WO2023238296A1 - Electric power conversion device, motor drive device, and refrigeration cycle application apparatus - Google Patents

Electric power conversion device, motor drive device, and refrigeration cycle application apparatus Download PDF

Info

Publication number
WO2023238296A1
WO2023238296A1 PCT/JP2022/023172 JP2022023172W WO2023238296A1 WO 2023238296 A1 WO2023238296 A1 WO 2023238296A1 JP 2022023172 W JP2022023172 W JP 2022023172W WO 2023238296 A1 WO2023238296 A1 WO 2023238296A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
waveform shape
waveform
conversion device
power conversion
Prior art date
Application number
PCT/JP2022/023172
Other languages
French (fr)
Japanese (ja)
Inventor
遥 松尾
知宏 沓木
貴昭 ▲高▼原
浩一 有澤
泰章 古庄
亮祐 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/023172 priority Critical patent/WO2023238296A1/en
Publication of WO2023238296A1 publication Critical patent/WO2023238296A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that performs power conversion.
  • the switching speed of a switching element has been changed by switching and connecting gate resistors with different gate resistance values to the switching element.
  • Patent Document 1 in an inverter control device including an inverter main circuit having a plurality of switching elements, when changing the gate drive waveform of the switching element, the gate resistance connected to the switching element is changed using a switch.
  • a technique for switching to a gate resistance with a gate resistance value has been disclosed.
  • a switch is used to switch the gate resistance connected to the switching element. Therefore, in order to increase the number of types of gate drive waveforms, it is necessary to use a large number of gate resistors and switches, resulting in an increase in circuit scale and substrate area.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device that can change the switching speed of a switching element while suppressing an increase in circuit scale and substrate area.
  • a power conversion device includes an inverter having a plurality of switching elements housed in a semiconductor package, and supplies power to a motor that drives a load by the inverter. .
  • the semiconductor package is provided with a heat sink.
  • the power conversion device includes a waveform shape changing section that can change the waveform shape of a switching waveform of at least one switching element among the plurality of switching elements.
  • the power conversion device includes a state quantity detection unit that detects a state quantity indicating the operating state of the power conversion device, and a waveform shape changing unit that changes the switching waveform of the switching element according to the state quantity detected by the state quantity detection unit.
  • the device includes a waveform shape control signal output unit that sets the waveform shape of the switching waveform of the switching element when changing the waveform shape, and outputs a control signal indicating the set waveform shape.
  • the power conversion device According to the power conversion device according to the present disclosure, it is possible to change the switching speed of the switching element while suppressing an increase in circuit scale and substrate area.
  • Diagram showing an example of the relationship between noise and loss generated in general switching elements The first diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to the first embodiment.
  • the first diagram showing the relationship between the gate current output by the waveform shape changing unit and the gate voltage indicating the rising speed of the switching element in the power conversion device according to the first embodiment.
  • a second diagram showing the relationship between the gate current output by the waveform shape changing unit and the gate voltage indicating the rising speed of the switching element in the power conversion device according to the first embodiment.
  • Flowchart used to explain the operation of changing the waveform shape of the switching waveform of the switching element in the power conversion device according to Embodiment 1 Diagram used to explain the first loss line defined in the power conversion device according to Embodiment 1 Diagram used to explain the first loss line and second loss line defined in the power conversion device according to Embodiment 1
  • Fourth diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to Embodiment 1 A diagram showing changes in switching characteristics under the two operating conditions shown in FIG.
  • a diagram showing a configuration example of a power conversion device according to Embodiment 2 A diagram used to explain control for changing the waveform shape of a switching waveform of a switching element in the power conversion device according to Embodiment 3.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 1 according to the first embodiment.
  • Power conversion device 1 is connected to commercial power source 110 and motor 314.
  • the power conversion device 1 converts first AC power based on a power supply voltage supplied from a commercial power source 110 into second AC power having a desired amplitude and phase, and supplies the second AC power to the motor 314.
  • the commercial power source 110 is a three-phase AC power source in the example of FIG. 1, it may be a single-phase AC power source.
  • the power converter 1 includes a rectifier 130, state quantity detectors 501, 502, 505, and 506, a capacitor 210, an inverter 310, and a controller 400. Note that the power conversion device 1 and the motor 314 constitute a motor drive device 2.
  • the rectifying section 130 includes, for example, a bridge circuit composed of four rectifying elements (not shown) and a reactor.
  • the rectifier 130 rectifies the AC voltage of the first AC power supplied from the commercial power source 110 and converts it into DC power.
  • the rectifier 130 may include a boost chopper circuit or the like.
  • the capacitor 210 is connected to the output end of the rectifier 130 and smoothes the DC power converted by the rectifier 130.
  • the capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like. Note that the power converter 1 only needs to be able to supply DC power to the inverter 310, so the commercial power supply 110, rectifier 130, and capacitor 210 may be replaced with a DC power supply, a battery, or the like.
  • the state quantity detection unit 501 detects a state quantity indicating the operating state of the power conversion device 1.
  • the state quantity detection unit 501 detects, for example, the voltage value of the DC power supplied from the capacitor 210 to the inverter 310, the current value of the DC power supplied from the capacitor 210 to the inverter 310, and the like.
  • the inverter 310 is a power converter connected to both ends of the capacitor 210.
  • the inverter 310 includes switching elements 311a to 311f, which are semiconductor elements, and freewheeling diodes 312a to 312f. These switching elements 311a to 311f and free wheel diodes 312a to 312f are housed in a semiconductor package 342.
  • the semiconductor package 342 or the substrate on which the semiconductor package 342 is mounted is provided with a heat sink for cooling the switching elements 311a to 311f and the free wheel diodes 312a to 312f.
  • Examples of the heat radiator include a heat sink (HS), a refrigerant cooler, and the like.
  • a refrigerant cooler is a device that is equipped with a refrigerant circuit, such as an air conditioner, where the refrigerant piping that is part of the refrigerant circuit passes near the circuit board, and is mounted on the circuit board using refrigerant piping made of a thermally conductive material. It lowers the temperature of the element.
  • a refrigerant circuit such as an air conditioner
  • the inverter 310 turns on and off the switching elements 311a to 311f under the control of the control unit 400 and converts the DC power output from the rectifier 130 and the capacitor 210 into second AC power having a desired amplitude and phase. AC power is generated and output to the motor 314.
  • the switching elements 311a to 311f are, for example, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Tr). transistors), bipolar transistors, etc., but are not limited to these.
  • the circuit configuration of the inverter 310 is not particularly limited, and may be a full bridge circuit, a single-phase bridge circuit, a half bridge circuit, or the like.
  • the inverter 310 includes a waveform shape changing section 340 that can change the waveform shape of the switching waveforms of the switching elements 311a to 311f.
  • the waveform shape changing section 340 can output two or more waveform shapes as the waveform shapes of the switching waveforms of the switching elements 311a to 311f.
  • the waveform shape changing unit 340 is configured to be able to change the waveform shape of the switching waveform of the switching elements 311a to 311f, but the waveform shape of the switching waveform of at least one switching element among the switching elements 311a to 311f is The shape can be changed.
  • the inverter 310 may be configured to include a waveform shape changing section 340 for each of the switching elements 311a to 311f.
  • Waveform shape changing section 340 may be a component located outside of inverter 310. The detailed operation of the waveform shape changing section 340 will be described later.
  • the state quantity detection unit 502 detects a state quantity indicating the operating state of the power conversion device 1.
  • the state quantity detection unit 502 detects, for example, the voltage value of the second AC power supplied from the inverter 310 to the motor 314, which is the load, and the current value of the second AC power, which is supplied from the inverter 310 to the motor 314, which is the load. Detect etc.
  • the state quantity detection unit 505 detects a state quantity indicating the operating state of the power conversion device 1.
  • the state quantity detection unit 505 detects, for example, the current value of the DC power supplied from the capacitor 210 to the inverter 310.
  • the state quantity detection unit 506 detects a state quantity indicating the operating state of the power conversion device 1.
  • the state quantity detection unit 506 detects, for example, current flowing through the switching elements 311b, 311d, and 311f.
  • the control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506, and controls the inverter 310 based on the obtained state quantities. The operation is controlled, specifically, the on/off of the switching elements 311a to 311f of the inverter 310 is controlled.
  • the control section 400 includes a basic pulse generation section 410 and a waveform shape control signal output section 420.
  • the basic pulse generation unit 410 calculates a duty ratio according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506, and also performs basic pulse generation for controlling the operation of the switching elements 311a to 311f of the inverter 310. Generate a pulse.
  • the basic pulse is, for example, a PWM (Pulse Width Modulation) signal having a duty ratio according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506.
  • the basic pulse generation section 410 outputs basic pulses for controlling the operations of the switching elements 311a to 311f of the inverter 310 to the waveform shape control signal output section 420.
  • the waveform shape control signal output unit 420 changes the switching waveforms of the switching elements 311a to 311f in the waveform shape changing unit 340 of the inverter 310 according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506.
  • the waveform shape of the switching waveform of the switching elements 311a to 311f is set, and a control signal indicating the set waveform shape is output.
  • the waveform shape control signal output unit 420 turns on and off the switching elements 311a to 311f based on the basic pulse generated by the basic pulse generation unit 410 for controlling the operation of the switching elements 311a to 311f of the inverter 310.
  • the waveform shape changing unit 340 of the inverter 310 controls the magnitude of the drive signal output to the switching elements 311a to 311f and the timing of outputting the drive signal in order to actually drive the switching elements 311a to 311f.
  • the waveform shape control signal output section 420 outputs a control signal for controlling the operation of the waveform shape modification section 340 to the waveform shape modification section 340 .
  • the control unit 400 performs waveform shape control for each waveform shape changer 340.
  • a configuration including a signal output section 420 that is, a configuration including six waveform shape control signal output sections 420 may be used.
  • the waveform shape control signal output section 420 includes a setting section 421, as shown in FIG. The specific operations performed by the setting unit 421 will be described later.
  • control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506 from the state quantity detection units 501, 502, 505, and 506, and determines the acquired state.
  • the operation of the inverter 310 is controlled based on the amount, the present invention is not limited thereto.
  • the control unit 400 can control the operation of the inverter 310 based on the state quantity acquired from at least one state quantity detection unit among the state quantity detection units 501, 502, 505, and 506.
  • the basic pulse generation unit 410 and the waveform shape control signal output unit 420 both operate based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506.
  • the functions of the basic pulse generation section 410 and the waveform shape control signal output section 420 may be combined into one component.
  • the motor 314 is a load connected to the power converter 1.
  • the motor 314 is, for example, a motor for driving a compressor.
  • the motor 314 rotates according to the amplitude and phase of the second AC power supplied from the inverter 310, and performs a compression operation.
  • the load torque of the motor 314 that drives the compressor can often be regarded as a constant torque load.
  • the motor 314 may have a Y-connection, a ⁇ -connection, or a specification in which the Y-connection and the ⁇ -connection can be switched for motor windings (not shown).
  • the motor 314 is supplied with power for restraint energization supplied from the inverter 310, and heats the liquid refrigerant stagnant inside the compressor.
  • the load connected to the power conversion device 1 is not limited to the motor 314 for driving the compressor, but may be a fan motor or a motor included in a hand dryer. Further, the load connected to the power converter 1 is not limited to the motor 314, and may be a load other than the motor 314.
  • the power conversion device 1 can change the waveform shapes of the switching waveforms of the switching elements 311a to 311f of the inverter 310 using the waveform shape control signal output section 420 and the waveform shape changing section 340. I can do it. Specifically, the power conversion device 1 can change the switching speed, delay time, etc. when the switching elements 311a to 311f of the inverter 310 perform a switching operation.
  • FIG. 2 is a diagram showing an example of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of switching elements 311a to 311f of inverter 310 is slowed in power converter 1 according to the first embodiment.
  • FIG. 3 is a diagram showing examples of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of switching elements 311a to 311f of inverter 310 is increased in power converter 1 according to the first embodiment.
  • A indicates turn-on Joule loss
  • B indicates turn-on current
  • C indicates turn-on voltage.
  • the horizontal axis indicates time.
  • the turn-on current is the current flowing through the switching element 311a
  • the turn-on voltage is the voltage applied across the switching element 311a
  • the turn-on Joule loss is the product of the turn-on current and the turn-on voltage
  • the measurement target is the switching element 311a. It is not limited to the element 311a, and other switching elements 311b to 311f may be used. Note that FIGS.
  • FIGS. 2 and 3 show the differences in each characteristic depending on the switching speed of the switching elements 311a to 311f of the inverter 310, and the specific values of "slow” and “fast” in the switching speed are not particularly important. .
  • the noise represented by the peak value of the turn-on current of B becomes smaller, but the loss represented by the area of the turn-on joule loss of A becomes larger.
  • the noise indicated by the peak value of the turn-on current of B becomes larger, but the loss indicated by the area of the turn-on joule loss of A becomes smaller.
  • the waveform shape changing unit 340 is configured by a digital gate driver.
  • the switching elements 311a to 311f of the inverter 310 and the waveform shape changing section 340 are configured by a digital gate driver module.
  • the power conversion device 1 can change the switching speed of the switching elements 311a to 311f of the inverter 310 by changing the command value of the software without changing the hardware, and the switching elements 311a to 311f It is possible to control noise and loss generated in a desired state.
  • the function of the waveform shape control signal output section 420 in the control section 400 can also be configured within a digital gate driver module. In the case of this configuration, the functions of the existing control unit 400 can be used without modification.
  • FIG. 4 is a diagram showing an example of the relationship between noise and loss generated in a general switching element. As mentioned above, there is a trade-off relationship between noise and loss generated in switching elements. Therefore, in general switching elements, as shown in Figure 4, increasing the switching speed increases noise but decreases loss, and slowing the switching speed decreases noise but increases loss. .
  • FIG. 5 is a first diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1. Even if the power converter 1 is operated within the noise range specified by the product in which the power converter 1 is installed, when the load state of the motor 314 changes from light load to heavy load, the power converter 1 will cause the noise shown in FIG. 5 to change from light load to heavy load. As such, the curve representing the characteristics of noise and loss generated in the switching elements 311a to 311f moves toward the upper right, resulting in an increase in noise. That is, in the power conversion device 1, the heavier the load, the more noise increases.
  • the power converter 1 can reduce the noise generated in the switching elements 311a to 311f by slowing down the switching speed of the switching elements 311a to 311f.
  • the power converter 1 is operated within the loss range specified by the product in which the power converter 1 is installed, when the load state of the motor 314 changes from light load to heavy load, the As shown in FIG. 5, the curve showing the characteristics of noise and loss generated in the switching elements 311a to 311f moves toward the upper right, and as a result, the loss increases. That is, in the power conversion device 1, the heavier the load, the more the loss increases. Therefore, the power conversion device 1 can reduce the loss generated in the switching elements 311a to 311f by increasing the switching speed of the switching elements 311a to 311f.
  • the waveform shape control signal output unit 420 controls the noise generated in the switching elements 311a to 311f while satisfying the specified requirements.
  • the waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed to reduce the loss caused by the switching elements 311a to 311f.
  • the waveform shape control signal output section 420 outputs the switching elements 311a to 311f while satisfying the specified requirements for losses generated in the switching elements 311a to 311f.
  • the waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed so as to reduce the noise generated in the switching elements 311a to 311f.
  • FIG. 6 is a second diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1.
  • the power conversion device 1, specifically the waveform shape changing unit 340 divides a turn-on period or a turn-off period into two or more periods in one switching operation of the switching elements 311a to 311f, and in each divided period, The amplitudes of the gate currents or gate voltages for the switching elements 311a to 311f are changed to different magnitudes.
  • the power converter 1 can reduce the power generated in the switching elements 311a to 311f, which could not be achieved with general switching elements as shown in FIG. It is possible to obtain noise and loss characteristics that
  • FIG. 7 is a diagram illustrating a configuration example of the waveform shape changing unit 340 of the power conversion device 1 according to the first embodiment.
  • FIG. 7 is also a diagram showing a configuration example of one digital gate driver configured by the waveform shape changing section 340 and the switching element 311a.
  • the waveform shape changing section 340 is included in the inverter 310, which is a power converter including a switching element 311a.
  • the waveform shape changing unit 340 includes n PMOSs (P-channel Metal Oxide Semiconductor) which are P-channel MOSFETs for turn-on, n PreDrivers for operating the n PMOSs, and n PreDrivers for turn-off. It includes an NMOS (N-channel Metal Oxide Semiconductor) that is an N-channel MOSFET, and n PreDrivers for operating the n NMOS.
  • PMOSs P-channel Metal Oxide Semiconductor
  • NMOS N-channel Metal Oxide Semiconductor
  • the waveform shape changing section 340 is connected to the control power supply Vdd and the ground GND.
  • the waveform shape changing section 340 changes the number of PMOSs or NMOSs to be operated based on the control signal from the waveform shape control signal output section 420, thereby outputting it to the switching element 311a in each period of the turn-on period and the turn-off period.
  • the amplitude value of the gate current IG which is the drive signal, can be changed in n ways to adjust the switching speed of the switching element 311a.
  • the waveform shape changing unit 340 can increase the absolute value of the gate current IG output to the switching element 311a as the number of PMOSs or NMOSs to be operated increases, and the switching speed of the switching element 311a can be increased.
  • the waveform shape changing unit 340 can finely adjust the switching speed of the switching element 311a as the number of PMOSs and NMOSs provided therein is large, and the faster the response to increase/decrease the gate current IG , the more finely the switching speed of the switching element 311a can be adjusted. It is possible to finely adjust the gate current IG during the switching period.
  • the control signal from the waveform shape control signal output section 420 may be an analog signal or a digital signal as long as it can change the number of PMOSs or NMOSs operated by the waveform shape changing section 340. Furthermore, although the example in FIG.
  • control signals 7 shows that there are m control signals in parallel from the waveform shape control signal output section 420 to the waveform shape change section 340, this is just an example, and the number of control signals is m. Not limited. The number of control signals may be a number that can indicate whether each PMOS and each NMOS can operate, or it may be one as long as it is an analog signal that indicates voltage or the like.
  • FIG. 8 is a first diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
  • FIG. 9 is a second diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
  • the waveform shape changing unit 340 can increase the rise of the gate voltage VG , that is, increase the switching speed of the switching element 311a, as the output gate current IG increases. can. Further, as shown in FIGS.
  • the waveform shape changing unit 340 slows down the rise of the gate voltage VG , that is, the switching speed of the switching element 311a, as the gate current IG to be output is made smaller. be able to.
  • the output gate current IG is decreased to slow the switching speed, and the noise generated in the switching element 311a is reduced.
  • the output gate current IG can be increased to increase the switching speed. Note that the waveforms of the gate current IG and gate voltage VG shown in FIGS. 8 and 9 are ideal examples, and as shown in FIGS. 2 and 3, in reality, the gate current IG is constant. It will take time to reach the current value.
  • FIG. 10 is a third diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be.
  • the waveform shape changing unit 340 can divide the turn-on period and change the magnitude of the gate current IG in each period. That is, the waveform shape changing section 340 can finely adjust the magnitude of the gate current IG during one turn-on period.
  • the power converter 1 can reduce the noise generated in the switching element 311a while reducing the noise generated in the switching element 311a, as shown in FIG. 6, compared to the case where the same gate current IG is output during the turn-on period. control can be performed to reduce the loss caused by
  • FIG. 11 is a diagram illustrating an example of the relationship between the fundamental pulse outputted by the fundamental pulse generating section 410 and the gate current IG outputted by the waveform shape changing section 340 in the power conversion device 1 according to the first embodiment. In FIG. 11, it is assumed that
  • the waveform shape changing unit 340 divides the period in which the gate current IG is output during the turn-on period of the switching element 311a, first outputs the gate current IG with a large amplitude current Ig2, and then outputs the gate current IG with a small amplitude current Ig1.
  • the gate current IG of the current Ig1 with a small amplitude may be outputted first, and then the gate current IG of the current Ig2 with a large amplitude may be outputted.
  • the waveform shape changing unit 340 divides the period in which the gate current IG is output during the turn-off period of the switching element 311a, first outputs the gate current IG with a large amplitude - Ig2, and then outputs the gate current IG with a large amplitude. You may output the gate current IG with a small current -Ig1, or first output the gate current IG with a small amplitude current -Ig1, and then output the gate current IG with a large amplitude current -Ig2. You can also output it.
  • the waveform shape changing section 340 changes the waveform shape of the switching waveform of the switching element 311a between the turn-on period and the turn-off period of the switching element 311a based on the waveform shape set by the waveform shape control signal output section 420. At least one period can be divided into two or more periods, and the amplitude of the gate current IG to the switching element 311a can be changed to a different magnitude in each divided period. Further, the waveform shape changing section 340 includes a plurality of transistors, and changes the amplitude of the gate current IG by changing the number of transistors to be operated based on the waveform shape set by the waveform shape control signal output section 420. can do.
  • the waveform shape changing section 340 can change the output pattern of the gate current IG every switching period of the switching element 311a.
  • the waveform shape changing unit 340 can change the switching waveform to a different waveform shape every switching period of the switching element 311a while the power conversion device 1 is in operation.
  • the waveform shape control signal output section 420 can change the waveform shape of the switching waveform of the switching element 311a at the same cycle as the switching cycle of the switching element 311a.
  • the waveform shape control signal output unit 420 may change the waveform shape of the switching waveform of the switching element 311a at a cycle that is a positive integer multiple of the switching cycle of the switching element 311a.
  • the configuration of the waveform shape changing unit 340 shown in FIG. 7 is an example, and is not limited thereto.
  • the waveform shape changing unit 340 may use a transistor other than a MOS (Metal Oxide Semiconductor) for internal use.
  • MOS Metal Oxide Semiconductor
  • the waveform shape changing unit 340 uses digital control using a plurality of MOSs to finely control the switching speed of the switching element 311a compared to analog control that physically switches the gate resistance as described in Patent Document 1. can be adjusted to Furthermore, since the resistance value of the gate resistor varies depending on the temperature, accuracy with respect to temperature variation may become a problem. In contrast, with digital gate drivers, this problem does not occur. Therefore, the waveform shape changing unit 340 configured by the digital gate driver can adjust the switching speed with high accuracy.
  • the waveform shape changing unit 340 changes the number of PMOSs or NMOSs to be operated according to the acquired control signal, and applies a gate current IG to the switching element 311a according to the number of PMOSs or NMOSs to be operated.
  • the output is not limited to this.
  • the waveform shape changing unit 340 stores in advance an output pattern, that is, a waveform shape, of the gate current IG in accordance with the control signal, and outputs the gate current IG in the output pattern, that is, the waveform shape, in accordance with the acquired control signal. Good too.
  • the waveform shape changing unit 340 stores the control signal acquired in the past and the output pattern, that is, the waveform shape, of the gate current IG for the control signal acquired in the past, and stores it when the same control signal is acquired.
  • the gate current IG may be output in the same output pattern, ie, waveform shape.
  • the waveform shape changing section 340 can reduce the processing load when outputting the gate current IG by storing the output pattern, that is, the waveform shape, of the gate current IG according to the control signal.
  • the waveform shape changing unit 340 adjusts the switching speed of the switching element 311a by changing the gate current IG as a drive signal output to the switching element 311a, and changes the switching waveform of the switching element 311a.
  • the waveform shape was changed, the present invention is not limited to this.
  • the waveform shape changing unit 340 sets the drive signal output to the switching element 311a to a gate voltage VG , and by changing the gate voltage VG , similarly adjusts the switching speed of the switching element 311a, and changes the switching waveform of the switching element 311a.
  • the waveform shape of can be changed.
  • the waveform shape changing section 340 changes the waveform shape of the switching waveform of the switching element 311a between the turn-on period and the turn-off period of the switching element 311a based on the control signal output from the waveform shape control signal output section 420. At least one period can be divided into two or more periods, and the amplitude of the gate voltage V G applied to the switching element 311a can be changed to a different magnitude in each divided period. Further, the waveform shape changing unit 340 includes a plurality of transistors, and changes the amplitude of the gate voltage V G by changing the number of transistors to be operated based on the control signal output from the waveform shape control signal output unit 420. can do.
  • FIG. 12 is a flowchart used to explain the operation of changing the waveform shapes of the switching waveforms of the switching elements 311a to 311f in the power conversion device 1 according to the first embodiment.
  • the basic pulse generation unit 410 generates basic pulses for driving the switching elements 311a to 311f of the inverter 310 based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506. (Step S1).
  • the basic pulse generation unit 410 generates a basic pulse based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506, and turns on the switching elements 311a to 311f. Determine timing and turn-off timing.
  • the basic pulse generation section 410 outputs the generated basic pulse to the waveform shape control signal output section 420.
  • the waveform shape control signal output section 420 performs switching of the switching elements 311a to 311f of the inverter 310 based on the basic pulse obtained from the basic pulse generation section 410 and the physical quantities obtained from the state quantity detection sections 501, 502, 505, and 506. Set the waveform shape to change the waveform shape of the waveform. In this way, in the control section 400, the waveform shape control signal output section 420 outputs the switching element 311a determined by the basic pulse generation section 410 based on the state quantities acquired from the state quantity detection sections 501, 502, 505, and 506. The waveform shape of the switching waveform at the timing of turning on and turning off 311f is set. The waveform shape control signal output section 420 outputs a control signal that can change the magnitude and output timing of the drive signal according to the set waveform shape to the waveform shape change section 340 (step S2).
  • the waveform shape changing unit 340 acquires the waveform shape of the gate current IG output to the switching elements 311a to 311f of the inverter 310, that is, the waveform shape of the switching waveform of the switching elements 311a to 311f, from the waveform shape control signal output unit 420. It is changed based on the control signal (step S3).
  • the waveform shape changing section 340 outputs the gate current IG after changing the waveform shape to the switching elements 311a to 311f of the inverter 310.
  • the power conversion device 1 uses the functions of the basic pulse generation section 410 and the waveform shape control signal output section 420 described above to perform driving for driving the switching elements 311a to 311f of the inverter 310. Signal magnitude and output timing can be changed.
  • the power conversion device 1 according to the first embodiment can obtain various effects by applying this function to a power conversion device including a radiator.
  • FIG. 13 is a diagram used to explain the first loss line L1 defined in the power conversion device 1 according to the first embodiment.
  • FIG. 14 is a diagram used to explain the first loss line L1 and the second loss line L2 defined in the power conversion device 1 according to the first embodiment.
  • FIG. 15 is a third diagram used to explain the effect obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power converter 1 according to the first embodiment.
  • the first loss line L1 is a boundary line representing the loss limit allowed in the power converter 1 when the power converter 1 is not equipped with a radiator.
  • slowing the switching speed reduces noise and increases loss.
  • the switching speed it is possible to slow the switching speed by changing the waveform shape of the switching waveform of the switching elements 311a to 311f, but if the loss becomes large, it is possible to reduce the switching speed of at least one of the switching elements 311a to 311f.
  • the device may experience thermal runaway. That is, the first loss line L1 is a boundary line indicating a loss boundary at which at least one of the switching elements 311a to 311f does not cause thermal runaway. Therefore, as shown in FIG.
  • this region R1 corresponds to the power conversion device 1 without a heat sink. This means an operational area. Note that although the first loss line L1 is shown as a straight line in FIG. 13, it does not necessarily have to be a straight line. Furthermore, it goes without saying that the first loss line L1 and the region R1 will have different curves and different regions even if the switching elements are the same but if the driving target is different.
  • the second loss line L2 is a boundary line representing the loss limit allowed in the power converter 1 when the power converter 1 is equipped with a radiator.
  • the area from the first loss line L1 to the second loss line L2 is represented by "R2".
  • the loss limit allowed in the power converter 1 is relaxed by the radiator. Therefore, when the power conversion device 1 includes a heat sink, it becomes possible to further reduce the switching speed and further reduce noise. Thereby, the region in which the power conversion device 1 can operate can be expanded to region R2 in addition to region R1. Note that even if the switching elements are the same, the second loss line L2 and the region R2 may have different curves and different regions if the driving target is different, or if the size of the radiator and the cooling characteristics of the radiator are different. Needless to say.
  • FIG. 15 shows an example in which the heat radiator 344 is provided on the mounting surface of the waveform shape changing section 340 and the semiconductor package 342, the present invention is not limited to this configuration.
  • the heat sink 344 may be provided on a surface opposite to the mounting surface of the waveform shape changing section 340 and the semiconductor package 342.
  • the waveform shape changing unit 340 and the waveform shape control signal output unit 420 perform switching so as to operate actively in the region R2 under operating conditions where noise becomes large.
  • the waveform shapes of the switching waveforms of the elements 311a to 311f are changed.
  • the heat radiator 344 by providing the heat radiator 344, the area occupied by the noise countermeasure component 322 can be reduced.
  • the substrate area which is the area of the substrate 320, can be reduced.
  • the heatsink 344 the size in the direction perpendicular to the board surface, that is, in the height direction increases, but the board 320 originally has components that have sizes in the height direction, such as electrolytic capacitors and terminals. Since there are a large number of heat sinks, an increase in the length in the height direction due to the heat radiator is hardly a problem.
  • FIG. 16 is a fourth diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1.
  • FIG. 17 is a diagram showing changes in switching characteristics under the two operating conditions shown in FIG. 16.
  • the upper graph in FIG. 16 shows the simulation results of analyzing the operation of the switching elements 311a to 311f when the inverter 310 is operated under certain operating conditions, using the HS area, element loss, and temperature excess as parameters.
  • the HS area is the area of the heat sink when the heat sink is viewed from a direction perpendicular to the substrate surface, assuming that the heat sink is a heat sink.
  • the element loss means the loss of the switching elements 311a to 311f.
  • Excess temperature indicates the amount of increase or decrease in temperature of the switching elements 311a to 311f.
  • the horizontal axis of the graph in FIG. 16 represents the HS area
  • the vertical axis of the graph in FIG. 16 represents the temperature excess due to element loss.
  • the table on the lower side of FIG. 16 shows the parameters of HS area, element loss, and overtemperature under each operating condition for the three operating conditions (1) to (3) shown on the upper side of FIG. 16. Each value is shown.
  • the values for operating conditions (2) and (3) are normalized and shown based on the value for operating condition (1).
  • the simulation results shown in FIG. 16 will be explained.
  • the inverter 310 operates under operating condition (1), it is confirmed that the temperature exceeds the specified temperature that the elements can withstand by 1.4 [° C.].
  • the HS area and element loss at this time are normalized as 1.
  • the HS area is set to be 1.3 times that of operating condition (1).
  • FIG. 16 shows that by doing this, the excess temperature can be suppressed to ⁇ 0.1 [° C.]. That is, in order to suppress the temperature exceedance to ⁇ 0.1 [° C.], the HS area is required to be 1.3 times the operating condition (1).
  • the element loss in the inverter 310 is reduced by 10% using the method of changing the waveform shape of the switching waveform described above without changing the HS area.
  • FIG. 16 shows that this allows the temperature excess to be suppressed to ⁇ 0.1 [° C.].
  • FIG. 17 shows an image of control for transitioning from operating condition (1) to operating condition (3).
  • A is an operating point corresponding to operating condition (1), and is located on the right side of the second loss line L2.
  • B is an operating point corresponding to operating condition (3), and is located on the left side of the second loss line L2.
  • Waveform shape control signal output section 420 changes the waveform shape of the switching waveforms of switching elements 311a to 311f of inverter 310 so that element loss in inverter 310 increases.
  • the waveform shape changing section 340 changes the waveform shapes of the switching waveforms of the switching elements 311a to 311f based on the control signal obtained from the waveform shape control signal output section 420.
  • the operating point on the switching characteristic curve shown in FIG. 17 can be moved from operating point A to operating point B. This makes it possible to appropriately adjust the element loss in the switching elements 311a to 311f while suppressing noise generated in the power converter 1, thereby preventing thermal runaway of the switching elements 311a to 311f.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration that implements the control unit 400 included in the power conversion device 1 according to the first embodiment.
  • the control unit 400 is realized by a processor 91 and a memory 92.
  • the processor 91 is a CPU (Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor)), or a system LSI (Large Scale Intel). gration).
  • the memory 92 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEP. Non-volatile or volatile memory such as ROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) An example is semiconductor memory.
  • the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the power conversion device includes an inverter having a plurality of switching elements housed in a semiconductor package, and the inverter supplies power to a motor that drives a load.
  • the power conversion device includes a waveform shape changing section, a state quantity detection section, and a waveform shape control signal output section, and the semiconductor package is provided with a heat sink.
  • the waveform shape control signal output section sets the waveform shape of the switching waveform of the switching element when the waveform shape changing section changes the switching waveform of the switching element according to the state quantity detected by the state quantity detection section.
  • the waveform shape changing section changes the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output section.
  • the waveform shape changing unit adjusts the turn-on period of the switching element with respect to the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output unit. At least one of the turn-off periods and the turn-off period is divided into two or more periods, and the amplitude of the gate current or gate voltage for the switching element can be changed to a different magnitude in each divided period. According to the power conversion device configured in this way, it is possible to finely adjust the gate current or gate voltage output to the switching element in one switching period, and it is possible to finely adjust the gate current or gate voltage output to the switching element in one switching period, which could not be achieved with the method of Patent Document 1 etc. It is possible to realize the waveform shape of the switching waveform.
  • the power conversion device recognizes as a first loss line a boundary line representing a loss limit allowed in the power conversion device when the power conversion device is not equipped with a heatsink, and is equipped with a heatsink.
  • a boundary line representing the allowable loss limit in a power converter is sometimes recognized as a second loss line.
  • the waveform shape control signal output unit sets the waveform shape of the switching waveform of the switching element so that the power converter can operate in a region where the loss exceeds the first loss line and does not exceed the second loss line.
  • the power converter configured in this way it is possible to operate the power converter by effectively utilizing the ability of the radiator, so it is possible to expand the range of allowable loss limits in the power converter. can. This makes it possible to reduce noise by slowing down the switching speed and increasing loss, so the area occupied by noise countermeasure components can be made smaller than in the past, and the board area can be reduced.
  • FIG. 19 is a diagram showing a configuration example of a power conversion device 1A according to the second embodiment.
  • the power conversion device 1A and the motor 314 constitute a motor drive device 2A.
  • a physical quantity detection unit 504 is added to the configuration of the power conversion device 1 shown in FIG.
  • the control section 400 is replaced with a control section 400A.
  • the basic pulse generation section 410 is replaced with a basic pulse generation section 410A
  • the waveform shape control signal output section 420 is replaced with a waveform shape control signal output section 420A
  • the setting section 421 is replaced with a setting section 421A.
  • the other configurations are the same or equivalent to the power conversion device 1 shown in FIG. 1, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
  • the physical quantity detection unit 504 detects a physical quantity that is correlated with the loss that occurs in the power conversion device 1A due to switching of the switching elements 311a to 311f included in the inverter 310.
  • the physical quantity detection unit 504 is, for example, a thermocouple, and detects the physical quantity correlated with the loss generated in the power conversion device 1A by detecting the heat generated in the installed portion, that is, the temperature.
  • the physical quantity detection unit 504 is a thermocouple
  • the physical quantity detection unit 504 is installed, for example, inside the semiconductor package 342, in or around the radiator 344, on the substrate 320, or the like.
  • the power conversion device 1A includes one physical quantity detection section 504 in the example of FIG. 19, it may include a plurality of physical quantity detection sections 504.
  • the setting unit 421A sets the waveform shape of the switching waveform of the switching elements 311a to 311f based on the physical quantity detected by the physical quantity detection unit 504 and the loss threshold set based on the second loss line L2 described above. do. Specifically, when the physical quantity detected by the physical quantity detection unit 504 exceeds the loss threshold, the setting unit 421A increases the switching speed when driving the switching elements 311a to 311f, thereby increasing the switching speed of the switching elements 311a to 311f. control losses that occur. By controlling in this manner, thermal runaway of the switching elements 311a to 311f can be reliably prevented.
  • the waveform shape control signal output section is configured to output a loss that is set based on the physical quantity detected by the physical quantity detection section and the second loss line.
  • the waveform shape of the switching waveform of the switching element is set based on the threshold value.
  • the waveform shape changing section changes the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output section. This makes it possible to reliably prevent thermal runaway of the switching element even when the power converter device is operated by making full use of the capability of the radiator.
  • Embodiment 3 control for changing the waveform shape of the switching waveforms of the switching elements 311a to 311f based on the amount of electric power supplied to the motor 314 will be described.
  • the control according to the third embodiment can be performed using the power conversion device 1 shown in FIG. 1.
  • FIG. 20 is a diagram used to explain the control for changing the waveform shapes of the switching waveforms of the switching elements 311a to 311f in the power conversion device according to the third embodiment.
  • FIG. 20 shows three switching characteristic curves when the load states of the motor 314 are light load, medium load, and heavy load.
  • operating point C which is a medium load, for example, when the load state becomes a heavy load
  • the power converter 1 shifts to operating point D. If the operation continues in this state, the switching elements 311a to 311f may experience thermal runaway. Therefore, in the third embodiment, the switching characteristics are changed so that the operating point D shifts to the operating point E. This control can be performed based on the amount of power supplied to motor 314.
  • the amount of electric power supplied to the motor 314 can be calculated using the state quantity detected by the state quantity detection unit 502. As described above, the state quantity detection unit 502 detects the voltage value of the second AC power supplied from the inverter 310 to the motor 314 and the current value of the second AC power supplied from the inverter 310 to the motor 314. It is possible to detect.
  • the determination of what kind of switching characteristics to use depending on the load state of the motor 314 may be realized by holding previously measured data as a table, or by using the physical quantities described in Embodiment 2. This may be realized by using the detection value of the detection unit 504.
  • the amount of electric power supplied to the motor 314 can also be calculated using a voltage command value and a current command value that are used or generated in the control unit 400.
  • the waveform shape control signal output section sets the waveform shape of the switching waveform of the switching element based on the amount of power supplied to the motor. According to this control, even if the load condition of the motor suddenly changes, it is possible to respond quickly. This makes it possible to reliably prevent thermal runaway of the switching element even when the power converter device is operated by making full use of the capability of the radiator.
  • FIG. 21 is a diagram showing a configuration example of a refrigeration cycle application device 900 according to the fourth embodiment.
  • Refrigeration cycle application equipment 900 according to the fourth embodiment includes the power conversion device 1 described in the first embodiment.
  • the refrigeration cycle application device 900 according to the fourth embodiment can also include the power conversion device 1A described in the second embodiment.
  • the refrigeration cycle application device 900 according to the fourth embodiment can be applied to products including a refrigeration cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters. Note that in FIG. 21, components having the same functions as those in the first embodiment are given the same reference numerals as in the first embodiment.
  • Refrigeration cycle application equipment 900 includes a compressor 315 with built-in motor 314 in Embodiment 1, a four-way valve 902, an indoor heat exchanger 906, an expansion valve 908, and an outdoor heat exchanger 910 that connect refrigerant piping 912. It is attached through.
  • a compression mechanism 904 that compresses the refrigerant and a motor 314 that operates the compression mechanism 904 are provided inside the compressor 315.
  • the refrigeration cycle applicable equipment 900 can perform heating operation or cooling operation by switching the four-way valve 902.
  • the compression mechanism 904 is driven by a variable speed controlled motor 314.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, passing through the four-way valve 902, indoor heat exchanger 906, expansion valve 908, outdoor heat exchanger 910, and four-way valve 902. Returning to the compression mechanism 904.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, passing through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902, as shown by the dashed arrow. Returning to the compression mechanism 904.
  • the indoor heat exchanger 906 acts as a condenser and releases heat, and the outdoor heat exchanger 910 acts as an evaporator and absorbs heat.
  • the outdoor heat exchanger 910 acts as a condenser and releases heat, and the indoor heat exchanger 906 acts as an evaporator and absorbs heat.
  • the expansion valve 908 reduces the pressure of the refrigerant and expands it.
  • the refrigeration cycle application equipment 900 can reduce the noise generated in the switching elements 311a to 311f by slowing down the switching speed of the switching elements 311a to 311f.
  • the refrigeration cycle application equipment 900 can reduce the loss generated in the switching elements 311a to 311f by increasing the switching speed of the switching elements 311a to 311f.
  • the digital gate driver configured by the waveform shape changing section 340 and the switching elements 311a to 311f included in the inverter 310 has a high surge voltage when the switching speed is high. Therefore, a lot of electromagnetic noise is generated.
  • the refrigeration cycle application equipment 900 uses a combustible refrigerant, there is a possibility that the refrigerant will be combusted due to discharge caused by electromagnetic noise when the refrigerant leaks. Therefore, the refrigeration cycle application equipment 900 sets the switching speed of the digital gate driver included in the power conversion device 1 according to the combustibility of the refrigerant used in the refrigeration cycle application equipment 900.
  • the refrigeration cycle application equipment 900 decreases the switching speed of the digital gate driver included in the power converter 1 as the flammability of the refrigerant used in the refrigeration cycle application equipment 900 increases.
  • the refrigeration cycle application equipment 900 can reduce the surge voltage by slowing down the switching speed of the digital gate driver, and by suppressing the occurrence of discharge caused by electromagnetic noise, even if refrigerant leaks from the refrigeration cycle application equipment 900. However, combustion can be prevented.
  • Refrigerants used in the refrigeration cycle application equipment 900 include, for example, R1234yf, R1234ze (E), R1243zf, HFO1123, HFO1132 (E), R1132a, CF3I, R290, R463A, R466A, R454A, R454B, and R454C.

Abstract

This electric power conversion device (1) comprises an inverter (310) that has switching elements (311a–311f) that are housed in a semiconductor package (342), and supplies electric power by the inverter (310) to a motor (314) that drives a load. The semiconductor package (342) is provided with a radiator. The electric power conversion device (1) comprises: a waveform-shape-changing unit (340) that is capable of changing the waveform shape of the switching waveform of at least one switching element among the switching elements (311a–311f); state amount detection units (501, 502) that detect a state amount that indicates an operating state of the electric power conversion device (1); and a waveform shape control signal output unit (420) that sets, according to the state amount, a waveform shape of the switching waveform of the switching elements (311a–311f) when the switching waveform of the switching elements (311a–311f) is to be changed by the waveform-shape-changing unit (340), and outputs a control signal that indicates the set waveform shape.

Description

電力変換装置、モータ駆動装置及び冷凍サイクル適用機器Power conversion equipment, motor drive equipment, and refrigeration cycle application equipment
 本開示は、電力変換を行う電力変換装置、モータ駆動装置及び冷凍サイクル適用機器に関する。 The present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that performs power conversion.
 従来、スイッチング素子に異なるゲート抵抗値のゲート抵抗を切り替えて接続することで、スイッチング素子のスイッチング速度を変化させることが行われている。例えば、特許文献1には、複数のスイッチング素子を有するインバータ主回路を備えるインバータ制御装置において、スイッチング素子のゲート駆動波形を変更する際、スイッチング素子に接続されるゲート抵抗について、スイッチを用いて異なるゲート抵抗値のゲート抵抗に切り替える技術が開示されている。 Conventionally, the switching speed of a switching element has been changed by switching and connecting gate resistors with different gate resistance values to the switching element. For example, in Patent Document 1, in an inverter control device including an inverter main circuit having a plurality of switching elements, when changing the gate drive waveform of the switching element, the gate resistance connected to the switching element is changed using a switch. A technique for switching to a gate resistance with a gate resistance value has been disclosed.
特開2012-200042号公報Japanese Patent Application Publication No. 2012-200042
 しかしながら、上記従来の技術によれば、スイッチを用いてスイッチング素子に接続するゲート抵抗を切り替えている。そのため、ゲート駆動波形の種類を増やすにはゲート抵抗及びスイッチを多数用いる必要があり、回路規模が増大し、基板面積が増加するという問題があった。 However, according to the above-mentioned conventional technology, a switch is used to switch the gate resistance connected to the switching element. Therefore, in order to increase the number of types of gate drive waveforms, it is necessary to use a large number of gate resistors and switches, resulting in an increase in circuit scale and substrate area.
 本開示は、上記に鑑みてなされたものであって、回路規模の増大及び基板面積の増加を抑制しつつ、スイッチング素子のスイッチング速度を変更可能な電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device that can change the switching speed of a switching element while suppressing an increase in circuit scale and substrate area.
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、半導体パッケージに収容される複数のスイッチング素子を有するインバータを備え、インバータによって負荷を駆動するモータに電力を供給する。半導体パッケージには、放熱器が設けられている。電力変換装置は、複数のスイッチング素子のうちの少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能な波形形状変更部を備える。また、電力変換装置は、電力変換装置の動作状態を示す状態量を検出する状態量検出部、及び状態量検出部で検出された状態量に応じて、波形形状変更部でスイッチング素子のスイッチング波形を変更する際のスイッチング素子のスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号出力する波形形状制御信号出力部を備える。 In order to solve the above-mentioned problems and achieve the objective, a power conversion device according to the present disclosure includes an inverter having a plurality of switching elements housed in a semiconductor package, and supplies power to a motor that drives a load by the inverter. . The semiconductor package is provided with a heat sink. The power conversion device includes a waveform shape changing section that can change the waveform shape of a switching waveform of at least one switching element among the plurality of switching elements. In addition, the power conversion device includes a state quantity detection unit that detects a state quantity indicating the operating state of the power conversion device, and a waveform shape changing unit that changes the switching waveform of the switching element according to the state quantity detected by the state quantity detection unit. The device includes a waveform shape control signal output unit that sets the waveform shape of the switching waveform of the switching element when changing the waveform shape, and outputs a control signal indicating the set waveform shape.
 本開示に係る電力変換装置によれば、回路規模の増大及び基板面積の増加を抑制しつつ、スイッチング素子のスイッチング速度を変更できるという効果を奏する。 According to the power conversion device according to the present disclosure, it is possible to change the switching speed of the switching element while suppressing an increase in circuit scale and substrate area.
実施の形態1に係る電力変換装置の構成例を示す図A diagram showing a configuration example of a power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を遅くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図A diagram showing an example of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of the switching element of the inverter is slowed down in the power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を速くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図A diagram showing an example of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of the switching element of the inverter is increased in the power conversion device according to Embodiment 1. 一般的なスイッチング素子で発生するノイズ及び損失の関係の例を示す図Diagram showing an example of the relationship between noise and loss generated in general switching elements 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を変更することによって得られる効果の説明に使用する第1の図The first diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を変更することによって得られる効果の説明に使用する第2の図A second diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置の波形形状変更部の構成例を示す図A diagram showing a configuration example of a waveform shape changing section of the power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置において波形形状変更部が出力するゲート電流及びスイッチング素子の立ち上がりの速度を示すゲート電圧の関係を示す第1の図The first diagram showing the relationship between the gate current output by the waveform shape changing unit and the gate voltage indicating the rising speed of the switching element in the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置において波形形状変更部が出力するゲート電流及びスイッチング素子の立ち上がりの速度を示すゲート電圧の関係を示す第2の図A second diagram showing the relationship between the gate current output by the waveform shape changing unit and the gate voltage indicating the rising speed of the switching element in the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置において波形形状変更部が出力するゲート電流及びスイッチング素子の立ち上がりの速度を示すゲート電圧の関係を示す第3の図A third diagram showing the relationship between the gate current output by the waveform shape changing unit and the gate voltage indicating the rising speed of the switching element in the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置において基本パルス生成部が出力する基本パルス及び波形形状変更部が出力するゲート電流の関係の例を示す図A diagram showing an example of the relationship between the basic pulse output by the basic pulse generation unit and the gate current output by the waveform shape changing unit in the power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置においてスイッチング素子のスイッチング波形の波形形状を変更する動作の説明に使用するフローチャートFlowchart used to explain the operation of changing the waveform shape of the switching waveform of the switching element in the power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置において定義される第1の損失線の説明に使用する図Diagram used to explain the first loss line defined in the power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置において定義される第1の損失線及び第2の損失線の説明に使用する図Diagram used to explain the first loss line and second loss line defined in the power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を変更することによって得られる効果の説明に使用する第3の図Third diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置においてインバータのスイッチング素子のスイッチング速度を変更することによって得られる効果の説明に使用する第4の図Fourth diagram used to explain the effect obtained by changing the switching speed of the switching element of the inverter in the power conversion device according to Embodiment 1 図16に示される2つの動作条件におけるスイッチング特性の変化を示す図A diagram showing changes in switching characteristics under the two operating conditions shown in FIG. 実施の形態1に係る電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図A diagram illustrating an example of a hardware configuration that implements a control unit included in the power conversion device according to Embodiment 1. 実施の形態2に係る電力変換装置の構成例を示す図A diagram showing a configuration example of a power conversion device according to Embodiment 2 実施の形態3に係る電力変換装置においてスイッチング素子のスイッチング波形の波形形状を変更する制御の説明に使用する図A diagram used to explain control for changing the waveform shape of a switching waveform of a switching element in the power conversion device according to Embodiment 3. 実施の形態4に係る冷凍サイクル適用機器の構成例を示す図A diagram showing a configuration example of a refrigeration cycle application device according to Embodiment 4
 以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置及び冷凍サイクル適用機器を図面に基づいて詳細に説明する。 Below, a power conversion device, a motor drive device, and a refrigeration cycle application device according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110及びモータ314に接続される。電力変換装置1は、商用電源110から供給される電源電圧による第1の交流電力を所望の振幅及び位相を有する第2の交流電力に変換してモータ314に供給する。商用電源110は、図1の例では三相交流電源であるが、単相交流電源であってもよい。電力変換装置1は、整流部130と、状態量検出部501,502,505,506と、コンデンサ210と、インバータ310と、制御部400とを備える。なお、電力変換装置1及びモータ314によって、モータ駆動装置2が構成される。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a power conversion device 1 according to the first embodiment. Power conversion device 1 is connected to commercial power source 110 and motor 314. The power conversion device 1 converts first AC power based on a power supply voltage supplied from a commercial power source 110 into second AC power having a desired amplitude and phase, and supplies the second AC power to the motor 314. Although the commercial power source 110 is a three-phase AC power source in the example of FIG. 1, it may be a single-phase AC power source. The power converter 1 includes a rectifier 130, state quantity detectors 501, 502, 505, and 506, a capacitor 210, an inverter 310, and a controller 400. Note that the power conversion device 1 and the motor 314 constitute a motor drive device 2.
 整流部130は、例えば、図示しない4つの整流素子から構成されるブリッジ回路、及びリアクトルを備える。整流部130は、商用電源110から供給される第1の交流電力による交流電圧を整流して直流電力に変換する。なお、整流部130は、昇圧チョッパ回路などを有していてもよい。 The rectifying section 130 includes, for example, a bridge circuit composed of four rectifying elements (not shown) and a reactor. The rectifier 130 rectifies the AC voltage of the first AC power supplied from the commercial power source 110 and converts it into DC power. Note that the rectifier 130 may include a boost chopper circuit or the like.
 コンデンサ210は、整流部130の出力端に接続され、整流部130によって変換された直流電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。なお、電力変換装置1は、インバータ310に直流電力を供給できればよいので、商用電源110、整流部130、及びコンデンサ210の部分を、直流電源、バッテリなどに置き換えてもよい。 The capacitor 210 is connected to the output end of the rectifier 130 and smoothes the DC power converted by the rectifier 130. The capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like. Note that the power converter 1 only needs to be able to supply DC power to the inverter 310, so the commercial power supply 110, rectifier 130, and capacitor 210 may be replaced with a DC power supply, a battery, or the like.
 状態量検出部501は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部501は、例えば、コンデンサ210からインバータ310に供給される直流電力の電圧値、コンデンサ210からインバータ310に供給される直流電力の電流値などを検出する。 The state quantity detection unit 501 detects a state quantity indicating the operating state of the power conversion device 1. The state quantity detection unit 501 detects, for example, the voltage value of the DC power supplied from the capacitor 210 to the inverter 310, the current value of the DC power supplied from the capacitor 210 to the inverter 310, and the like.
 インバータ310は、コンデンサ210の両端に接続される電力変換器である。インバータ310は、半導体素子であるスイッチング素子311a~311f及び還流ダイオード312a~312fを有する。これらのスイッチング素子311a~311f及び還流ダイオード312a~312fは、半導体パッケージ342に収容される。なお、図1では図示を省略しているが、半導体パッケージ342又は半導体パッケージ342を搭載する基板には、スイッチング素子311a~311f及び還流ダイオード312a~312fを冷却するための放熱器が設けられている。放熱器としては、ヒートシンク(Heat Sink:HS)、冷媒冷却器などが例示できる。冷媒冷却器は、空気調和機などの冷媒回路を搭載した機器において、冷媒回路の一部である冷媒配管が基板の近くを通り、熱伝導性材料からなる冷媒配管を用いて、基板に搭載した素子の温度を下げるものである。 The inverter 310 is a power converter connected to both ends of the capacitor 210. The inverter 310 includes switching elements 311a to 311f, which are semiconductor elements, and freewheeling diodes 312a to 312f. These switching elements 311a to 311f and free wheel diodes 312a to 312f are housed in a semiconductor package 342. Although not shown in FIG. 1, the semiconductor package 342 or the substrate on which the semiconductor package 342 is mounted is provided with a heat sink for cooling the switching elements 311a to 311f and the free wheel diodes 312a to 312f. . Examples of the heat radiator include a heat sink (HS), a refrigerant cooler, and the like. A refrigerant cooler is a device that is equipped with a refrigerant circuit, such as an air conditioner, where the refrigerant piping that is part of the refrigerant circuit passes near the circuit board, and is mounted on the circuit board using refrigerant piping made of a thermally conductive material. It lowers the temperature of the element.
 インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流部130及びコンデンサ210から出力される直流電力を所望の振幅及び位相を有する第2の交流電力に変換、即ち第2の交流電力を生成して、モータ314に出力する。スイッチング素子311a~311fは、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、バイポーラトランジスタなどであるが、これらに限定されない。インバータ310の回路構成は、フルブリッジ回路、単相ブリッジ回路、ハーフブリッジ回路など、特に問わない。 The inverter 310 turns on and off the switching elements 311a to 311f under the control of the control unit 400 and converts the DC power output from the rectifier 130 and the capacitor 210 into second AC power having a desired amplitude and phase. AC power is generated and output to the motor 314. The switching elements 311a to 311f are, for example, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Tr). transistors), bipolar transistors, etc., but are not limited to these. The circuit configuration of the inverter 310 is not particularly limited, and may be a full bridge circuit, a single-phase bridge circuit, a half bridge circuit, or the like.
 また、実施の形態1において、インバータ310は、スイッチング素子311a~311fのスイッチング波形の波形形状を変更可能な波形形状変更部340を備える。波形形状変更部340は、スイッチング素子311a~311fのスイッチング波形の波形形状として、2以上の波形形状を出力可能である。図1の例では、波形形状変更部340は、スイッチング素子311a~311fのスイッチング波形の波形形状を変更可能な構成としているが、スイッチング素子311a~311fのうち少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能とする。インバータ310は、スイッチング素子311a~311fごとに波形形状変更部340を備える構成であってもよい。波形形状変更部340は、インバータ310の外部に位置する構成部であってもよい。波形形状変更部340の詳細な動作については後述する。 Furthermore, in the first embodiment, the inverter 310 includes a waveform shape changing section 340 that can change the waveform shape of the switching waveforms of the switching elements 311a to 311f. The waveform shape changing section 340 can output two or more waveform shapes as the waveform shapes of the switching waveforms of the switching elements 311a to 311f. In the example of FIG. 1, the waveform shape changing unit 340 is configured to be able to change the waveform shape of the switching waveform of the switching elements 311a to 311f, but the waveform shape of the switching waveform of at least one switching element among the switching elements 311a to 311f is The shape can be changed. The inverter 310 may be configured to include a waveform shape changing section 340 for each of the switching elements 311a to 311f. Waveform shape changing section 340 may be a component located outside of inverter 310. The detailed operation of the waveform shape changing section 340 will be described later.
 状態量検出部502は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部502は、例えば、インバータ310から負荷であるモータ314に供給される第2の交流電力の電圧値、インバータ310から負荷であるモータ314に供給される第2の交流電力の電流値などを検出する。状態量検出部505は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部505は、例えば、コンデンサ210からインバータ310に供給される直流電力の電流値などを検出する。状態量検出部506は、電力変換装置1の動作状態を示す状態量を検出する。状態量検出部506は、例えば、スイッチング素子311b,311d,311fに流れる電流などを検出する。 The state quantity detection unit 502 detects a state quantity indicating the operating state of the power conversion device 1. The state quantity detection unit 502 detects, for example, the voltage value of the second AC power supplied from the inverter 310 to the motor 314, which is the load, and the current value of the second AC power, which is supplied from the inverter 310 to the motor 314, which is the load. Detect etc. The state quantity detection unit 505 detects a state quantity indicating the operating state of the power conversion device 1. The state quantity detection unit 505 detects, for example, the current value of the DC power supplied from the capacitor 210 to the inverter 310. The state quantity detection unit 506 detects a state quantity indicating the operating state of the power conversion device 1. The state quantity detection unit 506 detects, for example, current flowing through the switching elements 311b, 311d, and 311f.
 制御部400は、状態量検出部501,502,505,506から、状態量検出部501,502,505,506で検出された状態量を取得し、取得した状態量に基づいて、インバータ310の動作を制御、具体的には、インバータ310のスイッチング素子311a~311fのオンオフを制御する。制御部400は、基本パルス生成部410及び波形形状制御信号出力部420を備える。 The control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506, and controls the inverter 310 based on the obtained state quantities. The operation is controlled, specifically, the on/off of the switching elements 311a to 311f of the inverter 310 is controlled. The control section 400 includes a basic pulse generation section 410 and a waveform shape control signal output section 420.
 基本パルス生成部410は、状態量検出部501,502,505,506で検出された状態量に応じたデューティ比を演算すると共に、インバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスを生成する。基本パルスは、例えば、状態量検出部501,502,505,506で検出された状態量に応じたデューティ比を有するPWM(Pulse Width Modulation)信号である。基本パルス生成部410は、インバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスを波形形状制御信号出力部420に出力する。 The basic pulse generation unit 410 calculates a duty ratio according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506, and also performs basic pulse generation for controlling the operation of the switching elements 311a to 311f of the inverter 310. Generate a pulse. The basic pulse is, for example, a PWM (Pulse Width Modulation) signal having a duty ratio according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506. The basic pulse generation section 410 outputs basic pulses for controlling the operations of the switching elements 311a to 311f of the inverter 310 to the waveform shape control signal output section 420.
 波形形状制御信号出力部420は、状態量検出部501,502,505,506で検出された状態量に応じて、インバータ310の波形形状変更部340でスイッチング素子311a~311fのスイッチング波形を変更する際のスイッチング素子311a~311fのスイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する。具体的に、波形形状制御信号出力部420は、基本パルス生成部410で生成されたインバータ310のスイッチング素子311a~311fの動作を制御するための基本パルスに基づいてスイッチング素子311a~311fをオンオフする際、インバータ310の波形形状変更部340が実際にスイッチング素子311a~311fを駆動するためにスイッチング素子311a~311fに出力する駆動信号の大きさ、及び駆動信号を出力するタイミングを制御する。波形形状制御信号出力部420は、波形形状変更部340の動作を制御するための制御信号を波形形状変更部340に出力する。制御部400は、インバータ310がスイッチング素子311a~311fごとに波形形状変更部340を備える構成、即ち6個の波形形状変更部340を備える構成である場合、波形形状変更部340ごとに波形形状制御信号出力部420を備える構成、即ち6個の波形形状制御信号出力部420を備える構成であってもよい。波形形状制御信号出力部420は、図1に示すように、設定部421を備える。設定部421が行う具体的な動作については後述する。 The waveform shape control signal output unit 420 changes the switching waveforms of the switching elements 311a to 311f in the waveform shape changing unit 340 of the inverter 310 according to the state quantities detected by the state quantity detection units 501, 502, 505, and 506. The waveform shape of the switching waveform of the switching elements 311a to 311f is set, and a control signal indicating the set waveform shape is output. Specifically, the waveform shape control signal output unit 420 turns on and off the switching elements 311a to 311f based on the basic pulse generated by the basic pulse generation unit 410 for controlling the operation of the switching elements 311a to 311f of the inverter 310. At this time, the waveform shape changing unit 340 of the inverter 310 controls the magnitude of the drive signal output to the switching elements 311a to 311f and the timing of outputting the drive signal in order to actually drive the switching elements 311a to 311f. The waveform shape control signal output section 420 outputs a control signal for controlling the operation of the waveform shape modification section 340 to the waveform shape modification section 340 . When the inverter 310 is configured to include a waveform shape changer 340 for each of the switching elements 311a to 311f, that is, to include six waveform shape changers 340, the control unit 400 performs waveform shape control for each waveform shape changer 340. A configuration including a signal output section 420, that is, a configuration including six waveform shape control signal output sections 420 may be used. The waveform shape control signal output section 420 includes a setting section 421, as shown in FIG. The specific operations performed by the setting unit 421 will be described later.
 なお、制御部400は、図1の例では、状態量検出部501,502,505,506から、状態量検出部501,502,505,506で検出された状態量を取得し、取得した状態量に基づいて、インバータ310の動作を制御しているが、これに限定されない。制御部400は、状態量検出部501,502,505,506のうち少なくとも1つの状態量検出部から取得した状態量に基づいて、インバータ310の動作を制御することが可能である。 In addition, in the example of FIG. 1, the control unit 400 acquires the state quantities detected by the state quantity detection units 501, 502, 505, and 506 from the state quantity detection units 501, 502, 505, and 506, and determines the acquired state. Although the operation of the inverter 310 is controlled based on the amount, the present invention is not limited thereto. The control unit 400 can control the operation of the inverter 310 based on the state quantity acquired from at least one state quantity detection unit among the state quantity detection units 501, 502, 505, and 506.
 また、制御部400において、基本パルス生成部410及び波形形状制御信号出力部420は、共に状態量検出部501,502,505,506から取得した状態量に基づいて動作をしていることから、基本パルス生成部410及び波形形状制御信号出力部420の機能を纏めて1つの構成部としてもよい。 Furthermore, in the control unit 400, the basic pulse generation unit 410 and the waveform shape control signal output unit 420 both operate based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506. The functions of the basic pulse generation section 410 and the waveform shape control signal output section 420 may be combined into one component.
 モータ314は、電力変換装置1に接続される負荷である。モータ314は、例えば、圧縮機駆動用のモータである。通常運転モード時において、モータ314は、インバータ310から供給される第2の交流電力の振幅及び位相に応じて回転し、圧縮動作を行う。例えば、圧縮機が密閉型圧縮機の場合、圧縮機を駆動するモータ314の負荷トルクは定トルク負荷とみなせる場合が多い。モータ314は、図示しないモータ巻線について、Y結線であってもよいし、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。また、加熱運転モード時において、モータ314は、インバータ310から供給される拘束通電用の電力が供給され、圧縮機の内部に滞留した液冷媒を加熱する。 The motor 314 is a load connected to the power converter 1. The motor 314 is, for example, a motor for driving a compressor. In the normal operation mode, the motor 314 rotates according to the amplitude and phase of the second AC power supplied from the inverter 310, and performs a compression operation. For example, when the compressor is a hermetic compressor, the load torque of the motor 314 that drives the compressor can often be regarded as a constant torque load. The motor 314 may have a Y-connection, a Δ-connection, or a specification in which the Y-connection and the Δ-connection can be switched for motor windings (not shown). Further, in the heating operation mode, the motor 314 is supplied with power for restraint energization supplied from the inverter 310, and heats the liquid refrigerant stagnant inside the compressor.
 なお、電力変換装置1に接続される負荷は、圧縮機駆動用のモータ314に限定されず、ファンモータ、ハンドドライヤに具備されるモータであってもよい。また、電力変換装置1に接続される負荷はモータ314に限定されるものではなく、モータ314以外の負荷であってもよい。 Note that the load connected to the power conversion device 1 is not limited to the motor 314 for driving the compressor, but may be a fan motor or a motor included in a hand dryer. Further, the load connected to the power converter 1 is not limited to the motor 314, and may be a load other than the motor 314.
 上述した構成より、実施の形態1に係る電力変換装置1は、波形形状制御信号出力部420及び波形形状変更部340によって、インバータ310のスイッチング素子311a~311fのスイッチング波形の波形形状を変更することができる。具体的には、電力変換装置1は、インバータ310のスイッチング素子311a~311fがスイッチング動作するときの、スイッチング速度、遅延時間などを変更することができる。 With the above-described configuration, the power conversion device 1 according to the first embodiment can change the waveform shapes of the switching waveforms of the switching elements 311a to 311f of the inverter 310 using the waveform shape control signal output section 420 and the waveform shape changing section 340. I can do it. Specifically, the power conversion device 1 can change the switching speed, delay time, etc. when the switching elements 311a to 311f of the inverter 310 perform a switching operation.
 図2は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を遅くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図である。図3は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を速くしたときのターンオンジュール損失、ターンオン電流、及びターンオン電圧の例を示す図である。 FIG. 2 is a diagram showing an example of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of switching elements 311a to 311f of inverter 310 is slowed in power converter 1 according to the first embodiment. FIG. 3 is a diagram showing examples of turn-on Joule loss, turn-on current, and turn-on voltage when the switching speed of switching elements 311a to 311f of inverter 310 is increased in power converter 1 according to the first embodiment.
 図2及び図3において、Aはターンオンジュール損失を示し、Bはターンオン電流を示し、Cはターンオン電圧を示している。図2及び図3において、横軸は時間を示している。例えば、ターンオン電流はスイッチング素子311aに流れる電流であり、ターンオン電圧はスイッチング素子311aの両端にかかる電圧であり、ターンオンジュール損失はターンオン電流とターンオン電圧とを乗算したものであるが、測定対象はスイッチング素子311aに限定されず、他のスイッチング素子311b~311fでもよい。なお、図2及び図3は、インバータ310のスイッチング素子311a~311fのスイッチング速度による各特性の違いを示すものであり、スイッチング速度の「遅い」及び「速い」の具体的な数値は特に問わない。図2及び図3に示すように、スイッチング速度を遅くすることで、Bのターンオン電流のピーク値で示されるノイズは小さくなるが、Aのターンオンジュール損失の面積で示される損失は大きくなる。また、図2及び図3に示すように、スイッチング速度を速くすることで、Bのターンオン電流のピーク値で示されるノイズは大きくなるが、Aのターンオンジュール損失の面積で示される損失は小さくなる。即ち、スイッチング素子311a~311fにおいて、発生するノイズ及び損失はトレードオフの関係にある。 In FIGS. 2 and 3, A indicates turn-on Joule loss, B indicates turn-on current, and C indicates turn-on voltage. In FIGS. 2 and 3, the horizontal axis indicates time. For example, the turn-on current is the current flowing through the switching element 311a, the turn-on voltage is the voltage applied across the switching element 311a, and the turn-on Joule loss is the product of the turn-on current and the turn-on voltage, but the measurement target is the switching element 311a. It is not limited to the element 311a, and other switching elements 311b to 311f may be used. Note that FIGS. 2 and 3 show the differences in each characteristic depending on the switching speed of the switching elements 311a to 311f of the inverter 310, and the specific values of "slow" and "fast" in the switching speed are not particularly important. . As shown in FIGS. 2 and 3, by slowing down the switching speed, the noise represented by the peak value of the turn-on current of B becomes smaller, but the loss represented by the area of the turn-on joule loss of A becomes larger. Furthermore, as shown in FIGS. 2 and 3, by increasing the switching speed, the noise indicated by the peak value of the turn-on current of B becomes larger, but the loss indicated by the area of the turn-on joule loss of A becomes smaller. . That is, in the switching elements 311a to 311f, there is a trade-off relationship between noise and loss generated.
 電力変換装置1では、波形形状変更部340をデジタルゲートドライバによって構成する。或いは、電力変換装置1では、インバータ310のスイッチング素子311a~311f及び波形形状変更部340を、デジタルゲートドライバモジュールによって構成する。これにより、電力変換装置1は、ハードウェアを変更することなく、ソフトウェアの指令値を変更することで、インバータ310のスイッチング素子311a~311fのスイッチング速度を変更することができ、スイッチング素子311a~311fで発生するノイズ及び損失を所望の状態に制御することができる。なお、制御部400における波形形状制御信号出力部420の機能は、デジタルゲートドライバモジュール内に構成することも可能である。この構成の場合、既存の制御部400の機能を改修せずに利用することができる。 In the power conversion device 1, the waveform shape changing unit 340 is configured by a digital gate driver. Alternatively, in the power conversion device 1, the switching elements 311a to 311f of the inverter 310 and the waveform shape changing section 340 are configured by a digital gate driver module. Thereby, the power conversion device 1 can change the switching speed of the switching elements 311a to 311f of the inverter 310 by changing the command value of the software without changing the hardware, and the switching elements 311a to 311f It is possible to control noise and loss generated in a desired state. Note that the function of the waveform shape control signal output section 420 in the control section 400 can also be configured within a digital gate driver module. In the case of this configuration, the functions of the existing control unit 400 can be used without modification.
 図4は、一般的なスイッチング素子で発生するノイズ及び損失の関係の例を示す図である。前述のように、スイッチング素子で発生するノイズ及び損失はトレードオフの関係にある。そのため、一般的なスイッチング素子においては、図4に示すように、スイッチング速度を速くすることでノイズは大きくなるが損失は小さくなり、スイッチング速度を遅くすることでノイズは小さくなるが損失は大きくなる。 FIG. 4 is a diagram showing an example of the relationship between noise and loss generated in a general switching element. As mentioned above, there is a trade-off relationship between noise and loss generated in switching elements. Therefore, in general switching elements, as shown in Figure 4, increasing the switching speed increases noise but decreases loss, and slowing the switching speed decreases noise but increases loss. .
 図5は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果の説明に使用する第1の図である。電力変換装置1は、電力変換装置1が搭載される製品で規定されているノイズの範囲内で運転していても、モータ314の負荷状態が軽負荷から重負荷に変化すると、図5に示すようにスイッチング素子311a~311fで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的にノイズが増えることになる。即ち、電力変換装置1では、負荷が重くなるほど、ノイズが増加する。そのため、電力変換装置1は、スイッチング素子311a~311fのスイッチング速度を遅くすることで、スイッチング素子311a~311fで発生するノイズを小さくすることができる。同様に、電力変換装置1は、電力変換装置1が搭載される製品で規定されている損失の範囲内で運転していても、モータ314の負荷状態が軽負荷から重負荷に変化すると、図5に示すようにスイッチング素子311a~311fで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的に損失が増えることになる。即ち、電力変換装置1では、負荷が重くなるほど、損失が増加する。そのため、電力変換装置1は、スイッチング素子311a~311fのスイッチング速度を速くすることで、スイッチング素子311a~311fで発生する損失を小さくすることができる。 FIG. 5 is a first diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1. Even if the power converter 1 is operated within the noise range specified by the product in which the power converter 1 is installed, when the load state of the motor 314 changes from light load to heavy load, the power converter 1 will cause the noise shown in FIG. 5 to change from light load to heavy load. As such, the curve representing the characteristics of noise and loss generated in the switching elements 311a to 311f moves toward the upper right, resulting in an increase in noise. That is, in the power conversion device 1, the heavier the load, the more noise increases. Therefore, the power converter 1 can reduce the noise generated in the switching elements 311a to 311f by slowing down the switching speed of the switching elements 311a to 311f. Similarly, even if the power converter 1 is operated within the loss range specified by the product in which the power converter 1 is installed, when the load state of the motor 314 changes from light load to heavy load, the As shown in FIG. 5, the curve showing the characteristics of noise and loss generated in the switching elements 311a to 311f moves toward the upper right, and as a result, the loss increases. That is, in the power conversion device 1, the heavier the load, the more the loss increases. Therefore, the power conversion device 1 can reduce the loss generated in the switching elements 311a to 311f by increasing the switching speed of the switching elements 311a to 311f.
 モータ314の負荷状態が軽負荷から重負荷に変化した場合、波形形状制御信号出力部420は、スイッチング素子311a~311fで発生するノイズが規定された要件を満たしつつ、スイッチング素子311a~311fで発生する損失を低減するように、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する。又は、モータ314の負荷状態が軽負荷から重負荷に変化した場合、波形形状制御信号出力部420は、スイッチング素子311a~311fで発生する損失が規定された要件を満たしつつ、スイッチング素子311a~311fで発生するノイズを低減するように、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する。 When the load state of the motor 314 changes from a light load to a heavy load, the waveform shape control signal output unit 420 controls the noise generated in the switching elements 311a to 311f while satisfying the specified requirements. The waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed to reduce the loss caused by the switching elements 311a to 311f. Alternatively, when the load state of the motor 314 changes from a light load to a heavy load, the waveform shape control signal output section 420 outputs the switching elements 311a to 311f while satisfying the specified requirements for losses generated in the switching elements 311a to 311f. The waveform shapes of the switching waveforms of the switching elements 311a to 311f are changed so as to reduce the noise generated in the switching elements 311a to 311f.
 図6は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果の説明に使用する第2の図である。電力変換装置1、具体的には波形形状変更部340は、スイッチング素子311a~311fの1回のスイッチング動作において、例えば、ターンオン期間又はターンオフ期間を2以上の期間に分割し、分割した各期間においてスイッチング素子311a~311fに対するゲート電流又はゲート電圧の振幅を異なる大きさに変更する。電力変換装置1は、図6に示すようにスイッチング素子311a~311fのスイッチング波形を最適化することで、図4に示すような一般的なスイッチング素子では得られなかったスイッチング素子311a~311fで発生するノイズ及び損失の特性を得ることができる。 FIG. 6 is a second diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1. The power conversion device 1, specifically the waveform shape changing unit 340, divides a turn-on period or a turn-off period into two or more periods in one switching operation of the switching elements 311a to 311f, and in each divided period, The amplitudes of the gate currents or gate voltages for the switching elements 311a to 311f are changed to different magnitudes. By optimizing the switching waveforms of the switching elements 311a to 311f as shown in FIG. 6, the power converter 1 can reduce the power generated in the switching elements 311a to 311f, which could not be achieved with general switching elements as shown in FIG. It is possible to obtain noise and loss characteristics that
 ここで、波形形状変更部340の構成について説明する。ここでは一例として、説明を簡単にするため、波形形状変更部340が1つのスイッチング素子311aのスイッチング波形の波形形状を変更可能な場合について説明する。図7は、実施の形態1に係る電力変換装置1の波形形状変更部340の構成例を示す図である。図7は、波形形状変更部340及びスイッチング素子311aによって構成される1つのデジタルゲートドライバの構成例を示す図でもある。波形形状変更部340は、図1に示すように、スイッチング素子311aを含む電力変換器であるインバータ310に含まれる。波形形状変更部340は、ターンオン用としてn個のPチャネル型のMOSFETであるPMOS(P-channel Metal Oxide Semiconductor)、n個のPMOSを動作させるためのn個のPreDriver、ターンオフ用としてn個のNチャネル型のMOSFETであるNMOS(N-channel Metal Oxide Semiconductor)、及びn個のNMOSを動作させるためのn個のPreDriverを備える。 Here, the configuration of the waveform shape changing section 340 will be explained. Here, as an example, in order to simplify the explanation, a case will be described in which the waveform shape changing section 340 can change the waveform shape of the switching waveform of one switching element 311a. FIG. 7 is a diagram illustrating a configuration example of the waveform shape changing unit 340 of the power conversion device 1 according to the first embodiment. FIG. 7 is also a diagram showing a configuration example of one digital gate driver configured by the waveform shape changing section 340 and the switching element 311a. As shown in FIG. 1, the waveform shape changing section 340 is included in the inverter 310, which is a power converter including a switching element 311a. The waveform shape changing unit 340 includes n PMOSs (P-channel Metal Oxide Semiconductor) which are P-channel MOSFETs for turn-on, n PreDrivers for operating the n PMOSs, and n PreDrivers for turn-off. It includes an NMOS (N-channel Metal Oxide Semiconductor) that is an N-channel MOSFET, and n PreDrivers for operating the n NMOS.
 波形形状変更部340は、制御電源Vdd及びグランドGNDに接続される。波形形状変更部340は、波形形状制御信号出力部420からの制御信号に基づいて動作させるPMOS又はNMOSの数を変更することで、ターンオン期間及びターンオフ期間の各期間において、スイッチング素子311aに出力する駆動信号であるゲート電流Iの振幅値をn通りに変更し、スイッチング素子311aのスイッチング速度を調整することができる。波形形状変更部340は、動作させるPMOS又はNMOSの数を多くするほど、スイッチング素子311aに出力するゲート電流Iの絶対値を大きくすることができ、スイッチング素子311aのスイッチング速度を速くすることができる。また、波形形状変更部340は、内部に備えるPMOS及びNMOSの数が多いほど、より細かなスイッチング素子311aのスイッチング速度の調整が可能になり、ゲート電流Iの増減の応答が速いほど1回のスイッチング期間で細かなゲート電流Iの調整が可能である。波形形状制御信号出力部420からの制御信号については、波形形状変更部340で動作させるPMOS又はNMOSの数を変更することができればよいので、アナログ信号でもよいし、デジタル信号でもよい。また、図7の例では、波形形状制御信号出力部420から波形形状変更部340への制御信号が並列でm本あることを示しているが、一例であり、制御信号の数はm本に限定されない。制御信号の数は、各PMOS及び各NMOSの動作の可否を示すことが可能な数であってもよいし、アナログ信号で電圧などを示すものであれば1つにすることも可能である。 The waveform shape changing section 340 is connected to the control power supply Vdd and the ground GND. The waveform shape changing section 340 changes the number of PMOSs or NMOSs to be operated based on the control signal from the waveform shape control signal output section 420, thereby outputting it to the switching element 311a in each period of the turn-on period and the turn-off period. The amplitude value of the gate current IG , which is the drive signal, can be changed in n ways to adjust the switching speed of the switching element 311a. The waveform shape changing unit 340 can increase the absolute value of the gate current IG output to the switching element 311a as the number of PMOSs or NMOSs to be operated increases, and the switching speed of the switching element 311a can be increased. can. In addition, the waveform shape changing unit 340 can finely adjust the switching speed of the switching element 311a as the number of PMOSs and NMOSs provided therein is large, and the faster the response to increase/decrease the gate current IG , the more finely the switching speed of the switching element 311a can be adjusted. It is possible to finely adjust the gate current IG during the switching period. The control signal from the waveform shape control signal output section 420 may be an analog signal or a digital signal as long as it can change the number of PMOSs or NMOSs operated by the waveform shape changing section 340. Furthermore, although the example in FIG. 7 shows that there are m control signals in parallel from the waveform shape control signal output section 420 to the waveform shape change section 340, this is just an example, and the number of control signals is m. Not limited. The number of control signals may be a number that can indicate whether each PMOS and each NMOS can operate, or it may be one as long as it is an analog signal that indicates voltage or the like.
 図8は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流I及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧Vの関係を示す第1の図である。図9は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流I及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧Vの関係を示す第2の図である。波形形状変更部340は、図8及び図9に示すように、出力するゲート電流Iを大きくするほど、ゲート電圧Vの立ち上がりを速くする、即ちスイッチング素子311aのスイッチング速度を速くすることができる。また、波形形状変更部340は、図8及び図9に示すように、出力するゲート電流Iを小さくするほど、ゲート電圧Vの立ち上がりを遅くする、即ちスイッチング素子311aのスイッチング速度を遅くすることができる。これにより、電力変換装置1は、図4に示すように、スイッチング素子311aで発生するノイズを小さくしたいときは出力するゲート電流Iを小さくしてスイッチング速度を遅くし、スイッチング素子311aで発生する損失を小さくしたいときは出力するゲート電流Iを大きくしてスイッチング速度を速くすることができる。なお、図8及び図9に示すゲート電流I及びゲート電圧Vの波形は理想的な例であって、図2及び図3に示すように、実際には、ゲート電流Iが一定の電流値になるまでには時間が掛かることになる。 FIG. 8 is a first diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be. FIG. 9 is a second diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be. As shown in FIGS. 8 and 9, the waveform shape changing unit 340 can increase the rise of the gate voltage VG , that is, increase the switching speed of the switching element 311a, as the output gate current IG increases. can. Further, as shown in FIGS. 8 and 9, the waveform shape changing unit 340 slows down the rise of the gate voltage VG , that is, the switching speed of the switching element 311a, as the gate current IG to be output is made smaller. be able to. As a result, as shown in FIG. 4, when the power conversion device 1 wants to reduce the noise generated in the switching element 311a, the output gate current IG is decreased to slow the switching speed, and the noise generated in the switching element 311a is reduced. When it is desired to reduce the loss, the output gate current IG can be increased to increase the switching speed. Note that the waveforms of the gate current IG and gate voltage VG shown in FIGS. 8 and 9 are ideal examples, and as shown in FIGS. 2 and 3, in reality, the gate current IG is constant. It will take time to reach the current value.
 図10は、実施の形態1に係る電力変換装置1において波形形状変更部340が出力するゲート電流I及びスイッチング素子311aの立ち上がりの速度を示すゲート電圧Vの関係を示す第3の図である。波形形状変更部340は、図10に示すように、ターンオン期間を分割し、各期間でゲート電流Iの大きさを変更することができる。即ち、波形形状変更部340は、1回のターンオン期間において、ゲート電流Iの大きさを細かく調整することができる。これにより、電力変換装置1は、ターンオン期間中同じゲート電流Iを出力する場合と比較して、図6に示すように、スイッチング素子311aで発生するノイズを小さくしつつ、スイッチング素子311aで発生する損失を小さくするような制御を行うことができる。 FIG. 10 is a third diagram showing the relationship between the gate current IG output by the waveform shape changing unit 340 and the gate voltage VG indicating the rising speed of the switching element 311a in the power conversion device 1 according to the first embodiment. be. As shown in FIG. 10, the waveform shape changing unit 340 can divide the turn-on period and change the magnitude of the gate current IG in each period. That is, the waveform shape changing section 340 can finely adjust the magnitude of the gate current IG during one turn-on period. As a result, the power converter 1 can reduce the noise generated in the switching element 311a while reducing the noise generated in the switching element 311a, as shown in FIG. 6, compared to the case where the same gate current IG is output during the turn-on period. control can be performed to reduce the loss caused by
 図8から図10を用いてスイッチング素子311aのターンオン期間を例にして説明したが、スイッチング素子311aのターンオフ期間についても同様である。図11は、実施の形態1に係る電力変換装置1において基本パルス生成部410が出力する基本パルス及び波形形状変更部340が出力するゲート電流Iの関係の例を示す図である。図11において、|Ig2|>|Ig1|とする。波形形状変更部340は、スイッチング素子311aのターンオン期間においてゲート電流Iを出力する期間を分割し、最初に振幅の大きい電流Ig2のゲート電流Iを出力してから次に振幅の小さい電流Ig1のゲート電流Iを出力してもよいし、最初に振幅の小さい電流Ig1のゲート電流Iを出力してから次に振幅の大きい電流Ig2のゲート電流Iを出力してもよい。同様に、波形形状変更部340は、スイッチング素子311aのターンオフ期間においてゲート電流Iを出力する期間を分割し、最初に振幅の大きい電流-Ig2のゲート電流Iを出力してから次に振幅の小さい電流-Ig1のゲート電流Iを出力してもよいし、最初に振幅の小さい電流-Ig1のゲート電流Iを出力してから次に振幅の大きい電流-Ig2のゲート電流Iを出力してもよい。 Although the turn-on period of the switching element 311a has been described as an example using FIGS. 8 to 10, the same applies to the turn-off period of the switching element 311a. FIG. 11 is a diagram illustrating an example of the relationship between the fundamental pulse outputted by the fundamental pulse generating section 410 and the gate current IG outputted by the waveform shape changing section 340 in the power conversion device 1 according to the first embodiment. In FIG. 11, it is assumed that |Ig2|>|Ig1|. The waveform shape changing unit 340 divides the period in which the gate current IG is output during the turn-on period of the switching element 311a, first outputs the gate current IG with a large amplitude current Ig2, and then outputs the gate current IG with a small amplitude current Ig1. The gate current IG of the current Ig1 with a small amplitude may be outputted first, and then the gate current IG of the current Ig2 with a large amplitude may be outputted. Similarly, the waveform shape changing unit 340 divides the period in which the gate current IG is output during the turn-off period of the switching element 311a, first outputs the gate current IG with a large amplitude - Ig2, and then outputs the gate current IG with a large amplitude. You may output the gate current IG with a small current -Ig1, or first output the gate current IG with a small amplitude current -Ig1, and then output the gate current IG with a large amplitude current -Ig2. You can also output it.
 このように、波形形状変更部340は、波形形状制御信号出力部420で設定される波形形状に基づいて、スイッチング素子311aのスイッチング波形の波形形状について、スイッチング素子311aのターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間においてスイッチング素子311aに対するゲート電流Iの振幅を異なる大きさに変更可能である。また、波形形状変更部340は、複数のトランジスタを備え、波形形状制御信号出力部420で設定される波形形状に基づいて動作させるトランジスタの数を変更することで、ゲート電流Iの振幅を変更することができる。 In this manner, the waveform shape changing section 340 changes the waveform shape of the switching waveform of the switching element 311a between the turn-on period and the turn-off period of the switching element 311a based on the waveform shape set by the waveform shape control signal output section 420. At least one period can be divided into two or more periods, and the amplitude of the gate current IG to the switching element 311a can be changed to a different magnitude in each divided period. Further, the waveform shape changing section 340 includes a plurality of transistors, and changes the amplitude of the gate current IG by changing the number of transistors to be operated based on the waveform shape set by the waveform shape control signal output section 420. can do.
 また、波形形状変更部340は、スイッチング素子311aのスイッチング周期ごとにゲート電流Iの出力パターンを変更することができる。波形形状変更部340は、電力変換装置1の動作中において、スイッチング素子311aのスイッチング周期ごとに異なる波形形状のスイッチング波形に変更可能である。この場合、波形形状制御信号出力部420は、スイッチング素子311aのスイッチング周期と同じ周期で、スイッチング素子311aのスイッチング波形の波形形状を変更することができる。波形形状制御信号出力部420は、スイッチング素子311aのスイッチング周期の正の整数倍の周期で、スイッチング素子311aのスイッチング波形の波形形状を変更してもよい。 Further, the waveform shape changing section 340 can change the output pattern of the gate current IG every switching period of the switching element 311a. The waveform shape changing unit 340 can change the switching waveform to a different waveform shape every switching period of the switching element 311a while the power conversion device 1 is in operation. In this case, the waveform shape control signal output section 420 can change the waveform shape of the switching waveform of the switching element 311a at the same cycle as the switching cycle of the switching element 311a. The waveform shape control signal output unit 420 may change the waveform shape of the switching waveform of the switching element 311a at a cycle that is a positive integer multiple of the switching cycle of the switching element 311a.
 なお、波形形状変更部340の構成について、図7に示す波形形状変更部340の構成は一例であって、これに限定されない。波形形状変更部340は、内部で使用するMOS(Metal Oxide Semiconductor)については、MOS以外のトランジスタを使用してもよい。 Note that, regarding the configuration of the waveform shape changing unit 340, the configuration of the waveform shape changing unit 340 shown in FIG. 7 is an example, and is not limited thereto. The waveform shape changing unit 340 may use a transistor other than a MOS (Metal Oxide Semiconductor) for internal use.
 波形形状変更部340は、複数のMOSによるデジタル制御によって、特許文献1に記載したようなゲート抵抗を物理的に切り替えるようなアナログ制御の場合と比較して、スイッチング素子311aのスイッチング速度をより細かに調整することができる。また、ゲート抵抗は、温度によって抵抗値が変動するので、温度変動に対する精度が問題になることがある。これに対し、デジタルゲートドライバでは、このような問題は起こらない。このため、デジタルゲートドライバによって構成される波形形状変更部340は、スイッチング速度の調整を精度良く行うことができる。 The waveform shape changing unit 340 uses digital control using a plurality of MOSs to finely control the switching speed of the switching element 311a compared to analog control that physically switches the gate resistance as described in Patent Document 1. can be adjusted to Furthermore, since the resistance value of the gate resistor varies depending on the temperature, accuracy with respect to temperature variation may become a problem. In contrast, with digital gate drivers, this problem does not occur. Therefore, the waveform shape changing unit 340 configured by the digital gate driver can adjust the switching speed with high accuracy.
 また、波形形状変更部340は、上記の例では取得した制御信号に応じて動作させるPMOS又はNMOSの数を変更し、動作させるPMOS又はNMOSの数に応じたゲート電流Iをスイッチング素子311aに出力していたが、これに限定されない。波形形状変更部340は、制御信号に応じたゲート電流Iの出力パターン即ち波形形状を予め記憶しておき、取得した制御信号に応じた出力パターン即ち波形形状でゲート電流Iを出力してもよい。また、波形形状変更部340は、過去に取得した制御信号及び過去に取得した制御信号のときのゲート電流Iの出力パターン即ち波形形状を記憶しておき、同じ制御信号を取得した際に記憶していた出力パターン即ち波形形状でゲート電流Iを出力してもよい。波形形状変更部340は、制御信号に応じたゲート電流Iの出力パターン即ち波形形状を記憶しておくことで、ゲート電流Iを出力する際の処理負荷を低減することができる。 Further, in the above example, the waveform shape changing unit 340 changes the number of PMOSs or NMOSs to be operated according to the acquired control signal, and applies a gate current IG to the switching element 311a according to the number of PMOSs or NMOSs to be operated. However, the output is not limited to this. The waveform shape changing unit 340 stores in advance an output pattern, that is, a waveform shape, of the gate current IG in accordance with the control signal, and outputs the gate current IG in the output pattern, that is, the waveform shape, in accordance with the acquired control signal. Good too. Further, the waveform shape changing unit 340 stores the control signal acquired in the past and the output pattern, that is, the waveform shape, of the gate current IG for the control signal acquired in the past, and stores it when the same control signal is acquired. The gate current IG may be output in the same output pattern, ie, waveform shape. The waveform shape changing section 340 can reduce the processing load when outputting the gate current IG by storing the output pattern, that is, the waveform shape, of the gate current IG according to the control signal.
 また、波形形状変更部340は、図4の例では、スイッチング素子311aに出力する駆動信号としてゲート電流Iを変更することでスイッチング素子311aのスイッチング速度を調整し、スイッチング素子311aのスイッチング波形の波形形状を変更していたがこれに限定されない。波形形状変更部340は、スイッチング素子311aに出力する駆動信号をゲート電圧Vとし、ゲート電圧Vを変更することで、同様にスイッチング素子311aのスイッチング速度を調整し、スイッチング素子311aのスイッチング波形の波形形状を変更することができる。 Further, in the example of FIG. 4, the waveform shape changing unit 340 adjusts the switching speed of the switching element 311a by changing the gate current IG as a drive signal output to the switching element 311a, and changes the switching waveform of the switching element 311a. Although the waveform shape was changed, the present invention is not limited to this. The waveform shape changing unit 340 sets the drive signal output to the switching element 311a to a gate voltage VG , and by changing the gate voltage VG , similarly adjusts the switching speed of the switching element 311a, and changes the switching waveform of the switching element 311a. The waveform shape of can be changed.
 このように、波形形状変更部340は、波形形状制御信号出力部420から出力される制御信号に基づいて、スイッチング素子311aのスイッチング波形の波形形状について、スイッチング素子311aのターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間においてスイッチング素子311aに対するゲート電圧Vの振幅を異なる大きさに変更可能である。また、波形形状変更部340は、複数のトランジスタを備え、波形形状制御信号出力部420から出力される制御信号に基づいて動作させるトランジスタの数を変更することで、ゲート電圧Vの振幅を変更することができる。 In this way, the waveform shape changing section 340 changes the waveform shape of the switching waveform of the switching element 311a between the turn-on period and the turn-off period of the switching element 311a based on the control signal output from the waveform shape control signal output section 420. At least one period can be divided into two or more periods, and the amplitude of the gate voltage V G applied to the switching element 311a can be changed to a different magnitude in each divided period. Further, the waveform shape changing unit 340 includes a plurality of transistors, and changes the amplitude of the gate voltage V G by changing the number of transistors to be operated based on the control signal output from the waveform shape control signal output unit 420. can do.
 図12は、実施の形態1に係る電力変換装置1においてスイッチング素子311a~311fのスイッチング波形の波形形状を変更する動作の説明に使用するフローチャートである。電力変換装置1において、基本パルス生成部410は、状態量検出部501,502,505,506から取得した状態量に基づいて、インバータ310のスイッチング素子311a~311fを駆動するための基本パルスを生成する(ステップS1)。このように、制御部400において、基本パルス生成部410は、状態量検出部501,502,505,506から取得した状態量に基づいて、基本パルスを生成し、スイッチング素子311a~311fをターンオンするタイミング及びターンオフするタイミングを決定する。基本パルス生成部410は、生成した基本パルスを波形形状制御信号出力部420に出力する。 FIG. 12 is a flowchart used to explain the operation of changing the waveform shapes of the switching waveforms of the switching elements 311a to 311f in the power conversion device 1 according to the first embodiment. In the power conversion device 1, the basic pulse generation unit 410 generates basic pulses for driving the switching elements 311a to 311f of the inverter 310 based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506. (Step S1). In this way, in the control unit 400, the basic pulse generation unit 410 generates a basic pulse based on the state quantities acquired from the state quantity detection units 501, 502, 505, and 506, and turns on the switching elements 311a to 311f. Determine timing and turn-off timing. The basic pulse generation section 410 outputs the generated basic pulse to the waveform shape control signal output section 420.
 波形形状制御信号出力部420は、基本パルス生成部410から取得した基本パルス、及び状態量検出部501,502,505,506から取得した物理量に基づいて、インバータ310のスイッチング素子311a~311fのスイッチング波形の波形形状を変更するための波形形状を設定する。このように、制御部400において、波形形状制御信号出力部420は、状態量検出部501,502,505,506から取得した状態量に基づいて、基本パルス生成部410で決定されたスイッチング素子311a~311fをターンオンするタイミング及びターンオフするタイミングにおけるスイッチング波形の波形形状を設定する。波形形状制御信号出力部420は、波形形状変更部340に対して、設定した波形形状に応じて駆動信号の大きさ及び出力タイミングを変更可能な制御信号を出力する(ステップS2)。 The waveform shape control signal output section 420 performs switching of the switching elements 311a to 311f of the inverter 310 based on the basic pulse obtained from the basic pulse generation section 410 and the physical quantities obtained from the state quantity detection sections 501, 502, 505, and 506. Set the waveform shape to change the waveform shape of the waveform. In this way, in the control section 400, the waveform shape control signal output section 420 outputs the switching element 311a determined by the basic pulse generation section 410 based on the state quantities acquired from the state quantity detection sections 501, 502, 505, and 506. The waveform shape of the switching waveform at the timing of turning on and turning off 311f is set. The waveform shape control signal output section 420 outputs a control signal that can change the magnitude and output timing of the drive signal according to the set waveform shape to the waveform shape change section 340 (step S2).
 波形形状変更部340は、インバータ310のスイッチング素子311a~311fに出力するゲート電流Iの波形形状、即ちスイッチング素子311a~311fのスイッチング波形の波形形状を、波形形状制御信号出力部420から取得した制御信号に基づいて変更する(ステップS3)。波形形状変更部340は、波形形状変更後のゲート電流Iをインバータ310のスイッチング素子311a~311fに出力する。 The waveform shape changing unit 340 acquires the waveform shape of the gate current IG output to the switching elements 311a to 311f of the inverter 310, that is, the waveform shape of the switching waveform of the switching elements 311a to 311f, from the waveform shape control signal output unit 420. It is changed based on the control signal (step S3). The waveform shape changing section 340 outputs the gate current IG after changing the waveform shape to the switching elements 311a to 311f of the inverter 310.
 上述したように、実施の形態1に係る電力変換装置1は、上述した基本パルス生成部410及び波形形状制御信号出力部420の機能によって、インバータ310のスイッチング素子311a~311fを駆動するための駆動信号の大きさ及び出力タイミングを変更することができる。実施の形態1に係る電力変換装置1は、この機能を放熱器を具備する電力変換装置に適用することで種々の効果を得ることができる。 As described above, the power conversion device 1 according to the first embodiment uses the functions of the basic pulse generation section 410 and the waveform shape control signal output section 420 described above to perform driving for driving the switching elements 311a to 311f of the inverter 310. Signal magnitude and output timing can be changed. The power conversion device 1 according to the first embodiment can obtain various effects by applying this function to a power conversion device including a radiator.
 図13は、実施の形態1に係る電力変換装置1において定義される第1の損失線L1の説明に使用する図である。図14は、実施の形態1に係る電力変換装置1において定義される第1の損失線L1及び第2の損失線L2の説明に使用する図である。図15は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果の説明に使用する第3の図である。 FIG. 13 is a diagram used to explain the first loss line L1 defined in the power conversion device 1 according to the first embodiment. FIG. 14 is a diagram used to explain the first loss line L1 and the second loss line L2 defined in the power conversion device 1 according to the first embodiment. FIG. 15 is a third diagram used to explain the effect obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power converter 1 according to the first embodiment.
 図13において、第1の損失線L1は、電力変換装置1が放熱器を備えていないときに、電力変換装置1において許容される損失限界を表す境界線である。前述したように、スイッチング速度を遅くすることでノイズは小さくなり、損失は大きくなる。ノイズを小さくするため、スイッチング素子311a~311fのスイッチング波形の波形形状を変更してスイッチング速度を遅くすることは可能であるが、損失が大きくなると、スイッチング素子311a~311fのうちの少なくとも1つのスイッチング素子が熱暴走を起こす場合がある。即ち、第1の損失線L1は、スイッチング素子311a~311fのうちの少なくとも1つのスイッチング素子が熱暴走を起こさない損失の境界を示す境界線である。従って、図13に示すように、損失ゼロを意味する縦軸から第1の損失線L1までの領域を「R1」で表すと、この領域R1は、放熱器を有さない電力変換装置1が動作可能な領域を意味することになる。なお、図13において、第1の損失線L1は直線で表されているが、必ずしも直線である必要はない。また、第1の損失線L1及び領域R1は、スイッチング素子が同じでも、駆動対象が異なれば、異なる曲線及び異なる領域となることは言うまでもない。 In FIG. 13, the first loss line L1 is a boundary line representing the loss limit allowed in the power converter 1 when the power converter 1 is not equipped with a radiator. As mentioned above, slowing the switching speed reduces noise and increases loss. In order to reduce noise, it is possible to slow the switching speed by changing the waveform shape of the switching waveform of the switching elements 311a to 311f, but if the loss becomes large, it is possible to reduce the switching speed of at least one of the switching elements 311a to 311f. The device may experience thermal runaway. That is, the first loss line L1 is a boundary line indicating a loss boundary at which at least one of the switching elements 311a to 311f does not cause thermal runaway. Therefore, as shown in FIG. 13, if the region from the vertical axis, which means zero loss, to the first loss line L1 is expressed as "R1", this region R1 corresponds to the power conversion device 1 without a heat sink. This means an operational area. Note that although the first loss line L1 is shown as a straight line in FIG. 13, it does not necessarily have to be a straight line. Furthermore, it goes without saying that the first loss line L1 and the region R1 will have different curves and different regions even if the switching elements are the same but if the driving target is different.
 また、図14において、第2の損失線L2は、電力変換装置1が放熱器を備えているときに、電力変換装置1において許容される損失限界を表す境界線である。図14に示すように、第1の損失線L1から第2の損失線L2までの領域が「R2」で表されている。電力変換装置1が放熱器を備えている場合、電力変換装置1において許容される損失限界が放熱器によって緩和される。このため、電力変換装置1が放熱器を備えている場合、更にスイッチング速度を遅くすることが可能となり、ノイズの更なる低減が可能となる。これにより、電力変換装置1が動作できる領域を、領域R1に加えて領域R2まで拡張することができる。なお、第2の損失線L2及び領域R2は、スイッチング素子が同じでも、駆動対象が異なり、或いは、放熱器の大きさ及び放熱器の冷却特性が異なれば、異なる曲線及び異なる領域となることは言うまでもない。 Further, in FIG. 14, the second loss line L2 is a boundary line representing the loss limit allowed in the power converter 1 when the power converter 1 is equipped with a radiator. As shown in FIG. 14, the area from the first loss line L1 to the second loss line L2 is represented by "R2". When the power converter 1 includes a radiator, the loss limit allowed in the power converter 1 is relaxed by the radiator. Therefore, when the power conversion device 1 includes a heat sink, it becomes possible to further reduce the switching speed and further reduce noise. Thereby, the region in which the power conversion device 1 can operate can be expanded to region R2 in addition to region R1. Note that even if the switching elements are the same, the second loss line L2 and the region R2 may have different curves and different regions if the driving target is different, or if the size of the radiator and the cooling characteristics of the radiator are different. Needless to say.
 図15の左側及び右側には、基板320に搭載される波形形状変更部340、半導体パッケージ342及びノイズ対策部品322の概略の大きさと、概略の位置関係とが模式的に示されている。また、図15の右側には、波形形状変更部340及び半導体パッケージ342を覆うように、波形形状変更部340及び半導体パッケージ342の発熱による温度上昇を抑制するために設けられる放熱器344が示されている。なお、図15では、波形形状変更部340及び半導体パッケージ342の搭載面に放熱器344が設けられる例が示されているが、この構成に限定されない。放熱器344は、波形形状変更部340及び半導体パッケージ342の搭載面とは反対側の面に設けられていてもよい。 On the left and right sides of FIG. 15, the approximate sizes and approximate positional relationships of the waveform shape changing unit 340, the semiconductor package 342, and the noise countermeasure component 322 mounted on the board 320 are schematically shown. Further, on the right side of FIG. 15, a radiator 344 is shown that is provided to cover the waveform shape changing section 340 and the semiconductor package 342 in order to suppress a temperature rise due to heat generation in the waveform shape changing section 340 and the semiconductor package 342. ing. Note that although FIG. 15 shows an example in which the heat radiator 344 is provided on the mounting surface of the waveform shape changing section 340 and the semiconductor package 342, the present invention is not limited to this configuration. The heat sink 344 may be provided on a surface opposite to the mounting surface of the waveform shape changing section 340 and the semiconductor package 342.
 前述したように、放熱器を設けることで、電力変換装置1において許容される損失限界の領域を拡張することができる。また、前述したように、スイッチング速度を遅くして損失を増加させれば、ノイズの低減が可能となる。このため、実施の形態1に係る電力変換装置1では、ノイズが大きくなる運転条件のときに領域R2で積極的に動作させるように、波形形状変更部340及び波形形状制御信号出力部420によってスイッチング素子311a~311fのスイッチング波形の波形形状を変更する。このようにすれば、図15に示すように、放熱器344を備えることで、ノイズ対策部品322の占有面積を小さくすることができる。その結果、基板320の面積である基板面積を削減することができる。なお、放熱器344を有することで、基板面に垂直な方向、即ち高さ方向のサイズは増加するが、元々基板320には、電解コンデンサ、端子部など、高さ方向にサイズを持つ部品が多数存在するので、放熱器による高さ方向の長さの増加は、殆ど問題にはならない。 As described above, by providing a heat radiator, it is possible to expand the allowable loss limit range in the power conversion device 1. Further, as described above, noise can be reduced by slowing down the switching speed and increasing loss. Therefore, in the power converter 1 according to the first embodiment, the waveform shape changing unit 340 and the waveform shape control signal output unit 420 perform switching so as to operate actively in the region R2 under operating conditions where noise becomes large. The waveform shapes of the switching waveforms of the elements 311a to 311f are changed. In this way, as shown in FIG. 15, by providing the heat radiator 344, the area occupied by the noise countermeasure component 322 can be reduced. As a result, the substrate area, which is the area of the substrate 320, can be reduced. Note that by including the heatsink 344, the size in the direction perpendicular to the board surface, that is, in the height direction increases, but the board 320 originally has components that have sizes in the height direction, such as electrolytic capacitors and terminals. Since there are a large number of heat sinks, an increase in the length in the height direction due to the heat radiator is hardly a problem.
 図16は、実施の形態1に係る電力変換装置1においてインバータ310のスイッチング素子311a~311fのスイッチング速度を変更することによって得られる効果の説明に使用する第4の図である。図17は、図16に示される2つの動作条件におけるスイッチング特性の変化を示す図である。 FIG. 16 is a fourth diagram used to explain the effects obtained by changing the switching speeds of switching elements 311a to 311f of inverter 310 in power conversion device 1 according to Embodiment 1. FIG. 17 is a diagram showing changes in switching characteristics under the two operating conditions shown in FIG. 16.
 図16の上側のグラフには、ある運転条件でインバータ310を動作させたときのスイッチング素子311a~311fの動作を解析したシミュレーション結果が、HS面積、素子損失及び温度超過をパラメータにして示されている。ここで、HS面積は、放熱器がヒートシンクであるとしたときに、基板面に垂直な方向からヒートシンクを視認したときのヒートシンクの面積である。素子損失は、スイッチング素子311a~311fの損失を意味している。温度超過は、スイッチング素子311a~311fの温度の上昇量又は低下量を示している。また、図16のグラフの横軸は、HS面積を表し、図16のグラフの縦軸は、素子損失による温度超過を表している。また、図16の下側の表には、図16の上側に示される(1)~(3)による3つの動作条件に関して、各々の動作条件におけるパラメータであるHS面積、素子損失及び温度超過の各値が示されている。なお、HS面積及び素子損失については、動作条件(1)の値を基準にして、動作条件(2)、(3)の値が規格化されて示されている。 The upper graph in FIG. 16 shows the simulation results of analyzing the operation of the switching elements 311a to 311f when the inverter 310 is operated under certain operating conditions, using the HS area, element loss, and temperature excess as parameters. There is. Here, the HS area is the area of the heat sink when the heat sink is viewed from a direction perpendicular to the substrate surface, assuming that the heat sink is a heat sink. The element loss means the loss of the switching elements 311a to 311f. Excess temperature indicates the amount of increase or decrease in temperature of the switching elements 311a to 311f. Further, the horizontal axis of the graph in FIG. 16 represents the HS area, and the vertical axis of the graph in FIG. 16 represents the temperature excess due to element loss. In addition, the table on the lower side of FIG. 16 shows the parameters of HS area, element loss, and overtemperature under each operating condition for the three operating conditions (1) to (3) shown on the upper side of FIG. 16. Each value is shown. Regarding the HS area and element loss, the values for operating conditions (2) and (3) are normalized and shown based on the value for operating condition (1).
 図16のシミュレーション結果について説明する。まず、インバータ310が動作条件(1)で動作したときは、素子が耐えられる規定の温度に対して1.4[℃]の温度超過が確認される。なお、前述したように、このときのHS面積及び素子損失を1として規格化する。温度超過を規定内に収めるため、動作条件(2)として、HS面積を動作条件(1)の1.3倍とする。このようにすれば、温度超過を-0.1[℃]に抑えられることが、図16に示されている。即ち、温度超過を-0.1[℃]に抑えるためには、HS面積を動作条件(1)の1.3倍とすることが求められる。しかしながら、HS面積を増加させることは得策ではなく、また、HS面積を増加させることが困難な場合も多い。そこで、動作条件(3)では、HS面積は変更せず、上述したスイッチング波形の波形形状を変更する手法を用いて、インバータ310における素子損失を10%低減させる。これにより、温度超過を-0.1[℃]に抑えられることが、図16に示されている。 The simulation results shown in FIG. 16 will be explained. First, when the inverter 310 operates under operating condition (1), it is confirmed that the temperature exceeds the specified temperature that the elements can withstand by 1.4 [° C.]. Note that, as described above, the HS area and element loss at this time are normalized as 1. In order to keep the temperature exceedance within the specified range, as operating condition (2), the HS area is set to be 1.3 times that of operating condition (1). FIG. 16 shows that by doing this, the excess temperature can be suppressed to −0.1 [° C.]. That is, in order to suppress the temperature exceedance to −0.1 [° C.], the HS area is required to be 1.3 times the operating condition (1). However, increasing the HS area is not a good idea, and it is often difficult to increase the HS area. Therefore, under operating condition (3), the element loss in the inverter 310 is reduced by 10% using the method of changing the waveform shape of the switching waveform described above without changing the HS area. FIG. 16 shows that this allows the temperature excess to be suppressed to −0.1 [° C.].
 図17には、動作条件(1)から、動作条件(3)に移行させる制御のイメージが示されている。図17において、Aは動作条件(1)に対応する動作点であり、第2の損失線L2の右側に位置している。また、Bは動作条件(3)に対応する動作点であり、第2の損失線L2の左側に位置している。波形形状制御信号出力部420は、インバータ310における素子損失が増加するようにインバータ310のスイッチング素子311a~311fのスイッチング波形の波形形状を変更する。そして、波形形状変更部340は、波形形状制御信号出力部420から取得した制御信号に基づいて、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する。このようにすれば、図17に示すスイッチング特性曲線上の動作点を動作点Aから動作点Bに移動させることができる。これにより、電力変換装置1で発生するノイズを抑制しながら、スイッチング素子311a~311fにおける素子損失を適度に調整して、スイッチング素子311a~311fが熱暴走するのを防止することが可能となる。 FIG. 17 shows an image of control for transitioning from operating condition (1) to operating condition (3). In FIG. 17, A is an operating point corresponding to operating condition (1), and is located on the right side of the second loss line L2. Further, B is an operating point corresponding to operating condition (3), and is located on the left side of the second loss line L2. Waveform shape control signal output section 420 changes the waveform shape of the switching waveforms of switching elements 311a to 311f of inverter 310 so that element loss in inverter 310 increases. Then, the waveform shape changing section 340 changes the waveform shapes of the switching waveforms of the switching elements 311a to 311f based on the control signal obtained from the waveform shape control signal output section 420. In this way, the operating point on the switching characteristic curve shown in FIG. 17 can be moved from operating point A to operating point B. This makes it possible to appropriately adjust the element loss in the switching elements 311a to 311f while suppressing noise generated in the power converter 1, thereby preventing thermal runaway of the switching elements 311a to 311f.
 次に、電力変換装置1が備える制御部400のハードウェア構成について説明する。図18は、実施の形態1に係る電力変換装置1が備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91及びメモリ92により実現される。 Next, the hardware configuration of the control unit 400 included in the power conversion device 1 will be described. FIG. 18 is a diagram illustrating an example of a hardware configuration that implements the control unit 400 included in the power conversion device 1 according to the first embodiment. The control unit 400 is realized by a processor 91 and a memory 92.
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、又はシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性又は揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)でもよい。 The processor 91 is a CPU (Central Processing Unit, also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor)), or a system LSI (Large Scale Intel). gration). The memory 92 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEP. Non-volatile or volatile memory such as ROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) An example is semiconductor memory. Furthermore, the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
 以上説明したように、実施の形態1に係る電力変換装置は、半導体パッケージに収容される複数のスイッチング素子を有するインバータを備え、インバータによって負荷を駆動するモータに電力を供給する。電力変換装置は、波形形状変更部と、状態量検出部と、波形形状制御信号出力部とを備え、半導体パッケージには放熱器が設けられている。波形形状制御信号出力部は、状態量検出部で検出された状態量に応じて、波形形状変更部でスイッチング素子のスイッチング波形を変更する際のスイッチング素子のスイッチング波形の波形形状を設定する。波形形状変更部は、波形形状制御信号出力部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状を変更する。これにより、電力変換装置は、回路規模の増大及び基板面積の増加を抑制しつつ、スイッチング素子のスイッチング速度を変更することができる。 As described above, the power conversion device according to the first embodiment includes an inverter having a plurality of switching elements housed in a semiconductor package, and the inverter supplies power to a motor that drives a load. The power conversion device includes a waveform shape changing section, a state quantity detection section, and a waveform shape control signal output section, and the semiconductor package is provided with a heat sink. The waveform shape control signal output section sets the waveform shape of the switching waveform of the switching element when the waveform shape changing section changes the switching waveform of the switching element according to the state quantity detected by the state quantity detection section. The waveform shape changing section changes the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output section. Thereby, the power conversion device can change the switching speed of the switching element while suppressing an increase in circuit scale and substrate area.
 また、実施の形態1に係る電力変換装置において、波形形状変更部は、波形形状制御信号出力部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状について、スイッチング素子のターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間においてスイッチング素子に対するゲート電流又はゲート電圧の振幅を異なる大きさに変更可能であるように構成される。このように構成された電力変換装置によれば、1回のスイッチング期間においてスイッチング素子に出力するゲート電流又はゲート電圧を細かく調整することができ、特許文献1などの方式では実現できなかったスイッチング素子のスイッチング波形の波形形状を実現することができる。 Further, in the power conversion device according to the first embodiment, the waveform shape changing unit adjusts the turn-on period of the switching element with respect to the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output unit. At least one of the turn-off periods and the turn-off period is divided into two or more periods, and the amplitude of the gate current or gate voltage for the switching element can be changed to a different magnitude in each divided period. According to the power conversion device configured in this way, it is possible to finely adjust the gate current or gate voltage output to the switching element in one switching period, and it is possible to finely adjust the gate current or gate voltage output to the switching element in one switching period, which could not be achieved with the method of Patent Document 1 etc. It is possible to realize the waveform shape of the switching waveform.
 また、実施の形態1に係る電力変換装置は、放熱器を備えていないときに電力変換装置において許容される損失限界を表す境界線を第1の損失線として認識し、放熱器を備えているときに電力変換装置において許容される損失限界を表す境界線を第2の損失線として認識する。波形形状制御信号出力部は、電力変換装置の損失が第1の損失線を超え、且つ、第2の損失線を超えない領域で動作できるようにスイッチング素子のスイッチング波形の波形形状を設定する。このように構成された電力変換装置によれば、放熱器の能力を有効に活用して電力変換装置を動作させることができるので、電力変換装置において許容される損失限界の領域を拡張することができる。これにより、スイッチング速度を遅くして損失を増加させることでノイズの低減が可能となるので、ノイズ対策部品の占有面積を従来よりも小さくすることができ、基板面積の削減が可能になる。 Further, the power conversion device according to the first embodiment recognizes as a first loss line a boundary line representing a loss limit allowed in the power conversion device when the power conversion device is not equipped with a heatsink, and is equipped with a heatsink. A boundary line representing the allowable loss limit in a power converter is sometimes recognized as a second loss line. The waveform shape control signal output unit sets the waveform shape of the switching waveform of the switching element so that the power converter can operate in a region where the loss exceeds the first loss line and does not exceed the second loss line. According to the power converter configured in this way, it is possible to operate the power converter by effectively utilizing the ability of the radiator, so it is possible to expand the range of allowable loss limits in the power converter. can. This makes it possible to reduce noise by slowing down the switching speed and increasing loss, so the area occupied by noise countermeasure components can be made smaller than in the past, and the board area can be reduced.
実施の形態2.
 図19は、実施の形態2に係る電力変換装置1Aの構成例を示す図である。実施の形態2では、電力変換装置1A及びモータ314によって、モータ駆動装置2Aが構成される。また、実施の形態2に係る電力変換装置1Aでは、図1に示す係る電力変換装置1の構成において、物理量検出部504が追加されている。また、図19では、制御部400が制御部400Aに置き替えられている。更に、制御部400Aでは、基本パルス生成部410が基本パルス生成部410Aに置き替えられ、波形形状制御信号出力部420が波形形状制御信号出力部420Aに置き替えられ、設定部421が設定部421Aに置き替えられている。その他の構成は、図1に示す電力変換装置1と同一又は同等であり、同一又は同等の構成部には同一の符号を付し、重複する説明は割愛する。
Embodiment 2.
FIG. 19 is a diagram showing a configuration example of a power conversion device 1A according to the second embodiment. In the second embodiment, the power conversion device 1A and the motor 314 constitute a motor drive device 2A. Moreover, in the power conversion device 1A according to the second embodiment, a physical quantity detection unit 504 is added to the configuration of the power conversion device 1 shown in FIG. Further, in FIG. 19, the control section 400 is replaced with a control section 400A. Further, in the control section 400A, the basic pulse generation section 410 is replaced with a basic pulse generation section 410A, the waveform shape control signal output section 420 is replaced with a waveform shape control signal output section 420A, and the setting section 421 is replaced with a setting section 421A. has been replaced by The other configurations are the same or equivalent to the power conversion device 1 shown in FIG. 1, and the same or equivalent components are denoted by the same reference numerals, and redundant explanations will be omitted.
 物理量検出部504は、インバータ310が備えるスイッチング素子311a~311fのスイッチングによって電力変換装置1Aで発生する損失と相関のある物理量を検出する。物理量検出部504は、例えば、熱電対であり、設置された部分で発生する熱、即ち温度を検出することによって、電力変換装置1Aで発生する損失と相関のある物理量を検出する。物理量検出部504が熱電対の場合、物理量検出部504は、例えば、半導体パッケージ342の内部、放熱器344又はその周辺部、基板320などに設置される。なお、電力変換装置1Aは、図19の例では、物理量検出部504を1つ備えているが、複数の物理量検出部504を備えていてもよい。 The physical quantity detection unit 504 detects a physical quantity that is correlated with the loss that occurs in the power conversion device 1A due to switching of the switching elements 311a to 311f included in the inverter 310. The physical quantity detection unit 504 is, for example, a thermocouple, and detects the physical quantity correlated with the loss generated in the power conversion device 1A by detecting the heat generated in the installed portion, that is, the temperature. When the physical quantity detection unit 504 is a thermocouple, the physical quantity detection unit 504 is installed, for example, inside the semiconductor package 342, in or around the radiator 344, on the substrate 320, or the like. Although the power conversion device 1A includes one physical quantity detection section 504 in the example of FIG. 19, it may include a plurality of physical quantity detection sections 504.
 設定部421Aは、物理量検出部504によって検出された物理量と、前述した第2の損失線L2に基づいて設定される損失の閾値に基づいて、スイッチング素子311a~311fのスイッチング波形の波形形状を設定する。具体的に、設定部421Aは、物理量検出部504によって検出された物理量が損失の閾値を超えた場合、スイッチング素子311a~311fを駆動する際のスイッチング速度を速くすることで、スイッチング素子311a~311fで発生する損失を抑制する。このように制御すれば、スイッチング素子311a~311fが熱暴走するのを確実に防止することができる。 The setting unit 421A sets the waveform shape of the switching waveform of the switching elements 311a to 311f based on the physical quantity detected by the physical quantity detection unit 504 and the loss threshold set based on the second loss line L2 described above. do. Specifically, when the physical quantity detected by the physical quantity detection unit 504 exceeds the loss threshold, the setting unit 421A increases the switching speed when driving the switching elements 311a to 311f, thereby increasing the switching speed of the switching elements 311a to 311f. control losses that occur. By controlling in this manner, thermal runaway of the switching elements 311a to 311f can be reliably prevented.
 以上説明したように、実施の形態2に係る電力変換装置によれば、波形形状制御信号出力部は、物理量検出部によって検出された物理量と、第2の損失線に基づいて設定される損失の閾値とに基づいて、スイッチング素子のスイッチング波形の波形形状を設定する。波形形状変更部は、波形形状制御信号出力部で設定される波形形状に基づいて、スイッチング素子のスイッチング波形の波形形状を変更する。これにより、放熱器の能力を最大限に活用して電力変換装置を動作させる場合であっても、スイッチング素子が熱暴走するのを確実に防止することが可能となる。 As described above, according to the power conversion device according to the second embodiment, the waveform shape control signal output section is configured to output a loss that is set based on the physical quantity detected by the physical quantity detection section and the second loss line. The waveform shape of the switching waveform of the switching element is set based on the threshold value. The waveform shape changing section changes the waveform shape of the switching waveform of the switching element based on the waveform shape set by the waveform shape control signal output section. This makes it possible to reliably prevent thermal runaway of the switching element even when the power converter device is operated by making full use of the capability of the radiator.
実施の形態3.
 実施の形態3では、モータ314に供給される電力量に基づいて、スイッチング素子311a~311fのスイッチング波形の波形形状を変更する制御について説明する。実施の形態3に係る制御は、図1に示す電力変換装置1を用いて実施することができる。
Embodiment 3.
In the third embodiment, control for changing the waveform shape of the switching waveforms of the switching elements 311a to 311f based on the amount of electric power supplied to the motor 314 will be described. The control according to the third embodiment can be performed using the power conversion device 1 shown in FIG. 1.
 図20は、実施の形態3に係る電力変換装置においてスイッチング素子311a~311fのスイッチング波形の波形形状を変更する制御の説明に使用する図である。図20には、モータ314の負荷状態が軽負荷、中負荷及び重負荷である場合の3つのスイッチング特性曲線が示されている。図20において、電力変換装置1が、例えば中負荷の動作点Cで動作している場合において、負荷状態が重負荷となった場合には、動作点Dに移行する。この状態で動作を続けると、スイッチング素子311a~311fが熱暴走するおそれがある。そこで、実施の形態3では、動作点Dが動作点Eに移行するように、スイッチング特性を変化させる。この制御は、モータ314に供給される電力量に基づいて実施することができる。モータ314に供給される電力量は、状態量検出部502によって検出された状態量を用いて算出することができる。前述したように、状態量検出部502は、インバータ310からモータ314に供給される第2の交流電力の電圧値と、インバータ310からモータ314に供給される第2の交流電力の電流値とを検出することが可能である。 FIG. 20 is a diagram used to explain the control for changing the waveform shapes of the switching waveforms of the switching elements 311a to 311f in the power conversion device according to the third embodiment. FIG. 20 shows three switching characteristic curves when the load states of the motor 314 are light load, medium load, and heavy load. In FIG. 20, when the power conversion device 1 is operating at operating point C, which is a medium load, for example, when the load state becomes a heavy load, the power converter 1 shifts to operating point D. If the operation continues in this state, the switching elements 311a to 311f may experience thermal runaway. Therefore, in the third embodiment, the switching characteristics are changed so that the operating point D shifts to the operating point E. This control can be performed based on the amount of power supplied to motor 314. The amount of electric power supplied to the motor 314 can be calculated using the state quantity detected by the state quantity detection unit 502. As described above, the state quantity detection unit 502 detects the voltage value of the second AC power supplied from the inverter 310 to the motor 314 and the current value of the second AC power supplied from the inverter 310 to the motor 314. It is possible to detect.
 なお、モータ314の負荷状態に応じて、どのようなスイッチング特性にするのかの判断は、事前に測定したデータをテーブルとして保持することで実現してもよいし、実施の形態2で説明した物理量検出部504の検出値を利用することで実現してもよい。また、上記では、状態量検出部502によって検出された状態量を用いてモータ314に供給される電力量を算出する例を説明したが、この例に限定されない。モータ314に供給される電力量は、制御部400において使用又は生成される、電圧指令値及び電流指令値を用いて算出することも可能である。 Note that the determination of what kind of switching characteristics to use depending on the load state of the motor 314 may be realized by holding previously measured data as a table, or by using the physical quantities described in Embodiment 2. This may be realized by using the detection value of the detection unit 504. Moreover, although the example in which the amount of electric power supplied to the motor 314 is calculated using the state quantity detected by the state quantity detection unit 502 has been described above, the present invention is not limited to this example. The amount of electric power supplied to the motor 314 can also be calculated using a voltage command value and a current command value that are used or generated in the control unit 400.
 以上説明したように、実施の形態3に係る電力変換装置によれば、波形形状制御信号出力部は、モータに供給される電力量に基づいて、スイッチング素子のスイッチング波形の波形形状を設定する。この制御によれば、モータの負荷状態が急変した場合でも、迅速に対応することができる。これにより、放熱器の能力を最大限に活用して電力変換装置を動作させる場合であっても、スイッチング素子が熱暴走するのを確実に防止することが可能となる。 As described above, according to the power conversion device according to the third embodiment, the waveform shape control signal output section sets the waveform shape of the switching waveform of the switching element based on the amount of power supplied to the motor. According to this control, even if the load condition of the motor suddenly changes, it is possible to respond quickly. This makes it possible to reliably prevent thermal runaway of the switching element even when the power converter device is operated by making full use of the capability of the radiator.
実施の形態4.
 図21は、実施の形態4に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態4に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備える。実施の形態4に係る冷凍サイクル適用機器900は、実施の形態2で説明した電力変換装置1Aを備えることも可能である。実施の形態4に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図21において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
Embodiment 4.
FIG. 21 is a diagram showing a configuration example of a refrigeration cycle application device 900 according to the fourth embodiment. Refrigeration cycle application equipment 900 according to the fourth embodiment includes the power conversion device 1 described in the first embodiment. The refrigeration cycle application device 900 according to the fourth embodiment can also include the power conversion device 1A described in the second embodiment. The refrigeration cycle application device 900 according to the fourth embodiment can be applied to products including a refrigeration cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters. Note that in FIG. 21, components having the same functions as those in the first embodiment are given the same reference numerals as in the first embodiment.
 冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。 Refrigeration cycle application equipment 900 includes a compressor 315 with built-in motor 314 in Embodiment 1, a four-way valve 902, an indoor heat exchanger 906, an expansion valve 908, and an outdoor heat exchanger 910 that connect refrigerant piping 912. It is attached through.
 圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。 A compression mechanism 904 that compresses the refrigerant and a motor 314 that operates the compression mechanism 904 are provided inside the compressor 315.
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。 The refrigeration cycle applicable equipment 900 can perform heating operation or cooling operation by switching the four-way valve 902. The compression mechanism 904 is driven by a variable speed controlled motor 314.
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。 During heating operation, as shown by the solid arrow, the refrigerant is pressurized by the compression mechanism 904 and sent out, passing through the four-way valve 902, indoor heat exchanger 906, expansion valve 908, outdoor heat exchanger 910, and four-way valve 902. Returning to the compression mechanism 904.
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。 During cooling operation, the refrigerant is pressurized by the compression mechanism 904 and sent out, passing through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902, as shown by the dashed arrow. Returning to the compression mechanism 904.
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。 During heating operation, the indoor heat exchanger 906 acts as a condenser and releases heat, and the outdoor heat exchanger 910 acts as an evaporator and absorbs heat. During cooling operation, the outdoor heat exchanger 910 acts as a condenser and releases heat, and the indoor heat exchanger 906 acts as an evaporator and absorbs heat. The expansion valve 908 reduces the pressure of the refrigerant and expands it.
 なお、冷凍サイクル適用機器900は、規定されているノイズの範囲内で運転していても、モータ314の負荷状態が軽負荷から重負荷に変化すると、図5に示すようにスイッチング素子311a~311fなどで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的にノイズが増えることになる。そのため、冷凍サイクル適用機器900は、スイッチング素子311a~311fなどのスイッチング速度を遅くすることで、スイッチング素子311a~311fなどで発生するノイズを小さくすることができる。同様に、冷凍サイクル適用機器900は、規定されている損失の範囲内で運転していても、モータ314の負荷状態が軽負荷から重負荷に変化すると、図5に示すようにスイッチング素子311a~311fなどで発生するノイズ及び損失の特性を示すカーブは右上の方に推移し、結果的に損失が増えることになる。そのため、冷凍サイクル適用機器900は、スイッチング素子311a~311fなどのスイッチング速度を速くすることで、スイッチング素子311a~311fなどで発生する損失を小さくすることができる。 Note that even if the refrigeration cycle application equipment 900 is operated within the specified noise range, when the load state of the motor 314 changes from light load to heavy load, the switching elements 311a to 311f as shown in FIG. The curve showing the characteristics of noise and loss generated in such cases moves toward the upper right, resulting in an increase in noise. Therefore, the refrigeration cycle application equipment 900 can reduce the noise generated in the switching elements 311a to 311f by slowing down the switching speed of the switching elements 311a to 311f. Similarly, even if the refrigeration cycle application equipment 900 is operated within the specified loss range, when the load state of the motor 314 changes from light load to heavy load, switching elements 311a to 311a as shown in FIG. The curve showing the characteristics of noise and loss generated in 311f etc. moves toward the upper right, and as a result, the loss increases. Therefore, the refrigeration cycle applicable equipment 900 can reduce the loss generated in the switching elements 311a to 311f by increasing the switching speed of the switching elements 311a to 311f.
 ここで、冷凍サイクル適用機器900が備える電力変換装置1において、インバータ310に含まれる波形形状変更部340及びスイッチング素子311a~311fによって構成されるデジタルゲートドライバは、スイッチング速度が速いとサージ電圧が大きくなり、電磁ノイズが多く発生する。冷凍サイクル適用機器900は、燃焼性のある冷媒を使用する場合、冷媒が漏れた際に電磁ノイズが起因となる放電によって燃焼する可能性がある。そのため、冷凍サイクル適用機器900は、冷凍サイクル適用機器900で使用される冷媒の燃焼性に応じて、電力変換装置1が備えるデジタルゲートドライバのスイッチング速度を設定する。例えば、冷凍サイクル適用機器900は、冷凍サイクル適用機器900で使用される冷媒の燃焼性が高いほど、電力変換装置1が備えるデジタルゲートドライバのスイッチング速度を遅くする。冷凍サイクル適用機器900は、デジタルゲートドライバのスイッチング速度を遅くすることでサージ電圧を小さくでき、電磁ノイズが起因となる放電の発生を抑えることで、仮に冷凍サイクル適用機器900から冷媒が漏れた場合でも燃焼することを防止することができる。 Here, in the power conversion device 1 included in the refrigeration cycle application equipment 900, the digital gate driver configured by the waveform shape changing section 340 and the switching elements 311a to 311f included in the inverter 310 has a high surge voltage when the switching speed is high. Therefore, a lot of electromagnetic noise is generated. When the refrigeration cycle application equipment 900 uses a combustible refrigerant, there is a possibility that the refrigerant will be combusted due to discharge caused by electromagnetic noise when the refrigerant leaks. Therefore, the refrigeration cycle application equipment 900 sets the switching speed of the digital gate driver included in the power conversion device 1 according to the combustibility of the refrigerant used in the refrigeration cycle application equipment 900. For example, the refrigeration cycle application equipment 900 decreases the switching speed of the digital gate driver included in the power converter 1 as the flammability of the refrigerant used in the refrigeration cycle application equipment 900 increases. The refrigeration cycle application equipment 900 can reduce the surge voltage by slowing down the switching speed of the digital gate driver, and by suppressing the occurrence of discharge caused by electromagnetic noise, even if refrigerant leaks from the refrigeration cycle application equipment 900. However, combustion can be prevented.
 冷凍サイクル適用機器900で使用される冷媒は、例えば、R1234yf、R1234ze(E)、R1243zf、HFO1123、HFO1132(E)、R1132a、CF3I、R290、R463A、R466A、R454A、R454B、R454Cなどである。 Refrigerants used in the refrigeration cycle application equipment 900 include, for example, R1234yf, R1234ze (E), R1243zf, HFO1123, HFO1132 (E), R1132a, CF3I, R290, R463A, R466A, R454A, R454B, and R454C.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 1,1A 電力変換装置、2,2A モータ駆動装置、91 プロセッサ、92 メモリ、110 商用電源、130 整流部、210 コンデンサ、310 インバータ、311a~311f スイッチング素子、312a~312f 還流ダイオード、314 モータ、315 圧縮機、320 基板、322 ノイズ対策部品、340 波形形状変更部、342 半導体パッケージ、344 放熱器、400,400A 制御部、410,410A 基本パルス生成部、420,420A 波形形状制御信号出力部、421,421A 設定部、501,502,505,506 状態量検出部、504 物理量検出部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。 1,1a electric power conversion device, 2,2A motor drive device, 91 processor, 92 memory, 110 commercial power supply, 130 stream, 210 capacitors, 310 inverters, 311a to 311F switching elements, 312a -312F Reduced duods, 315, 315 Compressor, 320 Board, 322 Noise countermeasure parts, 340 Waveform shape changing section, 342 Semiconductor package, 344 Heatsink, 400, 400A Control section, 410, 410A Basic pulse generation section, 420, 420A Waveform shape control signal output section, 421 , 421A Setting section, 501, 502, 505, 506 State quantity detection section, 504 Physical quantity detection section, 900 Refrigeration cycle application equipment, 902 Four-way valve, 904 Compression mechanism, 906 Indoor heat exchanger, 908 Expansion valve, 910 Outdoor heat exchange 912 Refrigerant piping.

Claims (12)

  1.  半導体パッケージに収容される複数のスイッチング素子を有するインバータを備え、前記インバータによって負荷を駆動するモータに電力を供給する電力変換装置であって、
     複数の前記スイッチング素子のうちの少なくとも1つのスイッチング素子のスイッチング波形の波形形状を変更可能な波形形状変更部と、
     前記電力変換装置の動作状態を示す状態量を検出する状態量検出部と、
     前記状態量に応じて、前記波形形状変更部で前記スイッチング素子の前記スイッチング波形を変更する際の前記スイッチング素子の前記スイッチング波形の波形形状を設定し、設定した波形形状を示す制御信号を出力する波形形状制御信号出力部と、
     を備え、
     前記半導体パッケージには放熱器が設けられている
     電力変換装置。
    A power conversion device comprising an inverter having a plurality of switching elements housed in a semiconductor package, the inverter supplying power to a motor that drives a load,
    a waveform shape changing unit capable of changing the waveform shape of a switching waveform of at least one switching element among the plurality of switching elements;
    a state quantity detection unit that detects a state quantity indicating an operating state of the power converter;
    In accordance with the state quantity, the waveform shape changing unit sets a waveform shape of the switching waveform of the switching element when changing the switching waveform of the switching element, and outputs a control signal indicating the set waveform shape. a waveform shape control signal output section;
    Equipped with
    A power conversion device, wherein the semiconductor package is provided with a heat sink.
  2.  前記波形形状変更部は、前記波形形状制御信号出力部で設定される波形形状に基づいて、前記スイッチング素子の前記スイッチング波形の波形形状について、前記スイッチング素子のターンオン期間及びターンオフ期間のうち少なくとも1つの期間を2以上に分割し、分割した各期間において前記スイッチング素子に対するゲート電流又はゲート電圧の振幅を異なる大きさに変更可能である
     請求項1に記載の電力変換装置。
    The waveform shape changing section changes the waveform shape of the switching waveform of the switching element to at least one of a turn-on period and a turn-off period of the switching element, based on the waveform shape set by the waveform shape control signal output section. The power conversion device according to claim 1, wherein the period is divided into two or more, and the amplitude of the gate current or gate voltage for the switching element can be changed to a different magnitude in each divided period.
  3.  前記放熱器を備えていないときに前記電力変換装置において許容される損失限界を表す境界線を第1の損失線とし、前記放熱器を備えているときに前記電力変換装置において許容される損失限界を表す境界線を第2の損失線とするとき、
     前記波形形状制御信号出力部は、前記電力変換装置の損失が前記第1の損失線を超え、且つ、前記第2の損失線を超えない領域で動作できるように前記スイッチング素子の前記スイッチング波形の波形形状を設定する
     請求項1又は2に記載の電力変換装置。
    A first loss line is a boundary line representing a loss limit allowable in the power converter when the heat radiator is not provided, and a loss limit allowable in the power converter when the heat radiator is provided. When the boundary line representing the second loss line is set as the second loss line,
    The waveform shape control signal output section adjusts the switching waveform of the switching element so that the power converter can operate in a region where the loss exceeds the first loss line and does not exceed the second loss line. The power conversion device according to claim 1 or 2, wherein a waveform shape is set.
  4.  前記インバータで発生する損失と相関のある物理量を検出する検出部を備え、
     前記波形形状制御信号出力部は、前記物理量と、前記第2の損失線に基づいて設定される損失の閾値とに基づいて、前記スイッチング素子の前記スイッチング波形の波形形状を設定する
     請求項3に記載の電力変換装置。
    comprising a detection unit that detects a physical quantity correlated with loss occurring in the inverter,
    The waveform shape control signal output unit sets the waveform shape of the switching waveform of the switching element based on the physical quantity and a loss threshold set based on the second loss line. The power conversion device described.
  5.  前記状態量は、前記モータに供給される電力量であり、
     前記波形形状制御信号出力部は、前記電力量に基づいて、前記スイッチング素子の前記スイッチング波形の波形形状を設定する
     請求項1から4の何れか1項に記載の電力変換装置。
    The state quantity is the amount of electric power supplied to the motor,
    The power conversion device according to any one of claims 1 to 4, wherein the waveform shape control signal output unit sets the waveform shape of the switching waveform of the switching element based on the amount of electric power.
  6.  前記放熱器はヒートシンクである
     請求項1から5の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 5, wherein the radiator is a heat sink.
  7.  前記放熱器は冷媒冷却器である
     請求項1から5の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 5, wherein the radiator is a refrigerant cooler.
  8.  前記スイッチング素子を含む前記インバータは、前記波形形状変更部を含むように構成される
     請求項1から7の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 7, wherein the inverter including the switching element is configured to include the waveform shape changing section.
  9.  請求項1から8の何れか1項に記載の電力変換装置を備えるモータ駆動装置。 A motor drive device comprising the power conversion device according to any one of claims 1 to 8.
  10.  請求項1から8の何れか1項に記載の電力変換装置を備える冷凍サイクル適用機器。 A refrigeration cycle applicable device comprising the power conversion device according to any one of claims 1 to 8.
  11.  前記冷凍サイクル適用機器で使用される冷媒は、R1234yf、R1234ze(E)、R1243zf、HFO1123、HFO1132(E)、R1132a、CF3I、R290、R463A、R466A、R454A、R454B、R454Cの何れかである
     請求項10に記載の冷凍サイクル適用機器。
    The refrigerant used in the refrigeration cycle application equipment is any one of R1234yf, R1234ze (E), R1243zf, HFO1123, HFO1132 (E), R1132a, CF3I, R290, R463A, R466A, R454A, R454B, and R454C. 10. The refrigeration cycle applicable device according to 10.
  12.  前記冷媒の燃焼性に応じて、前記電力変換装置が備えるデジタルゲートドライバのスイッチング速度を設定する
     請求項11に記載の冷凍サイクル適用機器。
    The refrigeration cycle application equipment according to claim 11, wherein a switching speed of a digital gate driver included in the power conversion device is set depending on combustibility of the refrigerant.
PCT/JP2022/023172 2022-06-08 2022-06-08 Electric power conversion device, motor drive device, and refrigeration cycle application apparatus WO2023238296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023172 WO2023238296A1 (en) 2022-06-08 2022-06-08 Electric power conversion device, motor drive device, and refrigeration cycle application apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023172 WO2023238296A1 (en) 2022-06-08 2022-06-08 Electric power conversion device, motor drive device, and refrigeration cycle application apparatus

Publications (1)

Publication Number Publication Date
WO2023238296A1 true WO2023238296A1 (en) 2023-12-14

Family

ID=89117751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023172 WO2023238296A1 (en) 2022-06-08 2022-06-08 Electric power conversion device, motor drive device, and refrigeration cycle application apparatus

Country Status (1)

Country Link
WO (1) WO2023238296A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150462A (en) * 1997-11-19 1999-06-02 Meidensha Corp Switching control circuit
JP2004312817A (en) * 2003-04-03 2004-11-04 Mitsubishi Electric Corp Power convertor and power conversion system equipped with the same
JP2009118650A (en) * 2007-11-07 2009-05-28 Mitsubishi Electric Corp Power converter
JP2012157215A (en) * 2011-01-28 2012-08-16 Sanken Electric Co Ltd Driving circuit and switching power supply device
JP2014093304A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Power conversion device
JP2015171226A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 inverter device and air conditioner
WO2019176077A1 (en) * 2018-03-16 2019-09-19 新電元工業株式会社 Semiconductor switch control circuit and switching power supply device
WO2022004602A1 (en) * 2020-06-29 2022-01-06 ダイキン工業株式会社 Inverter device
JP2022048476A (en) * 2020-09-15 2022-03-28 株式会社東芝 Driving control circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150462A (en) * 1997-11-19 1999-06-02 Meidensha Corp Switching control circuit
JP2004312817A (en) * 2003-04-03 2004-11-04 Mitsubishi Electric Corp Power convertor and power conversion system equipped with the same
JP2009118650A (en) * 2007-11-07 2009-05-28 Mitsubishi Electric Corp Power converter
JP2012157215A (en) * 2011-01-28 2012-08-16 Sanken Electric Co Ltd Driving circuit and switching power supply device
JP2014093304A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Power conversion device
JP2015171226A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 inverter device and air conditioner
WO2019176077A1 (en) * 2018-03-16 2019-09-19 新電元工業株式会社 Semiconductor switch control circuit and switching power supply device
WO2022004602A1 (en) * 2020-06-29 2022-01-06 ダイキン工業株式会社 Inverter device
JP2022048476A (en) * 2020-09-15 2022-03-28 株式会社東芝 Driving control circuit

Similar Documents

Publication Publication Date Title
JP5633442B2 (en) Inverter control device and refrigeration air conditioner
US4736595A (en) Circuit for controlling inventer in air conditioner
AU2011377665B2 (en) Heat pump device, heat pump system, and inverter control method
JP4494112B2 (en) Inverter control device for air conditioner and air conditioner
AU2011366351B2 (en) Heat pump apparatus, heat pump system and inverter control method
CN110892632B (en) Motor drive device and air conditioner
WO2016071963A1 (en) Motor drive device and air conditioner
JP2022118033A (en) air conditioner
JP4879330B2 (en) Inverter control device for air conditioner
WO2023238296A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application apparatus
CN112013523A (en) Method and device for controlling temperature of frequency converter of refrigeration equipment and air conditioning system
US11323050B2 (en) Power supply apparatus
EP1981159A1 (en) Refrigeration cycle device
JP3546786B2 (en) Air conditioner
WO2023238291A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
WO2023238293A1 (en) Air conditioner
WO2022045098A1 (en) Inverter device, and vehicular electric compressor provided with same
WO2023243003A1 (en) Power conversion device, motor drive device, and equipment using refrigeration cycle
WO2023238292A1 (en) Power conversion device, motor drive device, and refrigeration cycle applied equipment
WO2023238301A1 (en) Power conversion device, motor drive device, and heat pump device
JP7072729B2 (en) Power converter, motor drive and air conditioner
KR100395945B1 (en) Method for control carrier frequency in inverter airconditioner
JP7045529B2 (en) Power converter and air conditioner
JPH05322324A (en) Inverter air conditioner
JP7241968B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945799

Country of ref document: EP

Kind code of ref document: A1