WO2023238472A1 - Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core - Google Patents

Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core Download PDF

Info

Publication number
WO2023238472A1
WO2023238472A1 PCT/JP2023/010242 JP2023010242W WO2023238472A1 WO 2023238472 A1 WO2023238472 A1 WO 2023238472A1 JP 2023010242 W JP2023010242 W JP 2023010242W WO 2023238472 A1 WO2023238472 A1 WO 2023238472A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
amorphous metal
iron core
metal thin
laminated iron
Prior art date
Application number
PCT/JP2023/010242
Other languages
French (fr)
Japanese (ja)
Inventor
孝 石上
レミ 向瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023238472A1 publication Critical patent/WO2023238472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method for manufacturing a laminated iron core using amorphous metal thin plates, a laminated iron core, and a rotating electric machine using the laminated iron core.
  • stator cores using electromagnetic steel sheets are made by, for example, punching an electromagnetic steel sheet with a thickness of 0.15 mm to 0.5 mm into a ring-shaped cross-sectional shape with grooves (slots) using a die, and then manufacturing the punched member. Generally, they are laminated and fixed using caulking, welding, adhesion, etc. to form a cylindrical stator core.
  • amorphous metals are attracting attention as materials that meet the strong social demand for higher efficiency motors in recent years.
  • the iron loss of amorphous metal is about 1/10, which is an order of magnitude smaller. Therefore, if amorphous metal can be used as the material for the core of a motor's stator or rotor, the efficiency can be significantly improved (for example, +5 to 6%) compared to motors that use conventional electrical steel sheets for the core. .
  • the current manufacturing method for amorphous metal sheets is mainly based on a manufacturing method called the "roll method," in which molten iron-based metal or cobalt-based metal is continuously fed onto a rotating cooling roll and rapidly solidified on the cooling roll. It is. The rotational speed of the cooling roll is adjusted to cool the molten alloy at a predetermined rate to produce a thin strip-shaped amorphous metal sheet.
  • This roll method can only produce a thin foil-like amorphous metal sheet with a thickness of about 25 ⁇ m.
  • the number of shots required to punch out a material as thick as one iron core will be 14 to 20 times the number of shots for electromagnetic steel sheets. Furthermore, since the amorphous metal thin plate is very hard, the load on the mold (punch) becomes large, so there is a problem that the life of the mold becomes extremely short. Note that since the amorphous metal thin plate is very thin, it may be referred to as an amorphous metal thin plate below.
  • Patent Document 1 compared to the method of punching out amorphous metal thin sheets one by one, punching a plurality of sheets in a stacked state significantly reduces the wear and tear on the mold used. Something is stated.
  • the present invention provides the manufacture of a laminated iron core, in which a thin amorphous metal plate is punched out using a mold and processed into a predetermined shape, and a laminated iron core is manufactured using a predetermined amount of the amorphous metal thin plate after the shape processing.
  • the method includes the step of laminating a plurality of the amorphous metal thin plates to form a laminated amorphous metal thin plate, and arranging the side with less surface area of the laminated amorphous metal thin plate on the processing side.
  • a method for manufacturing a laminated iron core including a step of punching using the die.
  • Another example of the present invention is a laminated core for use in electrical equipment, in which a plurality of amorphous metal thin plates are laminated so that sagging occurs on a surface with small surface roughness.
  • This is a laminated core that is formed using a predetermined amount of unit laminates punched out.
  • Example 3 is a diagram illustrating the formation of a laminated amorphous metal thin plate in Example 1. It is a figure which shows the stator in Example 2 of this invention. It is a figure which shows the rotating electric machine in Example 3 of this invention.
  • FIG. 7 is a diagram showing a stator of a rotating electrical machine in Example 3.
  • An amorphous metal thin plate (amorphous metal foil) manufactured by a roll method is usually used for the iron core of rotating electric machines and the iron core of transformers.
  • molten metal is supplied to the surface of a cooling roll that rotates at a constant speed, and the molten metal is rapidly cooled and solidified on the cooling roll to form a long amorphous metal thin plate with a thickness of about 25 ⁇ m. (band-shaped amorphous metal thin plate).
  • a cross section of the strip-shaped amorphous metal thin plate produced in this manner is shown in FIG.
  • the strip-shaped amorphous metal thin sheet 1 is manufactured by rapidly solidifying the molten metal on the surface of a cooling roll, so the surface roughness of the non-roll contact surface is as high as 2.5 ⁇ m or more (when the material thickness is 25 ⁇ m), and the roll contact surface becomes a smooth surface with less surface roughness than this. That is, as shown in FIG. 1, the strip-shaped amorphous metal thin plate 1 has a surface S1 on the side not in contact with the roll and a surface S2 on the side in contact with the roll.
  • the cross-sectional shape is schematically depicted for understanding, and the accurate cross-sectional shape is not depicted based on actual measurement data.
  • the surface S2 that is in direct contact with the cooling roll is a smooth surface with low surface roughness, but the surface S1 that is not in contact with the cooling roll is rough.
  • FIG. 2 is a diagram for explaining the measurement position of the edge shape of the punch in this experiment.
  • the shape of the punch 12 seen from the bottom is shown as 12A
  • the shape seen from the side of the punch is shown as 12B.
  • the measurement position of the edge shape of the punch 12 is a portion 12C indicated by a circle in the figure.
  • the surface roughness is better when punching is performed with the surface S2, which has a smaller surface roughness, placed on the punch side (processing side) (in the case of FIG. 3B). It can be seen that the punch is plastically deformed more toward the outer circumferential side than when punching is performed with the large surface S1 disposed on the punch side (the case of FIG. 3A). This is probably because the surface roughness of the amorphous metal foil is large, so the frictional force at the contact surface with the punch is large, and the punch is dragged by the amorphous metal foil and plastically deforms. On the other hand, in the case of FIG.
  • Figure 5 shows the results of calculating the frictional work per sheet of amorphous metal foil using a model when punching was performed by changing the number of laminated sheets of amorphous metal foil. It can be seen that when the number of laminated sheets is three or more, the frictional work per sheet of amorphous metal foil decreases as the number of laminated sheets increases. However, although the number of punches can be reduced by increasing the number of laminated sheets, the burden on the mold during each punching process increases. Therefore, it is important to appropriately select the number of layers in the unit laminate. Accordingly, an improved embodiment of the present invention optimizes this number of layers to reduce mold wear and minimize the risk of mold breakage.
  • FIG. 7A shows a case in which one amorphous metal foil is used
  • FIG. 7B shows a case in which four amorphous metal foils are laminated.
  • the amorphous metal thin plate 9 and the bottom surfaces of the punch 12 become close to horizontal, and the component force in the same direction becomes smaller once. After that, the amount of deflection of the amorphous metal foil becomes approximately constant, and the maximum principal tensile stress converges to the minimum.
  • the number of layers in the unit laminate should be between 3 and 5 to minimize the risk of punch breakage (chipping) and prevent damage due to compression. .
  • the lamination bonding section 20 applies an adhesive to a plurality of amorphous metal thin plates, and laminates and adheres them. Note that a heat-resistant insulating material is used for the adhesive.
  • This laminated amorphous metal thin plate is hereinafter referred to as a "laminated amorphous metal thin plate.”
  • laminated amorphous metal thin plate As mentioned above, if the number of laminated amorphous metal thin plates 21 is between 3 and 5, the number of shots in the punching process will be reduced, productivity will increase, and the mold size will be reduced. This is preferable because it reduces the amount of wear and reduces the risk of damage to the mold.
  • This figure shows an example in which three amorphous metal thin plates are laminated. The long strip-shaped laminated amorphous metal thin plate 21 is conveyed to a press machine 30.
  • FIG. 10 shows the state of the amorphous metal thin plate.
  • FIG. 10(a) shows the cross-sectional shape of the amorphous metal thin plates 2A to 2C fed out (unwound) by the transport rolls 3A to 3C.
  • FIG. 10(b) shows a cross-sectional shape of the laminated amorphous metal thin plates 21 laminated by the laminated adhesive portion 20. As shown in FIG. As is clear from FIG. 10, when three amorphous metal thin plates are stacked, they are stacked so that the surface roughness is the same on the top and bottom.
  • the amorphous metal thin plates 2A to 2C are arranged and laminated so that the surface roughness is the same. It is supplied to the adhesive section 20. Thereby, there is no need to align the surfaces when performing adhesion and lamination in the lamination adhesive section 20. That is, the surface side (upper surface) of the amorphous metal thin plate wound as the coils 1A to 1C is made to have the same surface roughness as the surface S2 with lower surface roughness. Therefore, in the lamination bonding section 20, it is sufficient to apply an adhesive to the three amorphous metal thin plates 2A to 2C and then laminate and bond them as they are.
  • the upper surface of the stacked laminated amorphous metal thin plates 21 is a surface S2 with less surface roughness, and the long strip-shaped laminated amorphous metal thin plates 21 are conveyed as they are to the press machine 30.
  • the press machine 30 can punch out the transported laminated amorphous metal thin plate 21 as it is.
  • the press machine 30 punches a plurality of laminated amorphous metal thin plates 21 (three laminated in this example) into a predetermined shape.
  • the press machine 30 has an upper mold (punch) mounted on a slide that can move up and down.
  • the slide with the upper mold attached moves up and down along a slide guide by a slide drive mechanism (a crank mechanism, a motor that drives the crank mechanism, etc.).
  • a slide drive mechanism a crank mechanism, a motor that drives the crank mechanism, etc.
  • the press moves up and down, and the laminated amorphous metal foil 21 transported into the press machine can be punched out.
  • the press structure and explanations such as the slide, slide drive mechanism, slide guide, etc. are omitted.
  • sagging occurs at the end of the surface S2 with less surface roughness, and burrs occur on the opposite side (the surface with greater surface roughness).
  • the tip of the punch presses against the upper surface S2 of the material, pushing the material in, and sag with an R portion initially occurs.
  • the punch is further lowered, the punch cannot withstand the bending, and the punch sinks into the material, cutting the material. Then, when the punch is pushed through, the material is plastically deformed and a protruding burr is generated.
  • burrs are removed before the assembly process for several reasons, including the risk of injury due to their sharpness, and the risk of worsening assembly dimensional accuracy and adversely affecting product performance. is common.
  • the unit laminate 40 is manufactured by punching a laminated amorphous metal thin plate into a shape for a stator, which is punched from the side with the smaller surface roughness. Therefore, it is possible to manufacture an optimal stator with high productivity, with less wear and tear on the mold and less risk of damage to the mold.
  • Example 3 Next, Example 3 of the present invention will be described using FIGS. 12 and 13.
  • a rotating electrical machine motor was manufactured using the laminated core 51 described in Example 2.
  • FIG. 12 shows a schematic configuration of the entire rotating electrical machine, and
  • FIG. 13 shows the stator portion.
  • the unit laminate 40 is manufactured by punching out a laminated amorphous metal thin plate for the stator from the side with the smaller surface roughness, A rotating electric machine can be manufactured using a stator that consumes less mold, has less risk of mold breakage, and has high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This laminated iron core is produced by: punching an amorphous metal thin plate using a die to carry out predetermined shaping; and using a predetermined amount of the amorphous metal thin plate that has been subjected to shaping to assemble the laminated iron core. The shaping of the present invention forms a unit laminate by: laminating a plurality of amorphous metal thin plates to form a laminated amorphous metal thin plate; and disposing on the machining side the surface, of the laminated amorphous metal thin plate, having the least surface roughness and then performing punching with a die. Also, a necessary number of the unit laminates are laminated to assemble the laminated core.

Description

積層鉄心の製造方法、積層鉄心、及び積層鉄心を用いた回転電機Manufacturing method for laminated core, laminated core, and rotating electric machine using laminated core
 本発明は、アモルファス金属薄板を用いた積層鉄心の製造方法、積層鉄心、及び積層鉄心を用いた回転電機に関する。 The present invention relates to a method for manufacturing a laminated iron core using amorphous metal thin plates, a laminated iron core, and a rotating electric machine using the laminated iron core.
 地球温暖化を抑制するために二酸化炭素(CO2)の排出量を削減する技術の開発が求められている。このため、モータの高効率化に大きな期待が寄せられている。産業分野で使われる電力の約70%、家庭で使われる電力の約40%がモータによって消費されている。モータの1台あたりの効率を数%向上させるだけで、数十万kW級の発電所に相当する省エネ効果が期待でき、年間数百万トンものCO2削減に寄与できると言われている。一方、近年では、同様にCO2排出量削減の目的から、電気自動車の普及が目覚ましく、一充電走行距離を延ばすために、駆動用モータの効率向上の要求が高まっている。 In order to curb global warming, there is a need to develop technology to reduce carbon dioxide (CO 2 ) emissions. For this reason, there are great expectations for increasing the efficiency of motors. Approximately 70% of the electricity used in industry and 40% of the electricity used in homes are consumed by motors. It is said that by improving the efficiency of each motor by just a few percent, it is possible to expect an energy-saving effect equivalent to that of a power plant in the hundreds of thousands of kilowatts, contributing to the reduction of several million tons of CO2 per year. On the other hand, in recent years, electric vehicles have become rapidly popular for the purpose of reducing CO 2 emissions, and there is a growing demand for improved efficiency of drive motors in order to extend the range traveled on a single charge.
 従来の電磁鋼板を用いたステータ鉄心は、例えば、厚さ0.15mm~0.5mmの電磁鋼板を、金型を用いて、溝(スロット)のあるリング状の断面形状に打抜き、打抜いた部材を、かしめ、溶接、接着などを用いて積層・固着し、円筒状のステータ鉄心を形成するのが一般的である。 Conventional stator cores using electromagnetic steel sheets are made by, for example, punching an electromagnetic steel sheet with a thickness of 0.15 mm to 0.5 mm into a ring-shaped cross-sectional shape with grooves (slots) using a die, and then manufacturing the punched member. Generally, they are laminated and fixed using caulking, welding, adhesion, etc. to form a cylindrical stator core.
 ここで、近年のモータの高効率化の強い社会要求に応える材料として、アモルファス金属が注目を浴びている。従来の電磁鋼板に比べて、アモルファス金属の鉄損は1/10程度と桁違いに小さい。そのため、アモルファス金属をモータ用のステータやロータの鉄心の材料に用いることができれば、従来の電磁鋼板を鉄心に用いたモータよりも効率を大幅(例えば、+5~6%)に向上させることができる。 Here, amorphous metals are attracting attention as materials that meet the strong social demand for higher efficiency motors in recent years. Compared to conventional electrical steel sheets, the iron loss of amorphous metal is about 1/10, which is an order of magnitude smaller. Therefore, if amorphous metal can be used as the material for the core of a motor's stator or rotor, the efficiency can be significantly improved (for example, +5 to 6%) compared to motors that use conventional electrical steel sheets for the core. .
 ところで、現在のアモルファス金属薄板の製造は、溶融した鉄系金属あるいはコバルト系金属を回転する冷却ロール上に連続的に供給し、冷却ロール上で急冷凝固させる「ロール法」と呼ばれる製造方法が主流である。冷却ロールの回転数を調節し、所定の速度で溶融合金を冷却し、薄い帯状のアモルファス金属薄板を生成する。このロール法では、厚さ25μm程度の薄厚である箔状のアモルファス金属薄板しか生成することができない。一方、アモルファス金属薄板(アモルファス金属箔)の硬度は非常に高く(Hv=900~1100程度)、通常の電磁鋼板(Hv=200~300程度)と比べて極めて高い。このため、アモルファス金属薄板をステータ形状に打抜く加工を行う場合、超硬合金材を用いた金型が使用される。しかし、厚さ25μm程度のアモルファス金属薄板をステータ鉄心の素材に用いようとすると、ステータ鉄心一台分の厚さの素材を打抜くためのショット数は非常に多くなる。例えば、モータ用の鉄心は、サイズの大きなものは数メートルの高さとなるものもあり、厚さ0.35~0.5mmの電磁鋼板を用いると、1台あたり数千から数万ショットの打抜き加工が必要となる。これに対し、アモルファス金属薄板をモータ用の鉄心の素材に用いようとすると、鉄心一台分の厚さの素材を打抜くためのショット数が電磁鋼板のショット数の14~20倍に増える。更には、アモルファス金属薄板が非常に硬いことにより金型(パンチ)への負荷が大きくなるため、金型寿命が極端に短くなるという問題があった。なお、アモルファス金属薄板は、厚みが非常に薄いことから、以下では、アモルファス金属薄と称する場合がある。 By the way, the current manufacturing method for amorphous metal sheets is mainly based on a manufacturing method called the "roll method," in which molten iron-based metal or cobalt-based metal is continuously fed onto a rotating cooling roll and rapidly solidified on the cooling roll. It is. The rotational speed of the cooling roll is adjusted to cool the molten alloy at a predetermined rate to produce a thin strip-shaped amorphous metal sheet. This roll method can only produce a thin foil-like amorphous metal sheet with a thickness of about 25 μm. On the other hand, the hardness of amorphous metal sheets (amorphous metal foils) is extremely high (Hv = about 900 to 1100), which is much higher than that of ordinary electrical steel sheets (Hv = about 200 to 300). Therefore, when punching an amorphous metal thin plate into a stator shape, a mold using a cemented carbide material is used. However, if an amorphous metal thin plate with a thickness of about 25 μm is to be used as the material for the stator core, the number of shots required to punch out the material as thick as one stator core will be extremely large. For example, large iron cores for motors can be several meters high, and if electromagnetic steel sheets with a thickness of 0.35 to 0.5 mm are used, each core requires thousands to tens of thousands of shots. becomes. On the other hand, if an amorphous thin metal sheet is used as the material for a motor core, the number of shots required to punch out a material as thick as one iron core will be 14 to 20 times the number of shots for electromagnetic steel sheets. Furthermore, since the amorphous metal thin plate is very hard, the load on the mold (punch) becomes large, so there is a problem that the life of the mold becomes extremely short. Note that since the amorphous metal thin plate is very thin, it may be referred to as an amorphous metal thin plate below.
 このような技術課題を解決するための一つの技術として、特開昭56-36336号公報(特許文献1)に記載された技術が知られている。この特許文献1には、アモルファス金属薄板をまず電気的絶縁層を介して積層し、しかる後、所定のコア形状を機械的に打抜くことで、アモルファス金属薄板による積層コアを製造する製造方法を開示している。 As one technique for solving such technical problems, the technique described in Japanese Patent Application Laid-Open No. 56-36336 (Patent Document 1) is known. This Patent Document 1 describes a manufacturing method of manufacturing a laminated core of amorphous metal sheets by first laminating the amorphous metal sheets with an electrically insulating layer interposed therebetween, and then mechanically punching out a predetermined core shape. Disclosed.
特開昭56-36336号公報Japanese Unexamined Patent Publication No. 56-36336
 上記した特許文献1の技術によれば、アモルファス金属薄板を1枚ごとに打抜く方法に比べて、複数枚積層した状態で打抜く方が使用する金型の消耗が著しく軽減されるという効果があることが記載されている。 According to the technology of Patent Document 1 mentioned above, compared to the method of punching out amorphous metal thin sheets one by one, punching a plurality of sheets in a stacked state significantly reduces the wear and tear on the mold used. Something is stated.
 しかしながら、この特許文献1の技術では、打抜くべきアモルファス金属薄板の性状を考慮して打抜きに使用する金型の消耗をさらに大幅に軽減させることに関する記述は見られない。 However, in the technique of Patent Document 1, there is no description of further reducing the wear and tear of the die used for punching in consideration of the properties of the amorphous metal sheet to be punched.
 ところで、上述した、アモルファス金属薄板をロール法で製造した場合、金属箔の両側の表面を比較した場合の性状の違い、具体的には表面粗さが大きく異なる。本発明者は、このアモルファス金属薄板の表面粗さの違いに着目し、この違いが実際の打抜きにどのような影響を与えるかについて、多くの実験と検討を重ねた結果、表面粗さが小さい方から打抜いた方が、表面粗さが大きい方から打抜いた場合より、使用する金型への負担がはるかに軽減するという新たな知見を得た。そこで、この新たな知見を利用し、生産性を高めるとともに金型の消耗を従来に比べて大幅に少なくするという新たな課題に挑戦しその技術課題の解決を図ることにした。 By the way, when the above-mentioned amorphous metal thin plate is manufactured by the roll method, there is a large difference in properties when comparing the surfaces on both sides of the metal foil, specifically, a large difference in surface roughness. The inventor of the present invention focused on the difference in surface roughness of this amorphous metal sheet, and as a result of many experiments and studies on how this difference affects actual punching, we found that the surface roughness is small. We have obtained new knowledge that punching from the side with the larger surface roughness places much less stress on the mold used. Therefore, we decided to use this new knowledge to take on the new challenge of increasing productivity and significantly reducing mold wear compared to the past, and to solve this technical problem.
 本発明は、生産性高めるとともに、アモルファス金属薄板の打抜き加工における金型の消耗を大幅に低減させ長寿命化を実現する積層鉄心の製造方法、その製造方法による積層鉄心、およびそれを用いた回転電機を提供することを目的とする。 The present invention relates to a method for manufacturing a laminated core that increases productivity, significantly reduces wear and tear on molds in punching of amorphous metal thin sheets, and achieves longer life. The purpose is to provide electrical equipment.
 本発明は、その一例を挙げると、金型によりアモルファス金属薄板を打抜いて所定の形状加工を行い、形状加工後の前記アモルファス金属薄板を所定量使用して積層鉄心を製造する積層鉄心の製造方法であって、前記形状加工においては、前記アモルファス金属薄板を複数枚積層して積層アモルファス金属薄板を形成する工程と、前記積層アモルファス金属薄板の表面さが少ない面を加工側に配置させてから前記金型による打抜きを行う工程と、を含んでいる積層鉄心の製造方法である。 To give one example, the present invention provides the manufacture of a laminated iron core, in which a thin amorphous metal plate is punched out using a mold and processed into a predetermined shape, and a laminated iron core is manufactured using a predetermined amount of the amorphous metal thin plate after the shape processing. The method includes the step of laminating a plurality of the amorphous metal thin plates to form a laminated amorphous metal thin plate, and arranging the side with less surface area of the laminated amorphous metal thin plate on the processing side. A method for manufacturing a laminated iron core, including a step of punching using the die.
 また、本発明の他の例を挙げるならば、電気機器に使用する積層鉄心であって、前記積層鉄心は、複数枚のアモルファス金属薄板を積層して表面粗さが小さい面にダレが生じるように打抜かれた単位積層体を、所定量使用して形成されている積層鉄心である。 Another example of the present invention is a laminated core for use in electrical equipment, in which a plurality of amorphous metal thin plates are laminated so that sagging occurs on a surface with small surface roughness. This is a laminated core that is formed using a predetermined amount of unit laminates punched out.
 さらに、本発明の他の例を挙げると、積層鉄心を使用した回転電機であって、前記積層鉄心は、表面粗さが小さい面にダレが生じるように打抜かれた複数枚のアモルファス金属薄板で形成された単位積層体を、必要枚数使用して形成されている回転電機である。 Furthermore, to give another example of the present invention, there is provided a rotating electric machine using a laminated core, wherein the laminated core is made of a plurality of amorphous metal thin plates punched so that sag occurs on the surface with small surface roughness. This rotating electric machine is formed by using the required number of formed unit laminates.
 本発明によれば、生産性を高めるとともにアモルファス金属薄板の打抜きに使用する金型の長寿命化を実現することができる。 According to the present invention, it is possible to increase productivity and extend the life of a mold used for punching an amorphous metal thin plate.
帯状アモルファス金属薄板の断面形状を示す図である。FIG. 3 is a diagram showing a cross-sectional shape of a strip-shaped amorphous metal thin plate. 実証実験における円筒パンチの縁部形状の計測位置を説明するための図である。It is a figure for explaining the measurement position of the edge shape of the cylindrical punch in a demonstration experiment. アモルファス金属薄板の表面粗さが大である側から打抜いた場合のデータを示す図である。FIG. 3 is a diagram showing data when an amorphous metal thin plate is punched from the side with greater surface roughness. アモルファス金属薄板の表面粗さが小である側から打抜いた場合のデータを示す図である。FIG. 3 is a diagram showing data when an amorphous metal thin plate is punched from the side with smaller surface roughness. アモルファス金属薄板の打抜き加工の有限要素法のモデルを示す図である。FIG. 3 is a diagram showing a finite element method model for punching an amorphous metal thin plate. 単位積層体を構成する積層枚数と1枚打抜き当たりの摩擦仕事の関係を示す図である。It is a figure which shows the relationship between the number of laminated sheets which constitute a unit laminated body, and the frictional work per punching of one sheet. 積層枚数とパンチ表面の引張りの最大主応力の関係を示す図である。FIG. 3 is a diagram showing the relationship between the number of stacked sheets and the maximum principal tensile stress on the punch surface. 引張りの最大主応力が積層枚数の増加により減少する理由の説明図であり、積層枚数1枚の場合を表す図である。FIG. 3 is an explanatory diagram of the reason why the maximum principal tensile stress decreases as the number of laminated sheets increases, and is a diagram representing a case where the number of laminated sheets is one. 引張りの最大主応力が積層枚数の増加により減少する理由の説明図であり、積層枚数4枚の場合を表す図である。It is an explanatory view of the reason why the maximum principal stress of tension decreases with an increase in the number of laminated sheets, and is a diagram showing the case where the number of laminated sheets is four. 単位積層体の積層枚数とパンチ表面の圧縮の相当応力の関係を示す図である。It is a figure which shows the relationship between the number of laminated sheets of a unit laminated body, and the compression equivalent stress of the punch surface. 本発明の実施例1における積層鉄心製造システムを示す図である。1 is a diagram showing a laminated core manufacturing system in Example 1 of the present invention. 実施例1における積層アモルファス金属薄板の形成を説明する図である。FIG. 3 is a diagram illustrating the formation of a laminated amorphous metal thin plate in Example 1. 本発明の実施例2におけるステータを示す図である。It is a figure which shows the stator in Example 2 of this invention. 本発明の実施例3における回転電機を示す図である。It is a figure which shows the rotating electric machine in Example 3 of this invention. 実施例3における回転電機のステータを示す図である。FIG. 7 is a diagram showing a stator of a rotating electrical machine in Example 3.
 以下、本発明を具体的な実施形態により詳細に説明する。なお、本発明は、以下に説明する実施形態(実施例)に限定して解釈されるものではなく、本発明の技術思想ないし趣旨から逸脱しない範囲で、その構成を変更し得ることは当業者であれば容易に理解される。また、以下の説明において、同一機器、同様の動作や機能を有する部分には原則として同一の符号(番号)を用いており、重複する説明を省略することがある。また、図面に示す各構成の位置、大きさ、形状、範囲などは、本発明の理解を容易にするために簡略化して示しており、実際の各構成の位置、大きさ、形状、範囲などを表しているわけではない。 Hereinafter, the present invention will be explained in detail using specific embodiments. The present invention is not to be construed as being limited to the embodiments (examples) described below, and it will be understood by those skilled in the art that the configuration may be modified without departing from the technical idea or gist of the present invention. If so, it is easily understood. In addition, in the following description, the same symbols (numbers) are used in principle for the same equipment and parts having similar operations and functions, and redundant description may be omitted. In addition, the position, size, shape, range, etc. of each component shown in the drawings are simplified to facilitate understanding of the present invention, and the actual position, size, shape, range, etc. of each component are shown in a simplified manner. It does not represent.
 [発明に関する技術的考察]
 まず、本発明の具体的な実施例を説明する前に、実施例の前提となる本発明に関する技術的考察あるいは発明の原理について説明する。
[Technical considerations regarding the invention]
First, before describing specific embodiments of the present invention, technical considerations regarding the present invention or principles of the invention, which are the premise of the embodiments, will be explained.
 回転電機の鉄心や変圧器の鉄心には、通常、ロール法により製造されたアモルファス金属薄板(アモルファス金属箔)が使用されている。ロール法では、材料となる溶融金属を一定速度で回転する冷却ロールの表面に供給し、冷却ロール上で溶融金属が急速に冷却し凝固させることにより、厚さ25μm程度の帯状に長いアモルファス金属薄板(帯状アモルファス金属薄板)を生成する。このようにして製造された帯状アモルファス金属薄板の断面を図1に示す。帯状アモルファス金属薄板1は、その溶融金属を冷却ロールの表面に急冷凝固して製造するため、ロール非接触面の表面粗さが2.5μm以上(素材厚さ25μmの場合)と大きく、ロール接触面はこれよりも表面粗さが小さい平滑な面となる。すなわち、図1に示すように、帯状アモルファス金属薄板1は、ロールと非接触側の面S1とロールと接触する側の面S2を有する。なお、図1では、理解のために断面形状を概略記載したものであり、実際の計測データに基づく正確な断面形状を記載したものではない。図1から分かるように、冷却ロールと直接接触する側の面S2は表面粗さが小さい滑らかな面になるが、冷却ロールに接触しない側の面S1は表面粗さが粗くなる。 An amorphous metal thin plate (amorphous metal foil) manufactured by a roll method is usually used for the iron core of rotating electric machines and the iron core of transformers. In the roll method, molten metal is supplied to the surface of a cooling roll that rotates at a constant speed, and the molten metal is rapidly cooled and solidified on the cooling roll to form a long amorphous metal thin plate with a thickness of about 25 μm. (band-shaped amorphous metal thin plate). A cross section of the strip-shaped amorphous metal thin plate produced in this manner is shown in FIG. The strip-shaped amorphous metal thin sheet 1 is manufactured by rapidly solidifying the molten metal on the surface of a cooling roll, so the surface roughness of the non-roll contact surface is as high as 2.5 μm or more (when the material thickness is 25 μm), and the roll contact surface becomes a smooth surface with less surface roughness than this. That is, as shown in FIG. 1, the strip-shaped amorphous metal thin plate 1 has a surface S1 on the side not in contact with the roll and a surface S2 on the side in contact with the roll. In addition, in FIG. 1, the cross-sectional shape is schematically depicted for understanding, and the accurate cross-sectional shape is not depicted based on actual measurement data. As can be seen from FIG. 1, the surface S2 that is in direct contact with the cooling roll is a smooth surface with low surface roughness, but the surface S1 that is not in contact with the cooling roll is rough.
 この両面における表面粗さの違いが、打抜き加工にどのように影響するかについて実験と検討を重ねた結果、表面粗さが大きい面S1をパンチ側(加工側)に配置して打抜き加工を行った場合と、逆に、表面粗さが小さい面S2をパンチ側(加工側)に配置して打抜き加工を行った場合とで、金型(パンチ)に対する負荷が大きく異なることが分かってきた。 As a result of repeated experiments and studies on how the difference in surface roughness on both sides affects the punching process, we performed the punching process by placing the surface S1 with the larger surface roughness on the punch side (processing side). It has been found that the load on the mold (punch) differs greatly between when punching is performed with surface S2 having a small surface roughness placed on the punch side (processing side) and when punching is performed with the surface S2 having a small surface roughness placed on the punch side (processing side).
 このことを実証するために、厚さ25μmのアモルファス金属薄板を用いて、材質SKD11(降伏強さ:1570N/mm2、引張強さ:1810N/mm2、圧縮強さ2700N/mm2)を使用した円断面のパンチで打抜き加工し、初期状態のパンチ先端の縁部の形状と、1800枚打抜き後のパンチ先端の縁部の形状とを3次元測定機で測定し、それらの結果を比較してみた。図2は、この実験におけるパンチの縁部形状の計測位置を説明するための図である。図2において、パンチ12の底面から見た形状を12A、パンチ側面から見た形状を12Bとして示している。パンチ12の縁部形状の計測位置は、図の丸で示した12Cの部分である。 To demonstrate this, we used an amorphous metal thin plate with a thickness of 25 μm and the material was SKD11 (yield strength: 1570N/mm 2 , tensile strength: 1810N/mm 2 , compressive strength 2700N/mm 2 ). The shape of the edge of the punch tip in the initial state and the shape of the edge of the punch tip after punching 1800 sheets were measured using a three-dimensional measuring machine, and the results were compared. I tried it. FIG. 2 is a diagram for explaining the measurement position of the edge shape of the punch in this experiment. In FIG. 2, the shape of the punch 12 seen from the bottom is shown as 12A, and the shape seen from the side of the punch is shown as 12B. The measurement position of the edge shape of the punch 12 is a portion 12C indicated by a circle in the figure.
 この実証実験の結果を図3Aと図3Bに示す。図3Aは、はアモルファス金属薄板の面S1(表面粗さが大である側の面)を加工側(パンチ側)にして、円筒状のパンチで打抜いた場合のデータ例を示す。図3Bは、アモルファス金属薄板の面S2(表面粗さが小である側の面)を加工側にして、パンチで打抜いた場合のデータ例を示す。図3Aと図3Bにおいて、破線A0で示しているのが初期の状態を示し、実線A1で示しているのが1800回打抜き後の状態を示している。 The results of this demonstration experiment are shown in FIGS. 3A and 3B. FIG. 3A shows an example of data when an amorphous metal thin plate is punched with a cylindrical punch with surface S1 (the surface with greater surface roughness) set as the processing side (punch side). FIG. 3B shows an example of data when an amorphous metal thin plate is punched with surface S2 (the surface with smaller surface roughness) as the processing side. In FIGS. 3A and 3B, the broken line A0 shows the initial state, and the solid line A1 shows the state after 1800 punches.
 図3Aと図3Bを比較すれば分かるように、表面粗さが小さい面S2をパンチ側(加工側)に配置して打抜きを行った場合(図3Bの場合)の方が、表面粗さが大きい面S1をパンチ側に配置して打抜きを行った場合(図3Aの場合)よりも、パンチが外周側に大きく塑性変形していることがわかる。これは、アモルファス金属箔の表面粗さが大きいことから、パンチとの接触面での摩擦力が大きく、アモルファス金属箔に引きずられてパンチが塑性変形したためと思われる。一方、表面粗さの小さい面から打抜いた図3Bの場合には、パンチ先端の縁部の摩耗は見られるが、外周側への塑性変形は見られない。これは、アモルファス金属箔の表面粗さが小さいことから、パンチとの接触面での摩擦力が小さく、アモルファス金属箔に引きずられてパンチが変形しなかったためと思われる。 As can be seen by comparing FIGS. 3A and 3B, the surface roughness is better when punching is performed with the surface S2, which has a smaller surface roughness, placed on the punch side (processing side) (in the case of FIG. 3B). It can be seen that the punch is plastically deformed more toward the outer circumferential side than when punching is performed with the large surface S1 disposed on the punch side (the case of FIG. 3A). This is probably because the surface roughness of the amorphous metal foil is large, so the frictional force at the contact surface with the punch is large, and the punch is dragged by the amorphous metal foil and plastically deforms. On the other hand, in the case of FIG. 3B, in which the punch was punched from a surface with small surface roughness, wear of the edge of the punch tip is observed, but no plastic deformation toward the outer circumference is observed. This is probably because the surface roughness of the amorphous metal foil was small, so the frictional force at the contact surface with the punch was small, and the punch was not deformed by being dragged by the amorphous metal foil.
 このように、同じ材料を同じ回数だけパンチで打抜き加工を行った場合に、表面粗さが小さい面S2をパンチ側に配置して打抜きを行った方がパンチに対する負担が小さいことが理解できる。 In this way, it can be seen that when the same material is punched the same number of times, the burden on the punch is smaller if the punch is punched with the surface S2 with the smaller surface roughness placed on the punch side.
 ここで、アモルファス金属薄板を効率よく打抜き生産性を高めるには、打抜き前にアモルファス金属薄板を複数枚重ねて(積層して)から打抜くことが推奨される。この場合、アモルファス金属箔(アモルファス金属薄板)を一定枚枚以上積層することによって、アモルファス金属箔の1枚当たりの打抜き加工時にパンチがなす摩擦仕事(W/mm2・枚)が減少し、パンチの外周の摩耗が減少する効果が得られる。本発明の実施形態では、このような考えに基づき打抜き加工を行っている。 Here, in order to efficiently punch amorphous metal thin sheets and increase productivity, it is recommended to stack (laminate) a plurality of amorphous metal thin sheets before punching and then punch them. In this case, by laminating a certain number of sheets or more of amorphous metal foil (amorphous metal thin sheets), the frictional work (W/mm 2 sheets) performed by the punch during punching per sheet of amorphous metal foil is reduced, and the punch This has the effect of reducing wear on the outer periphery. In the embodiment of the present invention, punching is performed based on this idea.
 この考察のために、まず、図4に示すようなアモルファス金属薄板の打抜き加工の有限要素法のモデル(パンチ12、ダイ13でアモルファス金属薄板9が3枚の積層体11を打抜くモデル)を作成し、解析を行った。モデルにおける帯状アモルファス金属薄板1の厚さは25μmとしている。 For this consideration, we first created a finite element method model for punching an amorphous metal thin plate as shown in FIG. Created and analyzed. The thickness of the band-shaped amorphous metal thin plate 1 in the model is 25 μm.
 図5には、アモルファス金属薄板の積層枚数を変化させて打抜きを行ったときの、アモルファス金属箔1枚当たりの摩擦仕事をモデルを用いて計算した結果を示している。積層枚数が3枚以上になると、積層枚数の増加に伴ってアモルファス金属箔1枚当たりの摩擦仕事が減少することがわかる。ただし、積層枚数を増やすことで打抜き数を減らすことができるが、1回ごとの打抜き時における金型への負担は増加する。そのため、単位積層体の積層枚数を適切に選ぶことが重要となる。そこで、本発明の改良された実施形態では、この積層枚数を最適にし、金型の消耗の低減と金型の破損に対するリスクを最小化する。 Figure 5 shows the results of calculating the frictional work per sheet of amorphous metal foil using a model when punching was performed by changing the number of laminated sheets of amorphous metal foil. It can be seen that when the number of laminated sheets is three or more, the frictional work per sheet of amorphous metal foil decreases as the number of laminated sheets increases. However, although the number of punches can be reduced by increasing the number of laminated sheets, the burden on the mold during each punching process increases. Therefore, it is important to appropriately select the number of layers in the unit laminate. Accordingly, an improved embodiment of the present invention optimizes this number of layers to reduce mold wear and minimize the risk of mold breakage.
 そのために、上記で説明した有限要素法のモデルを用いて、単位積層体の枚数を変化させた時にパンチの表面に発生する引張の最大主応力を計算した。その結果を図6に示している。引張りの最大主応力は、パンチの底面(アモルファス金属箔と対抗する面)に発生しており、単位積層体の枚数を2枚以上にすると、パンチの素材として最も高強度な超微粒子合金の引張強さ1900MPa以下になり、3枚以上になると、1000MPa前後で飽和して最小になる。従って、単位積層体の積層枚数を3枚以上にすることで、引張の最大主応力、すなわちパンチの底面に欠けが発生するリスクを最小化することができる。 To this end, we used the finite element method model explained above to calculate the maximum principal tensile stress generated on the surface of the punch when the number of unit laminates was changed. The results are shown in FIG. The maximum principal tensile stress occurs on the bottom surface of the punch (the surface that opposes the amorphous metal foil), and when the number of unit laminates is two or more, the tensile stress of the ultrafine particle alloy, which has the highest strength as a punch material, increases. When the strength becomes less than 1900 MPa and there are three or more sheets, it saturates and becomes the minimum at around 1000 MPa. Therefore, by setting the number of layers in the unit laminate to three or more, it is possible to minimize the maximum principal tensile stress, that is, the risk of chipping on the bottom surface of the punch.
 単位積層体を3枚以上にすると引張りの最大主応力が減少する理由は、以下のように考えられる。単位積層体の枚数を1枚から例えば4枚に増やすことで打抜き加工時のアモルファス金属薄板9のたわみ量δが減少する。図7Aはアモルファス金属箔が1枚の場合、図7Bは、アモルファス金属箔を4枚積層した場合を示す。図7Aの場合のたわみ量δと図7Bのたわみ量δとを比較すると、図7Bのたわみ量δが少ない。これによって、アモルファス金属薄板9とパンチ12の底面が水平に近づき、同方向の分力が一旦小さくなる。その後、アモルファス金属箔のたわみ量はほぼ一定になり、引張の最大主応力が最小に収束する。 The reason why the maximum principal tensile stress decreases when the number of unit laminates is three or more is thought to be as follows. By increasing the number of unit laminates from one to, for example, four, the amount of deflection δ of the amorphous metal thin plate 9 during punching is reduced. FIG. 7A shows a case in which one amorphous metal foil is used, and FIG. 7B shows a case in which four amorphous metal foils are laminated. When the amount of deflection δ in the case of FIG. 7A is compared with the amount δ of deflection in FIG. 7B, the amount of deflection δ in FIG. 7B is smaller. As a result, the amorphous metal thin plate 9 and the bottom surfaces of the punch 12 become close to horizontal, and the component force in the same direction becomes smaller once. After that, the amount of deflection of the amorphous metal foil becomes approximately constant, and the maximum principal tensile stress converges to the minimum.
 一方、単位積層体の枚数を変化させた時にパンチの表面に生じる相当応力の解析結果を図8に示している。相当応力は、パンチの底面(アモルファス金属箔と対抗する面)に圧縮の応力として発生し、積層枚数の増加に伴って増加する。ここで、パンチの素材として最も高強度な超微粒子合金を使用する場合において、圧縮による破壊を防止するには、相当応力が超微粒子合金の圧縮強さ6500MPa以下となるようにしなければならない。図8に示すように、この条件を満たすには、単位積層体の積層枚数は5枚以下とする必要がある。 On the other hand, FIG. 8 shows the analysis results of the equivalent stress generated on the surface of the punch when the number of unit laminates is changed. The equivalent stress occurs as a compressive stress on the bottom surface of the punch (the surface facing the amorphous metal foil), and increases as the number of laminated sheets increases. Here, when using the highest strength ultrafine particle alloy as the material for the punch, in order to prevent fracture due to compression, the equivalent stress must be set to less than 6500 MPa, which is the compressive strength of the ultrafine particle alloy. As shown in FIG. 8, in order to satisfy this condition, the number of layers in the unit laminate needs to be 5 or less.
 これらの検討結果から、パンチの破損(欠け)の発生のリスクを最小化し、圧縮による破壊を防止できる単位積層体の積層枚数は3枚~5枚のいずれかの枚数にすれば良いことがわかる。 From these study results, it is clear that the number of layers in the unit laminate should be between 3 and 5 to minimize the risk of punch breakage (chipping) and prevent damage due to compression. .
 以下、上述した「発明に関する技術的考察」に基づく具体的な本発明の実施例について説明する。 Hereinafter, specific embodiments of the present invention will be described based on the above-mentioned "technical considerations regarding the invention."
 [実施例1]
 まず、本発明の実施例1について説明する。この実施例1は、積層鉄心を製造する積層鉄心製造システムである。そして、図9には、実施例1の主要部の構成を示している。すなわち、積層鉄心製造には、金型を使用してアモルファス金属薄板を打抜いて所定の形状加工を行う工程と、形状加工後の積層アモルファス金属薄板を所定量(鉄心に必要な枚数)使用して積層鉄心を製造する工程とがあるが、図9はその内のアモルファス金属薄板を打抜いて所定の形状加工を行う工程のシステムを示している。
[Example 1]
First, Example 1 of the present invention will be described. Embodiment 1 is a laminated core manufacturing system for manufacturing a laminated core. FIG. 9 shows the configuration of the main parts of the first embodiment. In other words, manufacturing a laminated iron core involves the process of punching out an amorphous metal thin plate using a mold and processing it into a predetermined shape, and the process of using a predetermined amount (the number of laminated amorphous metal sheets required for the core) after the shape processing. FIG. 9 shows a system for punching out an amorphous metal thin plate and processing it into a predetermined shape.
 図9において、1A~1Cはアモルファス金属薄板を巻いたアモルファス金属薄板コイル(以下、単にコイルという。)である。コイル1A~1Cに巻かれたアモルファス金属薄板(コイル材)は、搬送ロール3A~3Cにより長尺帯状材として繰出される。この繰出されたアモルファス金属薄板2A~2Cは、積層接着部20に供給される。なお、図の矢印は、材料(アモルファス金属薄膜)の移動方向(搬送方向)を示している。 In FIG. 9, 1A to 1C are amorphous metal thin plate coils (hereinafter simply referred to as coils) wound with amorphous metal thin plates. The amorphous metal thin plate (coil material) wound around the coils 1A to 1C is fed out as a long strip material by conveyor rolls 3A to 3C. The fed-out amorphous metal thin plates 2A to 2C are supplied to the laminated adhesive section 20. Note that the arrow in the figure indicates the direction of movement (transportation direction) of the material (amorphous metal thin film).
 積層接着部20は、複数枚のアモルファス金属薄板に接着剤を塗布し、それらを積層して接着するものである。なお、接着剤には、耐熱性の絶縁材料を使用する。この積層されたアモルファス金属薄板のことを、以下「積層アモルファス金属薄板」と称する。なお、上述したように、積層アモルファス金属薄板21の積層枚数は、3枚~5枚のうちのいずれかの枚数にすると、打抜き加工のショット数を少なくして生産性が高まるとともに、金型の摩耗量を減少させ、価値金型の破損リスクを低減するので好ましい。この図の例では、3枚のアモルファス金属薄板を積層する例を示している。長尺帯状の積層アモルファス金属薄板21は、プレス機械30に搬送される。 The lamination bonding section 20 applies an adhesive to a plurality of amorphous metal thin plates, and laminates and adheres them. Note that a heat-resistant insulating material is used for the adhesive. This laminated amorphous metal thin plate is hereinafter referred to as a "laminated amorphous metal thin plate." As mentioned above, if the number of laminated amorphous metal thin plates 21 is between 3 and 5, the number of shots in the punching process will be reduced, productivity will increase, and the mold size will be reduced. This is preferable because it reduces the amount of wear and reduces the risk of damage to the mold. This figure shows an example in which three amorphous metal thin plates are laminated. The long strip-shaped laminated amorphous metal thin plate 21 is conveyed to a press machine 30.
 図10に、アモルファス金属薄板の状態を示す。図10の(a)は、搬送ロール3A~3Cにより繰出された(巻き出された)アモルファス金属薄板2A~2Cの断面形状を示す。図10の(b)は、積層接着部20により積層された積層アモルファス金属薄板21の断面形状を示す。図10から明らかなように、3枚のアモルファス金属薄板を積層する場合、表面粗さが上下で同じになるように重ねて積層する。つまり、1枚目のアモルファス金属薄板の表面粗さが小さい面S2を上側にする場合、積層する他のアモルファス金属薄板も表面粗さが小さい面S2を上側にして積層する。打抜きに際しては、このように積層された積層アモルファス金属薄薄板21を、プレス機械30の金型(パンチ)で打抜く。 Figure 10 shows the state of the amorphous metal thin plate. FIG. 10(a) shows the cross-sectional shape of the amorphous metal thin plates 2A to 2C fed out (unwound) by the transport rolls 3A to 3C. FIG. 10(b) shows a cross-sectional shape of the laminated amorphous metal thin plates 21 laminated by the laminated adhesive portion 20. As shown in FIG. As is clear from FIG. 10, when three amorphous metal thin plates are stacked, they are stacked so that the surface roughness is the same on the top and bottom. That is, when the first amorphous metal thin plate has the surface S2 with the smaller surface roughness on the upper side, the other amorphous metal thin plates to be stacked are also stacked with the surface S2 with the smaller surface roughness on the upper side. At the time of punching, the laminated amorphous metal thin sheets 21 thus laminated are punched with a die (punch) of a press machine 30.
 ここで、図9の実施例では、コイル1A~1Cから長尺帯状のアモルファス金属薄板を繰出す際に、アモルファス金属薄板2A~2Cの表面の粗さが同じ面になるように配置して積層接着部20に供給する。それにより、積層接着部20において接着・積層を行う際に表面を揃える必要がない。すなわち、コイル1A~1Cとして巻かれているアモルファス金属薄板の表面側(上面)を同じ表面粗さが小さい面S2になるようにしている。そのため、積層接着部20では3枚のアモルファス金属薄板2A~2Cに接着剤を塗布しそのまま積層・接着すれば良い。積層された積層アモルファス金属薄板21の上面は表面粗さが少ない面S2になっており、長尺帯状の積層アモルファス金属薄板21はそのままプレス機械30に搬送される。プレス機械30は、搬送された積層アモルファス金属薄板21を、そのまま打抜くことができる。 Here, in the embodiment shown in FIG. 9, when the long belt-shaped amorphous metal thin plates are fed out from the coils 1A to 1C, the amorphous metal thin plates 2A to 2C are arranged and laminated so that the surface roughness is the same. It is supplied to the adhesive section 20. Thereby, there is no need to align the surfaces when performing adhesion and lamination in the lamination adhesive section 20. That is, the surface side (upper surface) of the amorphous metal thin plate wound as the coils 1A to 1C is made to have the same surface roughness as the surface S2 with lower surface roughness. Therefore, in the lamination bonding section 20, it is sufficient to apply an adhesive to the three amorphous metal thin plates 2A to 2C and then laminate and bond them as they are. The upper surface of the stacked laminated amorphous metal thin plates 21 is a surface S2 with less surface roughness, and the long strip-shaped laminated amorphous metal thin plates 21 are conveyed as they are to the press machine 30. The press machine 30 can punch out the transported laminated amorphous metal thin plate 21 as it is.
 プレス機械30は、複数枚積層(この例では3枚積層)された積層アモルファス金属薄板21を、所定の形状に打抜くものである。プレス機械30には、上下動可能なスライドに上金型(パンチ)を装着している。上金型を装着したスライドは、スライド駆動機構(クランク機構、クランク機構を駆動するモータなど)によりスライドガイドに沿って上下動する。それによりパンチが上下動し、プレス機械内に搬送された積層アモルファス金属箔21を打抜くことができる。なお、この図では、スライド、スライド駆動機構、スライドガイド、などのプレス構造及び説明は省略した。また、金型を構成する上金型(パンチ)および下金型(ダイ)の詳細な構造およびその動作説明も省略する。ここで、打抜き工程は複数回の打抜き加工を行うのが一般的である。そのため、複数回の打抜き加工を効率的に行うことに適したプレス機械を使用するのが好ましい。この実施例に使用するプレス機械30としては、トランスファープレス機械などの順送加工に適したプレス機械を用いる。あるいは、1台のプレス機械を加工搬送方向に複数台配置したタンデム型プレス機械を使用する。 The press machine 30 punches a plurality of laminated amorphous metal thin plates 21 (three laminated in this example) into a predetermined shape. The press machine 30 has an upper mold (punch) mounted on a slide that can move up and down. The slide with the upper mold attached moves up and down along a slide guide by a slide drive mechanism (a crank mechanism, a motor that drives the crank mechanism, etc.). As a result, the punch moves up and down, and the laminated amorphous metal foil 21 transported into the press machine can be punched out. In addition, in this figure, the press structure and explanations such as the slide, slide drive mechanism, slide guide, etc. are omitted. Further, detailed structure and operation description of the upper mold (punch) and lower mold (die) constituting the mold will also be omitted. Here, the punching process is generally performed multiple times. Therefore, it is preferable to use a press machine that is suitable for efficiently performing punching operations multiple times. As the press machine 30 used in this embodiment, a press machine suitable for progressive processing, such as a transfer press machine, is used. Alternatively, a tandem press machine in which a plurality of press machines are arranged in the processing and conveying direction is used.
 プレス機械30の金型31,32は、上金型(パンチ)と下金型(ダイ)で構成されており、上金型がスライドに取付けられる。スライドの下降時に、上金型のパンチにより材料を所定形状に打抜く。なお、このプレス機械30では、2つの金型31,32を配備した構成を示しているが、加工の内容により必要に応じて3台以上の金型を配備すれば良い。 The molds 31 and 32 of the press machine 30 are composed of an upper mold (punch) and a lower mold (die), and the upper mold is attached to a slide. When the slide descends, the material is punched into a predetermined shape by the punch in the upper die. Although this press machine 30 has a configuration in which two molds 31 and 32 are provided, three or more molds may be provided as necessary depending on the content of processing.
 プレス機械30により打抜き加工が行われ、所定形状に加工された積層アモルファス金属薄板は、図示しない搬送装置により、プレス機械30の外部に搬出される。この打抜き後の積層アモルファス金属薄板は、積層鉄心の組立工程において、積層鉄心の単位積層体として使用される。そのため、ここでは打抜き後の積層アモルファス金属薄板を「単位積層体」と称する。 The laminated amorphous metal thin plate that has been punched into a predetermined shape by the press machine 30 is carried out of the press machine 30 by a transport device (not shown). This laminated amorphous metal thin plate after punching is used as a unit laminate of the laminated core in an assembly process of the laminated core. Therefore, the laminated amorphous metal thin plate after punching is referred to as a "unit laminate" herein.
 このようにして打抜き加工が行われた単位積層体40は、表面粗さが少ない面S2の端部にダレが発生し、反対側(表面粗さが大きい側の面)にはバリが発生する。すなわち、表面粗さが少ない面S2からパンチで打抜く際に、パンチの先端が材料の上面S2を押しつけて材料を押し込み、最初にR部を有するダレが発生する。更にパンチを下降させることにより曲げに耐えられなくなりパンチが材料にのめりこみ材料が切断される。そして、パンチを押し切る際に、材料が塑性変形し突起状のバリが発生する。なお、バリは、鋭利なので怪我を負うリスクがあること、バリがあることで組立て寸法精度が悪化し製品性能に悪影響を与えるリスクがあること、などの理由により、組立工程の前に除去されるのが一般的である。 In the unit laminate 40 that has been punched in this manner, sagging occurs at the end of the surface S2 with less surface roughness, and burrs occur on the opposite side (the surface with greater surface roughness). . That is, when punching is performed from the surface S2 with less surface roughness, the tip of the punch presses against the upper surface S2 of the material, pushing the material in, and sag with an R portion initially occurs. When the punch is further lowered, the punch cannot withstand the bending, and the punch sinks into the material, cutting the material. Then, when the punch is pushed through, the material is plastically deformed and a protruding burr is generated. Please note that burrs are removed before the assembly process for several reasons, including the risk of injury due to their sharpness, and the risk of worsening assembly dimensional accuracy and adversely affecting product performance. is common.
 次に、形状加工後の単位積層体として形成された単位積層体40は、積層鉄心の組立工程において、積層鉄心の製造に使用される。この組立工程では、単位積層体40を所定量(鉄心に必要な枚数)積重ねて固着して、積層鉄心が製造される。なお、組立工程に関する詳細な説明は省略する。 Next, the unit laminate 40 formed as a unit laminate after shape processing is used for manufacturing a laminated core in an assembly process of the laminated core. In this assembly process, a predetermined amount of unit laminates 40 (the number required for the core) are stacked and fixed together to produce a laminated core. Note that detailed explanation regarding the assembly process will be omitted.
 このような製造システムを使用することにより、変圧器用の鉄心や回転電機のステータの鉄心など、電気機器に使用する積層鉄心を効率よく生産することができる。 By using such a manufacturing system, it is possible to efficiently produce laminated cores used in electrical equipment, such as cores for transformers and stators of rotating electric machines.
 以上説明したように、本発明の実施例1に示す積層鉄心製造システムでは、プレス機械による打抜き加工に使用する金型の消耗を低減して長寿命化を図り、かつ生産性を向上させることができる。さらに、打抜き加工前に形成する積層アモルファス金属薄板の積層枚数を金型の破損リスクのない積層枚数としているので、金型の消耗が少なく、金型の破損リスクが少なく、生産性の高い最適な積層鉄心の製造方法を実現することができる。 As explained above, in the laminated core manufacturing system shown in Example 1 of the present invention, it is possible to reduce the wear and tear of the mold used for punching with a press machine, to extend the life of the mold, and to improve productivity. can. Furthermore, the number of layers of laminated amorphous metal thin sheets formed before punching is set to a number that does not cause the risk of mold breakage, so there is less wear and tear on the mold, there is less risk of mold damage, and the optimum number of sheets is achieved with high productivity. A method for manufacturing a laminated iron core can be realized.
 [実施例2]
 次に、本発明の実施例2について、図11を用いて説明する。実施例2は、実施例1で説明したような方法により打抜かれた単位積層体40を使用して製造される回転電機のステータを示す。この例では、積層アモルファス金属薄板21の積層枚数を4枚積層して打抜き加工した単位積層体40を使用する例を示す。なお、この積層枚数は、上述したように、3枚~5枚のいずれかの枚数にするのが好ましい。
[Example 2]
Next, Example 2 of the present invention will be described using FIG. 11. Example 2 shows a stator for a rotating electrical machine manufactured using the unit laminate 40 punched by the method described in Example 1. In this example, a unit laminate 40 is used in which four laminated amorphous metal thin plates 21 are laminated and punched. Note that, as described above, the number of laminated sheets is preferably 3 to 5.
 図11において、ステータ50は、積層鉄心51(コア)のスロット52にコイル(図示省略)を巻くことにより完成する。積層鉄心51は、図11の右側に一部を吹出しにより拡大して示しているように、ステータ用の形状に打抜かれた単位積層体40を必要数だけ積み重ねて、これらを接着することにより組立てられる。この単位積層体40の外周端部には、粗さが小さい面側から打抜き加工しているので、表面粗さが小さい面側(図では上側)にダレ41が形成されている。 In FIG. 11, the stator 50 is completed by winding a coil (not shown) around a slot 52 of a laminated iron core 51 (core). The laminated core 51 is assembled by stacking the required number of unit laminates 40 punched into the shape for the stator and gluing them together, as shown partially enlarged on the right side of FIG. It will be done. Since the outer circumferential end of this unit laminate 40 is punched from the side with less roughness, a sag 41 is formed on the side with less surface roughness (upper side in the figure).
 以上説明した本発明の実施例2によれば、表面粗さが小さい側の面から打抜き加工した積層アモルファス金属薄板をステータ用の形状に打抜いた単位積層体40を使用して製造されることから、金型の消耗が少なく、金型の破損リスクが少なく、生産性の高い最適なステータの製造を実現することができる。 According to the second embodiment of the present invention described above, the unit laminate 40 is manufactured by punching a laminated amorphous metal thin plate into a shape for a stator, which is punched from the side with the smaller surface roughness. Therefore, it is possible to manufacture an optimal stator with high productivity, with less wear and tear on the mold and less risk of damage to the mold.
 なお、実施例2では、回転電機のステータについて説明したが、ロータを製造することでも良い。また、実施例2と同様の方法で、変圧器用の鉄心を製造することができる。この場合、当然のことであるが、プレス機械で打抜き加工される単位積層体40の形状は、変圧器の積層鉄心用の形状に打抜くことになる。単位積層体40を必要な量だけ積層し接着することにより変圧器の積層鉄心の製造ができる。 In addition, in Example 2, the stator of a rotating electrical machine was explained, but a rotor may also be manufactured. Further, an iron core for a transformer can be manufactured by the same method as in Example 2. In this case, as a matter of course, the shape of the unit laminate 40 to be punched out using a press machine will be the shape for a laminated core of a transformer. A laminated core for a transformer can be manufactured by laminating and bonding a required amount of unit laminates 40.
 [実施例3]
 次に、本発明の実施例3について、図12および図13を用いて説明する。実施例3は、実施例2で説明した積層鉄心51を用いて回転電機(モータ)を製造したものである。図12は回転電機全体の概略構成を、図13はステータの部分を示している。
[Example 3]
Next, Example 3 of the present invention will be described using FIGS. 12 and 13. In Example 3, a rotating electrical machine (motor) was manufactured using the laminated core 51 described in Example 2. FIG. 12 shows a schematic configuration of the entire rotating electrical machine, and FIG. 13 shows the stator portion.
 図12および図13において、モータ100は、回転軸70の周りに取付けられるロータ60と、そのロータの外周に取付けられるステータ50とを有する。電線80から電力を供給することにより、ステータとロータの電磁気的作用によりロータ60が回転する。ステータ50は、上述した実施例2で製造したステータ50を使用する。ステータ50は、図13に示すように、単位積層体40を積層して形成された積層鉄心51のスロット52にコイル53を巻くことで完成する。 In FIGS. 12 and 13, the motor 100 has a rotor 60 attached around a rotating shaft 70 and a stator 50 attached to the outer periphery of the rotor. By supplying electric power from the electric wire 80, the rotor 60 rotates due to electromagnetic action between the stator and the rotor. As the stator 50, the stator 50 manufactured in Example 2 described above is used. As shown in FIG. 13, the stator 50 is completed by winding a coil 53 around a slot 52 of a laminated core 51 formed by laminating the unit laminates 40.
 以上説明した本発明の実施例3によれば、表面粗さが小さい側の面から打抜き加工した積層アモルファス金属薄板をステータ用に打抜いた単位積層体40を使用して製造されることから、金型の消耗が少なく、金型の破損リスクが少なく、生産性の高いステータを用いて回転電機を製造することができる。 According to the third embodiment of the present invention described above, since the unit laminate 40 is manufactured by punching out a laminated amorphous metal thin plate for the stator from the side with the smaller surface roughness, A rotating electric machine can be manufactured using a stator that consumes less mold, has less risk of mold breakage, and has high productivity.
 1…帯状アモルファス金属薄板、9…アモルファス金属薄板、12…パンチ、13…ダイ、1A~1C…コイル、2A~2C…アモルファス金属薄板、3A~3C…搬送ロール、20…積層接着部、21…積層アモルファス金属薄板、30…プレス機械、31,32…金型、40…単位積層体、41…ダレ、50…ステータ、51…積層鉄心、52…スロット、53…コイル、60…ロータ、70…回転軸、80…電線、100…モータ DESCRIPTION OF SYMBOLS 1... Strip-shaped amorphous metal thin plate, 9... Amorphous metal thin plate, 12... Punch, 13... Die, 1A to 1C... Coil, 2A to 2C... Amorphous metal thin plate, 3A to 3C... Conveyance roll, 20... Laminated adhesive part, 21... Laminated amorphous metal thin plate, 30... Press machine, 31, 32... Mold, 40... Unit laminate, 41... Sagging, 50... Stator, 51... Laminated core, 52... Slot, 53... Coil, 60... Rotor, 70... Rotating shaft, 80...Electric wire, 100...Motor

Claims (10)

  1.  金型によりアモルファス金属薄板を打抜いて所定の形状加工を行い、形状加工後の前記アモルファス金属薄板を所定量使用して積層鉄心を製造する積層鉄心の製造方法であって、
     前記形状加工においては、前記アモルファス金属薄板を複数枚積層して積層アモルファス金属薄板を形成する工程と、前記積層アモルファス金属薄板の表面さが少ない面を加工側に配置させてから前記金型による打抜きを行う工程と、を含んでいる積層鉄心の製造方法。
    A method for manufacturing a laminated iron core, comprising punching an amorphous metal thin plate using a mold and processing it into a predetermined shape, and manufacturing a laminated iron core by using a predetermined amount of the amorphous metal thin plate after the shape processing, the method comprising:
    The shape processing includes a step of laminating a plurality of the amorphous metal thin plates to form a laminated amorphous metal thin plate, and a step of arranging the surface of the laminated amorphous metal thin plate on the processing side, and then punching with the die. A method for manufacturing a laminated iron core comprising:
  2.  請求項1に記載された積層鉄心の製造方法において、
    前記積層アモルファス金属薄板の積層枚数は、3~5枚のいずれかの枚数であることを特徴とする積層鉄心の製造方法。
    In the method for manufacturing a laminated iron core according to claim 1,
    A method for manufacturing a laminated iron core, characterized in that the number of laminated amorphous metal thin plates is between 3 and 5.
  3.  請求項1に記載された積層鉄心の製造方法において、
    前記アモルファス金属薄板は、長尺帯状材であることを特徴とする積層鉄心の製造方法。
    In the method for manufacturing a laminated iron core according to claim 1,
    A method for manufacturing a laminated iron core, wherein the amorphous metal thin plate is a long strip material.
  4.  請求項1に記載された積層鉄心の製造方法において、前記積層鉄心は、回転電機のステータ用の鉄心であることを特徴とする積層鉄心の製造方法。 The method for manufacturing a laminated iron core according to claim 1, wherein the laminated iron core is an iron core for a stator of a rotating electric machine.
  5.  電気機器に使用する積層鉄心であって、
     前記積層鉄心は、複数枚のアモルファス金属薄板を積層して表面粗さが小さい面にダレが生じるように打抜かれた単位積層体を、所定量使用して形成されている積層鉄心。
    A laminated iron core used in electrical equipment,
    The laminated core is formed by using a predetermined amount of unit laminates that are formed by laminating a plurality of amorphous metal thin plates and punching them so that sag occurs on the surface with small surface roughness.
  6.  請求項5に記載された積層鉄心において、
    前記単位積層体の積層枚数は3~5枚のうちのいずれかの枚数であることを特徴とする積層鉄心。
    In the laminated core according to claim 5,
    A laminated core characterized in that the number of laminated layers of the unit laminated body is any one of 3 to 5.
  7.  請求項5に記載された積層鉄心において、
    前記積層鉄心は、回転電機に使用する鉄心であることを特徴とする積層鉄心。
    In the laminated core according to claim 5,
    The laminated iron core is characterized in that the laminated iron core is an iron core used in a rotating electric machine.
  8.  請求項5に記載された積層鉄心において、
    前記積層鉄心は、変圧器に使用する鉄心であることを特徴とする積層鉄心。
    In the laminated core according to claim 5,
    The laminated iron core is characterized in that the laminated iron core is an iron core used in a transformer.
  9.  積層鉄心を使用した回転電機であって、
     前記積層鉄心は、表面粗さが小さい面にダレが生じるように打抜かれた複数枚のアモルファス金属薄板で形成された単位積層体を、必要枚数使用して形成されている回転電機。
    A rotating electric machine using a laminated iron core,
    The laminated core is a rotating electric machine in which the laminated core is formed by using a required number of unit laminates each made of a plurality of amorphous metal thin plates that are punched so that sag occurs on the surface with small surface roughness.
  10.  請求項9に記載された回転電機において、
    前記単位積層体の積層枚数は3~5枚のうちのいずれかの枚数であることを特徴とする回転電機。
    The rotating electric machine according to claim 9,
    A rotating electric machine characterized in that the number of laminated layers of the unit laminate is any one of 3 to 5.
PCT/JP2023/010242 2022-06-10 2023-03-16 Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core WO2023238472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022094761A JP2023181024A (en) 2022-06-10 2022-06-10 Manufacturing method for laminated core, laminated core, and rotating electric machine using laminated core
JP2022-094761 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238472A1 true WO2023238472A1 (en) 2023-12-14

Family

ID=89117933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010242 WO2023238472A1 (en) 2022-06-10 2023-03-16 Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core

Country Status (2)

Country Link
JP (1) JP2023181024A (en)
WO (1) WO2023238472A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642413B2 (en) * 1988-03-11 1994-06-01 日本鋼管株式会社 Magnetic steel sheet for laminated iron core and laminated iron core
JPH07106115A (en) * 1993-09-30 1995-04-21 Toshiba Corp Laminated magnetic core
JP2001057306A (en) * 1999-08-17 2001-02-27 Toshiba Corp Magnetic-alloy thin band punched by press, laminated core, and manufacture thereof
JP2005229793A (en) * 2004-01-13 2005-08-25 Seiko Epson Corp Method for manufacturing magnetic core, magnetic core, electromagnetic converter, clock, and electronic equipment
JP2013511617A (en) * 2009-11-19 2013-04-04 イドロ−ケベック System and method for processing amorphous alloy ribbons
JP6587800B2 (en) * 2014-12-26 2019-10-09 Jfeスチール株式会社 Manufacturing method of laminated iron core
JP2021153107A (en) * 2020-03-24 2021-09-30 Tdk株式会社 Alloy thin strip and magnetic core
JP2021175240A (en) * 2020-04-22 2021-11-01 パナソニックIpマネジメント株式会社 Manufacturing method of iron core, iron core, and stator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642413B2 (en) * 1988-03-11 1994-06-01 日本鋼管株式会社 Magnetic steel sheet for laminated iron core and laminated iron core
JPH07106115A (en) * 1993-09-30 1995-04-21 Toshiba Corp Laminated magnetic core
JP2001057306A (en) * 1999-08-17 2001-02-27 Toshiba Corp Magnetic-alloy thin band punched by press, laminated core, and manufacture thereof
JP2005229793A (en) * 2004-01-13 2005-08-25 Seiko Epson Corp Method for manufacturing magnetic core, magnetic core, electromagnetic converter, clock, and electronic equipment
JP2013511617A (en) * 2009-11-19 2013-04-04 イドロ−ケベック System and method for processing amorphous alloy ribbons
JP6587800B2 (en) * 2014-12-26 2019-10-09 Jfeスチール株式会社 Manufacturing method of laminated iron core
JP2021153107A (en) * 2020-03-24 2021-09-30 Tdk株式会社 Alloy thin strip and magnetic core
JP2021175240A (en) * 2020-04-22 2021-11-01 パナソニックIpマネジメント株式会社 Manufacturing method of iron core, iron core, and stator

Also Published As

Publication number Publication date
JP2023181024A (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US10898939B2 (en) Punch processing method for laminated iron core and method for manufacturing laminated iron core
US20180001369A1 (en) Punching method, punching device, and method for manufacturing laminated iron core (as amended)
JP6934886B2 (en) Process for punching metal parts
WO2019064630A1 (en) Radial-gap-type rotary electric machine, and production device and production method for same
CN109643602B (en) Laminated member, method for manufacturing same, laminated body, and motor
CN107046335A (en) The layered product and motor of magnetic sheet
JP4008170B2 (en) Iron core manufacturing method and apparatus suitable for the method
CN110138156B (en) Method for manufacturing scattered sheet motor iron core by using waste sheet self-buckling mode
JP6477550B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
TWI645958B (en) Blanking processing method of electromagnetic steel plate and manufacturing method of laminated core
WO2023238472A1 (en) Laminated iron core production method, laminated iron core, and rotating electrical machine using laminated iron core
JPH09215279A (en) Manufacture for laminated iron core with amorphous alloy foil sheet line
CN109672305B (en) Method for manufacturing laminated iron core
JP5940308B2 (en) Manufacturing method of motor core
JP5735880B2 (en) Iron core manufacturing equipment
US11715999B2 (en) Method of making a laminated stator of an axial flux motor
JP3842146B2 (en) Manufacturing method of laminated iron core
WO2024116815A1 (en) Method for manufacturing amorphous metal alloy article
US20230068234A1 (en) Method for manufacturing ribbon piece
JP2021118566A (en) Manufacturing method for laminate core of electric machine and manufacturing method for electric machine
JP2838083B1 (en) Manufacturing method of iron core for cylindrical coil
JP2021114868A (en) Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine
JP2021090231A (en) Laminated iron core of electric machine and electric machine
JP2023147807A (en) Manufacturing device, manufacturing method, and shear processing machine
JP2017047465A (en) Laminated core manufacturing apparatus and laminated core manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819459

Country of ref document: EP

Kind code of ref document: A1