WO2023238250A1 - Power storage device for electric vehicles - Google Patents

Power storage device for electric vehicles Download PDF

Info

Publication number
WO2023238250A1
WO2023238250A1 PCT/JP2022/023003 JP2022023003W WO2023238250A1 WO 2023238250 A1 WO2023238250 A1 WO 2023238250A1 JP 2022023003 W JP2022023003 W JP 2022023003W WO 2023238250 A1 WO2023238250 A1 WO 2023238250A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
power storage
battery
electric vehicle
Prior art date
Application number
PCT/JP2022/023003
Other languages
French (fr)
Japanese (ja)
Inventor
美千広 亀田
章史 田中
Original Assignee
株式会社Nittan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nittan filed Critical 株式会社Nittan
Priority to PCT/JP2022/023003 priority Critical patent/WO2023238250A1/en
Publication of WO2023238250A1 publication Critical patent/WO2023238250A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries

Definitions

  • Cited Document 1 and FIG. 1 disclose a power storage device for an electric vehicle equipped with a capacitor as an auxiliary power storage device.
  • the electric vehicle power storage device of Cited Document 1 in order to prevent the power supply voltage of the capacitor from being unable to control the regeneration of the driving motor when fully charged, when the power supply voltage of the capacitor is equal to or higher than a predetermined threshold value indicating near full charge. , the regenerated power of the travel motor is used to forcefully drive auxiliary equipment.
  • the regenerative current generated during regeneration of the electric vehicle's running motor is used to charge a high-voltage running battery or a low-voltage battery for driving auxiliary equipment such as the air compressor shown in Cited Document 1.
  • auxiliary equipment such as the air compressor shown in Cited Document 1.
  • the regenerative current from the drive motor varies widely, from a large current at the beginning of regeneration to a small current at the end of regeneration, while batteries are charged within a recommended range of current values in order to prevent shortening of life due to heat generation. is narrow.
  • the time during which regenerative current is generated is limited, and the regenerative time that indicates the recommended current value for the battery is even more limited. There is a waste in that the current generated is dissipated as heat without being charged to the battery.
  • the present invention aims to extend the cruising distance of an electric vehicle by efficiently charging both a high-voltage driving battery and a low-voltage battery with regenerative current.
  • the power storage device for an electric vehicle includes a high-voltage battery for running, and a low-voltage battery for a low-voltage auxiliary device connected in parallel to the battery for running through a step-down converter.
  • an auxiliary power storage device is connected between the inverter and the electric vehicle battery group via a branch conductive path branching from the main conductive path, and supplies power from the driving motor to the electric vehicle battery group.
  • the auxiliary power storage device has a power storage unit including a capacitor connected to the branch conductive path, and when the voltage Vc of the capacitor becomes lower than the intermediate voltage V1 during the regenerative operation of the travel motor, the travel motor is activated.
  • the power storage unit is configured to charge the electric vehicle battery group.
  • the regenerative current generated by the traveling motor is stored in the capacitor of the auxiliary power storage device without waste while the voltage of the capacitor is lower than the intermediate voltage V1.
  • the driving battery is supplied with a chargeable high voltage and low current from the charging part of the auxiliary power storage device including the capacitor, and the low voltage battery for the low voltage auxiliary equipment is also supplied with a low current.
  • a step-down converter a low current is supplied from a charging section including a capacitor, and both are slowly charged.
  • the power storage section of the auxiliary power storage device in the first aspect of the invention of the power storage device for an electric vehicle is connected to the main power path via the branch conductive path.
  • an auxiliary battery connected in parallel with the capacitor, the maximum voltage of which is the same as that of the running battery, and the voltage Va of the auxiliary battery, which is the voltage Vt of the power storage unit, is the voltage of the capacitor.
  • the capacitor charges the auxiliary battery, and when the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the auxiliary battery charges the electric vehicle battery group. It is desirable that
  • the total capacity of the driving battery is increased by the auxiliary battery, and the auxiliary battery connected in parallel with the capacitor is charged by the capacitor when the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor.
  • the auxiliary battery charges the electric vehicle battery group when the voltage Va exceeds the voltage Vm of the driving battery.
  • the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path.
  • a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch.
  • a control device for controlling the motor when the first switch and the second switch are ON and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during regenerative operation of the motor, a third switch is activated. is turned ON, and the fourth switch is turned OFF, and when the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the second switch and the third switch are turned OFF, and the fourth switch is turned ON.
  • the capacitor is regeneratively charged by the motor via the first switch and the second switch that are turned ON, while the auxiliary battery is charged when its voltage Va becomes lower than the voltage Vc of the capacitor. Then, the capacitor is charged via the third switch which is ON.
  • the third switch which is ON.
  • the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path.
  • a first switch for switching a second switch for switching ON and OFF of energization from the branch conductive path to the capacitor, and a third switch for switching ON and OFF for energization between the capacitor and the auxiliary battery.
  • a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch.
  • control device for controlling the driving motor, and when the first switch is OFF and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during acceleration operation of the traveling motor, the second switch and the second switch are controlled.
  • the third switch is turned on and the fourth switch is turned off, and the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the second switch and the third switch are turned off, and the fourth switch is turned on. It is desirable that the control device performs control so that the following happens.
  • the auxiliary battery is charged from the capacitor via the second and third switches that are ON when the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor.
  • the voltage Va of the auxiliary battery exceeds the voltage of the driving battery and is charged by the capacitor, charging from the capacitor to the auxiliary battery is stopped via the third switch which is OFF, and the charge from the auxiliary battery is stopped via the fourth switch which is ON.
  • the auxiliary battery charges the battery pack for the electric vehicle.
  • the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path.
  • a first switch for switching a second switch for switching ON and OFF of energization from the branch conductive path to the capacitor, and a third switch for switching ON and OFF for energization between the capacitor and the auxiliary battery.
  • a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch.
  • control device that controls the second switch and the third switch, respectively, when the first switch is OFF and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during inertia operation of the motor.
  • the fourth switch is turned ON and the voltage Va of the auxiliary battery exceeds the voltage V of the driving battery, the second switch, the third switch, and the fourth switch are all turned ON. It is desirable that the control device performs control as follows.
  • the auxiliary battery is charged from the capacitor via the second and third switches that are ON when the voltage Va is lower than the voltage Vc of the capacitor. Ru.
  • the auxiliary battery charges the electric vehicle battery group through the second switch, third switch, and fourth switch that are ON. .
  • the auxiliary power storage device in any one of the first to fifth aspects of the invention of the power storage device for an electric vehicle is connected to the main power path and the power storage device for an electric vehicle. It is desirable that the power storage device for an electric vehicle be detachably attached to the power storage device for an electric vehicle by a connector mechanism provided between the power storage device and the branch conductive path.
  • the auxiliary power storage device is later attached to an electric vehicle power storage device that is not originally equipped with an auxiliary power storage device.
  • the intermediate voltage in any one of the first aspect to the sixth aspect of the invention of the power storage device for an electric vehicle is a minimum voltage Vmin of the capacitor. It is desirable that the voltage is above and below the maximum voltage Vmax of the capacitor.
  • regenerative current ranging from high voltage and high current at the beginning of regeneration to low voltage and low current at the end of regeneration is temporarily charged from a driving motor to an auxiliary power storage device having a power storage unit including a capacitor.
  • the driving battery can be charged, and a low-voltage battery for a low-voltage auxiliary device can also be charged from the auxiliary power storage device via the step-down converter.
  • the cruising range of the electric vehicle can be extended by charging the driving battery and the low-voltage battery with the regenerative current without waste from the beginning to the end of regeneration.
  • the regenerated power stored in the capacitor of the auxiliary power storage device is charged to the auxiliary battery of the power storage unit without waste, and the voltage of the auxiliary battery is increased by charging from the capacitor to the voltage of the driving battery.
  • the capacitor of the auxiliary power storage device is charged to a voltage higher than the voltage of the auxiliary battery during regenerative operation of the motor, and the auxiliary battery is charged by the capacitor to a voltage higher than the voltage of the driving battery, and the auxiliary battery is charged to a voltage higher than the voltage of the driving battery.
  • the auxiliary battery of the auxiliary power storage device is charged by the capacitor while its voltage Va is lower than the voltage Vc of the capacitor, and when it is charged until it exceeds the voltage Vm of the driving battery, the auxiliary battery accelerates. It is possible to supplementally charge the driving battery, which is consumed by the electric motor, and increase the cruising range of the electric vehicle.
  • the auxiliary battery of the auxiliary power storage device is charged by the capacitor while the voltage Va thereof is lower than the voltage Vc of the capacitor, and the voltage Vm of the driving battery is increased.
  • supplementary charging of the driving motor can restore the voltage of the driving motor and increase the cruising distance of the electric vehicle.
  • the electric vehicle power storage device by attaching the auxiliary power storage device of the present application to an existing electric vehicle power storage device that is not originally equipped with an auxiliary power storage device, regenerative current can be used to charge the driving battery without wasting it.
  • the cruising distance of electric vehicles can be improved.
  • the power storage device for an electric vehicle it is possible to prevent the travel motor from becoming unable to regenerate due to the capacitor being full, and it is also possible to drive low-voltage auxiliary equipment that requires a large rush current.
  • FIG. 1 is a circuit explanatory diagram showing an embodiment of a power storage device for an electric vehicle. 1 is a table for explaining a charging mode of a power storage device for an electric vehicle.
  • FIG. 1 shows an electric vehicle power storage device 1 having an auxiliary power storage device 21.
  • the electric vehicle power storage device 1 includes an inverter 3 connected to a driving motor 2, an electric vehicle battery group 4, and an auxiliary power storage device 21.
  • the driving motor 2 is electrically connected to the inverter 3
  • the electric vehicle battery group 4 is electrically connected to the inverter 3 via the main electrical path 20 .
  • a voltage step-up converter 33 is provided on the main current path 20 between the inverter 3 and the electric vehicle battery group 4 .
  • the auxiliary power storage device 21 includes a branch conductive path 22, a capacitor 23, an auxiliary battery 24, a first switch SW1, a second switch SW2, a third switch SW3, a fourth switch SW4, and a connector mechanism 25.
  • the capacitor 23 and the auxiliary battery 24 form a power storage unit 27 that stores regenerative power generated by the driving motor 2.
  • the electric vehicle battery group 4 also includes a high-voltage electric vehicle running battery 5, a step-down voltage converter 6, and an electric vehicle low-voltage auxiliary device 9 (electrical components that operate at low voltage such as headlamps and wipers). ) has a low voltage battery 7 that operates the.
  • the auxiliary power storage device 21 is electrically connected to the main conductive path 20 between the inverter 3 and the electric vehicle battery group 4 through a branch conductive path 22 . Further, the auxiliary power storage device 21 is connected in parallel to the voltage boost converter 33 via a branch conductive path 22 branched from the main power path 20 .
  • the branch conductive path 22 is provided with a first switch SW1 that switches the main conductive path 20 between ON and OFF. The first switch SW1 can be switched between ON and OFF to electrically connect or disconnect the traveling motor 2 and inverter 3 on the main conductive path 20 to the branch conductive path 22.
  • a capacitor 23 is electrically connected between the first switch SW1 and the electric vehicle battery group 4. Further, the capacitor 23 is electrically connected to the branch conductive path 22 via the second switch SW2. The capacitor 23 can be electrically connected to or disconnected from the branch conductive path 22 by switching the second switch SW2 between ON and OFF.
  • an auxiliary battery 24 having the same standard voltage as the driving battery 5 is connected in parallel with the capacitor 23.
  • a third switch SW3 is provided between the second switch SW2 and the auxiliary battery 24. The third switch SW3 is used to turn ON or OFF energization from the capacitor 23 to the auxiliary battery 24 in a state where both the first switch SW1 and the second switch SW2 are turned ON to ensure energization from the driving motor 2 to the capacitor 23. It is a switch that changes the
  • a fourth switch SW4 is provided on the branch conductive path 22 between the auxiliary battery 24 and the electric vehicle battery group 4.
  • the fourth switch SW4 is a switch that turns on or off power supply to the electric vehicle battery group 4 from the capacitor 23 and the auxiliary battery 24 forming the power storage unit 27 of the auxiliary power storage device 21.
  • the auxiliary power storage device 21 is detachably attached to the electric vehicle power storage device 1 by a pair of connector mechanisms 25 and 26 provided between the main conductive path 20 and the branch conductive path 22.
  • the connector mechanism 25 is provided between the first switch SW1 and the main conductive path 20 via the branch conductive path 22
  • the connector mechanism 26 is provided between the auxiliary battery 24 and the main conductive path via the branch conductive path 22. 20.
  • the inverter 3 is connected via a voltage step-up converter 33 to the driving battery 5 and high voltage auxiliary equipment 8 (such as an air conditioner compressor or electric steering (Electrical components that operate at high voltage, such as devices) are electrically connected in parallel.
  • a low voltage battery 7 is electrically connected to the main power path 20 via a step-down converter 6 so as to be parallel to the driving battery 5 .
  • a plurality of low-voltage auxiliary devices 9 (electrical components that operate at low voltage, such as headlamps and wipers) are connected in parallel to the low-voltage battery 7.
  • a control device (not shown) controls all operations listed in the table of FIG.
  • the ON and OFF operations of the first to fourth switches (SW1 to SW4) shown in FIG. 2 are performed independently based on operation control by a control device (not shown).
  • the voltage of the capacitor 23 is Vc
  • the minimum voltage of the capacitor Vmin the maximum voltage of the capacitor Vmax
  • the intermediate voltage of the capacitor that satisfies Vmin ⁇ V1 ⁇ Vmax is V1
  • the voltage of the auxiliary battery 24 is the voltage Vt of the power storage unit 27.
  • the driving motor is Mo
  • the capacitor is Ca
  • the auxiliary battery is Sb
  • the driving battery is Db.
  • a control device such as a mounted EPU performs control such that the first switch SW1 is turned on and the second switch SW2 is turned on.
  • the third switch SW3 and the fourth switch SW4 It is turned off by the control device. In that case, the capacitor 23 is charged by the regenerative current generated in the traveling motor 2 via the inverter 3.
  • the capacitor 23 Even when the capacitor 23 is charged with the high voltage and high current generated at the beginning of regeneration of the traveling motor 2, it is quickly charged without generating heat or deteriorating.
  • the first switch SW1 When the charging of the capacitor 23 progresses and the voltage V of the capacitor 23 becomes equal to or higher than the intermediate voltage V1, the first switch SW1 is turned off. Further, when the voltage Vc of the capacitor 23 exceeds the voltage Va of the auxiliary battery 24 due to charging while remaining below the voltage Vc of the driving battery 5, the third switch SW3 is turned ON by a control device (not shown). The auxiliary battery 24 is charged by the capacitor 23.
  • the control device (not shown) performs control to turn off the third switch SW3 and turn on the fourth switch SW4. .
  • the capacitor 23 is charged by the regenerative current of the driving motor 2 as the first switch SW1 and the second switch SW2 are turned on, and the driving battery 5 is charged by the auxiliary battery 24.
  • the regenerative current of the running motor 2 is efficiently stored in the capacitor 23 from the initial stage to the final stage of regeneration, and then slowly charges the running battery 5 and the low voltage battery 7 via the auxiliary battery 24.
  • the low-voltage battery 7 is slowly charged by the low current generated by the step-down voltage converter 6.
  • the running battery 5 and the low-voltage battery 7, which are charged over time, do not generate heat and have a long life. will be maintained.
  • the high voltage auxiliary equipment 8 connected in parallel with the running battery 5 is activated when the running battery 5 is charged.
  • the low voltage auxiliary machine 9 is supplied with current from the low voltage battery 7 and is driven by a large rush current.
  • the fourth switch SW4 is turned OFF by a control device (not shown). Charging from the auxiliary battery 24 to the electric vehicle battery group 4 is stopped.
  • the auxiliary power storage device 21 extends the cruising distance of the electric vehicle (not shown) on which the electric vehicle is mounted by charging the driving battery 5 with regenerative current stored through the capacitor 23 and the auxiliary battery 24.
  • the auxiliary power storage device 21 prevents the travel motor 2 from being unable to regenerate by starting power supply to the auxiliary battery 24 before the voltage V of the capacitor 23 reaches the maximum voltage Vmax and becomes fully charged.
  • a charging mode of the auxiliary power storage device 21 when the driving motor 2 performs an acceleration operation will be described.
  • the control device (not shown) of the auxiliary power storage device 21 turns off the first switch SW1 and supplies the auxiliary power from the driving motor 2. Power to the power storage device 21 is cut off.
  • the control device controls the second The capacitor 23 charges the auxiliary battery 24 by controlling the switch SW2 to be turned on, the third switch SW3 to be turned on, and the fourth switch SW4 to be turned off.
  • the control device turns off both the second switch SW2 and the third switch SW3 to remove the voltage from the capacitor 23 to the auxiliary battery 24.
  • the auxiliary battery 24 charges the electric vehicle battery group 4 by completing the charging and turning on the fourth switch SW4.
  • the driving motor 2 receives a drive current boosted to a voltage value necessary for driving by the voltage step-up converter 33 from both the driving battery 5 and the auxiliary battery 24, and receives the drive current from both the driving battery 5 and the auxiliary battery 24 via the inverter 3 to drive the electric vehicle's drive wheels. (not shown).
  • the auxiliary power storage device 21 extends the cruising distance of the electric vehicle (not shown) mounted thereon by supplementally charging the driving battery 5 during acceleration via the auxiliary battery 24.
  • a charging mode of the auxiliary power storage device 21 will be explained when the driving motor 2 performs an inertial operation (an operation when the electric vehicle runs at a constant speed by inertia and does not accelerate or decelerate).
  • the control device turns off the first switch SW1 and stops the power from the driving motor 2 to the auxiliary power storage device 21. De-energize.
  • the control device controls the second switch SW2, the third switch SW3, and the fourth switch. Control is performed to turn on both SW4, and the capacitor 23 charges both the auxiliary battery 24 and the driving battery 5.
  • the control device turns off the fourth switch SW4 to terminate charging of the driving battery 5 from the capacitor 23.
  • the auxiliary power storage device 21 by once charging the capacitor 23, which has a lower voltage value than the driving battery 5, with a high voltage, high current regenerative current at the initial stage of regeneration, and then supplying it to the driving battery 5, From the regenerative current that is high voltage at the beginning of regeneration to the regenerative current that becomes low voltage at the end of regeneration, the driving battery 5 and the low voltage battery can be charged without fail, and the cruising distance of the electric vehicle (not shown) can be extended. .
  • the auxiliary power storage device 21 be formed to be detachable from the electric vehicle power storage device 1 by providing connector mechanisms 25 and 26. With this configuration, an existing electric vehicle (not shown) can be charged with regenerated power without waste by connecting this auxiliary power storage device later, and the charging capacity of the battery used as a driving drive source can be increased. By increasing the cruising range of electric vehicles, it is possible to maintain a longer cruising range.

Abstract

The present technology pertains to a power storage device for electric vehicles that assists in charging a traction battery. In an electric vehicle power storage device (1) that is equipped with an inverter (3), a main conducting path (20), and an electric vehicle battery cluster (4), an auxiliary storage device (21) for supplying power to the electric vehicle battery cluster (4) from a traction motor (2) is connected via a branch conducting path (22) branching from the main conducting path (20). The auxiliary power storage device (21) is equipped with a power storage unit (27) that includes a capacitor (23). When the voltage Vc of the capacitor (23) becomes lower than an intermediate voltage (V1) during a regeneration operation of the traction motor (2), the traction motor (2) charges the capacitor (23). When the voltage (Vt) of the power storage unit (27) exceeds the voltage (Vm) of the traction battery (5), the power storage unit (27) charges the electric vehicle battery cluster (4).

Description

電気自動車用蓄電装置Electric vehicle power storage device
 走行用バッテリーの充電を補助する電気自動車用蓄電装置に関する技術。 Technology related to electric vehicle power storage devices that assist in charging driving batteries.
 引用文献1の[0024][0025]及び図1には、キャパシタを補助蓄電装置として搭載した電気自動車用蓄電装置が開示されている。引用文献1の電気自動車用蓄電装置は、キャパシタの電源電圧が、満充電における走行用モータの回生制御不能を防止するため、キャパシタの電源電圧が、満充電近傍を示す所定の閾値以上のときに、走行用モータの回生電力を補機の強制駆動に利用するものである。 [0024] [0025] of Cited Document 1 and FIG. 1 disclose a power storage device for an electric vehicle equipped with a capacitor as an auxiliary power storage device. In the electric vehicle power storage device of Cited Document 1, in order to prevent the power supply voltage of the capacitor from being unable to control the regeneration of the driving motor when fully charged, when the power supply voltage of the capacitor is equal to or higher than a predetermined threshold value indicating near full charge. , the regenerated power of the travel motor is used to forcefully drive auxiliary equipment.
特開2004-248433号公報Japanese Patent Application Publication No. 2004-248433
 一般に、電気自動車の走行用モータの回生時に発生する回生電流は、高電圧の走行用バッテリーや、引用文献1に示すエアコンプレッサのような補機を駆動するための低電圧バッテリーに充電されることが多い。しかし、走行用モータによる回生電流は、回生初期の大電流から回生終期の小電流まで幅広く推移する一方、バッテリーは、発熱による寿命低下を防止する観点から、推奨される充電可能な電流値の範囲が狭い。回生電流の発生する時間は限られ、バッテリーに対して推奨される電流値を示す回生時間は、更に限られるため、回生時間のうち、バッテリーの充電に利用される時間は短く、回生時間の多くで発生した電流が、バッテリーに充電されることなく熱として消えるという無駄がある。 Generally, the regenerative current generated during regeneration of the electric vehicle's running motor is used to charge a high-voltage running battery or a low-voltage battery for driving auxiliary equipment such as the air compressor shown in Cited Document 1. There are many. However, the regenerative current from the drive motor varies widely, from a large current at the beginning of regeneration to a small current at the end of regeneration, while batteries are charged within a recommended range of current values in order to prevent shortening of life due to heat generation. is narrow. The time during which regenerative current is generated is limited, and the regenerative time that indicates the recommended current value for the battery is even more limited. There is a waste in that the current generated is dissipated as heat without being charged to the battery.
 バッテリーを発熱させずにバッテリーへ充電するためは、出来るだけ小電流かつ必要な電圧によって時間をかけて行うことが望ましい。従って、限られた短時間に発生しかつ、変動幅の大きな回生電流を、長時間流れる小電流に変換し、かつ所定の電圧で走行用バッテリー及び補機用の低電圧バッテリーをそれぞれ充電できれば、回生電流を無駄なく利用して、電気自動車の航続距離を伸ばせる点で望ましいと言える。 In order to charge the battery without causing it to generate heat, it is desirable to charge the battery with as little current as possible and at the necessary voltage over time. Therefore, if the regenerative current that occurs in a limited short time and has a large fluctuation range can be converted into a small current that flows for a long time, and the driving battery and the low voltage battery for auxiliary equipment can be charged at a predetermined voltage, then This is desirable in that it can extend the cruising range of electric vehicles by making efficient use of regenerated current.
 上記課題に鑑みて、本願発明は、回生電流を高電圧の走行用バッテリーと低電圧バッテリーの双方に無駄なく充電することで、電気自動車の航続距離を伸ばすことを目的としたものである。 In view of the above problems, the present invention aims to extend the cruising distance of an electric vehicle by efficiently charging both a high-voltage driving battery and a low-voltage battery with regenerative current.
 走行用モータに接続されるインバータと、主導電路を介してインバータに接続される電気自動車用バッテリー群と、を有し、前記電気自動車用バッテリー群が、前記走行用モータとの間で給充電を行う高電圧の走行用バッテリーと、降電圧コンバータを介して前記走行用バッテリーに並列に接続される低電圧補機用の低電圧バッテリーを備える、電気自動車用蓄電装置の第1の発明の態様において、前記インバータと、前記電気自動車用バッテリー群との間に、前記主導電路から分岐した分岐導電路を介し、前記走行用モータから電気自動車用バッテリー群への給電を行う、補助蓄電装置が接続され、前記補助蓄電装置は、前記分岐導電路に接続されるキャパシタを含む蓄電部を有し、前記走行用モータの回生動作時に前記キャパシタの電圧Vcが中間電圧V1を下回ると、前記走行用モータが前記キャパシタを充電し、前記蓄電部の電圧Vtが前記走行用バッテリーの電圧Vmを上回ると、前記蓄電部が前記電気自動車用バッテリー群を充電するように構成される。 It has an inverter connected to the driving motor, and an electric vehicle battery group connected to the inverter via a main electrical path, and the electric vehicle battery group performs charging and supplying between the electric vehicle battery group and the driving motor. In the first aspect of the invention, the power storage device for an electric vehicle includes a high-voltage battery for running, and a low-voltage battery for a low-voltage auxiliary device connected in parallel to the battery for running through a step-down converter. , an auxiliary power storage device is connected between the inverter and the electric vehicle battery group via a branch conductive path branching from the main conductive path, and supplies power from the driving motor to the electric vehicle battery group. , the auxiliary power storage device has a power storage unit including a capacitor connected to the branch conductive path, and when the voltage Vc of the capacitor becomes lower than the intermediate voltage V1 during the regenerative operation of the travel motor, the travel motor is activated. When the capacitor is charged and the voltage Vt of the power storage unit exceeds the voltage Vm of the driving battery, the power storage unit is configured to charge the electric vehicle battery group.
 (作用)走行用モータによる回生電流は、キャパシタの電圧が中間電圧V1を下回る間、補助蓄電装置のキャパシタに無駄なく蓄電される。キャパシタの電圧が中間電圧を上回ると、走行用バッテリーは、キャパシタを含む補助蓄電装置の充電部から充電可能な高電圧の低電流を供給され、更に低電圧補機用の低電圧バッテリーもまた、降電圧コンバータを介し、キャパシタを含む充電部から低電流を供給され、共にゆっくりと充電される。 (Function) The regenerative current generated by the traveling motor is stored in the capacitor of the auxiliary power storage device without waste while the voltage of the capacitor is lower than the intermediate voltage V1. When the voltage of the capacitor exceeds the intermediate voltage, the driving battery is supplied with a chargeable high voltage and low current from the charging part of the auxiliary power storage device including the capacitor, and the low voltage battery for the low voltage auxiliary equipment is also supplied with a low current. Through a step-down converter, a low current is supplied from a charging section including a capacitor, and both are slowly charged.
 また、電気自動車用蓄電装置の第2の発明の態様は、電気自動車用蓄電装置の第1の発明の態様における前記補助蓄電装置の前記蓄電部が、前記分岐導電路を介し、前記主導電路に対し、前記キャパシタと並列となるように接続された、最大電圧が前記走行用バッテリーと同電圧の補助バッテリーを有し、前記蓄電部の電圧Vtである、前記補助バッテリーの電圧Vaが前記キャパシタの電圧Vcを下回ると、前記キャパシタが、前記補助バッテリーを充電し、前記補助バッテリーの電圧Vaが走行用バッテリーの電圧Vmを上回ると、前記補助バッテリーが前記電気自動車用バッテリー群を充電するように構成されることが望ましい。 Further, in a second aspect of the invention of the power storage device for an electric vehicle, the power storage section of the auxiliary power storage device in the first aspect of the invention of the power storage device for an electric vehicle is connected to the main power path via the branch conductive path. On the other hand, there is an auxiliary battery connected in parallel with the capacitor, the maximum voltage of which is the same as that of the running battery, and the voltage Va of the auxiliary battery, which is the voltage Vt of the power storage unit, is the voltage of the capacitor. When the voltage Va of the auxiliary battery is lower than the voltage Vc, the capacitor charges the auxiliary battery, and when the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the auxiliary battery charges the electric vehicle battery group. It is desirable that
 (作用)走行用バッテリーの総容量が、補助バッテリーにより増加し、キャパシタと並列に接続された補助バッテリーは、補助バッテリーの電圧Vaが、キャパシタの電圧Vcを下回るときに、キャパシタによって充電され、充電された補助バッテリーは、電圧Vaが、走行用バッテリーの電圧Vmを上回るときに、前記電気自動車用バッテリー群を充電する。 (Function) The total capacity of the driving battery is increased by the auxiliary battery, and the auxiliary battery connected in parallel with the capacitor is charged by the capacitor when the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor. The auxiliary battery charges the electric vehicle battery group when the voltage Va exceeds the voltage Vm of the driving battery.
 また、電気自動車用蓄電装置の第3の発明の態様は、電気自動車用蓄電装置の第2の発明の態様における前記補助蓄電装置が、前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置と、を備え、モータの回生動作時に、前記第1スイッチ及び前記第2スイッチがONであって、前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、第3スイッチがONとなり、かつ前記第4スイッチがOFFとなり、前記補助バッテリーの電圧Vaが、走行用バッテリーの電圧Vmを上回るときに前記前記第2スイッチ及び第3スイッチがOFFとなり、前記第4スイッチがONとなる、ように前記制御装置が制御することを特徴とする請求項2に記載の電気自動車用蓄電装置。 Further, in a third aspect of the invention of the power storage device for an electric vehicle, the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path. a first switch for switching, a second switch for switching ON and OFF of energization from the branch conductive path to the capacitor, and a third switch for switching ON and OFF for energization between the capacitor and the auxiliary battery. and a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch. and a control device for controlling the motor, when the first switch and the second switch are ON and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during regenerative operation of the motor, a third switch is activated. is turned ON, and the fourth switch is turned OFF, and when the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the second switch and the third switch are turned OFF, and the fourth switch is turned ON. The power storage device for an electric vehicle according to claim 2, wherein the control device controls the power storage device so that:
 (作用)モータの回生動作時において、ONにされた第1スイッチと第2スイッチを介し、モータによってキャパシタが回生充電される一方、補助バッテリーは、その電圧Vaが、キャパシタの電圧Vcを下回る際に、ONである第3スイッチを介してキャパシタから充電される。補助バッテリーの電圧Vaが走行用バッテリーの電圧以上までキャパシタによって充電されると、OFFである第3スイッチを介してキャパシタから補助バッテリーへの充電が停止し、ONである第4スイッチを介して補助バッテリーが、電気自動車用バッテリー群を充電する。 (Operation) During regenerative operation of the motor, the capacitor is regeneratively charged by the motor via the first switch and the second switch that are turned ON, while the auxiliary battery is charged when its voltage Va becomes lower than the voltage Vc of the capacitor. Then, the capacitor is charged via the third switch which is ON. When the voltage Va of the auxiliary battery is charged by the capacitor to the voltage of the driving battery or higher, charging from the capacitor to the auxiliary battery is stopped via the third switch which is OFF, and the charge from the auxiliary battery is stopped via the fourth switch which is ON. The battery charges a battery of electric vehicle batteries.
 また、電気自動車用蓄電装置の第4の発明の態様は、電気自動車用蓄電装置の第2の発明の態様における前記補助蓄電装置が、前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置と、を備え、前記走行用モータの加速動作時に、前記第1スイッチがOFFで、前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、前記第2スイッチ及び前記第3スイッチがONとなり、前記第4スイッチがOFFとなり、前記補助バッテリーの電圧Vaが走行用バッテリーの電圧Vmを上回ると、前記第2スイッチ及び前記第3スイッチがそれぞれOFF、前記第4スイッチがONとなる、ように前記制御装置が制御することが望ましい。 Further, in a fourth aspect of the invention of the power storage device for an electric vehicle, the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path. a first switch for switching, a second switch for switching ON and OFF of energization from the branch conductive path to the capacitor, and a third switch for switching ON and OFF for energization between the capacitor and the auxiliary battery. and a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch. and a control device for controlling the driving motor, and when the first switch is OFF and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during acceleration operation of the traveling motor, the second switch and the second switch are controlled. When the third switch is turned on and the fourth switch is turned off, and the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the second switch and the third switch are turned off, and the fourth switch is turned on. It is desirable that the control device performs control so that the following happens.
 (作用)モータの加速動作時において、補助バッテリーは、その電圧Vaが、キャパシタの電圧Vcを下回る際に、ONである第2スイッチ及び第3スイッチを介してキャパシタから充電される。補助バッテリーの電圧Vaが走行用バッテリーの電圧を越えてキャパシタによって充電されると、OFFである第3スイッチを介してキャパシタから補助バッテリーへの充電が停止し、ONである第4スイッチを介して補助バッテリーが、電気自動車用バッテリー群を充電する。 (Operation) During acceleration operation of the motor, the auxiliary battery is charged from the capacitor via the second and third switches that are ON when the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor. When the voltage Va of the auxiliary battery exceeds the voltage of the driving battery and is charged by the capacitor, charging from the capacitor to the auxiliary battery is stopped via the third switch which is OFF, and the charge from the auxiliary battery is stopped via the fourth switch which is ON. The auxiliary battery charges the battery pack for the electric vehicle.
 また、電気自動車用蓄電装置の第5の発明の態様は、電気自動車用蓄電装置の第2の発明の態様における前記補助蓄電装置が、前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置と、を備え、モータの惰性動作時に、前記第1スイッチがOFFで、前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、前記第2スイッチ及び第3スイッチがそれぞれONとなり、前記第4スイッチがOFFとなり、前記補助バッテリーの電圧Vaが、走行用バッテリーの電圧Vを上回ると、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチがいずれもONとなる、ように前記制御装置が制御することが望ましい。 Further, in a fifth aspect of the invention of the power storage device for an electric vehicle, the auxiliary power storage device in the second aspect of the invention of the power storage device for an electric vehicle controls ON and OFF of energization from the main conductive path to the branch conductive path. a first switch for switching, a second switch for switching ON and OFF of energization from the branch conductive path to the capacitor, and a third switch for switching ON and OFF for energization between the capacitor and the auxiliary battery. and a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group, and independently switches ON and OFF of each of the first switch and the fourth switch. and a control device that controls the second switch and the third switch, respectively, when the first switch is OFF and the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor during inertia operation of the motor. When the fourth switch is turned ON and the voltage Va of the auxiliary battery exceeds the voltage V of the driving battery, the second switch, the third switch, and the fourth switch are all turned ON. It is desirable that the control device performs control as follows.
 (作用)モータの加減速のない、惰性動作時において、補助バッテリーは、その電圧Vaが、キャパシタの電圧Vcを下回る際に、ONである第2スイッチ及び第3スイッチを介してキャパシタから充電される。補助バッテリーの電圧Vaが走行用バッテリーの電圧を越えるまでキャパシタによって充電されると、ONである第2スイッチ、第3スイッチ及び第4スイッチを介して補助バッテリーが、電気自動車用バッテリー群を充電する。 (Function) During inertia operation with no acceleration or deceleration of the motor, the auxiliary battery is charged from the capacitor via the second and third switches that are ON when the voltage Va is lower than the voltage Vc of the capacitor. Ru. When the voltage Va of the auxiliary battery is charged by the capacitor until it exceeds the voltage of the driving battery, the auxiliary battery charges the electric vehicle battery group through the second switch, third switch, and fourth switch that are ON. .
 また、電気自動車用蓄電装置の第6の発明の態様は、電気自動車用蓄電装置の第1発明の態様から第5の発明の態様のうちいずれかにおける前記補助蓄電装置が、前記主導電路と前記分岐導電路との間に設けられたコネクタ機構によって、前記電気自動車用蓄電装置に対し、着脱自在に形成されることが望ましい。 Further, in a sixth aspect of the invention of the power storage device for an electric vehicle, the auxiliary power storage device in any one of the first to fifth aspects of the invention of the power storage device for an electric vehicle is connected to the main power path and the power storage device for an electric vehicle. It is desirable that the power storage device for an electric vehicle be detachably attached to the power storage device for an electric vehicle by a connector mechanism provided between the power storage device and the branch conductive path.
 (作用)補助蓄電装置が、元々補助蓄電装置を備えていない電気自動車用蓄電装置に後から装着される。 (Function) The auxiliary power storage device is later attached to an electric vehicle power storage device that is not originally equipped with an auxiliary power storage device.
 また、電気自動車用蓄電装置の第7の発明の態様は、電気自動車用蓄電装置の第1発明の態様から第6の発明の態様のうちいずれかにおける前記中間電圧が、前記キャパシタの最少電圧Vmin以上、かつ前記キャパシタの最大電圧Vmax以下であることが望ましい。 Further, in a seventh aspect of the invention of the power storage device for an electric vehicle, the intermediate voltage in any one of the first aspect to the sixth aspect of the invention of the power storage device for an electric vehicle is a minimum voltage Vmin of the capacitor. It is desirable that the voltage is above and below the maximum voltage Vmax of the capacitor.
 (作用)走行用モータの回生時にキャパシタの容量が満タンになる前に走行用バッテリーの充電が開始され、走行用バッテリーの充電後に、低電圧バッテリーから低電圧補機に大きな突入電流を供給することができる。 (Function) During regeneration of the traction motor, charging of the traction battery is started before the capacity of the capacitor is full, and after charging the traction battery, a large inrush current is supplied from the low-voltage battery to the low-voltage auxiliary equipment. be able to.
 電気自動車用蓄電装置によれば、回生初期の高電圧、高電流から回生終期の低電圧、低電流に至る回生電流を、走行用モータからキャパシタを含む蓄電部を有する補助蓄電装置に一旦充電し、補助蓄電装置から走行用バッテリーに供給することにより、走行用バッテリーを充電出来ると共に、降電圧コンバータを介し、補助蓄電装置から低電圧補機用の低圧バッテリーも充電できる。つまり、回生初期から終期まで回生電流を走行用バッテリーと、低電圧バッテリーに無駄なく充電させて、電気自動車の航続距離を伸ばすことが出来る。 According to a power storage device for an electric vehicle, regenerative current ranging from high voltage and high current at the beginning of regeneration to low voltage and low current at the end of regeneration is temporarily charged from a driving motor to an auxiliary power storage device having a power storage unit including a capacitor. By supplying power from the auxiliary power storage device to the driving battery, the driving battery can be charged, and a low-voltage battery for a low-voltage auxiliary device can also be charged from the auxiliary power storage device via the step-down converter. In other words, the cruising range of the electric vehicle can be extended by charging the driving battery and the low-voltage battery with the regenerative current without waste from the beginning to the end of regeneration.
 電気自動車用蓄電装置によれば、補助蓄電装置のキャパシタにされた回生電力が、蓄電部の補助バッテリーに無駄なく充電され、補助バッテリーの電圧が、キャパシタからの充電により、走行用バッテリーの電圧を超えた場合に電気自動車用バッテリー群の走行用バッテリーを無駄なく充電することで、走行用バッテリーの容量を実質的に増加させて、電気自動車の航続距離を伸ばすことが出来る。 According to the power storage device for an electric vehicle, the regenerated power stored in the capacitor of the auxiliary power storage device is charged to the auxiliary battery of the power storage unit without waste, and the voltage of the auxiliary battery is increased by charging from the capacitor to the voltage of the driving battery. By charging the running battery of the electric vehicle battery group without waste when the battery exceeds the limit, the capacity of the running battery can be substantially increased and the cruising distance of the electric vehicle can be extended.
 電気自動車用蓄電装置によれば、モータの回生動作時に補助蓄電装置のキャパシタが、補助バッテリーの電圧以上に充電され、補助バッテリーは、キャパシタによって走行用バッテリーの電圧以上に充電されると共に、走行用バッテリーを含む電気自動車用バッテリー群を充電することで、電気自動車の航続距離を伸ばすことが出来る。 According to the power storage device for electric vehicles, the capacitor of the auxiliary power storage device is charged to a voltage higher than the voltage of the auxiliary battery during regenerative operation of the motor, and the auxiliary battery is charged by the capacitor to a voltage higher than the voltage of the driving battery, and the auxiliary battery is charged to a voltage higher than the voltage of the driving battery. By charging a group of electric vehicle batteries, including batteries, the cruising range of an electric vehicle can be extended.
 電気自動車用蓄電装置によれば、補助蓄電装置の補助バッテリーは、その電圧Vaが、キャパシタの電圧Vcを下回る間、キャパシタによって充電され、走行用バッテリーの電圧Vmを越えるまで充電されると、加速時のモータによって電力消費される走行用バッテリーを補充電し、電気自動車の航続距離を増加させることが出来る。 According to the electric vehicle power storage device, the auxiliary battery of the auxiliary power storage device is charged by the capacitor while its voltage Va is lower than the voltage Vc of the capacitor, and when it is charged until it exceeds the voltage Vm of the driving battery, the auxiliary battery accelerates. It is possible to supplementally charge the driving battery, which is consumed by the electric motor, and increase the cruising range of the electric vehicle.
 電気自動車用蓄電装置によれば、惰性走行中の電気自動車において、補助蓄電装置の補助バッテリーは、その電圧Vaが、キャパシタの電圧Vcを下回る間、キャパシタによって充電され、走行用バッテリーの電圧Vmを越えるまで充電されると、走行用モータを補充電することで、走行用モータの電圧を回復し、電気自動車の航続距離を増加させることができる。 According to the power storage device for an electric vehicle, when the electric vehicle is coasting, the auxiliary battery of the auxiliary power storage device is charged by the capacitor while the voltage Va thereof is lower than the voltage Vc of the capacitor, and the voltage Vm of the driving battery is increased. When the electric vehicle is charged to the point where it exceeds the battery voltage, supplementary charging of the driving motor can restore the voltage of the driving motor and increase the cruising distance of the electric vehicle.
 電気自動車用蓄電装置によれば、元々補助蓄電装置を備えていない既存の電気自動車用蓄電装置に本願の補助蓄電装置を装着することで、回生電流を無駄なく走行用バッテリーに充電して、装着した電気自動車の航続距離を向上させることが出来る。 According to the electric vehicle power storage device, by attaching the auxiliary power storage device of the present application to an existing electric vehicle power storage device that is not originally equipped with an auxiliary power storage device, regenerative current can be used to charge the driving battery without wasting it. The cruising distance of electric vehicles can be improved.
 電気自動車用蓄電装置によれば、キャパシタの満タン化によって、走行用モータが回生不能になることを防止出来るとともに、大きな突入電流を必要とする低電圧補機を駆動できる。 According to the power storage device for an electric vehicle, it is possible to prevent the travel motor from becoming unable to regenerate due to the capacitor being full, and it is also possible to drive low-voltage auxiliary equipment that requires a large rush current.
電気自動車用蓄電装置の実施形態を示す、回路説明図。FIG. 1 is a circuit explanatory diagram showing an embodiment of a power storage device for an electric vehicle. 電気自動車用蓄電装置の充電態様を説明するための表。1 is a table for explaining a charging mode of a power storage device for an electric vehicle.
 図1により電気自動車用蓄電装置の実施形態を説明する。図1は、補助蓄電装置21を有する電気自動車用蓄電装置1を示す。電気自動車用蓄電装置1は、走行用モータ2に接続されるインバータ3と、電気自動車用バッテリー群4と、補助蓄電装置21を有する。 An embodiment of a power storage device for an electric vehicle will be described with reference to FIG. FIG. 1 shows an electric vehicle power storage device 1 having an auxiliary power storage device 21. As shown in FIG. The electric vehicle power storage device 1 includes an inverter 3 connected to a driving motor 2, an electric vehicle battery group 4, and an auxiliary power storage device 21.
 走行用モータ2は、インバータ3に電気的に接続され、電気自動車用バッテリー群4は、主導電路20を介してインバータ3に電気的に接続される。主導電路20上において、インバータ3と電気自動車用バッテリー群4との間には、昇電圧コンバータ33が設けられる。補助蓄電装置21は、分岐導電路22、キャパシタ23,補助バッテリー24、第1スイッチSW1、第2スイッチSW2、第3スイッチSW3、第4スイッチSW4及びコネクタ機構25を有する。キャパシタ23と、補助バッテリー24は、走行用モータ2によって生成される回生電力を蓄電する蓄電部27を形成する。また、電気自動車用バッテリー群4は、高電圧である電気自動車の走行用バッテリー5,降電圧コンバータ6及び電気自動車の低電圧補機9(ヘッドランプや、ワイパーなどの低電圧で作動する電装品)を作動させる低電圧バッテリー7を有する。 The driving motor 2 is electrically connected to the inverter 3 , and the electric vehicle battery group 4 is electrically connected to the inverter 3 via the main electrical path 20 . A voltage step-up converter 33 is provided on the main current path 20 between the inverter 3 and the electric vehicle battery group 4 . The auxiliary power storage device 21 includes a branch conductive path 22, a capacitor 23, an auxiliary battery 24, a first switch SW1, a second switch SW2, a third switch SW3, a fourth switch SW4, and a connector mechanism 25. The capacitor 23 and the auxiliary battery 24 form a power storage unit 27 that stores regenerative power generated by the driving motor 2. The electric vehicle battery group 4 also includes a high-voltage electric vehicle running battery 5, a step-down voltage converter 6, and an electric vehicle low-voltage auxiliary device 9 (electrical components that operate at low voltage such as headlamps and wipers). ) has a low voltage battery 7 that operates the.
 補助蓄電装置21は、分岐導電路22により、インバータ3と、電気自動車用バッテリー群4との間において、主導電路20に電気的に接続される。また、補助蓄電装置21は、主導電路20から分岐した分岐導電路22を介し、昇電圧コンバータ33と並列に接続される。分岐導電路22には、主導電路20の通電のONとOFFを切り替える第1スイッチSW1が設けられる。第1スイッチSW1は、ONとOFFとを切り替えられることにより、主導電路20上の走行用モータ2及びインバータ3から分岐導電路22への電気的な接続、または切断を切り替えられる。 The auxiliary power storage device 21 is electrically connected to the main conductive path 20 between the inverter 3 and the electric vehicle battery group 4 through a branch conductive path 22 . Further, the auxiliary power storage device 21 is connected in parallel to the voltage boost converter 33 via a branch conductive path 22 branched from the main power path 20 . The branch conductive path 22 is provided with a first switch SW1 that switches the main conductive path 20 between ON and OFF. The first switch SW1 can be switched between ON and OFF to electrically connect or disconnect the traveling motor 2 and inverter 3 on the main conductive path 20 to the branch conductive path 22.
 分岐導電路22において、第1スイッチSW1と電気自動車用バッテリー群4との間には、キャパシタ23が、電気的に接続される。また、キャパシタ23は、第2スイッチSW2を介して分岐導電路22に電気的に接続される。キャパシタ23は、第2スイッチSW2のONとOFFとを切り替えられることにより、分岐導電路22との電気的な接続、または切断を切り替えられる。 In the branch conductive path 22, a capacitor 23 is electrically connected between the first switch SW1 and the electric vehicle battery group 4. Further, the capacitor 23 is electrically connected to the branch conductive path 22 via the second switch SW2. The capacitor 23 can be electrically connected to or disconnected from the branch conductive path 22 by switching the second switch SW2 between ON and OFF.
 また、分岐導電路22において、第2スイッチSW2と電気自動車用バッテリー群4との間には、走行用バッテリー5と規格上同電圧の補助バッテリー24がキャパシタ23と並列に接続される。第2スイッチSW2と補助バッテリー24との間には、第3スイッチSW3が設けられる。第3スイッチSW3は、第1スイッチSW1と第2スイッチSW2の双方をONにして走行用モータ2からキャパシタ23への通電を確保した状態で、キャパシタ23から補助バッテリー24への通電のONまたはOFFを切り替えるスイッチである。 Furthermore, in the branch conductive path 22, between the second switch SW2 and the electric vehicle battery group 4, an auxiliary battery 24 having the same standard voltage as the driving battery 5 is connected in parallel with the capacitor 23. A third switch SW3 is provided between the second switch SW2 and the auxiliary battery 24. The third switch SW3 is used to turn ON or OFF energization from the capacitor 23 to the auxiliary battery 24 in a state where both the first switch SW1 and the second switch SW2 are turned ON to ensure energization from the driving motor 2 to the capacitor 23. It is a switch that changes the
 分岐導電路22上において、補助バッテリー24と電気自動車用バッテリー群4との間には、第4スイッチSW4が設けられる。第4スイッチSW4は、補助蓄電装置21の蓄電部27を形成するキャパシタ23及び補助バッテリー24から電気自動車用バッテリー群4への通電のONまたはOFFを切り替えるスイッチである。 A fourth switch SW4 is provided on the branch conductive path 22 between the auxiliary battery 24 and the electric vehicle battery group 4. The fourth switch SW4 is a switch that turns on or off power supply to the electric vehicle battery group 4 from the capacitor 23 and the auxiliary battery 24 forming the power storage unit 27 of the auxiliary power storage device 21.
 また、補助蓄電装置21は、主導電路20と分岐導電路22との間に設けられた一対のコネクタ機構25、26により、電気自動車用蓄電装置1に対して着脱自在に取り付けられる。具体的には、コネクタ機構25は、分岐導電路22を介して第1スイッチSW1と主導電路20との間に設けられ、コネクタ機構26は、分岐導電路22を介して補助バッテリー24と主導電路20との間に設けられる。 Further, the auxiliary power storage device 21 is detachably attached to the electric vehicle power storage device 1 by a pair of connector mechanisms 25 and 26 provided between the main conductive path 20 and the branch conductive path 22. Specifically, the connector mechanism 25 is provided between the first switch SW1 and the main conductive path 20 via the branch conductive path 22, and the connector mechanism 26 is provided between the auxiliary battery 24 and the main conductive path via the branch conductive path 22. 20.
 また、主導電路20上において、インバータ3には、昇電圧コンバータ33を介し、走行用バッテリー5と,走行用バッテリー5と同等の高電圧で作動する高電圧補機8(エアコンのコンプレッサーや電動ステアリング装置等の高電圧で作動する電装品)が、並列に電気的に接続される。また、主導電路20上には、降電圧コンバータ6を介し、走行用バッテリー5と並列になるように低電圧バッテリー7が、電気的に接続される。低電圧バッテリー7には、複数の低電圧補機9(ヘッドランプや、ワイパーなどの低電圧で作動する電装品)が、並列に接続される。図1に示す、第1スイッチから第4スイッチ(SW1~SW4)は、電気自動車用蓄電装置1を搭載した車両(図示せず)の車載ECU(electronic control unit 図示せず)等の制御装置に接続される。図示しない制御装置は、図2の表に記載された全ての動作を制御する。図2に示す、第1スイッチから第4スイッチ(SW1~SW4)のONとOFFの動作は、図示しない制御装置による動作制御に基づいてそれぞれ独立して行われる。 In addition, on the main power path 20, the inverter 3 is connected via a voltage step-up converter 33 to the driving battery 5 and high voltage auxiliary equipment 8 (such as an air conditioner compressor or electric steering (Electrical components that operate at high voltage, such as devices) are electrically connected in parallel. Furthermore, a low voltage battery 7 is electrically connected to the main power path 20 via a step-down converter 6 so as to be parallel to the driving battery 5 . A plurality of low-voltage auxiliary devices 9 (electrical components that operate at low voltage, such as headlamps and wipers) are connected in parallel to the low-voltage battery 7. The first to fourth switches (SW1 to SW4) shown in FIG. Connected. A control device (not shown) controls all operations listed in the table of FIG. The ON and OFF operations of the first to fourth switches (SW1 to SW4) shown in FIG. 2 are performed independently based on operation control by a control device (not shown).
 次に、図1及び図2により、補助蓄電装置21の作動態様を説明する。説明において、キャパシタ23の電圧をVc、キャパシタの最少電圧Vmin、キャパシタの最大電圧Vmax、Vmin<V1<Vmaxとなるキャパシタの中間電圧をV1、蓄電部27の電圧Vtである補助バッテリー24の電圧をVa、走行用バッテリー5の電圧をVmとし、図2において、充電方向を示す符号として、走行用モータをMo、キャパシタをCa、補助バッテリーをSb、走行用バッテリーをDbとして説明する。 Next, the operation mode of the auxiliary power storage device 21 will be explained with reference to FIGS. 1 and 2. In the description, the voltage of the capacitor 23 is Vc, the minimum voltage of the capacitor Vmin, the maximum voltage of the capacitor Vmax, the intermediate voltage of the capacitor that satisfies Vmin<V1<Vmax is V1, and the voltage of the auxiliary battery 24 is the voltage Vt of the power storage unit 27. In FIG. 2, the driving motor is Mo, the capacitor is Ca, the auxiliary battery is Sb, and the driving battery is Db.
 電気自動車用蓄電装置1を搭載した電気自動車(図示せず)のドライバーが、走行中にアクセルを緩め、電気自動車の減速によって走行用モータ2に回生電流が発生すると、車両(図示せず)に搭載されているEPU等の制御装置(図示せず)によって、第1スイッチSW1がON及び第2スイッチSW2がONとなる制御が行われる。その際、キャパシタ23の電圧Vcが、中間電圧V1を下回ると共に、走行用バッテリー5の電圧Vm以下、かつ補助バッテリーの電圧Va以下であると、第3スイッチSW3及び第4スイッチSW4は、図示しない制御装置によってOFFにされる。その場合、キャパシタ23は、インバータ3を介し、走行用モータ2に発生した回生電流によって充電される。キャパシタ23は、走行用モータ2の回生当初に発生した高電圧の高電流で充電されても、発熱も劣化もせずに迅速に充電される。キャパシタ23の充電が進み、キャパシタ23の電圧Vが中間電圧V1以上となると、第1スイッチSW1がOFFになる。また、キャパシタ23の電圧Vcが、充電によって、走行用バッテリー5の電圧Vc以下でありつつ、補助バッテリー24の電圧Vaを越えた場合、第3スイッチSW3は、制御装置(図示せず)によってONにされ、補助バッテリー24は、キャパシタ23によって充電される。 When the driver of an electric vehicle (not shown) equipped with electric vehicle power storage device 1 releases the accelerator while driving, and a regenerative current is generated in the driving motor 2 due to the deceleration of the electric vehicle, the vehicle (not shown) A control device (not shown) such as a mounted EPU performs control such that the first switch SW1 is turned on and the second switch SW2 is turned on. At this time, when the voltage Vc of the capacitor 23 is lower than the intermediate voltage V1, the voltage Vm of the driving battery 5 or lower, and the voltage Va of the auxiliary battery, the third switch SW3 and the fourth switch SW4 (not shown) It is turned off by the control device. In that case, the capacitor 23 is charged by the regenerative current generated in the traveling motor 2 via the inverter 3. Even when the capacitor 23 is charged with the high voltage and high current generated at the beginning of regeneration of the traveling motor 2, it is quickly charged without generating heat or deteriorating. When the charging of the capacitor 23 progresses and the voltage V of the capacitor 23 becomes equal to or higher than the intermediate voltage V1, the first switch SW1 is turned off. Further, when the voltage Vc of the capacitor 23 exceeds the voltage Va of the auxiliary battery 24 due to charging while remaining below the voltage Vc of the driving battery 5, the third switch SW3 is turned ON by a control device (not shown). The auxiliary battery 24 is charged by the capacitor 23.
 補助バッテリー24の電圧Vaが、充電によって走行用バッテリー5の電圧Vmを越えると、制御装置(図示せず)は、第3スイッチSW3をOFFにし、かつ第4スイッチSW4をONにする制御を行う。その結果、キャパシタ23は、第1スイッチSW1と第2スイッチSW2のONに伴い、走行用モータ2の回生電流によって充電され、走行用バッテリー5は、補助バッテリー24によって充電される。走行用モータ2の回生電流は、回生初期から終期に至るまで、キャパシタ23に無駄なく蓄電された後、補助バッテリー24を介し、走行用バッテリー5及び低電圧バッテリー7をゆっくりと充電する。低電圧バッテリー7は、降電圧コンバータ6によって生成された低電流によってゆっくりと充電される低電流により、時間をかけて充電された走行用バッテリー5及び低電圧バッテリー7は、発熱しないことで長寿命を維持される。また、走行用バッテリー5と並列に繋がれた高電圧補機8は、走行用バッテリー5の充電時に作動する。低電圧補機9は、低電圧バッテリー7から電流を供給され、大きな突入電流によって駆動する。 When the voltage Va of the auxiliary battery 24 exceeds the voltage Vm of the driving battery 5 due to charging, the control device (not shown) performs control to turn off the third switch SW3 and turn on the fourth switch SW4. . As a result, the capacitor 23 is charged by the regenerative current of the driving motor 2 as the first switch SW1 and the second switch SW2 are turned on, and the driving battery 5 is charged by the auxiliary battery 24. The regenerative current of the running motor 2 is efficiently stored in the capacitor 23 from the initial stage to the final stage of regeneration, and then slowly charges the running battery 5 and the low voltage battery 7 via the auxiliary battery 24. The low-voltage battery 7 is slowly charged by the low current generated by the step-down voltage converter 6.The running battery 5 and the low-voltage battery 7, which are charged over time, do not generate heat and have a long life. will be maintained. Further, the high voltage auxiliary equipment 8 connected in parallel with the running battery 5 is activated when the running battery 5 is charged. The low voltage auxiliary machine 9 is supplied with current from the low voltage battery 7 and is driven by a large rush current.
 また、走行用バッテリー5の充電進行に伴って、補助バッテリー24の電圧が走行用バッテリー5の充電可能電圧を下回るようになった場合、第4スイッチSW4が、図示しない制御装置によってOFFにされ、補助バッテリー24から電気自動車用バッテリー群4への充電が停止される。補助蓄電装置21は、キャパシタ23と、補助バッテリー24を介してもれなく蓄電した回生電流を走行用バッテリー5に充電することにより、搭載された電気自動車(図示せず)の航続距離を伸ばす。 Further, as the charging of the driving battery 5 progresses, if the voltage of the auxiliary battery 24 becomes lower than the chargeable voltage of the driving battery 5, the fourth switch SW4 is turned OFF by a control device (not shown). Charging from the auxiliary battery 24 to the electric vehicle battery group 4 is stopped. The auxiliary power storage device 21 extends the cruising distance of the electric vehicle (not shown) on which the electric vehicle is mounted by charging the driving battery 5 with regenerative current stored through the capacitor 23 and the auxiliary battery 24.
 補助蓄電装置21は、キャパシタ23の電圧Vが最大電圧Vmaxに達して満充電となる前に、補助バッテリー24への給電を開始することにより、走行用モータ2における回生不能を防止する。 The auxiliary power storage device 21 prevents the travel motor 2 from being unable to regenerate by starting power supply to the auxiliary battery 24 before the voltage V of the capacitor 23 reaches the maximum voltage Vmax and becomes fully charged.
 次に、図2により、走行用モータ2が、加速動作をする際における補助蓄電装置21の充電態様を説明する。電気自動車(図示せず)のドライバーが再びアクセルを踏み込むと、回生電流が発生しなくなるため、補助蓄電装置21の図示しない制御装置は、第1スイッチSW1をOFFにして、走行用モータ2から補助蓄電装置21への通電を切断する。補助バッテリー24の電圧Vaが、走行用バッテリー5の電圧Vm以下であり、かつキャパシタ23の電圧Vcが、補助バッテリー24の電圧Vaを越えている場合、制御装置(図示せず)は、第2スイッチSW2をON、第3スイッチSW3をONかつ第4スイッチSW4をOFFとする制御を行い、キャパシタ23が補助バッテリー24を充電する。 Next, with reference to FIG. 2, a charging mode of the auxiliary power storage device 21 when the driving motor 2 performs an acceleration operation will be described. When the driver of the electric vehicle (not shown) depresses the accelerator again, the regenerative current will no longer be generated, so the control device (not shown) of the auxiliary power storage device 21 turns off the first switch SW1 and supplies the auxiliary power from the driving motor 2. Power to the power storage device 21 is cut off. When the voltage Va of the auxiliary battery 24 is lower than the voltage Vm of the driving battery 5 and the voltage Vc of the capacitor 23 exceeds the voltage Va of the auxiliary battery 24, the control device (not shown) controls the second The capacitor 23 charges the auxiliary battery 24 by controlling the switch SW2 to be turned on, the third switch SW3 to be turned on, and the fourth switch SW4 to be turned off.
 充電の進行によって、補助バッテリー24の電圧Vaが走行用バッテリー5の電圧Vmを越えると、図示しない制御装置は、第2スイッチSW2及び第3スイッチSW3を共にOFFにして、キャパシタ23から補助バッテリー24への充電を終了させ、かつ第4スイッチSW4をONにして、補助バッテリー24が、電気自動車用バッテリー群4を充電する。その際、走行用モータ2は、昇電圧コンバータ33によって走行に必要な電圧値まで昇圧された駆動電流を走行用バッテリー5及び補助バッテリー24の双方から受け、インバータ3を介して電気自動車の駆動輪(図示せず)を駆動させる。 As the charging progresses, when the voltage Va of the auxiliary battery 24 exceeds the voltage Vm of the driving battery 5, the control device (not shown) turns off both the second switch SW2 and the third switch SW3 to remove the voltage from the capacitor 23 to the auxiliary battery 24. The auxiliary battery 24 charges the electric vehicle battery group 4 by completing the charging and turning on the fourth switch SW4. At this time, the driving motor 2 receives a drive current boosted to a voltage value necessary for driving by the voltage step-up converter 33 from both the driving battery 5 and the auxiliary battery 24, and receives the drive current from both the driving battery 5 and the auxiliary battery 24 via the inverter 3 to drive the electric vehicle's drive wheels. (not shown).
 第4スイッチSW4は、補助バッテリー24の電圧Vaが、走行用バッテリー5の電圧Vm以下まで降下すると、OFFになる制御をされて、電気自動車用バッテリー群4への充電を終了する。補助蓄電装置21は、補助バッテリー24を介して加速時の走行用バッテリー5を補充電することにより、搭載された電気自動車(図示せず)の航続距離を伸ばす。 When the voltage Va of the auxiliary battery 24 drops below the voltage Vm of the driving battery 5, the fourth switch SW4 is controlled to be turned off, and charging of the electric vehicle battery group 4 ends. The auxiliary power storage device 21 extends the cruising distance of the electric vehicle (not shown) mounted thereon by supplementally charging the driving battery 5 during acceleration via the auxiliary battery 24.
 次に、図2により、走行用モータ2が、惰性動作(電気自動車が、惰性で定速走行することにより、加減速しない場合の動作)をする際における補助蓄電装置21の充電態様を説明する。電気自動車(図示せず)のドライバーが再びアクセルを離した場合、回生電流が発生しないため、図示しない制御装置は、第1スイッチSW1をOFFにして、走行用モータ2から補助蓄電装置21への通電を切断する。キャパシタ23の電圧Vcが、走行用バッテリーの電圧Vm及び補助バッテリー24の電圧Vaの双方を越えている場合、制御装置(図示せず)は、第2スイッチSW2、第3スイッチSW3及び第4スイッチSW4をいずれもONにする制御を行い、キャパシタ23は、補助バッテリー24及び走行用バッテリー5の双方を充電する。 Next, with reference to FIG. 2, a charging mode of the auxiliary power storage device 21 will be explained when the driving motor 2 performs an inertial operation (an operation when the electric vehicle runs at a constant speed by inertia and does not accelerate or decelerate). . When the driver of the electric vehicle (not shown) releases the accelerator again, no regenerative current is generated, so the control device (not shown) turns off the first switch SW1 and stops the power from the driving motor 2 to the auxiliary power storage device 21. De-energize. When the voltage Vc of the capacitor 23 exceeds both the voltage Vm of the driving battery and the voltage Va of the auxiliary battery 24, the control device (not shown) controls the second switch SW2, the third switch SW3, and the fourth switch. Control is performed to turn on both SW4, and the capacitor 23 charges both the auxiliary battery 24 and the driving battery 5.
 充電の進行によって、キャパシタ23の電圧Vcが、走行用バッテリー5の電圧Vm以下になると、図示しない制御装置は、第4スイッチSW4をOFFにして、キャパシタ23から走行用バッテリー5への充電を終了させる。
 補助蓄電装置21によれば、回生初期の高電圧、高電流の回生電流を、走行用バッテリー5よりも電圧値の低いキャパシタ23に一旦充電した上で、走行用バッテリー5に供給することにより、回生初期に高電圧だった回生電流から、回生終期に低電圧となる回生電流まで、走行用バッテリー5及び低電圧バッテリーにもれなく充電出来、電気自動車(図示せず)の航続距離を伸ばすことが出来る。
As the charging progresses, when the voltage Vc of the capacitor 23 becomes equal to or lower than the voltage Vm of the driving battery 5, the control device (not shown) turns off the fourth switch SW4 to terminate charging of the driving battery 5 from the capacitor 23. let
According to the auxiliary power storage device 21, by once charging the capacitor 23, which has a lower voltage value than the driving battery 5, with a high voltage, high current regenerative current at the initial stage of regeneration, and then supplying it to the driving battery 5, From the regenerative current that is high voltage at the beginning of regeneration to the regenerative current that becomes low voltage at the end of regeneration, the driving battery 5 and the low voltage battery can be charged without fail, and the cruising distance of the electric vehicle (not shown) can be extended. .
 尚、補助蓄電装置21は、コネクタ機構25,26を備えることにより、電気自動車用蓄電装置1に対して着脱可能となるように形成されることが、望ましい。このような構成により、既存の電気自動車(図示せず)は、本補助蓄電装置を後から接続されることで、回生電力を無駄なく充電され、かつ走行駆動源に使用されるバッテリーの充電容量を増加されることで、電気自動車の航続距離を長く保つことが出来る。 Note that it is desirable that the auxiliary power storage device 21 be formed to be detachable from the electric vehicle power storage device 1 by providing connector mechanisms 25 and 26. With this configuration, an existing electric vehicle (not shown) can be charged with regenerated power without waste by connecting this auxiliary power storage device later, and the charging capacity of the battery used as a driving drive source can be increased. By increasing the cruising range of electric vehicles, it is possible to maintain a longer cruising range.
1            電気自動車用蓄電装置
2            走行用モータ
3            インバータ
4            電気自動車用バッテリー群
5            高電圧の走行用バッテリー
6            降電圧コンバータ
7            低電圧バッテリー
19           主導電路
20           分岐導電路
21           補助蓄電装置
22           キャパシタ
23           昇電圧コンバータ
24           補助バッテリー
25,26        コネクタ機構
27           蓄電部
SW1          第1スイッチ
SW2          第2スイッチ
SW3          第3スイッチ
SW4          第4スイッチ
1 Electric vehicle power storage device 2 Traveling motor 3 Inverter 4 Electric vehicle battery group 5 High-voltage traveling battery 6 Step-down voltage converter 7 Low-voltage battery 19 Main conductive path 20 Branch conductive path 21 Auxiliary power storage device 22 Capacitor 23 Step-up voltage converter 24 Auxiliary batteries 25, 26 Connector mechanism 27 Power storage unit SW1 First switch SW2 Second switch SW3 Third switch SW4 Fourth switch

Claims (7)

  1.  走行用モータに接続されるインバータと、主導電路を介してインバータに接続される電気自動車用バッテリー群と、を有し、前記電気自動車用バッテリー群が、前記走行用モータとの間で給充電を行う高電圧の走行用バッテリーと、降電圧コンバータを介して前記走行用バッテリーに並列に接続される低電圧補機用の低電圧バッテリーを備える、電気自動車用蓄電装置において、
     前記インバータと、前記電気自動車用バッテリー群との間に、前記主導電路から分岐した分岐導電路を介し、前記走行用モータから電気自動車用バッテリー群への給電を行う、補助蓄電装置が接続され、
     前記補助蓄電装置は、
     前記分岐導電路に接続されるキャパシタを含む蓄電部を有し、
     前記走行用モータの回生動作時に前記キャパシタの電圧Vcが中間電圧V1を下回ると、前記走行用モータが前記キャパシタを充電し、
     前記蓄電部の電圧Vtが前記走行用バッテリーの電圧Vmを上回ると、前記蓄電部が前記電気自動車用バッテリー群を充電するように構成された、ことを特徴とする電気自動車用蓄電装置。
    It has an inverter connected to the driving motor, and an electric vehicle battery group connected to the inverter via a main electrical path, and the electric vehicle battery group performs charging and supplying between the electric vehicle battery group and the driving motor. In a power storage device for an electric vehicle, the power storage device includes a high-voltage running battery and a low-voltage battery for a low-voltage auxiliary device connected in parallel to the running battery via a step-down voltage converter.
    An auxiliary power storage device that supplies power from the driving motor to the electric vehicle battery group is connected between the inverter and the electric vehicle battery group via a branch conductive path branched from the main conductive path,
    The auxiliary power storage device is
    a power storage unit including a capacitor connected to the branch conductive path;
    When the voltage Vc of the capacitor falls below an intermediate voltage V1 during regenerative operation of the traveling motor, the traveling motor charges the capacitor,
    A power storage device for an electric vehicle, wherein the power storage unit is configured to charge the electric vehicle battery group when a voltage Vt of the power storage unit exceeds a voltage Vm of the driving battery.
  2.  前記補助蓄電装置の前記蓄電部が、前記分岐導電路を介し、前記主導電路に対し、前記キャパシタと並列となるように接続された、最大電圧が前記走行用バッテリーと同電圧の補助バッテリーを有し、
     前記蓄電部の電圧Vtである、前記補助バッテリーの電圧Vaが前記キャパシタの電圧Vcを下回ると、前記キャパシタが、前記補助バッテリーを充電し、前記補助バッテリーの電圧Vaが走行用バッテリーの電圧Vmを上回ると、前記補助バッテリーが前記電気自動車用バッテリー群を充電するように構成されたことを特徴とする請求項1に記載の電気自動車用蓄電装置。
    The power storage unit of the auxiliary power storage device has an auxiliary battery connected to the main power path in parallel with the capacitor via the branch conductive path and having a maximum voltage equal to that of the running battery. death,
    When the voltage Va of the auxiliary battery, which is the voltage Vt of the power storage unit, falls below the voltage Vc of the capacitor, the capacitor charges the auxiliary battery, and the voltage Va of the auxiliary battery becomes lower than the voltage Vm of the driving battery. The electric vehicle power storage device according to claim 1, wherein the auxiliary battery is configured to charge the electric vehicle battery group when the electric vehicle battery group is exceeded.
  3.  前記補助蓄電装置は、
     前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、
     前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、
     前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、
     前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、
     前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置を備え、
     モータの回生動作時に、前記第1スイッチ及び前記第2スイッチがONであって、
     前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、第3スイッチがONとなり、かつ前記第4スイッチがOFFとなり、
     前記補助バッテリーの電圧Vaが、走行用バッテリーの電圧Vmを上回るときに前記前記第2スイッチ及び第3スイッチがOFFとなり、前記第4スイッチがONとなる、ように前記制御装置が制御することを特徴とする請求項2に記載の電気自動車用蓄電装置。
    The auxiliary power storage device is
    a first switch that switches ON and OFF energization from the main conductive path to the branch conductive path;
    a second switch that switches ON and OFF of energization from the branch conductive path to the capacitor;
    a third switch that switches ON and OFF of energization between the capacitor and the auxiliary battery;
    a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group;
    comprising a control device that independently controls switching between ON and OFF of each of the first switch to the fourth switch,
    When the motor regenerates, the first switch and the second switch are ON,
    When the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor, the third switch is turned on and the fourth switch is turned off,
    The control device controls such that when the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the second switch and the third switch are turned OFF, and the fourth switch is turned ON. The electrical storage device for an electric vehicle according to claim 2.
  4.  前記補助蓄電装置は、
     前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、
     前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、
     前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、
     前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、
     前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置を備え、
     前記走行用モータの加速動作時に、前記第1スイッチがOFFで、
     前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、前記第2スイッチ及び前記第3スイッチがONとなり、前記第4スイッチがOFFとなり、
     前記補助バッテリーの電圧Vaが走行用バッテリーの電圧Vmを上回ると、前記第2スイッチ及び前記第3スイッチがそれぞれOFF、前記第4スイッチがONとなる、ように前記制御装置が制御することを特徴とする、請求項2に記載の電気自動車用蓄電装置。
    The auxiliary power storage device is
    a first switch that switches ON and OFF energization from the main conductive path to the branch conductive path;
    a second switch that switches ON and OFF of energization from the branch conductive path to the capacitor;
    a third switch that switches ON and OFF of energization between the capacitor and the auxiliary battery;
    a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group;
    comprising a control device that independently controls switching between ON and OFF of each of the first switch to the fourth switch,
    When the traveling motor accelerates, the first switch is OFF;
    When the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor, the second switch and the third switch are turned on, and the fourth switch is turned off,
    When the voltage Va of the auxiliary battery exceeds the voltage Vm of the driving battery, the control device controls the second switch and the third switch to turn OFF, and the fourth switch to turn ON. The electric vehicle power storage device according to claim 2.
  5.  前記補助蓄電装置は、
     前記主導電路から分岐導電路への通電のONとOFFを切り替える第1スイッチと、
     前記分岐導電路から前記キャパシタへの通電のONとOFFとを切り替える第2スイッチと、
     前記キャパシタと、前記補助バッテリーとの間の通電のONとOFFとを切り替える第3スイッチと、
     前記蓄電部から前記電気自動車用バッテリー群への通電のONとOFFとを切り替える第4スイッチと、を備え、
     前記第1スイッチから前記第4スイッチのそれぞれのONとOFFとの切り替えを独立して制御する制御装置と、を備え、
     モータの惰性動作時、前記第1スイッチがOFFで、
     前記補助バッテリーの電圧Vaがキャパシタの電圧Vcを下回ると、前記第2スイッチ及び第3スイッチがそれぞれONとなり、前記第4スイッチがOFFとなり、
     前記補助バッテリーの電圧Vaが、走行用バッテリーの電圧Vを上回ると、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチがいずれもONとなる、ように前記制御装置が制御することを特徴とする、請求項2に記載の電気自動車用蓄電装置。
    The auxiliary power storage device is
    a first switch that switches ON and OFF energization from the main conductive path to the branch conductive path;
    a second switch that switches ON and OFF of energization from the branch conductive path to the capacitor;
    a third switch that switches ON and OFF of energization between the capacitor and the auxiliary battery;
    a fourth switch that switches ON and OFF of energization from the power storage unit to the electric vehicle battery group;
    A control device that independently controls switching between ON and OFF of each of the first switch to the fourth switch,
    During inertia operation of the motor, the first switch is OFF,
    When the voltage Va of the auxiliary battery is lower than the voltage Vc of the capacitor, the second switch and the third switch are each turned on, and the fourth switch is turned off,
    The control device is characterized in that when the voltage Va of the auxiliary battery exceeds the voltage V of the driving battery, the second switch, the third switch, and the fourth switch are all turned ON. The electric vehicle power storage device according to claim 2.
  6.  前記補助蓄電装置は、
     前記主導電路と前記分岐導電路との間に設けられたコネクタ機構によって、前記電気自動車用蓄電装置に対し、着脱自在に形成された、ことを特徴とする、請求項1から5のうちいずれかに記載の電気自動車用蓄電装置。
    The auxiliary power storage device is
    Any one of claims 1 to 5, characterized in that it is formed to be detachable from the electric vehicle power storage device by a connector mechanism provided between the main conductive path and the branch conductive path. The electric vehicle power storage device described in .
  7.  前記中間電圧は、前記キャパシタの最少電圧Vmin以上、かつ前記キャパシタの最大電圧Vmax以下であることを特徴とする、請求項1から5のうちいずれかに記載の電気自動車用蓄電装置。 6. The power storage device for an electric vehicle according to claim 1, wherein the intermediate voltage is greater than or equal to a minimum voltage Vmin of the capacitor and less than or equal to a maximum voltage Vmax of the capacitor.
PCT/JP2022/023003 2022-06-07 2022-06-07 Power storage device for electric vehicles WO2023238250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023003 WO2023238250A1 (en) 2022-06-07 2022-06-07 Power storage device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023003 WO2023238250A1 (en) 2022-06-07 2022-06-07 Power storage device for electric vehicles

Publications (1)

Publication Number Publication Date
WO2023238250A1 true WO2023238250A1 (en) 2023-12-14

Family

ID=89118114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023003 WO2023238250A1 (en) 2022-06-07 2022-06-07 Power storage device for electric vehicles

Country Status (1)

Country Link
WO (1) WO2023238250A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158173A (en) * 2004-10-29 2006-06-15 Toyota Motor Corp Motor drive unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158173A (en) * 2004-10-29 2006-06-15 Toyota Motor Corp Motor drive unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method

Similar Documents

Publication Publication Date Title
CN102076517B (en) Controller and control method for hybrid vehicle
JP4569603B2 (en) Power supply system, vehicle including the same, and control method thereof
JP6191575B2 (en) Power supply
JP5772476B2 (en) Electric car
JP4952229B2 (en) Power supply circuit control device
CN107444319B (en) Vehicle power source device
EP2918442B1 (en) Charge/discharge system
CN110315976B (en) Vehicle power supply system
EP2918441B1 (en) Charge/discharge system
JP7254270B2 (en) vehicle drive
JP2008306795A (en) Discharge controller for power supply circuit
JPH0998514A (en) Power unit for vehicle
JP6268145B2 (en) Regenerative system and regenerative system control method
WO2023238250A1 (en) Power storage device for electric vehicles
WO2018012302A1 (en) Power supply device
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
KR101836643B1 (en) Mild hybrid system of vehicle
JP2008302852A (en) Controller for hybrid car
WO1979001127A1 (en) Battery propelled vehicles
JP2008199807A (en) Controller for power supply circuit
JP2010166760A (en) Power supply system
JP2018121397A (en) Electric vehicle
JP6790551B2 (en) Power system for electric vehicles
JP7030599B2 (en) Battery system and electric vehicle control system
JP7465432B2 (en) Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945757

Country of ref document: EP

Kind code of ref document: A1