacturing the sensor device 100, the work of attaching the first strain sensor 116 is simplified and work efficiency is improved.
[第3の実施の形態]
 続いて、本発明の一例である第3の実施の形態について図面を参照しながら説明する。図4は、本実施の形態にかかるセンサ装置200の外観構成を示す斜視図である。ただし、シャフトSおよび出力ギヤGは断面で示されている。センサ装置200は、ホルダ10の代わりにホルダ210を備える点を除き、第1の実施の形態にかかるセンサ装置1と同様の構成を有する。以下、第1の実施の形態と同一の機能および構成を有する部材および部品については、第1の実施の形態と同一の符号を付して、その詳細な説明を省略する。
[Third embodiment]
Next, a third embodiment, which is an example of the present invention, will be described with reference to the drawings. FIG. 4 is a perspective view showing the external configuration of sensor device 200 according to this embodiment. However, the shaft S and the output gear G are shown in cross section. The sensor device 200 has the same configuration as the sensor device 1 according to the first embodiment, except that it includes a holder 210 instead of the holder 10. Hereinafter, members and components having the same functions and configurations as those in the first embodiment will be designated by the same reference numerals as in the first embodiment, and detailed description thereof will be omitted.
 本実施の形態において、軸受20の径方向外側には、ホルダ210が配置されている。ホルダ210は、第1の実施の形態にかかるセンサ装置1のホルダ10において、外周部材12の一部(面12bの近傍の2つの固定孔12hの間において、面12bに沿って延在している部分と、面12dの近傍の2つの固定孔12hの間において、面12dに沿って延在している部分)が切り落とされた形状となっている。 In this embodiment, a holder 210 is arranged on the radially outer side of the bearing 20. In the holder 10 of the sensor device 1 according to the first embodiment, the holder 210 is a part of the outer peripheral member 12 (between the two fixing holes 12h near the surface 12b, extending along the surface 12b). The portion extending along the surface 12d between the two fixing holes 12h near the surface 12d is cut off.
 ホルダ210は、軸方向視(平面視)略正方形の筒形状であり、内周部材11および2つの外周部材212を有する。外周部材212は、径方向において、内周部材11よりも外側に配置されている。軸方向において、内周部材11の寸法は、外周部材212の寸法と同一である。軸方向において、内周部材11の正面側(他方側)の端面および背面側(一方側)の端面は、それぞれ外周部材212の正面側の端面および背面側の端面と同一平面上にある。 The holder 210 has a substantially square cylindrical shape when viewed in the axial direction (plan view), and includes an inner circumferential member 11 and two outer circumferential members 212. The outer peripheral member 212 is arranged outside the inner peripheral member 11 in the radial direction. In the axial direction, the dimensions of the inner peripheral member 11 are the same as the dimensions of the outer peripheral member 212. In the axial direction, the front end face (the other side) and the back end face (one side) of the inner circumferential member 11 are on the same plane as the front end face and the back end face of the outer circumferential member 212, respectively.
 2つの外周部材212は、軸Xを含む平面に対して鏡面対称となるように、それぞれ接続部13によって内周部材11に接続されている。それぞれの外周部材212は、接線方向を長手方向とする略直方体状であり、長手方向の中央部において、径方向の寸法の半分程度まで、内周部材11の外周面11oに沿って略円弧状に欠けた形状をなしている。2つの外周部材212は同一の構成を有するため、以降、1つの外周部材212のみを詳細に説明し、他の外周部材212については詳細な説明を省略する。 The two outer circumferential members 212 are each connected to the inner circumferential member 11 by the connecting portions 13 so as to have mirror symmetry with respect to a plane including the axis X. Each outer circumferential member 212 has a substantially rectangular parallelepiped shape with the tangential direction as the longitudinal direction, and has a substantially circular arc shape along the outer circumferential surface 11o of the inner circumferential member 11 up to about half of the radial dimension at the central portion in the longitudinal direction. It has a chipped shape. Since the two outer circumferential members 212 have the same configuration, only one outer circumferential member 212 will be described in detail hereafter, and detailed explanations of the other outer circumferential members 212 will be omitted.
 外周部材の両端部近傍には、それぞれ1つずつ、軸方向視(平面視)円形の固定孔212hが設けられている。それぞれの固定孔212hは、外周部材212を軸方向に貫通する。固定孔212hに挿通される図示しないボルトBによって、ホルダ210(外周部材212)は、図示しないハウジングHに固定することができる。 One fixing hole 212h, which is circular when viewed in the axial direction (planar view), is provided near both ends of the outer peripheral member. Each fixing hole 212h passes through the outer peripheral member 212 in the axial direction. The holder 210 (outer peripheral member 212) can be fixed to the housing H (not shown) by a bolt B (not shown) inserted into the fixing hole 212h.
 外周部材212は、内周部材11の外周面11oと対向する、軸Xを中心とする軸方向視(平面視)円弧状の2つの内周面212iを有する。径方向において、外周部材212のそれぞれの内周面212iは、接続部13によって接続されている部分および後述する貫通孔215が存在する部分を除き、それぞれ軸方向視円弧状の溝214を介して内周部材11の外周面11oと対向している。それぞれの溝214は、ホルダ210を軸方向に貫通している。 The outer circumferential member 212 has two inner circumferential surfaces 212i that face the outer circumferential surface 11o of the inner circumferential member 11 and have an arcuate shape when viewed in the axial direction (planar view) with the axis X as the center. In the radial direction, each inner circumferential surface 212i of the outer circumferential member 212 is formed through an arcuate groove 214 when viewed in the axial direction, except for a portion connected by the connecting portion 13 and a portion where a through hole 215, which will be described later, is present. It faces the outer peripheral surface 11o of the inner peripheral member 11. Each groove 214 extends axially through the holder 210.
 それぞれの溝214の端部(接続部13に近い側の端部)は、ホルダ10を軸方向に貫通する、軸方向視(平面視)円形の貫通孔215に接続されている。すなわち、一つの溝214の端部に貫通孔215が接続されており、溝214と貫通孔215とは連通している。貫通孔215の直径は、外周部材212の固定孔212hの直径と同一または略同一であり、溝214の幅(径方向における、内周部材11と外周部材212との間の距離)よりも大きい。 The end portion of each groove 214 (the end portion on the side closer to the connecting portion 13) is connected to a through hole 215 that passes through the holder 10 in the axial direction and is circular in axial direction (plan view). That is, the through hole 215 is connected to the end of one groove 214, and the groove 214 and the through hole 215 communicate with each other. The diameter of the through hole 215 is the same or approximately the same as the diameter of the fixing hole 212h of the outer circumferential member 212, and is larger than the width of the groove 214 (the distance between the inner circumferential member 11 and the outer circumferential member 212 in the radial direction). .
 軸方向視(平面視)において、2つの固定孔212hと、2つの貫通孔215とは、外周部材212の長手方向に直線上に並んで配置されている。接続部13は、隣接する2つの貫通孔215の間の領域として形成されている。 In an axial view (plan view), the two fixing holes 212h and the two through holes 215 are arranged in a straight line in the longitudinal direction of the outer peripheral member 212. The connecting portion 13 is formed as a region between two adjacent through holes 215.
 外周部材212の、内周部材11に接続されている側とは反対側の面212aには、2つの第2のひずみセンサ17が配置されている。それぞれの第2のひずみセンサ17は、貫通孔215の近傍に取り付けられている。具体的には、軸Yに沿った方向において、第2のひずみセンサ17は、貫通孔215と対向する位置に配置されている。第2のひずみセンサ17は、面212aの、軸方向(軸Xに沿った方向)に対して垂直な平面に沿った方向のひずみを検出できるように取り付けられている。第2のひずみセンサ17は、ホルダ210の、軸方向(軸Xに沿った方向)と直交する方向の変形を検出することができる。なお、外周部材212は2つ存在するため、センサ装置200は、全体として合計4つの第2のひずみセンサ17を有する。 Two second strain sensors 17 are arranged on a surface 212a of the outer peripheral member 212 opposite to the side connected to the inner peripheral member 11. Each second strain sensor 17 is attached near the through hole 215. Specifically, in the direction along the axis Y, the second strain sensor 17 is arranged at a position facing the through hole 215. The second strain sensor 17 is attached so as to be able to detect the strain of the surface 212a in a direction along a plane perpendicular to the axial direction (direction along the axis X). The second strain sensor 17 can detect deformation of the holder 210 in a direction perpendicular to the axial direction (direction along the axis X). Note that since there are two outer peripheral members 212, the sensor device 200 has a total of four second strain sensors 17 as a whole.
 第2のひずみセンサ17がひずみゲージである場合、グリッド(ゲージ)の向き(典型的には、ひずみゲージの長手方向)が面212aの長手方向(軸方向に直交する方向)に沿うように取り付けられている。第2のひずみセンサ17がひずみゲージである場合、ホルダ210のひずみは抵抗値の変化として検出される。なお、第2のひずみセンサ17は、ひずみゲージに限られず、圧電素子等の、その他種々のセンサであってもよい。 When the second strain sensor 17 is a strain gauge, it is installed so that the orientation of the grid (gauge) (typically, the longitudinal direction of the strain gauge) is along the longitudinal direction (direction perpendicular to the axial direction) of the surface 212a. It is being When the second strain sensor 17 is a strain gauge, strain in the holder 210 is detected as a change in resistance value. Note that the second strain sensor 17 is not limited to a strain gauge, and may be various other sensors such as a piezoelectric element.
 本実施の形態にかかるセンサ装置は、第1の実施の形態にかかるセンサ装置1について上記した特性を同様に有する。加えて、本実施の形態にかかるトルクセンサは、ホルダ210が第1の実施の形態にかかるセンサ装置1のホルダ10と比較して軽量であるため、装置の軽量化が可能となる。 The sensor device according to this embodiment similarly has the characteristics described above with respect to the sensor device 1 according to the first embodiment. In addition, in the torque sensor according to this embodiment, the holder 210 is lighter than the holder 10 of the sensor device 1 according to the first embodiment, so that the device can be made lighter.
 以上、本発明のセンサ装置について、好ましい実施の形態を挙げて説明したが、本発明のセンサ装置は上記実施の形態の構成に限定されるものではない。例えば、上記実施の形態にかかるセンサ装置1,100,200は、電動アシスト自転車に用いられるものであるが、本発明のセンサ装置は、電動アシスト自転車に用いられるものに限られない。 Although the sensor device of the present invention has been described above with reference to preferred embodiments, the sensor device of the present invention is not limited to the configuration of the above embodiments. For example, the sensor devices 1, 100, and 200 according to the embodiments described above are used for electrically assisted bicycles, but the sensor device of the present invention is not limited to that used for electrically assisted bicycles.
 上記実施の形態にかかるセンサ装置1,100,200において、負荷部材はチェーンリング30であったが、負荷部材は、荷重によって軸方向に傾くような応力が発生するものであれば、他の部材であってもよい。 In the sensor devices 1, 100, 200 according to the above embodiments, the load member is the chain ring 30, but the load member may be any other member as long as it generates stress that causes it to tilt in the axial direction due to the load. It may be.
 上記実施の形態にかかるセンサ装置1,100,200においては、ホルダ10,210の外周部材12,212に第2のひずみセンサ17が取り付けられているが、本発明のセンサ装置は、第2のひずみセンサ17を有していなくてもよい。 In the sensor devices 1, 100, 200 according to the embodiments described above, the second strain sensor 17 is attached to the outer peripheral member 12, 212 of the holder 10, 210, but the sensor device of the present invention The strain sensor 17 may not be provided.
 上記実施の形態にかかるセンサ装置1,100,200においては、軸受20は、出力ギヤGのボス部G2を介してシャフトSに固定されていたが、本発明のセンサ装置は、軸受が直接シャフトに固定されていてもよい。なお、その場合、チェーンリング等の負荷部材も、出力ギヤGのボス部G2を介さずにシャフトSに固定される。 In the sensor devices 1, 100, 200 according to the embodiments described above, the bearing 20 was fixed to the shaft S via the boss portion G2 of the output gear G, but in the sensor device of the present invention, the bearing is directly attached to the shaft S. may be fixed. In this case, a load member such as a chain ring is also fixed to the shaft S without intervening the boss portion G2 of the output gear G.
 その他、当業者は、従来公知の知見に従い、本発明のセンサ装置を適宜改変し、また各種構成の組み合わせを変更することができる。かかる変更によってもなお本発明の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 In addition, those skilled in the art can appropriately modify the sensor device of the present invention and change the combinations of various configurations according to conventionally known knowledge. As long as such changes still have the structure of the present invention, they are, of course, included within the scope of the present invention.
 1,100,200…センサ装置、10,210…ホルダ、11…内周部材、12,212…外周部材、13…接続部、16…第1のひずみセンサ、17…第2のひずみセンサ、20…軸受、21…内輪、22…外輪、30…チェーンリング(負荷部材)、S…シャフト、Fa,Fe…荷重。 DESCRIPTION OF SYMBOLS 1,100,200... Sensor device, 10,210... Holder, 11... Inner peripheral member, 12,212... Outer peripheral member, 13... Connection part, 16... First strain sensor, 17... Second strain sensor, 20 ...Bearing, 21...Inner ring, 22...Outer ring, 30...Chain ring (load member), S...Shaft, Fa, Fe...Load.

Claims (10)

  1.  シャフトと、
     前記シャフトに直接的または間接的に配置された軸受と、
     前記軸受に配置されたホルダと、を備え、
     前記ホルダは、内周部材と、外周部材と、前記内周部材と前記外周部材とを接続する接続部と、前記接続部に配置された第1のひずみセンサと、を有し、
     径方向において、前記内周部材は、前記軸受の外側に配置され、
     前記接続部は、前記内周部材を、前記外周部材に対して回動可能に支持する、センサ装置。
    shaft and
    a bearing disposed directly or indirectly on the shaft;
    a holder disposed on the bearing;
    The holder includes an inner circumferential member, an outer circumferential member, a connecting portion connecting the inner circumferential member and the outer circumferential member, and a first strain sensor disposed in the connecting portion,
    In the radial direction, the inner circumferential member is arranged outside the bearing,
    In the sensor device, the connecting portion rotatably supports the inner circumferential member with respect to the outer circumferential member.
  2.  前記接続部は、前記外周部材に対して、ねじれ回転可能に配置される、請求項1に記載のセンサ装置。 The sensor device according to claim 1, wherein the connecting portion is arranged so as to be twisted and rotatable with respect to the outer peripheral member.
  3.  軸方向視において、前記第1のひずみセンサは、前記接続部の延び方向に対して傾斜して配置されている、請求項1または2に記載のセンサ装置。 The sensor device according to claim 1 or 2, wherein the first strain sensor is arranged obliquely with respect to the extending direction of the connecting portion when viewed in the axial direction.
  4.  前記軸受は、前記内周部材を支持する外輪と、前記外輪に対して回転可能に配置される内輪を有し、
     前記内輪は前記シャフトと一体に回転する、請求項1または2に記載のセンサ装置。
    The bearing has an outer ring that supports the inner peripheral member, and an inner ring that is rotatably arranged with respect to the outer ring,
    The sensor device according to claim 1 or 2, wherein the inner ring rotates together with the shaft.
  5.  前記シャフトの一方側に負荷部材を有し、
     前記第1のひずみセンサは、前記負荷部材にかかる荷重を、前記軸受を介して検出する、請求項1または2に記載のセンサ装置。
    a load member on one side of the shaft;
    The sensor device according to claim 1 or 2, wherein the first strain sensor detects a load applied to the load member via the bearing.
  6.  前記負荷部材にかかる前記荷重は、軸方向に対して直交する方向の成分を有する、請求項5に記載のセンサ装置。 The sensor device according to claim 5, wherein the load applied to the load member has a component in a direction perpendicular to the axial direction.
  7.  前記接続部は、軸方向に対して直交する延び方向を有し、
     前記負荷部材にかかる前記荷重の方向は、前記接続部の前記延び方向とは異なる、請求項6に記載のセンサ装置。
    The connecting portion has an extending direction perpendicular to the axial direction,
    The sensor device according to claim 6, wherein the direction of the load applied to the load member is different from the direction of extension of the connecting portion.
  8.  軸方向において、前記負荷部材と前記ホルダとは離間している、請求項5に記載のセンサ装置。 The sensor device according to claim 5, wherein the load member and the holder are separated from each other in the axial direction.
  9.  前記ホルダの前記外周部材に配置される第2のひずみセンサを有する、請求項1または2に記載のセンサ装置。 The sensor device according to claim 1 or 2, comprising a second strain sensor arranged on the outer peripheral member of the holder.
  10.  前記第2のひずみセンサは、前記ホルダの、軸方向と直交する方向の変形を検出する、請求項9に記載のセンサ装置。 The sensor device according to claim 9, wherein the second strain sensor detects deformation of the holder in a direction perpendicular to the axial direction.
PCT/JP2023/020630 2022-06-10 2023-06-02 Sensor device WO2023238791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022094425A JP2023180817A (en) 2022-06-10 2022-06-10 sensor device
JP2022-094425 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238791A1 true WO2023238791A1 (en) 2023-12-14

Family

ID=89118276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020630 WO2023238791A1 (en) 2022-06-10 2023-06-02 Sensor device

Country Status (3)

Country Link
JP (1) JP2023180817A (en)
TW (1) TW202348965A (en)
WO (1) WO2023238791A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285264A1 (en) * 2011-05-10 2012-11-15 Shimano Inc. Bicycle force sensing device
JP2013032916A (en) * 2011-07-29 2013-02-14 Minebea Co Ltd Multi-axial force detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285264A1 (en) * 2011-05-10 2012-11-15 Shimano Inc. Bicycle force sensing device
JP2013032916A (en) * 2011-07-29 2013-02-14 Minebea Co Ltd Multi-axial force detector

Also Published As

Publication number Publication date
JP2023180817A (en) 2023-12-21
TW202348965A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
EP1325241B1 (en) One-way clutch and torque detection apparatus using same
US6644135B1 (en) Torque sensor for a bicycle bottom bracket assembly
US7555963B2 (en) Torque sensor
TWI457259B (en) Bicycle crank assembly
JP3415325B2 (en) Bicycle torque detector
TW200911620A (en) Crank arm assembly and related crank arm and element for transmitting torque from the crank arm to a bicycle chain
TW200841001A (en) Torsion-detecting sleeve member and torque-detecting device
EP2487099A1 (en) Torque-measuring hub, system for measuring power and cycle wheel provided with such a hub or such a system
JP6047451B2 (en) Torque sensor positioning structure and electric assist bicycle equipped with the same
US7537080B2 (en) Electric power-steering apparatus
WO2023238791A1 (en) Sensor device
JP5872972B2 (en) Sensor unit assembly structure and bicycle
CN111361682A (en) Central shaft torsion detection sensing device
JP3728371B2 (en) Power steering device
JPH01217224A (en) Torque sensor
WO2023218645A1 (en) Torque sensor
WO2023219050A1 (en) Sensor device
WO2023248764A1 (en) Rotary equipment and detection device
JP2012181057A (en) Handle operation load detection device
JP2000074760A (en) Torque detecting mechanism
US11614157B2 (en) Electric vehicle transmission mechanism and electric vehicle
CN216851621U (en) Motor assembly
EP2438318B1 (en) Load-measuring bearing unit
TW202342318A (en) Pedaling torque sensing device for electric bicycle including a first external ring gear, a second external ring gear and two sets of planetary gears
CN117002668A (en) Pedaling torsion sensing device of electric bicycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819771

Country of ref document: EP

Kind code of ref document: A1