WO2023236658A1 - 一种血压测量设备和系统 - Google Patents

一种血压测量设备和系统 Download PDF

Info

Publication number
WO2023236658A1
WO2023236658A1 PCT/CN2023/088666 CN2023088666W WO2023236658A1 WO 2023236658 A1 WO2023236658 A1 WO 2023236658A1 CN 2023088666 W CN2023088666 W CN 2023088666W WO 2023236658 A1 WO2023236658 A1 WO 2023236658A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
photoplethysmography
computer program
waveform
program instructions
Prior art date
Application number
PCT/CN2023/088666
Other languages
English (en)
French (fr)
Inventor
邹靖波
刘毅
赵剑
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023236658A1 publication Critical patent/WO2023236658A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography

Definitions

  • smart wearable blood pressure measurement mainly refers to the traditional cuff inflation detection.
  • Cuff blood pressure monitoring needs to go through the inflation and deflation process.
  • the device automatically recognizes small pulses and distinguishes them to calculate the blood pressure.
  • the inflation and deflation process will cause the arm to feel swollen. Time is needed to rest between multiple inspections, and the structure of the inflation and deflation components is complex, making it difficult to implement on wearable devices and causing high hardware costs.
  • this application provides a blood pressure measurement method, device and electronic equipment. This application also provides a computer-readable storage medium.
  • the present application provides a blood pressure measurement device.
  • the blood pressure measurement device in this application collects the user's photoplethysmography (PPG) signal and calculates the blood pressure based on the PPG signal.
  • PPG photoplethysmography
  • blood pressure measurement equipment includes:
  • Photoplethysmography module device which is used to collect photoplethysmography signals
  • the photoplethysmography module device can be installed on a wearable device (for example, a smart watch), and the process of calculating blood pressure from the PPG signal can also be completed by the wearable device (for example, a smart watch), therefore, the implementation based on this application
  • blood pressure measurement equipment can be measured by wearable devices, which improves the flexibility of blood pressure measurement and expands the application scenarios of blood pressure measurement.
  • the blood pressure measurement device there is no need to use an inflatable cuff measurement device, so it can effectively avoid physical discomfort problems such as swelling caused by multiple inflation and deflation processes when using an inflatable cuff measurement.
  • the possibility of continuous blood pressure measurement is greatly improved; and, compared with the cuff inflatable measurement device, the structure of the blood pressure measurement device of the embodiment of the present application is simpler, so that the hardware cost can be effectively controlled; further, the embodiment of the present application
  • the signal acquisition and data processing processes of blood pressure measurement equipment can be implemented using low-power chips, which can greatly reduce the power consumption of blood pressure measurement equipment when measuring blood pressure and increase the battery life of the equipment.
  • the blood pressure measurement device is a smart watch.
  • the photoplethysmography module device is installed on the side of the smart watch.
  • the blood pressure measurement device performs filtering processing on the first waveform and obtains the filtering result of the first waveform; blood pressure measurement The device performs feature point identification on the filtering result of the first waveform and extracts the feature points.
  • the blood pressure measurement device uses a derivative calculation method to extract feature points that characterize pulse wave characteristics.
  • the blood pressure measurement device uses a blood pressure calculation model to calculate the blood pressure value.
  • the blood pressure calculation model is a deep learning model.
  • the blood pressure calculation model The input of the model is the feature point, and the output of the blood pressure calculation model is the blood pressure value.
  • this application also proposes a blood pressure measurement device that acquires a user's PPG signal from other devices and calculates blood pressure based on the PPG signal (the implementation process may refer to the blood pressure measurement device in the first aspect).
  • a communication device which is used to establish a communication connection with a photoplethysmography signal collection device and receive the photoplethysmography signal sent by the collection device;
  • a memory for storing computer program instructions and a processor for executing the computer program instructions, wherein when the computer program instructions are executed by the processor, the blood pressure measurement device is triggered to perform the following steps:
  • the collection of photoplethysmography signals and the execution device for blood pressure calculation are independent of each other, which greatly reduces the data processing pressure of a single device and improves the battery life of a single device.
  • the blood pressure measurement device is a smart watch or a smartphone.
  • the first electronic device includes: a photoplethysmography module device, which is used to acquire the photoplethysmography signal; a first communication device, which is used to establish a communication connection with the second electronic device and output the photoplethysmography signal to the second electronic device. law signal;
  • the first electronic device can send the photoplethysmography signal to the second electronic device, so that the two devices cooperate with each other to achieve blood pressure measurement.
  • Figure 4 shows a side view of a smart watch according to an embodiment of the present application
  • Figure 5 shows a longitudinal cross-sectional view of the receiving area according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of a blood pressure measurement system according to an embodiment of the present application.
  • the micro-cuff blood pressure measurement solution has a complicated watch body structure due to the use of an air pump. As a result, a large amount of space is occupied by the wearable device to implement other functions. The cost of hardware for wearable devices will increase significantly.
  • this application provides a blood pressure measurement device.
  • the blood pressure measurement device measures blood pressure based on photoplethysmography (PPG) signals.
  • PPG photoplethysmography
  • the workflow of the PPG module usually includes: the light-emitting diode (LED) in the PPG module emits light; the light is reflected after hitting the human skin; the reflected light is emitted by the photodiode (Photo-Diode, PD) in the PPG module ) collection to obtain reflected light data (analog signal data).
  • the reflected light data is sent to the analog front end (AFE) device of the PPG module.
  • the AFE device samples the reflected light data (analog signal data) to generate PPG signal data (Rawdata).
  • FIG. 1 shows a schematic diagram of a PPG module according to an embodiment of the present application.
  • the PPG module includes an infrared light-emitting diode (LED) and a phototransistor (PD).
  • LED infrared light-emitting diode
  • PD phototransistor
  • Figure 2 shows a schematic structural diagram of a blood pressure measurement device according to an embodiment of the present application.
  • the blood pressure measurement device 200 includes a photoplethysmography module device 201 .
  • the photoplethysmography module device 201 is used to collect photoplethysmography signals.
  • the working principle of the photoplethysmography module device 201 can be referred to the PPG module shown in Figure 1 .
  • the blood pressure measurement device 200 also includes a memory 202 for storing computer program instructions and a processor 203 for executing the computer program instructions.
  • the computer program instructions related to blood pressure calculation stored in the memory 202 are executed by the processor 203 During execution, the blood pressure measurement device 200 is triggered to calculate blood pressure according to the PPG signal collected by the photoplethysmography module device 201 .
  • the AFE sampling rate of the photoplethysmography module device 201 is set to 500Hz, and the number of AFE sampling bits is 21bit or more. In this way, PPG waveforms with sufficiently rich waveform details can be generated.
  • the embodiment of the present application does not specifically limit the installation position and installation structure configuration of the photoplethysmography module device 201 on the blood pressure measurement device 200 .
  • Those skilled in the art can design the installation position and installation structure configuration of the photoplethysmography module device 201 on the blood pressure measurement device 200 according to actual needs.
  • the blood pressure measurement device 200 is a smart watch. With a window opening on the side of the smart watch, the photoplethysmography module device 201 can be installed at the window opening on the side of the smart watch.
  • the photoplethysmography module device 201 can illuminate the finger with light through the window opening on the side of the smart watch. The skin and the reflected light data of the wrist skin are collected to obtain the PPG signal.
  • Figure 4 shows a side view of a smart watch according to an embodiment of the present application. As shown in Figure 4, a window (410) is opened between the two buttons (button 401 and button 402) on the right side of the smart watch. The size of the window 410 is 7.1*5.7mm.
  • the user's fingertips When measuring blood pressure, the user's fingertips are pressed against the window 410, covering the light-emitting area 411 and the receiving area 412.
  • the LED inside the light-emitting area 411 emits infrared light to reach the skin of the fingertip and inside the blood vessels, and the reflected light passes through the receiving area 412 and is received by the PD of the photoplethysmography module device 201 .
  • the bottom of the transparent cover 510 is slotted corresponding to the position 511 of the PD, with a slot width of 0.2mm and a height of 0.3mm.
  • the photoplethysmography module device 201 is installed below the transparent cover 510 .
  • the gap (512) between the bottom surface of the transparent cover 510 and the PPG module device is 0.2mm.
  • light-shielding foam (513, 514) is added to the outer layer of the photoplethysmography module device 201 to prevent the light path from diverging.
  • S320 Perform waveform fitting on the PPG signal to obtain the first waveform.
  • Figure 6 shows a PPG waveform diagram according to an embodiment of the present application.
  • the identified feature points may include but are not limited to five feature points A, B, C, D, and E. For example, in one application scenario, more than 20 feature points are extracted in S330.
  • the blood pressure calculation model can also be tested and calibrated. Specifically, the solution of this application is used for the tested sample population, and the blood pressure value is tested and recorded based on the blood pressure calculation model.
  • the gold-labeled mercury sphygmomanometer is used for retesting, the measurement results of the gold-labeled mercury sphygmomanometer are compared and calibrated with the measurement results based on the first blood pressure calculation model, and the compensation value is written into the blood pressure calculation model.
  • the blood pressure calculation model is trained by using a large number of samples for test calibration, and finally a suitable sample model and accurate blood pressure values are obtained.
  • the photoplethysmography module device can be installed on a wearable device (for example, a smart watch), and the calculation process of calculating blood pressure based on the PPG signal can also be completed by the wearable device (for example, a smart watch), therefore, based on this
  • the blood pressure measurement device of the application embodiment can implement blood pressure measurement by a wearable device, which improves the flexibility of blood pressure measurement and expands the application scenarios of blood pressure measurement.
  • the blood pressure measurement device there is no need to use a cuff inflatable measurement device, so it can effectively avoid physical discomfort problems such as swelling caused by multiple inflation and deflation processes when using a cuff inflatable measurement, making it possible to continuously
  • the possibility of measuring blood pressure is greatly improved; and, compared with the cuff inflatable measurement device, the structure of the blood pressure measurement device of the embodiment of the present application is simpler, so that the hardware cost can be effectively controlled; further, the blood pressure measurement device of the embodiment of the present application
  • the signal acquisition and data processing processes of the measurement equipment can be implemented using low-power chips, which can greatly reduce the power consumption of the blood pressure measurement equipment during blood pressure measurement and increase the battery life of the equipment.
  • the same device is used to realize the collection of PPG signals and the calculation of blood pressure values.
  • different devices can also be used to separately implement the collection of PPG signals and the calculation of blood pressure values.
  • the present application provides a blood pressure measurement system, which includes a device for collecting PPG signals (first electronic device) and a device (second electronic device) for calculating blood pressure values. In this way, the collection of photoplethysmography signals and the execution device for blood pressure calculation are independent of each other, which greatly reduces the data processing pressure of a single device and improves the battery life of a single device.
  • FIG. 7 shows a schematic diagram of a blood pressure measurement application scenario according to an embodiment of the present application.
  • a photoplethysmography module device 711 (refer to the photoplethysmography module device 201 ) is installed in the smart watch 710 (first electronic device).
  • the photoplethysmography module device 711 is installed in the smart watch 710
  • For the installation method please refer to the description of the embodiment shown in Figure 4 and Figure 5 .
  • the photoplethysmography module device 711 includes an integrated module LED that can emit red light, Infrared light (880nm band) and green light. Green light and infrared are used for heart rate and blood pressure detection respectively. Red light and infrared light are used for blood oxygen detection.
  • the photoplethysmography module device 711 also includes a PD device.
  • the receiving area of the PD device is 1.74*2.03mm.
  • the reflected light data received by the PD device is represented by a photogenerated current analog small signal.
  • the photoplethysmography module device 711 also includes an AFE device.
  • the sampling rate of the AFE device is set to 500Hz, and the number of AFE sampling bits is more than 21 bits. To minimize device size, AFE devices are bare die packages.
  • the integrated module LED of the photoplethysmography module device 711 When measuring blood pressure, the integrated module LED of the photoplethysmography module device 711 emits infrared light. The infrared light irradiates the blood vessels in the human skin. The reflected light is received by the PD device of the photoplethysmography module device 711, and the PD device generates Emitted light data (photogenerated current simulates small signal). The reflected light data collected by the PD device is transmitted to the AFE device of the photoplethysmography module device 711, and the AFE device of the photoplethysmography module device 711 samples the analog signal to generate a PPG signal (Rawdata).
  • PPG signal PPG signal
  • the PPG signal (Rawdata) is transmitted to the microcontroller unit (Microcontroller Unit, MCU) 712 of the smart watch 710 through a two-wire serial bus (Inter-Integrated Circuit, I2C).
  • the MCU 712 After storing the PPG signal, the MCU 712 sends the PPG signal to the smartphone 720 (second electronic device) through the communication device 713 (first communication device, for example, Bluetooth module) of the smart watch 710 .
  • the smartphone 720 includes a communication device 721 (a second communication device, for example, a Bluetooth module). After establishing a communication connection with the communication device 713, the communication device 721 receives the PPG signal sent by the communication device 713.
  • a communication device 721 a second communication device, for example, a Bluetooth module.
  • the processor 722 of the smart phone 720 (for example, the processor 722 can be the main processor of the smart phone 720) runs the computer program instructions related to blood pressure calculation stored in the memory 723, triggering the smart phone 720 to respond to the PPG signal received by the communication device 721 Analysis is performed, and the analyzed data (blood pressure calculation results) are systolic blood pressure (SBP) and diastolic blood pressure (DBP).
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the smart phone 720 directly displays the SBP/DBP on the display module 724 on the smart phone 720 (for example, through the APP interface), and on the other hand, sends the SBP/DBP back to the MCU 712 of the smart watch 710 through the communication device 721 and then displays the SBP/DBP on the smart watch 710.
  • Display module 714 of watch 710 displays (eg, via a MIPI interface).
  • each module is only a division of logical functions.
  • each module can be divided into The functionality of a module is implemented in the same or more software and/or hardware.
  • the device proposed in the embodiment of the present application may be fully or partially integrated into a physical entity, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in the form of hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in the form of hardware.
  • the detection module can be a separate processing element, or can be integrated into a chip of the electronic device.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or implemented independently.
  • each step of the above method or each of the above modules can be implemented through hardware integrated logic circuits in the processor element or instructions in the form of software. Finish.
  • An embodiment of the present application also provides an electronic device (for example, earphones, smart glasses, smart watches).
  • the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions.
  • the computer When the program instructions are executed by the processor, the electronic device is triggered to execute S310 as described in the embodiment of the present application.
  • An embodiment of the present application also provides an electronic device (for example, a smart watch, a smart phone).
  • the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions.
  • the computer program instructions When executed by the processor, the electronic device is triggered to execute S320-S350 as described in the embodiment of this application.
  • the processor of the electronic device may be an on-chip device SOC, and the processor may include a central processing unit (Central Processing Unit, CPU), and may further include other types of processors.
  • the processor of the electronic device may be a PWM control chip.
  • the processor involved may include, for example, a CPU, a DSP, a microcontroller or a digital signal processor, and may also include a GPU, embedded neural network processor (Neural-network Process Units, NPU). ) and an image signal processor (Image Signal Processing, ISP), which may also include necessary hardware accelerators or logic processing hardware circuits, such as ASIC, or one or more integrated circuits used to control the execution of the program of the technical solution of this application wait.
  • the processor may have functionality to operate one or more software programs, which may be stored in a storage medium.
  • the memory of the electronic device may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, or a random access memory (random access memory).
  • ROM read-only memory
  • RAM random access memory
  • dynamic storage devices that can store information and instructions
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can also be used to carry or Any computer-readable medium that stores desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • equipment, devices, and modules described in the embodiments of this application may be implemented by computer chips or entities, or by products with certain functions.
  • embodiments of the present application may be provided as methods, devices, or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media embodying computer-usable program code therein.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program that, when run on a computer, causes the computer to execute the method provided by the embodiment of the present application.
  • At least one of a, b and c can mean: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, also Can be multiple.
  • the terms “comprising”, “comprises” or any other variations thereof are intended to cover non-exclusive inclusion, such that a process, method, commodity or device that includes a series of elements not only includes those elements, but also includes Other elements are not expressly listed or are inherent to the process, method, article or equipment. Without further limitation, an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article, or device that includes the stated element.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本申请实施例提供一种血压测量设备以及系统。所述设备包括:光电体积描记法模组器件,其用于采集光电体积描记法信号;用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当所述计算机程序指令被所述处理器执行时,触发所述设备执行下述步骤:根据所述光电体积描记法信号生成第一波形;从所述第一波形中提取特征点;根据所述特征点计算血压值。根据本申请实施例的方法,基于PPG信号计算血压,可以使用可穿戴设备实现人体血压生理参数的测量,提高了血压测量的灵活性,拓展了血压测量的应用场景。

Description

一种血压测量设备和系统 技术领域
本申请涉及测量技术领域,特别涉及一种血压测量设备和系统。
背景技术
在现有技术的应用场景中,随着人类对于自身健康认知需求的日益增长以及智能穿戴设备的井喷式发布,可穿戴设备(例如智能手表),有测量血压的需求。
当前智能穿戴实现血压测量主要参照传统的袖带充气式检测,袖带式血压监测需要通过充放气过程,设备自动识别小脉冲并加以判别计算出血压,充放气过程会造成胳膊肿胀感,多次检测间需要时间休息,并且,充放气部件的结构复杂,在可穿戴设备上实现难度高,硬件成本高。
因此,需要一种新的血压测量设备。
发明内容
针对现有技术下如何确保PPG模组的测量准确性并降低PPG模组的功耗的问题,本申请提供了一种血压测量方法、装置和电子设备,本申请还提供一种计算机可读存储介质。
本申请实施例采用下述技术方案:
第一方面,本申请提供一种血压测量设备。在本申请的血压测量设备采集用户的光电体积描记法(photoplethysmography,PPG)信号,根据PPG信号计算血压。
具体的,血压测量设备包括:
光电体积描记法模组器件,其用于采集光电体积描记法信号;
用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被处理器执行时,触发血压测量设备执行下述步骤:
获取光电体积描记法模组器件采集的光电体积描记法信号;
根据光电体积描记法信号生成第一波形;
从第一波形中提取特征点;
根据特征点计算血压值。
由于光电体积描记法模组器件可以安装在可穿戴设备(例如,智能手表)上,并且,PPG信号计算血压的过程也可以由可穿戴设备(例如,智能手表)完成,因此,基于本申请实施例的血压测量设备,可以由可穿戴设备实现血压测量,这就提高了血压测量的灵活性,拓展了血压测量的应用场景。
进一步的,根据本申请实施例的血压测量设备,无需使用袖带充气式测量器件,因此可有效避免采用袖带充气式测量时多次充放气过程带来的肿胀等身体不适问题, 使得连续测量血压的可能性大为提升;并且,相较于袖带充气式测量设备,本申请实施例的血压测量设备的结构更加简化,从而可以有效控制硬件成本;进一步的,本申请实施例的血压测量设备的信号获取以及数据处理流程均可以采用低功耗芯片实现,因此可以大大降低血压测量设备在进行血压测量时的功耗,提高设备续航时间。
进一步的,在血压测量设备的一种实现方式中,血压测量设备为智能手表。光电体积描记法模组器件安装在智能手表的表侧。
进一步的,在计算机程序指令被处理器执行,触发血压测量设备执行从第一波形中提取特征点的过程中:血压测量设备对第一波形进行滤波处理,获取第一波形的滤波结果;血压测量设备对第一波形的滤波结果进行特征点识别,提取特征点。
具体的,在上述步骤中,血压测量设备利用求导数算方法提取表征脉搏波特性的特征点。
进一步的,在计算机程序指令被处理器执行,触发血压测量设备执行根据特征点计算血压值的过程中,血压测量设备使用血压计算模型计算血压值,该血压计算模型为深度学习模型,该血压计算模型的输入为特征点,该血压计算模型的输出为所述血压值。
进一步的,血压计算模型可以采用模型训练的方式获取。具体的,模型训练使用的样本覆盖男性/女性、高血压/超高血压/低血压以及具有高血压病史的人群。受测样本使用该方案设备测试血压值并记录,再用金标水银血压计复测,并与该设备测试值进行对比校准,将补偿值写入测试设备。通过使用大量样本进行测试校准来训练模型,最终得到合适的样本模型以及准确的血压值。
第二方面,本申请还提出了一种血压测量设备,该血压测量设备从其他设备处获取用户的PPG信号,并根据PPG信号计算血压(实施过程可以参照第一方面的血压测量设备)。
具体的,血压测量设备包括:
通信装置,其用于与光电体积描记法信号的采集设备建立通信连接,接收采集设备发送的光电体积描记法信号;
用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被处理器执行时,触发血压测量设备执行下述步骤:
获取通信装置接收到的光电体积描记法信号;
根据光电体积描记法信号生成第一波形;
从第一波形中提取特征点;
根据特征点计算血压值。
这样,光电体积描记法信号的采集与血压计算的执行设备相互独立,大大降低了单个设备的数据处理压力,提高了单个设备的续航时间。例如,血压测量设备为智能手表或智能手机。
第三方面,本申请还提出了一种血压测量系统,该血压测量系统包括第一电子设备 以及第二电子设备,其中:
第一电子设备包括:光电体积描记法模组器件,其用于获取光电体积描记法信号;第一通信装置,其用于与第二电子设备建立通信连接,向第二电子设备输出光电体积描记法信号;
第二电子设备包括:第二通信装置,其用于与第一电子设备建立通信连接,接收第一电子设备发送的光电体积描记法信号;用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被所述处理器执行时,触发设备执行下述步骤:
获取通信装置接收到的光电体积描记法信号;
根据光电体积描记法信号生成第一波形;
从第一波形中提取特征点;
根据特征点计算血压值。
这样,第一电子设备可以将光电体积描记法信号发送给第二电子设备,从而使得两台设备相互配合实现血压测量。
具体的,在一种实现方式中,第一电子设备为智能手表,第二电子设备为智能手表。
第三方面,本申请还提出了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行下述方法流程:
获取光电体积描记法信号;
根据光电体积描记法信号生成第一波形;
从第一波形中提取特征点;
根据特征点计算血压值。
附图说明
图1所示为根据本申请一实施例的PPG模组示意图;
图2所示为根据本申请实施例的血压测量设备结构示意图;
图3所示为根据本申请实施例的血压测量方法流程图;
图4所示为根据本申请实施例的智能手表侧视图;
图5所示为根据本申请实施例的接收区纵切剖视图;
图6所示为根据本申请实施例的PPG波形图;
图7所示为根据本申请实施例的血压测量系统示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
针对可穿戴设备的血压测量方案,一种可行的实现方案是采用袖带充气式测量。但是,采用袖带充气式测量时,多次充放气过程会带来肿胀等身体不适问题,这会大大降低用户体验,并使得连续测量血压的可能性大为降低。
进一步的,采用袖带充气式测量,在结构方面,微型袖带式测量血压方案,因气泵的使用,表体结构较为复杂,由此一来,可穿戴设备实现其他功能的空间被大量占据,可穿戴设备的硬件成本会显著增加。
进一步的,采用袖带充气式测量,在功耗方面,因考虑测量血压时,气泵需借助电源实现充放气过程,因此该血压测量方案无疑间使得可穿戴设备的功耗大为增加,可穿戴设备的续航被显著缩短。
针对上述测量血压方案的缺陷,本申请提供一种血压测量设备。本申请实施例的血压测量设备根据光电体积描记法(photoplethysmography,PPG)信号测量血压。
在光电体积描记法中,基于PPG模组实现PPG测量。PPG模组的工作流程通常包含:PPG模组中的发光二极管(light-emitting diode,LED)的发光;光线照射到人体皮肤后反射;反射光由PPG模组中光电二极管(Photo-Diode,PD)采集,获取反射光数据(模拟信号数据)。反射光数据被发送到PPG模组的模拟前端(analog front end,AFE)器件。AFE器件对反射光数据(模拟信号数据)进行采样以生成PPG信号数据(Rawdata)。
图1所示为根据本申请一实施例的PPG模组示意图。如图1所示,PPG模组包含红外光发光二极管(LED)以及光电晶体管(PD)。LED发出的红外光经皮肤反射后被PD采集从而生成PPG信号。
图2所示为根据本申请实施例的血压测量设备结构示意图。
如图2所示,血压测量设备200包含光电体积描记法模组器件201。光电体积描记法模组器件201用于采集光电体积描记法信号,光电体积描记法模组器件201的工作原理可以参照图1所示的PPG模组。
进一步的,血压测量设备200还包括用于存储计算机程序指令的存储器202和用于执行计算机程序指令的处理器203,其中,当存储器202中存储的与血压计算相关的计算机程序指令被处理器203执行时,触发血压测量设备200根据光电体积描记法模组器件201采集到的PPG信号计算血压。
具体的,图3所示为根据本申请实施例的血压测量方法流程图。当存储器202中存储的与血压计算相关的计算机程序指令被处理器203执行时,触发血压测量设备200执行如图3所示的方法流程以实现血压测量。
S310,获取光电体积描记法模组器件201采集的PPG信号;
具体的,由于对于血压检测来说,需要的波形细节更多;因此,在S310的一种实现方式中,将光电体积描记法模组器件201的AFE的采样率设为500Hz,AFE采样位数21bit以上。这样,就可以生成波形细节足够丰富的PPG波形。
进一步的,针对血压测量,为了使得反射光数据可以准确反映血管内血流变化,增加光线的穿透性,降低皮肤组织对光线的干扰,光电体积描记法模组器件201的发射红外光的LED的红外光波段为880nm。
进一步的,根据实际应用场景的需求不同,光电体积描记法模组器件201可以采用不同的硬件配置。例如,在一实现方式中,光电体积描记法模组器件201的LED为集成模组LED,其包含发射红外光(880nm波段红外光)以及绿光的部件,绿光及红外光分别用于心率、血压检测。
进一步的,本申请实施例对光电体积描记法模组器件201在血压测量设备200上的安装位置以及安装结构配置不做具体限定。本领域的技术人员可以根据实际需求设计光电体积描记法模组器件201在血压测量设备200上的安装位置以及安装结构配置。
例如,在一种实现方式中,血压测量设备200为智能手表。在智能手表的表背开窗,光电体积描记法模组器件201可以嵌入安装在智能手表的表背的开窗位置。在用户佩戴智能手表时,智能手表的表背与用户手腕皮肤紧贴,光电体积描记法模组器件201可以通过表背内侧的开窗实现光线照射到手腕皮肤以及采集手腕皮肤的反射光数据。
又例如,在另一种实现方式中,血压测量设备200为智能手表。在智能手表的侧面开窗,光电体积描记法模组器件201可以安装在智能手表的侧面的开窗位置。在用户佩戴智能手表时,如果需要进行PPG信号采集,用户将手指覆盖在智能手表的侧面的开窗位置,光电体积描记法模组器件201可以通过智能手表的侧面的开窗实现光线照射到手指皮肤以及采集手腕皮肤的反射光数据从而获取PPG信号。
图4所示为根据本申请实施例的智能手表侧视图。如图4所示,在智能手表右侧两按键(按键401以及按键402)之间开窗(410),窗口410大小7.1*5.7mm。
窗口410上覆盖透明材质盖板(例如,玻璃或亚克力),窗口410的透明盖板内部为光电体积描记法模组器件201,光电体积描记法模组器件201集成AFE、LED及PD。PPG模组器件的AFE、LED及PD采用系统级封装(System In a Package,SIP)工艺封装到PCB基板,PPG模组器件大小为4.3*2.9*1.4mm。
光电体积描记法模组器件201对外分为两个区域:发光区(411)及接收区(412)。
在测量血压时,用户指尖紧贴窗口410,覆盖发光区411以及接收区412。发光区411内部的LED发射红外光达到指尖皮肤至血管内部,反射回光通过接收区412由光电体积描记法模组器件201的PD接收。
图5所示为根据本申请实施例的接收区纵切剖视图。如图5所示,510为窗口区域(窗口410)覆盖的透明盖板。透明盖板510采用亚克力材质。透明盖板510的厚度 为0.7mm。透明盖板510的底部直面上喷涂IR油墨,以确保红外光的透光率。透明盖板510的外层(顶面)为弧面并作加硬处理,以保证强度满足日程使用中的剐蹭、划痕等。
透明盖板510底部,对应PD的位置511开槽,开槽宽度0.2mm、高度0.3mm。透明盖板510下方安装光电体积描记法模组器件201。为了防止光线内部串扰,透明盖板510底面与PPG模组器件间隙(512)为0.2mm,同时,光电体积描记法模组器件201外层加遮光泡棉(513、514)防止光路发散。
在获取到光电体积描记法模组器件201采集的PPG信号之后,血压测量设备200就可以根据PPG信号计算用户血压。
S320,对PPG信号进行波形拟合,获取第一波形。
S321,对S320拟合的波形(第一波形)进行滤波处理,获取第一波形的滤波结果。
具体的,由于一些环境光噪声印象,原始PPG波形会有毛刺,不易于识别特征点,因此先预处理通过滑动滤波消除毛刺。
例如,图6所示为根据本申请实施例的PPG波形图。
在一应用场景中,在S320中,对PPG信号(Rawdata)拟合脉搏波波形(第一波形)。在S321中,针对拟合的脉搏波波形进行滤波处理,得到PPG波形如图6所示(脉搏波波形的滤波结果)。
S330,对第一波形的滤波结果(脉搏波波形的滤波结果)进行特征点识别,提取特征点。
具体的,在S330中,利用求导等数算方法提取若干表征脉搏波特性的特征点。
例如,图6中A、B、C、D、E五个特征点,分别对应主波谷及起点、主波峰、次波谷、次波峰、终点及下一个周期的起点。A、E两点均为主波谷。这里需要说明的是,A、B、C、D、E五个特征点仅仅是特征点举例。通过自适应阈值法,对PPG信号的二阶导函数的主波峰进行识别,确定A点。B点是PPG波形极大值点,对应一阶导数中第一个从正到负的零点。C点为PPG信号的局部极小值点,对应一阶导数信号中,一个由负到正的过零点。D点对应一阶导数信号中,一个由正到负的过零点。由此提取出A、B、C、D、E五个特征点。
在S330中,识别的特征点可以包含但不限于A、B、C、D、E五个特征点。例如,在一应用场景中,S330中提取的特征点超过20个。
在S330之后,执行S340,根据S330提取的特征点计算血压。
具体的,在S340的一种实现方式中,使用血压计算模型计算血压。血压计算模型为深度学习模型,血压计算模型的输入项为特征点后,输出项为血压值。
S340中所采用的血压计算模型可以通过模型训练的方式获取。具体的,获取样本 人群的PPG测量结果并提取PPG波形的特征点;同时,测量样本人群的血压值(例如,采用金标水银血压计进行测量)。将相互对应的PPG波形的特征点以及血压值作为训练样本训练血压计算模型,在血压计算模型内部构建PPG波形的特征点与血压值之间的匹配关系,使得血压计算模型可以根据PPG波形的特征点输出对应的血压值。模型训练使用的样本覆盖男性/女性、高血压/超高血压/低血压以及具有高血压病史的人群。
进一步,在血压计算模型训练完成后还可以对血压计算模型进行测试校准。具体的,针对受测样本人群使用本申请的方案,基于血压计算模型测试血压值并记录。针对受测样本人群再用金标水银血压计复测,将金标水银血压计的测量结果与基于第一血压计算模型的测量结果进行对比校准,将补偿值写入血压计算模型。通过使用大量样本进行测试校准来训练血压计算模型,最终得到合适的样本模型以及准确的血压值。
由于光电体积描记法模组器件可以安装在可穿戴设备(例如,智能手表)上,并且,根据PPG信号计算血压的计算过程也可以由可穿戴设备(例如,智能手表)完成,因此,基于本申请实施例的血压测量设备,可以由可穿戴设备实现血压测量,这就提高了血压测量的灵活性,拓展了血压测量的应用场景。
进一步的,根据本申请实施例的血压测量设备,无需使用袖带充气式测量器件,因此可有效避免采用袖带充气式测量时多次充放气过程带来的肿胀等身体不适问题,使得连续测量血压的可能性大为提升;并且,相较于袖带充气式测量设备,本申请实施例的血压测量设备的结构更加简化,从而可以有效控制硬件成本;进一步的,本申请实施例的血压测量设备的信号获取以及数据处理流程均可以采用低功耗芯片实现,因此可以大大降低血压测量设备在进行血压测量时的功耗,提高设备续航时间。
进一步的,在图2所示的实施例中,采用同一设备实现PPG信号的采集以及血压值的计算。在另一实施例中,也可以采用不同的设备分别实现PPG信号的采集以及血压值的计算。本申请提供一种血压测量系统,该系统包括用于采集PPG信号的设备(第一电子设备)以及计算血压值的设备(第二电子设备)。这样,光电体积描记法信号的采集与血压计算的执行设备相互独立,大大降低了单个设备的数据处理压力,提高了单个设备的续航时间。
例如,图7所示为根据本申请实施例的血压测量应用场景示意图。
如图7所示,智能手表710(第一电子设备)中安装有光电体积描记法模组器件711(参照光电体积描记法模组器件201),光电体积描记法模组器件711在智能手表710上的安装方式可以参照图4以及图5所示实施例的描述。
光电体积描记法模组器件711包含集成模组LED,集成模组LED可以发射红光、 红外光(880nm波段)以及绿光。绿光及红外分别用于心率、血压检测。红光以及红外光用于血氧检测。
光电体积描记法模组器件711还包含PD器件,PD器件接收面积为1.74*2.03mm,其收到的反射光数据表现为光生电流模拟小信号。
光电体积描记法模组器件711还包含AFE器件,AFE器件的采样率设为500Hz,AFE采样位数21bit以上。为最小化器件尺寸,AFE器件为裸die封装。
在进行血压测量时,光电体积描记法模组器件711的集成模组LED发射红外光,红外光照射人体皮肤内血管,反射光被光电体积描记法模组器件711的PD器件接收,PD器件生成发射光数据(光生电流模拟小信号)。PD器件采集到的反射光数据传入光电体积描记法模组器件711的AFE器件,光电体积描记法模组器件711的AFE器件对模拟信号进行采样生成PPG信号(Rawdata)。
PPG信号(Rawdata)通过两线式串行总线(Inter-Integrated Circuit,I2C)传给智能手表710的微控制单元(Microcontroller Unit,MCU)712。MCU712存储PPG信号后通过智能手表710的通信装置713(第一通信装置,例如,蓝牙模块)将PPG信号发送给智能手机720(第二电子设备)。
智能手机720包含通信装置721(第二通信装置,例如,蓝牙模块)。通信装置721与通信装置713建立通信连接后,接收通信装置713发送的PPG信号。
智能手机720的处理器722(例如,处理器722可以是智能手机720的主处理器)运行存储器723中存储的血压计算相关的计算机程序指令,触发智能手机720对通信装置721接收到的PPG信号进行解析,解析后数据(血压计算结果)为收缩压(SBP)和舒张压(DBP)。(血压计算过程可以参照图3所示流程)
智能手机720将SBP/DBP一方面直接在智能手机720上的显示模块724显示(例如,通过APP接口),另一方面通过通信装置721将SBP/DBP回传给智能手表710的MCU712进而在智能手表710的显示模块714显示(例如,通过MIPI接口)。
在本申请实施例的描述中,为了描述的方便,描述装置时以功能分为各种模块分别描述,各个模块的划分仅仅是一种逻辑功能的划分,在实施本申请实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
具体的,本申请实施例所提出的装置在实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,检测模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令 完成。
本申请一实施例还提出了一种电子设备(例如,耳机、智能眼镜、智能手表),电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发电子设备执行如本申请实施例所述的S310。
本申请一实施例还提出了一种电子设备(例如,智能手表、智能手机),电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发电子设备执行如本申请实施例所述的S320-S350。
具体的,在本申请一实施例中,上述一个或多个计算机程序被存储在上述存储器中,上述一个或多个计算机程序包括指令,当上述指令被上述设备执行时,使得上述设备执行本申请实施例所述的方法步骤。
具体的,在本申请一实施例中,电子设备的处理器可以是片上装置SOC,该处理器中可以包括中央处理器(Central Processing Unit,CPU),还可以进一步包括其他类型的处理器。具体的,在本申请一实施例中,电子设备的处理器可以是PWM控制芯片。
具体的,在本申请一实施例中,涉及的处理器可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units,NPU)和图像信号处理器(Image Signal Processing,ISP),该处理器还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
具体的,在本申请一实施例中,电子设备的存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何计算机可读介质。
具体的,在本申请一实施例中,处理器可以和存储器可以合成一个处理装置,更常见的是彼此独立的部件,处理器用于执行存储器中存储的程序代码来实现本申请实施例所述方法。具体实现时,该存储器也可以集成在处理器中,或者,独立于处理器。
进一步的,本申请实施例阐明的设备、装置、模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
具体的,本申请一实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请一实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请中的实施例描述是参照根据本申请实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。 例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以意识到,本申请实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种血压测量设备,其特征在于,所述设备包括:
    光电体积描记法模组器件,其用于采集光电体积描记法信号;
    用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当所述计算机程序指令被所述处理器执行时,触发所述设备执行下述步骤:
    获取所述光电体积描记法模组器件采集的光电体积描记法信号;
    根据所述光电体积描记法信号生成第一波形;
    从所述第一波形中提取特征点;
    根据所述特征点计算血压值。
  2. 根据权利要求1所述的设备,其特征在于,所述设备为智能手表。
  3. 根据权利要求2所述的设备,其特征在于,所述光电体积描记法模组器件安装在所述智能手表的表侧。
  4. 根据权利要求1-3中任一项所述的设备,其特征在于,在所述计算机程序指令被所述处理器执行,触发所述设备执行所述从所述第一波形中提取特征点的过程中:
    所述设备对所述第一波形进行滤波处理,获取第一波形的滤波结果;
    所述设备对所述第一波形的滤波结果进行特征点识别,提取所述特征点。
  5. 根据权利要求4所述的设备,其特征在于,在所述计算机程序指令被所述处理器执行,触发所述设备执行所述提取所述特征点的过程中:
    所述设备利用求导数算方法提取表征脉搏波特性的所述特征点。
  6. 根据权利要求1-3中任一项所述的设备,其特征在于,在所述计算机程序指令被所述处理器执行,触发所述设备执行所述根据所述特征点计算血压值的过程中:
    所述设备使用血压计算模型计算所述血压值,所述血压计算模型为深度学习模型,所述血压计算模型的输入为所述特征点,所述血压计算模型的输出为所述血压值。
  7. 一种电子设备,其特征在于,所述电子设备包括:
    通信装置,其用于与光电体积描记法信号的采集设备建立通信连接,接收所述采集设备发送的光电体积描记法信号;
    用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当所述计算机程序指令被所述处理器执行时,触发所述设备执行下述步骤:
    获取所述通信装置接收到的所述光电体积描记法信号;
    根据所述光电体积描记法信号生成第一波形;
    从所述第一波形中提取特征点;
    根据所述特征点计算血压值。
  8. 根据权利要求7所述的设备,其特征在于,所述电子设备为智能手表或智能手机。
  9. 一种血压测量系统,其特征在于,所述系统包括第一电子设备以及第二电子设备,其中:
    所述第一电子设备包括:光电体积描记法模组器件,其用于采集光电体积描记法信号;第一通信装置,其用于与所述第二电子设备建立通信连接,向所述第二电子设备输出所述光电体积描记法模组器件采集的光电体积描记法信号;
    所述第二电子设备包括:第二通信装置,其用于与所述第一电子设备建立通信连接,接收所述第一电子设备发送的所述光电体积描记法信号;用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当所述计算机程序指令被所述处理器执行时,触发所述设备执行下述步骤:
    获取所述第二通信装置接收到的所述光电体积描记法信号;
    根据所述光电体积描记法信号生成第一波形;
    从所述第一波形中提取特征点;
    根据所述特征点计算血压值。
  10. 根据权利要求9所述的系统,其特征在于,所述第一电子设备为智能手表,所述第二电子设备为智能手机。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行下述方法流程:
    获取光电体积描记法信号;
    根据所述光电体积描记法信号生成第一波形;
    从所述第一波形中提取特征点;
    根据所述特征点计算血压值。
PCT/CN2023/088666 2022-06-10 2023-04-17 一种血压测量设备和系统 WO2023236658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210658106.5A CN117243580A (zh) 2022-06-10 2022-06-10 一种血压测量设备和系统
CN202210658106.5 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023236658A1 true WO2023236658A1 (zh) 2023-12-14

Family

ID=89117553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088666 WO2023236658A1 (zh) 2022-06-10 2023-04-17 一种血压测量设备和系统

Country Status (2)

Country Link
CN (1) CN117243580A (zh)
WO (1) WO2023236658A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137067A (zh) * 2017-05-04 2017-09-08 深圳市松恩电子科技有限公司 一种脉搏波连续血压监测装置
CN107928654A (zh) * 2017-12-11 2018-04-20 重庆邮电大学 一种基于神经网络的脉搏波信号血压检测方法
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN112089405A (zh) * 2020-08-26 2020-12-18 上海大学 一种脉搏波特征参数测量及显示装置
CN112168155A (zh) * 2020-10-28 2021-01-05 广东小天才科技有限公司 一种血压检测方法、可穿戴设备以及计算机可读存储介质
CN113907727A (zh) * 2021-08-26 2022-01-11 中科数字健康科学研究院(南京)有限公司 基于光电容积脉搏波描记的逐拍血压测量系统和方法
CN114159038A (zh) * 2022-01-05 2022-03-11 维沃移动通信有限公司 血压测量方法、装置、电子设备和可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137067A (zh) * 2017-05-04 2017-09-08 深圳市松恩电子科技有限公司 一种脉搏波连续血压监测装置
CN107928654A (zh) * 2017-12-11 2018-04-20 重庆邮电大学 一种基于神经网络的脉搏波信号血压检测方法
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN112089405A (zh) * 2020-08-26 2020-12-18 上海大学 一种脉搏波特征参数测量及显示装置
CN112168155A (zh) * 2020-10-28 2021-01-05 广东小天才科技有限公司 一种血压检测方法、可穿戴设备以及计算机可读存储介质
CN113907727A (zh) * 2021-08-26 2022-01-11 中科数字健康科学研究院(南京)有限公司 基于光电容积脉搏波描记的逐拍血压测量系统和方法
CN114159038A (zh) * 2022-01-05 2022-03-11 维沃移动通信有限公司 血压测量方法、装置、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN117243580A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
JP6659830B2 (ja) 生体情報分析装置、システム、及び、プログラム
CN107580471B (zh) 可穿戴脉搏感测设备信号质量估计
TWI657796B (zh) 生理資料提供方法及可穿戴感測器平台
KR102344929B1 (ko) 모바일 디바이스를 사용하여 신체 기능 측정들을 획득하기 위한 시스템 및 방법
KR102371573B1 (ko) 모바일 디바이스를 사용하여 신체 기능 측정들을 획득하기 위한 시스템 및 방법
US11317814B2 (en) Systems and methods for collecting physiological information of a user
US20170112395A1 (en) Method and apparatus for estimating blood pressure
CN108366749A (zh) 动态血压与生命体征监测装置、系统和方法
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
CN106419879B (zh) 基于桡动脉生物传感器技术的血压动态监测系统及方法
US20220183569A1 (en) Blood Pressure Assessment Using Features Extracted Through Deep Learning
US20210145363A1 (en) Measuring device
CN112426141A (zh) 血压检测方法、装置以及电子设备
Steinman et al. Smartphones and video cameras: future methods for blood pressure measurement
WO2015143729A1 (zh) 一种脉象检测装置及测量方法、相关装置和通信系统
CN105392418B (zh) 一种血压检测装置及相关装置和通信系统
US10201312B2 (en) Opportunistic measurements and processing of user's context
US20210353165A1 (en) Pressure Assessment Using Pulse Wave Velocity
CN108430310A (zh) 评估血压测量结果的可靠性的方法和用于实施该方法的装置
US20210085259A1 (en) Apparatus and method for estimating bio-information
WO2023236658A1 (zh) 一种血压测量设备和系统
TWI563969B (zh) 生理資訊之計算機分析方法及裝置
GB2600126A (en) Improvements in or relating to wearable sensor apparatus
CN105377125B (zh) 一种血压检测装置及相关装置和通信系统
CN115607128A (zh) 智能手表和血压测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818826

Country of ref document: EP

Kind code of ref document: A1