WO2023236490A1 - 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构 - Google Patents

一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构 Download PDF

Info

Publication number
WO2023236490A1
WO2023236490A1 PCT/CN2022/139478 CN2022139478W WO2023236490A1 WO 2023236490 A1 WO2023236490 A1 WO 2023236490A1 CN 2022139478 W CN2022139478 W CN 2022139478W WO 2023236490 A1 WO2023236490 A1 WO 2023236490A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fast
slow
printing
light
Prior art date
Application number
PCT/CN2022/139478
Other languages
English (en)
French (fr)
Inventor
黄舒
张航
周建忠
盛杰
魏洁安
杨宏伟
王程
单铭远
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US18/273,034 priority Critical patent/US20240140023A1/en
Publication of WO2023236490A1 publication Critical patent/WO2023236490A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of light-curing 4D printing, and in particular to a light-curing 4D printing method of a multi-layer structure with adjustable shape recovery speed and its multi-layer structure.
  • Light-curing printing is a 3D printing technology that emits ultraviolet light from a laser source or projector to the liquid surface of a photosensitive material, triggering a photopolymerization reaction and solidifying it layer by layer to print out an entity. It is one of the most mature technologies in 3D printing. It has the advantages of high printing accuracy, fast printing speed, and wide range of material selection, so it is also frequently used in 4D printing research.
  • Shape memory polymer (SMP) is the main research material in current light-curing 4D printing technology. After the photosensitive resin is irradiated by light, the polymer chains continue to expand and cross-link. Macroscopically, the SMP solidifies into an entity.
  • Shape recovery speed is an important performance of light-curing printed SMP.
  • SMP is thermally responsively driven in hot water/oil
  • the shape recovery speed is faster (several seconds to more than ten seconds), and when SMP is doped or embedded with electrons
  • the speed of heat generation and heat conduction is slowed down, and the shape recovery speed is also slow (more than 5 times slower than the thermal response), so it is difficult to apply to some objects.
  • elastomers combined with SMP to form a double layer or cross to form a multi-layer structure to obtain better shape memory performance
  • the shape recovery speed can also be adjusted by adjusting the layer thickness.
  • the elastomer used is in a highly elastic state at room temperature. When the content of the elastomer is high, the shape fixation rate of the material is low due to the tendency of the elastomer to rebound, although the shape recovery speed and shape recovery rate are improved. , but it sacrifices the shape fixation rate, and the multi-layer cross-structure of dissimilar materials between SMP and elastomer is not conducive to rapid photo-curing printing with surface exposure such as digital light processing (DLP), which greatly increases the printing time.
  • DLP digital light processing
  • the prior art discloses a method for regulating the shape memory behavior of electrically responsive composite materials.
  • the heat-affected zone in the electrically responsive shape memory folding and unfolding structure is controlled.
  • the distribution and range, the competitive relationship between the structural recovery force and the force that hinders recovery thereby achieving the control of the structural shape recovery speed and shape recovery degree.
  • a method for regulating the SMP electrical response shape recovery speed has been proposed, it does not help improve the thermal response shape recovery speed, and the embedding of multi-layer electrothermal layers also increases the thickness of the printed parts to a certain extent.
  • the present invention provides a light-curing 4D printing method and a multi-layer structure with adjustable shape recovery speed, and solves the problem of thermal and electrical response shape recovery of light-cured 4D printed shape memory polymers.
  • a multi-layered shape memory structure with variable cross-linking degree is designed, which not only improves the shape recovery speed and shape recovery rate, but also allows the structure to maintain a high shape fixation rate at room temperature; a transition layer is provided to
  • carbon nanometer light-absorbing materials are used to dope the low cross-linked layer to solve the problem of excessive printing of the high cross-linked layer onto the low cross-linked layer.
  • the problem of solidification; through the series connection between multi-layer structures, the sequential shape memory recovery and multiple deformation behaviors of the series system can be achieved.
  • the ultraviolet irradiation energy used by the slow layer during printing is I slow
  • the degree of molecular chain cross-linking of the slow layer during printing is D slow ;
  • the ultraviolet irradiation energy used by the fast layer during printing is I fast ; the molecular chain cross-linking degree of the fast layer during printing is D fast ; I slow > I fast , and D Slow > D fast ; the fast layer includes carbon nano-light-absorbing materials, which are used to absorb ultraviolet light to reduce the exposure energy of the incident light, thereby reducing the degree of molecular chain cross-linking of the fast layer and reducing the printing of the next slow layer.
  • overexposure of the fast layer avoid overexposure of the interface on the contact side between the fast layer and the next slow layer, which will lead to an increase in the degree of molecular cross-linking;
  • the ultraviolet irradiation energy I of printing the slow layer is 4 times that of the ultraviolet irradiation energy I of printing the fast layer.
  • the transformation temperature of the slow layer material after printing is the highest when the shape memory phenomenon occurs, and the shape is restored.
  • the speed is the slowest, and plays a role in stabilizing the shape fixation rate when the shape of the multi-layer structure is fixed, and ensuring that the surface of the multi-layer structure has high hardness.
  • the carbon nanomaterial in the fast layer is one or a mixture of carbon nanotubes and graphene, and the weight fraction of the carbon nanomaterial in the fast layer is 0.6%.
  • a light-curing 4D printing multi-layer structure The multi-layer structure printed according to the light-curing 4D printing method of the shape recovery speed-adjustable multi-layer structure includes a number of deformation units. Several deformation units are connected in series in sequence. Each of the deformation units It includes a slow layer, a fast layer and a transition layer; a fast layer is provided between the two slow layers, and a transition layer is provided between at least one slow layer and the fast layer.
  • each deformation unit is the same, and the layer thickness proportion of the fast layer in each deformation unit is sequentially increased or the slow layer in each deformation unit is sequentially decreased according to the series connection sequence of the deformation units.
  • the layer thickness ratio is used to achieve sequential shape memory recovery.
  • a transition layer is provided between the slow layer and the fast layer, which solves the problem of low molecular cross-linking.
  • the problem that the fast layer cannot print on the slow layer with a high degree of polymer cross-linking improves the interlayer adhesion between the fast layer and the slow layer.
  • Figure 1 is a schematic diagram of the multi-layer photocuring 4D printing according to the present invention and a printing sequence diagram.
  • Figure 5 is a schematic diagram of achieving deformation behavior 2 by changing the series connection of multi-layer structures.
  • the method for regulating the shape recovery speed of the multi-layer structure of the present invention is as follows:
  • S01 Print the first slow layer 1.
  • the ultraviolet irradiation energy used in printing the first slow layer 1 is 180mJ/cm 2 , and the degree of molecular chain cross-linking is 90%.
  • the transition temperature at which the shape memory phenomenon occurs in the first slow layer 1 after printing is 70°C.
  • S02 Print transition layer 2.
  • the ultraviolet light energies in the direction away from the slow layer are 135mJ/cm 2 , 90mJ/cm 2 and 45mJ/cm 2 respectively.
  • S03 Print quick layer 3.
  • the ultraviolet light irradiation energy used is 45mJ/cm 2 , and the transition temperature for the shape memory phenomenon of the material after printing is 35°C.
  • the doped carbon nanotubes are used to absorb ultraviolet light to reduce the exposure energy of the incident light, thereby reducing the molecules of the fast layer.
  • the degree of chain cross-linking, the degree of molecular chain cross-linking is 50%, and the over-exposure of the fast layer when printing the second slow layer 4 is reduced to avoid over-exposure of the interface on the contact side between the fast layer 3 and the second slow layer 4 This leads to an increase in the degree of molecular cross-linking.
  • deformation units with different shape recovery speeds are manufactured by adjusting the layer thickness ratio of fast layer 3.
  • the shape recovery speed of the deformation unit is positively correlated with the layer thickness ratio of fast layer 3.
  • the thickness of transition layer 2 of deformation unit A, deformation unit B, deformation unit C, and deformation unit D is all 0.3mm.
  • the thickness of fast layer 3 of deformation unit A is 0.3mm.
  • the thickness of fast layer 3 of deformation unit B is 0.3mm.
  • the thickness of layer 3 is 0.8mm, the thickness of fast layer 3 of deformation unit C is 1.3mm, and the thickness of fast layer 3 of deformation unit D is 1.8mm; put deformation unit A, deformation unit B, deformation unit C, deformation unit D They are connected in series, bent and recovered in hot water at 80°C.
  • two deformation units D are connected in series, and a deformation unit A is connected in series on both sides.
  • the series system is placed in hot water at 80°C for shape recovery. Due to the shape recovery speed of the two deformation units D Relatively fast, thus enabling shape recovery behavior1.
  • two deformation units A are connected in series, and one deformation unit D is connected in series on both sides.
  • the series system is placed in hot water at 80°C for shape recovery, and shape recovery behavior 2 can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Abstract

提供了一种形状回复速度可调多层结构的光固化4D打印方法及其多层结构,根据形状回复速度可调多层结构的光固化4D打印方法打印的多层结构包括若干变形单元,若干变形单元依次串联,每一变形单元包括慢速层、快速层(3)和过渡层(2);两个慢速层之间设有快速层(3),至少一层慢速层与快速层(3)之间设有过渡层(2)。用碳纳米吸光材料掺杂低交联层,解决高交联层打印至低交联层上容易使低交联层过度固化的问题。

Description

一种形状回复速度可调多层结构的光固化4D打印方法及其多层结构 技术领域
本发明涉及光固化4D打印技术领域,尤其涉及一种形状回复速度可调多层结构的光固化4D打印方法及其多层结构。
背景技术
光固化打印是通过激光源或投影仪发射紫外光照射到光敏材料的液面,引发光聚合反应并逐层固化打印出实体的3D打印技术,是3D打印中发展最为成熟的技术之一,由于具有打印精度高、打印速度快、材料选择范围广等优点,所以其在4D打印的研究中也被频繁地应用。形状记忆聚合物(SMP)是当前光固化4D打印技术中的主要研究材料,光敏树脂受光辐照后高分子链不断扩链交联,宏观上表现为SMP固化为实体,因此光固化4D打印SMP不同于熔融沉积打印(FDM)等其他SMP打印方式,其成形过程伴随着化学反应的发生。形状回复速度是光固化打印SMP的一个重要性能,当SMP在热水/油中进行热响应驱动时,形状回复速度较快(几秒至十几秒),而当SMP中掺杂或嵌入电、磁粒子或电热层以进行电、磁响应驱动时,由于生热和热传导的速度减缓,其形状回复速度又较慢(相比热响应减慢了5倍以上),故难以适用于一些对形状回复速度广泛可调的领域,如延时开关、释药结构等。因此在不改变打印件尺寸的前提下对光固化打印SMP的形状回复速度进行调控,具有重要的实用意义。
如现有技术都提出了布置弹性体与SMP结合形成双层或交叉形成多层结构以获得较优的形状记忆性能,通过层厚的调整还对形状回复速度进行调整。但其采用的弹性体,常温下处于高弹态,当弹性体的含量较高时,由于弹性体存在回弹的趋势,材料的形状固定率较低,虽然提升了形状回复速度和形状回复率,但却牺牲了形状固定率,而且SMP与弹性体的异种材料多层交叉结构也不利于数字光处理(DLP)等面曝光的光固化快速打印成形,大大增加了打印的时间。现有技术公开了一种电响应复合材料形状记忆行为的调控方法,通过嵌入多层电热层,通过对通电电热层数目以及通电电压大小的调整,控制电响应形状记忆折叠展开结构内热影响区的分布及范围,结构回复力与阻碍回复的力之间的竞争关系,从而实现对结构形状回复速度以及形状回复程度的调控。虽然提出了SMP电响应形状回复速度的调控方法,但对于热响应形状回复速度的提升并无帮助作用,而且多层电热层的嵌入也在一定程度上增加了打印件的厚度。
发明内容
针对现有技术中存在的不足,本发明提供了一种形状回复速度可调多层结构的光固化4D打印方法及其多层结构,解决光固化4D打印形状记忆聚合物热、电响应形状回复速度的调控问题,设计了交联程度可变的多层形状记忆结构,在提升形状回复速度和形状回复率的同时,使得结构在常温下还能保持较高的形状固定率;设置过渡层,解决低交联层打印至高交联层上粘接力不强的问题,采用碳纳米吸光材料掺杂低交联层,解决高交联层打印至低交联层上容易使低交联层过度固化的问题;通过多层结构与之间的串联,实现串联系统的顺序形状记忆回复和多种变形行为。
本发明是通过以下技术手段实现上述技术目的的。
一种形状回复速度可调多层结构的光固化4D打印方法,包括如下步骤:
打印慢速层,所述慢速层在打印时采用的紫外光照射能量为I ,所述慢速层在打印时的分子链交联程度为D
在慢速层上打印过渡层,所述过渡层在打印时采用的紫外光照射能量沿打印的厚度方向梯度递减;
在过渡层上打印快速层,所述快速层在打印时采用的紫外光照射能量为I ;所述快速层在打印时的分子链交联程度为D ;I >I ,且D >D ;所述快速层内包括碳纳米吸光材料,用于吸收紫外光以降低入射光的曝光能量,进而降低快速层的分子链交联程度,并减少下一层的慢速层打印时对快速层的过度曝光,避免快速层与下一层慢速层接触一侧的界面受到过度曝光导致分子交联程度升高;
在快速层上打印慢速层。
进一步,打印所述慢速层的紫外光照射能量I 为打印所述快速层的紫外光照射能量I 的4倍,这样打印后慢速层材料发生形状记忆现象的转变温度最高,形状回复速度最慢,在多层结构形状固定时起到稳定形状固定率的作用,并保证多层结构的表面具有较高的硬度。
进一步,打印所述慢速层的分子链交联程度D 为打印所述快速层的分子链交联程度D 的1.8倍。
进一步,打印所述过渡层的紫外光照射能量I 沿打印的厚度方向梯度变化范围为I ≤I ≤3I
进一步,所述快速层中的碳纳米材料为碳纳米管、石墨烯中的一种或混合物,所述碳纳米材料占快速层的重量分数含量为0.6%。
一种光固化4D打印多层结构,根据所述的形状回复速度可调多层结构的光固化4D打印方法打印的多层结构包括若干变形单元,若干变形单元依次串联,每一所述变形单元包括慢 速层、快速层和过渡层;两个所述慢速层之间设有快速层,至少一层慢速层与快速层之间设有过渡层。
进一步,每一所述变形单元的总厚度相同,且慢速层、快速层和过渡层的厚度相同,通过增加快速层的层厚占比或减少慢速层的层厚占比,用于加快形状回复速度。
进一步,每一所述变形单元的总厚度相同,根据变形单元串联顺序依次增加每一所述变形单元中的快速层的层厚占比或依次减小每一所述变形单元中的慢速层的层厚占比,用于实现顺序形状记忆回复。
本发明的有益效果在于:
1.本发明所述的形状回复速度可调多层结构的光固化4D打印方法及其多层结构,在慢速层和快速层之间设置了过渡层,解决了具有低分子交联程度的快速层无法在具有高分子交联程度的慢速层上打印的问题,提升了快速层和慢速层之间的层间粘接力。
2.本发明所述的形状回复速度可调多层结构的光固化4D打印方法及其多层结构,所述快速层内设有碳纳米吸光材料,不仅起到了吸收紫外光的能量,降低快速层分子交联程度的作用,而且吸收了下一层的慢速层固化时紫外光能量过大导致的过度曝光,避免了快速层界面由于受到过度曝光而导致交联程度升高的问题。
3.本发明所述的形状回复速度可调多层结构的光固化4D打印方法及其多层结构,通过调整快速层的层厚占比,即可得到具有不同形状回复速度的多层结构,采用具有高分子交联程度的慢速层包裹快速层,提高了多层结构的表面硬度,稳定了结构的形状固定率。
4.本发明所述的形状回复速度可调多层结构的光固化4D打印方法及其多层结构,通过串联多层结构,各部分形成速度差,还可以实现顺序回复现象和多种形状回复行为。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,显而易见地还可以根据这些附图获得其他的附图。
图1为本发明所述的光固化4D打印多层示意图及打印顺序图。
图2是某一温度下加热一定时间后,具有不同快速层占比的多层结构的形状回复速度对比图。
图3是具有不同快速层占比的多层结构串联系统以及实现顺序回复现象的示意图。
图4是通过改变多层结构的串联方式实现变形行为1的示意图。
图5是通过改变多层结构的串联方式实现变形行为2的示意图。
图中:
1-第一慢速层;2-过渡层;3-快速层;4-第二慢速层。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明所述的形状回复速度可调多层结构的光固化4D打印方法,包括如下步骤:
S01:打印第一慢速层1,第一慢速层1在打印时采用的紫外光照射能量I 是快速层3紫外光照射能量I 的4倍,所述慢速层在打印时的分子链交联程度D 是快速层3在打印时的分子链交联程度D 的1.8倍,这样第一慢速层1打印后材料发生形状记忆现象的转变温度是快速层的2倍,在多层结构形状固定时起到稳定形状固定率的作用,并保证多层结构的表面具有较高的硬度。
S02:在第一慢速层1上打印过渡层2,所述过渡层2在打印时采用的紫外光照射能量沿打印的厚度方向梯度递减;一般在打印过渡层2时紫外光能量在远离慢速层的方向上分别为快速层的3倍、2倍和1倍依次递减。
S03:在过渡层2上打印快速层3,快速层3中掺杂了碳纳米吸光材料,用于吸收紫外光以降低入射光的曝光能量,进而降低快速层的分子链交联程度,并减少第二慢速层4打印时对快速层3的过度曝光,避免快速层3与第二慢速层4接触一侧的界面受到过度曝光导致分子交联程度升高。
S04:在快速层3上打印第二慢速层4,其采用的紫外光照射能量、层厚和性能与第一慢速层1均相同,在多层结构形状固定时起到稳定形状固定率的作用,并保证多层结构的表面具有较高的硬度。
第一慢速层1、快速层3、过渡层2和第二慢速层4各层材质相同均为环氧类形状记忆聚合物、聚氨酯类形状记忆聚合物中的一种,其分子链交联程度通过打印时调整紫外光照射能量进行控制。
本发明快速层3作为芯层被慢速层1、4包裹,具有最低的分子链交联程度和最低的转变温度,用于在进行形状回复时提升结构整体形状回复速度,带动慢速层1、4进行形状回复,并牵引加快慢速层1、4的形状回复速度。快速层3中掺杂的碳纳米材料为碳纳米管、石墨烯中的一种或多种的混合物,重量分数含量为0.6%。
如图1所示,本发明所述的光固化4D打印多层结构,根据所述的形状回复速度可调多层结构的光固化4D打印方法打印的多层结构包括若干变形单元,若干变形单元依次串联,每一所述变形单元包括第一慢速层1、过渡层2、快速层3和第一慢速层4;第一慢速层1与第二慢速层4之间设有快速层3,第一慢速层1与快速层3之间设有过渡层2。每个变形单元的慢速层和快速层3的厚度都可以不一样。
如图2所示,每一所述变形单元的总厚度相同,且慢速层、快速层3和过渡层2的厚度相同,通过同步增加每一所述变形单元的快速层3的层厚占比/和减少每一所述变形单元的慢速层的层厚占比,用于加快形状回复速度。图2中每个变形单元的快速层3同步增加,同时慢速层同步减少。
如图3所示,每一所述变形单元的总厚度相同,根据变形单元串联顺序依次增加每一所述变形单元中的快速层3的层厚占比或依次减小每一所述变形单元中的慢速层的层厚占比,用于实现顺序形状记忆回复。
本发明所述多层结构的形状回复速度的调控方法如下:
在变形单元总体厚度不变的前提下,通过调整快速层3的层厚占比制造具有不同形状回复速度的变形单元,多层结构的变形单元形状回复速度与快速层3层厚占比呈正相关,如图2所示。通过将多个具有不同快速层3层厚占比的变形单元串联,还可以实现串联系统的顺序形状记忆回复和多种形状回复行为。
实施例
本实施例中,第一慢速层1、快速层3、过渡层2和第二慢速层4各层材质相同均为均采用聚氨酯丙烯酸酯形状记忆聚合物,聚氨酯丙烯酸酯固化前光敏树脂中的光引发剂含量为3wt.%。快速层3中掺杂的碳纳米吸光材料为多壁碳纳米管,掺杂含量为0.6wt.%,打印方式采用数字光处理面曝光光固化打印,多层结构为外形尺寸为85mm×13mm×2.4mm的板条。如图1所示,打印步骤如下:
S01:打印第一慢速层1。第一慢速层1在打印时采用的紫外光照射能量是180mJ/cm 2,分子链交联程度为90%,打印后第一慢速层1发生形状记忆现象的转变温度为70℃,在多层结构形状固定时起到稳定形状固定率的作用,并保证多层结构的表面具有较高的硬度。
S02:打印过渡层2。在打印过渡层2时紫外光能量在远离慢速层的方向上分别为135mJ/cm 2、90mJ/cm 2和45mJ/cm 2
S03:打印快速层3。采用的紫外光照射能量是45mJ/cm 2,打印后材料发生形状记忆现象的转变温度为35℃,掺杂的碳纳米管用于吸收紫外光以降低入射光的曝光能量,进而降低快速层的分子链交联程度,分子链交联程度为50%,并减少第二慢速层4打印时对快速层的过度曝光,避免快速层3与第二慢速层4接触一侧的界面受到过度曝光导致分子交联程度升高。
S04:打印第二慢速层4。其采用的紫外光照射能量、层厚和性能与第一慢速层1均相同,在多层结构形状固定时起到稳定形状固定率的作用,并保证多层结构的表面具有较高的硬度。
在变形单元总体厚度不变的前提下,通过调整快速层3的层厚占比制造具有不同形状回复速度的变形单元,变形单元的形状回复速度与快速层3层厚占比呈正相关。
如图3所示,变形单元A、变形单元B、变形单元C、变形单元D的过渡层2层厚均为0.3mm,变形单元A的快速层3层厚为0.3mm,变形单元B的快速层3层厚为0.8mm,变形单元C的快速层3层厚为1.3mm,变形单元D的快速层3层厚为1.8mm;将变形单元A、变形单元B、变形单元C、变形单元D依次串联、弯曲并在80℃的热水中回复,由于快速层3作为芯层被第一慢速层1和第二慢速层4包裹,在进行形状回复时提升结构整体形状回复速度,带动第一慢速层1和第二慢速层4进行形状回复,并牵引加快第一慢速层1和第二慢速层4的形状回复速度,因此产生了速度差。串联系统各部分的形状回复速度V A、V B、V C、V D分别为5°/s、10°/s、15°/s和25°/s,产生了顺序形状记忆回复现象。
图3中可以得出变形单元A的形状回复速度最低,变形单元D的形状回复速度最快。如图4和图5所示,通过调整具有低形状回复速度的变形单元A和具有高形状回复速度的变形单元D的组合还可以实现多种形状回复行为。
如图4所示,将两个变形单元D串联,并在两侧各串联一个变形单元A,将串联系统放入80℃的热水中进行形状回复,由于两个变形单元D的形状回复速度相对较快,因此可以实现形状回复行为1。如图5所示,将两个变形单元A串联,并在两侧各串联一个变形单元D,将串联系统放入80℃的热水中进行形状回复,则可以实现形状回复行为2。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种形状回复速度可调多层结构的光固化4D打印方法,其特征在于,包括如下步骤:
    打印慢速层,所述慢速层在打印时采用的紫外光照射能量为I ,所述慢速层在打印时的分子链交联程度为D
    在慢速层上打印过渡层(2),所述过渡层(2)在打印时采用的紫外光照射能量沿打印的厚度方向梯度递减;
    在过渡层(2)上打印快速层(3),所述快速层(3)在打印时采用的紫外光照射能量为I ;所述快速层(3)在打印时的分子链交联程度为D ;I >I ,且D >D ;所述快速层(3)内包括碳纳米吸光材料,用于吸收紫外光以降低入射光的曝光能量;
    在快速层(3)上打印慢速层。
  2. 根据权利要求1所述的形状回复速度可调多层结构的光固化4D打印方法,其特征在于,打印所述慢速层的紫外光照射能量I 为打印所述快速层(3)的紫外光照射能量I 的4倍。
  3. 根据权利要求1所述的形状回复速度可调多层结构的光固化4D打印方法,其特征在于,打印所述慢速层的分子链交联程度D 为打印所述快速层(3)的分子链交联程度D 的1.8倍。
  4. 根据权利要求1所述的形状回复速度可调多层结构的光固化4D打印方法,其特征在于,打印所述过渡层(2)的紫外光照射能量I 沿打印的厚度方向梯度变化范围为I ≤I ≤3I
  5. 根据权利要求1所述的形状回复速度可调多层结构的光固化4D打印方法,其特征在于,所述快速层(3)中的碳纳米材料为碳纳米管、石墨烯中的一种或混合物,所述碳纳米材料占快速层(3)的重量分数含量为0.6%。
  6. 一种光固化4D打印多层结构,其特征在于,根据权利要求1-5任一项所述的形状回复速度可调多层结构的光固化4D打印方法打印的多层结构包括若干变形单元,若干变形单元依次串联,每一所述变形单元包括慢速层、快速层(3)和过渡层(2);两个所述慢速层之间设有快速层(3),至少一层慢速层与快速层(3)之间设有过渡层(2)。
  7. 根据权利要求6所述的光固化4D打印多层结构,其特征在于,每一所述变形单元的总厚度相同,且每一所述变形单元的慢速层、快速层(3)和过渡层(2)的厚度相同,通过同步增加每一所述变形单元的快速层(3)的层厚占比和/或减少每一所述变形单元的慢速层的层厚占比,用于加快形状回复速度。
  8. 根据权利要求6所述的光固化4D打印多层结构,其特征在于,每一所述变形单元的总厚度相同,根据变形单元串联顺序依次增加每一所述变形单元中的快速层(3)的层厚占比 或依次减小每一所述变形单元中的慢速层的层厚占比,用于实现顺序形状记忆回复。
PCT/CN2022/139478 2022-06-06 2022-12-16 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构 WO2023236490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/273,034 US20240140023A1 (en) 2022-06-06 2022-12-16 Method for photo-curing four-dimensional (4d) printing of multi-layer structure with adjustable shape recovery speed, and multi-layer structure prepared by photo-curing 4d printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210631018.6A CN115071126B (zh) 2022-06-06 2022-06-06 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构
CN202210631018.6 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023236490A1 true WO2023236490A1 (zh) 2023-12-14

Family

ID=83250195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139478 WO2023236490A1 (zh) 2022-06-06 2022-12-16 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构

Country Status (3)

Country Link
US (1) US20240140023A1 (zh)
CN (1) CN115071126B (zh)
WO (1) WO2023236490A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071126B (zh) * 2022-06-06 2023-06-13 江苏大学 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664499A (zh) * 2019-01-07 2019-04-23 浙江大学 基于温度响应的横-网双层结构的4d打印方法
US10906238B1 (en) * 2020-06-26 2021-02-02 The Florida International University Board Of Trustees Shape memory polymer inks and methods of printing the same
CN112409774A (zh) * 2020-10-08 2021-02-26 江苏大学 一种具有自变形能力的弹性体与形状记忆聚合物的复合材料及其制备方法
CN112848268A (zh) * 2020-12-21 2021-05-28 青岛理工大学 一种基于分形曲线可拉伸加热电路打印的4d打印方法
CN113561490A (zh) * 2021-07-01 2021-10-29 浙江大学 一种4d打印折叠空间结构智能建造方法
WO2022088219A1 (zh) * 2020-10-29 2022-05-05 江苏大学 4d打印电响应折叠展开复合材料、制造及其形状记忆行为的调控方法
CN115071126A (zh) * 2022-06-06 2022-09-20 江苏大学 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2588485T5 (es) * 2013-02-12 2020-02-27 Carbon Inc Impresión de interfaz líquida continua
CN110003380B (zh) * 2019-03-19 2021-03-26 华中科技大学 一种用于4d打印的光敏树脂制备、成形及驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664499A (zh) * 2019-01-07 2019-04-23 浙江大学 基于温度响应的横-网双层结构的4d打印方法
US10906238B1 (en) * 2020-06-26 2021-02-02 The Florida International University Board Of Trustees Shape memory polymer inks and methods of printing the same
CN112409774A (zh) * 2020-10-08 2021-02-26 江苏大学 一种具有自变形能力的弹性体与形状记忆聚合物的复合材料及其制备方法
WO2022088219A1 (zh) * 2020-10-29 2022-05-05 江苏大学 4d打印电响应折叠展开复合材料、制造及其形状记忆行为的调控方法
CN112848268A (zh) * 2020-12-21 2021-05-28 青岛理工大学 一种基于分形曲线可拉伸加热电路打印的4d打印方法
CN113561490A (zh) * 2021-07-01 2021-10-29 浙江大学 一种4d打印折叠空间结构智能建造方法
CN115071126A (zh) * 2022-06-06 2022-09-20 江苏大学 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构

Also Published As

Publication number Publication date
CN115071126A (zh) 2022-09-20
CN115071126B (zh) 2023-06-13
US20240140023A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2023236490A1 (zh) 一种形状回复速度可调多层结构的光固化4d打印方法及其多层结构
Chen et al. Dynamic photomask‐assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator
Zolfagharian et al. Pattern-driven 4D printing
Qi et al. Stretchable electronics based on PDMS substrates
Zhang et al. Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots
US20180162040A1 (en) Imprint lithography
Hu et al. Photoactuators for direct optical‐to‐mechanical energy conversion: from nanocomponent assembly to macroscopic deformation
US7534821B2 (en) Polymeric aerogel nanocomposites
KR101152065B1 (ko) 정렬된 카본 나노튜브와 고분자 복합체를 사용한 열전도성 플라스틱 및 그 제조방법
Fang et al. Preparation and assembly of five photoresponsive polymers to achieve complex light-induced shape deformations
Jiang et al. Grayscale Stereolithography of Gradient Hydrogel with Site‐Selective Shape Deformation
US20050156353A1 (en) Method to improve the flow rate of imprinting material
KR101959449B1 (ko) 신축 가능한 전도성 패턴 형성용 조성물, 이를 이용한 신축 가능한 전도성 패턴의 제조방법 및 신축 가능한 전도성 전극을 포함하는 전자 소자
WO2014181930A1 (ko) 이방성 열 전기전도 액정 조성물 및 이를 이용한 방열 및 전자파 차폐 매트릭스의 제조방법
CN105355776A (zh) 电致动材料及其制备方法和采用该电致动材料的致动器
Lu et al. Fabrication and characterization of highly deformable artificial muscle fibers based on liquid crystal elastomers
Alo et al. 3D‐Printed functional polymers and nanocomposites: defects characterization and product quality improvement
CN105670272A (zh) 预应力下电响应伸缩形变的双向形状记忆复合材料及其制备方法
CN105229537A (zh) 导电性辊及其制造方法
DE10358169A1 (de) Walze zur Verwendung in einer Fixierstation
Russo et al. Electro‐responsive shape‐memory composites obtained via dual‐curing processing
US20190076873A1 (en) Manufacturing method for intermediate transfer belt and manufacturing device for intermediate transfer belt
KR101763658B1 (ko) 평면형 신축성 전기저항 발열체 및 이의 제작 방법
CN109878762B (zh) 一种变角度拍摄装置及其拍摄方法
Wan et al. Thermal programming of triple-shape-memory epoxy with flexible segments and Diels–Alder networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18273034

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945618

Country of ref document: EP

Kind code of ref document: A1