WO2023237071A1 - 一种能量积分与光子计数混合成像的x射线探测器及ct机 - Google Patents

一种能量积分与光子计数混合成像的x射线探测器及ct机 Download PDF

Info

Publication number
WO2023237071A1
WO2023237071A1 PCT/CN2023/099248 CN2023099248W WO2023237071A1 WO 2023237071 A1 WO2023237071 A1 WO 2023237071A1 CN 2023099248 W CN2023099248 W CN 2023099248W WO 2023237071 A1 WO2023237071 A1 WO 2023237071A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
ray
circuit board
conversion part
electronic
Prior art date
Application number
PCT/CN2023/099248
Other languages
English (en)
French (fr)
Inventor
张超
崔志立
高建
Original Assignee
北京纳米维景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米维景科技有限公司 filed Critical 北京纳米维景科技有限公司
Publication of WO2023237071A1 publication Critical patent/WO2023237071A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations

Definitions

  • the invention relates to an X-ray detector for hybrid imaging of energy integration and photon counting, and also relates to a CT machine using the X-ray detector, belonging to the technical field of computed tomography.
  • CT Computer Tomography
  • X-rays etc.
  • extremely sensitive CT detectors to perform cross-sectional scanning around a certain part of the human body. It has the characteristics of fast scanning time and clear images, and can be used in many fields such as medical treatment and security inspection.
  • the commonly used conventional CT detector is the energy integrating detector (EID).
  • EID energy integrating detector
  • Such energy-integrating detectors measure the energy-integrated signal of X-ray photons and may lose energy-related information, resulting in increased noise and reduced contrast.
  • the photon counting detector is a relatively new CT detector that has higher conversion efficiency, lower quantum noise and higher spatial resolution than the traditional energy integrating detector, but its response signal intensity is weak and it also has There is a problem of pulse stacking under large X-ray photon flux.
  • the primary technical problem to be solved by the present invention is to provide an X-ray detector with hybrid imaging of energy integration and photon counting.
  • Another technical problem to be solved by the present invention is to provide a CT machine using the X-ray detector.
  • an X-ray detector with hybrid imaging of energy integration and photon counting including:
  • a counting detector having at least one array of pixelated electronic components to obtain a photon counting image
  • the integrating detector is stacked on one side of the counting detector along the first direction, and has at least one column of pixelated photoelectric elements to obtain an energy integrated image; at any pixel position, the electronic element and the The photoelectric elements are in one-to-one correspondence in the first direction;
  • the counting detector and the integrating detector share a ray conversion part
  • the ray conversion part can receive the X-rays and convert them into electron-hole pairs for delivery to the electronic components; the ray conversion part can also receive the X-rays and convert them into visible light photons for delivery to the electronic components. Optoelectronic components.
  • the counting detector further includes:
  • An electronic circuit board the electronic circuit board is preset with an electronic readout circuit
  • the at least one column of pixelated electronic components is arranged along the second direction on the electronic circuit board close to the surface of the integrating detector, and any one of the electronic components is connected to the electronic readout circuit;
  • the second direction is perpendicular to the first direction
  • the first direction is perpendicular to the surface of the electronic circuit board.
  • the integral detector further includes:
  • a visible light circuit board with a visible light readout circuit preset on the visible light circuit board;
  • the at least one column of pixelated photoelectric elements is arranged along the second direction on the visible light circuit board close to the surface of the electronic circuit board, and any one of the photoelectric elements is connected to the visible light readout circuit.
  • the ray conversion part has an integrated structure and is made of a material that has both scintillator and semiconductor properties.
  • electron blocking layers and hole blocking layers are respectively provided at both ends of the ray conversion part.
  • the ray conversion part includes:
  • a first conversion part is provided between the electronic circuit board and the visible light circuit board and is made of semiconductor material to receive the X-rays and convert them into electron-hole pairs;
  • the second conversion part is attached to the side of the first conversion part away from the electronic circuit board and is made of a scintillator material with hole blocking ability to receive the X-rays and convert them into visible light photons. .
  • the counting detector and the integrating detector share the same common circuit board, and the common circuit board is preset with an electronic readout circuit and a visible light readout circuit;
  • At least one column of pixelated photoelectric elements is arranged on the surface of the common circuit board along the second direction, and each of the photoelectric elements is provided with an electronic element at the pixel position; any one of the photoelectric elements is connected to the visible light reading element. Output circuit connection, any one of the electronic components is connected to the electronic readout circuit;
  • the ray conversion part is disposed on the common circuit board to receive the X-rays and convert them into electron-hole pairs and visible light photons.
  • the counting detector and the integrating detector are integrally wrapped with a waterproof layer, and the waterproof layer at least includes one of PI film, PET film, evaporated parylene film or composite coating.
  • the waterproof layer at least includes one of PI film, PET film, evaporated parylene film or composite coating.
  • One or more species are included in the waterproof layer.
  • the X-ray detector further includes a power supply and a transparent electrode.
  • the transparent electrode is disposed on a side of the ray conversion part away from the electronic component.
  • One pole of the power supply is connected to the transparent electrode.
  • the other pole of the power supply is connected to the counting detector to form an electric field for driving electron-hole pairs.
  • the X-ray detector further includes an image processing unit, the image processing unit is connected to the counting detector to receive a photon counting image at any pixel position, and the image processing unit is also connected to the counting detector.
  • the integral detector is connected to receive the energy integrated image of the same pixel position at the same time, and perform fusion processing on the photon counting image and the energy integrated image of the same pixel position at the same time.
  • a CT machine in which the above-mentioned X-ray detector for hybrid imaging of energy integration and photon counting is used.
  • the present invention has the following technical effects:
  • the ray conversion part has both scintillator and semiconductor properties, so that it can simultaneously convert electron-hole pairs and visible light photons, so that counting detectors and integrating detectors can share the same ray conversion part.
  • the electronic components and the photoelectric components are in one-to-one correspondence in the first direction, so the two detection signals at the same pixel position at the same time can be image processed to obtain a high-quality reconstructed image.
  • Figure 1 is a schematic structural diagram of an X-ray detector for hybrid imaging of energy integration and photon counting provided by the first embodiment of the present invention
  • Figure 2 is a schematic structural diagram of another X-ray detector for hybrid imaging of energy integration and photon counting provided by the first embodiment of the present invention
  • Figure 3 is a schematic structural diagram of an X-ray detector for hybrid imaging of energy integration and photon counting provided by the second embodiment of the present invention
  • Figure 4 is a hybrid imaging of energy integration and photon counting provided by the third embodiment of the present invention. Structural diagram of the X-ray detector;
  • Figure 5 is an example diagram of a CT machine using the X-ray detector.
  • Figure 1 shows an X-ray detector for hybrid imaging of energy integration and photon counting provided by the first embodiment of the present invention, which at least includes: a counting detector 1 and an integrating detector 2.
  • the counting detector 1 has at least one column of pixelated electronic components 11 to obtain photon counting images.
  • the integrating detector 2 is stacked on one side of the counting detector 1 along the first direction (ie, the X direction in FIG. 1 ), and has at least one column of pixelated photoelectric elements 21 to obtain an energy integrated image.
  • the electronic component 11 is preferably an electrode.
  • a complementary metal oxide semiconductor (CMOS) thin film transistor or an indium gallium zinc oxide thin film transistor (IGZO-TFT) can also be selected, and the surface of each material must be ensured. Has exposed electrodes.
  • the optoelectronic element 21 is preferably a photodiode.
  • a photodiode (PD), a complementary metal oxide semiconductor (CMOS), a charge coupled device (CCD) or a photomultiplier tube (PMT) may also be selected.
  • the electronic element 11 and the photoelectric element 21 correspond one to one in the first direction.
  • the counting detector 1 and the integrating detector 2 share one ray conversion unit 3 .
  • the ray conversion part 3 has both scintillator and semiconductor properties. It can not only receive X-rays and convert them into electron-hole pairs for transport to the electronic component 11; it can also receive X-rays and convert them into visible light photons for transport to the optoelectronics. Element 21. Therefore, by using the X-ray detector for hybrid imaging of energy integration and photon counting provided in this embodiment, a high-quality reconstructed image can be obtained by performing image processing on two detection signals at the same pixel position at the same time.
  • the ray conversion part 3 has at least one column of pixelated material units 31, so that at any pixel position, the electronic component 11, the pixelated material unit 31, and the photoelectric component 21 are aligned in the first direction.
  • the pixelated material unit 31 can improve the correspondence between the ray conversion part 3 and the counting detector 1 and the integrating detector 2 to avoid mutual crosstalk.
  • the counting detector 1 may also include: an electronic circuit board 12 .
  • the electronic circuit board 12 is preset with an electronic readout circuit, and the above-mentioned at least one column of pixelated electronic components 11 is arranged on the electronic circuit board 12 along the second direction (i.e., the Y direction in Figure 1) close to the surface of the integrating detector 2 ( That is, side A in Figure 1), and any electronic component 11 is connected to an electronic readout circuit, thereby being used to obtain a photon counting image.
  • the electronic component 11 , the electronic circuit board 12 and the ray conversion part 3 together constitute the counting detector 1 . As shown in FIG.
  • the integrating detector 2 may also include: a visible light circuit board 22 .
  • the visible light circuit board 22 is preset with a visible light readout circuit, and the above-mentioned at least one column of pixelated photoelectric elements 21 is arranged along the second direction on the surface of the visible light circuit board 22 close to the electronic circuit board 12 (i.e., surface B in Figure 1), And any photoelectric element 21 is connected to a visible light readout circuit, so as to obtain an energy integrated image.
  • the photoelectric element 21 , the visible light circuit board 22 and the ray conversion part 3 together constitute the integral detector 2 . As shown in FIG.
  • the ray conversion part 3 has an integrated structure and is made of a material that has both scintillator and semiconductor properties, such as lead-based metal halide perovskite material, so that the ray conversion part 3 can simultaneously convert Electron-hole pairs and visible light photons correspond to counting detector 1 and integrating detector 2 respectively.
  • electron blocking layers 301 and hole holes are respectively provided at both ends of the ray conversion part 3 Barrier layer 302.
  • the electron blocking layer 301 is used to block electrons so that holes can pass smoothly, and N-diphenyl-N, N-di(3-methylphenyl)benzidine (Poly-TPD) can be used; similarly,
  • the hole blocking layer 302 is used to block holes so that electrons can pass through smoothly. It can be a composite coating of PCBM, C60, perovskite and organic matter, etc., with a thickness of 0.1 to 10um. As a result, the flow efficiency of electron-hole pairs can be improved, thereby improving the collection effect of photon counting images, which is beneficial to subsequent image reconstruction.
  • the counting detector 1 and the integrating detector 2 are integrally wrapped with a waterproof layer (not shown in the figure).
  • the waterproof layer includes but is not limited to PI film, PET film, and evaporated parylene film. Or one or more of the composite coatings; wherein the composite coating is composed of the above-mentioned PI film, PET film, evaporated parylene film, SiO 2 , TiO 2 , Al 2 O 3 and other dense inorganic waterproof films .
  • the use of this waterproof layer can improve the waterproof and moisture-proof performance of the entire X-ray detector for hybrid imaging of energy integration and photon counting, and improve the safety of use.
  • the X-ray detector also includes a power supply 4 and a transparent electrode 5 .
  • the transparent electrode 5 is arranged on the side of the ray conversion part 3 away from the electronic component 11.
  • One pole of the power supply 4 is connected to the transparent electrode 5, and the other pole of the power supply 4 is connected to the counting detector 1 to form a driving structure.
  • the electric field of the electron-hole pair The electric field can be used to provide driving force for the movement of electron-hole pairs, thereby improving the movement efficiency of electron-hole pairs.
  • the X-ray detector also includes an image processing part 6.
  • the image processing part 6 is connected to the counting detector 1 to receive the photon counting image of any pixel position.
  • the image processing part 6 is also connected to the integral detector 2 to receive the energy integrated image of the same pixel position at the same time.
  • the image processing unit can perform fusion processing on the photon counting image and the energy integral image of the same pixel position at the same time, thereby obtaining a high-quality reconstructed image corresponding to the pixel position.
  • the ray conversion part 3 has both scintillator and semiconductor properties, so that it can perform simultaneous detection of electron-hole pairs and visible light photons. conversion, so that the counting detector 1 and the integrating detector 2 can share a ray conversion part. Moreover, since at any pixel position, the electronic element 11, the material unit 31 and the photoelectric element 21 correspond one to one in the first direction, it is possible to perform image processing on two detection signals at the same pixel position at the same time, thereby obtaining high quality. reconstructed image.
  • Figure 3 shows an X-ray detector for hybrid imaging of energy integration and photon counting provided by the second embodiment of the present invention, which at least includes: a counting detector 1 and an integrating detector 2.
  • the ray conversion part 3 has a double-layer structure.
  • the ray conversion part 3 includes a first conversion part 310 and a second conversion part 320 .
  • the first conversion part 310 is made of semiconductor material and is disposed between the electronic circuit board 12 and the visible light circuit board 22 to receive X-rays and convert them into electron-hole pairs.
  • the electronic component 11, the electronic circuit board 12 and the first conversion part 310 together form the counting detector.
  • the second conversion part 320 is made of scintillator material and is attached to the side of the first conversion part 310 away from the electronic circuit board 12 to receive X-rays and convert them into visible light photons. It can be understood that in this embodiment, the photoelectric element 21, the visible light circuit board 22 and the second conversion part 320 jointly form the integral detector.
  • a material for the second conversion part 320 when selecting a material for the second conversion part 320, it not only needs to have scintillator properties, but also needs to have hole blocking capabilities to allow electrons to pass through. More preferably, an electron blocking layer is provided on a side of the first conversion part 310 away from the second conversion part 320 to block electrons from passing through. This can improve the flow efficiency of electron-hole pairs.
  • Figure 4 shows an X-ray detector for hybrid imaging of energy integration and photon counting provided by the third embodiment of the present invention, which at least includes: a counting detector 1 and an integrating detector 2.
  • the difference between this embodiment and the first embodiment is that the counting detector and the integrating detector in this embodiment share the same common circuit board 10 .
  • the common circuit board 10 is preset with an electronic readout circuit and a visible light readout circuit; moreover, the surface of the common circuit board 10 is arranged along the second direction (ie, the Y direction in Figure 4)
  • the surface of the common circuit board 10 is arranged along the second direction (ie, the Y direction in Figure 4)
  • the ray conversion part 3 is disposed on the common circuit board 10 and makes at least one column of pixelated material units 31 correspond to at least one column of pixelated photoelectric elements 21. It should be understood that in one embodiment of the present invention, the ray conversion part 3 may not be provided with the pixelated material unit 31, and the overall structure may be directly formed of a material with scintillator and semiconductor properties.
  • the electronic component 11 , the common circuit board 10 and the ray conversion part 3 jointly constitute the counting detector 1 ; the photoelectric element 21 , the common circuit board 10 and the ray conversion part 3 jointly constitute the Integral detector 2.
  • the transparent electrode 5 in this embodiment is disposed on the ray conversion The side of the portion 3 away from the electronic component 11 (ie, the C side in FIG. 4 ).
  • each embodiment or modification of the present invention is described in a related manner.
  • the same and similar parts between various embodiments or modifications can be referred to each other.
  • the emphasis of each embodiment or modification is They are different from other embodiments, but they are all implemented based on the working principle of the X-ray detector with hybrid imaging of energy integration and photon counting, so they will not be described one by one here.
  • the present invention further provides a CT machine.
  • the CT detector in the CT machine can be implemented using the energy integration and photon counting hybrid imaging X-ray detector provided by the present invention.
  • Other components such as tubes, frames, etc. can be implemented using existing technologies. The conventional design implementation is not explained in detail here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明公开了一种能量积分与光子计数混合成像的X射线探测器及相应的CT机。该X射线探测器包括:计数式探测器,具有至少一列像素化电子元件;积分式探测器,沿第一方向层叠设置于计数式探测器的一侧,并具有至少一列像素化光电元件;在任意一个像素位置,电子元件与光电元件在第一方向上一一对应;计数式探测器与积分式探测器共用一个射线转换部,射线转换部能够接收X射线并转换为电子空穴对,以输送至电子元件;射线转换部还能够接收X射线并转换为可见光光子,以输送至光电元件。该X射线探测器中的计数式探测器和积分式探测器共用一种射线转换部,并能够对同一时刻同一像素位置的两种探测信号进行图像处理,从而获得高质量的重建图像。

Description

一种能量积分与光子计数混合成像的X射线探测器及CT机 技术领域
本发明涉及一种能量积分与光子计数混合成像的X射线探测器,同时也涉及采用该X射线探测器的CT机,属于计算机断层扫描技术领域。
背景技术
CT(Computed Tomography)是计算机断层扫描的简称。它利用精确准直的X射线等,与灵敏度极高的CT探测器一同围绕人体的某一部位进行断面扫描,具有扫描时间快、图像清晰等特点,可用于医疗、安检等诸多领域。
目前,普遍使用的常规CT探测器是能量积分探测器(EID)。此类能量积分探测器测量X射线光子的能量积分信号,可能会丢失与能量有关的信息,导致噪声增加和对比度降低。光子计数探测器是一种较为新颖的CT探测器,具有比传统能量积分探测器更高的转化效率,更低的量子噪声和更高的空间分辨率,但其响应信号强度较弱,同时还存在大X射线光子通量下的脉冲堆叠问题。
发明内容
本发明所要解决的首要技术问题在于提供一种能量积分与光子计数混合成像的X射线探测器。
本发明所要解决的另一技术问题在于提供一种采用该X射线探测器的CT机。
为了实现上述技术目的,本发明采用以下的技术方案:
根据本发明实施例的第一方面,提供一种能量积分与光子计数混合成像的X射线探测器,包括:
计数式探测器,具有至少一列像素化电子元件,以获取光子计数图像;
积分式探测器,沿第一方向层叠设置于所述计数式探测器的一侧,并具有至少一列像素化光电元件,以获取能量积分图像;在任意一个像素位置上,所述电子元件与所述光电元件在所述第一方向上一一对应;
其中,所述计数式探测器与所述积分式探测器共用一个射线转换部, 所述射线转换部能够接收所述X射线并转换为电子空穴对,以输送至所述电子元件;所述射线转换部还能够接收所述X射线并转换为可见光光子,以输送至所述光电元件。
其中较优地,所述计数式探测器还包括:
电子电路板,所述电子电路板上预设有电子读出电路;
所述至少一列像素化电子元件沿第二方向排列在所述电子电路板上靠近所述积分式探测器的表面,任意一个所述电子元件均与所述电子读出电路连接;
其中,所述第二方向垂直于所述第一方向,所述第一方向垂直于所述电子电路板的表面。
其中较优地,所述积分式探测器还包括:
可见光电路板,所述可见光电路板上预设有可见光读出电路;
所述至少一列像素化光电元件沿所述第二方向排列在所述可见光电路板上靠近所述电子电路板的表面,任意一个所述光电元件均与所述可见光读出电路连接。
其中较优地,所述射线转换部为一体式结构,由同时具有闪烁体和半导体性质的材料制成。
其中较优地,在所述第一方向上,所述射线转换部的两端分别设有电子阻挡层和空穴阻挡层。
其中较优地,所述射线转换部包括:
第一转换部,设置于所述电子电路板与所述可见光电路板之间,并由半导体材料制成,以接收所述X射线并转换为电子空穴对;
第二转换部,贴合在所述第一转换部的远离所述电子电路板的一侧,并由具有空穴阻挡能力的闪烁体材料制成,以接收所述X射线并转换为可见光光子。
其中较优地,所述计数式探测器与所述积分式探测器共用同一块公共电路板,所述公共电路板上预设有电子读出电路和可见光读出电路;
所述公共电路板的表面沿第二方向排列有至少一列像素化光电元件,每一个所述光电元件所在的像素位置上均设有一个电子元件;任意一个所述光电元件均与所述可见光读出电路连接,任意一个所述电子元件均与所述电子读出电路连接;
所述射线转换部设置于所述公共电路板上,以接收所述X射线并转换为电子空穴对和可见光光子。
其中较优地,所述计数式探测器与所述积分式探测器外整体包裹有防水层,所述防水层至少包括PI膜、PET膜、蒸镀派瑞林膜或复合涂层中的一种或者数种。
其中较优地,该X射线探测器还包括电源和透明电极,所述透明电极设置于所述射线转换部的远离所述电子元件的一侧,所述电源的一极与所述透明电极连接,所述电源的另一极与所述计数式探测器连接,以形成用于驱动电子空穴对的电场。
其中较优地,该X射线探测器还包括图像处理部,所述图像处理部与所述计数式探测器连接,以接收任意一个像素位置的光子计数图像,所述图像处理部还与所述积分式探测器连接,以接收同一时刻同一像素位置的能量积分图像,并对同一时刻同一像素位置的所述光子计数图像和所述能量积分图像进行融合处理。
根据本发明实施例的第二方面,提供一种CT机,其中采用上述能量积分与光子计数混合成像的X射线探测器。
与现有技术相比较,本发明具有以下的技术效果:
1)射线转换部同时具有闪烁体和半导体性质,从而能够同时进行电子空穴对和可见光光子的转换,使得计数式探测器和积分式探测器能够共用一种射线转换部。
2)在任意一个像素位置,电子元件和光电元件在第一方向上一一对应,因此能够对同一时刻同一像素位置的两种探测信号进行图像处理,从而获得高质量的重建图像。
附图说明
图1为本发明第一实施例提供的一种能量积分与光子计数混合成像的X射线探测器的结构示意图;
图2为本发明第一实施例提供的另一种能量积分与光子计数混合成像的X射线探测器的结构示意图;
图3为本发明第二实施例提供的一种能量积分与光子计数混合成像的X射线探测器的结构示意图;
图4为本发明第三实施例提供的一种能量积分与光子计数混合成像 的X射线探测器的结构示意图;
图5为采用该X射线探测器的CT机的示例图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容进行详细具体的说明。
<第一实施例>
图1所示为本发明第一实施例提供的一种能量积分与光子计数混合成像的X射线探测器,其至少包括:计数式探测器1和积分式探测器2。其中,计数式探测器1具有至少一列像素化电子元件11,以获取光子计数图像。积分式探测器2沿第一方向(即图1中的X方向)层叠设置于计数式探测器1的一侧,并具有至少一列像素化光电元件21,以获取能量积分图像。
本实施例中,电子元件11优先选用电极,其他实施例中也可以选择互补金属氧化物半导体(CMOS)薄膜晶体管或者铟镓锌氧化物薄膜晶体管(IGZO-TFT)等,并保证各个材料的表面具有裸露电极。光电元件21优先选用光电二极管,其他实施例中也可以选择光电二极管(PD)、互补金属氧化物半导体(CMOS)、电荷耦合元件(CCD)或者光电倍增管(PMT)等。在任意一个像素位置,电子元件11与光电元件21在第一方向上一一对应。
而且,计数式探测器1与积分式探测器2共用一个射线转换部3。其中,该射线转换部3同时具有闪烁体和半导体性质,不仅能够接收X射线并转换为电子空穴对,以输送至电子元件11;还能够接收X射线并转换为可见光光子,以输送至光电元件21。由此,利用本实施例提供的能量积分与光子计数混合成像的X射线探测器,通过对同一时刻同一像素位置的两种探测信号进行图像处理,从而能够获得高质量的重建图像。
在本发明的一个实施例中,该射线转换部3具有至少一列像素化材料单元31,并使得在任意一个像素位置,电子元件11、像素化材料单元31、与光电元件21在第一方向上一一对应。由此,通过像素化材料单元31能够提高射线转换部3与计数式探测器1与积分式探测器2的对应性,以避免相互串扰。
在上述实施例中,计数式探测器1还可以包括:电子电路板12。该 电子电路板12上预设有电子读出电路,上述至少一列像素化电子元件11沿第二方向(即图1中的Y方向)排列在电子电路板12上靠近积分式探测器2的表面(即图1中的A面),并且任意一个电子元件11均与电子读出电路连接,从而用于获取光子计数图像。可以理解的是,本实施例中,电子元件11、电子电路板12以及射线转换部3共同构成所述计数式探测器1。如图1所示,当X射线透过电子电路板12照射到射线转换部3上后,通过射线转换部3将X射线转换为电子空穴对,通过将电子空穴对输送至电子元件11处,从而能够通过电子电路板12上的电子读出电路获得光子计数图像。
类似的,在上述实施例中,积分式探测器2还可以包括:可见光电路板22。该可见光电路板22上预设有可见光读出电路,上述至少一列像素化光电元件21沿第二方向排列在可见光电路板22上靠近电子电路板12的表面(即图1中的B面),并且任意一个光电元件21均与可见光读出电路连接,从而用于获取能量积分图像。可以理解的是,本实施例中,光电元件21、可见光电路板22以及射线转换部3共同构成所述积分式探测器2。如图1所示,当X射线透过电子电路板12照射到射线转换部3上后,通过射线转换部3将X射线转换为可见光光子,通过将可见光光子输送至光电元件21处,从而能够通过可见光电路板22上的可见光读出电路获得能量积分图像。
在上述实施例中,射线转换部3为一体式结构,由同时具有闪烁体和半导体性质的材料制成,例如:铅基金属卤化物钙钛矿材料,从而使得该射线转换部3能够同时转换电子空穴对和可见光光子,以分别与计数式探测器1和积分式探测器2相对应。
在本发明的一个实施例中,优选地,如图2所示,在第一方向(即图2中的X方向)上,射线转换部3的两端分别设有电子阻挡层301和空穴阻挡层302。其中,电子阻挡层301用于阻挡电子,使空穴能够顺利通过,可选用N-二苯基-N,N-二(3-甲基苯基)联苯胺(Poly-TPD);类似的,空穴阻挡层302用于阻挡空穴,使电子能够顺利通过,可选用PCBM、C60、钙钛矿与有机物的复合涂层等,厚度为0.1~10um。由此,可提高电子空穴对的流动效率,进而提高光子计数图像的采集效果,有利于后续的图像重建。
在上述实施例中,计数式探测器1与积分式探测器2外整体包裹有防水层(图中未示出),该防水层包括但不限于PI膜、PET膜、蒸镀派瑞林膜或复合涂层中的一种或者数种;其中,所述复合涂层由上述PI膜、PET膜、蒸镀派瑞林膜配合SiO2、TiO2、Al2O3等致密无机防水膜组成。利用该防水层可提高整个能量积分与光子计数混合成像的X射线探测器的防水防潮性能,提高了使用的安全性。
在上述实施例中,该X射线探测器还包括电源4和透明电极5。其中,透明电极5设置于射线转换部3的远离电子元件11的一侧,电源4的一极与透明电极5连接,电源4的另一极与计数式探测器1连接,以形成用于驱动电子空穴对的电场。利用该电场能够为电子空穴对的移动提供驱动力,以提高电子空穴对的移动效率。
如图1所示,在上述实施例中,该X射线探测器还包括图像处理部6,图像处理部6与计数式探测器1连接,以接收任意一个像素位置的光子计数图像。图像处理部6还与积分式探测器2连接,以接收同一时刻同一像素位置的能量积分图像。由此,利用该图像处理部能够对同一时刻同一像素位置的光子计数图像和能量积分图像进行融合处理,从而得到对应于该像素位置的高质量重建图像。
综上所述,本发明第一实施例提供的能量积分与光子计数混合成像的X射线探测器,射线转换部3同时具有闪烁体和半导体性质,从而能够同时进行电子空穴对和可见光光子的转换,使得计数式探测器1和积分式探测器2能够共用一种射线转换部。而且,由于在任意一个像素位置,电子元件11、材料单元31和光电元件21在第一方向上一一对应,因此能够对同一时刻同一像素位置的两种探测信号进行图像处理,从而获得高质量的重建图像。
<第二实施例>
图3所示为本发明第二实施例提供的一种能量积分与光子计数混合成像的X射线探测器,其至少包括:计数式探测器1和积分式探测器2。与第一实施例不同的是,本实施例中,射线转换部3为双层结构。
具体的,在本实施例中,射线转换部3包括第一转换部310和第二转换部320。其中,第一转换部310由半导体材料制成,设置于电子电路板12与可见光电路板22之间,以接收X射线并转换为电子空穴对。可 以理解的是,本实施例中,电子元件11、电子电路板12以及第一转换部310共同形成所述计数式探测器。
类似的,第二转换部320由闪烁体材料制成,并贴合在第一转换部310的远离电子电路板12的一侧,以接收X射线并转换为可见光光子。可以理解的是,本实施例中,光电元件21、可见光电路板22以及第二转换部320共同形成所述积分式探测器。
在本发明的一个实施例中,优选地,选择第二转换部320的制作材料时,不仅需要具有闪烁体性质,还需要具有空穴阻挡能力,以供电子通过。更优地,在第一转换部310的远离所述第二转换部320的一侧设有电子阻挡层,以阻挡电子通过。由此,可提高电子空穴对的流动效率。
本实施例除上述区别点之外,其余结构与第一实施例均相同,在此不再赘述。
<第三实施例>
图4所示为本发明第三实施例提供的一种能量积分与光子计数混合成像的X射线探测器,其至少包括:计数式探测器1和积分式探测器2。本实施例与第一实施例的区别之处在于,本实施例中的计数式探测器与积分式探测器共用同一块公共电路板10。
具体的,在本实施例中,该公共电路板10上预设有电子读出电路和可见光读出电路;而且,在公共电路板10的表面沿第二方向(即图4中的Y方向)排列有至少一列像素化光电元件21,且每一个光电元件21所在的像素位置上均设有一个电子元件11;任意一个光电元件21均与可见光读出电路连接,任意一个电子元件11均与电子读出电路连接。相应的,射线转换部3设置于公共电路板10上,并使至少一列像素化材料单元31与至少一列像素化光电元件21一一对应。需要理解的是,在本发明的一个实施例中,该射线转换部3上也可以不设置像素化材料单元31,直接由具有闪烁体和半导体性质的材料形成整体结构。
可以理解的是,本实施例中,电子元件11、公共电路板10以及射线转换部3共同构成所述计数式探测器1;光电元件21、公共电路板10以及射线转换部3共同构成所述积分式探测器2。
此外,可以理解的是,由于计数式探测器1和积分式探测器2共用同一块公共电路板10,因此,本实施例中的透明电极5设置于射线转换 部3的远离电子元件11的一侧(即图4中的C侧)。
本实施例除上述区别点之外,其余结构与第一实施例均相同,在此不再赘述。
需要说明的是,本发明中的各个实施例或变形例均采用相关的方式描述,各个实施例或变形例之间相同相似的部分互相参见即可,每个实施例或变形例重点说明的都是与其他实施例的不同之处,但它们都是基于能量积分与光子计数混合成像的X射线探测器的工作原理实现的,在此就不一一赘述了。
在上述各个实施例提供的能量积分与光子计数混合成像的X射线探测器的基础上,本发明进一步提供一种CT机。如图5所示,该CT机中的CT探测器可以采用本发明所提供的能量积分与光子计数混合成像的X射线探测器实现,其它组件如球管、机架等都可以采用现有技术中的常规设计实现,在此就不具体说明了。
上面对本发明所提供的能量积分与光子计数混合成像的X射线探测器及相应的CT机进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (11)

  1. 一种能量积分与光子计数混合成像的X射线探测器,其特征在于包括:
    计数式探测器,具有至少一列像素化电子元件,以获取光子计数图像;
    积分式探测器,沿第一方向层叠设置于所述计数式探测器的一侧,并具有至少一列像素化光电元件,以获取能量积分图像;在任意一个像素位置上,所述电子元件与所述光电元件在所述第一方向上一一对应;
    其中,所述计数式探测器与所述积分式探测器共用一个射线转换部,所述射线转换部能够接收所述X射线并转换为电子空穴对,以输送至所述电子元件;所述射线转换部还能够接收所述X射线并转换为可见光光子,以输送至所述光电元件。
  2. 如权利要求1所述的能量积分与光子计数混合成像的X射线探测器,其特征在于所述计数式探测器还包括:
    电子电路板,所述电子电路板上预设有电子读出电路;
    所述至少一列像素化电子元件沿第二方向排列在所述电子电路板上靠近所述积分式探测器的表面,任意一个所述电子元件均与所述电子读出电路连接;
    其中,所述第二方向垂直于所述第一方向,所述第一方向垂直于所述电子电路板的表面。
  3. 如权利要求2所述的能量积分与光子计数混合成像的X射线探测器,其特征在于所述积分式探测器还包括:
    可见光电路板,所述可见光电路板上预设有可见光读出电路;
    所述至少一列像素化光电元件沿所述第二方向排列在所述可见光电路板上靠近所述电子电路板的表面,任意一个所述光电元件均与所述可见光读出电路连接。
  4. 如权利要求3所述的能量积分与光子计数混合成像的X射线探测器,其特征在于,所述射线转换部为一体式结构,由同时具有闪烁体和半导体性质的材料制成。
  5. 如权利要求4所述的能量积分与光子计数混合成像的X射线探测 器,其特征在于,在所述第一方向上,所述射线转换部的两端分别设有电子阻挡层和空穴阻挡层。
  6. 如权利要求3所述的能量积分与光子计数混合成像的X射线探测器,其特征在于所述射线转换部包括:
    第一转换部,设置于所述电子电路板与所述可见光电路板之间,并由半导体材料制成,以接收所述X射线并转换为电子空穴对;
    第二转换部,贴合在所述第一转换部的远离所述电子电路板的一侧,并由具有空穴阻挡能力的闪烁体材料制成,以接收所述X射线并转换为可见光光子。
  7. 如权利要求1所述的能量积分与光子计数混合成像的X射线探测器,其特征在于,
    所述计数式探测器与所述积分式探测器共用同一块公共电路板,所述公共电路板上预设有电子读出电路和可见光读出电路;
    所述公共电路板的表面沿第二方向排列有至少一列像素化光电元件,每一个所述光电元件所在的像素位置上均设有一个电子元件;任意一个所述光电元件均与所述可见光读出电路连接,任意一个所述电子元件均与所述电子读出电路连接;
    所述射线转换部设置于所述公共电路板上,以接收所述X射线并转换为电子空穴对和可见光光子。
  8. 如权利要求1所述的能量积分与光子计数混合成像的X射线探测器,其特征在于,所述计数式探测器与所述积分式探测器外整体包裹有防水层,所述防水层至少包括PI膜、PET膜、蒸镀派瑞林膜或复合涂层中的一种或者数种。
  9. 如权利要求1所述的能量积分与光子计数混合成像的X射线探测器,其特征在于还包括电源和透明电极,所述透明电极设置于所述射线转换部的远离所述电子元件的一侧,所述电源的一极与所述透明电极连接,所述电源的另一极与所述计数式探测器连接,以形成用于驱动电子空穴对的电场。
  10. 如权利要求1所述的能量积分与光子计数混合成像的X射线探测器,其特征在于还包括图像处理部,所述图像处理部与所述计数式探测器连接,以接收任意一个像素位置的光子计数图像,所述图像处理部 还与所述积分式探测器连接,以接收同一时刻同一像素位置的能量积分图像,并对同一时刻同一像素位置的所述光子计数图像和所述能量积分图像进行融合处理。
  11. 一种CT机,其特征在于包括权利要求1~10中任意一项所述能量积分与光子计数混合成像的X射线探测器。
PCT/CN2023/099248 2022-06-08 2023-06-08 一种能量积分与光子计数混合成像的x射线探测器及ct机 WO2023237071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210646536.5 2022-06-08
CN202210646536.5A CN115015986A (zh) 2022-06-08 2022-06-08 一种能量积分与光子计数混合成像的x射线探测器及ct机

Publications (1)

Publication Number Publication Date
WO2023237071A1 true WO2023237071A1 (zh) 2023-12-14

Family

ID=83073350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099248 WO2023237071A1 (zh) 2022-06-08 2023-06-08 一种能量积分与光子计数混合成像的x射线探测器及ct机

Country Status (2)

Country Link
CN (1) CN115015986A (zh)
WO (1) WO2023237071A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015986A (zh) * 2022-06-08 2022-09-06 北京纳米维景科技有限公司 一种能量积分与光子计数混合成像的x射线探测器及ct机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173641A1 (en) * 2004-02-10 2005-08-11 Ge Medical Systems Global Technology Company, Llc Hybrid x-ray detector
CN102119342A (zh) * 2008-08-13 2011-07-06 皇家飞利浦电子股份有限公司 用于探测低和高x射线通量的方法和装置
CN112558134A (zh) * 2021-03-01 2021-03-26 同源微(北京)半导体技术有限公司 一种混合式x射线探测器
CN113167913A (zh) * 2018-12-11 2021-07-23 皇家飞利浦有限公司 针对常规成像的光子计数的能量加权
CN113933885A (zh) * 2020-06-29 2022-01-14 西门子医疗有限公司 光子计数x射线探测器、医疗成像设备和方法
CN115015986A (zh) * 2022-06-08 2022-09-06 北京纳米维景科技有限公司 一种能量积分与光子计数混合成像的x射线探测器及ct机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173641A1 (en) * 2004-02-10 2005-08-11 Ge Medical Systems Global Technology Company, Llc Hybrid x-ray detector
CN102119342A (zh) * 2008-08-13 2011-07-06 皇家飞利浦电子股份有限公司 用于探测低和高x射线通量的方法和装置
CN113167913A (zh) * 2018-12-11 2021-07-23 皇家飞利浦有限公司 针对常规成像的光子计数的能量加权
CN113933885A (zh) * 2020-06-29 2022-01-14 西门子医疗有限公司 光子计数x射线探测器、医疗成像设备和方法
CN112558134A (zh) * 2021-03-01 2021-03-26 同源微(北京)半导体技术有限公司 一种混合式x射线探测器
CN115015986A (zh) * 2022-06-08 2022-09-06 北京纳米维景科技有限公司 一种能量积分与光子计数混合成像的x射线探测器及ct机

Also Published As

Publication number Publication date
CN115015986A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
KR102547798B1 (ko) 방사선 검출기 및 이를 채용한 방사선 촬영 장치
US8581254B2 (en) Photodetector having improved quantum efficiency
US7956332B2 (en) Multi-layer radiation detector assembly
US8637831B2 (en) Hybrid organic photodiode
CN105324683B (zh) 具有嵌入在tft平板中的cmos传感器的x射线成像器
US11504079B2 (en) Hybrid active matrix flat panel detector system and method
US7122804B2 (en) X-ray imaging device
US10571580B2 (en) Detector element for detecting incident x-ray radiation
WO2023237071A1 (zh) 一种能量积分与光子计数混合成像的x射线探测器及ct机
US20200041667A1 (en) Radiation detector scintillator with an integral through-hole interconnect
CN108183119A (zh) 一种具有能量分辨的x射线探测器及其探测方法
KR102669620B1 (ko) 고해상도 하이브리드 방사선 디텍터
TW200404368A (en) Photoelectric conversion device, image scanning apparatus, and manufacturing method of the photoelectric conversion device
CN116948629A (zh) 钙钛矿闪烁体材料及其间接型x射线探测器的制备方法
WO2023237070A1 (zh) 一种柔性ct探测器及其静态ct系统
US20200124748A1 (en) Semiconductor device for indirect detection of electromagnetic radiation and method of production
CN112820751B (zh) 基于钙钛矿量子点的阵列式x射线探测器及其制备方法
CN219810870U (zh) 多层x射线探测器
US20230162880A1 (en) Multi-layer x-ray detector
US11086031B1 (en) Radiation image detector
KR101245525B1 (ko) 광 스위칭 방식을 이용하여 스캐닝하기 위한 디지털 엑스-선 영상 검출기
CN115101548A (zh) 光电二极管器件、光电转换基板、探测器及检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819235

Country of ref document: EP

Kind code of ref document: A1