JP5735880B2 - Iron core manufacturing equipment - Google Patents

Iron core manufacturing equipment Download PDF

Info

Publication number
JP5735880B2
JP5735880B2 JP2011168638A JP2011168638A JP5735880B2 JP 5735880 B2 JP5735880 B2 JP 5735880B2 JP 2011168638 A JP2011168638 A JP 2011168638A JP 2011168638 A JP2011168638 A JP 2011168638A JP 5735880 B2 JP5735880 B2 JP 5735880B2
Authority
JP
Japan
Prior art keywords
iron core
core material
thin plate
arc
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011168638A
Other languages
Japanese (ja)
Other versions
JP2013034294A (en
Inventor
尚規 山本
尚規 山本
正史 斉藤
正史 斉藤
健 原田
健 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011168638A priority Critical patent/JP5735880B2/en
Publication of JP2013034294A publication Critical patent/JP2013034294A/en
Application granted granted Critical
Publication of JP5735880B2 publication Critical patent/JP5735880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、各層が単一又は複数の薄板部材からなる積層鉄心を製造する鉄心製造方法及び装置に関する。   The present invention relates to an iron core manufacturing method and apparatus for manufacturing a laminated core in which each layer is composed of a single or a plurality of thin plate members.

従来、電磁鋼板をプレス加工等して得られる円環状の薄板部材を、数十枚から数百枚積層した積層鉄心からなるモータコアが知られている。薄板部材の厚さは0.15〜0.5mm程度であり、薄いほどエネルギー効率が良好であるとされている。更に、歩留まりを改善するために、円環状の薄板部材を、複数の円弧状の薄板部材により構成するようにしたものも知られている。   2. Description of the Related Art Conventionally, a motor core made of a laminated iron core in which several tens to several hundreds of annular thin plate members obtained by pressing an electromagnetic steel plate is known. The thickness of the thin plate member is about 0.15 to 0.5 mm, and the thinner the plate member, the better the energy efficiency. Furthermore, in order to improve the yield, an annular thin plate member is constituted by a plurality of arc-shaped thin plate members.

例えば、特許文献1には、円弧状の複数の薄板セグメントにより1枚の円環状の薄板部材を構成し、これを多数積層して結合させることにより成層鉄心を製造する装置が記載されている。円弧状の薄板セグメントの中心角は360°/nであり、n枚の薄板セグメントにより1枚の円環状の薄板部材が構成される。隣接する各層の円環状の薄板部材は、それらを構成する各円弧状の薄板セグメントが、れんが積みのようにずれて重なるように、ずらして積層される。   For example, Patent Document 1 describes an apparatus for manufacturing a laminated iron core by forming a single annular thin plate member by a plurality of arc-shaped thin plate segments and laminating and bonding a large number of them. The central angle of the arc-shaped thin plate segment is 360 ° / n, and one thin thin plate member is constituted by n thin plate segments. The annular thin plate members of the adjacent layers are laminated so that the respective arc-shaped thin plate segments constituting them are shifted and overlapped like bricks.

この装置においては、薄板セグメントはプレス機で母型内に打ち抜かれる。上述のnが3であるとすれば、打抜かれた薄板セグメントは、母型の回転により、周方向に120°回転される。そして、次の薄板セグメントが打ち抜かれる。打ち抜かれた薄板セグメントは、隣接する他の薄板セグメントと互いに結合される。このようにして3枚の薄板セグメントにより1枚の円環状の薄板部材が構成されると、母型が60°回転された後、その薄板部材の上に、次の層の円環状の薄板部材が同様にして構成される。   In this apparatus, the thin plate segment is punched into a mother die by a press machine. If the above-mentioned n is 3, the punched thin plate segment is rotated 120 ° in the circumferential direction by the rotation of the mother die. Then, the next thin plate segment is punched out. The punched sheet segments are joined together with other adjacent sheet segments. Thus, when one annular thin plate member is constituted by the three thin plate segments, after the master mold is rotated by 60 °, the annular thin plate member of the next layer is formed on the thin plate member. Is configured in the same manner.

これによれば、薄板セグメントの打抜き及び薄板部材の積層が、母型を回転する機構により行われるので、成層鉄心の製造装置をコンパクトに構成することができる。   According to this, since the punching of the thin plate segments and the lamination of the thin plate members are performed by the mechanism that rotates the mother die, the manufacturing apparatus for the stratified core can be configured in a compact manner.

特許第3634801号公報Japanese Patent No. 3634801

上記のような成層鉄心の製造工程では、製造効率の点から作業を高速化することが望まれる。そのため、打抜き工程を高速化することは容易である。これに対し、上記特許文献1に開示された製造装置の場合、薄板セグメントの打抜きと積層が1つの装置で行われるので、打抜き作業の速度も積層作業の速度に合わせなければならない。   In the manufacturing process of the laminated core as described above, it is desired to speed up the operation from the viewpoint of manufacturing efficiency. Therefore, it is easy to speed up the punching process. On the other hand, in the case of the manufacturing apparatus disclosed in Patent Document 1, punching and stacking of the thin plate segments are performed by one apparatus, and therefore the punching operation speed must be matched to the stacking operation speed.

しかしながら、打抜き工程で薄板セグメントを打抜く速度(一定時間で打抜くセグメントの数)に対して、積層工程で薄板セグメントを積層していく速度(一定時間で積層するセグメントの数)は半分程度しか達成できない。そのため、打抜きと積層を高速化して製造効率を向上させるのは難しいという問題点があった。   However, the speed of laminating thin sheet segments in the lamination process (number of segments laminated in a fixed time) is only about half of the speed of punching thin sheet segments in the punching process (number of segments punched in a fixed time). Cannot be achieved. For this reason, it is difficult to increase the manufacturing efficiency by speeding up the punching and stacking.

本発明は、かかる従来技術の問題点に鑑み、積層工程の速度に制約されずに製造効率を向上させることができる積層鉄心の製造方法及び装置を提供することを目的とする。   An object of this invention is to provide the manufacturing method and apparatus of a laminated core which can improve manufacturing efficiency, without being restrict | limited to the speed of a lamination process in view of the problem of this prior art.

本発明の製造方法は、各層が単一又は複数の薄板部材からなる積層鉄心を製造する鉄心製造方法であって、帯状の鉄心材における複数の加工対象部分を、第1位置及び第2位置に順次移送する移送工程と、前記第1位置で各加工対象部分において所定の加工を施すことにより、前記薄板部材を形成して前記鉄心材へ押し戻す形成工程と、前記鉄心材に押し戻された薄板部材を前記第2位置で押下して該鉄心材から分離させ、分離された薄板部材を積層する積層工程とを備え、前記積層工程は、前記第2位置が前記鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われ、前記移送工程は、前記形成工程で前記薄板部材を形成する速さに合わせて前記鉄心材を前記第1位置に移送する第1段階、及び前記積層工程で前記薄板部材を積層する速さに合わせて前記鉄心材を前記第2位置に移送する第2段階からなり、前記第2段階の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1段階の前記鉄心材の送り量よりも多く設定されていることを特徴とする。 The manufacturing method of the present invention is an iron core manufacturing method for manufacturing a laminated iron core in which each layer is composed of a single or a plurality of thin plate members, and a plurality of processing target portions in a belt-shaped iron core material are arranged at a first position and a second position. A transfer step of sequentially transferring, a forming step of forming the thin plate member and pushing it back to the iron core material by performing predetermined processing at each processing target portion at the first position, and a thin plate member pushed back to the iron core material And laminating the separated thin plate members by laminating at the second position and laminating the separated thin plate members, and the laminating step includes a plurality of the second positions along the transfer direction of the iron core material. The thin plate members are continuously provided at the respective locations, and the thin plate members are stacked at the same time, and in the transfer step, the iron core material is moved to the first position in accordance with the speed at which the thin plate members are formed in the forming step. The first stage of transport, and Wherein Ri Do from the second stage of a lamination process in accordance with the speed of laminating the thin plate members transferring the core material in the second position, the feeding amount of the core material of the second stage, the second position depending on the number of, and wherein said Rukoto is set larger than the feed amount of the core material of the first stage.

本発明の製造方法によれば、前記移送工程で鉄心材を移送する速さを、前記鉄心材を前記第1位置に移送する第1段階と、前記鉄心材を前記第2位置に移送する第2段階とに分け、第1段階では前記形成工程で薄板部材を形成する速さに合わせて、第2段階では前記積層工程で薄板部材を前記位置に配置する速さに合わせて、それぞれ設定するようにしたので、従来のように打抜きを含む形成工程の速度が積層工程の速度に制約されることなく、打抜き形成工程を高速化することができ、結果として製造効率向上を図ることができる。
また、前記積層工程では、鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われるとともに、前記第2段階の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1段階の前記鉄心材の送り量よりも多く設定されているので、積層工程での処理速度を上げなくても、積層鉄心の生産性を向上させることができる。
According to the manufacturing method of the present invention, the speed at which the iron core material is transferred in the transferring step is set to a first stage in which the iron core material is transferred to the first position, and the iron material is transferred to the second position. Dividing into two stages, the first stage is set according to the speed at which the thin plate member is formed in the forming process, and the second stage is set according to the speed at which the thin plate member is arranged at the position in the laminating process. Thus, the speed of the forming process including punching is not limited by the speed of the laminating process as in the prior art, and the speed of the punching forming process can be increased. As a result, the manufacturing efficiency can be improved.
Moreover, in the said lamination process, while continuously providing in several places along the transfer direction of an iron core material, while laminating | stacking the said thin plate member is performed simultaneously in each location, the feed amount of the said iron core material of the said 2nd step is In accordance with the number of the second positions, it is set to be larger than the feed amount of the iron core material in the first stage, so that the productivity of the laminated iron core is improved without increasing the processing speed in the lamination process. Can be made.

本発明の製造方法において、前記薄板部材が環状の積層鉄心を構成する複数の円弧状部材である場合、前記積層工程では、前記分離が行われる毎に分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転させることにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置することで、円弧状部材を積層して環状の積層鉄心を製造することができる。   In the manufacturing method of the present invention, when the thin plate member is a plurality of arc-shaped members constituting an annular laminated iron core, in the laminating step, the arc-shaped member that is separated and lowered every time the separation is performed Is received on a plurality of arc-shaped members constituting a single layer and rotated by a predetermined angle in the circumferential direction of the arc-shaped member, so that the sequentially descended arc-shaped members are brought into positions constituting the laminated core. By disposing, an annular laminated core can be manufactured by laminating arc-shaped members.

本発明の製造装置は、各層が単一又は複数の薄板部材からなる積層鉄心を製造する鉄心製造装置であって、帯状の鉄心材における複数の加工対象部分を第1及び第2の位置に順次移送する移送手段と、前記第1位置で各加工対象部分において所定の加工を施すことにより、前記薄板部材を形成して前記鉄心材へ押し戻す形成手段と、前記鉄心材に押し戻された薄板部材を前記第2位置で押下して該鉄心材から分離させ、分離された薄板部材を積層する積層手段とを具備し、前記積層手段は、前記鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われ、前記移送手段は、前記形成手段が前記薄板部材を形成する速さに合わせて前記鉄心材を前記第1位置に移送する第1送り手段、及び前記積層手段が前記薄板部材を積層する速さに合わせて前記鉄心材を前記第2位置に移送する第2送り手段からなり、前記第2送り手段の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1送り手段の前記鉄心材の送り量よりも多く設定されていることを特徴とする。 The manufacturing apparatus of the present invention is an iron core manufacturing apparatus that manufactures a laminated iron core in which each layer is composed of a single or a plurality of thin plate members, and a plurality of processing target portions in a strip-shaped iron core material are sequentially placed in first and second positions. A transfer means for transferring; a forming means for forming the thin plate member and pushing it back to the iron core material by performing predetermined processing at each processing target portion at the first position; and a thin plate member pushed back to the iron core material. Laminating means for depressing at the second position to separate from the iron core material and laminating the separated thin plate members, the laminating means being continuously provided at a plurality of locations along the transfer direction of the iron core material. The thin plate member is stacked at the same time at each location, and the transfer means transfers the iron core material to the first position in accordance with the speed at which the forming means forms the thin plate member. Means and the stacking hand Ri but Do from the second feeding means for transferring the core material in accordance with the speed of laminating the thin plate members to the second position, the feed amount of said core material of said second feeding means, said second position depending on the number, it characterized that you have been set larger than the feeding amount of said core material of said first feeding means.

本発明の製造装置によれば、第1送り手段では前記形成手段が薄板部材を形成する速さに合わせて、第2送り手段では前記積層手段が薄板部材を前記位置に配置する速さに合わせて、それぞれ前記鉄心材を移送する速度を設定するようにしたので、上記製造方法の場合と同様に、従来のように打抜きを行う形成手段での処理が積層手段での処理の速さに制約されることなく、打抜き処理を高速化することができ、結果として製造効率の向上を図ることができる。   According to the manufacturing apparatus of the present invention, in the first feeding means, the forming means matches the speed at which the thin plate member is formed, and in the second feeding means, the stacking means matches the speed at which the thin plate member is arranged at the position. In addition, since the speed at which the iron core material is transferred is set, the processing in the forming means for performing punching as in the conventional method is limited to the processing speed in the laminating means as in the case of the manufacturing method. Accordingly, the punching process can be speeded up, and as a result, the manufacturing efficiency can be improved.

また、装置の構成上、一般に打抜きに用いられるプレス装置のプレス荷重は大きく、積層に用いられるプレス装置のプレス荷重は小さくて済むので、打抜きと積層を1つの装置で行う従来の製造技術と比較して、本発明の製造装置は全体として小型化可能であり、製造コストも低減できる。
また、前記積層手段は、鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われるとともに、前記第2送り手段の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1送り手段の前記鉄心材の送り量よりも多く設定されているので、積層工程での処理速度を上げることなく、積層鉄心の生産性を向上させることができる。
In addition, because of the structure of the device, the press load of the press device generally used for punching is large, and the press load of the press device used for stacking is small, so it is compared with the conventional manufacturing technology that performs punching and stacking with one device. And the manufacturing apparatus of this invention can be reduced in size as a whole, and manufacturing cost can also be reduced.
The laminating means is continuously provided at a plurality of locations along the transfer direction of the iron core material, and the thin plate members are laminated simultaneously at each location, and the feed amount of the iron core material of the second feeding means Is set to be larger than the feed amount of the iron core material of the first feeding means according to the number of the second positions, so that the productivity of the laminated iron core can be increased without increasing the processing speed in the lamination process. Can be improved.

本発明の製造装置において、前記薄板部材が、環状の積層鉄心を構成する複数の円弧状部材である場合、前記積層手段は、前記分離が行われる毎に分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転させることにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置することが好ましい。   In the manufacturing apparatus of the present invention, when the thin plate member is a plurality of arcuate members constituting an annular laminated iron core, the laminating means separates and descends the arcuate member separated each time the separation is performed. A position where the arc-shaped members descending first are received on a plurality of arc-shaped members constituting a single layer and rotated by a predetermined angle in the circumferential direction of the arc-shaped members to form the laminated core. It is preferable to arrange in.

更に、前記移送手段による鉄心材の送り速度は、前記第1送り手段と前記第2送り手段とで異ならせることができる。そして、第2送り手段の送り速度が第1送り手段30の送り速度より遅い場合、第2送り手段はその速度差により前記鉄心材に弛みを持たせることが好ましい。   Furthermore, the feeding speed of the iron core material by the transfer means can be made different between the first feeding means and the second feeding means. When the feed speed of the second feed means is slower than the feed speed of the first feed means 30, it is preferable that the second feed means gives the iron core material slack due to the speed difference.

本発明の一実施形態に係る鉄心製造装置により鉄心材が加工される様子を示す図。The figure which shows a mode that an iron core material is processed by the iron core manufacturing apparatus which concerns on one Embodiment of this invention. 図1の加工を行う鉄心製造装置の要部説明図。Explanatory drawing of the principal part of the iron core manufacturing apparatus which processes the process of FIG. 図2の鉄心製造装置において円弧状部材が環状層に結合されてゆく様子を示す図。The figure which shows a mode that an arc-shaped member is couple | bonded with the cyclic | annular layer in the iron core manufacturing apparatus of FIG. 図2の鉄心製造装置により行われる平押し工程において鉄心材に押し戻された円弧状部材の部分を示す図。The figure which shows the part of the circular-arc-shaped member pushed back by the iron core material in the flat pushing process performed by the iron core manufacturing apparatus of FIG. 図1の装置による半抜き工程におけるプレス下死点からプレス上死点までの装置の動作を示す図。The figure which shows operation | movement of the apparatus from a press bottom dead center to a press top dead center in the half punching process by the apparatus of FIG. 本発明の他の実施形態に係る鉄心製造装置におけるプッシュバック工程での動作を示す図。The figure which shows the operation | movement in the pushback process in the iron core manufacturing apparatus which concerns on other embodiment of this invention. 各層が1枚の薄板部材で構成される積層鉄心を製造する場合の工程を示す図。The figure which shows the process in the case of manufacturing the laminated iron core in which each layer is comprised with the sheet member of 1 sheet.

図1は、本発明の一実施形態に係る鉄心製造装置により鉄心材が加工される工程を示す。この鉄心製造装置は、ステータコアを積層鉄心として製造するためのものである。   FIG. 1 shows a process in which an iron core material is processed by an iron core manufacturing apparatus according to an embodiment of the present invention. This iron core manufacturing apparatus is for manufacturing a stator core as a laminated core.

積層鉄心は、各層が単一(1枚)又は複数の薄板部材で構成されるが、本実施形態は、各層が3枚の薄板部材で構成される場合である。すなわち、積層鉄心は、帯状の鉄心材10を加工して得られる3枚の円弧状の薄板部材(以下、円弧状部材という)21により1つの環状層20を構成し、環状層20を所定数積層して結合させることにより製造される。   In the laminated core, each layer is composed of a single (one) or a plurality of thin plate members, but this embodiment is a case where each layer is composed of three thin plate members. That is, in the laminated iron core, one circular layer 20 is constituted by three arc-shaped thin plate members (hereinafter referred to as arc-shaped members) 21 obtained by processing the belt-shaped iron core material 10, and a predetermined number of the annular layers 20 are formed. Manufactured by stacking and bonding.

鉄心材10は電磁鋼板を帯状に薄く加工したものであり、一定の板厚を有する。板厚は、0.15〜0.5mm程度である。円弧状部材21の中心角は120°である。従って、3枚の円弧状部材21により積層鉄心の1層分の環状層20が構成される。積層鉄心は所定数の環状層20が積層されたものとして構成される。なお、1つの環状層20を構成する円弧状部材21の枚数は、3枚に限らず他の枚数、たとえば2枚や4枚、6枚等であってもよい。ただし、この枚数は、多いほど歩留りは向上するが、生産速度は低下する。   The iron core material 10 is obtained by thinly processing a magnetic steel sheet into a strip shape, and has a certain thickness. The plate thickness is about 0.15 to 0.5 mm. The central angle of the arc-shaped member 21 is 120 °. Accordingly, the circular layer 20 for one layer of the laminated iron core is constituted by the three arc-shaped members 21. The laminated iron core is configured by laminating a predetermined number of annular layers 20. Note that the number of arc-shaped members 21 constituting one annular layer 20 is not limited to three, and may be other numbers, for example, two, four, six, or the like. However, as the number increases, the yield improves, but the production speed decreases.

図1に示すように、鉄心材10は、後述の移送手段により所定の送りピッチで送られながら、複数の加工工程を経て、円弧状部材21に形成される。加工工程には、円弧状部材21となる部分を半抜きする半抜き工程A、半抜きされた円弧状部材21となる部分を鉄心材10に押し戻すことにより鉄心材10から完全に切断し、円弧状部材21を形成する平押し工程B、及び、鉄心材10に押し戻された円弧状部材21を鉄心材10から分離し、下方の環状層20上に結合させる分離工程Cが含まれる。本実施形態では、分離工程Cは、鉄心材10の移送方向に沿って同時に行われる2つの工程、すなわち第1分離工程C1及び第2分離工程C2からなり、この2つの分離工程がそれぞれ本発明における積層工程に相当する。また、半抜き工程Aと平押し工程Bとで本発明における形成工程を構成する。   As shown in FIG. 1, the iron core material 10 is formed on the arc-shaped member 21 through a plurality of processing steps while being fed at a predetermined feed pitch by a transfer means described later. In the processing step, a half-punch step A in which a part to be the arc-shaped member 21 is half-cut, a part to be the half-cut arc-shaped member 21 is pushed back to the iron core material 10 to completely cut it from the iron core material 10, A flat pressing process B for forming the arc-shaped member 21 and a separating process C for separating the arc-shaped member 21 pushed back to the iron core material 10 from the iron core material 10 and joining them on the lower annular layer 20 are included. In the present embodiment, the separation step C includes two steps that are simultaneously performed along the transfer direction of the iron core material 10, that is, the first separation step C1 and the second separation step C2, and each of these two separation steps is the present invention. This corresponds to the laminating step. Moreover, the half-punch process A and the flat pressing process B constitute the formation process in the present invention.

ただし、半抜き工程Aに先立ち、各加工工程における鉄心材10の位置決めに必要なパイロット孔11の形成、ステータコアの巻き線スロットとなる部分22の打抜き、ステータコアをモータに組み付ける際に用いる孔23の形成、及び円弧状部材21をかしめにより結合させるための半抜き穴24の形成が行われる。   However, prior to the half punching step A, the pilot holes 11 necessary for positioning the iron core material 10 in each processing step, the punching of the portion 22 that becomes the winding slot of the stator core, and the holes 23 used when the stator core is assembled to the motor Formation and formation of a half-drilled hole 24 for joining the arcuate member 21 by caulking are performed.

図2は、鉄心製造装置の要部説明図である。この鉄心製造装置は、鉄心材10をY方向に断続的に送る移送手段として、上記形成工程で円弧状部材21を形成する速さに合わせて鉄心材10を移送する第1送り手段30と、上記分離工程で円弧状部材21を分離、結合する速さに合わせて鉄心材10を移送する第2送り手段31とを備える。   FIG. 2 is an explanatory view of a main part of the iron core manufacturing apparatus. The iron core manufacturing apparatus includes a first feeding means 30 for transferring the iron core material 10 in accordance with the speed at which the arc-shaped member 21 is formed in the forming step, as a transferring means for intermittently sending the iron core material 10 in the Y direction. And a second feeding means 31 that transports the iron core material 10 in accordance with the speed at which the arc-shaped member 21 is separated and joined in the separation step.

第1送り手段30は、上記形成工程で鉄心材10の複数の加工対象部分について所定の加工を施す第1位置に鉄心材10を所定のピッチで送り込むため(移送工程の第1段階)、所定の速度で鉄心材10を移動させる駆動ローラ(図示省略)で構成される。   The first feeding means 30 feeds the iron core material 10 at a predetermined pitch to a first position where predetermined processing is performed on a plurality of processing target portions of the iron core material 10 in the forming step (first stage of the transfer process). It is comprised with the drive roller (illustration omitted) which moves the iron core material 10 with the speed of.

また、第2送り手段31は、上記形成工程で円弧状部材21が押し戻された鉄心材10の送りを案内する上下一対のガイドローラ32と、当該鉄心材10を下流の分離工程に送るための上下一対の駆動ローラ33と備える。この駆動ローラ33は、鉄心材10に押し戻された円弧状部材21を、上記第1分離工程C1及び第2分離工程C2で押下して鉄心材10から分離させる第2位置に、鉄心材10を上記第1送り手段30の送り速度より遅い速度で送り込むものである(移送工程の第2段階)。   Further, the second feeding means 31 is a pair of upper and lower guide rollers 32 for guiding the feeding of the iron core material 10 whose arc-shaped member 21 has been pushed back in the forming step, and for feeding the iron core material 10 to the downstream separation step. A pair of upper and lower drive rollers 33 are provided. The drive roller 33 pushes the arc-shaped member 21 pushed back to the iron core material 10 in the first separation step C1 and the second separation step C2 to separate the iron core material 10 from the iron core material 10 at a second position. Feeding at a speed slower than the feeding speed of the first feeding means 30 (second stage of the transfer process).

上記第1送り手段30と第2送り手段31との速度差により、ガイドローラ32と駆動ローラ33との間で図示のように撓む鉄心材10の撓み調整及び振動防止のため、帯状の弛みガイド34が架設される。これにより、第2送り手段31は、鉄心材10に弛みを持たせることができる。   Due to the speed difference between the first feeding means 30 and the second feeding means 31, a belt-like slack is provided for adjusting the deflection of the iron core material 10 that is bent between the guide roller 32 and the driving roller 33 as shown in the figure and preventing vibration. A guide 34 is installed. Thereby, the 2nd sending means 31 can give the iron core material 10 slack.

ここで、第2送り手段31の駆動ローラ33による鉄心材10の送り速度は、第1送り手段30の送り速度の2分の1、第2送り手段31の送り量(ピッチ)は、第1送り手段30の送り量の2倍とする。これにより、図1に示すように、平押し工程Bで円弧状部材21が押し戻された鉄心材10に対して、第1分離工程C1と第2分離工程C2で同時に円弧状部材21を分離、結合することができる。この結果、分離工程での処理速度を上げることなく、積層鉄心の生産性を向上する(本実施形態では2倍にする)ことができる。   Here, the feed speed of the iron core material 10 by the driving roller 33 of the second feed means 31 is one half of the feed speed of the first feed means 30, and the feed amount (pitch) of the second feed means 31 is the first. The feed amount of the feed means 30 is set to twice. Thereby, as shown in FIG. 1, the arc-shaped member 21 is simultaneously separated in the first separating step C1 and the second separating step C2 with respect to the iron core material 10 in which the arc-shaped member 21 is pushed back in the flat pushing step B. Can be combined. As a result, the productivity of the laminated core can be improved (in this embodiment, doubled) without increasing the processing speed in the separation step.

このため、平押し工程Bで円弧状部材21が押し戻された鉄心材10は、第1分離工程C1において円弧状部材21が1つ置きに分離されて(分離したところは円弧状の空白部分で示される)先に分離した部材と結合され、残された円弧状部材21aが1つ置きに並んだ状態で、第2分離工程C2に移送され、それらの円弧状部材21aが順次分離、結合される。   For this reason, the iron core material 10 in which the arc-shaped member 21 is pushed back in the flat pushing process B is separated into every other arc-shaped member 21 in the first separation process C1 (separated portions are arc-shaped blank portions). In the state where the remaining arc-shaped members 21a are lined up every other one, the second arc-shaped member 21a is transferred to the second separation step C2, and the arc-shaped members 21a are sequentially separated and combined. The

なお、本実施形態では、分離工程を2つに分けて(2箇所で)同時に行うように構成したが、3以上の複数箇所で同時に分離工程を行うことも可能である。その場合、同時に行われる分離工程の数に応じて、第1送り手段と第2送り手段の送り速度及び送り量(ピッチ)の比が決められる。   In this embodiment, the separation process is divided into two (two places) and performed simultaneously, but the separation process can be performed simultaneously at three or more places. In that case, the ratio of the feed speed and the feed amount (pitch) of the first feed means and the second feed means is determined according to the number of separation steps performed simultaneously.

再び図2を参照して、本実施形態の鉄心製造装置は、上記半抜き工程Aにおいて半抜きを行う半抜き手段40と、平押し工程Bにおいて平押し加工を行う平押し手段50と、第1分離工程C1及び第2分離工程C2においてそれぞれ分離と結合を行う2つの押圧手段60a及び60bとを備える。   Referring to FIG. 2 again, the iron core manufacturing apparatus of the present embodiment includes a half punching means 40 that performs half punching in the half punching process A, a flat pressing means 50 that performs flat pressing in the flat pressing process B, and There are provided two pressing means 60a and 60b that perform separation and coupling in the first separation step C1 and the second separation step C2, respectively.

また、この鉄心製造装置は、各押圧手段60a,60bにより結合される円弧状部材21が積層鉄心を構成する位置に配置されるように、押圧手段60a,60bで結合された円弧状部材21を保持して回転する積層ガイド70を備える。   Further, the iron core manufacturing apparatus includes the arcuate member 21 coupled by the pressing units 60a and 60b so that the arcuate member 21 coupled by the pressing units 60a and 60b is disposed at a position constituting the laminated core. A stacking guide 70 that holds and rotates is provided.

半抜き手段40は、円弧状部材21の輪郭に対応する形状を有するダイ41と、ダイ41に対して鉄心材10の円弧状部材21となる部分を押し込むことにより該部分を半抜きするメインパンチ42と、カウンタ荷重を付与するカウンタパンチ43とを備える。カウンタパンチ43は、メインパンチ42が鉄心材10をダイ41に押し込む間、半抜きされる鉄心材10部分の下面に対し、メインパンチ42の押圧力に抗して、上方向のカウンタ荷重を付与する。このカウンタ荷重を生じさせるために、カウンタパンチ43は皿ばね等により上方向に付勢されている。   The half punching means 40 includes a die 41 having a shape corresponding to the contour of the arcuate member 21 and a main punch that half-punches the die 41 by pushing the part that becomes the arcuate member 21 of the iron core material 10 into the die 41. 42 and a counter punch 43 for applying a counter load. The counter punch 43 applies an upward counter load against the pressing force of the main punch 42 against the lower surface of the iron core material 10 partly punched while the main punch 42 pushes the iron core material 10 into the die 41. To do. In order to generate the counter load, the counter punch 43 is urged upward by a disc spring or the like.

平押し手段50は、ダイ41を保持するダイプレート51と、メインパンチ42が半抜きを行うとき鉄心材10を押さえると共にメインパンチ42を案内するストリッパプレート52とで構成される。   The flat pushing means 50 includes a die plate 51 that holds the die 41 and a stripper plate 52 that holds the core material 10 and guides the main punch 42 when the main punch 42 performs half-punching.

この構成によれば、メインパンチ42が半抜き工程Aにおける半抜きを行うために下降するとき、ストリッパプレート52も下降する。このとき、既に半抜き工程Aを経て半抜きされた鉄心材10の部分13に対し、ダイプレート51及びストリッパプレート52により、平押し工程Bにおける平押し加工が施される。つまり、半抜き工程Aから分離工程Cに至るまでの間のアイドル工程において、自動的に平押し工程Bが行われる。   According to this configuration, when the main punch 42 is lowered to perform half punching in the half punching process A, the stripper plate 52 is also lowered. At this time, the flat pressing process in the flat pressing process B is performed by the die plate 51 and the stripper plate 52 on the portion 13 of the iron core material 10 that has already been half punched through the half punching process A. That is, the flat pushing process B is automatically performed in the idle process from the half punching process A to the separation process C.

本実施形態では、上記半抜き手段40と平押し手段50とで本発明における形成手段を構成している。   In the present embodiment, the half punching means 40 and the flat pushing means 50 constitute the forming means in the present invention.

各押圧手段60a,60bは、ストリッパプレート52により上下方向に案内される押圧部材61を備える。半抜き工程Aにおける半抜きを行うためにストリッパプレート52が下降して鉄心材10をダイプレート51との間で押さえたとき、押圧部材61が下降する。このとき、押圧部材61は、平押し工程Bにおいて押し戻された円弧状部材21を押圧して鉄心材10から分離させ、さらに下方の積層ガイド70上に支持された環状層20上に結合させる。   Each pressing means 60 a, 60 b includes a pressing member 61 that is guided in the vertical direction by the stripper plate 52. When the stripper plate 52 is lowered to press the iron core material 10 with the die plate 51 in order to perform half-punching in the half-punching step A, the pressing member 61 is lowered. At this time, the pressing member 61 presses and separates the arc-shaped member 21 pushed back in the flat pressing step B from the iron core material 10, and further joins the annular layer 20 supported on the lower laminated guide 70.

積層ガイド70は、積層された各層の環状層20の外周に沿った円筒形状の内壁71と、積層された環状層20を支持する支持部材72とを備える。また、積層ガイド70は、支持部材72と一体的に中心軸73の周りで回転し得るように支持されており、回転機構74により回転位置が制御される。回転機構74は、積層ガイド70の外周に固定されたプーリと、該プーリを回転させる歯付ベルト等により構成することができる。   The lamination guide 70 includes a cylindrical inner wall 71 along the outer periphery of each of the laminated annular layers 20 and a support member 72 that supports the laminated annular layers 20. The lamination guide 70 is supported so as to be rotatable around the central axis 73 integrally with the support member 72, and the rotation position is controlled by the rotation mechanism 74. The rotation mechanism 74 can be configured by a pulley fixed to the outer periphery of the laminated guide 70, a toothed belt that rotates the pulley, and the like.

支持部材72は、環状層20の積層数に応じ、上下方向の位置が、図示していない駆動手段により制御される。すなわち、支持部材72は、環状層20が積層されていない初期状態においては、ダイプレート51の上面よりやや下の所定位置まで上昇し、環状層20の積層数が増加するに従って下降するように制御される。これにより、支持している一番上の環状層20の上面が、該所定位置に位置するように制御される。   The position of the support member 72 in the vertical direction is controlled by a driving unit (not shown) in accordance with the number of stacked annular layers 20. That is, the support member 72 is controlled to rise to a predetermined position slightly below the upper surface of the die plate 51 in an initial state where the annular layer 20 is not laminated, and to descend as the number of laminated annular layers 20 increases. Is done. Thereby, the upper surface of the uppermost annular layer 20 that is supported is controlled so as to be positioned at the predetermined position.

積層ガイド70は、第1、第2分離工程C1、C2が行われる毎に、中心軸73の周りに所定角度だけ回転するように制御される。この回転により、積層ガイド70によって支持されている円弧状部材21も、その周方向に、所定角度だけ回転することになる。この回転は、最上の環状層20に順次結合されてゆく円弧状部材21が、積層鉄心を構成する位置に配置されるように行われる。   The lamination guide 70 is controlled to rotate by a predetermined angle around the central axis 73 every time the first and second separation steps C1 and C2 are performed. By this rotation, the arcuate member 21 supported by the lamination guide 70 is also rotated by a predetermined angle in the circumferential direction. This rotation is performed so that the arc-shaped member 21 that is sequentially coupled to the uppermost annular layer 20 is disposed at a position that constitutes the laminated iron core.

本実施形態では、各押圧手段60a,60bと積層ガイド70とで本発明における積層手段を構成している。   In the present embodiment, the pressing means 60a, 60b and the stacking guide 70 constitute the stacking means in the present invention.

図3は、環状層20が形成される様子を示す。同図に示すように、1つの環状層20(20i)が3枚の円弧状部材21(21a〜21c)により構成され(同図(e))、かつ円弧状部材21がレンガ積み状に重なるように、所定角度の回転は、120°で2回(同図(b)及び(d))、60°で1回(同図(f))という回転を繰り返すことにより行われる。   FIG. 3 shows how the annular layer 20 is formed. As shown in the figure, one annular layer 20 (20i) is composed of three arcuate members 21 (21a to 21c) (Fig. 5 (e)), and the arcuate members 21 overlap in a brick shape. As described above, the rotation at the predetermined angle is performed by repeating the rotation twice at 120 ° ((b) and (d) in the figure) and once at 60 ° ((f) in the same figure).

すなわち、積層ガイド50は、i−1番目の環状層20i−1の上に、i番目の環状層20iを構成する最初の円弧状部材21aを受け取ると(同図(a))、120°回転する(同図(b))。そして、次の円弧状部材21bを受け取ると(同図(c))、さらに120°回転し(同図(d))、次の円弧状部材21cを受け取る(同図(e))。これにより、i番目の環状層20iを構成する位置に対する3枚の円弧状部材21a〜21cの配置が完了する。   That is, when the laminated guide 50 receives the first arcuate member 21a constituting the i-th annular layer 20i on the i-1-th annular layer 20i-1, the stacking guide 50 rotates by 120 °. (FIG. (B)). When the next arcuate member 21b is received ((c) in the same figure), it is further rotated by 120 ° ((d) in the same figure), and the next arcuate member 21c is received ((e) in the same figure). Thereby, arrangement | positioning of the three circular-arc-shaped members 21a-21c with respect to the position which comprises the i-th cyclic | annular layer 20i is completed.

次に、積層ガイド50は、60°回転する(同図(f))。このとき、支持部材72が1つの環状層20の厚さ分だけ下降する。この後、同図(a)と同様にして、次のi+1番目の環状層20を形成するための円弧状部材21dを受け取る(同図(g))。このようにして、各環状層20が3枚の円弧状部材21で構成され、かつ各円弧状部材21がレンガ積み状に重なった積層鉄心を構成するように、円弧状部材21が配置される。   Next, the lamination guide 50 rotates 60 ° ((f) in the figure). At this time, the support member 72 is lowered by the thickness of one annular layer 20. Thereafter, in the same manner as in FIG. 6A, the arcuate member 21d for forming the next i + 1-th annular layer 20 is received (FIG. 5G). In this way, each circular layer 20 is configured by three arc-shaped members 21 and the arc-shaped members 21 are arranged so that each arc-shaped member 21 forms a laminated iron core that is stacked in a brick pile shape. .

図4は、平押し工程Bにおいて鉄心材10から切断され、鉄心材10に押し戻された円弧状部材21の部分を示す。図において、円弧状部材21は、周辺部の2か所に蟻溝状の凹部25を有する。そして、鉄心材10に接触している円弧状部材21の輪郭部分の接触を介して、円弧状部材21は鉄心材10に保持されている。   FIG. 4 shows a portion of the arcuate member 21 cut from the iron core material 10 and pushed back to the iron core material 10 in the flat pushing process B. In the figure, the arcuate member 21 has dovetail-shaped recesses 25 at two locations on the periphery. The arc-shaped member 21 is held by the iron core material 10 through contact of the contour portion of the arc-shaped member 21 that is in contact with the iron core material 10.

凹部25は、この保持力を向上させる機能を有する。すなわち、凹部25は、平押し工程Bが施された後、円弧状部材21が分離工程において分離されるまでの間に、鉄心材10から円弧状部材21が脱落するのを防止する。特に、鉄心材10が薄くなるほど、また円弧状部材21が大きくなるほど脱落しやすいので、凹部25を設けることが必要となる。従って、凹部25は、このような脱落を防止するのに適した形状、大きさ及び位置で設けられる。ただし、積層鉄心の性能に影響を及ぼすことがないように、円弧状部材21の半径方向外側に形成する必要がある。   The recess 25 has a function of improving the holding force. That is, the concave portion 25 prevents the arc-shaped member 21 from dropping from the iron core material 10 after the flat pressing process B is performed and before the arc-shaped member 21 is separated in the separating process. In particular, the thinner the iron core material 10 and the larger the arcuate member 21, the easier it is to drop off, so the recess 25 must be provided. Accordingly, the recess 25 is provided in a shape, size and position suitable for preventing such dropout. However, it is necessary to form on the outer side in the radial direction of the arc-shaped member 21 so as not to affect the performance of the laminated core.

本実施形態によれば、積層鉄心を製造する際には、装置各部の動作が図示していない装置の制御部及び制御機構により次のように制御される。すなわち、第1送り手段30により、鉄心材10が所定の送りピッチでY方向に送られる。また、第2送り手段31により、鉄心材10が、前述のように第1送り手段30による送りピッチと異なるピッチでY方向に送られる。これにより、鉄心材10上の各加工対象部分が順次、各加工位置に移送される。各加工位置には、上述の工程A,B,C1及びC2が含まれる。各加工位置における正確な位置決めは、パイロット孔11を用いて行われる。   According to this embodiment, when manufacturing a laminated iron core, operation | movement of each part of an apparatus is controlled as follows by the control part and control mechanism of an apparatus which are not illustrated. That is, the iron core material 10 is fed in the Y direction at a predetermined feed pitch by the first feeding means 30. Further, the iron core material 10 is fed in the Y direction by the second feeding means 31 at a pitch different from the feeding pitch by the first feeding means 30 as described above. Thereby, each process object part on the iron core material 10 is sequentially transferred to each process position. Each processing position includes the above-described steps A, B, C1, and C2. Accurate positioning at each processing position is performed using the pilot hole 11.

各加工対象部分に対しては、図1に示すように、複数の加工工程を経てパイロット孔11、巻き線スロット部分22、及び半抜き穴24が設けられた後、順次加工工程A〜Cにおける加工が行われる。加工工程A〜Cを行うに際し、ストリッパプレート52は一定周期で上下動する。図2においては、ストリッパプレート52が下降し、鉄心材12をダイプレート51との間で挟んでいるときの様子が示されている。   As shown in FIG. 1, the pilot hole 11, the winding slot portion 22, and the half punch hole 24 are provided for each processing target portion through a plurality of processing steps, and then sequentially in the processing steps A to C. Processing is performed. When performing the processing steps A to C, the stripper plate 52 moves up and down at a constant cycle. FIG. 2 shows a state in which the stripper plate 52 is lowered and the core material 12 is sandwiched between the die plate 51.

ストリッパプレート52の上下動に同期し、鉄心材10が所定ピッチでY方向に順次送られる。鉄心材10の送りは、ストリッパプレート52が上昇位置にあるときに行われる。このとき、鉄心材10の両側端は図示していない送りガイドにより支持され、鉄心材10はダイプレート51から持ち上げられた状態で送られる。   In synchronization with the vertical movement of the stripper plate 52, the iron core material 10 is sequentially fed in the Y direction at a predetermined pitch. The iron core material 10 is fed when the stripper plate 52 is in the raised position. At this time, both side ends of the iron core material 10 are supported by a feed guide (not shown), and the iron core material 10 is fed in a state of being lifted from the die plate 51.

ストリッパプレート52の上下動に同期して、鉄心材10上の異なる加工対象部分についての加工工程が、図2に示すように、加工位置Pa〜Pcにおいて並行して行われる。   In synchronization with the vertical movement of the stripper plate 52, the processing steps for different processing target portions on the iron core material 10 are performed in parallel at the processing positions Pa to Pc, as shown in FIG.

図5(a)〜(f)は、加工位置Paで行われる半抜き工程Aにおけるプレス下死点からプレス上死点までの装置の動作を示す。加工位置Paにおいては、まず、メインパンチ42及びストリッパプレート52が一体となって下降する。ストリッパプレート52が下降すると、鉄心材10を持ち上げている送りガイドも押し下げられる。   5A to 5F show the operation of the apparatus from the press bottom dead center to the press top dead center in the half punching step A performed at the processing position Pa. In the processing position Pa, first, the main punch 42 and the stripper plate 52 are lowered integrally. When the stripper plate 52 is lowered, the feed guide lifting the iron core material 10 is also pushed down.

そして、ストリッパプレート52がダイ41との間で鉄心材10を挟むと、メインパンチ42はカウンタパンチ43によるカウンタ荷重に抗して、ストリッパプレート52から突出し、鉄心材10をダイ41内に押し込み、同図(a)に示すように、下死点に至る。下死点の位置は、鉄心材10の板厚の20〜30%程度が切断されずに残るように設定されている。   When the stripper plate 52 sandwiches the iron core material 10 with the die 41, the main punch 42 protrudes from the stripper plate 52 against the counter load by the counter punch 43, and pushes the iron core material 10 into the die 41. As shown in FIG. The position of the bottom dead center is set so that about 20 to 30% of the thickness of the iron core material 10 remains without being cut.

これにより、円弧状部材21となる部分13が半抜きされた状態となる。次に、メインパンチ42が上昇してカウンタパンチ43が元のレベルに復帰し、ストリッパプレート52が上昇を開始する(同図(b)〜(d))。これに伴い、押し下げられていた送りガイドも復帰し、鉄心材10が持ち上げられる(同図(d))。   Thereby, it will be in the state by which the part 13 used as the circular-arc-shaped member 21 was half-punched. Next, the main punch 42 rises, the counter punch 43 returns to the original level, and the stripper plate 52 starts to rise (FIGS. (B) to (d)). Along with this, the feeding guide that has been pushed down also returns, and the iron core material 10 is lifted ((d) in the figure).

その後、メインパンチ42がストリッパプレート52とともにさらに上昇し(同図(e))、上死点に至ると(同図(f))、鉄心材10の送りが開始される。これにより、加工工程Aによる半抜き加工が完了する。   Thereafter, the main punch 42 is further lifted together with the stripper plate 52 ((e) in the same figure), and when the top dead center is reached ((f) in the same figure), the feeding of the iron core material 10 is started. Thereby, the half blanking process by the process A is completed.

加工位置Pbにおいては、図2に示すように、ストリッパプレート52が下降し、鉄心材10をダイプレート51との間で挟む平押し加工が行われる。これにより、加工工程Aにおいて半抜きされた部分13が、鉄心材10内に押し戻される。これにより、半抜きされた部分13は鉄心材10から完全に切断され、円弧状部材21に成形される。押し戻された円弧状部材21は、加工位置Pcにおいて鉄心材10から分離されるまで、鉄心材10により保持される。   At the processing position Pb, as shown in FIG. 2, the stripper plate 52 is lowered and flat pressing is performed to sandwich the iron core material 10 with the die plate 51. As a result, the portion 13 that has been half-cut in the processing step A is pushed back into the iron core material 10. Thereby, the half-extracted portion 13 is completely cut from the iron core material 10 and formed into an arc-shaped member 21. The arc-shaped member 21 pushed back is held by the iron core material 10 until it is separated from the iron core material 10 at the processing position Pc.

2つの分離工程C1,C2における加工位置Pcでは、ストリッパプレート52が下降し、鉄心材10がダイプレート51との間で押さえられたとき、鉄心材10に嵌合している円弧状部材21が押圧部材61により押下され、下方の積層ガイド70により支持されている環状層20上に押圧される。これにより、円弧状部材21は鉄心材10から分離し、環状層20と結合する。   At the processing position Pc in the two separation steps C1 and C2, when the stripper plate 52 is lowered and the iron core material 10 is pressed between the die plate 51, the arcuate member 21 fitted to the iron core material 10 is Pressed by the pressing member 61 and pressed onto the annular layer 20 supported by the lower laminated guide 70. As a result, the arc-shaped member 21 is separated from the iron core material 10 and joined to the annular layer 20.

この結合は、円弧状部材21の半抜き穴24の凸形状が、下方の環状層20の対応する半抜き穴24の凹形状に嵌合することにより行われる。ただし、結合する円弧状部材21は、図3(g)のように、下の環状層20の円弧状部材21に対し、60°ずれているので、下の2つの円弧状部材21に跨って、これらの円弧状部材21と結合する。   This coupling is performed by fitting the convex shape of the half punch hole 24 of the arcuate member 21 into the concave shape of the corresponding half punch hole 24 of the lower annular layer 20. However, the arcuate member 21 to be coupled is shifted by 60 ° with respect to the arcuate member 21 of the lower annular layer 20 as shown in FIG. , And these arcuate members 21 are combined.

このようにして積層ガイド70が順次受け取る円弧状部材21は、図3に示すように、積層ガイド70の回転、及び支持部材72の上下動により、積層鉄心を構成する位置に配置されて積層される。   As shown in FIG. 3, the arcuate member 21 that is sequentially received by the lamination guide 70 is arranged and laminated at a position that constitutes the lamination core by the rotation of the lamination guide 70 and the vertical movement of the support member 72. The

すなわち、結合された円弧状部材21が1つの環状層20を構成する1枚目又は2枚目の円弧状部材21である場合には、積層ガイド70は、その円弧状部材21を受け取った後、120°回転する(図3(a)〜(d))。3枚目の円弧状部材21である場合には、次の円弧状部材21を60°ずらしてレンガ積みのように重ねるために、60°回転し、支持部材72を環状層20の厚さ分だけ下降させる(図3(e)、(f))。   That is, when the combined arcuate member 21 is the first or second arcuate member 21 constituting one annular layer 20, the laminated guide 70 receives the arcuate member 21. , 120 ° (FIGS. 3A to 3D). In the case of the third arcuate member 21, the next arcuate member 21 is rotated by 60 ° so that the next arcuate member 21 is shifted by 60 ° and stacked like a brick pile, and the support member 72 is made by the thickness of the annular layer 20. Is lowered (FIGS. 3E and 3F).

なお、加工位置Pcにおいて切り離された円弧状部材21が、1つの積層鉄心における最初の環状層20を構成するものである場合には、その円弧状部材21の半抜き穴24を、半抜き穴ではなく、貫通孔として形成することにより、不要な凸部が積層鉄心の下端に形成されるのを回避することができる。   When the arc-shaped member 21 cut off at the processing position Pc constitutes the first annular layer 20 in one laminated iron core, the half-cut hole 24 of the arc-shaped member 21 is replaced with the half-cut hole. Instead, by forming it as a through hole, it is possible to avoid the formation of an unnecessary convex portion at the lower end of the laminated iron core.

このようにして、数十〜数百の環状層20の積層が完了すると、積層された環状層20は、積層ガイド70から積層鉄心として取り出される。   In this way, when the lamination of several tens to several hundreds of annular layers 20 is completed, the laminated annular layers 20 are taken out from the lamination guide 70 as laminated iron cores.

本実施形態によれば、最終の分離工程を簡便な制御により行うことができる。すなわち、従来は、最終工程において、円弧状部材を鉄心材から分離させるために、回転するダイを用いた切断加工を行うようにしていたため、鉄心材の送りピッチと、ダイの回転位置の置決めとを同時に高い精度で制御する必要があった。   According to this embodiment, the final separation step can be performed by simple control. In other words, in the past, in order to separate the arc-shaped member from the iron core material in the final process, cutting processing using a rotating die was performed, so the feed pitch of the iron core material and the rotational position of the die were determined. Must be controlled with high accuracy at the same time.

これに対し、本実施形態では、半抜き加工及び平押し加工により円弧状部材21を鉄心材10に押し戻して形成し、その後、最終工程においては、鉄心材10中の円弧状部材21を押下して分離させ、積層ガイド70上の環状層20に結合させるようにしたため、ダイの置決めが不要となり、最終工程を簡便な制御で行うことができる。   On the other hand, in this embodiment, the arc-shaped member 21 is formed by pushing it back to the iron core material 10 by half punching and flat pressing, and thereafter, in the final process, the arc-shaped member 21 in the iron core material 10 is pressed. Therefore, it is not necessary to place a die, and the final process can be performed with simple control.

また、最終工程に至る前に不要部分のほとんどを予め打ち抜いて除去する従来の場合に比べ、平押し工程Bにおいて鉄心材10に押し戻される円弧状部材21により、最終の分離工程Cに至るまで、ある程度鉄心材10の剛性が維持されるので、鉄心材10の両側に設けるさん幅を小さくし、歩留りを向上させることができる。また、不要部分を予め打ち抜いて除去する工程が不要となるため、生産速度を向上させることができる。   In addition, compared to the conventional case in which most unnecessary portions are punched and removed in advance before reaching the final process, the arc-shaped member 21 pushed back to the iron core material 10 in the flat pressing process B leads to the final separation process C. Since the rigidity of the iron core material 10 is maintained to some extent, the width provided on both sides of the iron core material 10 can be reduced, and the yield can be improved. In addition, the process of punching out and removing unnecessary portions in advance is unnecessary, so that the production speed can be improved.

図6は、本発明の他の実施形態に係る鉄心製造装置におけるプッシュバック工程での動作を示す。この装置においては、上述の半抜き工程A及び平押し工程Bの代わりに、このプッシュバック工程Pを採用し、この工程Pにより円弧状部材21の形成及び鉄心材10への押し戻しを行うようにしている。従って、この装置は、半抜き工程A及び平押し工程Bを行うための構成の代わりにプッシュバック工程Pを行うための構成を備える。他の構成及び工程は、上記図1〜図3の実施形態の場合と同様である。   FIG. 6 shows an operation in a pushback process in an iron core manufacturing apparatus according to another embodiment of the present invention. In this apparatus, this pushback process P is adopted in place of the above-described half punching process A and flat pushing process B, and the arc shaped member 21 is formed and pushed back to the iron core material 10 by this process P. ing. Therefore, this apparatus includes a structure for performing the pushback process P instead of the structure for performing the half-punch process A and the flat pushing process B. Other configurations and processes are the same as those in the embodiment shown in FIGS.

図6に示すように、本実施形態の鉄心製造装置は、プッシュバック工程を行うための構成として、円弧状部材21の輪郭に対応する形状を有するダイ81と、ダイ81に対して鉄心材10の円弧状部材21となる部分を押し込むことにより該部分を打ち抜いて円弧状部材21を形成するメインパンチ82と、カウンタ荷重を付与するカウンタパンチ83と、メインパンチ82が打抜きを行うとき、鉄心材10を押さえ、かつメインパンチ82を案内するストリッパプレート84とを備える。   As shown in FIG. 6, the iron core manufacturing apparatus of the present embodiment has a die 81 having a shape corresponding to the contour of the arcuate member 21 and a core material 10 relative to the die 81 as a configuration for performing the pushback process. When the main punch 82 performs punching, the main punch 82 that forms the arc-shaped member 21 by punching out the portion to be the arc-shaped member 21, the counter punch 83 that applies the counter load, and the core punch 82 10 and a stripper plate 84 that guides the main punch 82.

カウンタパンチ83は、メインパンチ82が鉄心材10をダイ81に押し込む間、打ち抜かれる鉄心材10部分の下面に対し、メインパンチ82の押圧力に抗して、上方向のカウンタ荷重を付与する。このカウンタ荷重を生じさせるために、カウンタパンチ83は皿ばね等により上方向に付勢されている。   The counter punch 83 applies an upward counter load against the pressing force of the main punch 82 to the lower surface of the core material 10 to be punched while the main punch 82 pushes the core material 10 into the die 81. In order to generate the counter load, the counter punch 83 is urged upward by a disc spring or the like.

プッシュバック工程においては、まず、メインパンチ82及びストリッパプレート84が一体となって下降する。ストリッパプレート84が下降すると、鉄心材10を持ち上げている送りガイドも押し下げられる。   In the pushback process, first, the main punch 82 and the stripper plate 84 are lowered integrally. When the stripper plate 84 is lowered, the feed guide lifting the iron core material 10 is also pushed down.

そして、ストリッパプレート84がダイ81との間で鉄心材10を挟むと、メインパンチ82はカウンタパンチ83によるカウンタ荷重に抗して、ストリッパプレート84から突出し、鉄心材10をダイ81内に押し込み、同図(a)に示すように、下死点に至る。   When the stripper plate 84 sandwiches the iron core material 10 with the die 81, the main punch 82 protrudes from the stripper plate 84 against the counter load by the counter punch 83, and pushes the iron core material 10 into the die 81. As shown in FIG.

これにより、円弧状部材21となる部分が打ち抜かれ、円弧状部材21に形成される。なお、下死点の位置は、円弧状部材21となる部分が完全に打ち抜かれることなく、鉄心材10の板厚の20〜30%程度が切断されずに残るように設定するようにしてもよい。   As a result, a portion to be the arcuate member 21 is punched out and formed in the arcuate member 21. Note that the position of the bottom dead center may be set so that the portion to be the arcuate member 21 is not completely punched and about 20 to 30% of the thickness of the iron core material 10 remains without being cut. Good.

次に、メインパンチ82が上昇するとともに、これに追従してカウンタパンチ83が元のレベルに復帰する(同図(b))。これにより、形成された円弧状部材21は鉄心材10に押し戻され、鉄心材10により保持される。なお、上述のように、下死点の位置を、円弧状部材21となる部分が半抜き状態となるように設定した場合には、この押し戻しにより該部分の切断が完了し、円弧状部材21が形成されることになる。   Next, the main punch 82 rises, and the counter punch 83 returns to the original level following this (FIG. 5B). Thereby, the formed arc-shaped member 21 is pushed back to the iron core material 10 and is held by the iron core material 10. As described above, when the position of the bottom dead center is set so that the portion to be the arc-shaped member 21 is in a half-blanked state, cutting of the portion is completed by this pushing back, and the arc-shaped member 21 is completed. Will be formed.

メインパンチ82がさらに上昇すると(同図(c))、ストリッパプレート84も上昇を開始する(同図(d))。これに伴い、押し下げられていた送りガイドも復帰し、鉄心材10が持ち上げられる(同図(d))。   When the main punch 82 is further raised ((c) in the figure), the stripper plate 84 also starts to rise ((d) in the figure). Along with this, the feeding guide that has been pushed down also returns, and the iron core material 10 is lifted ((d) in the figure).

その後、メインパンチ82がストリッパプレート84とともにさらに上昇し(同図(e))、上死点に至ると(同図(f))、鉄心材10の送りが開始される。これにより、プッシュバック工程が完了する。プッシュバック工程において鉄心材10に押し戻された円弧状部材21は、上述の分離工程Cにおいて、鉄心材10から分離され、下方の環状層20上に結合されることになる。   Thereafter, the main punch 82 is further lifted together with the stripper plate 84 (FIG. (E)), and when the top dead center is reached (FIG. (F)), the feeding of the iron core material 10 is started. This completes the pushback process. The arc-shaped member 21 pushed back to the iron core material 10 in the push-back process is separated from the iron core material 10 in the above-described separation process C, and is bonded onto the lower annular layer 20.

以上、実施形態について説明したが、本発明はこれに限定されることなく、適宜変形して実施することができる。例えば、以上の説明では言及しなかったが、各環状層20間の結合を、レーザ光による溶接により強化させるようにしてもよい。また、各環状層20間の結合を、半抜き孔24を用いたかしめで行う代わりに、接着剤により接着することにより行うようにしてもよい。   Although the embodiment has been described above, the present invention is not limited to this, and can be appropriately modified and implemented. For example, although not mentioned in the above description, the coupling between the annular layers 20 may be strengthened by welding with a laser beam. Moreover, you may make it perform the coupling | bonding between each cyclic | annular layer 20 by adhere | attaching with an adhesive agent instead of performing by caulking using the half punching hole 24. FIG.

また、実施形態においては、積層鉄心としてステータコアを製造する場合について説明したが、本発明はこれに限らず、ロータコア等の他の積層鉄心を製造する場合にも適用することができる。更に、積層鉄心を構成する薄板部材は、円弧状に限らず、積層鉄心の形状によって決められるものである。   In the embodiment, the case where the stator core is manufactured as a laminated core has been described. However, the present invention is not limited to this, and the present invention can also be applied to the case where other laminated cores such as a rotor core are manufactured. Furthermore, the thin plate member constituting the laminated core is not limited to the arc shape, but is determined by the shape of the laminated core.

また、一層が1枚の薄板部材で構成される積層鉄心であってもよい。この場合、図7に示すように、帯状の鉄心材110に対してプッシュバック工程Pで環状の薄板部材121を打ち抜いて押し戻す。その後、図1の実施形態と同様に、第1分離工程C1と第2分離工程C2で同時に環状の薄板部材121を分離し、先に分離した薄板部材121に積層して結合することにより、環状の積層鉄心が製造される。この結果、分離工程での処理速度を上げることなく、積層鉄心の生産性を向上することができる。   Further, a laminated core composed of one thin plate member may be used. In this case, as shown in FIG. 7, the annular thin plate member 121 is punched and pushed back in the push-back process P with respect to the belt-shaped iron core material 110. After that, as in the embodiment of FIG. 1, the annular thin plate member 121 is separated at the same time in the first separation step C1 and the second separation step C2, and is laminated and bonded to the previously separated thin plate member 121, thereby forming an annular shape. The laminated iron core is manufactured. As a result, the productivity of the laminated core can be improved without increasing the processing speed in the separation step.

10…鉄心材、20…環状層、21…円弧状薄板部材、30…第1送り手段、31…第2送り手段、40…半抜き手段、41,81…ダイ、42,82…メインパンチ、43,83…カウンタパンチ、50…平押し手段、51…ダイプレート、52,84…ストリッパプレート、60a,60b…押圧手段、61…押圧部材、70…積層ガイド。   DESCRIPTION OF SYMBOLS 10 ... Iron core material, 20 ... Cyclic layer, 21 ... Arc-shaped thin plate member, 30 ... 1st feeding means, 31 ... 2nd feeding means, 40 ... Half punching means, 41, 81 ... Die, 42, 82 ... Main punch, 43, 83 ... counter punch, 50 ... flat pushing means, 51 ... die plate, 52, 84 ... stripper plate, 60a, 60b ... pressing means, 61 ... pressing member, 70 ... lamination guide.

Claims (6)

各層が単一又は複数の薄板部材からなる積層鉄心を製造する鉄心製造方法であって、
帯状の鉄心材における複数の加工対象部分を、第1位置及び第2位置に順次移送する移送工程と、
前記第1位置で各加工対象部分において所定の加工を施すことにより、前記薄板部材を形成して前記鉄心材へ押し戻す形成工程と、
前記鉄心材に押し戻された薄板部材を前記第2位置で押下して該鉄心材から分離させ、分離された薄板部材を積層する積層工程とを備え、
前記積層工程は、前記第2位置が前記鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われ、
前記移送工程は、前記形成工程で前記薄板部材を形成する速さに合わせて前記鉄心材を前記第1位置に移送する第1段階、及び前記積層工程で前記薄板部材を積層する速さに合わせて前記鉄心材を前記第2位置に移送する第2段階からなり、
前記第2段階の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1段階の前記鉄心材の送り量よりも多く設定されてい
ことを特徴とする鉄心製造方法。
An iron core manufacturing method for manufacturing a laminated core in which each layer is made of a single or a plurality of thin plate members,
A transfer step of sequentially transferring a plurality of parts to be processed in the belt-shaped iron core material to the first position and the second position;
Forming the thin plate member and pushing it back to the iron core material by performing predetermined processing at each processing target portion at the first position; and
A laminating step of depressing the thin plate member pushed back to the iron core material at the second position to separate it from the iron core material, and laminating the separated thin plate members;
In the laminating step, the second position is continuously provided at a plurality of locations along the transfer direction of the iron core material, and the laminating of the thin plate members is simultaneously performed at each location,
In the transfer step, the first step of transferring the iron core material to the first position in accordance with the speed of forming the thin plate member in the forming step, and the speed of stacking the thin plate member in the stacking step. Do a second step of transferring the core material in the second position Te Ri,
The feed amount of the core material of the second stage, the second based on the number of positions, the core manufacturing method characterized that you have been set larger than the feeding amount of the core material of the first stage.
前記薄板部材は、環状の積層鉄心を構成する円弧状部材であり、
前記積層工程では、前記分離が行われる毎に分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転させることにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置することを特徴とする請求項1記載の鉄心製造方法。
The thin plate member is an arc-shaped member constituting an annular laminated iron core,
In the laminating step, the arc-shaped member that is separated and lowered each time the separation is performed is received on a plurality of arc-shaped members that are first lowered and constitute one layer, and is predetermined in the circumferential direction of the arc-shaped member. The method of manufacturing an iron core according to claim 1, wherein the arc-shaped members that are sequentially lowered by being rotated by an angle are arranged at positions that constitute the laminated iron core.
各層が単一又は複数の薄板部材からなる積層鉄心を製造する鉄心製造装置であって、
帯状の鉄心材における複数の加工対象部分を第1及び第2の位置に順次移送する移送手段と、
前記第1位置で各加工対象部分において所定の加工を施すことにより、前記薄板部材を形成して前記鉄心材へ押し戻す形成手段と、
前記鉄心材に押し戻された薄板部材を前記第2位置で押下して該鉄心材から分離させ、分離された薄板部材を積層する積層手段とを具備し、
前記積層手段は、前記鉄心材の移送方向に沿って複数個所に連続して設けられ、前記薄板部材の積層が各箇所で同時に行われ、
前記移送手段は、前記形成手段が前記薄板部材を形成する速さに合わせて前記鉄心材を前記第1位置に移送する第1送り手段、及び前記積層手段が前記薄板部材を積層する速さに合わせて前記鉄心材を前記第2位置に移送する第2送り手段からなり、
前記第2送り手段の前記鉄心材の送り量は、前記第2位置の数に応じて、前記第1送り手段の前記鉄心材の送り量よりも多く設定されてい
ことを特徴とする鉄心製造装置。
An iron core manufacturing apparatus for manufacturing a laminated core in which each layer is composed of a single or a plurality of thin plate members,
Transfer means for sequentially transferring a plurality of parts to be processed in the belt-shaped iron core material to the first and second positions;
Forming means for forming the thin plate member and pushing it back to the iron core material by performing predetermined processing at each processing target portion at the first position;
Laminating means for depressing the thin plate member pushed back to the iron core material at the second position to separate it from the iron core material, and laminating the separated thin plate members;
The laminating means is continuously provided at a plurality of locations along the transfer direction of the iron core material, and the lamination of the thin plate members is simultaneously performed at each location,
The transferring means includes a first feeding means for transferring the iron core material to the first position in accordance with a speed at which the forming means forms the thin plate member, and a speed at which the laminating means laminates the thin plate member. Ri Do from the second feeding means for transferring the core material in the second location combined,
Feed amount of said core material of said second feeding means, depending on the number of the second position, the iron core manufacturing characterized that you have been set larger than the feeding amount of said core material of said first feeding means apparatus.
前記薄板部材は、環状の積層鉄心を構成する円弧状部材であり、
前記積層手段は、前記分離が行われる毎に分離されて下降する円弧状部材を、先に下降して一層を構成した複数の円弧状部材の上に受け取り、該円弧状部材の周方向に所定角度だけ回転させることにより、順次下降した円弧状部材を、前記積層鉄心を構成する位置に配置することを特徴とする請求項3記載の鉄心製造装置。
The thin plate member is an arc-shaped member constituting an annular laminated iron core,
The stacking means receives the arc-shaped member that is separated and lowered every time the separation is performed on a plurality of arc-shaped members that are first lowered and constitute one layer, and is predetermined in the circumferential direction of the arc-shaped member. 4. The iron core manufacturing apparatus according to claim 3, wherein the arc-shaped members that are sequentially lowered by being rotated by an angle are arranged at positions that constitute the laminated iron core.
前記移送手段による鉄心材の送り速度は、前記第1送り手段と前記第2送り手段とで異なることを特徴とする請求項3又は4に記載の鉄心製造装置。 5. The iron core manufacturing apparatus according to claim 3 , wherein the feeding speed of the iron core material by the transferring means is different between the first feeding means and the second feeding means . 6. 前記第2送り手段の送り速度は、前記第1送り手段の送り速度より遅く、その速度差により前記鉄心材に弛みを持たせることを特徴とする請求項5に記載の鉄心製造装置。 6. The iron core manufacturing apparatus according to claim 5 , wherein the feed speed of the second feed means is slower than the feed speed of the first feed means, and the iron core material is slackened due to the speed difference .
JP2011168638A 2011-08-01 2011-08-01 Iron core manufacturing equipment Expired - Fee Related JP5735880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168638A JP5735880B2 (en) 2011-08-01 2011-08-01 Iron core manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168638A JP5735880B2 (en) 2011-08-01 2011-08-01 Iron core manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2013034294A JP2013034294A (en) 2013-02-14
JP5735880B2 true JP5735880B2 (en) 2015-06-17

Family

ID=47789710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168638A Expired - Fee Related JP5735880B2 (en) 2011-08-01 2011-08-01 Iron core manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5735880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098145A1 (en) * 2014-12-18 2016-06-23 黒田精工株式会社 Reverse holding device for forward feed molding device and forward feed molding device provided with same
EP3736062A1 (en) * 2019-05-08 2020-11-11 voestalpine Stahl GmbH Method for stamp packaging of metal parts to stacks of metal sheets
JP2022069809A (en) * 2020-10-26 2022-05-12 株式会社三井ハイテック Split type laminated iron core and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478788B2 (en) * 2000-08-25 2003-12-15 株式会社三井ハイテック Manufacturing equipment for laminated iron cores for rotors
JP4694854B2 (en) * 2005-02-08 2011-06-08 本田技研工業株式会社 Ring core manufacturing method
JP4881118B2 (en) * 2006-09-29 2012-02-22 本田技研工業株式会社 Method for manufacturing rotor core
JP2009195099A (en) * 2008-01-15 2009-08-27 Nissan Motor Co Ltd Apparatus and method for manufacturing laminated core, and laminated core

Also Published As

Publication number Publication date
JP2013034294A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2012043632A1 (en) Layered body manufacturing device and layered body manufacturing method
JP5957360B2 (en) Manufacturing method of laminated iron core
JP2017208955A (en) Method for manufacturing laminated iron core
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
TW200818661A (en) Method for manufacturing a stator core for an axial air-gap electronic motor
JP5697637B2 (en) Laminated core manufacturing method and laminated core manufacturing apparatus
JP3722539B2 (en) Manufacturing method of annular laminated iron core and progressive mold apparatus
JP2017017855A (en) Manufacturing method for laminated core
CN107107141A (en) Sequentially-fed processing method
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
JP5735880B2 (en) Iron core manufacturing equipment
US20230307966A1 (en) Split-type laminated iron core and method for manufacturing split-type laminated iron core
JPWO2018047209A1 (en) Method and apparatus for manufacturing laminated core
JP2019054727A (en) Method for manufacturing laminated iron core
JP5557691B2 (en) Iron core manufacturing method and iron core manufacturing apparatus
JP5557690B2 (en) Iron core manufacturing equipment
KR101804143B1 (en) Apparatus And Method for Manufacturing Adhesive Type Laminate Core
JP2012095370A (en) Core manufacturing method and core manufacturing device
JP5016650B2 (en) Method for manufacturing unit laminated body for annular laminated iron core
JP6316783B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP5160944B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP6251776B2 (en) Manufacturing method of laminated iron core
JP4527213B2 (en) Method for manufacturing unit laminated body for annular laminated iron core
JP4985901B2 (en) Rotating laminator
JP7466818B1 (en) Apparatus and method for manufacturing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150417

R150 Certificate of patent or registration of utility model

Ref document number: 5735880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees