WO2023238558A1 - Hollow particle and method for manufacturing same - Google Patents

Hollow particle and method for manufacturing same Download PDF

Info

Publication number
WO2023238558A1
WO2023238558A1 PCT/JP2023/017107 JP2023017107W WO2023238558A1 WO 2023238558 A1 WO2023238558 A1 WO 2023238558A1 JP 2023017107 W JP2023017107 W JP 2023017107W WO 2023238558 A1 WO2023238558 A1 WO 2023238558A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
hollow
particles
particle
core
Prior art date
Application number
PCT/JP2023/017107
Other languages
French (fr)
Japanese (ja)
Inventor
司 中村
グエン ズイ フオン ダオ
雄哉 樋口
Original Assignee
セトラスホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セトラスホールディングス株式会社 filed Critical セトラスホールディングス株式会社
Publication of WO2023238558A1 publication Critical patent/WO2023238558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates

Definitions

  • the present invention relates to hollow particles having a hollow shell inside and a method for producing the same.
  • the present invention was made to solve the above problems, and one of the objects is to provide hollow particles with further improved dielectric properties.
  • the hollow particles of the present disclosure have shells that are hollow inside.
  • the shell is silica containing aluminum.
  • the amount of aluminum present is greater in the first region than in the second region.
  • the first portion is located inside the shell in the thickness direction of the shell.
  • the second portion is located on the outer side of the shell in the thickness direction of the shell than the first portion.
  • the aluminum content is less than 1% of the components constituting the shell.
  • the amount of the aluminum present decreases from the inside of the shell toward the outside.
  • the hollow particles of the present disclosure have an epoxy resin oil absorption of less than 0.6 g/m 2 in the hollow particles described in any one of (1) to (3) above.
  • the hollow particles of the present disclosure are the hollow particles described in any one of (1) to (4) above, in which the shell further contains sodium.
  • the sodium content of the shell is 3000 ppm or less.
  • the silica is amorphous silica.
  • the shell has a hollowness ratio of 30% to 95%.
  • the hollow particles of the present disclosure are the hollow particles described in any one of (1) to (7) above, and the shell has a thickness of 25 nm or more and 500 nm or less.
  • the method for manufacturing hollow particles of the present disclosure is the method for manufacturing hollow particles described in any one of (1) to (8) above.
  • the above manufacturing method includes the steps of: coating a core particle with a shell-forming material to obtain a core-shell particle; removing the core particle from the core-shell particle to obtain a hollow particle precursor; and forming a shell on the hollow particle precursor. including coating the material.
  • the method for manufacturing hollow particles of the present disclosure is the method for manufacturing hollow particles described in (9) above, in which the core particles include an alunite-type compound represented by the following general formula (I).
  • M is at least one cation selected from the group consisting of Na + , K + , NH 4 + and H 3 O + .
  • M' is at least one cation selected from the group consisting of Cu 2+ , Zn 2+ , Ni 2+ , Sn 4+ , Zr 4+ and Ti 4+ .
  • a satisfies 0.8 ⁇ a ⁇ 1.35.
  • m satisfies 0 ⁇ m ⁇ 5.
  • x satisfies 0 ⁇ x ⁇ 0.4.
  • y satisfies 1.7 ⁇ y ⁇ 2.5.
  • z satisfies 4 ⁇ z ⁇ 7.
  • FIG. 1 is a cross-sectional view schematically showing a hollow particle in one embodiment of the present invention.
  • 2 is a graph schematically showing an example of changes in Al abundance in the thickness direction of the shell. It is a graph which shows the outline of another example of the change of Al abundance in the thickness direction of a shell. It is a graph which shows the outline of yet another example of the change of Al abundance in the thickness direction of a shell.
  • 1 is a TEM observation photograph of hollow particles of Example 1.
  • 3 is a TEM observation photograph of hollow particles of Example 2.
  • 3 is a TEM observation photograph of hollow particles of Example 3.
  • 2 is a cross-sectional SEM observation photograph of the resin molded article of Example 1.
  • the long diameter of particles is a value measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the long diameter of the particles is, for example, the average value of the long diameters of randomly selected primary particles, as shown by L in FIG. Note that primary particles are the smallest particles observed by SEM, and are distinguished from aggregated secondary particles.
  • Short diameter of particles The short diameter of particles is a value measured by SEM observation.
  • the short axis of the particle is, for example, the average value of the short axis of randomly selected primary particles, as shown by T in FIG. 3.
  • Aspect Ratio The aspect ratio is a value calculated by dividing the major axis of the particle by the minor axis of the particle.
  • Hollow Particles in one embodiment of the invention have shells that are hollow inside.
  • a hollow particle has a shell and a space surrounded by this shell.
  • the shell contains silica.
  • Silica is typically amorphous silica.
  • the silica content of the shell is, for example, 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.
  • the shell of the hollow particle contains aluminum (Al).
  • Al aluminum
  • the Al content is preferably 0.1% or more, more preferably 0.2% or more.
  • hollow particles tend to have a high dielectric constant and a high dielectric loss tangent when they contain Al. Therefore, the Al content is preferably less than 1%, more preferably 0.9% or less, still more preferably 0.7% or less, particularly preferably 0.5% or less. According to such a content, the hollow particles can have extremely good dielectric properties.
  • the Al content can be determined, for example, by compositional analysis using inductively coupled plasma emission spectrometry (ICP-AES).
  • the hollow particles have a larger amount of Al on the inside in the thickness direction of the shell than on the outside in the thickness direction. According to such a form, hollow particles having excellent strength (breaking strength), hollowness ratio, and dielectric properties can be obtained. Specifically, in the hollow particles, a region where a large amount of Al exists tends to soften during firing. That is, hollow particles can lower the firing temperature in the manufacturing process. Moreover, the hollow particles can be made to shrink more on the inside than on the outside of the hollow particle precursor forming the shell by firing due to the region where a large amount of Al exists. Hollow particles can increase the breaking strength due to the region where a large amount of Al exists.
  • the hollow particles are considered to contribute to improving the hollowness ratio by suppressing softening and shrinking on the outside in the shell, thereby maintaining the particle diameter, and expanding the internal space due to softening and shrinking on the inside.
  • the hollow particles have different distributions of Al abundance on the outside and inside of the shell, thereby improving the shell strength and hollowness ratio. Since the hollow particles have excellent strength and can be made low dielectric, it is possible to effectively prevent the hollow particles from being broken, for example, when producing a resin composition containing a resin and hollow particles. As a result, the hollow state of the particles is maintained, which can greatly contribute to improving dielectric properties.
  • the thickness of the shell of the hollow particle is thin, it becomes easier for Al to be uniformly distributed. In hollow particles, for example, when Al is uniformly distributed, the inside and outside of the shell shrink in the same way, and the particle size tends to become smaller.
  • FIG. 2 is a cross-sectional view schematically showing a hollow particle in one embodiment of the present invention.
  • hatching is omitted for the cross section of the hollow particle in order to make the figure easier to read.
  • the hollow particle 2 has a shell 4 and a space (hollow part) 6 surrounded by the shell 4.
  • the amount of Al present in the first region 4a located on the inner side in the thickness direction is greater than the amount of Al present in the second region 4b located on the outer side in the thickness direction than the first region 4a.
  • the amount of Al present in one site 4a is preferably twice or more, more preferably three times or more, the amount of Al present in the second site 4b.
  • the distribution of Al abundance can be determined, for example, by compositional analysis using energy dispersive X-ray spectroscopy (TEM-EDS) using a transmission electron microscope (TEM).
  • the amount of Al present can be evaluated by the molar ratio of Al to Si.
  • An example of the distribution of Al abundance in the thickness direction is a form in which the Al abundance decreases continuously from the inside to the outside of the shell.
  • the manner in which the amount of Al present changes is not particularly limited.
  • Al abundance may decrease linearly with distance from the inner surface of the shell, as shown in Figure 3A. It may also decrease exponentially with distance from the inner surface of the shell, as shown in FIG. 3B.
  • the amount of Al present in the hollow particles can be controlled by controlling how the Al raw material is added during the primary silica treatment of the core particles and the secondary silica treatment of the hollow particle precursors. Hollow particles tend to have a higher hollowness ratio when Al abundance decreases linearly compared to when Al is uniformly distributed in the shell. Hollow particles tend to have a higher hollowness ratio when the Al abundance decreases exponentially compared to when it decreases linearly.
  • the distribution of Al abundance in the thickness direction is a form in which the Al abundance decreases stepwise from the inside to the outside of the shell.
  • the amount of Al present decreases discontinuously from the inside to the outside of the shell.
  • the hollow particle has a first region 41 in which the amount of Al is constant from the inner surface of the shell to the outside, and the amount of Al in the outside than the first region 41 is constant.
  • An example is a configuration in which the second region 42 has a smaller amount than the first region 41. Note that in FIG.
  • the first region 41 and the second region 42 are shown in a straight line, but the expression that the Al abundance is constant means, for example, that the variation in the Al abundance is 20% or less. do.
  • FIG. 3C shows an example in which the amount of Al present decreases in two stages, it may be reduced in three or more stages. Hollow particles can enhance the effect of improving strength and hollowness ratio when the Al content decreases stepwise.
  • the shell of the hollow particles may contain sodium (Na). If the Na content of the hollow particles is too high, it will be difficult to increase the firing temperature in the hollow particle manufacturing process, and the hollow particles will tend to shrink.
  • the content of Na is preferably 3000 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less. On the other hand, the content of Na is preferably 100 ppm or more.
  • the Na content can be determined, for example, by composition analysis using atomic absorption spectrometry (AAS).
  • the amount of Na present is greater on the inside in the thickness direction of the shell than on the outside in the thickness direction. It is considered that when a part of Si(4+) is replaced with Al(3+), Na easily enters the hollow particles to fill the electron vacancies. Therefore, it is considered that hollow particles tend to have a large amount of Na in a region where a large amount of Al exists.
  • the primary particles of the hollow particles preferably satisfy 1 ⁇ D SL ⁇ 1.5.
  • the primary particles of the hollow particles more preferably satisfy 1 ⁇ D SL ⁇ 1.4, and even more preferably satisfy 1 ⁇ D SL ⁇ 1.3.
  • D SL is D 75L /D 25L
  • D 25L and D 75L are each determined by measuring the long axis of 100 randomly selected primary particles during observation using a scanning electron microscope. The 25th and 75th values are shown when arranged in descending order.
  • the primary particles of hollow particles preferably satisfy 1 ⁇ D ST ⁇ 1.5, more preferably satisfy 1 ⁇ D ST ⁇ 1.4, and still more preferably satisfy 1 ⁇ D ST ⁇ 1.3. do.
  • D ST is D 75T /D 25T
  • D 25T and D 75T are the sizes obtained by measuring the short axis of 100 randomly selected primary particles during observation using a scanning electron microscope. The 25th and 75th values are shown when they are arranged in descending order.
  • the aspect ratio of the hollow particles is preferably less than 2, more preferably 1.9 or less.
  • the aspect ratio of the hollow particles is 1 or more, preferably more than 1, and more preferably 1.1 or more.
  • Hollow particles can have any suitable shape.
  • the shape of the hollow particles include elliptical, spherical, aggregated, scale-like, plate-like, film-like, cylindrical, prismatic, flattened, go-stone-like, and rice-grain-like.
  • the shape of the hollow particles is spherical or grid-shaped.
  • the long axis of the hollow particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more. This is because if the hollow particles have a major axis of 0.5 ⁇ m or more, for example, they can fully satisfy the hollowness ratio described below.
  • the length of the hollow particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. This is because hollow particles having a major axis of 10 ⁇ m or less, for example, can greatly contribute to making the member used smaller or thinner.
  • the short axis of the hollow particles is preferably 0.25 ⁇ m or more, more preferably 0.5 ⁇ m or more. This is because if the hollow particles have a short axis of 0.25 ⁇ m or more, for example, they can fully satisfy the hollowness ratio described below.
  • the short axis of the hollow particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. This is because hollow particles, for example, if the short axis is 10 ⁇ m or less, can greatly contribute to making the member used smaller or thinner.
  • the thickness of the shell of the hollow particles is preferably 25 nm or more, more preferably 50 nm or more, and still more preferably 75 nm or more. According to such a thickness, for example, when producing a resin composition, it is possible to effectively prevent the hollow particles from being broken.
  • the thickness of the shell of the hollow particles is preferably 500 nm or less, more preferably 350 nm or less, and even more preferably 250 nm or less. With such a thickness, the hollowness ratio described below can be fully satisfied, and it can greatly contribute to improving dielectric properties and reducing weight.
  • the thickness of the shell can be measured by TEM observation. For example, it can be determined by measuring the shell thickness of randomly selected hollow particles and calculating the average value of the measured shell thicknesses.
  • the shell thickness of hollow particles may affect the distribution of Al abundance.
  • the hollowness ratio of the hollow particles is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more. Such a hollowness ratio can greatly contribute to improving dielectric properties and reducing weight, for example.
  • the hollowness ratio of the hollow particles is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably 80% or less. According to such a hollowness ratio, for example, when producing a resin composition, it is possible to effectively prevent hollow particles from being broken. Note that the hollowness ratio can be calculated from the major axis and minor axis and the thickness of the shell.
  • the BET specific surface area of the hollow particles is preferably 30 m 2 /g or less, more preferably 20 m 2 /g or less, still more preferably 10 m 2 /g or less.
  • the BET specific surface area of the hollow particles is, for example, 0.5 m 2 /g or more, and may be 1 m 2 /g or more.
  • the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 100 nm is preferably 0.1 cc/g or less, more preferably 0.08 cc/g or less, and even more preferably 0.06 cc/g or less. It is. Such a pore volume can effectively prevent resin from penetrating into the interior of hollow particles in a resin composition, for example, and can greatly contribute to improving dielectric properties.
  • the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 100 nm is, for example, 0.01 cc/g or more.
  • the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 10 nm is preferably 0.025 cc/g or less, more preferably 0.020 cc/g or less, and even more preferably 0.010 cc/g or less. It is. Such a pore volume can effectively prevent resin from penetrating into the interior of hollow particles in a resin composition, for example, and can greatly contribute to improving dielectric properties.
  • the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 10 nm is, for example, 0.001 cc/g or more.
  • the density of the hollow particles is preferably 0.90 g/cc or less, more preferably 0.80 g/cc or less.
  • the density of the hollow particles is preferably 0.55 g/cc or more, more preferably 0.60 g/cc or more. With such a density, the hollow particles can maintain shell strength and hollowness.
  • the dielectric constant of the hollow particles at 25° C. and 10 GHz is preferably 2.2 or less, more preferably 2.0 or less.
  • the dielectric constant of the hollow particles at 25° C. and 10 GHz is, for example, 1.0 or more.
  • the dielectric loss tangent of the hollow particles at 25° C. and 10 GHz is preferably 0.005 or less, more preferably 0.002 or less.
  • the dielectric loss tangent of the hollow particles at 25° C. and 10 GHz is, for example, 0.0001 or more.
  • the breaking strength of the hollow particles is preferably 10 MPa or more, more preferably 12 MPa or more, still more preferably 14 MPa or more, and particularly preferably 16 MPa or more. Such breaking strength can effectively prevent hollow particles from breaking, for example, when producing a resin composition. As a result, the hollow state of the particles is maintained, which can greatly contribute to improving dielectric properties. On the other hand, the breaking strength of hollow particles is, for example, 800 MPa or less.
  • the breaking strength of hollow particles can be measured, for example, using a micro compression tester ("MCT-510" manufactured by Shimadzu Corporation) using a length measurement kit and a side observation kit. Specifically, the measurement can be carried out by scattering a very small amount of hollow particles on the lower pressure plate and performing a destructive test on each particle under the following measurement conditions.
  • ⁇ Test force 0.980mN
  • Lib speed 0.0223mN/sec
  • ⁇ Upper pressure indenter flat surface ⁇ 20 ⁇ m
  • breaking strength Cs is calculated from the measured particle diameter d (mm) of each particle and the value of the test force P (N) at the breaking point.
  • the following formula of JIS R 1639-5 "Method for measuring fine ceramic granule properties - Part 5: Single granule crushing strength" is used to calculate the breaking strength Cs.
  • Cs 2.48P/ ⁇ d 2
  • the epoxy resin oil absorption amount per gram of hollow particles is preferably 2.3 g or less, more preferably 2.0 g or less. Further, the epoxy resin oil absorption amount of the hollow particles is preferably less than 0.6 g/m 2 , more preferably 0.46 g/m 2 or less, and even more preferably 0.35 g/m 2 or less.
  • the hollow particles are preferably surface-treated with any suitable surface treatment agent.
  • suitable surface treatment agents include higher fatty acids, anionic surfactants, cationic surfactants, phosphate esters, coupling agents, esters of polyhydric alcohols and fatty acids, acrylic polymers, and silicone treatment agents. At least one selected from the group consisting of is used.
  • a method for producing hollow particles according to one embodiment of the present invention includes: coating a core particle with a shell-forming material to obtain a core-shell particle; removing the core particle from the core-shell particle to obtain a hollow particle precursor; coating the hollow particle precursor with a shell-forming material.
  • a strong shell can be formed, for example, while suppressing a decrease in hollowness ratio.
  • the hollow particle precursor obtained by removing the core particle may have pores and may be in a brittle state.
  • hollow particles having a strong shell can be obtained without shrinking the hollow particle precursor.
  • the contraction of the hollow particle precursor is, for example, softening contraction.
  • the primary particles of the core particles preferably satisfy 1 ⁇ D SL ⁇ 1.5, more preferably 1 ⁇ D SL ⁇ 1.4, and still more preferably 1 ⁇ D SL ⁇ 1.3. Further, the primary particles of the core particles preferably satisfy 1 ⁇ D ST ⁇ 1.5, more preferably 1 ⁇ D ST ⁇ 1.4, and even more preferably 1 ⁇ D ST ⁇ 1.3. Note that DSL and DST are as described above.
  • the aspect ratio of the core particles is preferably less than 2, more preferably 1.9 or less.
  • the aspect ratio of the core particles is 1 or more, preferably more than 1, and more preferably 1.1 or more.
  • the shape of the core particles include elliptical, spherical, aggregated, scale-like, plate-like, film-like, cylindrical, prismatic, flattened, go-stone-like, and rice-grain-like.
  • the shape of the core particles is spherical or grid-shaped.
  • the major axis of the core particle is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the major axis of the core particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the short axis of the core particles is preferably 0.25 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the short axis of the core particle is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the core particles are preferably formed of an alunite-type compound represented by the following general formula (I).
  • M is at least one cation selected from the group consisting of Na + , K + , NH 4 + and H 3 O + .
  • M' is at least one cation selected from the group consisting of Cu 2+ , Zn 2+ , Ni 2+ , Sn 4+ , Zr 4+ and Ti 4+ .
  • a satisfies 0.8 ⁇ a ⁇ 1.35.
  • m satisfies 0 ⁇ m ⁇ 5.
  • x satisfies 0 ⁇ x ⁇ 0.4.
  • y satisfies 1.7 ⁇ y ⁇ 2.5.
  • z satisfies 4 ⁇ z ⁇ 7.
  • alkoxysilanes such as sodium silicate (Na 2 O.nSiO 2 ) and tetraethoxysilane (Si(OCH 2 CH 3 ) 4 ) are used.
  • sodium silicate water glass
  • the shell forming material may contain Al.
  • Al concentration in the shell-forming material used for each treatment the distribution of the Al abundance in the resulting hollow particles can be adjusted. It can also satisfy you.
  • the amount of coverage with the shell-forming material can be adjusted by any suitable method.
  • the amount of coating can be adjusted by controlling the pH value when coating with a shell-forming material containing sodium silicate.
  • sodium silicate can be stable in high pH regions.
  • sodium silicate may be stable at pH 11 or higher. Therefore, by lowering the pH value, sodium silicate molecules can be condensed and silica can be efficiently precipitated onto the core particles.
  • the core particles contain the above-mentioned alunite type compound
  • the water slurry of the alunite type compound itself may exhibit acidity.
  • the acidity of the aqueous slurry of the alunite type compound itself is, for example, pH 3 to 5.
  • aqueous slurry of the alunite compound itself is acidic, silica can be efficiently precipitated onto the core particles, for example, without using a pH adjuster to lower the pH value.
  • a pH adjuster may be used in one or more of the multiple coats.
  • an acidic solution such as hydrochloric acid or sulfuric acid can be used.
  • an acidic solution hollow particles with a low Na content can be obtained.
  • coating with the shell-forming material can also be promoted by heating when coating with the shell-forming material. Specifically, shell precipitation can be promoted to increase the shell formation rate.
  • the heating temperature when coating with the shell forming material is, for example, 80°C to 90°C.
  • the amount of coating can be adjusted by controlling the concentration, blending amount, etc. of the shell-forming material when coating.
  • the concentration of sodium silicate in the shell-forming material is, for example, 0.1 mol/L to 2 mol/L.
  • the removal of the core particles is typically performed by dissolving the core particles in an acidic solution.
  • the acidic solution for example, hydrochloric acid, sulfuric acid, and nitric acid are used.
  • the melting temperature is, for example, 30°C to 90°C, preferably 50°C to 80°C. According to such a temperature, the core particles can be efficiently dissolved while suppressing problems such as the shell becoming easily broken.
  • sulfuric acid is used as the acidic solution, for example, from the viewpoint of reusing the substance obtained by reacting with the core particles.
  • substances obtained by reacting with core particles include salts.
  • the concentration of sulfuric acid is, for example, 0.1 mol/L to 3.5 mol/L, preferably 0.5 mol/L or more.
  • the hollow particle manufacturing method may include firing the core-shell particles before removing the core particles.
  • the core particles contain the above-mentioned alunite type compound
  • a portion with a low aggregation density is easily dissolved in an acidic solution, but a portion with a high aggregation density is difficult to dissolve in an acidic solution, and the amount dissolved in an acidic solution is, for example, It remains at about 30% by weight.
  • aluminum oxide (Al 2 O 3 ) which is easily soluble in acidic solutions, is produced from the alunite-type compound, and the solubility of the core particles in acidic solutions can be improved.
  • the temperature for firing the core-shell particles is, for example, 300°C to 900°C, preferably 300°C to 650°C. According to such a firing temperature, the crystallization of the shell can be suppressed and the aluminum oxide can be produced.
  • the firing time is, for example, 0.5 to 20 hours. Firing may be performed continuously or in multiple stages at different temperatures. In addition, when baking is performed in multiple stages, the above-mentioned baking time is the total baking time of each stage. In one embodiment, the above distribution of Al abundance may be satisfied in the resulting hollow particles by adjusting the firing temperature of the core-shell particles.
  • the shell-forming material used to coat the hollow particle precursor is preferably selected in accordance with the shell-forming material used to coat the core particle. Specifically, when sodium silicate is employed as the shell-forming material used to coat the core particles, sodium silicate is preferably employed as the shell-forming material used to coat the hollow particle precursor. Ru.
  • sodium silicate can be stable in high pH regions.
  • the high pH region is, for example, pH 11 or higher.
  • sodium silicate causes silica to be efficiently precipitated into the hollow particle precursor by condensing sodium silicate molecules by lowering the pH value using, for example, a pH adjuster.
  • a pH adjuster for example, an acidic solution such as hydrochloric acid or sulfuric acid is used.
  • the method for producing hollow particles described above may include firing a hollow particle precursor coated with a shell-forming material.
  • the hollow particle precursor may be fired after the hollow particle precursor is coated with the shell forming material.
  • hollow particles that can greatly contribute to improving dielectric properties can be obtained.
  • the hydrophobicity of the surface of the hollow particle precursor can be improved.
  • the silanol groups on the surface of the hollow particle precursor can be changed to siloxane.
  • hollow particles that can be easily blended into or dispersed in a resin when producing a resin composition can be obtained.
  • the particles by appropriately shrinking the particles by firing, it is possible to fill the pores on the surface of the hollow particle precursor and obtain hollow particles with a smooth surface while preventing the particles from adhering to each other.
  • the above-mentioned BET specific surface area and pore volume can be satisfactorily achieved.
  • the above distribution of Al abundance may be satisfied in the resulting hollow particles by adjusting the firing temperature of the hollow particle precursor.
  • the temperature for firing the hollow particle precursor is, for example, 300°C to 1300°C, preferably 700°C to 1300°C, and more preferably 900°C to 1300°C. According to such a firing temperature, the above-mentioned hydrophobization can be achieved satisfactorily. Moreover, even if firing is performed at such a firing temperature, a high hollowness ratio can be achieved. Specifically, by firing the hollow particle precursor in which the pores are filled with a shell-forming material coating, hydrophobization is successfully achieved while suppressing shrinkage of the hollow particle precursor. can be done.
  • the firing time of the hollow particle precursor is, for example, 0.1 hour to 10 hours. Firing may be performed continuously or in multiple stages at different temperatures.
  • the difference between temperature T1 and temperature T2 is preferably 150°C or more, more preferably 250°C or more.
  • the above-mentioned baking time is the total baking time of each stage.
  • the method for producing hollow particles may include subjecting the hollow particle precursor to acid treatment before firing the hollow particle precursor. It is preferable that the acid treatment is typically performed using an acidic solution such as hydrochloric acid or sulfuric acid. If sodium silicate is employed as the shell-forming material, the hollow particle precursor may include Na. By removing Na through acid treatment, the firing temperature of the hollow particle precursor can be set high, and hollow particles can be obtained that can greatly contribute to improving dielectric properties.
  • the step of obtaining the core-shell particles preferably includes a drying process. Specifically, when the core particles are coated with the shell-forming material multiple times, the core particles coated with the shell-forming material are dried and then coated with the shell-forming material again. It is preferable to apply The drying temperature in the step of obtaining core-shell particles is, for example, 90°C to 120°C. The drying time in the step of obtaining core-shell particles is, for example, 3 hours to 24 hours. By including such a drying treatment, the above-mentioned oil absorption amount can be satisfactorily achieved, for example, regardless of whether or not a pH adjuster is used during coating with the shell-forming material.
  • the hollow particles are used as a functional agent for resin materials.
  • the resin composition containing the hollow particles described above will be explained below.
  • Resin Composition A resin composition in one embodiment of the present invention includes a resin and the hollow particles described above.
  • the hollow particles can maintain their hollow state well.
  • the hollow state of the hollow particles can be well maintained.
  • the resin may be a thermoplastic resin or a thermosetting resin.
  • the resin include epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyetheretherketone resin, polyester resin, polyhydroxypolyether resin, polyolefin resin, fluororesin, liquid crystal polymer, and modified polyimide. These may be used alone or in combination of two or more.
  • the content of the hollow particles in the resin composition is preferably 0.1% by weight or more, more preferably 0.5% by weight or more.
  • the content ratio is preferably 90% by weight or less, more preferably 85% by weight or less.
  • the hollow particles are preferably contained in an amount of 0.5 parts by weight or more, more preferably 1 part by weight or more, based on 100 parts by weight of the resin.
  • the hollow particles are preferably contained in an amount of 300 parts by weight or less, more preferably 200 parts by weight or less, per 100 parts by weight of the resin.
  • the volume ratio of hollow particles in the resin composition is preferably 0.1% or more, more preferably 0.5% or more.
  • the volume ratio of hollow particles in the resin composition is preferably 70% or less, more preferably 60% or less. For example, this is because the processability when producing a resin composition can be excellent.
  • the hollowness ratio of the hollow particles in the resin composition is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more.
  • the resin composition may contain optional components.
  • optional components include a curing agent, a stress reducing agent, a coloring agent, an adhesion improver, a mold release agent, a flow regulator, a defoaming agent, a solvent, and a filler. These may be used alone or in combination of two or more.
  • the resin composition includes a curing agent.
  • the content of the curing agent is, for example, 1 part by weight to 150 parts by weight based on 100 parts by weight of the resin.
  • the resin composition is obtained by dispersing the hollow particles in the resin using any suitable dispersion method.
  • the dispersion method include dispersion using various stirrers such as a homomixer, a disper, and a ball mill, dispersion using an autorotation-revolution mixer, dispersion using shear force using three rolls, and dispersion using ultrasonic treatment.
  • the above-mentioned resin composition is typically formed into a resin molded article into a desired shape.
  • it is a resin molded body formed into a desired shape using a mold.
  • the resin composition may be subjected to any appropriate treatment.
  • the resin composition may be subjected to a curing treatment.
  • the resin composition is used as a resin layer included in a laminate.
  • a laminate having a resin layer formed from the above resin composition will be explained.
  • FIG. 4 is a schematic cross-sectional view of a laminate in one embodiment of the present invention.
  • the laminate 10 has a resin layer 11 and a metal foil 12.
  • the resin layer 11 is formed from the above resin composition. Specifically, the resin layer 11 includes the resin and the hollow particles.
  • the laminate 10 may include other layers. Examples of other layers include a base material.
  • the base material may be laminated on one side of the resin layer 11. Specifically, the base material may be placed on the side of the resin layer 11 where the metal foil 12 is not placed. A resin film is typically used as the base material.
  • the laminate 10 may have a structure in which a metal foil 12 is disposed on the surface of a laminate structure including a plurality of resin layers 11.
  • the laminate 10 may have a structure in which metal foils 12 are disposed on both sides of a laminate structure including a plurality of resin layers 11. Further, the laminate 10 may have a structure in which a plurality of combinations of resin layers 11 and metal foils 12 are stacked.
  • the laminate 10 is typically used as a printed circuit board.
  • the metal foil 12 is formed into a predetermined shape, for example, so as to constitute a predetermined circuit wiring.
  • the thickness of the resin layer is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the thickness of the resin layer is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 25 ⁇ m or less. With such a thickness, for example, it is possible to sufficiently cope with the miniaturization of electronic components in recent years.
  • metal forming the metal foil Any suitable metal may be used as the metal forming the metal foil. Examples include copper, aluminum, nickel, chromium, and gold. These may be used alone or in combination of two or more.
  • the thickness of the metal foil is, for example, 2 ⁇ m to 35 ⁇ m.
  • any suitable method may be adopted as a method for producing the above-mentioned laminate.
  • the resin composition is coated on the base material to form a coating layer, and the metal foil is laminated on the coating layer to obtain a laminate.
  • a laminate is obtained by coating the metal foil with the resin composition to form a coating layer.
  • the coating layer is cured by applying energy such as heating or light irradiation to the coating layer at any appropriate timing.
  • the resin composition may be dissolved in any suitable solvent.
  • DSL and DST D SL and D ST were calculated by FE-SEM observation. Specifically, the major axis of each of 100 primary particles randomly selected from SEM photographs of particles is measured, and the 75th value (D 75L ) is divided by the 25th value (D 25L ). DSL was calculated.
  • the short axis of each of 100 primary particles randomly selected from the SEM photographs of the particles was measured, and the 75th value (D 75T ) was divided by the 25th value (D 25T ) to calculate D ST was calculated. 4.
  • Aspect Ratio The aspect ratio was calculated by FE-SEM observation. Specifically, the aspect ratio was calculated by dividing the average major axis of the particles by the average minor axis of the particles.
  • the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.55 mol/L of No. 3 water glass (Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to it. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor. Next, the first core-shell particle precursor cake was dried at 105° C. for one day to obtain a core-shell particle powder.
  • No. 3 water glass Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the powder of the first core-shell particle precursor was suspended in 5 L of ion-exchanged water, heated to 90° C. with stirring, and 136 ml of No. 3 water glass containing 0.55 mol/L was added over 10 minutes. Ta. Thereafter, 680 ml of 0.55 mol/L No. 3 water glass and 757 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second core-shell particle precursor cake.
  • the obtained cake of the second core-shell particle precursor was suspended in 5 L of ion-exchanged water, heated to 90°C with stirring, and 136 ml of 0.55 mol/L No. 3 water glass was added thereto over 10 minutes. added. Thereafter, 680 ml of 0.55 mol/L No. 3 water glass and 757 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, dehydrated and washed with water, and then dried at 105° C. for one day to obtain a powder of core-shell particles.
  • the obtained first hollow silica precursor cake (88 g of powder) was suspended in 4 L of ion-exchanged water, heated to 90°C with stirring, and added with 0.55 mol/L of No. 3 water. After adding 40 ml of glass over 10 minutes, 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.5 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second hollow silica precursor cake.
  • the obtained cake of the second hollow silica precursor was suspended in 4 L of ion-exchanged water, heated to 90°C with stirring, and 40 ml of 0.55 mol/L No. 3 water glass was added to this for 10 minutes.
  • 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.50 mol/L sulfuric acid were simultaneously added.
  • No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes.
  • the slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a third hollow silica precursor cake.
  • the third hollow silica precursor cake obtained was suspended in 4 L of ion-exchanged water, heated to 90°C while stirring, and 40 ml of 0.55 mol/L No. 3 water glass was added to this for 10 minutes. After the addition, 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a fourth hollow silica precursor cake.
  • the obtained fifth hollow silica precursor powder was fired in an electric furnace at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles.
  • the powder of the fifth hollow silica precursor was fired in an air atmosphere to obtain hollow particles.
  • the obtained mixture and 4.8 phr of an imidazole-based epoxy resin curing agent ("2E4MZ" manufactured by Shikoku Kasei Co., Ltd.) were mixed using an autorotation-revolution mixer at a rotation speed of 1000 rpm, a rotation speed of 2000 rpm, and a pressure of 0.7 kPa for 3 minutes.
  • a resin composition was obtained by mixing.
  • the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.56 mol/L of No. 3 water glass (Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to this. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor. Next, the first core-shell particle precursor cake was dried at 105° C. for one day to obtain a core-shell particle powder.
  • No. 3 water glass Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the powder of the first core-shell particle precursor was suspended in 1.4 L of ion-exchanged water, heated to 90°C while stirring, and 34 ml of 0.56 mol/L No. 3 water glass was added to this for 10 minutes. added. Thereafter, 168 ml of 0.56 mol/L No. 3 water glass and 188 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second core-shell particle precursor cake.
  • the obtained second core-shell particle precursor cake was suspended in 1.4 L of ion-exchanged water, heated to 90°C with stirring, and 34 ml of 0.56 mol/L No. 3 water glass was added to this for 10 minutes. I added it over time. Thereafter, 168 ml of 0.56 mol/L No. 3 water glass and 188 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, dehydrated and washed with water, and then dried at 105° C. for one day to obtain a powder of core-shell particles.
  • the obtained first hollow silica precursor cake (18.8 g of powder) was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and added with 0.56 mol/L. After adding 20 ml of No. 3 water glass over 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second hollow silica precursor cake.
  • the obtained cake of the second hollow silica precursor was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and 20 ml of 0.56 mol/L No. 3 water glass was added thereto. After the addition took 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a third hollow silica precursor cake.
  • the third hollow silica precursor cake obtained was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and 20 ml of 0.56 mol/L No. 3 water glass was added to this. After the addition took 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a fourth hollow silica precursor cake.
  • the obtained powder of the fifth hollow silica precursor was fired in an electric furnace (in an air atmosphere) at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles.
  • the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.54 mol/L of No. 3 water glass (Na 2 O 3.14 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to it. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor.
  • No. 3 water glass Na 2 O 3.14 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the obtained cake of the first core-shell particle precursor was suspended in 7.5 L of ion-exchanged water and heated to 90° C. with stirring, and 1507 ml of 0.54 mol/L No. 3 water glass was added thereto. Added over 2 hours.
  • the slurry thus obtained was aged for 1 hour, left for 15 hours with stirring, and then dehydrated and washed with water to obtain a second core-shell particle precursor cake.
  • the obtained second core-shell particle precursor cake was suspended in 7.5 L of ion-exchanged water, heated to 90°C with stirring, and 1507 ml of 0.54 mol/L No. 3 water glass was added to this for 2 hours. I added it over time.
  • the slurry thus obtained was aged for 1 hour, left for 15 hours with stirring, dehydrated and washed with water, and then dried at 100° C. for 1 day to obtain a powder of core-shell particles.
  • the obtained first hollow silica precursor cake (130 g of powder) was suspended in 860 ml of ion-exchanged water, heated to 90°C with stirring, and added with 0.54 mol/L No. 3 water. After adding 33 ml of glass over 10 minutes, 163 ml of 0.54 mol/L No. 3 water glass and 186 ml of 0.50 mol/L sulfuric acid were added at the same time, and the No. 3 water glass was added over 50 minutes. was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a hollow silica precursor cake. This same operation was repeated two more times to obtain a second hollow silica precursor cake.
  • the obtained powder of the third hollow silica precursor was fired in an electric furnace (in an air atmosphere) at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles.
  • Example for evaluation A molded article (sample for evaluation) was obtained in the same manner as in Example 1, except that the above hollow silica particles were used and the amount of hollow silica particles was 25 phr. Although an attempt was made to blend hollow silica particles in the same amount as in Example 1, it was not possible to blend any more.
  • Example 1 A molded article (sample for evaluation) was obtained in the same manner as in Example 1 except that hollow silica particles were not blended.
  • the hollow silica particles of Examples 1, 2, and 3 were analyzed using a transmission electron microscope ("JEM-2100PLUS" manufactured by JEOL Ltd.) and an energy dispersive X-ray analyzer (manufactured by JEOL Ltd.) attached to it. An image was captured using an accelerating voltage of 200 kV and a magnification of 200,000 times, and the composition was analyzed at three points in the thickness direction using a point analysis mode.
  • the observation results of the hollow silica particles of Example 1 are shown in FIG. 5A
  • the observation results of the hollow silica particles of Example 2 are shown in FIG. 5B
  • the observation results of the hollow silica particles of Example 3 are shown in FIG. 5C.
  • the atomic ratios of oxygen (O), aluminum (Al), and silicon (Si) determined from the obtained peak intensities are also shown. In both cases, it was confirmed that the Al content tended to decrease from the inside to the outside of the shell.
  • the hollow silica particles of Examples 1, 2, and 3 were also evaluated as follows. The evaluation results are summarized in Table 1.
  • the content of Al was determined by preparing an Al content measurement sample from hollow silica particles by pretreatment and analyzing it by high frequency inductively coupled plasma emission spectroscopy (ICP-AES). Specifically, 250 mg of hollow silica particles were weighed into a PMP resin beaker. After that, the hollow silica particles were blended with ultrapure water, 3 ml of nitric acid and 5 ml of hydrofluoric acid were added, dissolved by heating, concentrated to 5 ml, and a 1% aqueous boric acid solution was added to remove the remaining fluoride.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the content of Na was determined by preparing a Na content measurement sample from hollow silica particles by pretreatment and analyzing it by atomic absorption spectrometry (AAS). Specifically, 250 mg of hollow silica particles were weighed into a PMP resin beaker.
  • AAS atomic absorption spectrometry
  • the hollow silica particles were blended with ultrapure water, 3 ml of nitric acid and 5 ml of hydrofluoric acid were added, dissolved by heating, concentrated to 5 ml, and a 1% aqueous boric acid solution was added to remove the remaining fluoride. Hydrogen acid was masked and heated for 10 minutes to inactivate it so as not to damage the analytical equipment. After cooling, the sample was diluted to 50 ml with ultrapure water to prepare a sample for measuring Na content, which was subjected to analysis. From the obtained results, the content ratio of Na was calculated. 3. Thickness of shell of hollow particles The thickness of shell of particles was calculated by TEM observation.
  • the shell thicknesses of 10 primary particles randomly selected from TEM photographs of the particles were measured, and the arithmetic mean (average thickness) of the obtained measured values was determined. Note that the magnification for TEM observation was 10,000 times and 100,000 times. 4. Hollow Ratio The hollow ratio was calculated from the above major axis and short axis and the thickness of the shell. Specifically, the shape of the particle was approximated by the volume in a cylinder using the primary particle diameter (long axis, short axis) and the shell thickness, and the hollow ratio was calculated using the following formula.
  • BET Specific Surface Area The specific surface area was measured using "BELsorp-mini" manufactured by Microtrac Bell Co., Ltd. Specifically, it was measured by a constant volume gas adsorption method using nitrogen gas, and the specific surface area was determined by analysis using the BET multipoint method. 6.
  • Pore Volume Pore volume was measured with "BELsorp-max" manufactured by Microtrac Bell Co., Ltd. Specifically, the pore volume (accumulated pore volume of pores with a diameter of 1 nm to 100 nm and pore volume of pores with a diameter of 1 nm to 10 nm) was measured by a constant volume gas adsorption method using nitrogen gas, and analyzed by the BJH method. The cumulative pore volume of the pores was determined. 7. Density Density was determined by nitrogen gas replacement method. Specifically, a 0.15 to 0.2 g sample was collected in a 1 cm 3 cell using a gas displacement density measuring device (Micromeritics, dry automatic density meter Accupic II 1340), and nitrogen gas Measured using.
  • a gas displacement density measuring device Micromeritics, dry automatic density meter Accupic II 1340
  • Dielectric constant and dielectric loss tangent The dielectric constant and dielectric loss tangent were measured by the cavity resonance method using a dielectric constant measuring device for powder. The measurement was performed under the conditions of 10 GHz in an environment of a temperature of 25° C. and a humidity of 44% RH. Note that, as the density necessary for calculating the dielectric properties, the density value determined by the nitrogen gas replacement method described above was used.
  • Oil absorption amount Epoxy resin (JER819 manufactured by Mitsubishi Chemical Corporation) is dropped and mixed with 1 g of hollow silica particles to be measured, and when it changes to a paste, the following conversion formula is calculated from the amount of dropped epoxy resin. The oil absorption amount was calculated.
  • the epoxy resin was repeatedly dropped and mixed onto the hollow silica particles, and the end point was defined as the point at which the hollow silica particles turned into a paste.
  • the dropping near the end point was carried out while blending the epoxy resin drop by drop.
  • the amount of epoxy resin per gram of the measurement target is calculated using the following formula, and the obtained oil absorption amount per gram is divided by the specific surface area of the measurement target to calculate the amount per unit area (m 2 ) of the surface area.
  • the oil absorption amount was calculated.
  • the density of the resin molded body was measured using an electronic densitometer (“SD120L” manufactured by Alpha Mirage Co., Ltd.). Specifically, the obtained resin molded body was cut into a size of 5 cm ⁇ 6 cm using an ultrasonic cutter, and the molded body sample obtained by the cutting was subjected to measurement.
  • SD120L electronic densitometer
  • the filler density in the resin molding was calculated from the following formula.
  • the filler density in the resin molded article was calculated by subtracting the volume of the resin component from the volume of the filler-containing resin molded article to calculate the filler volume, and dividing the filler addition amount by the calculated filler volume.
  • the volume of the filler-containing resin molded body was measured using an electronic densitometer (“SD120L” manufactured by Alpha Mirage Co., Ltd.).
  • the volume of the resin component was separately calculated from the weight and density of a blank resin molded body prepared without containing a filler.
  • Vc Volume of resin molding mr: Weight of resin (g) ⁇ r: Density of resin (g/ml) 3.
  • Filler Hollow Ratio in Resin Molded Body Filler hollow ratio Va/(Va+Vs) in the resin molded body was calculated from the value of the porosity Va% of the resin molded body.
  • Vs can be determined from the following formula.
  • Vc Volume of resin molding
  • Vs Volume of particle shell
  • Va Volume of air in resin molding
  • ⁇ c Density of resin molded body (g/ml)
  • ms Weight of particle (shell)
  • mr Weight of resin (g) ⁇ r: Density of resin (g/ml) wf: Parts by weight (phr) of particles (filler) when the weight of the resin is 100 parts by weight (phr)
  • the hollow particles of the present invention can typically be suitably used for electronic materials.
  • it can be used in, for example, heat insulating materials, soundproofing materials, impact buffering materials, stress buffering materials, optical materials, and lightweight materials.

Abstract

Provided is a hollow particle having excellent dielectric properties. This hollow particle of an embodiment includes a shell the inside of which is hollow. The shell is made of silica that includes aluminum. The abundance of aluminum is higher in a first region than in a second region. The first region is located in the shell, inward in the shell thickness direction. The second region is located in the shell, further outside than the first region in the shell thickness direction.

Description

中空粒子及びその製造方法Hollow particles and their manufacturing method
 本発明は、内部が中空の殻を有する中空粒子及びその製造方法に関する。 The present invention relates to hollow particles having a hollow shell inside and a method for producing the same.
 例えば、情報通信機器の分野では、高周波数帯での通信に対応すべく、回路基板等の電子部材(代表的には、樹脂部材)の低誘電率化、低誘電正接化が求められている。これを実現すべく、例えば、比誘電率の低い空気を部材に含有させることが提案されている。具体的には、特許文献1及び特許文献2に開示されるように、中空粒子を用いて空気を導入することが提案されている。 For example, in the field of information and communication equipment, electronic components such as circuit boards (typically resin components) are required to have lower dielectric constants and lower dielectric loss tangents in order to support communication in high frequency bands. . In order to achieve this, it has been proposed, for example, to include air with a low dielectric constant in the member. Specifically, as disclosed in Patent Document 1 and Patent Document 2, it has been proposed to introduce air using hollow particles.
国際公開第2021/171858号International Publication No. 2021/171858 国際公開第2021/171859号International Publication No. 2021/171859
 近年の情報通信機器の高速大容量化から、中空粒子は、誘電特性の更なる向上が求められている。 Due to the recent increase in speed and capacity of information communication equipment, hollow particles are required to have further improved dielectric properties.
 本発明は、上記課題を解決するためになされたものであり、誘電特性が更に向上した中空粒子を提供することを目的の一つとする。 The present invention was made to solve the above problems, and one of the objects is to provide hollow particles with further improved dielectric properties.
 (1)本開示の中空粒子は、内部が中空の殻を有する。上記殻は、アルミニウムを含むシリカである。上記アルミニウムの存在量は、第一部位の方が、第二部位よりも多い。上記第一部位は、上記殻における上記殻の厚み方向内側に位置する。上記第二部位は、上記第一部位よりも上記殻における上記殻の厚み方向外側に位置する。 (1) The hollow particles of the present disclosure have shells that are hollow inside. The shell is silica containing aluminum. The amount of aluminum present is greater in the first region than in the second region. The first portion is located inside the shell in the thickness direction of the shell. The second portion is located on the outer side of the shell in the thickness direction of the shell than the first portion.
 (2)本開示の中空粒子は、上記(1)に記載の中空粒子において、上記アルミニウムの含有量は、上記殻を構成する成分のうち1%未満である。 (2) In the hollow particles of the present disclosure, in the hollow particles described in (1) above, the aluminum content is less than 1% of the components constituting the shell.
 (3)本開示の中空粒子は、上記(1)又は(2)に記載の中空粒子において、上記殻の内側から外側に向かって、上記アルミニウムの存在量は少なくなる。 (3) In the hollow particles of the present disclosure, in the hollow particles described in (1) or (2) above, the amount of the aluminum present decreases from the inside of the shell toward the outside.
 (4)本開示の中空粒子は、上記(1)から(3)のいずれか1つに記載の中空粒子において、エポキシ樹脂吸油量が0.6g/m未満である。 (4) The hollow particles of the present disclosure have an epoxy resin oil absorption of less than 0.6 g/m 2 in the hollow particles described in any one of (1) to (3) above.
 (5)本開示の中空粒子は、上記(1)から(4)のいずれか1つに記載の中空粒子において、上記殻は、更にナトリウムを含む。上記殻の上記ナトリウムの含有量は3000ppm以下である。 (5) The hollow particles of the present disclosure are the hollow particles described in any one of (1) to (4) above, in which the shell further contains sodium. The sodium content of the shell is 3000 ppm or less.
 (6)本開示の中空粒子は、上記(1)から(5)のいずれか1つに記載の中空粒子において、上記シリカは、無定形シリカである。 (6) In the hollow particles of the present disclosure, in the hollow particles described in any one of (1) to (5) above, the silica is amorphous silica.
 (7)本開示の中空粒子は、上記(1)から(6)のいずれか1つに記載の中空粒子において、上記殻は、中空率が30%以上95%以下である。 (7) In the hollow particles of the present disclosure, in the hollow particles described in any one of (1) to (6) above, the shell has a hollowness ratio of 30% to 95%.
 (8)本開示の中空粒子は、上記(1)から(7)のいずれか1つに記載の中空粒子において、上記殻の厚みは、25nm以上500nm以下である。 (8) The hollow particles of the present disclosure are the hollow particles described in any one of (1) to (7) above, and the shell has a thickness of 25 nm or more and 500 nm or less.
 (9)本開示の中空粒子の製造方法は、上記(1)から(8)のいずれか1つに記載の中空粒子の製造方法である。上記製造方法は、コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、上記コアシェル粒子から上記コア粒子を除去して中空粒子前駆体を得ること、及び、上記中空粒子前駆体にシェル形成材料を被覆すること、を含む。 (9) The method for manufacturing hollow particles of the present disclosure is the method for manufacturing hollow particles described in any one of (1) to (8) above. The above manufacturing method includes the steps of: coating a core particle with a shell-forming material to obtain a core-shell particle; removing the core particle from the core-shell particle to obtain a hollow particle precursor; and forming a shell on the hollow particle precursor. including coating the material.
 (10)本開示の中空粒子の製造方法は、上記(9)に記載の中空粒子の製造方法において、上記コア粒子が下記一般式(I)で表されるアルナイト型化合物を含む。
 M[Al1-xM’(SO 2-(OH)・mHO・・・(I)
 式(I)中、Mは、Na、K、NH 及びHからなる群から選択される少なくとも1種の陽イオンである。式(I)中、M’は、Cu2+、Zn2+、Ni2+、Sn4+、Zr4+及びTi4+からなる群から選択される少なくとも1種の陽イオンである。式(I)中、aは、0.8≦a≦1.35を満足する。式(I)中、mは、0≦m≦5を満足する。式(I)中、xは、0≦x≦0.4を満足する。式(I)中、yは、1.7≦y≦2.5を満足する。式(I)中、zは、4≦z≦7を満足する。
(10) The method for manufacturing hollow particles of the present disclosure is the method for manufacturing hollow particles described in (9) above, in which the core particles include an alunite-type compound represented by the following general formula (I).
M a [Al 1-x M' x ] 3 (SO 4 2- ) y (OH) z・mH 2 O...(I)
In formula (I), M is at least one cation selected from the group consisting of Na + , K + , NH 4 + and H 3 O + . In formula (I), M' is at least one cation selected from the group consisting of Cu 2+ , Zn 2+ , Ni 2+ , Sn 4+ , Zr 4+ and Ti 4+ . In formula (I), a satisfies 0.8≦a≦1.35. In formula (I), m satisfies 0≦m≦5. In formula (I), x satisfies 0≦x≦0.4. In formula (I), y satisfies 1.7≦y≦2.5. In formula (I), z satisfies 4≦z≦7.
 本発明の実施形態によれば、優れた誘電特性を達成し得る。 According to embodiments of the present invention, excellent dielectric properties can be achieved.
長径及び短径を説明する模式図である。It is a schematic diagram explaining a long axis and a short axis. 本発明の1つの実施形態における中空粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a hollow particle in one embodiment of the present invention. 殻の厚み方向におけるAl存在量の変化の一例の概略を示すグラフである。2 is a graph schematically showing an example of changes in Al abundance in the thickness direction of the shell. 殻の厚み方向におけるAl存在量の変化の別の例の概略を示すグラフである。It is a graph which shows the outline of another example of the change of Al abundance in the thickness direction of a shell. 殻の厚み方向におけるAl存在量の変化の更に別の例の概略を示すグラフである。It is a graph which shows the outline of yet another example of the change of Al abundance in the thickness direction of a shell. 本発明の1つの実施形態における積層体の概略断面図である。It is a schematic sectional view of the layered product in one embodiment of the present invention. 実施例1の中空粒子のTEM観察写真である。1 is a TEM observation photograph of hollow particles of Example 1. 実施例2の中空粒子のTEM観察写真である。3 is a TEM observation photograph of hollow particles of Example 2. 実施例3の中空粒子のTEM観察写真である。3 is a TEM observation photograph of hollow particles of Example 3. 実施例1の樹脂成形体の断面SEM観察写真である。2 is a cross-sectional SEM observation photograph of the resin molded article of Example 1.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語の定義)
 本明細書における用語の定義は、下記の通りである。
1.粒子の長径
 粒子の長径は、走査型電子顕微鏡(SEM)により測定した値である。粒子の長径は、例えば、図1のLで示すように、無作為に選んだ一次粒子の長径の平均値である。なお、一次粒子とは、SEMより観察される最小の粒子であって、凝集している二次粒子とは区別される。
2.粒子の短径
 粒子の短径は、SEM観察により測定した値である。粒子の短径は、例えば、図1のTで示すように、無作為に選んだ一次粒子の短径の平均値である。
3.アスペクト比
 アスペクト比は、上記粒子の長径から上記粒子の短径を除して算出した値である。
(Definition of terms)
Definitions of terms used herein are as follows.
1. Long diameter of particles The long diameter of particles is a value measured using a scanning electron microscope (SEM). The long diameter of the particles is, for example, the average value of the long diameters of randomly selected primary particles, as shown by L in FIG. Note that primary particles are the smallest particles observed by SEM, and are distinguished from aggregated secondary particles.
2. Short diameter of particles The short diameter of particles is a value measured by SEM observation. The short axis of the particle is, for example, the average value of the short axis of randomly selected primary particles, as shown by T in FIG.
3. Aspect Ratio The aspect ratio is a value calculated by dividing the major axis of the particle by the minor axis of the particle.
A.中空粒子
 本発明の1つの実施形態における中空粒子は、内部が中空の殻を有する。言い換えれば、中空粒子は、殻及びこの殻に囲まれる空間を有する。殻は、シリカを含む。シリカは、代表的には、無定形シリカである。殻のシリカの含有量は、例えば95重量%以上であり、好ましくは97重量%以上であり、より好ましくは98重量%以上である。
A. Hollow Particles Hollow particles in one embodiment of the invention have shells that are hollow inside. In other words, a hollow particle has a shell and a space surrounded by this shell. The shell contains silica. Silica is typically amorphous silica. The silica content of the shell is, for example, 95% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more.
 上記中空粒子の殻は、アルミニウム(Al)を含む。Alを含むことにより、強度(破壊強度)に優れた中空粒子を得ることができる。Alの含有量は、好ましくは0.1%以上であり、より好ましくは0.2%以上である。一方、中空粒子は、Alを含むことで、誘電率及び誘電正接が高くなる傾向にある。そのため、Alの含有量は、1%未満であることが好ましく、より好ましくは0.9%以下であり、更に好ましくは0.7%以下であり、特に好ましくは0.5%以下である。このような含有量によれば、中空粒子は、極めて優れた誘電特性を有し得る。Alの含有量は、例えば、高周波誘導結合プラズマ発光分析法(ICP-AES)による組成分析により求めることができる。 The shell of the hollow particle contains aluminum (Al). By containing Al, hollow particles with excellent strength (fracture strength) can be obtained. The Al content is preferably 0.1% or more, more preferably 0.2% or more. On the other hand, hollow particles tend to have a high dielectric constant and a high dielectric loss tangent when they contain Al. Therefore, the Al content is preferably less than 1%, more preferably 0.9% or less, still more preferably 0.7% or less, particularly preferably 0.5% or less. According to such a content, the hollow particles can have extremely good dielectric properties. The Al content can be determined, for example, by compositional analysis using inductively coupled plasma emission spectrometry (ICP-AES).
 中空粒子は、Alの存在量を、殻の厚み方向内側の方が厚み方向外側よりも多く形成させている。このような形態によれば、強度(破壊強度)、中空率、及び誘電特性に優れた中空粒子を得ることができる。具体的には、中空粒子は、Alが多く存在する領域が、焼成において軟化しやすくなる。すなわち、中空粒子は、製造工程において、焼成温度を低温化させることができる。また、中空粒子は、Alが多く存在する領域により、焼成により殻を構成する中空粒子前駆体の外側よりも内側において、より収縮させ得る。中空粒子は、Alが多く存在する領域により破壊強度を高めることができる。また、中空粒子は、殻において、外側の軟化収縮を抑制することで粒子径を維持しつつ、内側の軟化収縮により内部空間を広げて中空率の向上に寄与すると考えられる。言い換えれば、中空粒子は、殻の外側と内側でAl存在量の分布が異なることで、殻強度及び中空率を向上させることができる。中空粒子の強度に優れ且つ低誘電化できることにより、例えば、樹脂及び中空粒子を含む樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。その結果、粒子の中空状態が保持され、誘電特性の向上に大きく寄与し得る。なお、中空粒子は、殻の厚みが薄ければAlが均一に分布しやすくなる。中空粒子は、例えば、Alが均一に分布すると、殻の内側と外側が同様に収縮して粒子径が小さくなる傾向にある。 The hollow particles have a larger amount of Al on the inside in the thickness direction of the shell than on the outside in the thickness direction. According to such a form, hollow particles having excellent strength (breaking strength), hollowness ratio, and dielectric properties can be obtained. Specifically, in the hollow particles, a region where a large amount of Al exists tends to soften during firing. That is, hollow particles can lower the firing temperature in the manufacturing process. Moreover, the hollow particles can be made to shrink more on the inside than on the outside of the hollow particle precursor forming the shell by firing due to the region where a large amount of Al exists. Hollow particles can increase the breaking strength due to the region where a large amount of Al exists. In addition, the hollow particles are considered to contribute to improving the hollowness ratio by suppressing softening and shrinking on the outside in the shell, thereby maintaining the particle diameter, and expanding the internal space due to softening and shrinking on the inside. In other words, the hollow particles have different distributions of Al abundance on the outside and inside of the shell, thereby improving the shell strength and hollowness ratio. Since the hollow particles have excellent strength and can be made low dielectric, it is possible to effectively prevent the hollow particles from being broken, for example, when producing a resin composition containing a resin and hollow particles. As a result, the hollow state of the particles is maintained, which can greatly contribute to improving dielectric properties. In addition, if the thickness of the shell of the hollow particle is thin, it becomes easier for Al to be uniformly distributed. In hollow particles, for example, when Al is uniformly distributed, the inside and outside of the shell shrink in the same way, and the particle size tends to become smaller.
 図2は、本発明の1つの実施形態における中空粒子を模式的に示す断面図である。なお、図2では、図を見やすくするために中空粒子の断面は、ハッチングを省略している。中空粒子2は、殻4及び殻4により囲まれた空間(中空部)6を有している。殻4は、その厚み方向内側に位置する第一部位4aにおけるAl存在量の方が、第一部位4aよりも厚み方向外側に位置する第二部位4bにおけるAl存在量よりも多い。中空粒子は、例えば、図2に示すように、第一部位4aが殻4の内側の表面又は表面近傍に位置し、第二部位4bが殻の外側の表面又は表面近傍に位置する場合、第一部位4aにおけるAl存在量は、第二部位4bにおけるAl存在量の2倍以上であることが好ましく、3倍以上であることがより好ましい。Al存在量の分布は、例えば、透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分光法(TEM-EDS)による組成分析により求めることができる。1つの実施形態においては、Al存在量は、Siに対するAlのモル比で評価することができる。 FIG. 2 is a cross-sectional view schematically showing a hollow particle in one embodiment of the present invention. In addition, in FIG. 2, hatching is omitted for the cross section of the hollow particle in order to make the figure easier to read. The hollow particle 2 has a shell 4 and a space (hollow part) 6 surrounded by the shell 4. In the shell 4, the amount of Al present in the first region 4a located on the inner side in the thickness direction is greater than the amount of Al present in the second region 4b located on the outer side in the thickness direction than the first region 4a. For example, as shown in FIG. 2, when the first part 4a is located at or near the inner surface of the shell 4 and the second part 4b is located at or near the outer surface of the shell, the hollow particle The amount of Al present in one site 4a is preferably twice or more, more preferably three times or more, the amount of Al present in the second site 4b. The distribution of Al abundance can be determined, for example, by compositional analysis using energy dispersive X-ray spectroscopy (TEM-EDS) using a transmission electron microscope (TEM). In one embodiment, the amount of Al present can be evaluated by the molar ratio of Al to Si.
 厚み方向におけるAl存在量の分布の例として、殻の内側から外側に向かってAl存在量が連続的に少なくなる形態が挙げられる。この場合、Al存在量の変化の仕方は、特に限定されない。例えば、Al存在量は、図3Aに示すように、殻の内側の表面からの距離に対して線形に減少してもよい。また、図3Bに示すように、殻の内側の表面からの距離に対し指数関数的に減少してもよい。中空粒子は、具体的には、コア粒子に対する1次シリカ処理及び中空粒子前駆体に対する2次シリカ処理時において、Al原料の加え方を制御することで、Al存在量を制御することができる。中空粒子は、Al存在量が線形に減少する場合、殻にAlが均一に分布している場合と比較して中空率がより高い傾向にある。中空粒子は、Al存在量が指数関数的に減少する場合、線形に減少する場合と比較して中空率がより高い傾向にある。 An example of the distribution of Al abundance in the thickness direction is a form in which the Al abundance decreases continuously from the inside to the outside of the shell. In this case, the manner in which the amount of Al present changes is not particularly limited. For example, Al abundance may decrease linearly with distance from the inner surface of the shell, as shown in Figure 3A. It may also decrease exponentially with distance from the inner surface of the shell, as shown in FIG. 3B. Specifically, the amount of Al present in the hollow particles can be controlled by controlling how the Al raw material is added during the primary silica treatment of the core particles and the secondary silica treatment of the hollow particle precursors. Hollow particles tend to have a higher hollowness ratio when Al abundance decreases linearly compared to when Al is uniformly distributed in the shell. Hollow particles tend to have a higher hollowness ratio when the Al abundance decreases exponentially compared to when it decreases linearly.
 厚み方向におけるAl存在量の分布の別の例として、殻の内側から外側に向かってAl存在量が段階的に少なくなる形態が挙げられる。言い換えれば、中空粒子は、殻の内側から外側に向かってAl存在量を不連続に少なくしている。中空粒子は、例えば、図3Cに示すように、殻の内側の表面から外側に向けて、Al存在量が一定である第一領域41を有し、第一領域41よりも外側に、Al存在量が第一領域41よりも少ない第二領域42を有する形態が挙げられる。なお、図3Cでは、便宜上、第一領域41及び第二領域42を直線状に示しているが、Al存在量が一定とは、例えば、Al存在量のバラツキが20%以下であることを意味する。また、図3Cでは、Al存在量が二段階で減少する例を示しているが、三段階以上であってもよい。中空粒子は、Al存在量が段階的に減少する場合、強度及び中空率を向上させる効果を高めることができる。 Another example of the distribution of Al abundance in the thickness direction is a form in which the Al abundance decreases stepwise from the inside to the outside of the shell. In other words, in the hollow particles, the amount of Al present decreases discontinuously from the inside to the outside of the shell. For example, as shown in FIG. 3C, the hollow particle has a first region 41 in which the amount of Al is constant from the inner surface of the shell to the outside, and the amount of Al in the outside than the first region 41 is constant. An example is a configuration in which the second region 42 has a smaller amount than the first region 41. Note that in FIG. 3C, for convenience, the first region 41 and the second region 42 are shown in a straight line, but the expression that the Al abundance is constant means, for example, that the variation in the Al abundance is 20% or less. do. Further, although FIG. 3C shows an example in which the amount of Al present decreases in two stages, it may be reduced in three or more stages. Hollow particles can enhance the effect of improving strength and hollowness ratio when the Al content decreases stepwise.
 中空粒子の殻は、ナトリウム(Na)を含み得る。中空粒子は、Naの含有量が多すぎれば、中空粒子の製造工程において、焼成温度を高めることが難しくなり、収縮する傾向にある。Naの含有量は、3000ppm以下であることが好ましく、より好ましくは2000ppm以下であり、更に好ましくは1500ppm以下である。一方、Naの含有量は、100ppm以上であることが好ましい。Naの含有量は、例えば、原子吸光分析法(AAS)による組成分析により求めることができる。 The shell of the hollow particles may contain sodium (Na). If the Na content of the hollow particles is too high, it will be difficult to increase the firing temperature in the hollow particle manufacturing process, and the hollow particles will tend to shrink. The content of Na is preferably 3000 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less. On the other hand, the content of Na is preferably 100 ppm or more. The Na content can be determined, for example, by composition analysis using atomic absorption spectrometry (AAS).
 中空粒子において、Naの存在量は、殻の厚み方向内側の方が厚み方向外側よりも多いことが好ましい。中空粒子は、Si(4+)の一部がAl(3+)に置き換わると電子欠損を埋めるためにNaが入りやすいと考えられる。そのため、中空粒子は、Alが多く存在する領域において、Naが多く存在する傾向にあると考えられる。 In the hollow particles, it is preferable that the amount of Na present is greater on the inside in the thickness direction of the shell than on the outside in the thickness direction. It is considered that when a part of Si(4+) is replaced with Al(3+), Na easily enters the hollow particles to fill the electron vacancies. Therefore, it is considered that hollow particles tend to have a large amount of Na in a region where a large amount of Al exists.
 1つの実施形態においては、中空粒子の一次粒子は、1≦DSL≦1.5を満足することが好ましい。中空粒子の一次粒子は、1≦DSL≦1.5を満足することで、粒子間のばらつきを抑え、誘電特性の均一化を図ることができる。中空粒子の一次粒子は、1≦DSL≦1.4を満足することがより好ましく、1≦DSL≦1.3を満足することが更に好ましい。ここで、DSLは、D75L/D25Lであり、D25L及びD75Lは、それぞれ、走査型電子顕微鏡による観察において、無作為に選んだ100個の一次粒子の長径を測定し、サイズを小さい方から順に並べたときの25番目及び75番目の値を示す。 In one embodiment, the primary particles of the hollow particles preferably satisfy 1≦D SL ≦1.5. When the primary particles of the hollow particles satisfy 1≦D SL ≦1.5, variations between particles can be suppressed and dielectric properties can be made uniform. The primary particles of the hollow particles more preferably satisfy 1≦D SL ≦1.4, and even more preferably satisfy 1≦D SL ≦1.3. Here, D SL is D 75L /D 25L , and D 25L and D 75L are each determined by measuring the long axis of 100 randomly selected primary particles during observation using a scanning electron microscope. The 25th and 75th values are shown when arranged in descending order.
 中空粒子の一次粒子は、1≦DST≦1.5を満足することが好ましく、より好ましくは1≦DST≦1.4を満足し、更に好ましくは1≦DST≦1.3を満足する。ここで、DSTは、D75T/D25Tであり、D25T及びD75Tは、それぞれ、走査型電子顕微鏡による観察において、無作為に選んだ100個の一次粒子の短径を測定し、サイズを小さい方から順に並べたときの25番目及び75番目の値を示す。 The primary particles of hollow particles preferably satisfy 1≦D ST ≦1.5, more preferably satisfy 1≦D ST ≦1.4, and still more preferably satisfy 1≦D ST ≦1.3. do. Here, D ST is D 75T /D 25T , and D 25T and D 75T are the sizes obtained by measuring the short axis of 100 randomly selected primary particles during observation using a scanning electron microscope. The 25th and 75th values are shown when they are arranged in descending order.
 上記中空粒子のアスペクト比は、2未満であることが好ましく、より好ましくは1.9以下ある。一方、中空粒子のアスペクト比は、1以上であり、好ましくは1を超え、より好ましくは1.1以上である。 The aspect ratio of the hollow particles is preferably less than 2, more preferably 1.9 or less. On the other hand, the aspect ratio of the hollow particles is 1 or more, preferably more than 1, and more preferably 1.1 or more.
 中空粒子は、任意の適切な形状を有し得る。中空粒子の形状としては、例えば、楕円状、球状、凝集塊状、鱗片状、板状、膜状、円柱状、角柱状、扁平形状、碁石状、米粒状が挙げられる。中空粒子の形状としては、好ましくは、球状、碁石状が採用される。このような形状を採用することにより、例えば、上記DSL及びDSTを良好に満足させ得る。 Hollow particles can have any suitable shape. Examples of the shape of the hollow particles include elliptical, spherical, aggregated, scale-like, plate-like, film-like, cylindrical, prismatic, flattened, go-stone-like, and rice-grain-like. Preferably, the shape of the hollow particles is spherical or grid-shaped. By adopting such a shape, for example, the above DSL and DST can be satisfactorily satisfied.
 中空粒子の長径は、好ましくは0.5μm以上であり、より好ましくは1μm以上である。中空粒子は、例えば、長径が0.5μm以上であれば、後述の中空率を十分に満足し得るからである。一方、中空粒子の長径は、好ましくは10μm以下であり、より好ましくは5μm以下である。中空粒子は、例えば、長径が10μm以下であれば、用いられる部材の小型化又は薄膜化に大きく寄与し得るからである。 The long axis of the hollow particles is preferably 0.5 μm or more, more preferably 1 μm or more. This is because if the hollow particles have a major axis of 0.5 μm or more, for example, they can fully satisfy the hollowness ratio described below. On the other hand, the length of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less. This is because hollow particles having a major axis of 10 μm or less, for example, can greatly contribute to making the member used smaller or thinner.
 中空粒子の短径は、好ましくは0.25μm以上であり、より好ましくは0.5μm以上である。中空粒子は、例えば、短径が0.25μm以上であれば、後述の中空率を十分に満足し得るからである。一方、中空粒子の短径は、好ましくは10μm以下であり、より好ましくは5μm以下である。中空粒子は、例えば、短径が10μm以下であれば、用いられる部材の小型化又は薄膜化に大きく寄与し得るからである。 The short axis of the hollow particles is preferably 0.25 μm or more, more preferably 0.5 μm or more. This is because if the hollow particles have a short axis of 0.25 μm or more, for example, they can fully satisfy the hollowness ratio described below. On the other hand, the short axis of the hollow particles is preferably 10 μm or less, more preferably 5 μm or less. This is because hollow particles, for example, if the short axis is 10 μm or less, can greatly contribute to making the member used smaller or thinner.
 中空粒子の殻の厚みは、好ましくは25nm以上であり、より好ましくは50nm以上であり、更に好ましくは75nm以上である。このような厚みによれば、例えば、樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。一方、中空粒子の殻の厚みは、好ましくは500nm以下であり、より好ましくは350nm以下であり、更に好ましくは250nm以下である。このような厚みによれば、後述の中空率を十分に満足し得、誘電特性の向上、軽量化に大きく寄与し得る。なお、殻の厚みは、TEM観察により測定することができる。例えば、無作為に選んだ中空粒子の殻の厚みを測定し、測定された殻の厚みの平均値を算出することにより求められる。中空粒子の殻の厚みは、Al存在量の分布に影響を与える場合がある。 The thickness of the shell of the hollow particles is preferably 25 nm or more, more preferably 50 nm or more, and still more preferably 75 nm or more. According to such a thickness, for example, when producing a resin composition, it is possible to effectively prevent the hollow particles from being broken. On the other hand, the thickness of the shell of the hollow particles is preferably 500 nm or less, more preferably 350 nm or less, and even more preferably 250 nm or less. With such a thickness, the hollowness ratio described below can be fully satisfied, and it can greatly contribute to improving dielectric properties and reducing weight. Note that the thickness of the shell can be measured by TEM observation. For example, it can be determined by measuring the shell thickness of randomly selected hollow particles and calculating the average value of the measured shell thicknesses. The shell thickness of hollow particles may affect the distribution of Al abundance.
 中空粒子の中空率は、好ましくは30%以上であり、より好ましくは40%以上であり、更に好ましくは45%以上であり、特に好ましくは50%以上である。このような中空率によれば、例えば、誘電特性の向上、軽量化に大きく寄与し得る。一方、中空粒子の中空率は、好ましくは95%以下であり、より好ましくは90%以下であり、更に好ましくは85%以下であり、特に好ましくは80%以下である。このような中空率によれば、例えば、樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。なお、中空率は、上記長径及び短径と上記殻の厚みから算出することができる。 The hollowness ratio of the hollow particles is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more. Such a hollowness ratio can greatly contribute to improving dielectric properties and reducing weight, for example. On the other hand, the hollowness ratio of the hollow particles is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably 80% or less. According to such a hollowness ratio, for example, when producing a resin composition, it is possible to effectively prevent hollow particles from being broken. Note that the hollowness ratio can be calculated from the major axis and minor axis and the thickness of the shell.
 中空粒子のBET比表面積は、好ましくは30m/g以下であり、より好ましくは20m/g以下であり、更に好ましくは10m/g以下である。一方、中空粒子のBET比表面積は、例えば0.5m/g以上であり、1m/g以上であってもよい。 The BET specific surface area of the hollow particles is preferably 30 m 2 /g or less, more preferably 20 m 2 /g or less, still more preferably 10 m 2 /g or less. On the other hand, the BET specific surface area of the hollow particles is, for example, 0.5 m 2 /g or more, and may be 1 m 2 /g or more.
 中空粒子の直径が1nmから100nmの細孔の積算細孔容積は、好ましくは0.1cc/g以下であり、より好ましくは0.08cc/g以下であり、更に好ましくは0.06cc/g以下である。このような細孔容積によれば、例えば、樹脂組成物において、中空粒子内部へ樹脂が侵入するのを効果的に防止し、誘電特性の向上に大きく寄与し得る。一方、中空粒子の直径が1nmから100nmの細孔の積算細孔容積は、例えば0.01cc/g以上である。 The cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 100 nm is preferably 0.1 cc/g or less, more preferably 0.08 cc/g or less, and even more preferably 0.06 cc/g or less. It is. Such a pore volume can effectively prevent resin from penetrating into the interior of hollow particles in a resin composition, for example, and can greatly contribute to improving dielectric properties. On the other hand, the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 100 nm is, for example, 0.01 cc/g or more.
 中空粒子の直径が1nmから10nmの細孔の積算細孔容積は、好ましくは0.025cc/g以下であり、より好ましくは0.020cc/g以下であり、更に好ましくは0.010cc/g以下である。このような細孔容積によれば、例えば、樹脂組成物において、中空粒子内部へ樹脂が侵入するのを効果的に防止し、誘電特性の向上に大きく寄与し得る。一方、中空粒子の直径が1nmから10nmの細孔の積算細孔容積は、例えば0.001cc/g以上である。 The cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 10 nm is preferably 0.025 cc/g or less, more preferably 0.020 cc/g or less, and even more preferably 0.010 cc/g or less. It is. Such a pore volume can effectively prevent resin from penetrating into the interior of hollow particles in a resin composition, for example, and can greatly contribute to improving dielectric properties. On the other hand, the cumulative pore volume of the pores of the hollow particles having a diameter of 1 nm to 10 nm is, for example, 0.001 cc/g or more.
 中空粒子の密度は、好ましくは0.90g/cc以下であり、より好ましくは0.80g/cc以下である。一方、中空粒子の密度は、好ましくは0.55g/cc以上であり、より好ましくは0.60g/cc以上である。このような密度によれば、中空粒子は、殻の強度と中空率の維持を達成し得る。 The density of the hollow particles is preferably 0.90 g/cc or less, more preferably 0.80 g/cc or less. On the other hand, the density of the hollow particles is preferably 0.55 g/cc or more, more preferably 0.60 g/cc or more. With such a density, the hollow particles can maintain shell strength and hollowness.
 中空粒子の25℃、10GHzにおける誘電率は、2.2以下であることが好ましく、より好ましくは2.0以下である。一方、中空粒子の25℃、10GHzにおける誘電率は、例えば1.0以上である。中空粒子の25℃、10GHzにおける誘電正接は、0.005以下であることが好ましく、より好ましくは0.002以下である。一方、中空粒子の25℃、10GHzにおける誘電正接は、例えば0.0001以上である。 The dielectric constant of the hollow particles at 25° C. and 10 GHz is preferably 2.2 or less, more preferably 2.0 or less. On the other hand, the dielectric constant of the hollow particles at 25° C. and 10 GHz is, for example, 1.0 or more. The dielectric loss tangent of the hollow particles at 25° C. and 10 GHz is preferably 0.005 or less, more preferably 0.002 or less. On the other hand, the dielectric loss tangent of the hollow particles at 25° C. and 10 GHz is, for example, 0.0001 or more.
 中空粒子の破壊強度は、好ましくは10MPa以上であり、より好ましくは12MPa以上であり、更に好ましくは14MPa以上であり、特に好ましくは16MPa以上である。このような破壊強度によれば、例えば、樹脂組成物を作製する際に、中空粒子が壊れるのを効果的に防止し得る。その結果、粒子の中空状態が保持され、誘電特性の向上に大きく寄与し得る。一方、中空粒子の破壊強度は、例えば800MPa以下である。 The breaking strength of the hollow particles is preferably 10 MPa or more, more preferably 12 MPa or more, still more preferably 14 MPa or more, and particularly preferably 16 MPa or more. Such breaking strength can effectively prevent hollow particles from breaking, for example, when producing a resin composition. As a result, the hollow state of the particles is maintained, which can greatly contribute to improving dielectric properties. On the other hand, the breaking strength of hollow particles is, for example, 800 MPa or less.
 中空粒子の破壊強度は、例えば、微小圧縮試験機(島津製作所社製の「MCT-510」)にて、測長キット及びサイド観察キットを用いて測定することができる。具体的には、下部加圧板の上に中空粒子を極微量散布し、下記の測定条件にて、一粒子ずつ破壊試験を行うことにより測定することができる。
・試験力:0.980mN
・負荷速度:0.0223mN/sec
・上部加圧圧子:平面φ20μm
The breaking strength of hollow particles can be measured, for example, using a micro compression tester ("MCT-510" manufactured by Shimadzu Corporation) using a length measurement kit and a side observation kit. Specifically, the measurement can be carried out by scattering a very small amount of hollow particles on the lower pressure plate and performing a destructive test on each particle under the following measurement conditions.
・Test force: 0.980mN
・Load speed: 0.0223mN/sec
・Upper pressure indenter: flat surface φ20μm
 例えば、10粒子について測定し、測定したそれぞれの粒子の粒子径d(mm)と破壊点の試験力P(N)の値から、破壊強度Csを算出する。破壊強度Csの算出には、JIS R 1639-5の「ファインセラミックス顆粒特性の測定方法-第5部:単一顆粒圧壊強さ」の下記式を用いる。
 Cs=2.48P/πd
 10粒子の破壊強度Cs(MPa)の平均値を算出することにより、上記中空粒子の破壊強度を求めることができる。
For example, 10 particles are measured, and the breaking strength Cs is calculated from the measured particle diameter d (mm) of each particle and the value of the test force P (N) at the breaking point. The following formula of JIS R 1639-5 "Method for measuring fine ceramic granule properties - Part 5: Single granule crushing strength" is used to calculate the breaking strength Cs.
Cs=2.48P/πd 2
By calculating the average value of the breaking strength Cs (MPa) of the 10 particles, the breaking strength of the hollow particles can be determined.
 中空粒子1g当たりのエポキシ樹脂吸油量は、2.3g以下であることが好ましく、より好ましくは2.0g以下である。また、中空粒子のエポキシ樹脂吸油量は、0.6g/m未満であることが好ましく、より好ましくは0.46g/m以下であり、更に好ましくは0.35g/m以下である。 The epoxy resin oil absorption amount per gram of hollow particles is preferably 2.3 g or less, more preferably 2.0 g or less. Further, the epoxy resin oil absorption amount of the hollow particles is preferably less than 0.6 g/m 2 , more preferably 0.46 g/m 2 or less, and even more preferably 0.35 g/m 2 or less.
 1つの実施形態においては、上記中空粒子は、任意の適切な表面処理剤による表面処理が施されていることが好ましい。表面処理剤としては、例えば、高級脂肪酸類、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル類、カップリング剤、多価アルコールと脂肪酸とのエステル類、アクリル系ポリマー及びシリコーン処理剤からなる群から選択される少なくとも1つが用いられる。 In one embodiment, the hollow particles are preferably surface-treated with any suitable surface treatment agent. Examples of surface treatment agents include higher fatty acids, anionic surfactants, cationic surfactants, phosphate esters, coupling agents, esters of polyhydric alcohols and fatty acids, acrylic polymers, and silicone treatment agents. At least one selected from the group consisting of is used.
 上記中空粒子の製造方法としては、任意の適切な方法が採用され得る。本発明の1つの実施形態による中空粒子の製造方法は、コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、コアシェル粒子からコア粒子を除去して中空粒子前駆体を得ること、及び、中空粒子前駆体にシェル形成材料を被覆すること、を含む。中空粒子前駆体に対してシェル形成材料の被覆を行うことにより、例えば、中空率の低下を抑制しながら、強固な殻を形成し得る。具体的には、コア粒子を除去して得られる中空粒子前駆体は細孔を有し得、脆い状態であり得る。中空粒子前駆体の細孔をシェル形成材料で埋めることにより、中空粒子前駆体を収縮させずに、強固な殻を有する中空粒子を得ることができる。中空粒子前駆体の収縮とは、例えば、軟化収縮である。 Any suitable method may be adopted as the method for producing the hollow particles. A method for producing hollow particles according to one embodiment of the present invention includes: coating a core particle with a shell-forming material to obtain a core-shell particle; removing the core particle from the core-shell particle to obtain a hollow particle precursor; coating the hollow particle precursor with a shell-forming material. By coating the hollow particle precursor with a shell-forming material, a strong shell can be formed, for example, while suppressing a decrease in hollowness ratio. Specifically, the hollow particle precursor obtained by removing the core particle may have pores and may be in a brittle state. By filling the pores of the hollow particle precursor with a shell-forming material, hollow particles having a strong shell can be obtained without shrinking the hollow particle precursor. The contraction of the hollow particle precursor is, for example, softening contraction.
 上記コア粒子は、その一次粒子が1≦DSL≦1.5を満足することが好ましく、より好ましくは1≦DSL≦1.4、更に好ましくは1≦DSL≦1.3である。また、コア粒子の一次粒子は、1≦DST≦1.5を満足することが好ましく、より好ましくは1≦DST≦1.4、更に好ましくは1≦DST≦1.3である。なお、DSL及びDSTについては、上述のとおりである。 The primary particles of the core particles preferably satisfy 1≦D SL ≦1.5, more preferably 1≦D SL ≦1.4, and still more preferably 1≦D SL ≦1.3. Further, the primary particles of the core particles preferably satisfy 1≦D ST ≦1.5, more preferably 1≦D ST ≦1.4, and even more preferably 1≦D ST ≦1.3. Note that DSL and DST are as described above.
 コア粒子のアスペクト比は、2未満であることが好ましく、より好ましくは1.9以下である。一方、コア粒子のアスペクト比は、1以上であり、好ましくは1を超え、より好ましくは1.1以上である。コア粒子の形状としては、例えば、楕円状、球状、凝集塊状、鱗片状、板状、膜状、円柱状、角柱状、扁平形状、碁石状、米粒状が挙げられる。コア粒子の形状としては、好ましくは、球状、碁石状が採用される。 The aspect ratio of the core particles is preferably less than 2, more preferably 1.9 or less. On the other hand, the aspect ratio of the core particles is 1 or more, preferably more than 1, and more preferably 1.1 or more. Examples of the shape of the core particles include elliptical, spherical, aggregated, scale-like, plate-like, film-like, cylindrical, prismatic, flattened, go-stone-like, and rice-grain-like. Preferably, the shape of the core particles is spherical or grid-shaped.
 コア粒子の長径は、好ましくは0.5μm以上であり、より好ましくは1μm以上である。一方、コア粒子の長径は、好ましくは10μm以下であり、より好ましくは5μm以下である。コア粒子の短径は、好ましくは0.25μm以上であり、より好ましくは0.5μm以上である。一方、コア粒子の短径は、好ましくは10μm以下であり、より好ましくは5μm以下である。 The major axis of the core particle is preferably 0.5 μm or more, more preferably 1 μm or more. On the other hand, the major axis of the core particles is preferably 10 μm or less, more preferably 5 μm or less. The short axis of the core particles is preferably 0.25 μm or more, more preferably 0.5 μm or more. On the other hand, the short axis of the core particle is preferably 10 μm or less, more preferably 5 μm or less.
 コア粒子の形成材料としては、任意の適切な材料が採用され得る。例えば、アルミニウムを含む材料を用いて、得られる中空粒子において上記Al存在量の分布を満足させることもできる。1つの実施形態においては、コア粒子は、下記一般式(I)で表されるアルナイト型化合物で形成されることが好ましい。
 M[Al1-xM’(SO 2-(OH)・mHO・・・(I)
 式(I)中、Mは、Na、K、NH 及びHからなる群から選択される少なくとも1種の陽イオンである。式(I)中、M’は、Cu2+、Zn2+、Ni2+、Sn4+、Zr4+及びTi4+からなる群から選択される少なくとも1種の陽イオンである。式(I)中、aは、0.8≦a≦1.35を満足する。式(I)中、mは、0≦m≦5を満足する。式(I)中、xは、0≦x≦0.4を満足する。式(I)中、yは、1.7≦y≦2.5を満足する。式(I)中、zは、4≦z≦7を満足する。
Any suitable material may be employed as the material for forming the core particles. For example, by using a material containing aluminum, the above distribution of Al abundance can be satisfied in the resulting hollow particles. In one embodiment, the core particles are preferably formed of an alunite-type compound represented by the following general formula (I).
M a [Al 1-x M' x ] 3 (SO 4 2- ) y (OH) z・mH 2 O...(I)
In formula (I), M is at least one cation selected from the group consisting of Na + , K + , NH 4 + and H 3 O + . In formula (I), M' is at least one cation selected from the group consisting of Cu 2+ , Zn 2+ , Ni 2+ , Sn 4+ , Zr 4+ and Ti 4+ . In formula (I), a satisfies 0.8≦a≦1.35. In formula (I), m satisfies 0≦m≦5. In formula (I), x satisfies 0≦x≦0.4. In formula (I), y satisfies 1.7≦y≦2.5. In formula (I), z satisfies 4≦z≦7.
 上記シェル形成材料としては、例えば、ケイ酸ナトリウム(NaO・nSiO)、テトラエトキシシラン(Si(OCHCH)に代表されるアルコキシシランが用いられる。1つの実施形態においては、ケイ酸ナトリウム(水ガラス)が用いられる。Naが存在することにより、例えば、後述の焼成において軟化しやすく、焼成温度の制御を容易に行い得る場合がある。シェル形成材料は、Alを含んでいてもよい。例えば、コア粒子に対し、複数回にわたってシェル形成材料を用いて被覆処理を施す場合、各処理に用いるシェル形成材料におけるAl濃度を調整することにより、得られる中空粒子において上記Al存在量の分布を満足させることもできる。 As the shell forming material, for example, alkoxysilanes such as sodium silicate (Na 2 O.nSiO 2 ) and tetraethoxysilane (Si(OCH 2 CH 3 ) 4 ) are used. In one embodiment, sodium silicate (water glass) is used. Due to the presence of Na, for example, the material may be easily softened during firing, which will be described later, and the firing temperature may be easily controlled. The shell forming material may contain Al. For example, when a core particle is coated with a shell-forming material multiple times, by adjusting the Al concentration in the shell-forming material used for each treatment, the distribution of the Al abundance in the resulting hollow particles can be adjusted. It can also satisfy you.
 シェル形成材料による被覆量は、任意の適切な方法により調整され得る。例えば、ケイ酸ナトリウムを含むシェル形成材料を用いて被覆を行う際のpH値を制御することで、被覆量を調整する。具体的には、ケイ酸ナトリウムは、高pH領域において安定であり得る。例えば、ケイ酸ナトリウムは、pH11以上において安定であり得る。したがって、pH値を下げることによりケイ酸ナトリウム分子を縮合させて、シリカを効率的にコア粒子上に析出させ得る。ここで、コア粒子が上記アルナイト型化合物を含む場合、アルナイト型化合物の水スラリー自体が酸性を示し得る。アルナイト型化合物の水スラリー自体の酸性は、例えば、pH3~5である。アルナイト型化合物の水スラリー自体が酸性であることから、例えば、pH値を下げるためのpH調整剤を使用しなくてもシリカを効率的にコア粒子上に析出させることができる。アルナイト型化合物を含むコア粒子に対し、複数回にわたってケイ酸ナトリウムを含むシェル形成材料を用いて被覆処理を施す場合、複数回のうちの1回以上において、pH調整剤を用いてもよい。この場合、pH調整剤としては、例えば、塩酸、硫酸等の酸性溶液が用いられ得る。酸性溶液を用いることにより、Naの含有量の少ない中空粒子を得ることができる。 The amount of coverage with the shell-forming material can be adjusted by any suitable method. For example, the amount of coating can be adjusted by controlling the pH value when coating with a shell-forming material containing sodium silicate. Specifically, sodium silicate can be stable in high pH regions. For example, sodium silicate may be stable at pH 11 or higher. Therefore, by lowering the pH value, sodium silicate molecules can be condensed and silica can be efficiently precipitated onto the core particles. Here, when the core particles contain the above-mentioned alunite type compound, the water slurry of the alunite type compound itself may exhibit acidity. The acidity of the aqueous slurry of the alunite type compound itself is, for example, pH 3 to 5. Since the aqueous slurry of the alunite compound itself is acidic, silica can be efficiently precipitated onto the core particles, for example, without using a pH adjuster to lower the pH value. When core particles containing an alunite-type compound are coated multiple times with a shell-forming material containing sodium silicate, a pH adjuster may be used in one or more of the multiple coats. In this case, as the pH adjuster, for example, an acidic solution such as hydrochloric acid or sulfuric acid can be used. By using an acidic solution, hollow particles with a low Na content can be obtained.
 なお、シェル形成材料を用いて被覆する際に加熱することによっても、シェル形成材料による被覆を促進し得る。具体的には、シェルの析出を促進させて、シェルの形成速度を上昇させ得る。シェル形成材料を用いて被覆する際の加熱温度としては、例えば、80℃~90℃である。また、被覆を行う際のシェル形成材料の濃度、配合量等を制御することによっても、被覆量を調整することができる。ケイ酸ナトリウムを含むシェル形成材料でコア粒子を被覆する場合、シェル形成材料のケイ酸ナトリウムの濃度は、例えば、0.1mol/L~2mol/Lである。 Note that coating with the shell-forming material can also be promoted by heating when coating with the shell-forming material. Specifically, shell precipitation can be promoted to increase the shell formation rate. The heating temperature when coating with the shell forming material is, for example, 80°C to 90°C. Furthermore, the amount of coating can be adjusted by controlling the concentration, blending amount, etc. of the shell-forming material when coating. When the core particles are coated with a shell-forming material containing sodium silicate, the concentration of sodium silicate in the shell-forming material is, for example, 0.1 mol/L to 2 mol/L.
 上記コア粒子の除去は、代表的には、酸性溶液にコア粒子を溶解させることにより行う。酸性溶液としては、例えば、塩酸、硫酸、硝酸が用いられる。溶解させる温度は、例えば、30℃~90℃であり、好ましくは50℃~80℃である。このような温度によれば、シェルが壊れやすくなる等の不具合を抑制しながら効率的にコア粒子を溶解させ得る。1つの実施形態においては、例えば、コア粒子と反応して得られる物質を再利用する観点から、酸性溶液として硫酸を用いる。コア粒子と反応して得られる物質としては、例えば、塩が挙げられる。硫酸の濃度は、例えば、0.1mol/L~3.5mol/Lであり、好ましくは0.5mol/L以上である。アルナイト型化合物を含むコア粒子を溶解させるに際し、例えば、酸性溶液、溶解させる温度、時間を調整することで、上記Alの含有量を良好に達成し得る。 The removal of the core particles is typically performed by dissolving the core particles in an acidic solution. As the acidic solution, for example, hydrochloric acid, sulfuric acid, and nitric acid are used. The melting temperature is, for example, 30°C to 90°C, preferably 50°C to 80°C. According to such a temperature, the core particles can be efficiently dissolved while suppressing problems such as the shell becoming easily broken. In one embodiment, sulfuric acid is used as the acidic solution, for example, from the viewpoint of reusing the substance obtained by reacting with the core particles. Examples of substances obtained by reacting with core particles include salts. The concentration of sulfuric acid is, for example, 0.1 mol/L to 3.5 mol/L, preferably 0.5 mol/L or more. When dissolving the core particles containing the alunite-type compound, the above-mentioned Al content can be satisfactorily achieved by, for example, adjusting the acidic solution, dissolution temperature, and time.
 上記中空粒子の製造方法は、上記コア粒子を除去する前に、上記コアシェル粒子を焼成することを含み得る。コア粒子が上記アルナイト型化合物を含む場合、コア粒子の除去を行う前に、焼成を行うことが好ましい。焼成は、例えば、大気雰囲気下で行うことが好ましい。アルナイト型化合物は耐酸性を有し得ることから、焼成によりアルナイト型化合物は変化し、焼成後のコア粒子は酸性溶液に溶解しやすい状態となるからである。具体的には、アルナイト型化合物を含むコア粒子は、凝集密度の低い部分は酸性溶液に溶解しやすいが、凝集密度の高い部分は酸性溶液に溶解しにくく、酸性溶液への溶解量は、例えば30重量%程度にとどまる。焼成により、アルナイト型化合物から酸性溶液に溶解しやすい酸化アルミニウム(Al)を生成させ、コア粒子の酸性溶液への溶解性を向上させることができる。 The hollow particle manufacturing method may include firing the core-shell particles before removing the core particles. When the core particles contain the above-mentioned alunite type compound, it is preferable to perform calcination before removing the core particles. It is preferable that the firing is performed, for example, in an air atmosphere. This is because the alunite-type compound can have acid resistance, so the alunite-type compound is changed by firing, and the core particles after firing are in a state where they are easily dissolved in an acidic solution. Specifically, in a core particle containing an alunite-type compound, a portion with a low aggregation density is easily dissolved in an acidic solution, but a portion with a high aggregation density is difficult to dissolve in an acidic solution, and the amount dissolved in an acidic solution is, for example, It remains at about 30% by weight. By firing, aluminum oxide (Al 2 O 3 ), which is easily soluble in acidic solutions, is produced from the alunite-type compound, and the solubility of the core particles in acidic solutions can be improved.
 コアシェル粒子の焼成の温度は、例えば300℃~900℃であり、好ましくは300℃~650℃である。このような焼成温度によれば、シェルの結晶化を抑制して、上記酸化アルミニウムを生成させ得る。焼成時間は、例えば、0.5時間~20時間である。焼成は、連続的に行ってもよいし、異なる温度で多段的に行ってもよい。なお、多段的に焼成を行う場合、上記焼成時間は、各段階の焼成時間の合計である。1つの実施形態においては、コアシェル粒子の焼成温度を調整することで、得られる中空粒子において上記Al存在量の分布を満足させてもよい。 The temperature for firing the core-shell particles is, for example, 300°C to 900°C, preferably 300°C to 650°C. According to such a firing temperature, the crystallization of the shell can be suppressed and the aluminum oxide can be produced. The firing time is, for example, 0.5 to 20 hours. Firing may be performed continuously or in multiple stages at different temperatures. In addition, when baking is performed in multiple stages, the above-mentioned baking time is the total baking time of each stage. In one embodiment, the above distribution of Al abundance may be satisfied in the resulting hollow particles by adjusting the firing temperature of the core-shell particles.
 上記中空粒子前駆体の被覆に用いられるシェル形成材料は、上記コア粒子の被覆に用いられるシェル形成材料に対応して選択されることが好ましい。具体的には、上記コア粒子の被覆に用いられるシェル形成材料としてケイ酸ナトリウムが採用される場合、中空粒子前駆体の被覆に用いられるシェル形成材料としては、好ましくは、ケイ酸ナトリウムが採用される。 The shell-forming material used to coat the hollow particle precursor is preferably selected in accordance with the shell-forming material used to coat the core particle. Specifically, when sodium silicate is employed as the shell-forming material used to coat the core particles, sodium silicate is preferably employed as the shell-forming material used to coat the hollow particle precursor. Ru.
 ケイ酸ナトリウムを含むシェル形成材料で中空粒子前駆体を被覆する際も、pH値を制御することにより被覆量を調整することが好ましい。具体的には、ケイ酸ナトリウムは、高pH領域において安定であり得る。高pH領域とは、例えば、pH11以上である。ケイ酸ナトリウムは、例えば、pH調整剤を用いてpH値を下げることにより、ケイ酸ナトリウム分子を縮合させて、シリカを効率的に中空粒子前駆体に析出させることが好ましい。pH調整剤としては、例えば、塩酸、硫酸等の酸性溶液が用いられる。 Also when coating the hollow particle precursor with a shell-forming material containing sodium silicate, it is preferable to adjust the coating amount by controlling the pH value. Specifically, sodium silicate can be stable in high pH regions. The high pH region is, for example, pH 11 or higher. Preferably, sodium silicate causes silica to be efficiently precipitated into the hollow particle precursor by condensing sodium silicate molecules by lowering the pH value using, for example, a pH adjuster. As the pH adjuster, for example, an acidic solution such as hydrochloric acid or sulfuric acid is used.
 上記中空粒子の製造方法は、シェル形成材料で被覆された中空粒子前駆体を焼成することを含み得る。具体的には、中空粒子前駆体の焼成は、中空粒子前駆体に対するシェル形成材料による被覆を行った後に行い得る。中空粒子前駆体に対して焼成を行うことにより、誘電特性の向上に大きく寄与し得る中空粒子を得ることができる。具体的には、中空粒子前駆体表面の疎水性を向上させ得る。更に具体的には、中空粒子前駆体表面のシラノール基をシロキサンに変化させ得る。また、樹脂組成物を作製する際の樹脂への配合又は分散が容易な中空粒子を得ることができる。具体的には、焼成により適度に収縮させることにより、粒子同士の融着を防止しながら、中空粒子前駆体表面の細孔を埋めて表面が滑らかな中空粒子を得ることができる。表面が滑らかな中空粒子を得ることで、例えば、上記BET比表面積、細孔容積を良好に達成し得る。1つの実施形態においては、中空粒子前駆体の焼成温度を調整することで、得られる中空粒子において上記Al存在量の分布を満足させてもよい。 The method for producing hollow particles described above may include firing a hollow particle precursor coated with a shell-forming material. Specifically, the hollow particle precursor may be fired after the hollow particle precursor is coated with the shell forming material. By firing the hollow particle precursor, hollow particles that can greatly contribute to improving dielectric properties can be obtained. Specifically, the hydrophobicity of the surface of the hollow particle precursor can be improved. More specifically, the silanol groups on the surface of the hollow particle precursor can be changed to siloxane. Further, hollow particles that can be easily blended into or dispersed in a resin when producing a resin composition can be obtained. Specifically, by appropriately shrinking the particles by firing, it is possible to fill the pores on the surface of the hollow particle precursor and obtain hollow particles with a smooth surface while preventing the particles from adhering to each other. By obtaining hollow particles with smooth surfaces, for example, the above-mentioned BET specific surface area and pore volume can be satisfactorily achieved. In one embodiment, the above distribution of Al abundance may be satisfied in the resulting hollow particles by adjusting the firing temperature of the hollow particle precursor.
 中空粒子前駆体の焼成の温度は、例えば300℃~1300℃であり、好ましくは700℃~1300℃であり、より好ましくは900℃~1300℃である。このような焼成温度によれば、上記疎水化が良好に達成され得る。また、このような焼成温度による焼成を行っても高い中空率を達成し得る。具体的には、シェル形成材料の被覆により上記細孔が埋められた状態の中空粒子前駆体に対して焼成を行うことで、中空粒子前駆体の収縮を抑制しながら、疎水化が良好に達成され得る。中空粒子前駆体の焼成時間は、例えば、0.1時間~10時間である。焼成は、連続的に行ってもよいし、異なる温度で多段的に行ってもよい。例えば、950℃未満の温度T1で焼成した後、950℃以上の温度T2で焼成してもよい。この場合、温度T1と温度T2との差(T2-T1)は、好ましくは150℃以上であり、より好ましくは250℃以上である。なお、多段的に焼成を行う場合、上記焼成時間は、各段階の焼成時間の合計である。 The temperature for firing the hollow particle precursor is, for example, 300°C to 1300°C, preferably 700°C to 1300°C, and more preferably 900°C to 1300°C. According to such a firing temperature, the above-mentioned hydrophobization can be achieved satisfactorily. Moreover, even if firing is performed at such a firing temperature, a high hollowness ratio can be achieved. Specifically, by firing the hollow particle precursor in which the pores are filled with a shell-forming material coating, hydrophobization is successfully achieved while suppressing shrinkage of the hollow particle precursor. can be done. The firing time of the hollow particle precursor is, for example, 0.1 hour to 10 hours. Firing may be performed continuously or in multiple stages at different temperatures. For example, after firing at a temperature T1 of less than 950°C, it may be fired at a temperature T2 of 950°C or higher. In this case, the difference between temperature T1 and temperature T2 (T2-T1) is preferably 150°C or more, more preferably 250°C or more. In addition, when baking is performed in multiple stages, the above-mentioned baking time is the total baking time of each stage.
 上記中空粒子の製造方法は、上記中空粒子前駆体の焼成前に、中空粒子前駆体に酸処理を施すことを含み得る。酸処理は、代表的には、塩酸、硫酸等の酸性溶液を用いて行われることが好ましい。シェル形成材料としてケイ酸ナトリウムが採用される場合、中空粒子前駆体はNaを含み得る。酸処理によりNaが除去されることにより、中空粒子前駆体の焼成温度を高く設定し得、誘電特性の向上に大きく寄与し得る中空粒子を得ることができる。 The method for producing hollow particles may include subjecting the hollow particle precursor to acid treatment before firing the hollow particle precursor. It is preferable that the acid treatment is typically performed using an acidic solution such as hydrochloric acid or sulfuric acid. If sodium silicate is employed as the shell-forming material, the hollow particle precursor may include Na. By removing Na through acid treatment, the firing temperature of the hollow particle precursor can be set high, and hollow particles can be obtained that can greatly contribute to improving dielectric properties.
 上記中空粒子の製造方法は、上記コアシェル粒子を得る工程が乾燥処理を含むことが好ましい。具体的には、コア粒子に対し、複数回にわたってシェル形成材料による被覆処理を施す際に、シェル形成材料で被覆されたコア粒子に乾燥処理を施した後、再度、シェル形成材料による被覆処理を施すことが好ましい。コアシェル粒子を得る工程における乾燥温度は、例えば90℃~120℃である。コアシェル粒子を得る工程における乾燥時間は、例えば3時間~24時間である。このような乾燥処理を含むことにより、例えば、シェル形成材料による被覆時のpH調整剤の使用の有無にかかわらず、上記吸油量を良好に達成し得る。 In the method for producing hollow particles, the step of obtaining the core-shell particles preferably includes a drying process. Specifically, when the core particles are coated with the shell-forming material multiple times, the core particles coated with the shell-forming material are dried and then coated with the shell-forming material again. It is preferable to apply The drying temperature in the step of obtaining core-shell particles is, for example, 90°C to 120°C. The drying time in the step of obtaining core-shell particles is, for example, 3 hours to 24 hours. By including such a drying treatment, the above-mentioned oil absorption amount can be satisfactorily achieved, for example, regardless of whether or not a pH adjuster is used during coating with the shell-forming material.
 本発明の1つの実施形態においては、上記中空粒子は樹脂材料の機能付与剤として用いられる。以下、上記中空粒子を含む樹脂組成物について説明する。 In one embodiment of the present invention, the hollow particles are used as a functional agent for resin materials. The resin composition containing the hollow particles described above will be explained below.
B.樹脂組成物
 本発明の1つの実施形態における樹脂組成物は、樹脂及び上記中空粒子を含む。樹脂組成物において、上記中空粒子は、その中空状態が良好に保持され得る。また、樹脂組成物を用いて成形される樹脂成形体において、上記中空粒子は、その中空状態が良好に保持され得る。
B. Resin Composition A resin composition in one embodiment of the present invention includes a resin and the hollow particles described above. In the resin composition, the hollow particles can maintain their hollow state well. Moreover, in a resin molded article molded using a resin composition, the hollow state of the hollow particles can be well maintained.
 上記樹脂は、例えば、得られる樹脂組成物の用途等に応じて、任意の適切な樹脂が選択され得る。例えば、樹脂は熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。樹脂の具体例としては、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリヒドロキシポリエーテル樹脂、ポリオレフィン樹脂、フッ素樹脂、液晶ポリマー、変性ポリイミドが挙げられる。これらは、単独で、又は、2種以上を組み合わせて用い得る。 Any appropriate resin may be selected as the resin, depending on the use of the resulting resin composition, for example. For example, the resin may be a thermoplastic resin or a thermosetting resin. Specific examples of the resin include epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyetheretherketone resin, polyester resin, polyhydroxypolyether resin, polyolefin resin, fluororesin, liquid crystal polymer, and modified polyimide. These may be used alone or in combination of two or more.
 上記樹脂組成物における上記中空粒子の含有割合は、好ましくは0.1重量%以上であり、より好ましくは0.5重量%以上である。一方、上記含有割合は、好ましくは90重量%以下であり、より好ましくは85重量%以下である。 The content of the hollow particles in the resin composition is preferably 0.1% by weight or more, more preferably 0.5% by weight or more. On the other hand, the content ratio is preferably 90% by weight or less, more preferably 85% by weight or less.
 樹脂組成物において、樹脂100重量部に対し、中空粒子を0.5重量部以上含有させることが好ましく、より好ましくは1重量部以上である。一方、樹脂100重量部に対し、中空粒子を300重量部以下含有させることが好ましく、より好ましくは200重量部以下である。 In the resin composition, the hollow particles are preferably contained in an amount of 0.5 parts by weight or more, more preferably 1 part by weight or more, based on 100 parts by weight of the resin. On the other hand, the hollow particles are preferably contained in an amount of 300 parts by weight or less, more preferably 200 parts by weight or less, per 100 parts by weight of the resin.
 樹脂組成物における中空粒子の体積比率は、好ましくは0.1%以上であり、より好ましくは0.5%以上である。一方、樹脂組成物における中空粒子の体積比率は、好ましくは70%以下であり、より好ましくは60%以下である。例えば、樹脂組成物を作製する際の加工性に優れ得るからである。 The volume ratio of hollow particles in the resin composition is preferably 0.1% or more, more preferably 0.5% or more. On the other hand, the volume ratio of hollow particles in the resin composition is preferably 70% or less, more preferably 60% or less. For example, this is because the processability when producing a resin composition can be excellent.
 樹脂組成物における中空粒子の中空率は、好ましくは30%以上であり、より好ましくは40%以上であり、更に好ましくは45%以上であり、特に好ましくは50%以上である。 The hollowness ratio of the hollow particles in the resin composition is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more.
 上記樹脂組成物は、任意成分を含み得る。任意成分としては、例えば、硬化剤、低応力化剤、着色剤、密着向上剤、離型剤、流動調整剤、脱泡剤、溶剤、充填剤が挙げられる。これらは、単独で、又は、2種以上を組み合わせて用い得る。1つの実施形態においては、樹脂組成物は硬化剤を含む。硬化剤の含有量は、樹脂100重量部に対し、例えば、1重量部~150重量部である。 The resin composition may contain optional components. Examples of optional components include a curing agent, a stress reducing agent, a coloring agent, an adhesion improver, a mold release agent, a flow regulator, a defoaming agent, a solvent, and a filler. These may be used alone or in combination of two or more. In one embodiment, the resin composition includes a curing agent. The content of the curing agent is, for example, 1 part by weight to 150 parts by weight based on 100 parts by weight of the resin.
 上記樹脂組成物の作製方法としては、任意の適切な方法が採用され得る。具体的には、上記樹脂中に、任意の適切な分散方法により、上記中空粒子を分散させることにより、樹脂組成物を得る。分散方法としては、例えば、ホモミキサー、ディスパー、ボールミル等の各種攪拌機による分散、自転公転ミキサーによる分散、3本ロールを用いた剪断力による分散、超音波処理による分散が挙げられる。 Any appropriate method may be employed as a method for producing the resin composition. Specifically, the resin composition is obtained by dispersing the hollow particles in the resin using any suitable dispersion method. Examples of the dispersion method include dispersion using various stirrers such as a homomixer, a disper, and a ball mill, dispersion using an autorotation-revolution mixer, dispersion using shear force using three rolls, and dispersion using ultrasonic treatment.
 上記樹脂組成物は、代表的には、所望の形状に成形された樹脂成形体とされる。例えば、モールドを用いて所望の形状に成形された樹脂成形体とされる。樹脂成形体の成形に際し、樹脂組成物は、任意の適切な処理が施され得る。例えば、樹脂組成物は、硬化処理が施され得る。 The above-mentioned resin composition is typically formed into a resin molded article into a desired shape. For example, it is a resin molded body formed into a desired shape using a mold. When molding a resin molded article, the resin composition may be subjected to any appropriate treatment. For example, the resin composition may be subjected to a curing treatment.
 本発明の1つの実施形態においては、上記樹脂組成物は、積層体に含まれる樹脂層とされる。以下、上記樹脂組成物で形成される樹脂層を有する積層体について説明する。 In one embodiment of the present invention, the resin composition is used as a resin layer included in a laminate. Hereinafter, a laminate having a resin layer formed from the above resin composition will be explained.
C.積層体
 図4は、本発明の1つの実施形態における積層体の概略断面図である。積層体10は、樹脂層11と金属箔12とを有する。樹脂層11は、上記樹脂組成物から形成される。具体的には、樹脂層11は、上記樹脂と上記中空粒子とを含む。図示しないが、積層体10は、その他の層を含み得る。その他の層としては、例えば、基材が挙げられる。基材は、樹脂層11の片側に積層され得る。具体的には、基材は、樹脂層11の金属箔12が配置されない側に配置され得る。基材としては、代表的には、樹脂フィルムが用いられる。図示例とは異なり、積層体10は、複数の樹脂層11を含む積層構造の表面に金属箔12が配置された構成とすることができる。積層体10は、複数の樹脂層11を含む積層構造の両面に、それぞれ、金属箔12が配置された構成としてもよい。また、積層体10は、樹脂層11と金属箔12との組合せを複数の重ねた構成としてもよい。積層体10は、代表的には、配線回路基板として用いられる。金属箔12は、例えば、所定の回路配線を構成するように、所定の形状に形成される。
C. Laminate FIG. 4 is a schematic cross-sectional view of a laminate in one embodiment of the present invention. The laminate 10 has a resin layer 11 and a metal foil 12. The resin layer 11 is formed from the above resin composition. Specifically, the resin layer 11 includes the resin and the hollow particles. Although not shown, the laminate 10 may include other layers. Examples of other layers include a base material. The base material may be laminated on one side of the resin layer 11. Specifically, the base material may be placed on the side of the resin layer 11 where the metal foil 12 is not placed. A resin film is typically used as the base material. Unlike the illustrated example, the laminate 10 may have a structure in which a metal foil 12 is disposed on the surface of a laminate structure including a plurality of resin layers 11. The laminate 10 may have a structure in which metal foils 12 are disposed on both sides of a laminate structure including a plurality of resin layers 11. Further, the laminate 10 may have a structure in which a plurality of combinations of resin layers 11 and metal foils 12 are stacked. The laminate 10 is typically used as a printed circuit board. The metal foil 12 is formed into a predetermined shape, for example, so as to constitute a predetermined circuit wiring.
 上記樹脂層の厚みは、例えば5μm以上、好ましくは10μm以上である。一方、樹脂層の厚みは、例えば100μm以下、好ましくは50μm以下、より好ましくは25μm以下である。このような厚みによれば、例えば、近年の電子部材の小型化に十分に対応することができる。 The thickness of the resin layer is, for example, 5 μm or more, preferably 10 μm or more. On the other hand, the thickness of the resin layer is, for example, 100 μm or less, preferably 50 μm or less, and more preferably 25 μm or less. With such a thickness, for example, it is possible to sufficiently cope with the miniaturization of electronic components in recent years.
 上記金属箔を形成する金属としては、任意の適切な金属が用いられ得る。例えば、銅、アルミニウム、ニッケル、クロム、金が挙げられる。これらは、単独で、又は、2種以上を組み合わせて用い得る。金属箔の厚みは、例えば、2μm~35μmである。 Any suitable metal may be used as the metal forming the metal foil. Examples include copper, aluminum, nickel, chromium, and gold. These may be used alone or in combination of two or more. The thickness of the metal foil is, for example, 2 μm to 35 μm.
 上記積層体の作製方法としては、任意の適切な方法が採用され得る。例えば、上記基材上に上記樹脂組成物を塗工して塗工層を形成し、この塗工層上に上記金属箔を積層して積層体を得る。別の具体例としては、上記金属箔に上記樹脂組成物を塗工して塗工層を形成して積層体を得る。代表的には、任意の適切なタイミングで、塗工層に加熱や光照射等のエネルギー付与処理を施し、塗工層を硬化させる。塗工に際し、上記樹脂組成物を、任意の適切な溶剤に溶解させて用いてもよい。 Any suitable method may be adopted as a method for producing the above-mentioned laminate. For example, the resin composition is coated on the base material to form a coating layer, and the metal foil is laminated on the coating layer to obtain a laminate. As another specific example, a laminate is obtained by coating the metal foil with the resin composition to form a coating layer. Typically, the coating layer is cured by applying energy such as heating or light irradiation to the coating layer at any appropriate timing. During coating, the resin composition may be dissolved in any suitable solvent.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は、断りがない限り、下記の通りである。また、特に明記しない限り、「%」及び「ppm」は重量基準である。
1.粒子の長径
 FE-SEM観察により粒子の長径を算出した。具体的には、粒子のSEM写真の中から無作為に選んだ100個の一次粒子の長径を測定し、得られた測定値の算術平均(平均長径)を求めた。なお、SEM観察の倍率は10000倍とした。
2.粒子の短径
 FE-SEM観察により粒子の短径を算出した。具体的には、粒子のSEM写真の中から無作為に選んだ100個の一次粒子の短径を測定し、得られた測定値の算術平均(平均短径)を求めた。なお、SEM観察の倍率は10000倍とした。
3.DSL及びDST
 FE-SEM観察によりDSL及びDSTを算出した。具体的には、粒子のSEM写真の中から無作為に選んだ100個の一次粒子それぞれについて長径を測定し、75番目の値(D75L)を25番目の値(D25L)で除してDSLを算出した。また、粒子のSEM写真の中から無作為に選んだ100個の一次粒子それぞれについて短径を測定し、75番目の値(D75T)を25番目の値(D25T)で除してDSTを算出した。
4.アスペクト比
 FE-SEM観察によりアスペクト比を算出した。具体的には、上記粒子の平均長径を上記粒子の平均短径で除してアスペクト比を算出した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. The method for measuring each characteristic is as follows unless otherwise specified. Further, unless otherwise specified, "%" and "ppm" are based on weight.
1. Long diameter of particles The long diameter of particles was calculated by FE-SEM observation. Specifically, the major diameters of 100 primary particles randomly selected from SEM photographs of the particles were measured, and the arithmetic mean (average major diameter) of the obtained measured values was determined. Note that the magnification for SEM observation was 10,000 times.
2. Short diameter of particles The short diameter of particles was calculated by FE-SEM observation. Specifically, the short axis of 100 primary particles randomly selected from SEM photographs of the particles was measured, and the arithmetic mean (average short axis) of the obtained measurement values was determined. Note that the magnification for SEM observation was 10,000 times.
3. DSL and DST
D SL and D ST were calculated by FE-SEM observation. Specifically, the major axis of each of 100 primary particles randomly selected from SEM photographs of particles is measured, and the 75th value (D 75L ) is divided by the 25th value (D 25L ). DSL was calculated. In addition, the short axis of each of 100 primary particles randomly selected from the SEM photographs of the particles was measured, and the 75th value (D 75T ) was divided by the 25th value (D 25T ) to calculate D ST was calculated.
4. Aspect Ratio The aspect ratio was calculated by FE-SEM observation. Specifically, the aspect ratio was calculated by dividing the average major axis of the particles by the average minor axis of the particles.
[実施例1]
(中空シリカ粒子の調製)
 楕円状のアルナイト粒子粉末(NaAl(SO(OH)、長径:1.98μm、DSL:1.13、短径:1.35μm、DST:1.18、アスペクト比:1.47)800gをイオン交換水5Lで懸濁しアルナイト粒子のスラリーを得た。
[Example 1]
(Preparation of hollow silica particles)
Elliptical alunite particle powder (NaAl 3 (SO 4 ) 2 (OH) 6 , major axis: 1.98 μm, D SL : 1.13, minor axis: 1.35 μm, D ST : 1.18, aspect ratio: 1 .47) 800 g was suspended in 5 L of ion-exchanged water to obtain a slurry of alunite particles.
 次いで、得られたアルナイト粒子のスラリーを撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス(NaO・2.97SiO、富士フィルム和光純薬社製)816mlを4時間かけて加えた。こうして得られたスラリーを1時間熟成させた後、脱水・水洗し、第1のコアシェル粒子前駆体のケーキを得た。次いで、第1のコアシェル粒子前駆体のケーキを105℃で1日乾燥してコアシェル粒子の粉末を得た。 Next, the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.55 mol/L of No. 3 water glass (Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to it. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor. Next, the first core-shell particle precursor cake was dried at 105° C. for one day to obtain a core-shell particle powder.
 次いで、第1のコアシェル粒子前駆体の粉末をイオン交換水5Lで懸濁し、撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス136mlを10分かけて加えた。その後、更に、0.55mol/Lの3号水ガラス680mlと0.50mol/Lの硫酸757mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、第2のコアシェル粒子前駆体のケーキを得た。 Next, the powder of the first core-shell particle precursor was suspended in 5 L of ion-exchanged water, heated to 90° C. with stirring, and 136 ml of No. 3 water glass containing 0.55 mol/L was added over 10 minutes. Ta. Thereafter, 680 ml of 0.55 mol/L No. 3 water glass and 757 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second core-shell particle precursor cake.
 得られた第2のコアシェル粒子前駆体のケーキをイオン交換水5Lで懸濁し、撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス136mlを10分かけて加えた。その後、更に、0.55mol/Lの3号水ガラス680mlと0.50mol/Lの硫酸757mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、その後、105℃で1日乾燥してコアシェル粒子の粉末を得た。 The obtained cake of the second core-shell particle precursor was suspended in 5 L of ion-exchanged water, heated to 90°C with stirring, and 136 ml of 0.55 mol/L No. 3 water glass was added thereto over 10 minutes. added. Thereafter, 680 ml of 0.55 mol/L No. 3 water glass and 757 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, dehydrated and washed with water, and then dried at 105° C. for one day to obtain a powder of core-shell particles.
 次いで、得られたコアシェル粒子の粉末を500℃で3時間、更に、550℃で1時間焼成した。なお、焼成によりアルナイト粒子は下記のように変化していると考えられる。
 NaAl(SO(OH)→NaAl(SO+Al+3H
Next, the obtained core-shell particle powder was fired at 500°C for 3 hours and further at 550°C for 1 hour. It is thought that the alunite particles change as described below due to firing.
NaAl3 ( SO4 ) 2 (OH) 6NaAl ( SO4 ) 2 + Al2O3 + 3H2O
 次いで、焼成されたコアシェル粒子737gにイオン交換水6Lを加え、室温撹拌下で再懸濁し、これに、2mol/Lの硫酸3.95Lを加え、90℃に加温し、5時間反応させてコア粒子を溶解させ、第1の中空シリカ前駆体のスラリーを得た。第1の中空シリカ前駆体は、中空粒子前駆体でもある。得られた第1の中空シリカ前駆体のスラリーを脱水・水洗して、第1の中空シリカ前駆体のケーキを得た。 Next, 6 L of ion-exchanged water was added to 737 g of the calcined core-shell particles and resuspended under stirring at room temperature. To this, 3.95 L of 2 mol/L sulfuric acid was added, heated to 90 ° C., and reacted for 5 hours. The core particles were dissolved to obtain a first slurry of hollow silica precursor. The first hollow silica precursor is also a hollow particle precursor. The obtained slurry of the first hollow silica precursor was dehydrated and washed with water to obtain a cake of the first hollow silica precursor.
 次いで、得られた第1の中空シリカ前駆体のケーキ(粉末88g分)をイオン交換水4Lで懸濁し、撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス40mlを10分かけて加えた後、更に、0.55mol/Lの3号水ガラス200mlと0.5mol/Lの硫酸210mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第2の中空シリカ前駆体のケーキを得た。
 次いで、得られた第2の中空シリカ前駆体のケーキをイオン交換水4Lで懸濁し、撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス40mlを10分かけて加えた後、更に、0.55mol/Lの3号水ガラス200mlと0.50mol/Lの硫酸210mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第3の中空シリカ前駆体のケーキを得た。更に、得られた第3の中空シリカ前駆体のケーキをイオン交換水4Lで懸濁し、撹拌しながら90℃に加温し、これに、0.55mol/Lの3号水ガラス40mlを10分かけて加えた後、更に、0.55mol/Lの3号水ガラス200mlと0.50mol/Lの硫酸210mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第4の中空シリカ前駆体のケーキを得た。
Next, the obtained first hollow silica precursor cake (88 g of powder) was suspended in 4 L of ion-exchanged water, heated to 90°C with stirring, and added with 0.55 mol/L of No. 3 water. After adding 40 ml of glass over 10 minutes, 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.5 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second hollow silica precursor cake.
Next, the obtained cake of the second hollow silica precursor was suspended in 4 L of ion-exchanged water, heated to 90°C with stirring, and 40 ml of 0.55 mol/L No. 3 water glass was added to this for 10 minutes. After the addition, 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a third hollow silica precursor cake. Furthermore, the third hollow silica precursor cake obtained was suspended in 4 L of ion-exchanged water, heated to 90°C while stirring, and 40 ml of 0.55 mol/L No. 3 water glass was added to this for 10 minutes. After the addition, 200 ml of 0.55 mol/L No. 3 water glass and 210 ml of 0.50 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a fourth hollow silica precursor cake.
 次いで、得られた第4の中空シリカ前駆体のケーキ(粉末282g分)に、イオン交換水2Lと2mol/Lの硫酸1083mlを加えて90℃で1時間半置き、第5の中空シリカ前駆体のスラリーを得た。その後、脱水・水洗して得られたケーキを105℃で1日乾燥して第5の中空シリカ前駆体の粉末を得た。 Next, 2 L of ion-exchanged water and 1083 ml of 2 mol/L sulfuric acid were added to the obtained cake of the fourth hollow silica precursor (282 g of powder), and the mixture was left at 90°C for 1.5 hours to form the fifth hollow silica precursor. of slurry was obtained. Thereafter, the cake obtained by dehydration and water washing was dried at 105° C. for one day to obtain a fifth hollow silica precursor powder.
 次いで、得られた第5の中空シリカ前駆体の粉末を、電気炉にて、800℃で1時間及び1100℃で1時間焼成し、中空シリカ粒子を得た。具体的には、第5の中空シリカ前駆体の粉末を、大気雰囲気下にて焼成し、中空粒子を得た。 Next, the obtained fifth hollow silica precursor powder was fired in an electric furnace at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles. Specifically, the powder of the fifth hollow silica precursor was fired in an air atmosphere to obtain hollow particles.
(樹脂組成物の調製)
 ビスフェノールF型エポキシ樹脂(三菱ケミカル株式会社製の「JER806」)95.2phr及び得られた中空シリカ粒子40phrを、自転公転ミキサー(シンキー株式会社製の「ARV-310P」)を用いて、大気圧下、自転1000rpm、公転2000rpmの条件で3分混合し混合物を得た。以下、中空シリカ粒子を、フィラーと称する場合がある。
 得られた混合物と、イミダゾール系エポキシ樹脂硬化剤(四国化成株式会社製の「2E4MZ」)4.8phrとを、自転公転ミキサーを用いて、自転1000rpm、公転2000rpm、0.7kPaの条件で3分混合し樹脂組成物を得た。
(Preparation of resin composition)
95.2 phr of bisphenol F type epoxy resin ("JER806" manufactured by Mitsubishi Chemical Corporation) and 40 phr of the obtained hollow silica particles were heated to atmospheric pressure using a rotational revolution mixer ("ARV-310P" manufactured by Shinky Corporation). A mixture was obtained by mixing for 3 minutes under the conditions of 1000 rpm of rotation and 2000 rpm of revolution. Hereinafter, hollow silica particles may be referred to as filler.
The obtained mixture and 4.8 phr of an imidazole-based epoxy resin curing agent ("2E4MZ" manufactured by Shikoku Kasei Co., Ltd.) were mixed using an autorotation-revolution mixer at a rotation speed of 1000 rpm, a rotation speed of 2000 rpm, and a pressure of 0.7 kPa for 3 minutes. A resin composition was obtained by mixing.
(樹脂成形体の作製)
 得られた樹脂組成物を、厚み1.0mmのテフロン(登録商標)製の型に流し込み、80℃で1時間プレス成型した。冷却後、成形体を型から取り出し、乾燥機中に150℃、4時間置いて更に加熱硬化させた。その後、成形体を冷却し、評価用サンプルを得た。
(Preparation of resin molded body)
The obtained resin composition was poured into a Teflon (registered trademark) mold having a thickness of 1.0 mm, and press-molded at 80° C. for 1 hour. After cooling, the molded product was taken out of the mold and placed in a dryer at 150° C. for 4 hours to further heat cure. Thereafter, the molded body was cooled to obtain a sample for evaluation.
[実施例2]
(中空シリカ粒子の調製)
 楕円状のアルナイト粒子粉末(NaAl(SO(OH)、長径:1.98μm、DSL:1.13、短径:1.35μm、DST:1.18、アスペクト比:1.47)200gをイオン交換水1.4Lで懸濁しアルナイト粒子のスラリーを得た。
[Example 2]
(Preparation of hollow silica particles)
Elliptical alunite particle powder (NaAl 3 (SO 4 ) 2 (OH) 6 , major axis: 1.98 μm, D SL : 1.13, minor axis: 1.35 μm, D ST : 1.18, aspect ratio: 1 .47) 200 g was suspended in 1.4 L of ion-exchanged water to obtain a slurry of alunite particles.
 次いで、得られたアルナイト粒子のスラリーを撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス(NaO・2.97SiO、富士フィルム和光純薬社製)202mlを4時間かけて加えた。こうして得られたスラリーを1時間熟成させた後、脱水・水洗し、第1のコアシェル粒子前駆体のケーキを得た。次いで、第1のコアシェル粒子前駆体のケーキを105℃で1日乾燥してコアシェル粒子の粉末を得た。 Next, the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.56 mol/L of No. 3 water glass (Na 2 O 2.97 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to this. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor. Next, the first core-shell particle precursor cake was dried at 105° C. for one day to obtain a core-shell particle powder.
 次いで、第1のコアシェル粒子前駆体の粉末をイオン交換水1.4Lで懸濁し、撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス34mlを10分かけて加えた。その後、更に、0.56mol/Lの3号水ガラス168mlと0.51mol/Lの硫酸188mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、第2のコアシェル粒子前駆体のケーキを得た。 Next, the powder of the first core-shell particle precursor was suspended in 1.4 L of ion-exchanged water, heated to 90°C while stirring, and 34 ml of 0.56 mol/L No. 3 water glass was added to this for 10 minutes. added. Thereafter, 168 ml of 0.56 mol/L No. 3 water glass and 188 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second core-shell particle precursor cake.
 得られた第2のコアシェル粒子前駆体のケーキをイオン交換水1.4Lで懸濁し、撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス34mlを10分かけて加えた。その後、更に、0.56mol/Lの3号水ガラス168mlと0.51mol/Lの硫酸188mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗し、その後、105℃で1日乾燥してコアシェル粒子の粉末を得た。 The obtained second core-shell particle precursor cake was suspended in 1.4 L of ion-exchanged water, heated to 90°C with stirring, and 34 ml of 0.56 mol/L No. 3 water glass was added to this for 10 minutes. I added it over time. Thereafter, 168 ml of 0.56 mol/L No. 3 water glass and 188 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, dehydrated and washed with water, and then dried at 105° C. for one day to obtain a powder of core-shell particles.
 次いで、得られたコアシェル粒子の粉末を500℃で3時間、更に、550℃で1時間焼成した。なお、焼成によりアルナイト粒子は下記のように変化していると考えられる。
 NaAl(SO(OH)→NaAl(SO+Al+3H
Next, the obtained core-shell particle powder was fired at 500°C for 3 hours and further at 550°C for 1 hour. It is thought that the alunite particles change as described below due to firing.
NaAl3 ( SO4 ) 2 (OH) 6NaAl ( SO4 ) 2 + Al2O3 + 3H2O
 次いで、焼成されたコアシェル粒子177gにイオン交換水1305mlを加え、室温撹拌下で再懸濁し、これに、3.35mol/Lの硫酸555mlを加え、90℃に加温し、5時間反応させてコア粒子を溶解させ、第1の中空シリカ前駆体のスラリーを得た。得られた第1の中空シリカ前駆体のスラリーを脱水・水洗して、第1の中空シリカ前駆体のケーキを得た。 Next, 1305 ml of ion-exchanged water was added to 177 g of the calcined core-shell particles and resuspended under stirring at room temperature. To this, 555 ml of 3.35 mol/L sulfuric acid was added, heated to 90 ° C., and reacted for 5 hours. The core particles were dissolved to obtain a first slurry of hollow silica precursor. The obtained slurry of the first hollow silica precursor was dehydrated and washed with water to obtain a cake of the first hollow silica precursor.
 次いで、得られた第1の中空シリカ前駆体のケーキ(粉末18.8g分)をイオン交換水1.36Lで懸濁し、撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス20mlを10分かけて加えた後、更に、0.56mol/Lの3号水ガラス100mlと0.51mol/Lの硫酸105mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第2の中空シリカ前駆体のケーキを得た。
 次いで、得られた第2の中空シリカ前駆体のケーキをイオン交換水1.36Lで懸濁し、撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス20mlを10分かけて加えた後、更に、0.56mol/Lの3号水ガラス100mlと0.51mol/Lの硫酸105mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第3の中空シリカ前駆体のケーキを得た。更に、得られた第3の中空シリカ前駆体のケーキをイオン交換水1.36Lで懸濁し、撹拌しながら90℃に加温し、これに、0.56mol/Lの3号水ガラス20mlを10分かけて加えた後、更に、0.56mol/Lの3号水ガラス100mlと0.51mol/Lの硫酸105mlを同時に加え始めた。ここで、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して第4の中空シリカ前駆体のケーキを得た。
Next, the obtained first hollow silica precursor cake (18.8 g of powder) was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and added with 0.56 mol/L. After adding 20 ml of No. 3 water glass over 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a second hollow silica precursor cake.
Next, the obtained cake of the second hollow silica precursor was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and 20 ml of 0.56 mol/L No. 3 water glass was added thereto. After the addition took 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a third hollow silica precursor cake. Furthermore, the third hollow silica precursor cake obtained was suspended in 1.36 L of ion-exchanged water, heated to 90°C with stirring, and 20 ml of 0.56 mol/L No. 3 water glass was added to this. After the addition took 10 minutes, 100 ml of 0.56 mol/L No. 3 water glass and 105 ml of 0.51 mol/L sulfuric acid were simultaneously added. Here, No. 3 water glass was added over 50 minutes, and sulfuric acid was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a fourth hollow silica precursor cake.
 次いで、得られた第4の中空シリカ前駆体のケーキ(粉末52.8g分)に、イオン交換水1.36Lと3.35mol/Lの硫酸146mlを加えて90℃で1時間半置き、第5の中空シリカ前駆体のスラリーを得た。その後、脱水・水洗して得られたケーキを105℃で1日乾燥して第5の中空シリカ前駆体の粉末を得た。 Next, 1.36 L of ion-exchanged water and 146 ml of 3.35 mol/L sulfuric acid were added to the obtained fourth hollow silica precursor cake (52.8 g of powder), and the mixture was left at 90°C for 1.5 hours. A slurry of hollow silica precursor No. 5 was obtained. Thereafter, the cake obtained by dehydration and water washing was dried at 105° C. for one day to obtain a fifth hollow silica precursor powder.
 次いで、得られた第5の中空シリカ前駆体の粉末を、電気炉(大気雰囲気下)にて、800℃で1時間及び1100℃で1時間焼成し、中空シリカ粒子を得た。 Next, the obtained powder of the fifth hollow silica precursor was fired in an electric furnace (in an air atmosphere) at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles.
(樹脂成形体の作製)
 上記中空シリカ粒子を用いたこと以外は実施例1と同様にして、成形体(評価用サンプル)を得た。
(Preparation of resin molded body)
A molded article (sample for evaluation) was obtained in the same manner as in Example 1 except that the hollow silica particles were used.
[実施例3]
(中空シリカ粒子の調製)
 楕円状のアルナイト粒子粉末(NaAl(SO(OH)、長径:1.98μm、DSL:1.13、短径:1.35μm、DST:1.18、アスペクト比:1.47)1500gをイオン交換水7.5Lで懸濁しアルナイト粒子のスラリーを得た。
[Example 3]
(Preparation of hollow silica particles)
Elliptical alunite particle powder (NaAl 3 (SO 4 ) 2 (OH) 6 , major axis: 1.98 μm, D SL : 1.13, minor axis: 1.35 μm, D ST : 1.18, aspect ratio: 1 .47) 1500 g was suspended in 7.5 L of ion-exchanged water to obtain a slurry of alunite particles.
 次いで、得られたアルナイト粒子のスラリーを撹拌しながら90℃に加温し、これに、0.54mol/Lの3号水ガラス(NaO・3.14SiO、富士フィルム和光純薬社製)1507mlを4時間かけて加えた。こうして得られたスラリーを1時間熟成させた後、脱水・水洗し、第1のコアシェル粒子前駆体のケーキを得た。 Next, the obtained slurry of alunite particles was heated to 90° C. while stirring, and 0.54 mol/L of No. 3 water glass (Na 2 O 3.14 SiO 2 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to it. ) was added over 4 hours. After aging the slurry thus obtained for 1 hour, it was dehydrated and washed with water to obtain a cake of the first core-shell particle precursor.
 次いで、得られた第1のコアシェル粒子前駆体のケーキをイオン交換水7.5Lで懸濁し、撹拌しながら90℃に加温し、これに、0.54mol/Lの3号水ガラス1507mlを2時間かけて加えた。こうして得られたスラリーを1時間熟成させて、攪拌しながら15時間置いた後、脱水・水洗し、第2のコアシェル粒子前駆体のケーキを得た。得られた第2のコアシェル粒子前駆体のケーキをイオン交換水7.5Lで懸濁し、撹拌しながら90℃に加温し、これに、0.54mol/Lの3号水ガラス1507mlを2時間かけて加えた。こうして得られたスラリーを1時間熟成させて、攪拌しながら15時間置いた後、脱水・水洗し、その後、100℃で1日乾燥してコアシェル粒子の粉末を得た。 Next, the obtained cake of the first core-shell particle precursor was suspended in 7.5 L of ion-exchanged water and heated to 90° C. with stirring, and 1507 ml of 0.54 mol/L No. 3 water glass was added thereto. Added over 2 hours. The slurry thus obtained was aged for 1 hour, left for 15 hours with stirring, and then dehydrated and washed with water to obtain a second core-shell particle precursor cake. The obtained second core-shell particle precursor cake was suspended in 7.5 L of ion-exchanged water, heated to 90°C with stirring, and 1507 ml of 0.54 mol/L No. 3 water glass was added to this for 2 hours. I added it over time. The slurry thus obtained was aged for 1 hour, left for 15 hours with stirring, dehydrated and washed with water, and then dried at 100° C. for 1 day to obtain a powder of core-shell particles.
 次いで、得られたコアシェル粒子の粉末を500℃で3時間、更に、550℃で1時間焼成した。なお、焼成によりアルナイト粒子は下記のように変化していると考えられる。
 NaAl(SO(OH)→NaAl(SO+Al+3H
Next, the obtained core-shell particle powder was fired at 500°C for 3 hours and further at 550°C for 1 hour. It is thought that the alunite particles change as described below due to firing.
NaAl3 ( SO4 ) 2 (OH) 6NaAl ( SO4 ) 2 + Al2O3 + 3H2O
 次いで、焼成されたコアシェル粒子864gにイオン交換水6Lを加え、室温撹拌下で再懸濁し、これに、1mol/Lの硫酸7.8Lを加え、90℃に加温し、5時間反応させてコア粒子を溶解させ、第1の中空シリカ前駆体のスラリーを得た。得られた第1の中空シリカ前駆体のスラリーを脱水・水洗して第1の中空シリカ前駆体のケーキを得た。 Next, 6 L of ion-exchanged water was added to 864 g of the calcined core-shell particles and resuspended under stirring at room temperature. To this, 7.8 L of 1 mol/L sulfuric acid was added, heated to 90 ° C., and reacted for 5 hours. The core particles were dissolved to obtain a first slurry of hollow silica precursor. The obtained slurry of the first hollow silica precursor was dehydrated and washed with water to obtain a cake of the first hollow silica precursor.
 次いで、得られた第1の中空シリカ前駆体のケーキ(粉末130g分)をイオン交換水860mlで懸濁し、撹拌しながら90℃に加温し、これに、0.54mol/Lの3号水ガラス33mlを10分かけて加えた後、更に、0.54mol/Lの3号水ガラス163mlと0.50mol/Lの硫酸186mlを同時に加え始め、3号水ガラスは50分かけて加え、硫酸は60分かけて加えた。こうして得られたスラリーを30分間熟成させた後、脱水・水洗して中空シリカ前駆体のケーキを得た。これと同様の操作をあと2回繰り返し、第2の中空シリカ前駆体のケーキを得た。 Next, the obtained first hollow silica precursor cake (130 g of powder) was suspended in 860 ml of ion-exchanged water, heated to 90°C with stirring, and added with 0.54 mol/L No. 3 water. After adding 33 ml of glass over 10 minutes, 163 ml of 0.54 mol/L No. 3 water glass and 186 ml of 0.50 mol/L sulfuric acid were added at the same time, and the No. 3 water glass was added over 50 minutes. was added over 60 minutes. The slurry thus obtained was aged for 30 minutes, then dehydrated and washed with water to obtain a hollow silica precursor cake. This same operation was repeated two more times to obtain a second hollow silica precursor cake.
 次いで、得られた第2の中空シリカ前駆体のケーキ(粉末284g分)に、イオン交換水2L、2.87mol/Lの硫酸400ml加えて90℃で1時間半置き、第3の中空シリカ前駆体のスラリーを得た。その後、脱水・水洗して得られたケーキを100℃で1日乾燥して第3の中空シリカ前駆体の粉末を得た。 Next, 2 L of ion-exchanged water and 400 ml of 2.87 mol/L sulfuric acid were added to the obtained second hollow silica precursor cake (284 g of powder), and the mixture was left at 90°C for 1.5 hours to form the third hollow silica precursor. Got a body slurry. Thereafter, the cake obtained by dehydration and water washing was dried at 100° C. for one day to obtain a third hollow silica precursor powder.
 次いで、得られた第3の中空シリカ前駆体の粉末を、電気炉(大気雰囲気下)にて、800℃で1時間及び1100℃で1時間焼成し、中空シリカ粒子を得た。 Next, the obtained powder of the third hollow silica precursor was fired in an electric furnace (in an air atmosphere) at 800°C for 1 hour and at 1100°C for 1 hour to obtain hollow silica particles.
(樹脂成形体の作製)
 上記中空シリカ粒子を用いたこと、及び、中空シリカ粒子の配合量を25phrとしたこと以外は実施例1と同様にして、成形体(評価用サンプル)を得た。なお、実施例1と同等の配合量となるように中空シリカ粒子の配合を試みたが、これ以上、配合することができなかった。
(Preparation of resin molded body)
A molded article (sample for evaluation) was obtained in the same manner as in Example 1, except that the above hollow silica particles were used and the amount of hollow silica particles was 25 phr. Although an attempt was made to blend hollow silica particles in the same amount as in Example 1, it was not possible to blend any more.
[比較例1]
 中空シリカ粒子を配合しなかったこと以外は実施例1と同様にして、成形体(評価用サンプル)を得た。
[Comparative example 1]
A molded article (sample for evaluation) was obtained in the same manner as in Example 1 except that hollow silica particles were not blended.
<XRD測定>
 実施例1、2及び3の中空シリカ粒子について、X線回折(PANalytical製の「EMPYRIAN」)で分析したところ、無定形(アモルファス)シリカであった。
<XRD measurement>
When the hollow silica particles of Examples 1, 2, and 3 were analyzed by X-ray diffraction ("EMPYRIAN" manufactured by PANalytical), they were found to be amorphous silica.
<TEM-EDS測定>
 実施例1、2及び3の中空シリカ粒子について、透過型電子顕微鏡(日本電子株式会社製の「JEM-2100PLUS」)と、それに付属しているエネルギー分散型X線分析装置(日本電子株式会社製のJED2300シリーズ)を用いて、加速電圧200kV、倍率200,000倍の条件で像を取り込み、点分析モードで厚み方向の3点について組成分析を行った。
 実施例1の中空シリカ粒子の観察結果を図5Aに示し、実施例2の中空シリカ粒子の観察結果を図5Bに示し、実施例3の中空シリカ粒子の観察結果を図5Cに示す。また、得られたピーク強度から求めた酸素(O)、アルミニウム(Al)及びケイ素(Si)の原子比も示す。いずれにおいても、殻の内側から外側に向かってAl存在量が少なくなる傾向が確認された。
<TEM-EDS measurement>
The hollow silica particles of Examples 1, 2, and 3 were analyzed using a transmission electron microscope ("JEM-2100PLUS" manufactured by JEOL Ltd.) and an energy dispersive X-ray analyzer (manufactured by JEOL Ltd.) attached to it. An image was captured using an accelerating voltage of 200 kV and a magnification of 200,000 times, and the composition was analyzed at three points in the thickness direction using a point analysis mode.
The observation results of the hollow silica particles of Example 1 are shown in FIG. 5A, the observation results of the hollow silica particles of Example 2 are shown in FIG. 5B, and the observation results of the hollow silica particles of Example 3 are shown in FIG. 5C. The atomic ratios of oxygen (O), aluminum (Al), and silicon (Si) determined from the obtained peak intensities are also shown. In both cases, it was confirmed that the Al content tended to decrease from the inside to the outside of the shell.
 実施例1、2及び3の中空シリカ粒子について、下記の評価も行った。評価結果を表1にまとめる。
1.Alの含有量
 Alの含有量は、前処理により中空シリカ粒子からAl含有量測定試料を調製し、高周波誘導結合プラズマ発光分光分析法(ICP-AES)で分析した。具体的には、中空シリカ粒子250mgをPMP樹脂製ビーカーに計り取った。その後、中空シリカ粒子を、超純水で馴染ませた後、硝酸3ml及びフッ化水素酸5mlを加えて加熱溶解させて、5mlに濃縮した後に1%のホウ酸水溶液を加えて残ったフッ化水素酸をマスキングし、分析機器にダメージを与えないように不活性化させて10分加熱した。冷却後、50mlに超純水で希釈してAl含有量測定試料を調製し、分析に供した。
 得られた結果から、Alの含有割合を算出した。
2.Naの含有量
 Naの含有量は、前処理により中空シリカ粒子からNa含有量測定試料を調製し、原子吸光分析法(AAS)で分析した。具体的には、中空シリカ粒子250mgをPMP樹脂製ビーカーに計り取った。その後、中空シリカ粒子を、超純水で馴染ませた後、硝酸3ml及びフッ化水素酸5mlを加えて加熱溶解させて、5mlに濃縮した後に1%のホウ酸水溶液を加えて残ったフッ化水素酸をマスキングし、分析機器にダメージを与えないように不活性化させて10分加熱した。冷却後、50mlに超純水で希釈してNa含有量測定試料を調製し、分析に供した。
 得られた結果から、Naの含有割合を算出した。
3.中空粒子の殻の厚み
 TEM観察により粒子の殻の厚みを算出した。具体的には、粒子のTEM写真の中から無作為に選んだ10個の一次粒子の殻の厚みを測定し、得られた測定値の算術平均(平均厚み)を求めた。なお、TEM観察の倍率は10000倍及び100000倍とした。
4.中空率
 上記長径及び短径と上記殻の厚みから中空率を算出した。具体的には、上記一次粒子径(長径、短径)及び上記殻の厚みを用い、粒子の形状を円柱における体積で近似し、下記式により中空率を算出した。
 中空率=中空粒子の中空域体積÷中空粒子の体積×100
 中空粒子の体積=π×半径×高さ=π×(長径÷2)×短径
 中空粒子の中空域体積=π×((長径-殻厚み×2)÷2)×(短径-殻厚み×2)
5.BET比表面積
 比表面積を、マイクロトラック・ベル株式会社の「BELsorp-mini」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BET多点法による解析で比表面積を求めた。
6.細孔容積
 細孔容積を、マイクロトラック・ベル株式会社の「BELsorp-max」で測定した。具体的には、窒素ガスを用いた定容量式ガス吸着法で測定し、BJH法による解析で細孔容積(直径が1nmから100nmの細孔の積算細孔容積及び直径が1nmから10nmの細孔の積算細孔容積)を求めた。
7.密度
 密度を、窒素ガス置換法により求めた。具体的には、気体置換法密度測定装置(マイクロメリティックス社製、乾式自動密度計アキュピックII 1340)を用い、0.15~0.2gの試料を1cmのセルに採取し、窒素ガスを使用して測定した。測定は5回以上繰り返し行い、その平均値を求めた。
8.誘電率及び誘電正接
 誘電率及び誘電正接を、粉体用誘電率測定装置を用いて、空洞共振法にて測定した。測定は、温度25℃、湿度44%RHの環境下で10GHzの条件で測定した。なお、誘電特性の算出に必要な密度は、上記窒素ガス置換法により求めた密度値を採用した。
9.吸油量
 測定対象の中空シリカ粒子1gに対して、エポキシ樹脂(三菱ケミカル株式会社製の「JER819」)を滴下・混合を行い、ペーストに変化したときの滴下したエポキシ樹脂の量から下記の換算式にて吸油量を算出した。具体的には、中空シリカ粒子に対し、エポキシ樹脂の滴下・混合を繰り返し、中空シリカ粒子がペーストに変化した点を終点とした。終点付近における滴下はエポキシ樹脂を一滴ずつなじませながら行った。その後、下記式を用いて、測定対象1g当たりのエポキシ樹脂量を算出し、得られた1g当たりの吸油量を測定対象の比表面積にて除することで表面積の単位面積(m)当たりの吸油量を算出した。
 1g当たりの吸油量=エポキシ樹脂滴定量(g)/測定対象の粉末の質量(g)
 表面積の単位面積(m)当たりの吸油量=1g当たりの吸油量(g/g)/測定対象の粉末比表面積(m/g)
The hollow silica particles of Examples 1, 2, and 3 were also evaluated as follows. The evaluation results are summarized in Table 1.
1. Content of Al The content of Al was determined by preparing an Al content measurement sample from hollow silica particles by pretreatment and analyzing it by high frequency inductively coupled plasma emission spectroscopy (ICP-AES). Specifically, 250 mg of hollow silica particles were weighed into a PMP resin beaker. After that, the hollow silica particles were blended with ultrapure water, 3 ml of nitric acid and 5 ml of hydrofluoric acid were added, dissolved by heating, concentrated to 5 ml, and a 1% aqueous boric acid solution was added to remove the remaining fluoride. Hydrogen acid was masked and heated for 10 minutes to inactivate it so as not to damage the analytical equipment. After cooling, the sample was diluted to 50 ml with ultrapure water to prepare a sample for measuring Al content, which was subjected to analysis.
From the obtained results, the content ratio of Al was calculated.
2. Content of Na The content of Na was determined by preparing a Na content measurement sample from hollow silica particles by pretreatment and analyzing it by atomic absorption spectrometry (AAS). Specifically, 250 mg of hollow silica particles were weighed into a PMP resin beaker. After that, the hollow silica particles were blended with ultrapure water, 3 ml of nitric acid and 5 ml of hydrofluoric acid were added, dissolved by heating, concentrated to 5 ml, and a 1% aqueous boric acid solution was added to remove the remaining fluoride. Hydrogen acid was masked and heated for 10 minutes to inactivate it so as not to damage the analytical equipment. After cooling, the sample was diluted to 50 ml with ultrapure water to prepare a sample for measuring Na content, which was subjected to analysis.
From the obtained results, the content ratio of Na was calculated.
3. Thickness of shell of hollow particles The thickness of shell of particles was calculated by TEM observation. Specifically, the shell thicknesses of 10 primary particles randomly selected from TEM photographs of the particles were measured, and the arithmetic mean (average thickness) of the obtained measured values was determined. Note that the magnification for TEM observation was 10,000 times and 100,000 times.
4. Hollow Ratio The hollow ratio was calculated from the above major axis and short axis and the thickness of the shell. Specifically, the shape of the particle was approximated by the volume in a cylinder using the primary particle diameter (long axis, short axis) and the shell thickness, and the hollow ratio was calculated using the following formula.
Hollowness ratio = Hollow region volume of hollow particles ÷ Volume of hollow particles × 100
Volume of hollow particle = π x Radius 2 x Height = π x (Long axis ÷ 2) 2 x Short axis Volume of hollow region of hollow particle = π x ((Long axis - Shell thickness x 2) ÷ 2) 2 x (Breadth axis - Shell thickness x 2)
5. BET Specific Surface Area The specific surface area was measured using "BELsorp-mini" manufactured by Microtrac Bell Co., Ltd. Specifically, it was measured by a constant volume gas adsorption method using nitrogen gas, and the specific surface area was determined by analysis using the BET multipoint method.
6. Pore Volume Pore volume was measured with "BELsorp-max" manufactured by Microtrac Bell Co., Ltd. Specifically, the pore volume (accumulated pore volume of pores with a diameter of 1 nm to 100 nm and pore volume of pores with a diameter of 1 nm to 10 nm) was measured by a constant volume gas adsorption method using nitrogen gas, and analyzed by the BJH method. The cumulative pore volume of the pores was determined.
7. Density Density was determined by nitrogen gas replacement method. Specifically, a 0.15 to 0.2 g sample was collected in a 1 cm 3 cell using a gas displacement density measuring device (Micromeritics, dry automatic density meter Accupic II 1340), and nitrogen gas Measured using. The measurement was repeated five times or more, and the average value was determined.
8. Dielectric constant and dielectric loss tangent The dielectric constant and dielectric loss tangent were measured by the cavity resonance method using a dielectric constant measuring device for powder. The measurement was performed under the conditions of 10 GHz in an environment of a temperature of 25° C. and a humidity of 44% RH. Note that, as the density necessary for calculating the dielectric properties, the density value determined by the nitrogen gas replacement method described above was used.
9. Oil absorption amount Epoxy resin (JER819 manufactured by Mitsubishi Chemical Corporation) is dropped and mixed with 1 g of hollow silica particles to be measured, and when it changes to a paste, the following conversion formula is calculated from the amount of dropped epoxy resin. The oil absorption amount was calculated. Specifically, the epoxy resin was repeatedly dropped and mixed onto the hollow silica particles, and the end point was defined as the point at which the hollow silica particles turned into a paste. The dropping near the end point was carried out while blending the epoxy resin drop by drop. Thereafter, the amount of epoxy resin per gram of the measurement target is calculated using the following formula, and the obtained oil absorption amount per gram is divided by the specific surface area of the measurement target to calculate the amount per unit area (m 2 ) of the surface area. The oil absorption amount was calculated.
Oil absorption per 1g = Epoxy resin titration (g) / Mass of powder to be measured (g)
Oil absorption per unit area (m 2 ) of surface area = Oil absorption per 1 g (g/g) / Specific surface area of powder to be measured (m 2 /g)
<樹脂成形体の評価>
 実施例及び比較例の樹脂成形体(評価用サンプル)について、密度の測定、断面観察及び誘電特性の測定を行った。また、樹脂成形体の空隙率、樹脂成形体におけるフィラー密度及び樹脂成形体におけるフィラー中空率を算出した。評価結果を表1にまとめる。実施例1の樹脂成形体の2000倍で観察した結果を図6に示す。
<Evaluation of resin molded body>
Regarding the resin molded bodies (evaluation samples) of Examples and Comparative Examples, density measurements, cross-sectional observations, and dielectric properties were measured. In addition, the porosity of the resin molded body, the filler density in the resin molded body, and the filler porosity in the resin molded body were calculated. The evaluation results are summarized in Table 1. The results of observing the resin molded article of Example 1 at 2000 times magnification are shown in FIG.
(密度の測定)
 電子密度計(アルファーミラージュ株式会社製の「SD120L」)により樹脂成形体の密度を測定した。具体的には、得られた樹脂成形体を超音波カッターで5cm×6cmのサイズにカットし、カットして得られた成形体サンプルを測定に供した。
(Measurement of density)
The density of the resin molded body was measured using an electronic densitometer (“SD120L” manufactured by Alpha Mirage Co., Ltd.). Specifically, the obtained resin molded body was cut into a size of 5 cm×6 cm using an ultrasonic cutter, and the molded body sample obtained by the cutting was subjected to measurement.
1.樹脂成形体の空隙率
 上記密度の測定結果から、樹脂成形体の空隙率(樹脂成形体における空気の体積の割合)Va%を算出した。
2.樹脂成形体におけるフィラー密度
 下記式から、樹脂成形体におけるフィラー密度を算出した。樹脂成形体におけるフィラー密度は、フィラー含有樹脂成形体の体積から樹脂成分の体積を減算してフィラー体積を算出し、フィラー添加量を、算出したフィラー体積で割って算出した。フィラー含有樹脂成形体の体積は、電子密度計(アルファーミラージュ株式会社製の「SD120L」)で測定した。樹脂成分の体積は、別途、フィラーを含有させずに作製したブランク樹脂成形体の重量と密度から算出した。
 樹脂成形体におけるフィラー密度=wf/(Vc-mr/ρr)=wf/(Vc-100/ρr)
 wf:樹脂の重量を100重量部(phr)としたときの粒子(フィラー)の重量部
 Vc:樹脂成形体の体積
 mr:樹脂の重量(g)
 ρr:樹脂の密度(g/ml)
3.樹脂成形体におけるフィラー中空率
 上記樹脂成形体の空隙率Va%の値から、樹脂成形体におけるフィラー中空率Va/(Va+Vs)を算出した。ここで、Vsは、下記式から求めることができる。
Figure JPOXMLDOC01-appb-M000001
 Vc:樹脂成形体の体積
 Vs:粒子の殻の体積
 Va:樹脂成形体における空気の体積
 Vr:樹脂の体積
 mc:樹脂成形体重量(g)
 ρc:樹脂成形体の密度(g/ml)
 ms:粒子(殻)の重量(g)
 ρs:粒子の殻の密度(2.28(g/ml))
 mr:樹脂の重量(g)
 ρr:樹脂の密度(g/ml)
 wf:樹脂の重量を100重量部(phr)としたときの粒子(フィラー)の重量部(phr)
1. Porosity of resin molded body From the above density measurement results, the porosity (volume ratio of air in the resin molded body) Va% of the resin molded body was calculated.
2. Filler Density in Resin Molding The filler density in the resin molding was calculated from the following formula. The filler density in the resin molded article was calculated by subtracting the volume of the resin component from the volume of the filler-containing resin molded article to calculate the filler volume, and dividing the filler addition amount by the calculated filler volume. The volume of the filler-containing resin molded body was measured using an electronic densitometer (“SD120L” manufactured by Alpha Mirage Co., Ltd.). The volume of the resin component was separately calculated from the weight and density of a blank resin molded body prepared without containing a filler.
Filler density in resin molded body=wf/(Vc-mr/ρr)=wf/(Vc-100/ρr)
wf: Part by weight of particles (filler) when the weight of resin is 100 parts by weight (phr) Vc: Volume of resin molding mr: Weight of resin (g)
ρr: Density of resin (g/ml)
3. Filler Hollow Ratio in Resin Molded Body Filler hollow ratio Va/(Va+Vs) in the resin molded body was calculated from the value of the porosity Va% of the resin molded body. Here, Vs can be determined from the following formula.
Figure JPOXMLDOC01-appb-M000001
Vc: Volume of resin molding Vs: Volume of particle shell Va: Volume of air in resin molding Vr: Volume of resin mc: Weight of resin molding (g)
ρc: Density of resin molded body (g/ml)
ms: Weight of particle (shell) (g)
ρs: density of particle shell (2.28 (g/ml))
mr: Weight of resin (g)
ρr: Density of resin (g/ml)
wf: Parts by weight (phr) of particles (filler) when the weight of the resin is 100 parts by weight (phr)
(樹脂成形体の断面観察)
 得られた成形体サンプルをクロスセクションポリッシャー(日本電子株式会社製の「IB-09010CP」)で切断し、断面をFE-SEM(日本電子株式会社製の「JSM-7600F」、倍率:2000倍、5000倍もしくは10000倍)で観察した。
(Observation of cross section of resin molded body)
The obtained molded body sample was cut with a cross-section polisher ("IB-09010CP" manufactured by JEOL Ltd.), and the cross section was subjected to FE-SEM ("JSM-7600F" manufactured by JEOL Ltd., magnification: 2000 times, Observation was made at a magnification of 5,000 times or 10,000 times.
(誘電率及び誘電正接の測定)
 得られた成形体サンプルの誘電率及び誘電正接を下記の条件で測定した。
・測定方法:IEC 62810に準拠(空洞共振器摂動法)
・試料形状:長さ55mm以上、幅1.6~2.4mm、高さ0.7~1.0mm
・試験条件:周波数10GHz
・測定数:2回
・状態調節:23℃±1℃、50%RH±5%RH、24時間<
・試験室環境:23℃±1℃、50%RH±5%RH
・測定装置:PNAネットワークアナライザN5222B(キーサイト・テクノロジー株式会社製)
・空洞共振器:10GHz用CP531(株式会社関東電子応用開発製)
(Measurement of dielectric constant and dielectric loss tangent)
The dielectric constant and dielectric loss tangent of the obtained molded body sample were measured under the following conditions.
・Measurement method: Compliant with IEC 62810 (cavity resonator perturbation method)
・Sample shape: length 55mm or more, width 1.6-2.4mm, height 0.7-1.0mm
・Test conditions: Frequency 10GHz
・Number of measurements: 2 times ・Condition adjustment: 23℃±1℃, 50%RH±5%RH, 24 hours<
・Testing room environment: 23℃±1℃, 50%RH±5%RH
・Measuring device: PNA network analyzer N5222B (manufactured by Keysight Technologies Co., Ltd.)
・Cavity resonator: CP531 for 10GHz (manufactured by Kanto Electronic Application Development Co., Ltd.)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各実施例においては、図6に示すように、樹脂成形体の断面観察により、中空領域への樹脂の侵入は確認されず、中空粒子の破壊が抑制されていることが確認できた。吸油量の低い実施例1、2では、フィラーをより多く樹脂に配合することが可能となり、樹脂組成物(樹脂成形体)の誘電特性がより優れていることがわかる。 In each Example, as shown in FIG. 6, cross-sectional observation of the resin molded body did not confirm that the resin entered the hollow region, and it was confirmed that the destruction of the hollow particles was suppressed. It can be seen that in Examples 1 and 2 where the oil absorption is low, it is possible to incorporate more filler into the resin, and the dielectric properties of the resin composition (resin molded body) are more excellent.
 本発明の中空粒子は、代表的には、電子材料に好適に用いられ得る。他にも、例えば、断熱材料、防音材料、衝撃緩衝材料、応力緩衝材料、光学材料、軽量化材料に用いられ得る。 The hollow particles of the present invention can typically be suitably used for electronic materials. In addition, it can be used in, for example, heat insulating materials, soundproofing materials, impact buffering materials, stress buffering materials, optical materials, and lightweight materials.
 L 長径
 T 短径
 2 中空粒子
 4 殻
 6 空間(中空部)
10 積層体
11 樹脂層
12 金属箔
L Long axis T Short axis 2 Hollow particle 4 Shell 6 Space (hollow part)
10 Laminated body 11 Resin layer 12 Metal foil

Claims (10)

  1.  内部が中空の殻を有する中空粒子であって、
     前記殻は、アルミニウムを含むシリカであり、且つ前記アルミニウムの存在量は、前記殻における前記殻の厚み方向内側に位置する第一部位の方が、前記第一部位よりも前記殻における前記殻の厚み方向外側に位置する第二部位よりも多いことを特徴とする、中空粒子。
    A hollow particle having a hollow shell inside,
    The shell is silica containing aluminum, and the amount of aluminum present in the shell is greater in a first region of the shell located inside in the thickness direction of the shell than in the first region. Hollow particles are characterized by being larger in number than in the second part located on the outside in the thickness direction.
  2.  前記アルミニウムの含有量は、前記殻を構成する成分のうち1%未満である、請求項1に記載の中空粒子。 The hollow particles according to claim 1, wherein the aluminum content is less than 1% of the components constituting the shell.
  3.  前記殻の内側から外側に向かって、前記アルミニウムの存在量は少なくなる、請求項1に記載の中空粒子。 The hollow particle according to claim 1, wherein the amount of aluminum decreases from the inside to the outside of the shell.
  4.  エポキシ樹脂吸油量が0.6g/m未満である、請求項1に記載の中空粒子。 Hollow particles according to claim 1, wherein the epoxy resin oil absorption is less than 0.6 g/ m2 .
  5.  前記殻は、更にナトリウムを含み、前記殻の前記ナトリウムの含有量は3000ppm以下である、請求項1に記載の中空粒子。 The hollow particles according to claim 1, wherein the shell further contains sodium, and the sodium content of the shell is 3000 ppm or less.
  6.  前記シリカは、無定形シリカである、請求項1に記載の中空粒子。 The hollow particles according to claim 1, wherein the silica is amorphous silica.
  7.  前記殻は、中空率が30%以上95%以下である、請求項1に記載の中空粒子。 The hollow particle according to claim 1, wherein the shell has a hollowness ratio of 30% or more and 95% or less.
  8.  前記殻の厚みは、25nm以上500nm以下である、請求項1に記載の中空粒子。 The hollow particle according to claim 1, wherein the thickness of the shell is 25 nm or more and 500 nm or less.
  9.  コア粒子にシェル形成材料を被覆してコアシェル粒子を得ること、
     前記コアシェル粒子から前記コア粒子を除去して中空粒子前駆体を得ること、及び、
     前記中空粒子前駆体にシェル形成材料を被覆すること、
     を含む、請求項1から請求項8のいずれか1項に記載の中空粒子の製造方法。
    obtaining core-shell particles by coating the core particles with a shell-forming material;
    removing the core particle from the core-shell particle to obtain a hollow particle precursor; and
    coating the hollow particle precursor with a shell-forming material;
    The method for producing hollow particles according to any one of claims 1 to 8, comprising:
  10.  前記コア粒子が下記一般式(I)で表されるアルナイト型化合物を含む、請求項9に記載の製造方法:
     M[Al1-xM’(SO 2-(OH)・mHO・・・(I)
     式(I)中、Mは、Na、K、NH 及びHからなる群から選択される少なくとも1種の陽イオンであり、M’は、Cu2+、Zn2+、Ni2+、Sn4+、Zr4+及びTi4+からなる群から選択される少なくとも1種の陽イオンであり、aは、0.8≦a≦1.35を満足し、mは、0≦m≦5を満足し、xは、0≦x≦0.4を満足し、yは、1.7≦y≦2.5を満足し、zは、4≦z≦7を満足する。

     
    The manufacturing method according to claim 9, wherein the core particle contains an alunite type compound represented by the following general formula (I):
    M a [Al 1-x M' x ] 3 (SO 4 2- ) y (OH) z・mH 2 O...(I)
    In formula (I), M is at least one cation selected from the group consisting of Na + , K + , NH 4 + and H 3 O + , and M' is Cu 2+ , Zn 2+ , Ni 2+ , Sn 4+ , Zr 4+ and Ti 4+ , a satisfies 0.8≦a≦1.35, and m satisfies 0≦m≦5. x satisfies 0≦x≦0.4, y satisfies 1.7≦y≦2.5, and z satisfies 4≦z≦7.

PCT/JP2023/017107 2022-06-09 2023-05-02 Hollow particle and method for manufacturing same WO2023238558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093963 2022-06-09
JP2022093963 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238558A1 true WO2023238558A1 (en) 2023-12-14

Family

ID=89118094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017107 WO2023238558A1 (en) 2022-06-09 2023-05-02 Hollow particle and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023238558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2012140286A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Novel silica-based hollow fine particles, base material with transparent coating film and coating material for transparent coating film formation
WO2021171859A1 (en) * 2020-02-28 2021-09-02 協和化学工業株式会社 Hollow particles, method for producing said hollow particles, resin composition, and resin molded article and laminate using said resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2012140286A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Novel silica-based hollow fine particles, base material with transparent coating film and coating material for transparent coating film formation
WO2021171859A1 (en) * 2020-02-28 2021-09-02 協和化学工業株式会社 Hollow particles, method for producing said hollow particles, resin composition, and resin molded article and laminate using said resin composition

Similar Documents

Publication Publication Date Title
EP4112549A1 (en) Hollow silica particles and method for producing same
KR20170020326A (en) Individualised inorganic particles
KR20180134848A (en) Hollow silica particles and method for producing the same
JP2023138688A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molded body and laminated body using resin composition
JP2023158027A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molding and laminate using resin composition
JP4822576B2 (en) Inorganic hollow powder and method for producing the same
WO2023238558A1 (en) Hollow particle and method for manufacturing same
WO2020066152A1 (en) Coated silicon carbide particle powder
WO2021049581A1 (en) Glass filler, production method therefor, and resin-containing composition comprising glass filler
CN113365964B (en) Coated particles, dispersion and molded body containing same, and sintered body formed using same
JP5974683B2 (en) Particle having void inside particle and method for producing the same
TW202406842A (en) Hollow particles and manufacturing method thereof
Zhang et al. An ultralow-k dielectric derived from a fluorinated polybenzoxazole composite film with yolk–multishell mesoporous silica nanostructures
JP7385734B2 (en) Hollow particles, resin compositions, and resin molded bodies and laminates using the resin compositions
JP2011016718A (en) Inorganic hollow powder and method for manufacturing the same
WO2024004738A1 (en) Magnesium oxide powder and resin composition using same
WO2024004736A1 (en) Magnesium oxide powder and resin composition which uses same
WO2023189965A1 (en) Spherical calcium titanate powder and resin composition using same
WO2023286566A1 (en) Oxide composite particles, method for producing same, and resin composition
JP4149385B2 (en) Aluminum oxide coated fine silver powder and method for producing the same
TW202408937A (en) Magnesium oxide powder and resin composition using the same
CN114620734B (en) Preparation method of micron silica gel with low dielectric constant and low dielectric loss
TW202408939A (en) Magnesium oxide powder and resin composition using the same
CN113226988B (en) Alumina, alumina slurry, alumina film, laminated separator, and nonaqueous electrolyte secondary battery and method for producing same
WO2023175994A1 (en) Hollow inorganic particle material, method for producing same, inorganic filler, slurry composition and resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819544

Country of ref document: EP

Kind code of ref document: A1