WO2023236394A1 - 一种提升增材制造零件表面质量的方法及增材制造设备 - Google Patents
一种提升增材制造零件表面质量的方法及增材制造设备 Download PDFInfo
- Publication number
- WO2023236394A1 WO2023236394A1 PCT/CN2022/121973 CN2022121973W WO2023236394A1 WO 2023236394 A1 WO2023236394 A1 WO 2023236394A1 CN 2022121973 W CN2022121973 W CN 2022121973W WO 2023236394 A1 WO2023236394 A1 WO 2023236394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scanning
- printed
- surface quality
- improving
- coating layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000000654 additive Substances 0.000 title claims abstract description 26
- 230000000996 additive effect Effects 0.000 title claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 58
- 239000011247 coating layer Substances 0.000 claims abstract description 36
- 239000010410 layer Substances 0.000 claims description 46
- 238000010894 electron beam technology Methods 0.000 claims description 17
- 238000009834 vaporization Methods 0.000 claims description 14
- 230000008016 vaporization Effects 0.000 claims description 14
- 238000005253 cladding Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010884 ion-beam technique Methods 0.000 claims description 3
- 238000002309 gasification Methods 0.000 abstract description 19
- 238000002844 melting Methods 0.000 abstract description 13
- 230000008018 melting Effects 0.000 abstract description 13
- 230000003746 surface roughness Effects 0.000 abstract description 7
- 238000007664 blowing Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000007639 printing Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 9
- 238000009825 accumulation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to the technical field of additive manufacturing, and in particular to a method for improving the surface quality of additively manufactured parts and additive manufacturing equipment.
- High-energy beam additive manufacturing technology such as electron beam selective melting and forming technology
- the electron beam will selectively scan and melt the powder pre-layed on the workbench based on CAD (computer-aided design) and other software data of each layer cross-section of the part. The unmelted powder will still be in a loose state.
- CAD computer-aided design
- the traditional methods to reduce surface roughness are mainly physical methods. For example, sandblasting is usually used first, and large particles are removed by high-speed collision between high-hardness particles and the rough surface of the workpiece. Then, the surface of the workpiece is smoothed by brush grinding. This method is labor-intensive, has low removal accuracy, and pollutes the environment.
- methods to reduce the surface roughness of parts require the addition of additional devices, such as dual laser beam devices, electrolysis devices, etc., which are complex to operate and costly.
- the purpose of the present invention is to provide a method and additive manufacturing equipment for improving the surface quality of additively manufactured parts, thereby overcoming, at least to a certain extent, one or more problems caused by limitations and defects of related technologies.
- a first aspect of the present invention provides a method for improving the surface quality of additively manufactured parts, including: establishing a three-dimensional model of the part to be printed, and constructing a coating layer with a predetermined thickness on the side wall of the three-dimensional model of the part to be printed;
- the scanning path is planned according to the layered scanning data, and the powder bed is preheated and scanned and melted to obtain the printed object entity.
- the scan path includes:
- the first scanning path scans the powder in the area of the part to be printed
- the second scanning path scans the powder in the coating area
- the third scanning path is to perform vaporization scanning by indenting the outline of the object to be printed by a first preset distance.
- the third scanning path is performed at intervals of a preset number of layers.
- the powder bed extending outward from the coating layer area by a second preset distance is preheated.
- the coating layer formed before the vaporization scanning is removed.
- electron beam, laser or ion beam is used to preheat and scan the powder bed to melt to obtain the printed object entity.
- the coating layer has a porous structure.
- the preset thickness of the coating layer is 1 to 10 mm.
- the preset number of layers at intervals of the third scanning path is 1 to 5 layers.
- the first preset distance is 0.5-1d
- d is the diameter of the scanning beam spot
- the second preset distance is 2-12 mm.
- a second aspect of the present invention provides an additive manufacturing equipment, which uses the following method to perform additive manufacturing on the parts to be printed:
- the method is any one of the methods described above for improving the surface quality of additively manufactured parts.
- a coating layer on the side wall of the part to be printed By arranging a coating layer on the side wall of the part to be printed, it can not only serve as a support for the side wall of the part to be printed, but also play a good heat conduction role, conduct the heat at the contour in time, and avoid heat accumulation at the contour.
- the printed part is deformed, and it can also fix the powder bed around the outer contour of the printed part during gasification scanning to prevent powder from being splashed and blown on the powder bed caused by gasification. Without adding additional equipment and unnecessary post-processing steps, the excess powder adhering to the outer contour of the part is effectively removed, thereby effectively reducing the surface roughness of the formed parts and improving the surface quality of the formed parts while ensuring the forming efficiency. and dimensional accuracy, especially suitable for high-precision forming of some high-precision and complex parts.
- Figure 1 shows a flow chart of a method for improving the surface quality of additively manufactured parts in an embodiment of the present invention
- Figure 2 shows a schematic diagram of a scanning path in an embodiment of the invention
- Figure 3 shows a schematic diagram of the scanning position of path 3 in the embodiment of the invention
- Figure 4 shows a schematic diagram of the positional relationship between the coating layer and the part to be printed in the embodiment of the present invention
- Figure 5 is a schematic diagram of the positional relationship between the parts to be printed, the coating layer and preheating in the embodiment of the present invention.
- Example embodiments will now be described more fully with reference to the accompanying drawings.
- Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
- the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
- An embodiment of the present invention first provides a method for improving the surface quality of additively manufactured parts, which includes the following steps:
- Step S101 Establish a three-dimensional model of the part to be printed, and construct a coating layer with a preset thickness on the side wall of the three-dimensional model of the part to be printed;
- Step S102 slice the coating layer and the three-dimensional model to obtain layered scan data
- Step S103 Plan a scanning path according to the hierarchical scanning data, preheat and scan and melt the powder bed to obtain a printed object.
- the present invention by providing a coating layer on the side wall of the part to be printed, it can not only serve as a support for the side wall of the part to be printed, but also play a good thermal conductive role, conduct the heat at the contour in time, and avoid the contour It can also fix the powder bed around the outer contour of the printed part during gasification scanning to prevent powder from splashing and blowing on the powder bed caused by gasification. Without adding additional equipment and unnecessary post-processing steps, the excess powder adhering to the outer contour of the part is effectively removed, thereby effectively reducing the surface roughness of the formed parts and improving the surface quality of the formed parts while ensuring the forming efficiency. and dimensional accuracy, especially suitable for high-precision forming of some high-precision and complex parts.
- the scan path includes:
- the first scanning path (Path 1) scans the powder in the area of the part to be printed.
- the electron beam energy parameters that can be used in the first scanning path are: the defocus amount of the lower beam spot is 0.15 ⁇ 1.1V, for example, 0.30V, 0.50V, 0.80V, 1.0V, etc. , the lower beam power is P1, the beam spot scanning speed is V1: 2 ⁇ 8m/s, for example, it can be 3m/s, 5m/s, etc., and 2.6 ⁇ P1/V1 ⁇ 30, for example, the ratio of P1/V1 It can be 3.0, 5.0, 10, 15, 20, 25, etc., but is not limited to this.
- the second scanning path (path 2) scans the powder in the coating layer area.
- the electron beam energy parameters that can be used in the second scanning path are: the defocus amount of the lower beam spot is 0 ⁇ 0.1V, such as 0V, 0.02V, 0.05V, etc., and the lower beam power is P2 , the beam spot scanning speed is V2: 0.5 ⁇ 1.2m/s, for example, it can be 0.8m/s, 1.0m/s, etc., where 3.5 ⁇ P2/V2 ⁇ 11, for example, the ratio of P2/V2 can be 5, 8 , 10, etc., but not limited to this.
- the third scanning path performs vaporization scanning by indenting the outline of the object to be printed by a first preset distance.
- the electron beam energy parameters that can be used in the third scanning path are: the defocus amount of the lower beam spot is 0 ⁇ 0.1V, such as 0V, 0.02V, 0.05V, etc., and the lower beam power is P3 , the scanning speed is V3: 0.4 ⁇ 1.3m/s, for example, 0.5m/s, 0.8m/s, 1.0m/s, etc., 15 ⁇ P3/V3 ⁇ 45, for example, the ratio of P3/V3 can be 18, 20 , 25, 30, 40, etc.
- the first preset distance is 0.5 to 1d, for example, it can be 0.75d, 0.80d, etc., d is the diameter of the scanning beam spot, but is not limited to this.
- the gasification scan of path 3 can be performed after each forming height of 50 to 120 ⁇ m, but it is not limited to this.
- the cutting thickness is When the thickness is 30 ⁇ m, path 3 performs scanning and melting every 3 layers (90 ⁇ m); when the cutting layer thickness is 50 ⁇ m, path 3 performs scanning and melting every 2 layers (100 ⁇ m).
- the preset number of layers at intervals of the third scan path is 1 to 5 layers, for example, it may be 2 layers, 3 layers, 4 layers, etc.
- the above-mentioned scanning path may be a random point scan or an S-shaped reciprocating scan, but is not limited thereto.
- the corresponding electron beam energy under different scanning paths is also different.
- path 1 and path 2 use a lower energy beam for rapid melting and forming
- path 3 A higher energy beam is used for fine melting to achieve the gasification effect.
- the electron beam energy under different paths is achieved by controlling the size of the beam spot under the electron beam to match different melting processes.
- the size of the lower beam spot of the electron beam is controlled by the defocus amount of the lower beam spot. Specifically: the greater the absolute value of the lower beam defocus amount, the larger the corresponding electron beam spot and the lower the corresponding beam spot energy.
- the melting process under different light spots is controlled by the lower beam power P and the beam spot scanning speed V. Specifically: the greater the P/V ratio, the higher the corresponding beam spot energy. This enables parts with high surface quality to be produced.
- the third scanning path is performed at intervals of a preset number of layers.
- the three-dimensional model of the part to be printed is sliced and layered according to a certain thickness t (30 ⁇ t ⁇ 50 ⁇ m), and the data of each layer is path planned: path 1 and path 2 are planned layer by layer, and path 3 is planned layer by layer.
- the preheating is a partial preheating of the powder bed.
- the purpose of using local preheating instead of the overall preheating of the powder bed is to pre-sinter and fix the powder bed in the heat-affected zone around the gasification, while avoiding the overall hardening of the powder bed. Difficulties in powder recovery caused by this.
- the coating layer formed before the vaporization scanning will be removed.
- a gasification scan is performed on the last layer of the part after processing to remove the layer-by-layer melted and formed coating layer, so that parts with high surface quality can be obtained directly after the processing is completed.
- electron beams, lasers, or ion beams are used to preheat and scan the powder bed to melt to obtain a printed object.
- the method of the present invention is suitable for scanning methods using the above high-energy beam energy sources for additive manufacturing.
- the coating layer has a porous structure, for example, it can be an ordered porous structure, and the porosity can be 70 to 95%, such as 80%, 90%, etc.
- lattice porous structures, truss structures, etc. may be used, but are not limited thereto.
- the preset thickness ⁇ of the coating layer is 1 to 10 mm, for example, it can be 2 mm, 4 mm, 6 mm, 8 mm, etc., but is not limited thereto. Due to the high energy density at the edge of the gasification contour, it is easy for the parts to deform from the contour due to severe heat accumulation during gasification; in addition, the extremely high impact energy of the electron beam will also cause serious splashing of the powder bed, which will affect subsequent processing. .
- This hollow porous coating can not only serve as a support for the side wall of the part for uniform heat conduction, but can also play a role in fixing the powder bed to avoid serious splashing during gasification that affects subsequent powder spreading and processing.
- the hollow porous coating layer will be directly gasified and cut off after each layer of gasification path, and a high surface quality formed part will be obtained directly after the processing is completed.
- TC4 titanium alloy
- Step 1 Generate a lattice porous structure coating layer with a thickness of 2.5mm around the outline of the model to be printed.
- the porosity of the coating layer is 87.4%.
- the three-dimensional model with the cladding layer was cut into layers with a layer thickness of 40 ⁇ m, resulting in a total of 1750 layers.
- the first level planning path 1 and path 2;
- the second level planning path 1, path 2 and path 3;
- the third level planning path 1 and path 2;
- the fourth level planning path 1, path 2 and path 3;
- Level 1750 Plan path 1, path 2 and path 3.
- Step 2 Import the discrete layered scanning data obtained in step 1 into the electron beam scanning control software, evenly lay a layer of 40 ⁇ m TC4 powder on the base plate preheated to 800°C, and uniformly preheat the powder bed as a whole.
- Step 3 Layer 1 processing, scanning melting path 1 and path 2.
- Step 4 Spread the powder and preheat the powder bed as a whole.
- Step 5 For the second layer processing, scan melting path 1 and path 2, then perform local preheating of the powder bed within 5mm of the periphery of the cladding layer, and then scan melting path 3. After gasification path 3, the first and second processed cladding layers will be cut directly.
- Step 6 Layer 3 processing, scan melting path 1 and path 2.
- path 3 can be used to perform a gasification scan on the last layer before the part is processed and formed.
- Embodiments of the present invention also provide an additive manufacturing equipment, which uses the following method to perform additive manufacturing on the parts to be printed:
- the method is the method for improving the surface quality of additively manufactured parts described in any of the above embodiments.
- parts with high surface quality can be obtained directly after part processing. There is no need to add additional devices during the whole process, and traditional part post-processing steps such as sandblasting and grinding are omitted. Simple and low cost; through the design of the coating layer on the periphery of the part outline and the local preheating setting of the powder bed, the present invention can avoid the deformation of the part outline and the splashing and blowing of powder from the powder bed during gasification, ensuring the smooth progress of the gasification process. Directly obtain parts with high surface quality; suitable for printing and forming of high-precision and complex parts.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
- “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
- connection In the embodiments of the present invention, unless otherwise expressly stipulated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a removable connection. Disassembly and connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
- Disassembly and connection, or integration it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
- the term “above” or “below” the second feature of a first feature may include direct contact between the first and second features, or may include direct contact between the first and second features. Two features are not in direct contact but are in contact through another feature between them. Furthermore, the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature. “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
- references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification.
- the invention relates to a method for improving the surface quality of additive manufacturing parts and additive manufacturing equipment.
- the method includes: establishing a three-dimensional model of the part to be printed, and constructing a package of preset thickness on the side wall of the three-dimensional model of the part to be printed. Covering layer; slicing the covering layer and the three-dimensional model to obtain layered scanning data; planning a scanning path according to the layered scanning data, preheating and scanning and melting the powder bed to obtain a printed object entity.
- the present invention can not only serve as a support for the side wall of the part to be printed, but also play a good heat conduction role, conduct the heat at the contour in time, and avoid It can prevent the deformation of printed parts caused by heat accumulation, and can also fix the powder bed around the outer contour of the printed parts during vaporization scanning to prevent the splashing and blowing of powder on the powder bed caused by vaporization. Without adding additional equipment and unnecessary post-processing steps, the excess powder adhering to the outer contour of the part is effectively removed, thereby effectively reducing the surface roughness of the formed parts and improving the surface quality of the formed parts while ensuring the forming efficiency. and dimensional accuracy, especially suitable for high-precision forming of some high-precision and complex parts.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
一种提升增材制造零件表面质量的方法及增材制造设备,涉及增材制造技术领域。该方法包括:建立待打印件的三维模型(S101),在所述待打印件的三维模型的侧壁构建预设厚度(δ)的包覆层;将所述包覆层和所述三维模型进行切片得到分层扫描数据(S102);根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体(S103)。通过在待打印件的侧壁设置包覆层,不仅可以作为待打印件侧壁的支撑,而且能够起到良好的热传导作用,固定打印件的外轮廓周围的粉床,防止气化导致的粉床上粉末的飞溅和吹粉。有效去除零件外轮廓处粘连的多余粉末,在保证成形效率的基础上有效降低了成形零件的表面粗糙度,提升了成形零件的表面质量和尺寸精度。
Description
相关申请的交叉引用
本申请要求在2022年06月10日提交的,申请号为CN202210653266.0,名称为“一种提升增材制造零件表面质量的方法及增材制造设备”的中国专利申请的优先权,上述申请的全部内容通过引用并入本文。
本发明涉及增材制造技术领域,尤其涉及一种提升增材制造零件表面质量的方法及增材制造设备。
高能束增材制造技术,例如电子束选区熔化成形技术是一种以电子束为能量源的粉床增材制造技术,可制造具有复杂形状的高性能金属零部件,具有成形效率高、可加工材料范围广、高真空保护等优点,是高性能复杂粉末冶金件的理想快速制造技术,在航空航天、生物医疗、汽车制造等领域有着广阔的应用前景。增材制造时,电子束会根据零件各层截面的CAD(计算机辅助设计)等软件数据有选择性地对预先铺设在工作台上的粉末进行扫描熔化,未被熔化的粉末仍为松散状态。在每一层的扫描区边缘,即零件各层截面的外轮廓处,由于粉末的部分熔化,成形零件的侧壁会有大量的粉末粘连,导致表面粗糙。特别是对于不易或不能加工的表面,很难达到精密产品的要求,影响成形零件的表面质量和尺寸精度。
传统的降低表面粗糙度的方法主要是物理方法,例如通常先通过喷砂的方式,依靠高硬度颗粒物与工件表面粗糙处发生高速碰撞,实现大颗粒的去除。然后再通过电刷打磨的方式,实现工件表面的平滑处理。这种方法劳动强度大,去除精度低,污染环境。另外,在激光增材制造 过程中,降低零件表面粗糙度的方法均需要增加额外的装置,如双激光束装置、电解装置等,操作复杂、成本高。而采用电子束功率递增、多遍扫描的方法虽然可以一定程度上降低零件表面粗糙度,但多次熔化会使得热量聚集严重、造成零件内部材料组织粗大,在负载过程中极易发生由解理断裂引起的失效,严重影响成形零件的性能。
因此,有必要改善上述相关技术方案中存在的一个或者多个问题。
需要注意的是,本部分旨在为权利要求书中陈述的本公开的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
发明内容
本发明的目的在于提供一种提升增材制造零件表面质量的方法及增材制造设备,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
本发明的第一方面提供一种提升增材制造零件表面质量的方法,包括:建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;
将所述包覆层和所述三维模型进行切片得到分层扫描数据;
根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体。
优选的,所述扫描路径包括:
第一扫描路径,对所述待打印件区域内的粉末进行扫描;
第二扫描路径,对所述包覆层区域内的粉末进行扫描;以及
第三扫描路径,对所述待打印件的轮廓线向里缩进第一预设距离进行气化扫描。
优选的,所述第三扫描路径每间隔预设层数进行。
优选的,在利用所述第三扫描路径进行气化扫描之前,对所述包覆层区域向外延伸第二预设距离的粉床进行预热。
优选的,在利用所述第三扫描路径对待打印件进行气化扫描后,会将气化扫描前形成的包覆层进行去除。
优选的,采用电子束、激光或离子束对粉床进行预热和扫描熔化得到打印件实体。
优选的,所述包覆层为多孔结构。
优选的,所述包覆层的预设厚度为1~10mm。
优选的,所述第三扫描路径的间隔预设层数为1~5层。
优选的,所述第一预设距离为0.5~1d,d为扫描束斑的直径,所述第二预设距离为2~12mm。
本发明的第二方面提供一种增材制造设备,对待打印件采用以下方法进行增材制造:
建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;
将所述包覆层和所述三维模型进行切片得到分层扫描数据;
根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体;
其中,所述方法为上述任一项所述的提升增材制造零件表面质量的方法。
本发明可以实现以下有益效果:
通过在待打印件的侧壁设置包覆层,不仅可以作为待打印件侧壁的支撑,而且能够起到良好的热传导作用,将轮廓处的热量及时进行传导,避免轮廓处的热聚集造成的打印件变形,并且还能在气化扫描时固定打印件的外轮廓周围的粉床,防止气化导致的粉床上粉末的飞溅和吹粉。在不增加额外装置和多余后处理工序的前提下,有效去除零件外轮廓处粘连的多余粉末,从而在保证成形效率的基础上有效降低了成形零件的表面粗糙度,提升了成形零件的表面质量和尺寸精度,特别适用于一些高精密复杂零件的高精度成形。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人 员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明实施例中的提升增材制造零件表面质量的方法的流程图;
图2示出发明实施例中的扫描路径示意图;
图3示出发明实施例中的路径3的扫描位置示意图;
图4示出本发明实施例中的包覆层与待打印件的位置关系示意图;
图5为本发明实施例中的待打印件、包覆层和预热的位置关系示意图。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
请参考图1,本发明实施例首先提供了一种提升增材制造零件表面质量的方法,包括以下步骤:
步骤S101,建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;
步骤S102,将所述包覆层和所述三维模型进行切片得到分层扫描数据;
步骤S103,根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体。
本发明实施例中,通过在待打印件的侧壁设置包覆层,不仅可以作为待打印件侧壁的支撑,而且能够起到良好的热传导作用,将轮廓处的热量及时进行传导,避免轮廓处的热聚集造成的打印件变形,并且还能在气化扫描时固定打印件的外轮廓周围的粉床,防止气化导致的粉床上粉末的飞溅和吹粉。在不增加额外装置和多余后处理工序的前提下,有效去除零件外轮廓处粘连的多余粉末,从而在保证成形效率的基础上有 效降低了成形零件的表面粗糙度,提升了成形零件的表面质量和尺寸精度,特别适用于一些高精密复杂零件的高精度成形。
可选的,在一些实施例中,请参考图2,所述扫描路径包括:
第一扫描路径(路径1),对所述待打印件区域内的粉末进行扫描。其中,在一些实施例中,所述第一扫描路径可采用的电子束能量参数为:下束光斑离焦量为0.15~1.1V,例如,0.30V、0.50V、0.80V、1.0V等等,下束功率为P1,束斑扫描速度为V1:2~8m/s,例如,可以为3m/s、5m/s等等,且2.6≤P1/V1≤30,例如,P1/V1这个比值可以为3.0、5.0、10、15、20、25等,但也不限于此。
第二扫描路径(路径2),对所述包覆层区域内的粉末进行扫描。其中,在一些实施例中,所述第二扫描路径可采用的电子束能量参数为:下束光斑离焦量为0~0.1V,例如0V、0.02V、0.05V等,下束功率为P2,束斑扫描速度为V2:0.5~1.2m/s,例如,可以为0.8m/s、1.0m/s等,其中3.5≤P2/V2≤11,例如P2/V2这个比值可以为5、8、10等,但也不限于此。
第三扫描路径(路径3),对所述待打印件的轮廓线向里缩进第一预设距离进行气化扫描。其中,在一些实施例中,所述第三扫描路径可采用的电子束能量参数为:下束光斑离焦量为0~0.1V,例如0V、0.02V、0.05V等,下束功率为P3,扫描速度为V3:0.4~1.3m/s,例如,0.5m/s、0.8m/s、1.0m/s等,15≤P3/V3≤45,例如P3/V3这个比值可以为18、20、25、30、40等。其中,可选的,请参考图3,所述第一预设距离为0.5~1d,例如可以为0.75d、0.80d等,d为扫描束斑的直径,但也不限于此。
可选的,在一些实施例中,实行以上三个扫描路径时,为保证零件成形和气化时固粉,路径1和路径2逐层扫描熔化。为达到气化效果且避免零件芯部反复重熔造成热量聚集引起内部组织粗大,路径3的气化扫描可以在每成形50~120μm高度后进行,但也不限于此,例如:切层厚度为30μm时,路径3每间隔3层(90μm)进行一次扫描熔化;切层厚度为50μm时,路径3每间隔2层(100μm)进行一次扫描熔化。例如,可选的,在一些实施例中,所述第三扫描路径的间隔预设层数为1~5层, 例如可以为2层、3层、4层等。
此外,可选的,上述扫描路径可以是随机点扫描,也可以是S型往复扫描等,但也不限于此。
本发明实施例中,为保证成形效果,不同扫描路径下对应的电子束能量也不同,为兼顾零件表面质量和成形效率,路径1和路径2采用较低的能束进行快速熔化成形,路径3采用较高的能束进行精细熔化,达到气化效果。其中不同路径下的电子束能量通过控制电子束下束光斑的大小匹配不同的熔化工艺来实现。电子束下束光斑的大小通过下束光斑离焦量来控制,具体地:下束离焦量绝对值越大,则对应的电子束光斑越大,对应的束斑能量越低。不同光斑下的熔化工艺通过下束功率P和束斑扫描速度V来控制,具体地:P/V比值越大,对应的束斑能量越高。由此可以制造出表面质量较高的零件。
可选的,在一些实施例中,所述第三扫描路径每间隔预设层数进行。例如,将待打印零件的三维模型按一定的厚度t(30≤t≤50μm)进行切片分层,并对每层的数据进行路径规划:路径1和路径2进行逐层路径规划,路径3每间隔n层进行一次路径规划,其中n=[100/t]。合理设置路径3的气化扫描方案,可最大程度提升零件表面的成形质量。
可选的,在一些实施例中,请参考图5,在利用所述第三扫描路径进行气化扫描之前,对所述包覆层区域向外延伸第二预设距离的粉床进行预热。其中,所述第二预设距离为2~12mm,例如,可以为4mm、6mm、8mm、10mm等等,但也不限于此。此处预热是对粉床进行的局部预热,采用局部预热而不是粉床整体预热是为了对气化周围热影响区的粉床进行预烧结固定,同时避免了粉床整体变硬造成的粉末回收困难。
可选的,在一些实施例中,在利用所述第三扫描路径对待打印件进行气化扫描后,会将气化扫描前形成的包覆层进行去除。在零件加工结束的最后一层需进行一次气化扫描,以去除逐层熔化成形的包覆层,可在加工结束后直接获得高表面质量的零件。
可选的,在一些实施例中,采用电子束、激光或离子束对粉床进行预热和扫描熔化得到打印件实体。本发明的方法适用于采用以上高能束能量源进行增材制造的扫描方法。
可选的,在一些实施例中,所述包覆层为多孔结构,例如可以为有序多孔结构,孔隙率可以为70~95%,例如80%、90%等。在一些实施例中,可以采用点阵多孔结构、桁架结构等,但也不限于此。
可选的,在一些实施例中,请参考图4,所述包覆层的预设厚度δ为1~10mm,例如,可以为2mm、4mm、6mm、8mm等等,但也不限于此。由于气化轮廓边缘的能量密度很高,气化时极易因严重的热量聚集造成零件从轮廓处发生变形;另外极大的电子束冲击能量还会引起粉床的严重飞溅,进而影响后续加工。这种镂空的多孔包覆层不仅可以作为零件侧壁的支撑进行均匀导热,此外还可起到固定粉床的作用,避免气化时引起严重飞溅影响后续铺粉和加工。该镂空多孔包覆层会在每层气化路径之后被直接气化切割掉,在加工结束后直接获得高表面质量的成形件。
下面以模型高度为70mm的TC4(钛合金)零件为例进行说明:
步骤一:在待打印件模型轮廓外围生成厚度为2.5mm的点阵多孔结构包覆层,包覆层孔隙率为87.4%。将带有包覆层的三维模型按40μm层厚进行切层,共1750层。然后对切层数据进行路径规划:路径1和路径2进行逐层规划,路径3每间隔n=[100/40]=2层进行一次路径规划,即:
第一层:规划路径1和路径2;
第二层:规划路径1、路径2和路径3;
第三层:规划路径1和路径2;
第四层:规划路径1、路径2和路径3;
……
第1750层:规划路径1、路径2和路径3。
步骤二:将步骤一获得的离散分层扫描数据导入电子束扫描控制软件中,在预先加热至800℃的底板上均匀铺设一层40μm的TC4粉末,并对粉床进行整体均匀预热。
设置路径1的下束离焦量为0.5V,下束功率17mA,束斑扫描速度5.2m/s;路径2的下束离焦量为0V,下束功率2.8mA,束斑扫描速度0.6m/s;路径3的下束离焦量为0V,下束功率13.6mA,束斑扫描速度0.8m/s。
步骤三:第1层加工,扫描熔化路径1和路径2。
步骤四:铺粉,进行粉床整体预热。
步骤五:第2层加工,扫描熔化路径1和路径2,然后在包覆层外围5mm范围内进行粉床局部预热,之后再扫描熔化路径3。气化路径3之后,会直接切割掉第一层和第二层加工成形的包覆层。
步骤六:第3层加工,扫描熔化路径1和路径2。
……
重复以上步骤,直至完成零件加工。
其中,可以在零件加工成形前的最后一层利用路径3进行一次气化扫描。
本发明实施例还提供了一种增材制造设备,对待打印件采用以下方法进行增材制造:
建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;
将所述包覆层和所述三维模型进行切片得到分层扫描数据;
根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体;
其中,所述方法为上述任一个实施例所述的提升增材制造零件表面质量的方法。
采用该方法进行增材制造得到的零件,在零件加工结束可直接获得高表面质量的零件,整个过程中无需增加额外的装置,且省去了传统的喷砂、打磨等零件后处理步骤,操作简单、成本低;本发明通过零件轮廓外围的包覆层设计和粉床局部预热设置,可避免气化时零件轮廓变形和粉床飞溅吹粉,可保证气化过程顺利进行,在加工结束直接获得高表面质量的零件;适合高精密复杂零件的打印成形。
需要理解的是,上述描述中的术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本发明实施例中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本 说明书中描述的不同实施例或示例进行结合和组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
本发明涉及一种提升增材制造零件表面质量的方法及增材制造设备,该方法包括:建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;将所述包覆层和所述三维模型进行切片得到分层扫描数据;根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体。优点有:本发明通过在待打印件的侧壁设置包覆层,不仅可以作为待打印件侧壁的支撑,而且能够起到良好的热传导作用,将轮廓处的热量及时进行传导,避免轮廓处的热聚集造成的打印件变形,并且还能在气化扫描时固定打印件的外轮廓周围的粉床,防止气化导致的粉床上粉末的飞溅和吹粉。在不增加额外装置和多余后处理工序的前提下,有效去除零件外轮廓处粘连的多余粉末,从而在保证成形效率的基础上有效降低了成形零件的表面粗糙度,提升了成形零件的表面质量和尺寸精度,特别适用于一些高精密复杂零件的高精度成形。
此外,可以理解的是,本申请的提升增材制造零件表面质量的方法及增材制造设备是可以重现的,并且可以用在多种工业应用中。
Claims (11)
- 一种提升增材制造零件表面质量的方法,其特征在于,包括:建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;将所述包覆层和所述三维模型进行切片得到分层扫描数据;根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体。
- 根据权利要求1所述的提升增材制造零件表面质量的方法,其特征在于,所述扫描路径包括:第一扫描路径,对所述待打印件区域内的粉末进行扫描;第二扫描路径,对所述包覆层区域内的粉末进行扫描;以及第三扫描路径,对所述待打印件的轮廓线向里缩进第一预设距离进行气化扫描。
- 根据权利要求2所述的提升增材制造零件表面质量的方法,其特征在于,所述第三扫描路径每间隔预设层数进行。
- 根据权利要求2所述的提升增材制造零件表面质量的方法,其特征在于,在利用所述第三扫描路径进行气化扫描之前,对所述包覆层区域向外延伸第二预设距离的粉床进行预热。
- 根据权利要求2所述的提升增材制造零件表面质量的方法,其特征在于,在利用所述第三扫描路径对待打印件进行气化扫描后,会将气化扫描前形成的包覆层进行去除。
- 根据权利要求1所述的提升增材制造零件表面质量的方法,其特征在于,采用电子束、激光或离子束对粉床进行预热和扫描熔化得到打印件实体。
- 根据权利要求1所述的提升增材制造零件表面质量的方法,其特征在于,所述包覆层为多孔结构。
- 根据权利要求1所述的提升增材制造零件表面质量的方法,其特征在于,所述包覆层的预设厚度为1~10mm。
- 根据权利要求3所述的提升增材制造零件表面质量的方法,其特征 在于,所述第三扫描路径的间隔预设层数为1~5层。
- 根据权利要求4所述的提升增材制造零件表面质量的方法,其特征在于,所述第一预设距离为0.5~1d,d为扫描束斑的直径,所述第二预设距离为2~12mm。
- 一种增材制造设备,其特征在于,对待打印件采用以下方法进行增材制造:建立待打印件的三维模型,在所述待打印件的三维模型的侧壁构建预设厚度的包覆层;将所述包覆层和所述三维模型进行切片得到分层扫描数据;根据所述分层扫描数据规划扫描路径,对粉床进行预热和扫描熔化得到打印件实体;其中,所述方法为权利要求1-10任一项所述的提升增材制造零件表面质量的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210653266.0A CN114713848B (zh) | 2022-06-10 | 2022-06-10 | 一种提升增材制造零件表面质量的方法及增材制造设备 |
CN202210653266.0 | 2022-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236394A1 true WO2023236394A1 (zh) | 2023-12-14 |
Family
ID=82232906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/121973 WO2023236394A1 (zh) | 2022-06-10 | 2022-09-28 | 一种提升增材制造零件表面质量的方法及增材制造设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114713848B (zh) |
WO (1) | WO2023236394A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117483799A (zh) * | 2023-12-29 | 2024-02-02 | 西安赛隆增材技术股份有限公司 | 一种铝合金的粉床电子束增材制造方法 |
CN117961090A (zh) * | 2024-04-02 | 2024-05-03 | 四川工程职业技术大学 | 一种飞机活门的增材制造方法 |
CN118321573A (zh) * | 2024-06-13 | 2024-07-12 | 西安赛隆增材技术股份有限公司 | 一种TiAl合金叶片的增材制造方法 |
CN118635529A (zh) * | 2024-08-15 | 2024-09-13 | 西安赛隆增材技术股份有限公司 | 一种三维制造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114713848B (zh) * | 2022-06-10 | 2022-09-23 | 西安赛隆增材技术股份有限公司 | 一种提升增材制造零件表面质量的方法及增材制造设备 |
CN115815627A (zh) * | 2022-11-16 | 2023-03-21 | 鑫精合激光科技发展(北京)有限公司 | 一种开口结构零件成形方法及装置 |
CN116689785B (zh) * | 2023-08-08 | 2023-10-17 | 西安赛隆增材技术股份有限公司 | 一种解决悬空面结构翘曲变形的增材制造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007204828A (ja) * | 2006-02-03 | 2007-08-16 | Matsuura Machinery Corp | 三次元積層造形部品の表面仕上げ方法 |
CN105538728A (zh) * | 2016-02-23 | 2016-05-04 | 中国科学院重庆绿色智能技术研究院 | 一种激光增减材复合制造的方法与装置 |
CN106825567A (zh) * | 2017-01-22 | 2017-06-13 | 清华大学 | 电子束选区熔化与电子束切割复合的增材制造装备 |
CN108248011A (zh) * | 2017-12-20 | 2018-07-06 | 广东工业大学 | 一种激光冲击锻打与激光切割复合增材制造装置及方法 |
CN108380877A (zh) * | 2018-03-24 | 2018-08-10 | 安徽拓宝增材制造科技有限公司 | 一种金属粉末的激光烧结方法 |
CN109571017A (zh) * | 2018-11-30 | 2019-04-05 | 宁波匠心快速成型技术有限公司 | 一种高精度增减材3d打印方法以及装置 |
WO2020058722A1 (en) * | 2018-09-20 | 2020-03-26 | Camadd Ltd | A powder bed: additive manufacturing |
CN112496345A (zh) * | 2021-02-05 | 2021-03-16 | 西安赛隆金属材料有限责任公司 | 硬质合金增材制备方法 |
CN114713848A (zh) * | 2022-06-10 | 2022-07-08 | 西安赛隆金属材料有限责任公司 | 一种提升增材制造零件表面质量的方法及增材制造设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG106041A1 (en) * | 2000-03-21 | 2004-09-30 | Nanyang Polytechnic | Plastic components with improved surface appearance and method of making the same |
DE102009051479A1 (de) * | 2009-10-30 | 2011-05-05 | Mtu Aero Engines Gmbh | Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine |
CN107498053B (zh) * | 2017-09-30 | 2019-06-18 | 华中科技大学 | 一种消除激光增材制造成形中边缘堆高的方法 |
KR102012691B1 (ko) * | 2017-10-12 | 2019-08-21 | 한국기계연구원 | 레이저와 분말을 이용한 3차원 형상 제조방법 |
CN109047762A (zh) * | 2018-08-31 | 2018-12-21 | 江苏大学 | 一种激光选区熔化与激光切割复合的增材制造方法 |
CN108907196A (zh) * | 2018-09-03 | 2018-11-30 | 江苏典悦三维科技有限公司 | 激光增减材复合制造装置及方法 |
CN110052713B (zh) * | 2019-03-22 | 2020-04-10 | 江南大学 | 零件增减材复合制造工艺 |
CN110369725A (zh) * | 2019-08-02 | 2019-10-25 | 上海工程技术大学 | 基于激光增减材复合制造精细工件的近净成形方法及装置 |
CN111151744A (zh) * | 2019-12-03 | 2020-05-15 | 汕头大学 | 一种基于ebm与飞秒激光的打切一体增材设备及方法 |
CN111992877A (zh) * | 2020-07-07 | 2020-11-27 | 上海工程技术大学 | 一种高精度激光增减材的复合制造装置 |
CN214443088U (zh) * | 2020-10-30 | 2021-10-22 | 广东工业大学 | 一种激光增减材复合五轴机械加工成型设备 |
CN114425625A (zh) * | 2022-01-14 | 2022-05-03 | 中国人民解放军军事科学院国防科技创新研究院 | 脉冲激光增材减材制造系统及方法 |
-
2022
- 2022-06-10 CN CN202210653266.0A patent/CN114713848B/zh active Active
- 2022-09-28 WO PCT/CN2022/121973 patent/WO2023236394A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007204828A (ja) * | 2006-02-03 | 2007-08-16 | Matsuura Machinery Corp | 三次元積層造形部品の表面仕上げ方法 |
CN105538728A (zh) * | 2016-02-23 | 2016-05-04 | 中国科学院重庆绿色智能技术研究院 | 一种激光增减材复合制造的方法与装置 |
CN106825567A (zh) * | 2017-01-22 | 2017-06-13 | 清华大学 | 电子束选区熔化与电子束切割复合的增材制造装备 |
CN108248011A (zh) * | 2017-12-20 | 2018-07-06 | 广东工业大学 | 一种激光冲击锻打与激光切割复合增材制造装置及方法 |
CN108380877A (zh) * | 2018-03-24 | 2018-08-10 | 安徽拓宝增材制造科技有限公司 | 一种金属粉末的激光烧结方法 |
WO2020058722A1 (en) * | 2018-09-20 | 2020-03-26 | Camadd Ltd | A powder bed: additive manufacturing |
CN109571017A (zh) * | 2018-11-30 | 2019-04-05 | 宁波匠心快速成型技术有限公司 | 一种高精度增减材3d打印方法以及装置 |
CN112496345A (zh) * | 2021-02-05 | 2021-03-16 | 西安赛隆金属材料有限责任公司 | 硬质合金增材制备方法 |
CN114713848A (zh) * | 2022-06-10 | 2022-07-08 | 西安赛隆金属材料有限责任公司 | 一种提升增材制造零件表面质量的方法及增材制造设备 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117483799A (zh) * | 2023-12-29 | 2024-02-02 | 西安赛隆增材技术股份有限公司 | 一种铝合金的粉床电子束增材制造方法 |
CN117483799B (zh) * | 2023-12-29 | 2024-04-02 | 西安赛隆增材技术股份有限公司 | 一种铝合金的粉床电子束增材制造方法 |
CN117961090A (zh) * | 2024-04-02 | 2024-05-03 | 四川工程职业技术大学 | 一种飞机活门的增材制造方法 |
CN118321573A (zh) * | 2024-06-13 | 2024-07-12 | 西安赛隆增材技术股份有限公司 | 一种TiAl合金叶片的增材制造方法 |
CN118635529A (zh) * | 2024-08-15 | 2024-09-13 | 西安赛隆增材技术股份有限公司 | 一种三维制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114713848B (zh) | 2022-09-23 |
CN114713848A (zh) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023236394A1 (zh) | 一种提升增材制造零件表面质量的方法及增材制造设备 | |
US20210339340A1 (en) | Method for preparing multiple-material variable-rigidity component by efficient collaborative additive manufacturing | |
CN109365811B (zh) | 一种选区激光熔化技术成形锌合金制品的方法 | |
CN113560598B (zh) | 一种大尺寸零件激光选区熔化成形方法 | |
CN108889948B (zh) | 一种用于薄壁件增材制造的分区扫描方法 | |
CN108629086B (zh) | 一种适用于增材制造零件的应力调整方法 | |
CN113857492B (zh) | 一种自扰动激光增材制造方法 | |
CN110695355B (zh) | 控制铝合金薄壁件在3d打印过程中发生翘曲变形的工艺方法 | |
CN108817386A (zh) | 用于多光束激光选区熔化成形的层间梳状拼接方法 | |
CN105983786B (zh) | 一种采用激光实现玻璃加工的方法 | |
CN109590743B (zh) | 一种电弧增材成形与展成电解加工的复合制造方法 | |
CN111001806B (zh) | 一种增材制造中细化晶粒的方法及装置 | |
CN109746444A (zh) | 一种通过优化基板减小增材制造残余应力和非稳态的方法 | |
CN112893840A (zh) | 选区激光熔化成型随型冷却水道模具嫁接制造方法 | |
CN113977087A (zh) | 一种同幅面多类型激光增减材复合成形装置与方法 | |
JP2002066844A (ja) | 金属粉末焼結型積層造形による放電加工用電極製作方法 | |
CN117182106A (zh) | 一种无支撑激光选区熔化增材制造方法 | |
US11565349B2 (en) | Composite device for high-precision laser additive/subtractive manufacturing | |
CN114473214A (zh) | 陶瓷表面双激光束耦合抛光方法 | |
CN113492216A (zh) | 一种迷宫式调节阀阀笼的增材成形方法及得到的阀笼 | |
CN107234239B (zh) | 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备 | |
CN110666171B (zh) | 激光选区熔化成形圆孔结构的模型校正方法 | |
CN113909631B (zh) | 一种机器人末端带辅助装置的悬空结构增材工艺 | |
CN112658485B (zh) | 激光-电弧多枪协同增材制造飞机承力框的方法及产品 | |
AU2021101664A4 (en) | Polishing method for inner and outer surfaces of complex cavity additive manufacturing parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22945526 Country of ref document: EP Kind code of ref document: A1 |