JP4527213B2 - Method for manufacturing unit laminated body for annular laminated iron core - Google Patents

Method for manufacturing unit laminated body for annular laminated iron core Download PDF

Info

Publication number
JP4527213B2
JP4527213B2 JP14584999A JP14584999A JP4527213B2 JP 4527213 B2 JP4527213 B2 JP 4527213B2 JP 14584999 A JP14584999 A JP 14584999A JP 14584999 A JP14584999 A JP 14584999A JP 4527213 B2 JP4527213 B2 JP 4527213B2
Authority
JP
Japan
Prior art keywords
punching
strip steel
die
punched
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14584999A
Other languages
Japanese (ja)
Other versions
JP2000334523A (en
Inventor
寛 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP14584999A priority Critical patent/JP4527213B2/en
Publication of JP2000334523A publication Critical patent/JP2000334523A/en
Application granted granted Critical
Publication of JP4527213B2 publication Critical patent/JP4527213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Press Drives And Press Lines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、順送り金型を用いて長尺な帯状鋼板から環状鉄心を展開した形状の連結ユニット板を順次打抜き加工すると共に、打抜きした各連結ユニット板を積層状態で相互にかしめ結合してユニット積層体を製造する環状積層鉄心用ユニット積層体の製造方法に関し、例えば家電及び一般産業向けのモータ用積層形固定子の製造などに利用することができる。
【0002】
【従来の技術】
モータ用積層形固定子などの環状鉄心を製造する場合、固定子の磁極への巻線作業を容易にできることなどの理由から、環状鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板1を、所定の積み厚になる枚数分だけ順次打抜き加工すると共に、かしめ結合手段5を介して相互に連結して積層させ、図1(a)で示すようなユニット積層体2を予め製造しておき、磁極に対する巻線作業を行った後に治具を用いて各分割片3間の連結部を変形させ、図1(b)で示すような環状鉄心4にする分割鉄心片方式が採用されている。
【0003】
このようなユニット積層体2を製造する方法及び装置に関し、本件出願人は先に特開平9−216020号公報で開示されている発明を提案したが、この発明では順送り金型によって間欠送りされる長尺な帯状鋼板の送り方向に対して、各連結ユニット板1の長手方向が直交する状態で打抜き加工(以下、横列打抜きという)していた。
【0004】
【発明が解決しようとする課題】
この横列打抜きする従来技術によると、環状鉄心を展開した長さ以上の横幅を有する幅広な帯状鋼板を用い、この帯状鋼板に対して間欠送りされるピッチ毎に送り方向に沿って並列状態に連結ユニット板の打抜き加工が行われる。
【0005】
このために、通常の順送り金型装置に比べて送り方向と直交する方向に対して金型が大型化して総打抜き荷重も増大するので、特殊な専用の金型装置が必要になって設備費が増大する恐れもあり、幅広な帯状鋼板をコイル状に巻装すると重量が嵩んで、運搬の際や金型装置に装着する際における取り扱いが不便である。
【0006】
この種の金型装置では、積層した際に上下間を相互に連結するかしめ結合手段として各連結ユニット板にかしめ用突起などが予め切り起し加工されると共に、ユニット積層体1に必要な所定枚数分の打抜き加工した後の連結ユニット板1に対して、かしめ結合手段の代わりに計量穴を打抜き加工して次のユニット積層体2との分離を図る計量手段が設けられている。
【0007】
例えば、図1で示す分割片3の数が6個で各分割片毎に3個所ずつかしめ結合手段5を設けた連結ユニット板1では、このかしめ結合手段としてかしめ用突起5を横列打抜きする従来技術の場合には、18個所に(6×3=18)に突起形成用のパンチ及びダイを装着させておく必要があり、また計量手段は分割片3と同数の6個所に設けておく必要があった。
【0008】
このために、金型装置が大型化するだけではなく金型内における部品点数も多くなって複雑化し、金型装置がコストアップする恐れがあると共に、メンテナンスの点でもより多くの労力が必要になる恐れもあった。
【0009】
そこで本発明では、分割鉄心片方式による環状積層鉄心用ユニット積層体を横列打抜きで製造する先に提案した発明を更に改善し、前記した課題を解決しうる環状積層鉄心用ユニット積層体の製造方法を提案するものであって、特に先の提案による横列打抜きに対して、環状鉄心1枚分に相当する連結ユニット板を帯状鋼板の送り方向に沿った状態で打抜き加工(以下、縦列打抜きという)することによって改善を図った。
【0010】
【課題を解決するための手段】
本発明は、環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿った縦列打抜き状態で打抜き加工し、前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って1列に配列された前記順送り金型の各パンチと各ダイによって実施される。(請求項1)
【0011】
請求項1の製造方法では、連結ユニット板を帯状鋼板の送り方向に沿った縦列打抜き状態で打抜き加工することによって、帯状鋼板に対して横列打抜きする従来技術に比べて、送り方向と直交する方向に金型を小型化して総打抜き荷重も減少するので、特殊な専用の金型装置が不要になって設備費の軽減を図ることができると共に、幅広な帯状鋼板を必要としないのでコイル状に巻装した際に重量が嵩むことなく運搬の際や金型装置に装着する際における取り扱いが容易である。
【0012】
また、横列打抜きの場合には連結ユニット板を構成する各分割片に対して同時にかしめ結合手段及び計量手段を形成させる必要があったが、縦列打抜きの場合には間欠送りしながら各分割片に対して順次形成させることができるので、これらを形成するパンチ及びダイの数を大幅に削減(分割片の数−1)することが可能であり、金型の小型化と金型内における部品点数の減少によってコストダウン及びメンテナンス性の向上を図ることができる。
【0014】
請求項の製造方法では、環状鉄心を1枚ずつ打ち抜いて積層かしめする方式の順送り金型に対して、外形打抜き積層工程を実施するパンチ及びダイを連結ユニット板に適合させた構造に変更する程度の相違であるために、部品を共用させて順送り金型を安価で且つ容易に製作することが可能である。
【0015】
また、本発明は、環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿った縦列打抜き状態で打抜き加工し、前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程の順序で、前記帯状鋼板の送り方向に沿って前後2列に配列された前記順送り金型の各パンチと各ダイによって実施された後に、前列又は後列の一方の外形打ち抜き積層工程、前列又は後列の他方の外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って配列された前記順送り金型の各パンチと各ダイによって実施される。(請求項
【0016】
請求項の製造方法では、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程を前後列で同時に行って、能率良く連結ユニット板の2個取りができると共に、外形打ち抜き積層工程を前後列で同時に行う際には偏荷重を改善することができる。
【0017】
また、本発明は、環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿った縦列打抜き状態で打抜き加工し、前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の一方に配列された前記順送り金型の各パンチと各ダイによって実施された後に、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の他方に配列された前記順送り金型の各パンチと各ダイによって実施される。(請求項
【0018】
請求項の製造方法では、同様の工程を繰り返す簡単な作動によって、容易に連結ユニット板の2個取りができると共に、外形打ち抜き積層工程を前後列で同時に行う際には偏荷重を改善することができる。
【0019】
また、本発明は、環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿った縦列打抜き状態で打抜き加工し、前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の一方に配列された前記順送り金型の各パンチと各ダイと、前記パイロット穴打ち抜き工程とかしめ結合手段形成工程の間へ前列及び後列の双方に配列された計量穴打ち抜き工程の各パンチと各ダイとによって実施された後に、パイロット穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の他方に配列された前記順送り金型の各パンチと各ダイによって実施される。(請求項
【0020】
請求項の製造方法では、計量穴打ち抜き工程を一度に同時に行って、容易に連結ユニット板の2個取りができると共に、外形打ち抜き積層工程を前後列で同時に行う際には偏荷重を改善することができる。
【0021】
【発明の実施の形態】
以下に、本発明による環状積層鉄心用ユニット積層体の製造方法に付いて、その実施形態を示す添附図面に基づいて詳細に説明するが、図2は帯状鋼板6に対する打抜き工程のレイアウトを、図3は製造装置である順送り金型7における要部縦断面図をそれぞれ示し、製品の打抜きは帯状鋼板6に対して送り用パイロット穴8を打抜きするパイロット穴打抜き工程を実施した後に開始される。
【0022】
製品の打抜き加工は、第1工程(1)の計量穴打抜き工程では一枚目に積層される連結ユニット板1に対して計量穴9の打抜きを行い、第2工程(2)のかしめ結合手段形成工程では二枚目以降に積層される連結ユニット板1に対して、かしめ結合手段としてかしめ突起部5の切り起しを行い、第3工程の外形打抜き積層工程では帯状鋼板6から各連結ユニット板1の外形を抜き落とすと共に、かしめ用突起5を介して所定枚数を積層状態でかしめ結合させ、製品一ヶ分のユニット積層体2として取り出される。
【0023】
これらの打抜き工程を実施する順送り金型7は、上型7Aと下型7Bとで構成され、上型7A側には、上型ホルダー10,上型バッキングプレート11,パンチプレート12,ストリッパー本体13,ストリッパープレート14を設け、下型7Bには、下型ホルダー15,ダイプレート16,材料ガイド17,材料受け板18を設けてある。
【0024】
また、送り用パイロット穴8の打抜き及び工程(1),(2)を実施するために、上型7A側にはパイロット抜きパンチ19と計量パンチ20及び切り起しパンチ22を設け、下型7B側にはパイロット抜きダイ23と計量ダイ24及び切り起しダイ25が設けられている。
【0025】
計量パンチ20は、常時は先端部を上方へ後退させて打ち抜きを不能にする待機位置にあって、計量時毎に先端部を下方へ突出させた打抜き位置に移行させてかしめ突起部5の打ち抜きを可能にするが、このパンチ制御手段は例えば図4で示すように、スライドカム21をシリンダーや電磁石などの駆動手段26で切り換えて制御する。
【0026】
更に、工程(3)を実施するために、上型7A側にはパンチホルダー27に支持された外形抜きパンチ28を設け、下型7B側には外形抜きダイ29及びスクイズリングホルダー30に支持されたスクイズリング31を設けており、外形抜きパンチ28と外形抜きダイ29は、所定数の分割片3を帯状鋼板6の送り方向に沿って連結した状態で連結ユニット板1を打ち抜き(縦列打ち抜き)するパンチ及びダイ形状を有し、外形抜きパンチ28にはかしめ突起部5に対する押し込みピン32が装着されている。
【0027】
外形抜きパンチ28は、先端部を下方へ突出させて連結ユニット板1の打ち抜きを可能にする打抜き位置と、先端部を上方へ後退させて打ち抜きを不能にする待機位置との間を、パンチホルダー27と一体にパンチ制御手段によって切り換え作動されるが、このパンチ制御手段は例えば図5で示すように、パンチホルダー27上面のカム面に対してスライドカム33をシリンダや電磁石などの駆動手段34で切り換えて制御する。
【0028】
パンチ制御手段による外形抜きパンチ28の制御は、最初は待機位置にあって分割片3の数に応じた間欠送りが行われた後に打抜き位置に切り換え、連結ユニット板1の打ち抜きを行うように作動されるが、例えば図2の外形抜きの場合には分割片3の数が6個なので、6回毎に打抜き位置に切り換えてユニット積層体2の積層枚数に相当する回数分の打ち抜きが行われる。
【0029】
また工程(3)では、外形抜きパンチ28で外形打ち抜きされた各連結ユニット板1は外形抜きダイ29内へ順次抜き込まれるが、外形抜きダイ29の下方に連続するスクイズリング31の内径寸法は、連結ユニット板1の外径より僅かに小径に製作されており、このスクイズリング31による抵抗力を上下に隣接する連結ユニット板1相互間のかしめ結合に利用している。
【0030】
即ち、図6で示すように先に抜き込まれた連結ユニット板1はスクイズリング31の内径に支持された状態で待機し、その上に後で抜き込まれた連結ユニット板1が押し込まれると、かしめ用突起5の凸部5aが凹部5bに嵌合状態で押し込まれて両者はかしめ結合される。
【0031】
また、ユニット積層体2に必要な枚数分の打抜きが行われた後に、かしめ用突起5の代わりに計量穴9を設けた連結ユニット板1が押し込まれると、上下に隣接する連結ユニット板1相互間は分離され、先に積層状態でかしめ結合されたユニット積層体2はスクイズリング31内から順次押し出され、その下方に配置した搬出用ベルトコンベヤー35によって次工程へ移送される。
【0032】
以上の実施形態では、帯状鋼板6から各連結ユニット板1を1個取り状態(帯状鋼板6の横幅に対して1列で縦列打抜き)で打抜き加工する場合を説明したが、図7〜9で打抜き工程のレイアウトを示すように、各連結ユニット板1を2個取り状態(帯状鋼板6の横幅に対して2列で縦列打抜き)で打抜き加工することも可能である。
【0033】
図7の打抜き加工では、帯状鋼板6を間欠送りするためのパイロット穴8の打抜き工程と、帯状鋼板6から製品(ユニット積層体2)製造用の計量穴9を打ち抜く第1工程(1)及び、かしめ結合手段であるかしめ突起部5を打ち抜く第2工程(2)を、帯状鋼板6の横幅方向に対して前後2列に並行させて同時に行うと共に、第3工程(3)は縦列打抜きする外形打抜き工程(3−1,3−2)を前列と後列とに個別に配置し、連結ユニット板1A,1Bを交互に打抜きする。
【0034】
図8の打抜き加工では、パイロット穴8の打抜き工程及び製品打抜きの第1工程(1)〜第3工程(3)の全工程を、帯状鋼板6の横幅方向に対して前後2列に個別に配置させ、1サイクル毎に前列側のパイロット穴8の打抜き工程及び各工程1−1,2−1,3−1と、後列側のパイロット穴8の打抜き工程及び各工程1−2,2−2,3−2を交互に行って、連結ユニット板1A,1Bを交互に打抜きする。
【0035】
図9の打抜き加工では、第1工程(1)である計量打抜き工程のみを前列と後列とで同時に行うと共に、その他の工程は図8の場合と同様に前後2列に個別に配置させ、1サイクル毎に前列側のパイロット穴8の打抜き工程及び各工程2−1,3−1と、後列側のパイロット穴8の打抜き工程及び各工程2−2,3−2を交互に行って、連結ユニット板1A,1Bを交互に打抜きする。
【図面の簡単な説明】
【図1】本発明が実施対象とする環状積層鉄心用ユニット積層体であって、(a)はユニット積層体2を斜視図で、(b)は環状積層鉄心4を斜視図でそれぞれ示す。
【図2】本発明によるユニット積層体の製造方法を実施する打抜き工程のレイアウトであって、帯状鋼板に対して1個取り状態で縦列打抜きする第1の実施形態を示す。
【図3】本発明によるユニット積層体の製造方法を実施する製造装置であって、順送り金型における要部縦断面図を示す。
【図4】図3の順送り金型における部分説明図であって、計量穴打抜き工程におけるパンチの切り換え機構を説明する概略縦断面図を示す。
【図5】図3の順送り金型における部分説明図であって、外形打抜き積層工程におけるパンチの切り換え機構を説明する概略縦断面図を示す。
【図6】図3の順送り金型における部分説明図であって、外形打抜き積層工程における各連結ユニット板のかしめ結合を説明する概略縦断面図を示す。
【図7】本発明によるユニット積層体の製造方法を実施する打抜き工程のレイアウトであって、帯状鋼板に対して2個取り状態で縦列打抜きする第2の実施形態を示す。
【図8】本発明によるユニット積層体の製造方法を実施する打抜き工程のレイアウトであって、帯状鋼板に対して2個取り状態で縦列打抜きする第3の実施形態を示す。
【図9】本発明によるユニット積層体の製造方法を実施する打抜き工程のレイアウトであって、帯状鋼板に対して2個取り状態で縦列打抜きする第4の実施形態を示す。
【符号の説明】
1 連結ユニット板
2 ユニット積層体
3 分割片
4 環状鉄心
5 かしめ用突起(かしめ結合手段)
6 帯状鋼板
7 順送り金型
7A 上型
7B 下型
8 パイロツト穴
9 計量穴
10 上型ホルダー
11 上型バッキングプレート
12 パンチプレート
13 ストリッパーホルダー
14 ストリッパープレート
15 下型ホルダー
16 ダイプレート
17 材料ガイド
18 材料受け板
19 パイロット抜きパンチ
20 計量パンチ
21 スライドカム
22 切り起こしパンチ
23 パイロット抜きダイ
24 計量ダイ
25 切り起こしダイ
26 駆動手段(計量パンチ切換用)
27 パンチホルダー
28 外形抜きパンチ
29 外形抜きダイ
30 スクイズリングホルダー
31 スクイズリング
32 押し込みピン
33 スライドカム(外形抜きパンチ切換用)
34 駆動手段(外形抜きパンチ切換用)
35 搬出用ベルトコンベヤー
[0001]
BACKGROUND OF THE INVENTION
The present invention sequentially punches a connecting unit plate having a shape in which an annular iron core is developed from a long strip steel plate using a progressive die, and caulks and connects the punched connecting unit plates to each other in a stacked state. The present invention relates to a method for producing a unit laminate for an annular laminated iron core for producing a laminate, and can be used for producing a laminated stator for motors for home appliances and general industries, for example.
[0002]
[Prior art]
When manufacturing an annular core such as a laminated stator for motors, a predetermined number of split pieces are connected in a shape in which one annular core is expanded for reasons such as easy winding of the stator to the magnetic pole. The connected unit plates 1 are sequentially punched by the number of sheets having a predetermined stacking thickness, and are connected to each other via the caulking coupling means 5 to be stacked, so that a unit laminate 2 as shown in FIG. Is manufactured in advance, and after performing the winding work on the magnetic poles, the connecting portion between the divided pieces 3 is deformed by using a jig, and the divided core pieces as shown in FIG. The method is adopted.
[0003]
Regarding the method and apparatus for manufacturing such a unit laminate 2, the present applicant has previously proposed the invention disclosed in Japanese Patent Application Laid-Open No. 9-2116020. In the present invention, however, intermittent feeding is performed by a progressive die. Punching was performed in a state where the longitudinal direction of each connecting unit plate 1 was orthogonal to the feeding direction of the long strip steel plate (hereinafter referred to as row punching).
[0004]
[Problems to be solved by the invention]
According to this conventional technique of punching in a row, a wide strip steel plate having a width greater than or equal to the length of the annular core is used, and connected in parallel along the feed direction for each pitch intermittently fed to this strip steel plate. The unit plate is punched.
[0005]
For this reason, the die becomes larger and the total punching load increases in the direction perpendicular to the feed direction as compared with the normal progressive die device, so that a special dedicated die device is required and the equipment cost is increased. When a wide strip steel plate is wound in a coil shape, the weight increases, and handling during transportation or mounting on a mold apparatus is inconvenient.
[0006]
In this type of mold apparatus, caulking projections and the like are cut and raised in advance on each connecting unit plate as caulking coupling means for mutually connecting the upper and lower sides when laminated, and a predetermined necessary for the unit laminated body 1 The connecting unit plates 1 after the number of punches are provided with measuring means for punching the measuring holes instead of the caulking and connecting means to separate them from the next unit laminate 2.
[0007]
For example, in the connecting unit plate 1 in which the number of the divided pieces 3 shown in FIG. 1 is six and the three caulking connecting means 5 are provided for each divided piece, the caulking projections 5 are conventionally punched in a row as the caulking connecting means. In the case of the technique, it is necessary to mount punches and dies for forming protrusions at 18 locations (6 × 3 = 18), and the weighing means must be provided at 6 locations as many as the divided pieces 3. was there.
[0008]
This not only increases the size of the mold apparatus, but also increases the number of parts in the mold, complicating the mold apparatus, increasing the cost of the mold apparatus and requiring more labor in terms of maintenance. There was also a fear.
[0009]
Therefore, in the present invention, a method for manufacturing a unit laminated body for an annular laminated core that can further improve the previously proposed invention for producing a unit laminated body for an annular laminated core using a divided core piece method by row punching and solve the above-described problems. In particular, with respect to the horizontal punching according to the previous proposal, the connecting unit plate corresponding to one annular core is punched in a state along the feeding direction of the strip steel plate (hereinafter referred to as vertical punching). I tried to improve it.
[0010]
[Means for Solving the Problems]
The present invention relates to a connecting unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is developed, and the number of sheets having a predetermined thickness from a long strip steel plate that is intermittently fed using a progressive die. In the outer punching and laminating step by the progressive die, the unit laminate is manufactured by sequentially punching for each of the divided pieces, and interconnected and stacked through caulking and coupling means. After intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connection unit plate is punched in a state of tandem punching along the feeding direction of the strip steel plate, and the connection unit plate The punching process is performed in the order of pilot hole punching step, measuring hole punching step, caulking coupling means forming step, and outer shape punching lamination step, and arranged in a line along the feeding direction of the strip steel plate. It is carried out by each punch and each die of the feed die. (Claim 1)
[0011]
In the manufacturing method according to claim 1, the connecting unit plate is punched in a state of vertical punching along the feeding direction of the strip steel plate, so that the direction perpendicular to the feeding direction is compared with the prior art in which the strip steel plate is punched in a row. Since the die is downsized and the total punching load is reduced, a special dedicated mold device is not required, reducing the equipment cost, and a wide strip steel plate is not required. When wound, it does not increase in weight and is easy to handle during transportation or when mounted on a mold apparatus.
[0012]
Further, in the case of row punching, it is necessary to simultaneously form the caulking coupling means and the weighing means for each divided piece constituting the connecting unit plate. The number of punches and dies that form these can be greatly reduced (number of divided pieces minus 1), and the size of the mold and the number of parts in the mold can be reduced. By reducing the cost, the cost can be reduced and the maintainability can be improved.
[0014]
According to the manufacturing method of claim 1 , the punch and die for carrying out the outer shape punching and stacking process are changed to a structure adapted to the connecting unit plate for the progressive die that punches and stacks the annular iron cores one by one. Because of the difference in degree, it is possible to easily produce a progressive die by sharing parts.
[0015]
In addition, the present invention provides a connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is expanded from a long strip steel plate intermittently fed using a progressive die to a predetermined stacking thickness. A method of manufacturing a unit laminated body that is sequentially punched for each of the divided pieces by a certain number and is connected and laminated through caulking coupling means, and in the outer punching and laminating step by the progressive die Then, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plate is punched in a column punched state along the feeding direction of the strip steel plate, and the connecting unit The punching of the plate is performed in the order of the progressive molds arranged in two front and rear rows along the feed direction of the strip steel plate in the order of pilot hole punching step, measuring hole punching step, caulking coupling means forming step. After being executed by the punch and each die, the progressive feed arranged in the feed direction of the strip steel plate in the order of one outer punching lamination step in the front row or the rear row and the other outer punching lamination step in the front row or the rear row Performed by each punch and each die of the mold. (Claim 2 )
[0016]
In the manufacturing method of claim 2 , the pilot hole punching step, the measurement hole punching step, and the caulking coupling means forming step are simultaneously performed in the front and rear rows, so that two connecting unit plates can be efficiently removed, and the outer shape punching and laminating step is performed. Uneven load can be improved when done simultaneously in a row.
[0017]
In addition, the present invention provides a connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is expanded from a long strip steel plate intermittently fed using a progressive die to a predetermined stacking thickness. A method of manufacturing a unit laminated body that is sequentially punched for each of the divided pieces by a certain number and is connected and laminated through caulking coupling means, and in the outer punching and laminating step by the progressive die Then, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plate is punched in a column punched state along the feeding direction of the strip steel plate, and the connecting unit The punching of the plate is performed in the order of the pilot hole punching process, the measurement hole punching process, the caulking coupling means forming process, and the outer punching lamination process in the front row or the rear row along the feeding direction of the strip steel plates. The strip steel plates are fed in the order of the pilot hole punching step, the measuring hole punching step, the caulking coupling means forming step, and the outer shape punching laminating step after being executed by each punch and each die of the progressive die arranged in the direction. It is carried out by each punch and each die of the progressive die arranged in the other of the front row or the rear row along the direction. (Claim 3 )
[0018]
In the manufacturing method according to claim 3 , two connecting unit plates can be easily taken by a simple operation that repeats the same process, and the uneven load is improved when the outer shape punching and stacking process is simultaneously performed in the front and rear rows. Can do.
[0019]
In addition, the present invention provides a connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is expanded from a long strip steel plate intermittently fed using a progressive die to a predetermined stacking thickness. A method of manufacturing a unit laminated body that is sequentially punched for each of the divided pieces by a certain number and is connected and laminated through caulking coupling means, and in the outer punching and laminating step by the progressive die Then, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plate is punched in a column punched state along the feeding direction of the strip steel plate, and the connecting unit The punching of the plate is performed in the order of the pilot hole punching step, the caulking coupling means forming step, and the outer shape punching lamination step, and arranged in one of the front row or the rear row along the feeding direction of the strip steel plate. After each punch and die of the feed mold and each punch and die of the measuring hole punching step arranged in both the front row and the rear row during the pilot hole punching step and the caulking coupling means forming step , In the order of pilot hole punching step, caulking coupling means forming step, outer shape punching lamination step, performed by each punch and each die of the progressive die arranged in the other of the front row or the rear row along the feeding direction of the strip steel plate Is done. (Claim 4 )
[0020]
In the manufacturing method of claim 4 , the measuring hole punching process is simultaneously performed at the same time so that two of the connecting unit plates can be easily taken, and when the outer punching and stacking process is simultaneously performed in the front and rear rows, the uneven load is improved. be able to.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the unit laminated body for the annular laminated iron core according to the present invention will be described in detail with reference to the accompanying drawings showing the embodiment. FIG. 2 shows the layout of the punching process for the strip steel plate 6. 3 is a longitudinal sectional view of the main part of a progressive die 7 as a manufacturing apparatus, and product punching is started after a pilot hole punching process for punching a feed pilot hole 8 in a strip steel plate 6 is performed.
[0022]
In the punching process of the product, in the measuring hole punching process of the first step (1), the measuring hole 9 is punched into the connecting unit plate 1 laminated on the first sheet, and the caulking and coupling means of the second step (2). In the forming process, the caulking projections 5 are cut and raised as the caulking coupling means for the connecting unit plates 1 that are laminated after the second sheet. In the outer punching and laminating process in the third step, each connecting unit is separated from the strip steel plate 6. The outer shape of the plate 1 is pulled out, and a predetermined number of sheets are caulked and joined through the caulking projections 5 in a laminated state to be taken out as a unit laminated body 2 for one product.
[0023]
A progressive die 7 for carrying out these punching steps is composed of an upper die 7A and a lower die 7B. On the upper die 7A side, an upper die holder 10, an upper die backing plate 11, a punch plate 12, and a stripper body 13 are provided. , A stripper plate 14 is provided, and the lower die 7B is provided with a lower die holder 15, a die plate 16, a material guide 17, and a material receiving plate 18.
[0024]
Further, in order to perform the punching of the feed pilot hole 8 and the steps (1) and (2), the upper die 7A is provided with a pilot punch 19, a measuring punch 20 and a cutting punch 22 and a lower die 7B. On the side, a pilot punching die 23, a measuring die 24 and a cutting and raising die 25 are provided.
[0025]
The measuring punch 20 is normally in a standby position in which the tip portion is retracted upward to make punching impossible, and is transferred to a punching position in which the tip portion protrudes downward at every weighing to punch the caulking projection portion 5. For example, as shown in FIG. 4, this punch control means controls the slide cam 21 by switching it with a driving means 26 such as a cylinder or an electromagnet.
[0026]
Further, in order to carry out step (3), an outer punch 28 supported by a punch holder 27 is provided on the upper die 7A side, and supported by an outer die 29 and a squeeze ring holder 30 on the lower die 7B side. The squeeze ring 31 is provided, and the outer shape punching punch 28 and the outer shape punching die 29 punch the connecting unit plate 1 in a state in which a predetermined number of the divided pieces 3 are connected along the feeding direction of the strip steel plate 6 (vertical punching). The outer punching punch 28 is provided with a pressing pin 32 for the caulking projection 5.
[0027]
The outer punch 28 has a punch holder between a punching position where the tip portion protrudes downward and the connecting unit plate 1 can be punched, and a standby position where the tip portion is retracted upward and punching is impossible. 27, the punch control means is switched by a punch control means. As shown in FIG. 5, for example, the punch control means moves the slide cam 33 against the cam surface on the upper surface of the punch holder 27 by a drive means 34 such as a cylinder or an electromagnet. Switch and control.
[0028]
Control of the outer shape punch 28 by the punch control means is initially performed at the standby position and after the intermittent feeding according to the number of the divided pieces 3 is performed, the punching position is switched to the punching position and the connecting unit plate 1 is punched. However, for example, in the case of the outer shape of FIG. 2, the number of the divided pieces 3 is 6, so that the punching position is switched every 6 times and punching is performed for the number of times corresponding to the number of stacked unit stacked bodies 2. .
[0029]
In the step (3), each connection unit plate 1 punched out by the punching punch 28 is sequentially drawn into the punching die 29. The inner diameter dimension of the squeeze ring 31 continuous below the punching die 29 is as follows. The squeeze ring 31 is used for caulking and coupling between the connecting unit plates 1 adjacent to each other.
[0030]
That is, as shown in FIG. 6, the connection unit plate 1 that has been extracted first stands by while being supported by the inner diameter of the squeeze ring 31, and when the connection unit plate 1 that has been extracted later is pushed onto it. The convex portion 5a of the caulking projection 5 is pushed into the concave portion 5b in a fitted state, and both are caulked and joined.
[0031]
When the connecting unit plate 1 provided with the measurement hole 9 is pushed in instead of the caulking projection 5 after the necessary number of punches are punched in the unit laminate 2, the connecting unit plates 1 adjacent to each other vertically The unit laminated bodies 2 separated from each other and caulked and joined in the laminated state are sequentially pushed out from the inside of the squeeze ring 31 and transferred to the next process by the carry-out belt conveyor 35 disposed below the unit laminated body 2.
[0032]
Although the above embodiment demonstrated the case where it cuts by one piece of each connection unit board 1 from the strip | belt-shaped steel plate 6 in the state (one row | line | column punching with respect to the horizontal width of the strip | belt-shaped steel plate 6), FIG. As shown in the layout of the punching process, it is possible to punch the connection unit plates 1 in a state where two of the connecting unit plates 1 are taken (two rows are vertically punched with respect to the lateral width of the strip steel plate 6).
[0033]
In the punching process of FIG. 7, a first step (1) of punching a pilot hole 8 for intermittently feeding the strip steel plate 6, a punching hole 9 for manufacturing a product (unit laminate 2) from the strip steel plate 6, and The second step (2) of punching the caulking projection 5 as the caulking connecting means is simultaneously performed in parallel with the front and rear two rows in the lateral width direction of the strip steel plate 6, and the third step (3) is punched in the vertical direction. The outer shape punching steps (3-1, 3-2) are individually arranged in the front row and the rear row, and the connecting unit plates 1A, 1B are alternately punched.
[0034]
In the punching process of FIG. 8, all the processes of the punching process of the pilot hole 8 and the first process (1) to the third process (3) of product punching are individually performed in two rows in the front and rear direction with respect to the lateral width direction of the strip steel plate 6. The first row pilot hole 8 punching step and each step 1-1, 2-1, 3-1 and the rear row pilot hole 8 punching step and each step 1-2, 2- 2, 3-2 are alternately performed, and the connecting unit plates 1A and 1B are alternately punched.
[0035]
In the punching process of FIG. 9, only the weighing punching process, which is the first step (1), is simultaneously performed in the front row and the rear row, and the other steps are individually arranged in two front and rear rows as in the case of FIG. For each cycle, the front row pilot hole 8 punching step and steps 2-1 and 3-1 and the rear row pilot hole 8 punching step and steps 2-2 and 3-2 are alternately performed and connected. Unit plates 1A and 1B are punched alternately.
[Brief description of the drawings]
1A and 1B show a unit laminated body for an annular laminated core to be implemented by the present invention, in which FIG. 1A is a perspective view of a unit laminated body 2 and FIG. 1B is a perspective view of an annular laminated iron core 4;
FIG. 2 is a layout of a punching process for carrying out a method for manufacturing a unit laminate according to the present invention, and shows a first embodiment in which a strip-shaped steel sheet is punched in a single column.
FIG. 3 is a production apparatus for carrying out a method for producing a unit laminate according to the present invention, and shows a longitudinal sectional view of an essential part of a progressive die.
4 is a partial explanatory view of the progressive die shown in FIG. 3, showing a schematic longitudinal sectional view for explaining a punch switching mechanism in a measuring hole punching step. FIG.
5 is a partial explanatory view of the progressive die shown in FIG. 3, showing a schematic longitudinal sectional view for explaining a punch switching mechanism in the outer shape punching and stacking step. FIG.
6 is a partial explanatory view of the progressive die shown in FIG. 3, showing a schematic longitudinal sectional view for explaining the caulking and joining of each connecting unit plate in the outer shape punching and stacking step.
FIG. 7 is a layout of a punching process for carrying out the method for manufacturing a unit laminate according to the present invention, and shows a second embodiment in which two steel strips are punched in series.
FIG. 8 is a layout of a punching process for carrying out the method for manufacturing a unit laminate according to the present invention, and shows a third embodiment in which two strips are punched in series in a stripped state.
FIG. 9 is a layout of a punching process for carrying out the method for manufacturing a unit laminate according to the present invention, and shows a fourth embodiment in which two steel strips are punched in a column.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Connection unit board 2 Unit laminated body 3 Dividing piece 4 Annular iron core 5 Caulking protrusion (caulking coupling means)
6 Strip steel plate 7 Progressive die 7A Upper die 7B Lower die 8 Pilot hole 9 Measuring hole 10 Upper die holder 11 Upper die backing plate 12 Punch plate 13 Stripper holder 14 Stripper plate 15 Lower die holder 16 Die plate 17 Material guide 18 Material receiver 18 Plate 19 Pilot punch 20 Metering punch 21 Slide cam 22 Cut and raise punch 23 Pilot punch die 24 Weighing die 25 Cut and raise die 26 Driving means (for measuring punch switching)
27 Punch holder 28 External punch 29 External punch die 30 Squeeze ring holder 31 Squeeze ring 32 Push pin 33 Slide cam (for external punch switching)
34 Drive means (for punching outside punch)
35 Belt conveyor for unloading

Claims (4)

環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、
前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿って縦列打抜きし、前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って1列に配列された前記順送り金型の各パンチと各ダイによって実施されることを特徴とした環状積層鉄心用ユニット積層体の製造方法。
The connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is developed is used for each of the number of sheets having a predetermined thickness from a long strip steel plate intermittently fed using a progressive die. It is a manufacturing method of a unit laminated body that is sequentially punched for each divided piece and is connected to each other via a caulking coupling means and laminated.
In the outer shape punching and laminating step by the progressive die, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plates are arranged in a row along the feeding direction of the strip steel plates. Punching and punching of the connecting unit plates are arranged in a line along the feeding direction of the strip steel plates in the order of pilot hole punching step, measuring hole punching step, caulking coupling means forming step, and external punching lamination step. Furthermore , the manufacturing method of the unit laminated body for cyclic | annular laminated iron cores implemented by each punch and each die of the said progressive die .
環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、
前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿って縦列打抜きし、
前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程の順序で、前記帯状鋼板の送り方向に沿って前後2列に配列された前記順送り金型の各パンチと各ダイによって実施された後に、前列又は後列の一方の外形打ち抜き積層工程、前列又は後列の他方の外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って配列された前記順送り金型の各パンチと各ダイによって実施されることを特徴とした環状積層鉄心用ユニット積層体の製造方法。
The connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is developed is used for each of the number of sheets having a predetermined thickness from a long strip steel plate intermittently fed using a progressive die. It is a manufacturing method of a unit laminated body that is sequentially punched for each divided piece and is connected to each other via a caulking coupling means and laminated.
In the outer shape punching and laminating step by the progressive die, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plates are arranged in a row along the feeding direction of the strip steel plates. Punched ,
The connecting unit plate is punched in the order of a pilot hole punching step, a measuring hole punching step, and a caulking coupling means forming step in each of the progressive molds arranged in two rows along the feed direction of the strip steel plate. After being executed by the punch and each die, the progressive feed arranged in the feed direction of the strip steel plate in the order of one outer punching lamination step in the front row or the rear row and the other outer punching lamination step in the front row or the rear row The manufacturing method of the unit laminated body for cyclic | annular laminated iron cores implemented by each punch and each die of a type | mold .
環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、
前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿って縦列打抜きし、
前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の一方に配列された前記順送り金型の各パンチと各ダイによって実施された後に、パイロット穴打ち抜き工程、計量穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の他方に配列された前記順送り金型の各パンチと各ダイによって実施されることを特徴とした環状積層鉄心用ユニット積層体の製造方法。
The connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is developed is used for each of the number of sheets having a predetermined thickness from a long strip steel plate intermittently fed using a progressive die. It is a manufacturing method of a unit laminated body that is sequentially punched for each divided piece and is connected to each other via a caulking coupling means and laminated.
In the outer shape punching and laminating step by the progressive die, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plates are arranged in a row along the feeding direction of the strip steel plates. Punched ,
The connecting unit plate is punched in the order of pilot hole punching step, measuring hole punching step, caulking coupling means forming step, outer shape punching lamination step, and arranged in one of the front row or the rear row along the feeding direction of the strip steel plate. After being carried out by each punch and each die of the progressive die, the pilot hole punching step, the metering hole punching step, the caulking coupling means forming step, and the outer shape punching laminating step are performed in the order along the feeding direction of the strip steel plate. The manufacturing method of the unit laminated body for cyclic | annular laminated iron cores implemented by each punch and each die of the said progressive metal mold | die arranged in the other of the front row or the back row .
環状積層鉄心1枚分を展開した形状で所定数の分割片を連結した連結ユニット板を、順送り金型を用いて間欠送りした長尺な帯状鋼板から所定の積み厚になる枚数分だけ前記各分割片毎に順次打抜き加工すると共に、かしめ結合手段を介して相互に連結して積層させたユニット積層体の製造方法であって、
前記順送り金型による外形打抜き積層工程において、前記環状積層鉄心1枚分の前記分割片の数に応じた間欠送りが行われた後に、前記連結ユニット板を前記帯状鋼板の送り方向に沿って縦列打抜きし、
前記連結ユニット板の打抜き加工は、パイロット穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の一方に配列された前記順送り金型の各パンチと各ダイと、前記パイロット穴打ち抜き工程とかしめ結合手段形成工程の間へ前列及び後列の双方に配列された計量穴打ち抜き工程の各パンチと各ダイとによって実施された後に、パイロット穴打ち抜き工程、かしめ結合手段形成工程、外形打ち抜き積層工程の順序で、前記帯状鋼板の送り方向に沿って前列又は後列の他方に配列された前記順送り金型の各パンチと各ダイによって実施されることを特徴とした環状積層鉄心用ユニット積層体の製造方法。
The connection unit plate in which a predetermined number of divided pieces are connected in a shape in which one annular laminated iron core is developed is used for each of the number of sheets having a predetermined thickness from a long strip steel plate intermittently fed using a progressive die. It is a manufacturing method of a unit laminated body that is sequentially punched for each divided piece and is connected to each other via a caulking coupling means and laminated.
In the outer shape punching and laminating step by the progressive die, after the intermittent feeding according to the number of the divided pieces for one annular laminated iron core is performed, the connecting unit plates are arranged in a row along the feeding direction of the strip steel plates. Punched ,
The connecting unit plate is punched in the order of a pilot hole punching step, a caulking coupling means forming step, and an outer shape punching and laminating step, and is arranged in one of the front row and the rear row along the feeding direction of the strip steel plate. Each of the punches and dies, and the pilot holes after each of the punches and dies of the measuring hole punching step arranged in both the front row and the rear row between the pilot hole punching step and the caulking coupling means forming step, It is carried out by each punch and each die of the progressive die arranged in the other of the front row or the rear row along the feeding direction of the strip steel plate in the order of the punching step, the caulking joining means forming step, and the outer shape punching lamination step. The manufacturing method of the unit laminated body for cyclic | annular laminated iron cores characterized by these.
JP14584999A 1999-05-26 1999-05-26 Method for manufacturing unit laminated body for annular laminated iron core Expired - Lifetime JP4527213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14584999A JP4527213B2 (en) 1999-05-26 1999-05-26 Method for manufacturing unit laminated body for annular laminated iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14584999A JP4527213B2 (en) 1999-05-26 1999-05-26 Method for manufacturing unit laminated body for annular laminated iron core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009230387A Division JP5016650B2 (en) 2009-10-02 2009-10-02 Method for manufacturing unit laminated body for annular laminated iron core

Publications (2)

Publication Number Publication Date
JP2000334523A JP2000334523A (en) 2000-12-05
JP4527213B2 true JP4527213B2 (en) 2010-08-18

Family

ID=15394526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14584999A Expired - Lifetime JP4527213B2 (en) 1999-05-26 1999-05-26 Method for manufacturing unit laminated body for annular laminated iron core

Country Status (1)

Country Link
JP (1) JP4527213B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095676A1 (en) * 2003-04-18 2004-11-04 Aisin Aw Co. Ltd. Motor production line and method of controlling the same
JP4330420B2 (en) 2003-10-10 2009-09-16 株式会社三井ハイテック Iron core manufacturing method and iron core manufacturing apparatus
KR100755260B1 (en) * 2006-10-26 2007-09-05 김용우 Manufacturing methed of expansion joint
JP7551171B2 (en) 2023-02-14 2024-09-17 大垣精工株式会社 Laminated steel sheet manufacturing apparatus and laminated steel sheet manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264548A (en) * 1988-04-11 1989-10-20 Toshiba Corp Manufacture of annular core
JPH07222408A (en) * 1994-02-03 1995-08-18 Nippon Steel Corp Manufacture of armature or field magnet of motor
JPH0998545A (en) * 1995-09-29 1997-04-08 Mitsubishi Electric Corp Motor-driven blower and its manufacture
JPH09216020A (en) * 1996-02-09 1997-08-19 Kuroda Precision Ind Ltd Manufacture of annular laminated iron core and progressive die
JPH1052006A (en) * 1996-07-26 1998-02-20 Mitsui High Tec Inc Manufacture of laminated iron core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264548A (en) * 1988-04-11 1989-10-20 Toshiba Corp Manufacture of annular core
JPH07222408A (en) * 1994-02-03 1995-08-18 Nippon Steel Corp Manufacture of armature or field magnet of motor
JPH0998545A (en) * 1995-09-29 1997-04-08 Mitsubishi Electric Corp Motor-driven blower and its manufacture
JPH09216020A (en) * 1996-02-09 1997-08-19 Kuroda Precision Ind Ltd Manufacture of annular laminated iron core and progressive die
JPH1052006A (en) * 1996-07-26 1998-02-20 Mitsui High Tec Inc Manufacture of laminated iron core

Also Published As

Publication number Publication date
JP2000334523A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
JP5802818B1 (en) Progressive processing method
CN112366905B (en) Manufacturing process of motor stator with locally separated tooth yoke
JP3722539B2 (en) Manufacturing method of annular laminated iron core and progressive mold apparatus
US10298103B2 (en) Manufacturing method of laminated core and manufacturing device of laminated core
JP4527213B2 (en) Method for manufacturing unit laminated body for annular laminated iron core
JP5016650B2 (en) Method for manufacturing unit laminated body for annular laminated iron core
JP6780905B1 (en) Laminated iron core manufacturing method and laminated iron core manufacturing equipment for rotary electric machines
CN109672305B (en) Method for manufacturing laminated iron core
JP6392089B2 (en) Punching method, punching apparatus, and method for manufacturing laminated iron core
JP7292348B2 (en) LAMINATED CORE MANUFACTURING METHOD AND LAMINATED CORE MANUFACTURING APPARATUS
JP5094086B2 (en) Manufacturing method of laminated iron core
JP3497911B2 (en) Method for manufacturing laminated iron core for motor and mold device
JP5735880B2 (en) Iron core manufacturing equipment
JP6899873B2 (en) Laminated iron core manufacturing method and laminated iron core manufacturing equipment for rotary electric machines
JPH04117153A (en) Manufacture of laminated core
JP7154264B2 (en) CORE ELEMENT MANUFACTURING METHOD AND MANUFACTURING APPARATUS
KR20190051165A (en) Apparatus for Manufacturing Laminated Core by Adhesion with Easy Separation of Cores
JP2004009128A (en) Laminated core manufacturing method and manufacturing apparatus therefor
JP2697256B2 (en) Laminated core and method of manufacturing the same
JP6063533B2 (en) Progressive processing method
JP6010670B2 (en) Progressive processing method
JP3958529B2 (en) Production line and double processing press
JPH11179466A (en) Production of hinge through automatic order feed
JP4329239B2 (en) Manufacturing method of laminate
JP4300402B2 (en) Production system for laminated molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term