WO2023236673A1 - 漏液检测方法、装置、电池控制单元和电池管理系统 - Google Patents

漏液检测方法、装置、电池控制单元和电池管理系统 Download PDF

Info

Publication number
WO2023236673A1
WO2023236673A1 PCT/CN2023/090551 CN2023090551W WO2023236673A1 WO 2023236673 A1 WO2023236673 A1 WO 2023236673A1 CN 2023090551 W CN2023090551 W CN 2023090551W WO 2023236673 A1 WO2023236673 A1 WO 2023236673A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
gas
area
concentration
liquid leakage
Prior art date
Application number
PCT/CN2023/090551
Other languages
English (en)
French (fr)
Inventor
孙龙
谢岚
王陈平
吴小辉
林真
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023236673A1 publication Critical patent/WO2023236673A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a liquid leakage detection method, device, battery control unit and battery management system.
  • a moisture meter, control module and alarm module are set up in the lithium battery box.
  • the moisture meter detects whether leakage occurs by detecting the air humidity in the lithium battery box, and reports to the police when leakage is detected.
  • Control module so that the control module will control the alarm module to issue a warning.
  • the present application provides a liquid leakage detection method, device, battery control unit and battery management system, which can solve the problem in the background art that the liquid leakage area cannot be determined.
  • this application provides a liquid leakage detection method, which includes:
  • the leakage area in the battery box is determined.
  • the leakage area in the battery box can be located, so that subsequent output can be used for indication.
  • the prompt information of the leakage area allows maintenance personnel or users of the vehicle to which the battery box belongs to quickly and accurately locate the leakage area and adopt corresponding treatment measures, which is beneficial to improving maintenance efficiency.
  • the target gas sensor is a sensor whose measured gas concentration is greater than a preset concentration threshold among multiple candidate gas sensors provided in the battery box.
  • the target gas sensor in the battery box is determined based on the gas concentration detection signal and the position information.
  • Leak areas include:
  • each target gas sensor determines a plurality of first adjacent gas sensors whose distance from the target gas sensor is less than a preset distance threshold from the plurality of candidate gas sensors;
  • the liquid leakage area is determined based on the first gas concentration measured by each first adjacent gas sensor.
  • the liquid leakage area is determined by combining the first gas concentration measured by each first adjacent gas sensor, which can reduce the probability of misjudgment, thereby improving the detection of the liquid leakage area. accuracy.
  • determining the liquid leakage area based on the first gas concentration measured by each first adjacent gas sensor includes:
  • the liquid leakage area is determined based on each first gas concentration, the first detection area corresponding to the target gas sensor, and the second detection area corresponding to each first adjacent gas sensor.
  • the liquid leakage area is determined based on each first gas concentration, the first detection area corresponding to the target gas sensor, and the second detection area corresponding to each first adjacent gas sensor, including:
  • the concentration of each first gas is not greater than the preset concentration threshold, then the area in the first detection area except each second detection area is used as the leakage area;
  • the first detection area and a part of the first adjacent gas sensors are determined.
  • the first intersection area of the second detection area corresponding to the gas sensor, and the area in the first intersection area except the second detection area corresponding to another part of the first adjacent gas sensor is used as the leakage area;
  • the second intersection area of the first detection area and each second detection area is regarded as the liquid leakage area.
  • the target gas sensor is a sensor whose measured gas concentration is greater than a preset concentration threshold among multiple candidate gas sensors provided in the battery box.
  • the liquid leakage in the battery box is determined based on the gas concentration detection signal and the position information. areas, including:
  • each target gas sensor For each target gas sensor, detect whether there is a second adjacent gas sensor among the multiple target sensors whose distance from the target gas sensor is less than a preset distance threshold according to the position information of the target gas sensor;
  • the probability of misjudgment can be reduced, thereby improving the accuracy of leakage area detection. sex.
  • determining the leakage area based on the detection results includes:
  • the third intersection area of the first detection area corresponding to the target gas sensor and the third detection area corresponding to the second adjacent gas sensor is used as the liquid leakage area;
  • the area in the first detection area other than the detection area corresponding to each first adjacent gas sensor of the target gas sensor is used as the leakage area, where there are multiple first adjacent gas sensors.
  • the distance from the target gas sensor is less than the preset distance threshold.
  • the method further includes:
  • each liquid leakage area determines the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area, where the detection area of the target gas sensor includes part or all of the liquid leakage area. , so that corresponding treatment measures can be selected according to the different degrees of liquid leakage, so that safety problems caused by liquid leakage can be avoided as much as possible.
  • determining the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area includes:
  • determining the reference gas concentration based on the gas concentration measured by at least one target gas sensor includes:
  • the maximum value of the gas concentrations measured by the multiple target gas sensors is determined as the reference gas concentration; alternatively, the average value of the gas concentrations measured by the multiple target gas sensors is determined as the reference gas concentration. gas concentration.
  • the method further includes:
  • the treatment measures corresponding to the leakage level are determined so as to avoid the safety problems caused by the leakage as much as possible, thereby improving the safety of the battery box and the vehicle.
  • the treatment measures include at least one of the following:
  • the prompt information is used to remind the user of the vehicle that there is leakage in the battery box;
  • the alarm information is used to indicate vehicle information and battery box information.
  • the gas concentration detection signal output by each target gas sensor is also used to characterize the position information of the target gas sensor, and obtain the position information of each target gas sensor in the battery box, including:
  • the position information of the target gas sensor in the battery box is determined based on the gas concentration detection signal output by the target gas sensor.
  • this application provides a liquid leakage detection device, which includes:
  • the first acquisition module is used to acquire gas concentration detection signals respectively output by multiple target gas sensors in the battery box.
  • the gas concentration detection signals are used to characterize the measured gas concentration
  • the second acquisition module is used to acquire the position information of each target gas sensor in the battery box;
  • the determination module is used to determine the leakage area in the battery box based on the gas concentration detection signal and location information.
  • the present application provides a battery control unit that includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, it implements the steps in the above liquid leakage detection method embodiment.
  • the present application provides a battery management system, which includes: the battery control unit of the third aspect, and a plurality of candidate gas sensors distributed in the battery box.
  • the present application provides an electrical device, which includes: the battery management system of the fourth aspect.
  • the present application provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps in the above embodiments of the liquid leakage detection method are implemented.
  • the present application provides a computer program product.
  • the computer program product includes a computer program.
  • the steps in the above liquid leakage detection method embodiment are implemented.
  • Figure 1 is a schematic diagram of the application environment provided by the embodiment of the present application.
  • Figure 2 is a schematic flow chart of a liquid leakage detection method provided by some embodiments of the present application.
  • Figure 3 is a schematic diagram of the position of the gas sensor provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram 1 of positioning the leakage area of the gas sensor provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of a liquid leakage detection method provided by other embodiments of the present application.
  • Figure 6 is a schematic diagram 2 of the position of the gas sensor provided by the embodiment of the present application.
  • Figure 7 is a second schematic diagram of positioning the leakage area of the gas sensor provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of a liquid leakage detection method provided by other embodiments of the present application.
  • Figure 9 is a schematic flow chart of a liquid leakage detection method provided by other embodiments of the present application.
  • Figure 10 is a schematic diagram of the concentration interval to which the reference gas concentration belongs and the degree of liquid leakage provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of the judgment between the degree of liquid leakage and the treatment measures provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a liquid leakage detection device provided by some embodiments of the present application.
  • the cells in the battery box will contain electrolyte as a carrier for ion transmission in the cells.
  • a water-cooling pipeline will be installed in the battery box, and water-cooling liquid flows in the water-cooling pipeline.
  • the water-cooling liquid in the water-cooling pipeline is at risk of leaking due to corrosion or loose pipe connections. Due to corrosion and other reasons, there is also a risk of leakage at the explosion-proof valve or weld of the battery core.
  • the leakage of water cooling liquid or electrolyte leakage in the battery box will cause a short circuit between two adjacent cells in the battery box, causing insulation failure between adjacent cells, thus affecting the normal operation of the battery box and seriously affecting the normal operation of the battery box. It may cause safety problems such as fire and explosion. Therefore, it is very important to detect the leakage of water cooling liquid or electrolyte in the battery box.
  • a moisture meter, control module and alarm module are set up in the lithium battery box.
  • the moisture meter detects whether leakage occurs by detecting the air humidity in the lithium battery box, and reports to the police when leakage is detected.
  • Control module so that the control module will control the alarm module to issue a warning.
  • the applicant's research found that the main components of the water cooling system are water and volatile ethylene glycol, and the main components of the electrolyte are various volatile organic solvents.
  • multiple gas sensors can be disposed dispersedly in the battery box, and based on the gas concentration volatilized by the water-cooling night and/or the gas concentration volatilized by the electrolyte detected by the multiple gas sensors respectively, combined with the positional relationship of the multiple gas sensors, it is convenient to Leakage areas within the battery box can be identified.
  • the gas sensor in the battery box provides the battery control unit with a fourth detection signal in addition to the voltage signal, current signal and temperature signal, so that the battery control unit can detect the gas concentration sent by the gas sensor.
  • Leakage detection is performed on the signal to provide time margin for implementing treatment measures, thereby avoiding serious safety accidents such as short circuit fires.
  • due to the volatilization and diffusion of gas a small amount of gas can pass through a battery box.
  • the body sensors forming a detection array can realize real-time monitoring of the leakage of water cooling liquid or electrolyte in the entire space of the battery box.
  • the gas sensor is very small and can be as large as a coin
  • the gas sensor can be installed using the gap in the battery box itself without changing the overall structure of the battery box or re-designing the complex structure. Therefore, for Old battery boxes can also be easily introduced to this technology.
  • the applicant has conducted research and proposed a liquid leakage detection method, which uses gas concentration detection signals and position information of multiple target gas sensors in the battery box. After analysis, the leakage area in the battery box can be located, so that prompt information indicating the leakage area can be output later, so that maintenance personnel or users of the vehicle to which the battery box belongs can quickly and accurately locate the leakage area, and Adopting corresponding treatment measures will help improve maintenance efficiency.
  • liquid leakage detection method for leakage of liquids other than water-cooling liquid and electrolyte, the liquid leakage detection method provided in the embodiments of the present application can also be used, and this is not limited in the embodiments of the present application.
  • FIG. 1 is a schematic diagram of an application environment provided by an embodiment of the present application.
  • the application environment of the embodiment of the present application may include: a battery control unit 10 and multiple candidate gas sensors 11 , where multiple candidate gas sensors The sensors 11 can be distributed in the battery box.
  • each candidate gas sensor 11 is used to detect the gas concentration in the battery box and send a gas concentration detection signal representing the measured gas concentration to the battery control unit 10 .
  • the battery control unit 10 is configured to determine the liquid leakage area in the battery box through the liquid leakage detection method provided according to the embodiment of the present application based on the gas concentration detection signals sent by each candidate gas sensor.
  • each candidate gas sensor 11 and the battery control unit 10 in the embodiment of the present application can be carried out in a wired manner or a wireless manner.
  • multiple candidate gas sensors in the embodiment of the present application may include, but are not limited to, any of the following: electrochemical gas sensors, infrared optical gas sensors, semiconductor gas sensors, and photoionization gas sensors.
  • Electrochemical gas sensor It can detect gases with a concentration of 1 parts per million (ppm) and can identify trace leaks with high detection accuracy. By selecting the appropriate breathable membrane and catalyst, it can avoid volatilization due to aging of structural parts in the battery box and other reasons. Eliminate gas interference to achieve high selectivity in gas detection; within 5 seconds after target gases such as water cooling liquid or electrolyte leak in its detection area, the electrochemical sensor can generate an obvious response signal.
  • target gases such as water cooling liquid or electrolyte leak in its detection area
  • Infrared optical gas sensor It can detect 1ppm gas and identify trace leakage with high detection accuracy. By selecting the appropriate gas infrared spectrum and infrared band, it can avoid the interference of gases emitted due to aging of structural parts in the battery box and other reasons. , achieving high selectivity in gas detection.
  • Semiconductor gas sensor It can detect 5ppm gas and identify trace leakage with high detection accuracy. Through the screening of internal gas-sensitive materials and the selection of catalysts, it can reduce the interference of other non-target gases, thereby improving the sensor's sensitivity to target gases. Selective; long life, more than 10 years, and low price.
  • Photoelectric ion gas sensor It can detect gases with a concentration of parts per billion (ppb) and can identify trace leaks. Its detection accuracy is extremely high; it responds quickly and can be monitored in real time.
  • ppb parts per billion
  • the battery control unit provided by the embodiment of the present application can be used in, but is not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery control unit disclosed in the present application, so that the leakage area in the battery box can be determined.
  • the electrical devices provided by the embodiments of the present application may be, but are not limited to, electric toys, electric tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the electric device in the embodiment of the present application is a vehicle as an example. It should be understood that when the electrical device in the embodiment of the present application is other equipment, its implementation principles and technical effects are similar.
  • FIG. 2 is a schematic flowchart of a liquid leakage detection method provided by some embodiments of the present application.
  • the application of this method to the battery control unit in FIG. 1 is used as an example for explanation.
  • the method in the embodiment of this application may include the following steps:
  • Step S201 Obtain gas concentration detection signals respectively output by multiple target gas sensors in the battery box.
  • the target gas sensor in the embodiment of the present application may be a sensor whose measured gas concentration is greater than a preset concentration threshold among multiple candidate gas sensors provided in the battery box. It should be understood that if the gas concentration measured by any candidate gas sensor is greater than the preset concentration threshold, it may indicate that there is liquid leakage in the detection area of the candidate gas sensor.
  • multiple candidate gas sensors in the embodiments of the present application can be disposed in array form at easily corroded locations in the water-cooled pipelines in the battery box, at pipeline connections, at the explosion-proof valves of the battery cells, and at welds. and other positions so that leakage of water cooling fluid or electrolyte can be detected in a timely manner. It should be understood that the distance between every two adjacent candidate gas sensors is smaller than the detection radius of each candidate gas sensor, so that leakage of water cooling liquid or electrolyte in various areas within the battery box can be detected.
  • the candidate gas sensor in the embodiment of the present application can measure trace leakage of water cooling liquid or electrolyte in the detection area, where the detection area may include: a circular area corresponding to the detection radius.
  • the gas concentration measured by the candidate gas sensor or the target gas sensor involved in the embodiment of the present application may include but is not limited to: the gas concentration volatilized by the water cooling liquid and/or the gas concentration volatilized by the electrolyte.
  • the candidate gas sensor in the embodiment of the present application can carry the measured gas concentration in the gas concentration detection signal and send it to the battery control unit when the measured gas concentration is greater than the preset concentration threshold, where,
  • the gas concentration detection signal is used to characterize the gas concentration measured by the candidate gas sensor. It should be understood that when the gas concentration measured by the candidate gas sensor is not greater than the preset concentration threshold, the gas concentration detection signal will not be sent to the battery control unit.
  • the battery control unit can receive gas concentration detection signals respectively sent by multiple candidate gas sensors in the battery box when the measured gas concentration is greater than the preset concentration threshold.
  • the above candidate gas sensors can be called It is the target gas sensor.
  • the candidate gas sensor in the embodiment of the present application can carry the gas concentration measured each time in the gas concentration detection signal and send it to the battery control unit, where the gas concentration detection signal is used to characterize the candidate gas.
  • the gas concentration measured by the sensor may not be greater than the preset concentration threshold, or may be greater than the preset concentration threshold.
  • the battery control unit determines the gas concentration respectively indicated by the gas concentration detection signals of the multiple candidate gas sensors. Compare with the preset concentration threshold, and then determine the sensor whose gas concentration is greater than the preset concentration threshold among multiple candidate gas sensors as the target gas sensor.
  • Step S202 Obtain the position information of each target gas sensor in the battery box.
  • the battery control unit may obtain the position information of each target gas sensor in the battery box based on the gas concentration detection signal output by each target gas sensor obtained in the above step S201.
  • the position information of the target gas sensor in the battery box in the embodiment of the present application may include but is not limited to: coordinate information of the target gas sensor located in the battery box, identification information of the target cells in the battery box, battery box At least one item of coordinate information of the target cell in the battery box, where the target cell refers to a cell whose distance between the battery box and the target gas sensor is less than a preset distance.
  • the battery control unit can determine the target based on the gas concentration detection signal output by the target gas sensor. The location information of the gas sensor in the battery box.
  • the battery control unit can preset the corresponding relationship between the gas sensor identification and the position based on the identification information of the target gas sensor. Determine the position information of the target gas sensor in the battery box, where the correspondence between the preset gas sensor identification and the position includes: the correspondence between the identification information of the target gas sensor and the position information of the target gas sensor in the battery box .
  • the battery control unit can determine the location identification information of the target gas sensor according to the location identification information of the target gas sensor and the preset gas sensor location identification and location information.
  • the corresponding relationship between the target gas sensor and the position information of the target gas sensor in the battery box is determined.
  • the corresponding relationship between the preset gas sensor position identification and the position information includes: the position identification information of the target gas sensor and the position information of the target gas sensor in the battery box. Correspondence between location information within.
  • the battery control unit can also obtain the position information of each target gas sensor in the battery box through other methods, which is not limited in the embodiments of the present application.
  • Step S203 Determine the leakage area in the battery box based on the gas concentration detection signal and location information.
  • the battery control unit can use the gas data of each target gas sensor obtained in the above step S201 to The concentration detection signal is combined with the position information of each target gas sensor in the battery box obtained in the above step S202 to locate the leakage area in the battery box, so that prompt information for indicating the leakage area can be output subsequently, so that Maintenance personnel or users of the vehicle to which the battery box belongs can quickly and accurately locate the leaking area and take appropriate treatment measures.
  • the battery control unit can determine an adjacent gas sensor whose distance from the target gas sensor is less than a preset distance threshold based on the location information of the target gas sensor, and then combine it with the gas concentration detection signal of the adjacent gas sensor. Analyze and determine the leaking area within the battery box.
  • the adjacent gas sensor for example, the first adjacent gas sensor or the second adjacent gas sensor
  • the adjacent gas sensor whose distance from the target gas sensor is less than a preset distance threshold in the embodiment of the present application may be included in the battery box adjacent to the target gas sensor.
  • the embodiment of this application takes the installation of two candidate gas sensors in the battery box as an example for introduction.
  • Figure 3 is a schematic diagram 1 of the position of the gas sensor provided by the embodiment of the present application
  • Figure 4 is a schematic diagram 1 of the location of the leakage area of the gas sensor provided by the embodiment of the present application.
  • the battery box is long 2.4m and 1.6 meters wide, including 6 modules, each module includes at least one battery core, the detection radius of gas sensor A and gas sensor B is 1.2m, that is, gas sensor A and gas sensor B can achieve detection Detection coverage of the entire battery box area.
  • gas sensor A is the target gas sensor
  • gas sensor B is a gas sensor adjacent to the target gas sensor
  • the gas concentration detection signal of gas sensor B is used to indicate that there is leakage in the battery box
  • the battery control unit can change the gas concentration of gas sensor A to The intersection area 2 between the detection area and the detection area of gas sensor B (and belonging to the area inside the battery box) is determined as the leakage area; if the gas concentration detection signal of gas sensor B is used to indicate that there is no leakage in the battery box, Then the battery control unit can determine the area 1 in the detection area of gas sensor A except the detection area of gas sensor B (and the area within the battery box) as the leakage area.
  • gas concentration detection signals representing the measured gas concentrations output by multiple target gas sensors in the battery box are obtained, and the position information of each target gas sensor in the battery box is obtained; further Ground, through the gas concentration detection signal and position information of each target gas sensor, the leakage area in the battery box is determined.
  • the leakage area in the battery box can be located, so that subsequent output can be used.
  • the prompt information indicating the leakage area allows maintenance personnel or users of the vehicle to which the battery box belongs to quickly and accurately locate the leakage area and take corresponding treatment measures, which is beneficial to improving maintenance efficiency.
  • FIG. 5 is a schematic flow chart of a liquid leakage detection method provided by other embodiments of the present application. Based on the above embodiments, in the embodiment of the present application, in the above step 203, "detecting signals according to gas concentration and "Location information to determine the leakage area in the battery box" will be introduced and explained. As shown in Figure 5, the method in this embodiment of the present application may include:
  • Step S501 For each target gas sensor, determine a plurality of first adjacent gas sensors whose distance from the target gas sensor is less than a preset distance threshold from a plurality of candidate gas sensors based on the location information of the target gas sensor.
  • the candidate gas sensor in the embodiment of the present application can carry the gas concentration measured each time in the gas concentration detection signal and send it to the battery control unit, where the gas concentration detection signal is used to characterize the gas concentration measured by the candidate gas sensor.
  • the gas concentration It may not be greater than the preset concentration threshold, or it may be greater than the preset concentration threshold.
  • the battery control unit may determine, from a plurality of candidate gas sensors, a plurality of first neighboring gas sensors whose distance from the target gas sensor is less than a preset distance threshold based on the location information of the target gas sensor.
  • the first adjacent gas sensor involved in the embodiment of the present application refers to the gas sensor located adjacent to the target gas sensor among the plurality of candidate gas sensors.
  • Figure 6 is a schematic diagram 2 of the position of the gas sensor provided by the embodiment of the present application.
  • the battery box is 2.4 meters long and 1.6 meters wide, and includes 6 modules, each module including at least one
  • the detection radius of the battery core, gas sensor A-gas sensor F is 0.6m, that is, gas sensor A-gas sensor F can achieve detection coverage of the entire battery box area.
  • the plurality of first adjacent gas sensors whose distance from gas sensor A is less than the preset distance threshold among the plurality of candidate gas sensors may include: gas sensor B, gas sensor D, and gas sensor E.
  • Step S502 Determine the liquid leakage area based on the first gas concentration measured by each first adjacent gas sensor.
  • the battery control unit can determine the liquid leakage based on the first gas concentration measured by each first adjacent gas sensor, the first detection area corresponding to the target gas sensor, and the second detection area corresponding to each first adjacent gas sensor. area. It should be understood that the leakage area in the embodiment of the present application belongs to the area inside the battery box.
  • the battery control unit divides the first detection area corresponding to the target gas sensor by each second gas concentration.
  • the area outside the detection area is regarded as the leakage area.
  • Figure 7 is a second schematic diagram of positioning the leakage area of the gas sensor provided by the embodiment of the present application.
  • gas sensor A is the target gas sensor
  • the plurality of first adjacent gas sensors of gas sensor A It may include: gas sensor B, gas sensor D and gas sensor E, and the first gas concentration measured by gas sensor B, gas sensor D and gas sensor E is not greater than the preset concentration threshold, then the battery control unit will Area 1 belongs to the first detection area corresponding to gas sensor A and is excluding the second detection areas corresponding to gas sensor B, gas sensor D and gas sensor E respectively as the liquid leakage area.
  • the battery The control unit may determine a first intersection area between the first detection area corresponding to the target gas sensor and the second detection area corresponding to the part of the first adjacent gas sensors, and divide the first intersection area from the other part of the first adjacent gas sensor.
  • the area outside the corresponding second detection area is regarded as the liquid leakage area.
  • Figure 7 is a second schematic diagram of positioning the leakage area of the gas sensor provided by the embodiment of the present application.
  • the plurality of first adjacent gas sensors of gas sensor A Can It includes: gas sensor B, gas sensor D and gas sensor E, and the first gas concentration detected by gas sensor B is greater than the preset concentration threshold, and the first gas concentration detected by gas sensor D and gas sensor E is not greater than the preset concentration. threshold
  • the battery control unit can divide the first intersection area in the battery box into the first detection area corresponding to gas sensor A and the second detection area corresponding to gas sensor B, and remove gas sensor D and gas from the first intersection area.
  • the area 4 outside the second detection area corresponding to the sensor E is regarded as the liquid leakage area.
  • each first gas concentration is greater than the preset concentration threshold, then the first detection area corresponding to the target gas sensor and the second detection area corresponding to each first adjacent gas sensor are The intersection area is used as the leakage area.
  • Figure 7 is a second schematic diagram of positioning the leakage area of the gas sensor provided by the embodiment of the present application.
  • gas sensor A is the target gas sensor
  • the plurality of first adjacent gas sensors of gas sensor A It may include: gas sensor B, gas sensor D and gas sensor E, and the first gas concentration detected by gas sensor B, gas sensor D and gas sensor E is all greater than the preset concentration threshold
  • the battery control unit can The second intersection area 14 of the first detection area corresponding to gas sensor A and the second detection area corresponding to gas sensor B, gas sensor D and gas sensor E respectively serves as the liquid leakage area.
  • Table 1 is a schematic diagram of the gas sensor array locating the leakage area provided by the embodiment of the present application.
  • the battery control unit may determine, from multiple candidate gas sensors, a plurality of first neighboring gas sensors whose distances from the target gas sensor are less than a preset distance threshold based on the location information of the target gas sensor. , and determine the liquid leakage area based on the first gas concentration measured by each first adjacent gas sensor. It can be seen that in the embodiments of the present application, by combining the first gas concentration measured by each first adjacent gas sensor to determine the liquid leakage area, the probability of misjudgment can be reduced, thereby improving the accuracy of liquid leakage area detection.
  • FIG. 8 is a schematic flowchart of a liquid leakage detection method provided by other embodiments of the present application. Based on the above embodiments, in the embodiment of the present application, in the above step 203, "detecting signals according to gas concentration and "Location information to determine the leakage area in the battery box" will be introduced and explained. As shown in Figure 8, the method in this embodiment of the present application may include:
  • Step S801 For each target gas sensor, detect whether there is a second adjacent gas sensor among the plurality of target sensors whose distance from the target gas sensor is less than a preset distance threshold according to the position information of the target gas sensor.
  • the candidate gas sensor in the embodiment of the present application can carry the measured gas concentration in the gas concentration detection signal and send it to the battery control unit when the measured gas concentration is greater than the preset concentration threshold, where the gas concentration detection signal is used to characterize the candidate The gas concentration measured by the gas sensor. It should be understood that when the gas concentration measured by the candidate gas sensor is not greater than the preset concentration threshold, the gas concentration detection signal will not be sent to the battery control unit.
  • the battery control unit may detect whether there is a second adjacent gas sensor among the multiple target sensors whose distance from the target gas sensor is less than a preset distance threshold according to the location information of the target gas sensor.
  • the second adjacent gas sensor involved in the embodiment of the present application refers to the gas sensor located adjacent to the target gas sensor among the plurality of target gas sensors.
  • the target gas sensors include gas sensor A, gas sensor B and gas sensor F.
  • the second adjacent gas sensor among the plurality of target gas sensors whose distance from the target gas sensor A is smaller than the preset distance threshold may include: gas sensor B.
  • gas concentrations measured by gas sensor A, gas sensor C and gas sensor F are greater than the preset concentration threshold, and the gas concentrations measured by other gas sensors are not greater than the preset concentration threshold, that is, the above
  • the plurality of target gas sensors include gas sensor A, gas sensor C and gas sensor F.
  • the distance between gas sensor C and gas sensor A is not less than the preset distance threshold, and the distance between gas sensor F and gas sensor A is not less than the preset distance. threshold.
  • gas sensor A among the plurality of target gas sensors, there is no second adjacent gas sensor whose distance from target gas sensor A is smaller than the preset distance threshold.
  • Step S802 Determine the liquid leakage area according to the detection results.
  • the battery control unit may determine the leakage area based on the detection result of step S802.
  • the battery control unit can change the first detection area corresponding to the target gas sensor.
  • the third intersection area of the third detection area corresponding to the second adjacent gas sensor serves as the liquid leakage area.
  • the target gas sensors include gas sensor A, gas sensor B and gas sensor F.
  • the second adjacent gas sensor whose distance from target gas sensor A is less than the preset distance threshold may include: gas sensor B, then the battery control unit sets the first detection area corresponding to gas sensor A The third intersection area 4 of the third detection area corresponding to the gas sensor B serves as the liquid leakage area.
  • the battery control unit may change the first gas sensor corresponding to the target gas sensor to the target gas sensor.
  • the area in the detection area other than the detection area corresponding to each first adjacent gas sensor of the target gas sensor is used as the leakage area, wherein the first adjacent gas sensor can be the distance from the target gas sensor among a plurality of candidate gas sensors. Gas sensor less than preset distance threshold.
  • gas concentrations measured by gas sensor A, gas sensor C and gas sensor F are greater than the preset concentration threshold, and the gas concentrations measured by other gas sensors are not greater than the preset concentration threshold, that is, the above-mentioned multiple
  • the target gas sensors include gas sensor A, gas sensor C and gas sensor F, where the distance between gas sensor C and gas sensor A is not less than the preset distance threshold, and the distance between gas sensor F and gas sensor A is not less than the preset distance threshold. .
  • gas sensor A among the multiple target gas sensors, there is no second adjacent gas sensor whose distance from target gas sensor A is less than the preset distance threshold.
  • the multiple first adjacent gas sensors of gas sensor A may include: gas sensor B , gas sensor D and gas sensor E, then the battery control unit can regard the area 1 in the first detection area corresponding to the gas sensor A except the detection areas respectively corresponding to the gas sensor B, the gas sensor D and the gas sensor E as the leakage area.
  • the battery control unit can detect, based on the position information of the target gas sensor, whether there is a third target sensor whose distance from the target gas sensor is less than the preset distance threshold.
  • Two adjacent gas sensors are used to determine the liquid leakage area based on the detection results. It can be seen that in the embodiment of the present application, by combining the detection results of whether there is a second adjacent gas sensor among multiple target sensors, the probability of misjudgment can be reduced, thereby improving the accuracy of leakage area detection.
  • Figure 9 is a schematic flow chart of a liquid leakage detection method provided in other embodiments of the present application. Based on the above embodiments, in the embodiments of the present application, the method for "determining the degree of liquid leakage corresponding to the above-mentioned liquid leakage area" , and the relevant content of "treatment measures corresponding to different leakage levels" will be introduced and explained. As shown in Figure 9, the method in the embodiment of this application may include:
  • Step S901 For each liquid leakage area, determine the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area.
  • the battery control unit can determine the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area, wherein, in the embodiment of the present application,
  • the target gas sensor corresponding to the liquid leakage area means that the detection area of the target gas sensor includes part or all of the liquid leakage area.
  • the battery control unit may determine the reference gas concentration of the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area.
  • the battery control unit can use the gas concentration measured by the target gas sensor as the reference gas concentration of the liquid leakage area.
  • the battery control unit can use the gas concentration measured by the multiple target gas sensors corresponding to the liquid leakage area to The maximum value is determined as the reference gas concentration of the liquid leakage area, or the average value of the gas concentrations measured by multiple target gas sensors corresponding to the liquid leakage area can be determined as the reference gas concentration of the liquid leakage area.
  • the battery control unit can also determine the reference gas concentration of the leakage area in other ways based on the gas concentration measured by at least one target gas sensor corresponding to the leakage area, which is not limited in the embodiments of the present application.
  • the battery control unit can determine the degree of liquid leakage in the liquid leakage area based on the reference gas concentration in the liquid leakage area.
  • the battery control unit may determine that the degree of liquid leakage in the liquid leakage area is a first-level liquid leakage degree; or, if the reference gas concentration of the liquid leakage area is within Within the second concentration interval, the battery control unit can determine that the degree of leakage in the leakage area is a secondary leakage degree; or, if the reference gas concentration in the leakage area is within the third concentration interval, the battery control unit can determine that the leakage level is within the second concentration interval.
  • the degree of leakage in the liquid area is level three.
  • the third-level liquid leakage degree is greater than the second-level liquid leakage degree
  • the second-level liquid leakage degree is greater than the first-level liquid leakage degree.
  • the lower limit of the second concentration interval can be equal to the upper limit of the first concentration interval
  • the lower limit of the third concentration can be equal to the upper limit of the first concentration interval.
  • the limit value may be equal to the upper limit of the second concentration interval.
  • the lower limit of the first concentration interval may be the preset concentration threshold
  • the upper limit of the first concentration interval may be the preset concentration threshold'
  • the lower limit of the second concentration interval may be the preset concentration threshold'
  • the lower limit of the second concentration interval may be the preset concentration threshold'
  • the lower limit of the second concentration interval may be the preset concentration threshold'
  • the upper limit of the second concentration interval may be the preset concentration threshold
  • the lower limit of the third concentration interval may be the preset concentration threshold.
  • Figure 10 is a schematic diagram of the concentration interval to which the reference gas concentration belongs and the degree of liquid leakage provided by the embodiment of the present application.
  • Figure 11 is a schematic diagram of the judgment between the degree of liquid leakage and the treatment measures provided by the embodiment of the present application.
  • the battery control unit can determine that the degree of leakage in the leakage area is a first-level leakage.
  • the battery control unit can determine the degree of leakage in the leakage area as Second-level leakage degree; or, if the reference gas concentration in the leakage area is greater than the "preset concentration threshold", that is, it is within the third concentration interval, the battery control unit can determine that the leakage degree in the leakage area is a third-level leakage degree .
  • Step S902 Determine treatment measures corresponding to the degree of liquid leakage based on the preset correspondence between the degree of liquid leakage and the treatment measures.
  • the processing measures in the embodiment of the present application can be used to indicate the treatment measures corresponding to different liquid leakage levels.
  • the processing measures in the embodiment of the present application may include but are not limited to at least one of the following: output prompt information to the vehicle to which the battery box belongs, where the prompt information is used to prompt the user of the vehicle that there is leakage in the battery box; control The battery cells in the leakage area stop running; reduce the operating power of the battery cells in the leakage area; control the water-cooling device in the leakage area to stop running; reduce the operating power of the water-cooling device in the leakage area; to the target terminal Output alarm information, where the alarm information is used to indicate vehicle information and battery box information.
  • the corresponding relationship between the preset liquid leakage degree and the corresponding treatment measures may include: the corresponding relationship between the first-level liquid leakage degree and the corresponding treatment measure one, and the corresponding relationship between the second-level liquid leakage degree and the corresponding treatment measure two.
  • the battery control unit can determine the treatment measures corresponding to the leakage degree corresponding to the leakage area in the above step S901 according to the preset correspondence between the leakage degree and the treatment measures, so that the liquid leakage can be avoided as much as possible. Security issues caused by leaks.
  • the battery control unit can determine based on the correspondence between the preset leakage degree and the treatment measures.
  • the treatment measure corresponding to the above-mentioned leakage degree is treatment measure 1, wherein treatment measure 1 may include: outputting a prompt message to the vehicle to which the battery box belongs.
  • the battery control unit can based on the preset correspondence between the leakage degree and the treatment measures,
  • the treatment measure corresponding to the above-mentioned leakage degree is determined as treatment measure two, wherein treatment measure two may include at least one of the following: outputting prompt information to the vehicle to which the battery box belongs, where the prompt information is used to prompt the user of the vehicle's battery box memory During liquid leakage; control the battery cells in the leakage area to stop running; reduce the operating power of the battery cells in the leakage area; control the water-cooling device in the leakage area to stop running; reduce the operation of the water-cooling device in the leakage area power.
  • the battery control unit can preset the corresponding relationship between the leakage degree and the treatment measures,
  • the treatment measure corresponding to the above-mentioned leakage degree is determined as treatment measure three, wherein treatment measure three may include at least one of the following: outputting prompt information to the vehicle to which the battery box belongs, where the prompt information is used to prompt the user of the vehicle's battery box memory In case of liquid leakage, it is convenient for the user to leave the vehicle; control the battery cells in the leakage area to stop running; reduce the operating power of the battery cells in the leakage area; control the water cooling device in the leakage area to stop running; reduce the risk of liquid leakage The operating power of the water cooling device in the area; output alarm information to the target terminal, where the alarm information is used to indicate vehicle information and battery box information.
  • the vehicle information may include but is not limited to: vehicle location information and vehicle model information, The information of the battery box
  • the battery control unit can determine the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area, and determine the degree of liquid leakage corresponding to the liquid leakage area according to the preset liquid leakage area. Correspondence between the degree and treatment measures, determine the treatment measures corresponding to the degree of leakage, so as to avoid safety problems caused by leakage as much as possible, thereby improving the safety of the battery box and vehicle.
  • embodiments of the present application also provide a liquid leakage detection device for implementing the above-mentioned liquid leakage detection method.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, the specific limitations in one or more embodiments of the liquid leakage detection device provided below can be found in the above description of the liquid leakage detection method. Limitations will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a liquid leakage detection device provided by some embodiments of the present application.
  • the liquid leakage detection device provided by embodiments of the present application can be applied to a battery control unit.
  • the liquid leakage detection device according to the embodiment of the present application may include: a first acquisition module 1201, a second acquisition module 1202, and a first determination module 1203.
  • the acquisition module 1201 is used to acquire the gas concentration detection signals respectively output by multiple target gas sensors in the battery box, and the gas concentration detection signals are used to characterize the measured gas concentration;
  • the second acquisition module 1202 is used to acquire the position information of each of the target gas sensors in the battery box;
  • the first determination module 1203 is used to determine the liquid leakage area in the battery box according to the gas concentration detection signal and the position information.
  • the target gas sensor is a sensor whose measured gas concentration is greater than a preset concentration threshold among multiple candidate gas sensors provided in the battery box.
  • the first determination module 1203 includes:
  • a first determination unit configured to determine, for each of the target gas sensors, a plurality of candidate gas sensors whose distance from the target gas sensor is less than a preset distance threshold from the plurality of candidate gas sensors based on the location information of the target gas sensor.
  • the second determination unit is used to determine the liquid leakage area based on the first gas concentration measured by each of the first adjacent gas sensors.
  • the second determining unit is specifically used to:
  • the liquid leakage area is determined based on each of the first gas concentrations, the first detection area corresponding to the target gas sensor, and the second detection area corresponding to each of the first adjacent gas sensors.
  • the second determining unit is specifically used to:
  • the concentration of each of the first gases is not greater than the preset concentration threshold, then the area in the first detection area except each of the second detection areas is used as the leakage area;
  • the first gas concentration detected by a part of the first adjacent gas sensors is greater than the preset concentration threshold, and the first gas concentration detected by another part of the first adjacent gas sensors is not greater than the preset concentration threshold, then it is determined that the first gas concentration detected by the first adjacent gas sensors is not greater than the preset concentration threshold.
  • the first intersection area of the first detection area and the second detection area corresponding to the part of the first adjacent gas sensor, and the second detection area corresponding to the other part of the first adjacent gas sensor is removed from the first intersection area.
  • the area outside the area is used as the leakage area;
  • the second intersection area of the first detection area and each of the second detection areas is used as the liquid leakage area.
  • the target gas sensor is a sensor whose measured gas concentration is greater than a preset concentration threshold among multiple candidate gas sensors provided in the battery box.
  • the first determination module 1203 includes:
  • a detection unit configured to, for each of the target gas sensors, detect whether there is a second neighbor in the plurality of target sensors whose distance from the target gas sensor is less than a preset distance threshold according to the position information of the target gas sensor.
  • the third determination unit is used to determine the liquid leakage area according to the detection results.
  • the third determining unit is specifically used to:
  • the third intersection area of the first detection area corresponding to the target gas sensor and the third detection area corresponding to the second adjacent gas sensor is used as the leakage area;
  • the area in the first detection area other than the detection area corresponding to each first adjacent gas sensor of the target gas sensor is used as the leakage area, where,
  • the first adjacent gas sensor is a gas sensor whose distance from the target gas sensor is less than the preset distance threshold among the plurality of candidate gas sensors.
  • the device further includes:
  • the second determination module is configured to determine, for each liquid leakage area, the degree of liquid leakage corresponding to the liquid leakage area based on the gas concentration measured by at least one target gas sensor corresponding to the liquid leakage area, wherein: The detection area of the target gas sensor includes part or all of the liquid leakage area.
  • the second determining module includes:
  • a fourth determination unit configured to determine the reference gas concentration based on the gas concentration measured by the at least one target gas sensor
  • the fifth determination unit is used to determine the degree of liquid leakage according to the magnitude of the reference gas concentration.
  • the fourth determining unit is specifically used to:
  • the maximum value among the gas concentrations measured by the multiple target gas sensors is determined as the reference gas concentration; or, the maximum value measured by the multiple target gas sensors is determined as the reference gas concentration.
  • the average value of the gas concentrations is determined as the reference gas concentration.
  • the device further includes:
  • the third determination module is used to determine the treatment measures corresponding to the degree of liquid leakage based on the corresponding relationship between the preset degree of liquid leakage and the treatment measures.
  • the treatment measures include at least one of the following:
  • Alarm information is output to the target terminal, where the alarm information is used to indicate information about the vehicle and information about the battery box.
  • the gas concentration detection signal output by each target gas sensor is also used to characterize the target gas sensor.
  • the second acquisition module 1202 is specifically used to:
  • the position information of the target gas sensor in the battery box is determined based on the gas concentration detection signal output by the target gas sensor.
  • the liquid leakage detection device provided in the embodiments of the present application can be used to implement the technical solution regarding the battery control unit in the above liquid leakage detection method embodiment of the present application. Its implementation principles and technical effects are similar and will not be described again here.
  • Each module in the above-mentioned liquid leakage detection device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules can be embedded in or independent of the processor in the electronic device in the form of hardware, or can be stored in the memory of the electronic device in the form of software, so that the processor can call and execute the operations corresponding to each of the above modules.
  • a battery control unit including a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the above-mentioned liquid leakage detection method embodiments of the present application are implemented.
  • the technical solution of the battery control unit its implementation principles and technical effects are similar and will not be described again here.
  • a battery management system includes: the battery control unit described in the above embodiments of this application, and a plurality of candidate gas sensors distributed in the battery box.
  • an electrical device is also provided, and the device includes: the battery management system described in the above embodiments of this application.
  • a computer-readable storage medium is also provided, with a computer program stored thereon.
  • the computer program is executed by the processor, the technical solution regarding the battery control unit in the above-mentioned liquid leakage detection method embodiment of the present application is implemented. The implementation principles and technical effects are similar and will not be described again here.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory (FRAM)), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, etc. Shape processor, digital signal processor, programmable logic, data processing logic based on quantum computing, etc., but not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本申请涉及一种漏液检测方法、装置、电池控制单元和电池管理系统,所述方法包括:通过获取电池箱内的多个目标气体传感器分别输出的用于表征测得的气体浓度的气体浓度检测信号,以及获取各目标气体传感器在电池箱内的位置信息;进一步地,通过对各目标气体传感器的气体浓度检测信号以及位置信息,确定电池箱内的漏液区域。综上所述,本申请实施例中,通过对电池箱内的多个目标气体传感器的气体浓度检测信号以及位置信息进行分析,便可以定位电池箱内的漏液区域,以便于后续可以输出用于指示漏液区域的提示信息,使得维修人员或者电池箱所属车辆的用户可以快速且准确地定位漏液区域,并采用相应的处理措施,有利于提高维修效率。

Description

漏液检测方法、装置、电池控制单元和电池管理系统
交叉引用
本申请引用于2022年6月10日递交的名称为“漏液检测方法、装置、电池控制单元和电池管理系统”的第2022106534806号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及一种漏液检测方法、装置、电池控制单元和电池管理系统。
背景技术
实际运用过程中,电池箱内水冷液的泄漏或者电解液的泄漏,会使电池箱内相邻的两个电芯之间形成短路,导致相邻电芯间的绝缘失效,从而影响电池箱的正常运行,严重时会造成起火爆炸等安全问题。因此,对于电池箱内水冷液或者电解液的泄露检测是非常重要的。
在一些情形下,在锂电池箱内设置水分仪、控制模块和报警模块,其中,水分仪通过检测锂电池箱内的空气湿度来探测是否发生漏液,并在探测到发生漏液时上报给控制模块,以使控制模块会控制报警模块发出警告。
然而,该些情形下只能检测是否发生漏液,但无法确定漏液区域。
发明内容
鉴于上述问题,本申请提供一种漏液检测方法、装置、电池控制单元和电池管理系统,能够解决背景技术中无法确定漏液区域的问题。
第一方面,本申请提供了一种漏液检测方法,方法包括:
获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号,气体浓度检测信号用于表征测得的气体浓度;
获取各目标气体传感器在电池箱内的位置信息;
根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域。
本申请实施例的技术方案中,通过对电池箱内的多个目标气体传感器的气体浓度检测信号以及位置信息进行分析,便可以定位电池箱内的漏液区域,以便于后续可以输出用于指示漏液区域的提示信息,使得维修人员或者电池箱所属车辆的用户可以快速且准确地定位漏液区域,并采用相应的处理措施,有利于提高维修效率。
在一些实施例中,目标气体传感器为电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,根据气体浓度检测信号以及位置信息,确定电池箱内的 漏液区域,包括:
对于各目标气体传感器,根据目标气体传感器的位置信息,从多个候选气体传感器中确定与目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器;
根据各第一邻近气体传感器测得的第一气体浓度,确定漏液区域。
本申请实施例的技术方案中,对于各目标气体传感器,通过结合各第一邻近气体传感器测得的第一气体浓度确定漏液区域的方式,可以降低误判概率,从而可以提高漏液区域检测的准确性。
在一些实施例中,根据各第一邻近气体传感器测得的第一气体浓度,确定漏液区域,包括:
根据各第一气体浓度、目标气体传感器对应的第一探测区域和各第一邻近气体传感器对应的第二探测区域,确定漏液区域。
在一些实施例中,根据各第一气体浓度、目标气体传感器对应的第一探测区域和各第一邻近气体传感器对应的第二探测区域,确定漏液区域,包括:
若各第一气体浓度均不大于预设浓度阈值,则将第一探测区域中除各第二探测区域之外的区域作为漏液区域;
若一部分第一邻近气体传感器检测的第一气体浓度大于预设浓度阈值,另一部分第一邻近气体传感器检测的第一气体浓度不大于预设浓度阈值,则确定第一探测区域和一部分第一邻近气体传感器对应的第二探测区域的第一交集区域,并将第一交集区域中除另一部分第一邻近气体传感器对应的第二探测区域之外的区域作为漏液区域;
若各第一气体浓度均大于预设浓度阈值,则将第一探测区域和各第二探测区域的第二交集区域作为漏液区域。
在一些实施例中,目标气体传感器为电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域,包括:
对于各目标气体传感器,根据目标气体传感器的位置信息,检测多个目标传感器中是否存在与目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器;
根据检测结果确定漏液区域。
本申请实施例的技术方案中,对于各目标气体传感器,通过结合多个目标传感器中是否存在第二邻近气体传感器的检测结果的方式,可以降低误判概率,从而可以提高漏液区域检测的准确性。
在一些实施例中,根据检测结果确定漏液区域,包括:
若存在第二邻近气体传感器,则将目标气体传感器对应的第一探测区域和第二邻近气体传感器对应的第三探测区域的第三交集区域作为漏液区域;
若不存在第二邻近气体传感器,则将第一探测区域中除目标气体传感器的各第一邻近气体传感器对应的探测区域之外的区域作为漏液区域,其中,第一邻近气体传感器为多个候选气体传感器中与目标气体传感器的距离小于预设距离阈值的气体传感器。
在一些实施例中,方法还包括:
对于每个漏液区域,根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域对应的漏液程度,其中,目标气体传感器的探测区域包含漏液区域的部分或者全部,以便于可以根据漏液程度的不同选择对应的处理措施,以便于可以尽量避免漏液泄露所导致的安全问题。
在一些实施例中,根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域对应的漏液程度,包括:
根据至少一个目标气体传感器测得的气体浓度,确定参考气体浓度;
根据参考气体浓度的大小,确定漏液程度。
在一些实施例中,根据至少一个目标气体传感器测得的气体浓度,确定参考气体浓度,包括:
在目标传感器的数量为多个时,将多个目标气体传感器测得的气体浓度中的最大值确定为参考气体浓度;或者,将多个目标气体传感器测得的气体浓度的平均值确定为参考气体浓度。
在一些实施例中,方法还包括:
根据预设漏液程度与处理措施之间的对应关系,确定漏液程度对应的处理措施,以便于可以尽量避免漏液泄露所导致的安全问题,从而可以提高电池箱以及车辆的使用安全性。
在一些实施例中,处理措施包括以下至少一项:
向电池箱所属的车辆输出提示信息,提示信息用于提示车辆的用户电池箱内存在漏液;
控制处于漏液区域中的电芯停止运行;
降低处于漏液区域中的电芯的运行功率;
控制处于漏液区域的水冷装置停止运行;
降低处于漏液区域的水冷装置的运行功率;
向目标终端输出告警信息,告警信息用于指示车辆的信息以及电池箱的信息。
在一些实施例中,各目标气体传感器输出的气体浓度检测信号还用于表征目标气体传感器的位置信息,获取各目标气体传感器在电池箱内的位置信息,包括:
对于各目标气体传感器,根据目标气体传感器输出的气体浓度检测信号确定目标气体传感器在电池箱内的位置信息。
第二方面,本申请提供了一种漏液检测装置,装置包括:
第一获取模块,用于获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号,气体浓度检测信号用于表征测得的气体浓度;
第二获取模块,用于获取各目标气体传感器在电池箱内的位置信息;
确定模块,用于根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域。
第三方面,本申请提供了一种电池控制单元,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述漏液检测方法实施例中的步骤。
第四方面,本申请提供了一种电池管理系统,系统包括:上述第三方面的电池控制单元,以及分散地设置于电池箱内的多个候选气体传感器。
第五方面,本申请提供了一种用电装置,装置包括:上述第四方面的电池管理系统。
第六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述漏液检测方法实施例中的步骤。
第七方面,本申请提供了一种计算机程序产品,计算机程序产品包括计算机程序,该计算机程序被处理器执行时实现上述漏液检测方法实施例中的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请实施例提供的应用环境的示意图;
图2为本申请一些实施例提供的漏液检测方法的流程示意图;
图3为本申请实施例提供的气体传感器的位置示意图一;
图4为本申请实施例提供的气体传感器的漏液区域定位示意图一;
图5为本申请另一些实施例提供的漏液检测方法的流程示意图;
图6为本申请实施例提供的气体传感器的位置示意图二;
图7为本申请实施例提供的气体传感器的漏液区域定位示意图二;
图8为本申请另一些实施例提供的漏液检测方法的流程示意图;
图9为本申请另一些实施例提供的漏液检测方法的流程示意图;
图10为本申请实施例提供的参考气体浓度所属的浓度区间与漏液程度之间的示意图;
图11为本申请实施例提供的漏液程度与处理措施之间的判断示意图;
图12为本申请一些实施例提供的漏液检测装置的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上(包括两个),除非另有明确具体的限定。
通常情况下,电池箱内的电芯中会包括电解液,作为电芯中离子传输的载体。为了保证电池箱内的电芯在合适的温度范围内工作,电池箱内会设置有水冷管路,其中,水冷管路中流动有水冷液。
实际运用过程中,水冷管路由于腐蚀或者管路连接处松动等原因,使得水冷管路中的水冷液存在泄露风险。由于腐蚀等原因,使得电芯的防爆阀处或者焊缝处也会存在泄露风险。而电池箱内水冷液的泄漏或者电解液的泄漏,会使电池箱内相邻的两个电芯之间形成短路,导致相邻电芯间的绝缘失效,从而影响电池箱的正常运行,严重时会造成起火爆炸等安全问题。因此,对于电池箱内水冷液或者电解液的泄露检测是非常重要的。
在一些情形下,在锂电池箱内设置水分仪、控制模块和报警模块,其中,水分仪通过检测锂电池箱内的空气湿度来探测是否发生漏液,并在探测到发生漏液时上报给控制模块,以使控制模块会控制报警模块发出警告。然而,该些情形下只能检测是否发生漏液,但无法确定漏液区域。
为了确定漏液区域,申请人研究发现,水冷夜的主要成分是水和易挥发性的乙二醇,电解液的主要成分是各种易挥发性有机溶剂。本申请可以通过在电池箱内分散地设置多个气体传感器,根据多个气体传感器分别检测的水冷夜挥发的气体浓度和/或电解液挥发的气体浓度,结合多个气体传感器的位置关系,便可以确定电池箱内的漏液区域。
本申请实施例中,通过电池箱内的气体传感器为电池控制单元提供除电压信号、电流信号和温度信号之外的第四个检测信号,以便于电池控制单元可以根据气体传感器发送的气体浓度检测信号进行泄漏检测,以便于为实施处理措施提供时间余量,从而可以避免短路起火等严重安全事故的发生。另外,由于气体的挥发扩散性,一个电池箱内可以通过少量的气 体传感器组成探测阵列就可以实现对电池箱内整个空间的水冷液或者电解液的泄漏进行实时监控。
同时,由于气体传感器体积很小,可以做到硬币大小,从而可以利用电池箱体内本身的空隙就可以安装气体传感器,无需改变电池箱的整体结构,也无需重新进行复杂的结构设计,因此,对于旧电池箱也可以很方便地引入该技术。
基于以上考虑,为了解决背景技术中无法确定漏液区域的问题,申请人经过研究,提出了一种漏液检测方法,通过对电池箱内的多个目标气体传感器的气体浓度检测信号以及位置信息进行分析,便可以定位电池箱内的漏液区域,以便于后续可以输出用于指示漏液区域的提示信息,使得维修人员或者电池箱所属车辆的用户可以快速且准确地定位漏液区域,并采用相应的处理措施,有利于提高维修效率。
需要说明的是,对于除水冷液和电解液之外的其它液体泄露情况,也可以通过本申请实施例提供的漏液检测方法,本申请实施例中对此并不作限定。
图1为本申请实施例提供的应用环境的示意图,如图1所示,本申请实施例的应用环境中可以包括:电池控制单元10,以及多个候选气体传感器11,其中,多个候选气体传感器11可以分散地设置于电池箱内。在一实施例中,各候选气体传感器11用于检测电池箱内的气体浓度,并向电池控制单元10发送用于表征测得的气体浓度的气体浓度检测信号。电池控制单元10用于根据各候选气体传感器发送的气体浓度检测信号,通过根据本申请实施例提供的漏液检测方法可以确定电池箱内的漏液区域。
示例性地,本申请实施例中的各候选气体传感器11与电池控制单元10之间,可以通过有线方式或者无线方式进行通信。
示例性地,本申请实施例中的多个候选气体传感器可以包括但不限于以下任一项:电化学式气体传感器、红外光学式气体传感器、半导体式气体传感器、光电离子式气体传感器。
本申请下述实施例中对上述各种类型的气体传感器进行简单地介绍。
电化学式气体传感器:可以探测1百万分比浓度(ppm)气体,可以识别微量漏液,其检测精度高;通过选择合适的透气膜和催化剂,可以避免电池箱内结构件老化等原因挥发出的气体干扰,实现气体检测的高选择性;水冷液或者电解液等目标气体在其探测区域内泄漏后5s内,电化学传感器便可以产生明显的响应信号。
红外光学式气体传感器:可以探测1ppm气体,可以识别微量漏液,其检测精度高;通过选择合适的气体红外光谱图和红外波段,可以避免电池箱体内结构件老化等原因挥发出的气体的干扰,实现气体检测的高选择性。
半导体式气体传感器:可以探测5ppm气体,可以识别微量漏液,其检测精度高;通过内部气敏材料的筛选和催化剂的选择等,可以减少其它非目标气体的干扰,从而提高传感器对目标气体的选择性;寿命久,长达10年以上,且价格低。
光电离子式气体传感器:可以探测十亿分比浓度(ppb)级气体,可以识别微量漏液,其检测精度极高;响应速度快,可以实时监控。
本申请实施例提供的电池控制单元可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池控制单元等组成该用电装置的电源系统,以便于可以确定电池箱内的漏液区域。
本申请实施例提供的用电装置,可以为但不限于电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请实施例的用电装置为车辆为例进行说明。应理解,当本申请实施例的用电装置为其它设备时,其实现原理和技术效果类似。
在一些实施例中,图2为本申请一些实施例提供的漏液检测方法的流程示意图,本申请实施例中以该方法应用于图1中的电池控制单元为例进行说明。如图2所示,本申请实施例的方法可以包括以下步骤:
步骤S201、获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号。
本申请实施例中的目标气体传感器可以为电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器。应理解,若任意候选气体传感器测得的气体浓度大于预设浓度阈值,则可以表明该候选气体传感器的探测区域内存在漏液。
示例性地,本申请实施例中的多个候选气体传感器可以分散地按照阵列形式设置于电池箱内的水冷管路中易腐蚀处、管路连接处、电芯的防爆阀处以及焊缝处等位置,以便于可以及时地检测出水冷液或者电解液的泄露情况。应理解,每两个相邻的候选气体传感器之间的距离小于各候选气体传感器的探测半径,以便于可以检测到电池箱内的各区域的水冷液或者电解液的泄露情况。
需要说明的是,本申请实施例中的候选气体传感器可以测量到探测区域内的水冷液或者电解液的微量泄露,其中,探测区域可以包括:探测半径所对应的圆形区域。
示例性地,本申请实施例中涉及的候选气体传感器或者目标气体传感器所测得的气体浓度可以包括但不限于:水冷液所挥发的气体浓度和/或电解液所挥发的气体浓度。
一种可能的实现方式中,本申请实施例中的候选气体传感器可以在测量的气体浓度大于预设浓度阈值时,将测量的气体浓度携带于气体浓度检测信号中发送给电池控制单元,其中,气体浓度检测信号用于表征候选气体传感器测得的气体浓度。应理解,候选气体传感器在测量的气体浓度不大于预设浓度阈值时,便不会给电池控制单元发送气体浓度检测信号。
针对此种实现方式,电池控制单元可以接收电池箱内的多个候选气体传感器在测量的气体浓度大于预设浓度阈值时分别所发送的气体浓度检测信号,上述候选气体传感器可以称 之为目标气体传感器。
另一种可能的实现方式中,本申请实施例中的候选气体传感器可以将每次测量的气体浓度携带于气体浓度检测信号中发送给电池控制单元,其中,气体浓度检测信号用于表征候选气体传感器测得的气体浓度,气体浓度可以不大于预设浓度阈值,或者可以大于预设浓度阈值。
针对此种实现方式,电池控制单元在接收到电池箱内的多个候选气体传感分别发送的气体浓度检测信号之后,通过将多个候选气体传感的气体浓度检测信号分别所指示的气体浓度与预设浓度阈值进行对比,进而将多个候选气体传感器中确定出气体浓度大于预设浓度阈值的传感器确定为目标气体传感器。
步骤S202、获取各目标气体传感器在电池箱内的位置信息。
本步骤中,电池控制单元可以根据上述步骤S201中得到的各目标气体传感器输出的气体浓度检测信号,分别获取各目标气体传感器在电池箱内的位置信息。示例性地,本申请实施例中的目标气体传感器在电池箱内的位置信息可以包括但不限于:目标气体传感器位于电池箱内的坐标信息、电池箱内的目标电芯的标识信息、电池箱内的目标电芯的坐标信息中的至少一项,其中,目标电芯是指电池箱内与目标气体传感器之间的距离小于预设距离的电芯。
在一实施例中,若各目标气体传感器输出的气体浓度检测信号还用于表征目标气体传感器的位置信息,对于各目标气体传感器,电池控制单元可以根据目标气体传感器输出的气体浓度检测信号确定目标气体传感器在电池箱内的位置信息。
示例性地,若目标气体传感器输出的气体浓度检测信号中还包括目标气体传感器的标识信息,则电池控制单元可以根据目标气体传感器的标识信息以及预设气体传感器标识与位置之间的对应关系,确定目标气体传感器在电池箱内的位置信息,其中,预设气体传感器标识与位置之间的对应关系包括:目标气体传感器的标识信息与目标气体传感器在电池箱内的位置信息之间的对应关系。
又一示例性地,若目标气体传感器输出的气体浓度检测信号中还包括目标气体传感器的位置标识信息,则电池控制单元可以根据目标气体传感器的位置标识信息以及预设气体传感器位置标识与位置信息之间的对应关系,确定目标气体传感器在电池箱内的位置信息,其中,预设气体传感器位置标识与位置信息之间的对应关系包括:目标气体传感器的位置标识信息与目标气体传感器在电池箱内的位置信息之间的对应关系。
当然,电池控制单元还可以通过其它方式,获取各目标气体传感器在电池箱内的位置信息,本申请实施例中对此并不作限定。
步骤S203、根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域。
本步骤中,电池控制单元可以根据上述步骤S201中获取的各目标气体传感器的气体 浓度检测信号,结合上述步骤S202中获取的各目标气体传感器在电池箱内的位置信息,对电池箱内的漏液区域进行定位,以便于后续可以输出用于指示漏液区域的提示信息,使得维修人员或者电池箱所属车辆的用户可以快速且准确地定位漏液区域,从而采用相应的处理措施。
示例性地,对于各目标气体传感器,电池控制单元可以根据目标气体传感器的位置信息确定与目标气体传感器的距离小于预设距离阈值的邻近气体传感器,然后结合邻近气体传感器的气体浓度检测信号便可以分析确定电池箱内的漏液区域。
应理解,本申请实施例中涉及的与目标气体传感器的距离小于预设距离阈值的邻近气体传感器(例如,第一邻近气体传感器或者第二邻近气体传感器)可以包括电池箱内与目标气体传感器相邻设置的各气体传感器中的部分或者全部。
为了便于理解,本申请实施例中以电池箱内设置两个候选气体传感器为例进行介绍。
例如,图3为本申请实施例提供的气体传感器的位置示意图一,图4为本申请实施例提供的气体传感器的漏液区域定位示意图一,结合图3和图4所示,假设电池箱长2.4m和宽1.6米,其中包括6个模组,每个模组中包括至少一个电芯,气体传感器A和气体传感器B的探测半径为1.2m,即气体传感器A和气体传感器B可以实现对整个电池箱区域的探测覆盖。若气体传感器A为目标气体传感器,气体传感器B为目标气体传感器的邻近气体传感器,且气体传感器B的气体浓度检测信号用于指示电池箱内存在漏液,则电池控制单元可以将气体传感器A的探测区域与气体传感器B的探测区域之间的交集区域2(且属于电池箱内的区域)确定为漏液区域;若气体传感器B的气体浓度检测信号用于指示电池箱内不存在漏液,则电池控制单元可以将气体传感器A的探测区域中除气体传感器B的探测区域之外的区域1(且属于电池箱内的区域)确定为漏液区域。
上述漏液检测方法中,通过获取电池箱内的多个目标气体传感器分别输出的用于表征测得的气体浓度的气体浓度检测信号,以及获取各目标气体传感器在电池箱内的位置信息;进一步地,通过对各目标气体传感器的气体浓度检测信号以及位置信息,确定电池箱内的漏液区域。综上所述,本申请实施例中,通过对电池箱内的多个目标气体传感器的气体浓度检测信号以及位置信息进行分析,便可以定位电池箱内的漏液区域,以便于后续可以输出用于指示漏液区域的提示信息,使得维修人员或者电池箱所属车辆的用户可以快速且准确地定位漏液区域,并采用相应的处理措施,有利于提高维修效率。
在一些实施例中,图5为本申请另一些实施例提供的漏液检测方法的流程示意图,在上述实施例的基础上,本申请实施例中对上述步骤203中“根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域”的相关内容进行介绍说明。如图5所示,本申请实施例的方法可以包括:
步骤S501、对于各目标气体传感器,根据目标气体传感器的位置信息,从多个候选气体传感器中确定与目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器。
本申请实施例中的候选气体传感器可以将每次测量的气体浓度携带于气体浓度检测信号中发送给电池控制单元,其中,气体浓度检测信号用于表征候选气体传感器测得的气体浓度,气体浓度可以不大于预设浓度阈值,或者可以大于预设浓度阈值。
本步骤中,对于各目标气体传感器,电池控制单元可以根据目标气体传感器的位置信息,从多个候选气体传感器中确定与上述目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器。应理解,本申请实施例中涉及的第一邻近气体传感器是指多个候选气体传感器中与目标气体传感器相邻设置的气体传感器。
例如,图6为本申请实施例提供的气体传感器的位置示意图二,如图6所示,假设电池箱长2.4m和宽1.6米,其中包括6个模组,每个模组中包括至少一个电芯,气体传感器A-气体传感器F的探测半径为0.6m,即气体传感器A-气体传感器F可以实现对整个电池箱区域的探测覆盖。若气体传感器A为目标气体传感器,则多个候选气体传感器中与气体传感器A的距离小于预设距离阈值的多个第一邻近气体传感器可以包括:气体传感器B、气体传感器D和气体传感器E。
步骤S502、根据各第一邻近气体传感器测得的第一气体浓度,确定漏液区域。
本步骤中,电池控制单元可以根据各第一邻近气体传感器测得的第一气体浓度、上述目标气体传感器对应的第一探测区域和各第一邻近气体传感器对应的第二探测区域,确定漏液区域。应理解,本申请实施例中的漏液区域是属于电池箱内的区域。
一种可能的实现方式中,若各第一邻近气体传感器测得的第一气体浓度均不大于预设浓度阈值,则电池控制单元将上述目标气体传感器对应的第一探测区域中除各第二探测区域之外的区域作为漏液区域。
例如,图7为本申请实施例提供的气体传感器的漏液区域定位示意图二,结合图6和图7所示,若气体传感器A为目标气体传感器,气体传感器A的多个第一邻近气体传感器可以包括:气体传感器B、气体传感器D和气体传感器E,且气体传感器B、气体传感器D和气体传感器E测得的第一气体浓度均不大于预设浓度阈值,则电池控制单元将电池箱内属于气体传感器A对应的第一探测区域,且除气体传感器B、气体传感器D和气体传感器E分别对应的第二探测区域之外的区域1作为漏液区域。
另一种可能的实现方式中,若一部分第一邻近气体传感器检测的第一气体浓度大于预设浓度阈值,另一部分第一邻近气体传感器检测的第一气体浓度不大于预设浓度阈值,则电池控制单元可以确定上述目标气体传感器对应的第一探测区域和上述一部分第一邻近气体传感器对应的第二探测区域的第一交集区域,并将第一交集区域中除上述另一部分第一邻近气体传感器对应的第二探测区域之外的区域作为漏液区域。
例如,图7为本申请实施例提供的气体传感器的漏液区域定位示意图二,结合图6和图7所示,若气体传感器A为目标气体传感器,气体传感器A的多个第一邻近气体传感器可 以包括:气体传感器B、气体传感器D和气体传感器E,且气体传感器B检测的第一气体浓度大于预设浓度阈值,气体传感器D和气体传感器E检测的第一气体浓度均不大于预设浓度阈值,则电池控制单元可以将电池箱内属于气体传感器A对应的第一探测区域和气体传感器B对应的第二探测区域的第一交集区域,并将第一交集区域中除气体传感器D和气体传感器E分别对应的第二探测区域之外的区域4作为漏液区域。
另一种可能的实现方式中,若各第一气体浓度均大于预设浓度阈值,则将上述目标气体传感器对应的第一探测区域和各第一邻近气体传感器对应的第二探测区域的第二交集区域作为漏液区域。
例如,图7为本申请实施例提供的气体传感器的漏液区域定位示意图二,结合图6和图7所示,若气体传感器A为目标气体传感器,气体传感器A的多个第一邻近气体传感器可以包括:气体传感器B、气体传感器D和气体传感器E,且气体传感器B、气体传感器D和气体传感器E检测的第一气体浓度均大于预设浓度阈值,则电池控制单元可以将电池箱内属于气体传感器A对应的第一探测区域和气体传感器B、气体传感器D和气体传感器E分别对应的第二探测区域的第二交集区域14作为漏液区域。
表1为本申请实施例提供的气体传感器阵列定位漏液区域的示意表

如表1所示,对于不同目标气体传感器测得的气体浓度是否大于预设浓度阈值的不同,根据气体传感器阵列所定位的漏液区域也不同。可见,在同一电池箱内设置越多的候选气体传感器,则可以将电池箱内的区域划分为更多的小区域,使得可以更加准确地定位漏液区域,从而有利于精确地对漏液区域进行相应的处理措施。
本实施例中,对于各目标气体传感器,电池控制单元可以根据目标气体传感器的位置信息,从多个候选气体传感器中确定与目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器,并根据各第一邻近气体传感器测得的第一气体浓度,确定漏液区域。可见,本申请实施例中,通过结合各第一邻近气体传感器测得的第一气体浓度确定漏液区域的方式,可以降低误判概率,从而可以提高漏液区域检测的准确性。
在一些实施例中,图8为本申请另一些实施例提供的漏液检测方法的流程示意图,在上述实施例的基础上,本申请实施例中对上述步骤203中“根据气体浓度检测信号以及位置信息,确定电池箱内的漏液区域”的相关内容进行介绍说明。如图8所示,本申请实施例的方法可以包括:
步骤S801、对于各目标气体传感器,根据目标气体传感器的位置信息,检测多个目标传感器中是否存在与目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器。
本申请实施例中的候选气体传感器可以在测量的气体浓度大于预设浓度阈值时,将测量的气体浓度携带于气体浓度检测信号中发送给电池控制单元,其中,气体浓度检测信号用于表征候选气体传感器测得的气体浓度。应理解,候选气体传感器在测量的气体浓度不大于预设浓度阈值时,便不会给电池控制单元发送气体浓度检测信号。
本步骤中,对于各目标气体传感器,电池控制单元可以根据目标气体传感器的位置信息,检测多个目标传感器中是否存在与该目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器。应理解,本申请实施例中涉及的第二邻近气体传感器是指多个目标气体传感器中与该目标气体传感器相邻设置的气体传感器。
例如,如图6所示,若气体传感器A、气体传感器B和气体传感器F分别测量的气体浓度大于预设浓度阈值,且其它气体传感器测量的气体浓度均不大于预设浓度阈值,即上述多个目标气体传感器包括气体传感器A、气体传感器B和气体传感器F。对于目标气体传感器A,多个目标气体传感器中与目标气体传感器A的距离小于预设距离阈值的第二邻近气体传感器可以包括:气体传感器B。
又例如,如图6所示,若气体传感器A、气体传感器C和气体传感器F分别测量的气体浓度大于预设浓度阈值,且其它气体传感器测量的气体浓度均不大于预设浓度阈值,即上述多个目标气体传感器包括气体传感器A、气体传感器C和气体传感器F,其中,气体传感器C与气体传感器A的距离不小于预设距离阈值,气体传感器F与气体传感器A的距离不小于预设距离阈值。对于气体传感器A,多个目标气体传感器中并不存在与目标气体传感器A的距离小于预设距离阈值的第二邻近气体传感器。
步骤S802、根据检测结果确定所述漏液区域。
本步骤中,电池控制单元可以根据上述步骤S802的检测结果确定漏液区域。
一种可能的实现方式中,若多个目标传感器中存在与该目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器,则电池控制单元可以将该目标气体传感器对应的第一探测区域和第二邻近气体传感器对应的第三探测区域的第三交集区域作为漏液区域。
例如,如图6所示,若气体传感器A、气体传感器B和气体传感器F分别测量的气体浓度大于预设浓度阈值,且其它气体传感器测量的气体浓度均不大于预设浓度阈值,即上述多个目标气体传感器包括气体传感器A、气体传感器B和气体传感器F。对于气体传感器A,多个目标气体传感器中与目标气体传感器A的距离小于预设距离阈值的第二邻近气体传感器可以包括:气体传感器B,则电池控制单元将气体传感器A对应的第一探测区域和气体传感器B对应的第三探测区域的第三交集区域4作为漏液区域。
另一种可能的实现方式中,若多个目标传感器中不存在与该目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器,则电池控制单元可以将该目标气体传感器对应的第一探测区域中除该目标气体传感器的各第一邻近气体传感器对应的探测区域之外的区域作为漏液区域,其中,第一邻近气体传感器为可以多个候选气体传感器中与该目标气体传感器的距离小于预设距离阈值的气体传感器。
例如,如图6所示,若气体传感器A、气体传感器C和气体传感器F分别测量的气体浓度大于预设浓度阈值,且其它气体传感器测量的气体浓度均不大于预设浓度阈值,即上述多个目标气体传感器包括气体传感器A、气体传感器C和气体传感器F,其中,气体传感器C与气体传感器A的距离不小于预设距离阈值,气体传感器F与气体传感器A的距离不小于预设距离阈值。对于气体传感器A,多个目标气体传感器中并不存在与目标气体传感器A的距离小于预设距离阈值的第二邻近气体传感器,气体传感器A的多个第一邻近气体传感器可以包括:气体传感器B、气体传感器D和气体传感器E,则电池控制单元可以将气体传感器A对应的第一探测区域中除气体传感器B、气体传感器D和气体传感器E分别对应的探测区域之外的区域1作为漏液区域。
本申请实施例中,对于各目标气体传感器,电池控制单元可以根据目标气体传感器的位置信息,检测多个目标传感器中是否存在与目标气体传感器的距离小于预设距离阈值的第 二邻近气体传感器,并根据检测结果确定所述漏液区域。可见,本申请实施例中,通过结合多个目标传感器中是否存在第二邻近气体传感器的检测结果的方式,可以降低误判概率,从而可以提高漏液区域检测的准确性。
在一些实施例中,图9为本申请另一些实施例提供的漏液检测方法的流程示意图,在上述实施例的基础上,本申请实施例中对“确定上述漏液区域对应的漏液程度,以及不同漏液程度对应的处理措施”的相关内容进行介绍说明。如图9所示,本申请实施例的方法可以包括:
步骤S901、对于每个漏液区域,根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域对应的漏液程度。
本步骤中,对于每个漏液区域,电池控制单元可以根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域对应的漏液程度,其中,本申请实施例中涉及的漏液区域对应的目标气体传感器是指该目标气体传感器的探测区域包含该漏液区域的部分或者全部。
在一实施例中,对于每个漏液区域,电池控制单元可以根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域的参考气体浓度。
一种可能的实现方式中,若漏液区域对应的至少一个目标气体传感器包括一个目标气体传感器,则电池控制单元可以将该目标气体传感器测得的气体浓度作为漏液区域的参考气体浓度。
另一种可能的实现方式中,若漏液区域对应的至少一个目标气体传感器包括多个目标气体传感器,则电池控制单元可以将漏液区域对应的多个目标气体传感器测得的气体浓度中的最大值确定为漏液区域的参考气体浓度,或者,可以将漏液区域对应的多个目标气体传感器测得的气体浓度的平均值确定为漏液区域的参考气体浓度。
当然,电池控制单元根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,还可以通过其它方式确定漏液区域的参考气体浓度,本申请实施例中对此并不作限定。
进一步地,电池控制单元可以根据漏液区域的参考气体浓度的大小,确定漏液区域的漏液程度。
示例性地,若漏液区域的参考气体浓度位于第一浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为一级漏液程度;或者,若漏液区域的参考气体浓度位于第二浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为二级漏液程度;或者,若漏液区域的参考气体浓度位于第三浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为三级漏液程度。其中,三级漏液程度大于二级漏液程度,二级漏液程度大于一级漏液程度,第二浓度区间的下限值可以等于第一浓度区间的上限值,第三浓度的下限值可以等于第二浓度区间的上限值。
例如,第一浓度区间的下限值可以为预设浓度阈值,第一浓度区间的上限值可以为预设浓度阈值’,第二浓度区间的下限值可以为预设浓度阈值’,第二浓度区间的上限值可以为预设浓度阈值”,第三浓度区间的下限值可以为预设浓度阈值”。需要说明的是,若气体浓度等于预设浓度阈值’,电池控制单元可以确定气体浓度属于第一浓度区间,或者第二浓度区间;若气体浓度等于预设浓度阈值”,电池控制单元可以确定气体浓度属于第二浓度区间,或者第三浓度区间。
图10为本申请实施例提供的参考气体浓度所属的浓度区间与漏液程度之间的示意图,图11为本申请实施例提供的漏液程度与处理措施之间的判断示意图,如图10和图11所示,当参考气体浓度超过基线气体浓度或超过基线气体浓度的t时间内的信号斜率值大于预设斜率值时,电池控制单元可以确定电池箱内的部分气体传感器发生了明显的信号响应。若漏液区域的参考气体浓度大于预设浓度阈值,且小于等于预设浓度阈值’,是即位于第一浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为一级漏液程度;或者,若漏液区域的参考气体浓度大于预设浓度阈值’,且小于等于预设浓度阈值”,即位于第二浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为二级漏液程度;或者,若漏液区域的参考气体浓度大于预设浓度阈值”,即位于第三浓度区间内,则电池控制单元可以确定漏液区域的漏液程度为三级漏液程度。
步骤S902、根据预设漏液程度与处理措施之间的对应关系,确定漏液程度对应的处理措施。
本申请实施例中的预设漏液程度与处理措施之间的对应关系可以用于指示不同漏液程度对应的处理措施。示例性地,本申请实施例中的处理措施可以包括但不限于以下至少一项:向电池箱所属的车辆输出提示信息,其中,提示信息用于提示车辆的用户电池箱内存在漏液;控制处于漏液区域中的电芯停止运行;降低处于漏液区域中的电芯的运行功率;控制处于漏液区域的水冷装置停止运行;降低处于漏液区域的水冷装置的运行功率;向目标终端输出告警信息,其中,告警信息用于指示车辆的信息以及电池箱的信息。
示例性地,预设漏液程度与处理措施之间的对应关系可以包括:一级漏液程度与对应的处理措施一之间的对应关系、二级漏液程度与对应的处理措施二之间的对应关系,以及三级漏液程度与对应的处理措施三之间的对应关系。
本步骤中,电池控制单元可以根据预设漏液程度与处理措施之间的对应关系,确定上述步骤S901中的漏液区域对应的漏液程度所对应的处理措施,以便于可以尽量避免漏液泄露所导致的安全问题。
例如,如图11所示,若上述步骤S901中的漏液区域对应的漏液程度为一级漏液程度,则电池控制单元可以根据预设漏液程度与处理措施之间的对应关系,确定上述漏液程度所对应的处理措施为处理措施一,其中,处理措施一可以包括:向电池箱所属的车辆输出提示信 息,其中,提示信息用于提示车辆的用户电池箱内存在漏液,提示信息中还可以包括漏液区域的信息,以便于用户可以快速地确定漏液区域。
又例如,如图11所示,若上述步骤S901中的漏液区域对应的漏液程度为二级漏液程度,则电池控制单元可以根据预设漏液程度与处理措施之间的对应关系,确定上述漏液程度所对应的处理措施为处理措施二,其中,处理措施二可以包括以下至少一项:向电池箱所属的车辆输出提示信息,其中,提示信息用于提示车辆的用户电池箱内存在漏液;控制处于漏液区域中的电芯停止运行;降低处于漏液区域中的电芯的运行功率;控制处于漏液区域的水冷装置停止运行;降低处于漏液区域的水冷装置的运行功率。
又例如,如图11所示,若上述步骤S901中的漏液区域对应的漏液程度为三级漏液程度,则电池控制单元可以根据预设漏液程度与处理措施之间的对应关系,确定上述漏液程度所对应的处理措施为处理措施三,其中,处理措施三可以包括以下至少一项:向电池箱所属的车辆输出提示信息,其中,提示信息用于提示车辆的用户电池箱内存在漏液,以便于用户离开车辆;控制处于漏液区域中的电芯停止运行;降低处于漏液区域中的电芯的运行功率;控制处于漏液区域的水冷装置停止运行;降低处于漏液区域的水冷装置的运行功率;向目标终端输出告警信息,其中,告警信息用于指示车辆的信息以及电池箱的信息,车辆的信息可以包括但不限于:车辆的位置信息和车辆的型号信息,电池箱的信息可以包括但不限于:电池箱的型号和电池箱的类型,以便于可以消防人员可以快速地定位车辆,并提供相应的消防措施。
本申请实施例中,对于每个漏液区域,电池控制单元可以根据漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定漏液区域对应的漏液程度,并根据预设漏液程度与处理措施之间的对应关系,确定漏液程度对应的处理措施,以便于可以尽量避免漏液泄露所导致的安全问题,从而可以提高电池箱以及车辆的使用安全性。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的漏液检测方法的漏液检测装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个漏液检测装置实施例中的具体限定可以参见上文中对于漏液检测方法的限定,在此不再赘述。
在一些实施例中,图12为本申请一些实施例提供的漏液检测装置的结构示意图,本申请实施例提供的漏液检测装置可以应用于电池控制单元中。如图12所示,本申请实施例的漏液检测装置可以包括:第一获取模块1201、第二获取模块1202和第一确定模块1203。
其中,获取模块1201,用于获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号,所述气体浓度检测信号用于表征测得的气体浓度;
第二获取模块1202,用于获取各所述目标气体传感器在所述电池箱内的位置信息;
第一确定模块1203,用于根据所述气体浓度检测信号以及所述位置信息,确定所述电池箱内的漏液区域。
在一些实施例中,所述目标气体传感器为所述电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,所述第一确定模块1203,包括:
第一确定单元,用于对于各所述目标气体传感器,根据所述目标气体传感器的位置信息,从所述多个候选气体传感器中确定与所述目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器;
第二确定单元,用于根据各所述第一邻近气体传感器测得的第一气体浓度,确定所述漏液区域。
在一些实施例中,所述第二确定单元具体用于:
根据各所述第一气体浓度、所述目标气体传感器对应的第一探测区域和各所述第一邻近气体传感器对应的第二探测区域,确定所述漏液区域。
在一些实施例中,所述第二确定单元具体用于:
若各所述第一气体浓度均不大于所述预设浓度阈值,则将所述第一探测区域中除各所述第二探测区域之外的区域作为所述漏液区域;
若一部分所述第一邻近气体传感器检测的第一气体浓度大于所述预设浓度阈值,另一部分所述第一邻近气体传感器检测的第一气体浓度不大于所述预设浓度阈值,则确定所述第一探测区域和所述一部分第一邻近气体传感器对应的第二探测区域的第一交集区域,并将所述第一交集区域中除所述另一部分第一邻近气体传感器对应的第二探测区域之外的区域作为所述漏液区域;
若各所述第一气体浓度均大于所述预设浓度阈值,则将所述第一探测区域和各所述第二探测区域的第二交集区域作为所述漏液区域。
在一些实施例中,所述目标气体传感器为所述电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,所述第一确定模块1203,包括:
检测单元,用于对于各所述目标气体传感器,根据所述目标气体传感器的位置信息,检测所述多个目标传感器中是否存在与所述目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器;
第三确定单元,用于根据检测结果确定所述漏液区域。
在一些实施例中,所述第三确定单元具体用于:
若存在所述第二邻近气体传感器,则将所述目标气体传感器对应的第一探测区域和所述第二邻近气体传感器对应的第三探测区域的第三交集区域作为所述漏液区域;
若不存在所述第二邻近气体传感器,则将所述第一探测区域中除所述目标气体传感器的各第一邻近气体传感器对应的探测区域之外的区域作为所述漏液区域,其中,所述第一邻近气体传感器为所述多个候选气体传感器中与所述目标气体传感器的距离小于所述预设距离阈值的气体传感器。
在一些实施例中,所述装置还包括:
第二确定模块,用于对于每个所述漏液区域,根据所述漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定所述漏液区域对应的漏液程度,其中,所述目标气体传感器的探测区域包含所述漏液区域的部分或者全部。
在一些实施例中,所述第二确定模块,包括:
第四确定单元,用于根据所述至少一个目标气体传感器测得的气体浓度,确定参考气体浓度;
第五确定单元,用于根据所述参考气体浓度的大小,确定所述漏液程度。
在一些实施例中,所述第四确定单元具体用于:
在所述目标传感器的数量为多个时,将所述多个目标气体传感器测得的气体浓度中的最大值确定为所述参考气体浓度;或者,将所述多个目标气体传感器测得的气体浓度的平均值确定为所述参考气体浓度。
在一些实施例中,所述装置还包括:
第三确定模块,用于根据预设漏液程度与处理措施之间的对应关系,确定所述漏液程度对应的处理措施。
在一些实施例中,所述处理措施包括以下至少一项:
向所述电池箱所属的车辆输出提示信息,所述提示信息用于提示所述车辆的用户所述电池箱内存在漏液;
控制处于所述漏液区域中的电芯停止运行;
降低处于所述漏液区域中的电芯的运行功率;
控制处于所述漏液区域的水冷装置停止运行;
降低处于所述漏液区域的水冷装置的运行功率;
向目标终端输出告警信息,所述告警信息用于指示所述车辆的信息以及所述电池箱的信息。
在一些实施例中,各所述目标气体传感器输出的气体浓度检测信号还用于表征所述目 标气体传感器的位置信息,所述第二获取模块1202具体用于:
对于各所述目标气体传感器,根据所述目标气体传感器输出的气体浓度检测信号确定所述目标气体传感器在所述电池箱内的位置信息。
本申请实施例提供的漏液检测装置可以用于执行本申请上述漏液检测方法实施例中关于电池控制单元的技术方案,其实现原理和技术效果类似,此处不再赘述。
上述漏液检测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的处理器中,也可以以软件形式存储于电子设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一些实施例中,还提供了一种电池控制单元,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现本申请上述漏液检测方法实施例中关于电池控制单元的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一些实施例中,还提供了一种电池管理系统,所述系统包括:本申请上述实施例所述的电池控制单元,以及分散地设置于电池箱内的多个候选气体传感器。
在一些实施例中,还提供了一种用电装置,所述装置包括:本申请上述实施例所述的电池管理系统。
在一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本申请上述漏液检测方法实施例中关于电池控制单元的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一些实施例中,还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现本申请上述漏液检测方法实施例中关于电池控制单元的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图 形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种漏液检测方法,其中,所述方法包括:
    获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号,所述气体浓度检测信号用于表征测得的气体浓度;
    获取各所述目标气体传感器在所述电池箱内的位置信息;
    根据所述气体浓度检测信号以及所述位置信息,确定所述电池箱内的漏液区域。
  2. 根据权利要求1所述的方法,其中,所述目标气体传感器为所述电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,所述根据所述气体浓度检测信号以及所述位置信息,确定所述电池箱内的漏液区域,包括:
    对于各所述目标气体传感器,根据所述目标气体传感器的位置信息,从所述多个候选气体传感器中确定与所述目标气体传感器的距离小于预设距离阈值的多个第一邻近气体传感器;
    根据各所述第一邻近气体传感器测得的第一气体浓度,确定所述漏液区域。
  3. 根据权利要求2所述的方法,其中,所述根据各所述第一邻近气体传感器测得的第一气体浓度,确定所述漏液区域,包括:
    根据各所述第一气体浓度、所述目标气体传感器对应的第一探测区域和各所述第一邻近气体传感器对应的第二探测区域,确定所述漏液区域。
  4. 根据权利要求3所述的方法,其中,所述根据各所述第一气体浓度、所述目标气体传感器对应的第一探测区域和各所述第一邻近气体传感器对应的第二探测区域,确定所述漏液区域,包括:
    若各所述第一气体浓度均不大于所述预设浓度阈值,则将所述第一探测区域中除各所述第二探测区域之外的区域作为所述漏液区域;
    若一部分所述第一邻近气体传感器检测的第一气体浓度大于所述预设浓度阈值,另一部分所述第一邻近气体传感器检测的第一气体浓度不大于所述预设浓度阈值,则确定所述第一探测区域和所述一部分第一邻近气体传感器对应的第二探测区域的第一交集区域,并将所述第一交集区域中除所述另一部分第一邻近气体传感器对应的第二探测区域之外的区域作为所述漏液区域;
    若各所述第一气体浓度均大于所述预设浓度阈值,则将所述第一探测区域和各所述第二探测区域的第二交集区域作为所述漏液区域。
  5. 根据权利要求1所述的方法,其中,所述目标气体传感器为所述电池箱内设置的多个候选气体传感器中测得的气体浓度大于预设浓度阈值的传感器,所述根据所述气体浓度检测信号以及所述位置信息,确定所述电池箱内的漏液区域,包括:
    对于各所述目标气体传感器,根据所述目标气体传感器的位置信息,检测所述多个目标传感器中是否存在与所述目标气体传感器的距离小于预设距离阈值的第二邻近气体传感器;
    根据检测结果确定所述漏液区域。
  6. 根据权利要求5所述的方法,其中,所述根据检测结果确定所述漏液区域,包括:
    若存在所述第二邻近气体传感器,则将所述目标气体传感器对应的第一探测区域和所述第二邻近气体传感器对应的第三探测区域的第三交集区域作为所述漏液区域;
    若不存在所述第二邻近气体传感器,则将所述第一探测区域中除所述目标气体传感器的各第一邻近气体传感器对应的探测区域之外的区域作为所述漏液区域,其中,所述第一邻近气体传感器为所述多个候选气体传感器中与所述目标气体传感器的距离小于所述预设距离阈值的气体传感器。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述方法还包括:
    对于每个所述漏液区域,根据所述漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定所述漏液区域对应的漏液程度,其中,所述目标气体传感器的探测区域包含所述漏液区域的部分或者全部。
  8. 根据权利要求7所述的方法,其中,所述根据所述漏液区域对应的至少一个目标气体传感器测得的气体浓度,确定所述漏液区域对应的漏液程度,包括:
    根据所述至少一个目标气体传感器测得的气体浓度,确定参考气体浓度;
    根据所述参考气体浓度的大小,确定所述漏液程度。
  9. 根据权利要求8所述的方法,其中,所述根据所述至少一个目标气体传感器测得的气体浓度,确定参考气体浓度,包括:
    在所述目标传感器的数量为多个时,将所述多个目标气体传感器测得的气体浓度中的最大值确定为所述参考气体浓度;或者,将所述多个目标气体传感器测得的气体浓度的平均值确定为所述参考气体浓度。
  10. 根据权利要求8或9所述的方法,其中,所述方法还包括:
    根据预设漏液程度与处理措施之间的对应关系,确定所述漏液程度对应的处理措施。
  11. 根据权利要求10所述的方法,其中,所述处理措施包括以下至少一项:
    向所述电池箱所属的车辆输出提示信息,所述提示信息用于提示所述车辆的用户所述电池箱内存在漏液;
    控制处于所述漏液区域中的电芯停止运行;
    降低处于所述漏液区域中的电芯的运行功率;
    控制处于所述漏液区域的水冷装置停止运行;
    降低处于所述漏液区域的水冷装置的运行功率;
    向目标终端输出告警信息,所述告警信息用于指示所述车辆的信息以及所述电池箱的信 息。
  12. 根据权利要求1-6中任一项所述的方法,其中,各所述目标气体传感器输出的气体浓度检测信号还用于表征所述目标气体传感器的位置信息,所述获取各所述目标气体传感器在所述电池箱内的位置信息,包括:
    对于各所述目标气体传感器,根据所述目标气体传感器输出的气体浓度检测信号确定所述目标气体传感器在所述电池箱内的位置信息。
  13. 一种漏液检测装置,其中,所述装置包括:
    第一获取模块,用于获取电池箱内的多个目标气体传感器分别输出的气体浓度检测信号,所述气体浓度检测信号用于表征测得的气体浓度;
    第二获取模块,用于获取各所述目标气体传感器在所述电池箱内的位置信息;
    确定模块,用于根据所述气体浓度检测信号以及所述位置信息,确定所述电池箱内的漏液区域。
  14. 一种电池控制单元,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1-12中任一项所述的方法的步骤。
  15. 一种电池管理系统,其中,所述系统包括:如权利要求14所述的电池控制单元,以及分散地设置于电池箱内的多个候选气体传感器。
  16. 一种用电装置,其中,所述装置包括:如权利要求15所述的电池管理系统。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-12中任一项所述的方法的步骤。
  18. 一种计算机程序产品,包括计算机程序,其中,该计算机程序被处理器执行时实现权利要求1-12中任一项所述的方法的步骤。
PCT/CN2023/090551 2022-06-10 2023-04-25 漏液检测方法、装置、电池控制单元和电池管理系统 WO2023236673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210653480.6 2022-06-10
CN202210653480.6A CN117249944A (zh) 2022-06-10 2022-06-10 漏液检测方法、装置、电池控制单元和电池管理系统

Publications (1)

Publication Number Publication Date
WO2023236673A1 true WO2023236673A1 (zh) 2023-12-14

Family

ID=89117531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090551 WO2023236673A1 (zh) 2022-06-10 2023-04-25 漏液检测方法、装置、电池控制单元和电池管理系统

Country Status (2)

Country Link
CN (1) CN117249944A (zh)
WO (1) WO2023236673A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168826A1 (en) * 2007-01-17 2008-07-17 Motorola, Inc. Method and system for gas leak detection and localization
CN102865976A (zh) * 2012-09-14 2013-01-09 北京理工大学 电池舱电解液泄漏检测方法及使用该方法的监测装置
CN107959066A (zh) * 2017-11-20 2018-04-24 北京长城华冠汽车技术开发有限公司 一种电动汽车动力电池箱漏液控制系统及控制方法
CN108258345A (zh) * 2018-03-20 2018-07-06 华霆(合肥)动力技术有限公司 电池冷却液检漏装置、电池冷却系统及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168826A1 (en) * 2007-01-17 2008-07-17 Motorola, Inc. Method and system for gas leak detection and localization
CN102865976A (zh) * 2012-09-14 2013-01-09 北京理工大学 电池舱电解液泄漏检测方法及使用该方法的监测装置
CN107959066A (zh) * 2017-11-20 2018-04-24 北京长城华冠汽车技术开发有限公司 一种电动汽车动力电池箱漏液控制系统及控制方法
CN108258345A (zh) * 2018-03-20 2018-07-06 华霆(合肥)动力技术有限公司 电池冷却液检漏装置、电池冷却系统及车辆

Also Published As

Publication number Publication date
CN117249944A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
Dong et al. The gas leak detection based on a wireless monitoring system
US20080168826A1 (en) Method and system for gas leak detection and localization
CN106527513A (zh) 一种气体监测系统及方法
CN105259327B (zh) 一种可燃气体检测仪及其检测方法
US20230368632A1 (en) Methods, internet of things systems, and storage media for smart gas pipeline network inspection
CN116572747B (zh) 电池故障检测方法、装置、计算机设备和存储介质
CN114254879B (zh) 多传感器信息融合的电力设备安全诊断方法和装置
CN113255764A (zh) 利用机器学习检测电化学储能系统故障的方法、系统和装置
CN110418962A (zh) 用于针对气体分析物进行监测的系统和方法
CN111272344A (zh) 电池泄漏检测仪及其检测方法
Velladurai et al. Human safety system in drainage, unused well and garbage alerting system for smart city
CN114323448A (zh) 氢气泄漏检测及定位系统、方法
CN110595704A (zh) 一种储能电池的漏液检测方法及系统
CN106154166A (zh) 一种软包装锂离子电池胀气量的在线检测装置和检测方法
WO2023236673A1 (zh) 漏液检测方法、装置、电池控制单元和电池管理系统
CN116346638B (zh) 基于电网功率及告警信息交互验证的数据篡改推断方法
CN114859236B (zh) 一种电池边电压测试方法、装置、电子设备及存储介质
WO2023028850A1 (zh) 一种动力电池热失控的控制方法、装置及动力电池
CN109738805B (zh) 电池及其测试方法、装置、电子设备
CN115931239A (zh) 电池及其泄漏检测方法、装置、电池管理系统、电子设备
CN206892358U (zh) 检测系统及检测单元
Tan et al. Research on the environmental adaptability of combustible gas leakage monitors under extreme temperature conditions
CN108344948A (zh) 一种电动汽车电池的温度报警方法、装置和电动汽车
Yuan et al. Review on resistance based water content monitoring in vehicle fuel cell stack
CN109541136A (zh) 一种内冷水箱氢气含量在线检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023818840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023818840

Country of ref document: EP

Effective date: 20240328