WO2023238225A1 - Route finding device, route finding method, and program - Google Patents

Route finding device, route finding method, and program Download PDF

Info

Publication number
WO2023238225A1
WO2023238225A1 PCT/JP2022/022934 JP2022022934W WO2023238225A1 WO 2023238225 A1 WO2023238225 A1 WO 2023238225A1 JP 2022022934 W JP2022022934 W JP 2022022934W WO 2023238225 A1 WO2023238225 A1 WO 2023238225A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
power supply
pattern
processor
supply vehicle
Prior art date
Application number
PCT/JP2022/022934
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 金井
正崇 佐藤
和陽 明石
麻悠 山添
まな美 小川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/022934 priority Critical patent/WO2023238225A1/en
Publication of WO2023238225A1 publication Critical patent/WO2023238225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • One aspect of the present invention relates to a route searching device, a route searching method, and a program.
  • Non-Patent Document 1 a technique described in Non-Patent Document 1 is known.
  • a route search device includes a storage unit that stores a plurality of allocation patterns corresponding to combinations of a plurality of parameters allocated to a power supply vehicle and a plurality of bases, and a processor.
  • the processor includes a condition processing section, a data analysis processing section, and a data determination section.
  • the condition processing unit extracts a layout pattern that satisfies given constraint conditions from a plurality of layout patterns.
  • the data analysis processing unit optimizes an objective function regarding a patrol pattern of power supply vehicles to a plurality of bases, using the extracted allocation pattern as a target.
  • the data determination unit determines a tour route for the power supply vehicle based on the optimization result.
  • the condition processing unit has a function of executing a first step of extracting an allocation pattern that satisfies a static first constraint condition, and extracts a layout pattern that satisfies a dynamic second constraint condition from an allocation pattern that satisfies the first constraint condition. and a function of executing a second step of further extracting a layout pattern.
  • FIG. 1 is a diagram showing an example of a system including a tour route search device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the processor 11 shown in FIG.
  • FIG. 3 is a diagram for explaining an example of a method for calculating the predetermined time in block S6 of FIG.
  • FIG. 4 is a flowchart showing an example of the processing procedure in block S3 of FIG.
  • FIG. 5 is a flowchart showing an example of the processing procedure in block S4 of FIG.
  • FIG. 6 is a diagram for explaining the effects of the embodiment.
  • FIG. 7 is a diagram showing an example of the calculated optimal solution.
  • FIG. 8 is a diagram for explaining a specific example of the calculated approximate solution.
  • FIG. 9 is a diagram for explaining a specific example of the calculated approximate solution.
  • the allocation pattern 12a stores a plurality of allocation patterns corresponding to combinations of a plurality of parameters allocated to a power supply vehicle that is a target of route search and a plurality of bases that are patrol destinations of the power supply vehicle.
  • the processor 11 is an arithmetic unit such as a Central Processing Unit (CPU) or a Micro Processing Unit (MPU), and realizes its functions by a program loaded into the memory 14.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the processor 11 includes a condition processing section 111, a data analysis processing section 112, and a data determination section 115 as functional blocks (program modules) according to the embodiment. These functional blocks are processing functions realized by the processor 11 executing instructions included in the program 14a. That is, the tour route search device 10 of the present invention can also be realized by a computer and a program. It is possible to record programs on recording media such as optical media and distribute them. Alternatively, it is also possible to provide the program through a network.
  • the condition processing unit 111 extracts a layout pattern that satisfies the given constraint conditions from the layout patterns 12a stored in advance in the storage 12.
  • the constraint conditions are, for example, information given from the database 2 or the operator, such as the number of bases (buildings, etc.) visited by the power supply vehicle, the departure time of the power supply vehicle, the remaining power amount of the power supply vehicle, and the remaining power amount of the base. , the worker's permitted work hours, or the work that the worker can perform.
  • the data analysis processing unit 112 optimizes the objective function regarding the patrol pattern of the power supply vehicle to the plurality of bases, targeting the allocation pattern extracted by the condition processing unit 111.
  • the objective function include [reducing the power outage time in a specific building to 0], [minimizing the power outage time as a whole], and the like.
  • a plurality of objective functions may be prepared for calculating the itinerary route.
  • the data determination unit 115 determines the patrol route of the power supply vehicle based on the optimization result by the data analysis processing unit 112.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the processor 11 shown in FIG.
  • the search for the route pattern of each power supply vehicle is treated as a scheduling problem in which the best solution (approximate solution/optimal solution) is extracted.
  • Genetic algorithms are well-known as a solution to this type of problem.
  • the processor 11 sets an objective function. (Block S1).
  • the evaluation target value in the optimization calculation is set to, for example, (A).
  • the processor 11 sets constraints (block S2).
  • an algorithm that can perform processing independently such as a genetic algorithm or a branch and bound method, is adopted (STEP 2).
  • the process of STEP 2 is a process of further extracting a layout pattern that satisfies the dynamic second constraint condition from the layout pattern extracted in STEP 1.
  • the processing in block S4 is performed in parallel on the N allocation pattern groups divided in block S3, thereby promoting reduction in calculation time.
  • the search space can be reduced (STEP 1). Further, common parameters are periodically checked while performing parallel processing, and it is determined whether each allocation pattern is optimal (STEP 2). With these two steps, the search space is reduced and the overall processing time can be completed in a short time.
  • block S6 a specified time is confirmed, and once the specified time has elapsed, a part of the processing results are outputted and displayed on the monitor of the operator's terminal (FIG. 1), for example (block S7).
  • block S8 a state in which all processing is completed is reached (block S8) and the processing is completed.
  • FIG. 3 is a diagram for explaining an example of a method for calculating the predetermined time in block S6 of FIG. 2. For example, in a graph plotting evaluation values over time, the time at which the evaluation values are saturated (saturation time) can be determined from past results and used as the specified time.
  • the processor 11 randomly assigns constraint parameters (block S13) and checks for inconsistencies from the assignment results (block S14).
  • the inconsistency is, for example, a contradiction caused by assigning the type of patrol building (eg, high voltage) to the type of power supply vehicle (eg, only low voltage). In other words, it is not possible to patrol high-voltage buildings with low-voltage power supply vehicles. By eliminating such contradictory combinations, it becomes possible to reduce the search space for the itinerary route. Note that by implementing the process of block S14 as a separate module, it is also possible to flexibly respond to increases and decreases in combinations.
  • block S15 If there is a contradiction (yes in block S15), the processing procedure returns to block S13 again. If there is no contradiction ((absent) in block S15), the pattern obtained in block S13 is retained as an allocation pattern and stored in the storage 12 (block S16). The steps from block S13 to block S16 are repeated until the number of retained layout patterns reaches N (block S17). When the number of retained layout patterns reaches N, all layout patterns are retained (block S18).
  • FIG. 5 is a flowchart illustrating an example of the processing procedure in block S4 of FIG. 2.
  • the processor 11 determines the repetition generation (M) (block S21), and then executes the process of STEP 2 (FIG. 2) (block S22).
  • M repetition generation
  • STEP 2 STEP 2
  • FIG. 5 As a method for determining the number of generations, for example, it is possible to calculate it from the past constraint parameter amount as a default value and the number of patterns that output successful patterns.
  • the processor 11 determines the presence or absence of a past pattern (block S26), and if (absent), the processing procedure returns to block S22. If there are past patterns (all are present), the processing procedure reaches block S27.
  • the allocation possibility is processed in STEP 1, and patterns that do not match the common parameter from the evaluation value are periodically pruned from among the patterns that can be allocated. Accordingly, it is possible to calculate an optimal (approximate) solution while reducing processing time.
  • FIG. 7 shows an example of the calculated approximate solution.
  • FIGS. 8 and 9 are diagrams for explaining specific examples of calculated approximate solutions.
  • worker changes are set at a building (north building) along the way. This prevents work from being concentrated on one worker, and enables efficient processing by distributing work among a plurality of workers, as shown in FIG. Therefore, the entire work can be completed in a short time. That is, it is possible to predict each processing time, level out the processing of the entire process, and shorten the processing completion time.
  • the search for a tour route is formulated as a schedule problem that extracts the best solution (approximate solution/optimal solution) for each power supply vehicle's tour pattern, and the allocation is determined in multiple steps (STEP 1, STEP 2). .
  • This allows the search space to be reduced. Furthermore, by periodically checking the common parameters while performing parallel processing, the search space can be further reduced, and the overall processing time required to search for the itinerary route can be further reduced.
  • the present invention is not limited to the above-described embodiments as they are, and in the implementation stage, the components can be modified and embodied without departing from the gist of the invention.
  • various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components from different embodiments may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A route finding device according to an embodiment of the present invention is provided with a processor and a storage unit that stores a plurality of assignment patterns corresponding to a plurality of parameter combinations assigned to a power supply vehicle and a plurality of locations. The processor is provided with a condition processing unit, a data analysis processing unit, and a data determination unit. The condition processing unit extracts an assignment pattern satisfying a given constraint condition from among the plurality of assignment patterns. The data analysis processing unit optimizes an objective function for the patrol pattern of the power supply vehicle to the plurality of locations, in accordance with the extracted assignment pattern. The data determination unit determines the patrol route for the power supply vehicle from the optimization result. The condition processing unit has a function for performing a first step for extracting assignment patterns satisfying a static first constraint condition, and a function for performing a second step for further extracting an assignment pattern satisfying a dynamic second constraint condition from among the assignment patterns that satisfy the first constraint condition.

Description

ルート探索装置、ルート探索方法、およびプログラムRoute searching device, route searching method, and program
 この発明の一態様は、ルート探索装置、ルート探索方法、およびプログラムに関する。 One aspect of the present invention relates to a route searching device, a route searching method, and a program.
 通信インフラは、災害時においても安定して稼働することを求められる。特に、電源の確保が急務である。そこで通信事業者は、複数の電源車を待機させておき、被災した拠点(停電ビルなど)に電源車を巡回させるシステムについて検討している。 
 災害時にサービスを迅速に復旧させるためには、複数の電源車を複数の拠点に巡回させるためのルートの算出が不可欠である。しかし経路を単純に計算するだけでは十分ではなく、電源車の運転者、電源を供給する作業者の作業可否(運転の可否、電気工事の可否など)、あるいは勤務形態といった、多様な要素(パラメータ)を加味する必要がある。これは、いわゆるNP困難問題としての様相を呈し、電源車配備(巡回)ルートパターンの数が爆発的に増えることから、解を得るまでに非常に長い時間がかかっていた。 
 この種の困難を解消するため、例えば非特許文献1に記載の技術が知られている。
Communication infrastructure is required to operate stably even during disasters. In particular, there is an urgent need to secure power supplies. Telecommunications carriers are therefore considering a system in which multiple power supply vehicles are kept on standby and patrolled by power supply vehicles to disaster-affected bases (such as buildings with power outages).
In order to quickly restore services in the event of a disaster, it is essential to calculate routes for multiple power supply vehicles to visit multiple locations. However, simply calculating the route is not enough; there are various factors (parameters) such as the ability of the driver of the power supply vehicle, the ability of the worker supplying the power to work (such as ability to drive, ability to perform electrical work, etc.), and work style. ) needs to be taken into account. This appears to be a so-called NP-hard problem, and because the number of power supply vehicle deployment (touring) route patterns increases explosively, it takes a very long time to obtain a solution.
In order to solve this kind of difficulty, for example, a technique described in Non-Patent Document 1 is known.
 既存の技術では、電源車配備ルートを総当たりで探索し厳密解を得ようとしていた。このため全ての巡回パターンを対象に、各巡回ルートを評価・比較する必要があり、計算量が多くなりがちであった。厳密解でなく最適解を得ようにも、電源車に割付けられるパラメータは数多くあり、割付可能なパターンから評価値を計算して最適解を判断する必要があることから、計算が完了するまでに膨大な時間がかかっていた。 
 この発明は上記事情に着目してなされたもので、巡回ルート探索時間を短縮することの可能な技術を提供しようとするものである。
Existing technology searches for power supply vehicle deployment routes using brute force to arrive at exact solutions. Therefore, it is necessary to evaluate and compare each tour route for all tour patterns, which tends to increase the amount of calculation. Even if you want to obtain an optimal solution rather than an exact solution, there are many parameters that can be assigned to a power supply vehicle, and it is necessary to calculate evaluation values from the assignable patterns to determine the optimal solution. It took a huge amount of time.
This invention was made in view of the above-mentioned circumstances, and aims to provide a technique that can shorten the time it takes to search for a route.
 この発明の一態様に係るルート探索装置は、電源車および複数の拠点に割付けられる複数のパラメータの組み合わせに対応する複数の割付パターンを記憶する記憶部と、プロセッサとを具備する。プロセッサは、条件処理部と、データ分析処理部と、データ決定部とを具備する。条件処理部は、複数の割付パターンから与えられた制約条件を満たす割付パターンを抽出する。データ分析処理部は、抽出された割付パターンを対象として、電源車の複数の拠点への巡回パターンに関する目的関数を最適化する。データ決定部は、最適化の結果から電源車の巡回ルートを決定する。条件処理部は、静的な第1の制約条件を満たす割付パターンを抽出する第1ステップを実行する機能と、第1の制約条件を満たす割付パターンから、動的な第2の制約条件を満たす割付パターンをさらに抽出する第2ステップを実行する機能とを備える。 A route search device according to one aspect of the present invention includes a storage unit that stores a plurality of allocation patterns corresponding to combinations of a plurality of parameters allocated to a power supply vehicle and a plurality of bases, and a processor. The processor includes a condition processing section, a data analysis processing section, and a data determination section. The condition processing unit extracts a layout pattern that satisfies given constraint conditions from a plurality of layout patterns. The data analysis processing unit optimizes an objective function regarding a patrol pattern of power supply vehicles to a plurality of bases, using the extracted allocation pattern as a target. The data determination unit determines a tour route for the power supply vehicle based on the optimization result. The condition processing unit has a function of executing a first step of extracting an allocation pattern that satisfies a static first constraint condition, and extracts a layout pattern that satisfies a dynamic second constraint condition from an allocation pattern that satisfies the first constraint condition. and a function of executing a second step of further extracting a layout pattern.
 この発明の一態様によれば、巡回ルート探索時間を短縮することの可能な技術を提供することができる。 According to one aspect of the present invention, it is possible to provide a technique that can shorten the travel route search time.
図1は、この発明の第1の実施形態に係る巡回ルート探索装置を含むシステムの一例を示す図である。FIG. 1 is a diagram showing an example of a system including a tour route search device according to a first embodiment of the present invention. 図2は、図1に示されるプロセッサ11の処理手順の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a processing procedure of the processor 11 shown in FIG. 図3は、図2のブロックS6において既定時間を算出する方法の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a method for calculating the predetermined time in block S6 of FIG. 図4は、図2のブロックS3における処理手順の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the processing procedure in block S3 of FIG. 図5は、図2のブロックS4における処理手順の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the processing procedure in block S4 of FIG. 図6は、実施形態における効果を説明するための図である。FIG. 6 is a diagram for explaining the effects of the embodiment. 図7は、算出された最適解の一例を示す図である。FIG. 7 is a diagram showing an example of the calculated optimal solution. 図8は、算出された近似解の具体例について説明するための図である。FIG. 8 is a diagram for explaining a specific example of the calculated approximate solution. 図9は、算出された近似解の具体例について説明するための図である。FIG. 9 is a diagram for explaining a specific example of the calculated approximate solution.
 以下、図面を参照してこの発明に係わる実施形態を説明する。 
 <構成>
 図1は、この発明の第1の実施形態に係る巡回ルート探索装置を含むシステムの一例を示す図である。図1において、巡回ルート探索装置10は、プロセッサ11、ストレージ12、インタフェース部13、およびメモリ14を備える。つまり巡回ルート探索装置10はコンピュータであり、例えば、パーソナルコンピュータ、あるいはサーバコンピュータ等として実現される。
Embodiments of the present invention will be described below with reference to the drawings.
<Configuration>
FIG. 1 is a diagram showing an example of a system including a tour route search device according to a first embodiment of the present invention. In FIG. 1, a tour route search device 10 includes a processor 11, a storage 12, an interface section 13, and a memory 14. That is, the tour route search device 10 is a computer, and is implemented as, for example, a personal computer or a server computer.
 インタフェース部13は、ネットワーク100に接続され、例えばデータベース2にアクセスして災害状況などの情報を取得することができる。また、インタフェース部13は、例えば配車センタのオペレータからの要求に応じて、巡回ルート探索装置10により生成された巡回パターン3を出力する。 The interface unit 13 is connected to the network 100 and can, for example, access the database 2 and obtain information such as disaster situations. Further, the interface unit 13 outputs the itinerary pattern 3 generated by the itinerary route search device 10 in response to a request from, for example, an operator of a vehicle allocation center.
 ストレージ12は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の、不揮発性の記憶媒体(ブロックデバイス)である。ストレージ12は、OS(Operating System)やデバイスドライバなどの基本プログラム、および巡回ルート探索装置10の機能を実現させるためのプログラム等に加えて、割付パターン12aを記憶する。 The storage 12 is, for example, a nonvolatile storage medium (block device) such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive). The storage 12 stores a layout pattern 12a in addition to basic programs such as an OS (Operating System) and device drivers, and programs for realizing the functions of the itinerary route search device 10.
 割付パターン12aは、ルート探索の対象である電源車と、当該電源車の巡回先である複数の拠点に割付けられる複数のパラメータの組み合わせに対応する、複数の割付パターンを記憶する。 The allocation pattern 12a stores a plurality of allocation patterns corresponding to combinations of a plurality of parameters allocated to a power supply vehicle that is a target of route search and a plurality of bases that are patrol destinations of the power supply vehicle.
 図1のメモリ14は、例えばRAM(Random Access Memory)であり、ストレージからロードされたプログラム14aに加え、プロセッサ11により算出された巡回パターン14cを記憶する。 The memory 14 in FIG. 1 is, for example, a RAM (Random Access Memory), and stores the cyclic pattern 14c calculated by the processor 11 in addition to the program 14a loaded from storage.
 プロセッサ11は、例えばCentral Processing Unit(CPU)やMicro Processing Unit(MPU)等の演算ユニットであり、メモリ14にロードされたプログラムにより、その機能を実現する。 The processor 11 is an arithmetic unit such as a Central Processing Unit (CPU) or a Micro Processing Unit (MPU), and realizes its functions by a program loaded into the memory 14.
 ところで、プロセッサ11は、実施形態に係わる機能ブロック(プログラムモジュール)として条件処理部111、データ分析処理部112、および、データ決定部115を備える。これらの機能ブロックは、プログラム14aに含まれる命令をプロセッサ11が実行することで実現される、処理機能である。すなわち、本発明の巡回ルート探索装置10はコンピュータとプログラムによっても実現できる。光学メディアなどの記録媒体にプログラムを記録して配布することが可能である。あるいは、ネットワークを通してプログラムを提供することも可能である。 By the way, the processor 11 includes a condition processing section 111, a data analysis processing section 112, and a data determination section 115 as functional blocks (program modules) according to the embodiment. These functional blocks are processing functions realized by the processor 11 executing instructions included in the program 14a. That is, the tour route search device 10 of the present invention can also be realized by a computer and a program. It is possible to record programs on recording media such as optical media and distribute them. Alternatively, it is also possible to provide the program through a network.
 条件処理部111は、ストレージ12に予め記憶された割付パターン12aから、与えられた制約条件を満たす割付パターンを抽出する。ここで制約条件とは、例えばデータベース2やオペレータから与えられる情報であり、電源車の巡回する拠点(ビルなど)の数、電源車の出発時刻、電源車の残電力量、拠点の残電力量、作業者の許可業務時間、または、作業者の実施可能業務、などである。 The condition processing unit 111 extracts a layout pattern that satisfies the given constraint conditions from the layout patterns 12a stored in advance in the storage 12. Here, the constraint conditions are, for example, information given from the database 2 or the operator, such as the number of bases (buildings, etc.) visited by the power supply vehicle, the departure time of the power supply vehicle, the remaining power amount of the power supply vehicle, and the remaining power amount of the base. , the worker's permitted work hours, or the work that the worker can perform.
 データ分析処理部112は、条件処理部111により抽出された割付パターンを対象として、電源車の前記複数の拠点への巡回パターンに関する目的関数を最適化する。目的関数としては、例えば、[特定のビルの停電時間を0にする]、[停電時間を全体的に最小化する]、などである。巡回ルートの算出にあたり複数の目的関数を用意しても良い。 The data analysis processing unit 112 optimizes the objective function regarding the patrol pattern of the power supply vehicle to the plurality of bases, targeting the allocation pattern extracted by the condition processing unit 111. Examples of the objective function include [reducing the power outage time in a specific building to 0], [minimizing the power outage time as a whole], and the like. A plurality of objective functions may be prepared for calculating the itinerary route.
 データ決定部115は、データ分析処理部112による最適化の結果から、電源車の巡回ルートを決定する。 The data determination unit 115 determines the patrol route of the power supply vehicle based on the optimization result by the data analysis processing unit 112.
 <作用>
 図2は、図1に示されるプロセッサ11の処理手順の一例を示すフローチャートである。実施形態において、各電源車のルートの巡回パターンの探索を、最良解(近似解/最適解)を抽出するスケジュール問題として取り扱う。この種の問題の解法としては遺伝的アルゴリズムが著名である。
<Effect>
FIG. 2 is a flowchart showing an example of a processing procedure of the processor 11 shown in FIG. In the embodiment, the search for the route pattern of each power supply vehicle is treated as a scheduling problem in which the best solution (approximate solution/optimal solution) is extracted. Genetic algorithms are well-known as a solution to this type of problem.
 図2において、プロセッサ11は、目的関数を設定する。(ブロックS1)。ここでは、最適化演算における評価目標値が例えば(A)に設定される。次に、プロセッサ11は、制約条件を設定する(ブロックS2)。 In FIG. 2, the processor 11 sets an objective function. (Block S1). Here, the evaluation target value in the optimization calculation is set to, for example, (A). Next, the processor 11 sets constraints (block S2).
 次に、プロセッサ11は、演算対象の割付パターン12aを複数のパターン(例えば1~N)に分割し(ブロックS3)、それぞれのパターン群に対する処理(1~N)を並行して実施する(ブロックS4)。ブロックS3は、予め静的に設定された制約条件(第1の制約条件)を満たす割付パターンを抽出する処理である(STEP1)。このステップにより、第1の制約条件と矛盾する割付パターンが除外され、巡回ルートの探索空間が縮小するされる。 Next, the processor 11 divides the calculation target allocation pattern 12a into a plurality of patterns (for example, 1 to N) (block S3), and performs processing (1 to N) on each pattern group in parallel (block S4). Block S3 is a process of extracting a layout pattern that satisfies statically set constraints (first constraints) (STEP 1). Through this step, layout patterns inconsistent with the first constraint are excluded, and the search space for the tour route is reduced.
 ブロックS4においては、遺伝的アルゴリズム、あるいは分枝限定法などの、処理を独立して実施可能なアルゴリズムが採用される(STEP2)。STEP2の処理は、STEP1で抽出された割付パターンから、動的な第2の制約条件を満たす割付パターンをさらに抽出する処理である。 In block S4, an algorithm that can perform processing independently, such as a genetic algorithm or a branch and bound method, is adopted (STEP 2). The process of STEP 2 is a process of further extracting a layout pattern that satisfies the dynamic second constraint condition from the layout pattern extracted in STEP 1.
 ブロックS4において、処理が開始されると(サブブロックS41)、一定の時間の経過ののち(サブブロックS42)、評価値が抽出され、並列処理を行いながら共通パラメータ(例えば停電時間、1人当たりの業務時間など)が定期的にチェックされる(ブロックS5)。評価目標値Aよりも良好な値が得られれば(サブブロックS43)、処理は継続され再びサブブロックS42の処理が繰り返される。 In block S4, when processing is started (subblock S41), evaluation values are extracted after a certain period of time (subblock S42), and common parameters (for example, power outage time, per person) are extracted while performing parallel processing. business hours, etc.) are periodically checked (block S5). If a value better than the evaluation target value A is obtained (sub-block S43), the process is continued and the process of sub-block S42 is repeated again.
 目的関数の評価値が、規定値としての評価目標値Aよりも良い値でなければ、つまり評価値が既定値以下であれば、処理は途中で終了される(サブブロックS44)。また、N=1の処理が全て完了したならば(サブブロックS45)、評価値(A)が更新されて処理手順は次のブロックS6に至る。
 ブロックS4の処理は、ブロックS3で分割されたN個の割付パターン群に対し並行して実施され、これにより演算時間の短縮が促される。
If the evaluation value of the objective function is not better than the evaluation target value A as the specified value, that is, if the evaluation value is less than or equal to the predetermined value, the process is terminated midway (subblock S44). Furthermore, when all the processes for N=1 are completed (sub-block S45), the evaluation value (A) is updated and the process proceeds to the next block S6.
The processing in block S4 is performed in parallel on the N allocation pattern groups divided in block S3, thereby promoting reduction in calculation time.
 割付可否の判断を複数STEPで行うことにより、探索空間の縮小化(STEP1)が実現される。また、並列処理を行いながら共通パラメータが定期的にチェックされ、それぞれの割付パターンが最適か否かが判断される(STEP2)。この2つのSTEPにより、探索空間が縮小化され、全体の処理時間を短時間で終了することができる。 By determining whether allocation is possible in multiple steps, the search space can be reduced (STEP 1). Further, common parameters are periodically checked while performing parallel processing, and it is determined whether each allocation pattern is optimal (STEP 2). With these two steps, the search space is reduced and the overall processing time can be completed in a short time.
 ブロックS6では、規定の時間が確認され、規定の時間が経過したならば一部の処理結果が例えば出力されてオペレータの端末(図1)のモニタ等に表示される(ブロックS7)。ブロックS6で全ての処理が完了したと判定されると、全処理完了の状態に至って(ブロックS8)処理は完了する。 In block S6, a specified time is confirmed, and once the specified time has elapsed, a part of the processing results are outputted and displayed on the monitor of the operator's terminal (FIG. 1), for example (block S7). When it is determined in block S6 that all processing is completed, a state in which all processing is completed is reached (block S8) and the processing is completed.
 図3は、図2のブロックS6において既定時間を算出する方法の一例を説明するための図である。例えば、時間の経過に対する評価値をプロットしたグラフにおいて、過去の実績から評価値が飽和する時間(サチレーション時間)を求めておき、この時間を規定時間として用いることができる。 FIG. 3 is a diagram for explaining an example of a method for calculating the predetermined time in block S6 of FIG. 2. For example, in a graph plotting evaluation values over time, the time at which the evaluation values are saturated (saturation time) can be determined from past results and used as the specified time.
 図4は、図2のブロックS3における処理手順の一例を示すフローチャートである。プロセッサ11は、制約パラメータを抽出したのち(ブロックS11)、パターン数を確認する(ブロックS12)。パターン数として、例えば、最適解(厳密解)が要求される場合は無限値を設定することができる。近似解で十分であれば、有限のデフォルト値を設定することができる。デフォルト値は、例えば過去の制約パラメータ量と成功パターンを出力したパターン数から算出することも可能である。 FIG. 4 is a flowchart illustrating an example of the processing procedure in block S3 of FIG. 2. After extracting the constraint parameters (block S11), the processor 11 checks the number of patterns (block S12). For example, if an optimal solution (exact solution) is required, an infinite value can be set as the number of patterns. If an approximate solution is sufficient, a finite default value can be set. The default value can also be calculated from, for example, the past constraint parameter amount and the number of patterns in which successful patterns were output.
 次に、プロセッサ11は、制約パラメータをランダムに割り付け(ブロックS13)、割付の結果から矛盾点を確認する(ブロックS14)。矛盾点とは、例えば電源車のタイプ(例:低圧のみ)に対し巡回ビルのタイプ(例:高圧)が割り付けられたことによる矛盾である。つまり高圧ビルに対し低圧タイプの電源車を巡回させることはできない。このような矛盾する組み合わせを排除することにより巡回ルートの探索空間を縮小することが可能になる。なお、ブロックS14の処理は別モジュールとして実装することにより、組合せの増減に柔軟に対応することも可能である。 Next, the processor 11 randomly assigns constraint parameters (block S13) and checks for inconsistencies from the assignment results (block S14). The inconsistency is, for example, a contradiction caused by assigning the type of patrol building (eg, high voltage) to the type of power supply vehicle (eg, only low voltage). In other words, it is not possible to patrol high-voltage buildings with low-voltage power supply vehicles. By eliminating such contradictory combinations, it becomes possible to reduce the search space for the itinerary route. Note that by implementing the process of block S14 as a separate module, it is also possible to flexibly respond to increases and decreases in combinations.
 矛盾点があれば(ブロックS15で(有))処理手順は再びブロックS13に戻る。矛盾点が無ければ(ブロックS15で(無))、ブロックS13で得られたパターンは割付パターンとして保持され、ストレージ12に記憶される(ブロックS16)。ブロックS13~ブロックS16の手順は、保持された割付パターンがNに達するまで繰り替えされる(ブロックS17)。保持された割付パターンがNに達したならば、全ての割付パターンとして保持される(ブロックS18)。 If there is a contradiction (yes in block S15), the processing procedure returns to block S13 again. If there is no contradiction ((absent) in block S15), the pattern obtained in block S13 is retained as an allocation pattern and stored in the storage 12 (block S16). The steps from block S13 to block S16 are repeated until the number of retained layout patterns reaches N (block S17). When the number of retained layout patterns reaches N, all layout patterns are retained (block S18).
 図5は、図2のブロックS4における処理手順の一例を示すフローチャートである。ブロックS4では、遺伝的アルゴリズムに基づく目的関数の最適化が実施される。図5において、プロセッサ11は、繰り返し世代(M)を決定したのち(ブロックS21)、STEP2(図2)の処理を実施する(ブロックS22)。世代数の決定方法としては、例えば、デフォルト値として過去の制約パラメータ量と成功パターンを出力したパターン数から算出することが可能である。 FIG. 5 is a flowchart illustrating an example of the processing procedure in block S4 of FIG. 2. In block S4, optimization of the objective function based on the genetic algorithm is performed. In FIG. 5, the processor 11 determines the repetition generation (M) (block S21), and then executes the process of STEP 2 (FIG. 2) (block S22). As a method for determining the number of generations, for example, it is possible to calculate it from the past constraint parameter amount as a default value and the number of patterns that output successful patterns.
 次に、プロセッサ11は、パラメータAを抽出する(ブロックS23)。ここで抽出されるパラメータは、複数のケースもあり得る。抽出されたパラメータAの全てが最上位であれば(ブロックS24)、プロセッサ11は繰り返し世代数を確認し(ブロックS27)、世代数がMに達すれば(ブロックS28)処理は完了する。ブロックS24において、例えばパラメータ(停電時間)に関し、停電時間=0時間が最上位である。 Next, the processor 11 extracts parameter A (block S23). There may be multiple parameters extracted here. If all of the extracted parameters A are the highest (block S24), the processor 11 checks the number of repetition generations (block S27), and if the number of generations reaches M (block S28), the process is completed. In block S24, regarding the parameter (power outage time), for example, power outage time = 0 time is the highest.
 一方、パラメータ(1人当たりの業務時間)に関し、1人当たりの業務時間=6時間は最上位ではない。そこで、もっと良いパターンがあることを想定し、プロセッサ11は、「最上位ではないパラメータ」をランダムに変更する。なお、最上位ではないパラメータが複数ある場合は、どちらか一方を固定してランダムに変更する。 On the other hand, regarding the parameter (work hours per person), work hours per person = 6 hours is not the highest. Therefore, assuming that there is a better pattern, the processor 11 randomly changes the "parameters that are not at the highest level." Note that if there are multiple parameters that are not at the top level, one of them is fixed and changed at random.
 ブロックS24においてNoであれば、プロセッサ11は、最上位以外のパラメータを交叉、または突然変異として変更する。遺伝的アルゴリズムにおいては、1点交叉、2点交叉、突然変異率は別途変更できるように、別処理として扱うことも可能である。 If No in block S24, the processor 11 changes parameters other than the highest level as crossover or mutation. In the genetic algorithm, one-point crossover, two-point crossover, and mutation rate can be treated as separate processing so that they can be changed separately.
 次に、プロセッサ11は、過去パターンの有無を判定し(ブロックS26)、(無し)ならば処理手順はブロックS22に戻る。過去パターンが(全て有り)ならば、処理手順はブロックS27に至る。 Next, the processor 11 determines the presence or absence of a past pattern (block S26), and if (absent), the processing procedure returns to block S22. If there are past patterns (all are present), the processing procedure reaches block S27.
 <効果>
 図6および図7は、本実施形態により得られる効果を説明するための図である。図6(a)に示されるように、既存の技術では、電源車に対して多くのパラメータを割り付け、その割付可能なパターンから評価値を計算して最適解を判断する必要があるために、膨大な時間が掛かってしまうケースがあった。
<Effect>
6 and 7 are diagrams for explaining the effects obtained by this embodiment. As shown in Figure 6(a), with existing technology, it is necessary to allocate many parameters to the power supply vehicle and calculate evaluation values from the patterns that can be allocated to determine the optimal solution. There were cases where it took a huge amount of time.
 これに対し、図6(b)に示されるように実施形態では、割付可否をSTEP1で処理し、割付可能なパターンの中から定期的に評価値から共通パラメータと合致しないパターンを枝刈りすることにより、処理時間を短縮して最適(近似)解を算出することができる。図7に、算出された近似解の一例を示す。 On the other hand, as shown in FIG. 6(b), in the embodiment, the allocation possibility is processed in STEP 1, and patterns that do not match the common parameter from the evaluation value are periodically pruned from among the patterns that can be allocated. Accordingly, it is possible to calculate an optimal (approximate) solution while reducing processing time. FIG. 7 shows an example of the calculated approximate solution.
 図8および図9は、算出された近似解の具体例について説明するための図である。図8に示されるように、実施形態により算出された巡回ルートでは、例えば途中のビル(北ビル)における作業員の交代が設定される。これにより1人の作業員に稼働が集中することが避けられ、図9に示されるように複数の作業員で稼働を分散して効率的に処理することができる。よって、全体での作業時間も短時間で完了させることが可能になる。すなわち、各処理時間を予測し、プロセス全体の処理を平準化して処理完了時間を短時間することができる。 FIGS. 8 and 9 are diagrams for explaining specific examples of calculated approximate solutions. As shown in FIG. 8, in the patrol route calculated according to the embodiment, for example, worker changes are set at a building (north building) along the way. This prevents work from being concentrated on one worker, and enables efficient processing by distributing work among a plurality of workers, as shown in FIG. Therefore, the entire work can be completed in a short time. That is, it is possible to predict each processing time, level out the processing of the entire process, and shorten the processing completion time.
 以上述べたように、実施形態では、電源車の巡回ルートをスケジュール問題として処理し、条件が不一致となるパターン(「矛盾点」)を除外することで、探索対象となる割付パターン(巡回パターン)の数を削減する[STEP1]。次に、一定時間ごとに、探索途中の巡回パターンを評価し、評価結果(※パラメータA)が一定値以下のパターンの探索を中断することで、探索対象となる巡回パターン数を削減する[STEP2]。STEP1、およびSTEP2の処理により、探索対象となる巡回パターン数を大幅に削減し、枝刈りによる検索時間の短縮を促進することができる。 As described above, in the embodiment, by processing the patrol route of the power supply vehicle as a schedule problem and excluding patterns where the conditions do not match ("inconsistent points"), the allocation pattern to be searched (tour pattern) [STEP 1] Next, the number of cyclic patterns to be searched is reduced by evaluating the cyclic patterns that are being searched at regular intervals and interrupting the search for patterns whose evaluation results (*parameter A) are below a certain value [STEP 2 ]. Through the processing in STEP 1 and STEP 2, the number of cyclic patterns to be searched can be significantly reduced, and the search time can be shortened by pruning.
 すなわち実施形態では、巡回ルートの探索を、各々の電源車の巡回パターンについて最良解(近似解/最適解)を抽出するスケジュール問題として定式化し、割付可否を複数のステップ(STEP1、STEP2)で行う。これにより探索空間を縮小化できる。また、並列処理を行いながら共通パラメータを定期的にチェックすることで、探索空間をさらに縮小化することができ、巡回ルートの探索にかかる全体の処理時間をさらに短縮することができる。 That is, in the embodiment, the search for a tour route is formulated as a schedule problem that extracts the best solution (approximate solution/optimal solution) for each power supply vehicle's tour pattern, and the allocation is determined in multiple steps (STEP 1, STEP 2). . This allows the search space to be reduced. Furthermore, by periodically checking the common parameters while performing parallel processing, the search space can be further reduced, and the overall processing time required to search for the itinerary route can be further reduced.
 これらのことから、実施形態によれば、巡回ルート探索時間を短縮することの可能な技術を提供することができる。ひいては、災害発生時の電源車の配備ルートを迅速に提案し、稼働削減に寄与することが可能になる。また、BCP(Business Continuity Plan)の強靭化に寄与することも可能である。 For these reasons, according to the embodiment, it is possible to provide a technique that can shorten the travel route search time. In addition, it will be possible to quickly propose a deployment route for power supply vehicles in the event of a disaster, contributing to reductions in operation. It is also possible to contribute to strengthening the BCP (Business Continuity Plan).
 なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiments as they are, and in the implementation stage, the components can be modified and embodied without departing from the gist of the invention. Moreover, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components from different embodiments may be combined as appropriate.
  2…データベース
  3…巡回パターン
  10…巡回ルート探索装置
  11…プロセッサ
  12…ストレージ
  12a…割付パターン
  13…インタフェース部
  14…メモリ
  14a…プログラム
  14c…巡回パターン
  100…ネットワーク
  111…条件処理部
  112…データ分析処理部
  115…データ決定部。
2...Database 3...Cycling pattern 10...Cycling route search device 11...Processor 12...Storage 12a...Allocation pattern 13...Interface section 14...Memory 14a...Program 14c...Cycling pattern 100...Network 111...Condition processing section 112...Data analysis processing Section 115...Data determination section.

Claims (7)

  1.  電源車および複数の拠点に割付けられる複数のパラメータの組み合わせに対応する複数の割付パターンを記憶する記憶部と、
     プロセッサとを具備し、
      前記プロセッサは、
     前記複数の割付パターンから与えられた制約条件を満たす割付パターンを抽出する条件処理部と、
     前記抽出された割付パターンを対象として、前記電源車の前記複数の拠点への巡回パターンに関する目的関数を最適化するデータ分析処理部と、
     前記最適化の結果から前記電源車の巡回ルートを決定するデータ決定部とを具備し、
      前記条件処理部は、
     静的な第1の制約条件を満たす割付パターンを抽出する第1ステップを実行する機能と、
     前記第1の制約条件を満たす割付パターンから、動的な第2の制約条件を満たす割付パターンをさらに抽出する第2ステップを実行する機能とを備える、ルート探索装置。
    a storage unit that stores a plurality of assignment patterns corresponding to combinations of a plurality of parameters assigned to the power supply vehicle and the plurality of locations;
    and a processor;
    The processor includes:
    a condition processing unit that extracts a layout pattern that satisfies given constraints from the plurality of layout patterns;
    a data analysis processing unit that optimizes an objective function regarding a patrol pattern of the power supply vehicle to the plurality of bases, using the extracted allocation pattern as a target;
    a data determining unit that determines a patrol route for the power supply vehicle based on the optimization result;
    The condition processing unit is
    a function of executing a first step of extracting an allocation pattern that satisfies a static first constraint;
    A route searching device comprising: a function of executing a second step of further extracting a layout pattern satisfying a dynamic second constraint condition from a layout pattern satisfying the first constraint condition.
  2.  前記第1ステップは、前記第1の制約条件と矛盾する割付パターンを除外して前記巡回ルートの探索空間を縮小するステップである、請求項1に記載のルート探索装置。 The route search device according to claim 1, wherein the first step is a step of reducing the search space of the itinerary route by excluding a layout pattern inconsistent with the first constraint.
  3.  前記第2ステップは、前記目的関数の評価値が既定値以下の割付パターンに対する前記巡回ルートの探索を中断するステップである、請求項1に記載のルート探索装置。 The route search device according to claim 1, wherein the second step is a step of interrupting the search for the itinerary route for an allocation pattern in which the evaluation value of the objective function is equal to or less than a predetermined value.
  4.  前記データ分析処理部は、遺伝的アルゴリズムに基づいて前記目的関数を最適化する、請求項1に記載のルート探索装置。 The route search device according to claim 1, wherein the data analysis processing unit optimizes the objective function based on a genetic algorithm.
  5.  前記データ分析処理部は、分岐限定法により前記目的関数を最適化する、請求項1に記載のルート探索装置。 The route search device according to claim 1, wherein the data analysis processing unit optimizes the objective function using a branch and bound method.
  6.  電源車および複数の拠点に対して割付けられる複数のパラメータの組み合わせに対応する複数の割付パターンを記憶する記憶部と、プロセッサとを具備するコンピュータにより、前記電源車の巡回ルートを生成する巡回ルート探索方法であって、
     前記プロセッサが、与えられた制約条件を満たす割付パターンを前記複数の割付パターンから抽出する抽出過程と、
     前記プロセッサが、前記抽出された割付パターンを対象として、前記電源車の前記複数の拠点への巡回パターンに関する目的関数を最適化する過程と、
     前記プロセッサが、前記最適化の結果から前記電源車の巡回ルートを決定する過程とを具備し、
      前記抽出過程は、
     前記プロセッサが、静的な第1の制約条件を満たす割付パターンを抽出する過程と、
     前記プロセッサが、前記第1の制約条件を満たす割付パターンから、動的な第2の制約条件を満たす割付パターンをさらに抽出する過程とを備える、ルート探索方法。
    A patrol route search for generating a patrol route for the power supply vehicle using a computer including a processor and a storage unit that stores a plurality of assignment patterns corresponding to combinations of a plurality of parameters assigned to the power supply vehicle and a plurality of bases. A method,
    an extraction step in which the processor extracts a layout pattern that satisfies given constraint conditions from the plurality of layout patterns;
    a step in which the processor optimizes an objective function regarding a patrol pattern of the power supply vehicle to the plurality of bases, using the extracted allocation pattern as a target;
    the processor determines a patrol route for the power supply vehicle from the optimization result,
    The extraction process includes:
    a step in which the processor extracts an allocation pattern that satisfies a static first constraint;
    A route searching method comprising: the processor further extracting a layout pattern satisfying a dynamic second constraint condition from a layout pattern satisfying the first constraint condition.
  7.  コンピュータを、請求項1乃至5のいずれか1項に記載のルート探索装置の前記各部として機能させる、プログラム。 A program that causes a computer to function as each section of the route search device according to claim 5.
PCT/JP2022/022934 2022-06-07 2022-06-07 Route finding device, route finding method, and program WO2023238225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022934 WO2023238225A1 (en) 2022-06-07 2022-06-07 Route finding device, route finding method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022934 WO2023238225A1 (en) 2022-06-07 2022-06-07 Route finding device, route finding method, and program

Publications (1)

Publication Number Publication Date
WO2023238225A1 true WO2023238225A1 (en) 2023-12-14

Family

ID=89118043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022934 WO2023238225A1 (en) 2022-06-07 2022-06-07 Route finding device, route finding method, and program

Country Status (1)

Country Link
WO (1) WO2023238225A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092802A (en) * 1999-09-17 2001-04-06 Fujitsu Ltd Device and method for optimization and recording medium
JP2011138345A (en) * 2009-12-28 2011-07-14 Ns Solutions Corp Solution search device, operation allocation device, solution search method, operation allocation method and program
JP2021111276A (en) * 2020-01-15 2021-08-02 Jfeスチール株式会社 Delivery plan creation method, operation method, and delivery plan creation device
WO2022044119A1 (en) * 2020-08-25 2022-03-03 日本電信電話株式会社 Route search device, route search method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092802A (en) * 1999-09-17 2001-04-06 Fujitsu Ltd Device and method for optimization and recording medium
JP2011138345A (en) * 2009-12-28 2011-07-14 Ns Solutions Corp Solution search device, operation allocation device, solution search method, operation allocation method and program
JP2021111276A (en) * 2020-01-15 2021-08-02 Jfeスチール株式会社 Delivery plan creation method, operation method, and delivery plan creation device
WO2022044119A1 (en) * 2020-08-25 2022-03-03 日本電信電話株式会社 Route search device, route search method, and program

Similar Documents

Publication Publication Date Title
JP6823697B2 (en) Multiple vehicle route planning method and multiple vehicle route planning system
Yang et al. Online dispatching and routing model for emergency vehicles with area coverage constraints
JP3510042B2 (en) Database management method and system
Krumke et al. Real-time dispatching of guided and unguided automobile service units with soft time windows
CN111339230B (en) Vehicle information display method and device, electronic equipment and storage medium
Tricoire et al. Exact and hybrid methods for the multiperiod field service routing problem
JPWO2008056682A1 (en) Resource information collection device, resource information collection method, program, and collection schedule generation device
JP2016203873A (en) Resource application plan support device and resource application plan support method
CN113760847A (en) Log data processing method, device, equipment and storage medium
Jossé et al. Probabilistic Resource Route Queries with Reappearance.
KR101301607B1 (en) Data partitioning apparatus for distributed data storages and method thereof
WO2023238225A1 (en) Route finding device, route finding method, and program
WO2024053134A1 (en) Worker allocation management system and method
CN113010485A (en) Distributed computing reservation platform for storing and processing shared data records
CN114615232B (en) Method and system for generating visitor identification of active defense gateway
JP2018022281A (en) Load distribution control program, device, and method
CN114329058A (en) Image gathering method and device and electronic equipment
JP7347104B2 (en) Information processing device, non-temporary storage medium, and system
CN113159356A (en) Route planning method, device, terminal equipment and storage medium
CN113434524A (en) Data integration method and device, electronic equipment and storage medium
JPH09244706A (en) Method and device for plan correction
Jánošíková et al. Grouping genetic algorithm for the capacitated p-median problem
CN118134207B (en) Production scheduling method and system in automatic distribution scene of civil airport guided vehicle
JP2000184592A (en) Power system demand scheme generating apparatus and storage medium for recording processing program thereof
CN114526753B (en) Cross-road intersection rule association method and device, computer equipment and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945733

Country of ref document: EP

Kind code of ref document: A1