WO2023236276A1 - 一种自吸式喷射泵 - Google Patents

一种自吸式喷射泵 Download PDF

Info

Publication number
WO2023236276A1
WO2023236276A1 PCT/CN2022/102110 CN2022102110W WO2023236276A1 WO 2023236276 A1 WO2023236276 A1 WO 2023236276A1 CN 2022102110 W CN2022102110 W CN 2022102110W WO 2023236276 A1 WO2023236276 A1 WO 2023236276A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
housing
jet
water inlet
self
Prior art date
Application number
PCT/CN2022/102110
Other languages
English (en)
French (fr)
Inventor
张君波
杨克
徐海良
包军伟
洪利兵
Original Assignee
宁波君禾智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波君禾智能科技有限公司 filed Critical 宁波君禾智能科技有限公司
Priority to US17/975,643 priority Critical patent/US20230400027A1/en
Publication of WO2023236276A1 publication Critical patent/WO2023236276A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/02Self-priming pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet

Definitions

  • the present application relates to the technical field of injection pumps, and in particular to a self-priming injection pump.
  • a water pump is a device used to transport liquids, including a motor and a pump body.
  • the pump body is provided with a water inlet, a water inlet channel, a pressurizing chamber, a water outlet channel and a water outlet.
  • the pressurizing chamber is equipped with an impeller.
  • the water inlet is connected to the water inlet channel
  • the water outlet is connected to the water outlet channel
  • the pressurizing chamber is connected to the water inlet channel and the water outlet channel respectively.
  • the motor drives the impeller to rotate at high speed, and the external water flow enters the pressurization chamber through the water inlet and the water inlet channel in turn. After the pressurization effect of the impeller, a high-pressure water flow forms and enters the water outlet channel, and then is discharged from the water outlet.
  • the performance of the water pump depends on the two working parameters of head and flow.
  • the curve relationship between head and flow is inversely proportional, that is, if the head is high, the flow will be small; if the head is low, the flow will be large.
  • Water pumps also experience performance degradation when certain flow rate values are reached. This effect is caused by the nascent cavitation generated in the area around the injection nozzle at the opening of the venturi. It not only reduces the lift and efficiency of the water pump, but also causes problems such as vibration, noise, and cavitation.
  • the main measures currently taken include optimizing the inlet of the pressurized water chamber, optimizing the blade load, installing an inducer, inlet injection pressurization, and adopting a double-suction structure, etc., in order to reduce The pump inlet flow rate and the pump inlet pressure are increased to control or alleviate cavitation.
  • FIG. 10 Chinese patent application "A flow-increasing water pump”, application number: CN201910335203.9, discloses a pump body including a water inlet and a water outlet.
  • the pump body is provided with a water inlet chamber, a pressure water chamber and a water flow channel.
  • the water chamber and the pressurized water chamber are also connected through a flow increasing channel.
  • a one-way check mechanism is provided in the flow increasing channel. When the liquid pressure in the water inlet chamber is greater than the liquid pressure in the pressurized water chamber, the one-way check mechanism The flow-increasing channel is opened; when the liquid pressure in the water inlet chamber is less than the liquid pressure in the pressurized water chamber, the one-way check mechanism blocks the flow-increasing channel.
  • the present invention reasonably improves the structural design of the pump body, and sets up an additional flow-increasing channel between the water inlet chamber and the pressure water chamber, and uses a one-way check mechanism according to the relationship between the pressure water chamber and the water inlet chamber in the pump body. Pressure changes control the conduction or blocking of the liquid flow in the flow-increasing channel, thereby optimizing the curve relationship between pump flow and lift, and significantly improving pump performance.
  • the flow rate of the flow-increasing channel provided on one side of the water inlet chamber and the pressure water chamber is very limited. Without increasing the volume of the pump body, the optimization effect is not ideal.
  • the one-way check mechanism includes a partition, a guide sleeve, a movable rod, a movable baffle, a compression spring, etc. Its structure is complex, the cost is too high, and the assembly Difficult and easily damaged during use.
  • the technical problem to be solved by this application is to provide a self-priming jet pump with a flow increasing channel to alleviate the cavitation problem, a simple production process and low production cost.
  • a self-priming jet pump including a pump body with a water inlet and a water outlet.
  • the pump body is provided with a jet tube and an impeller.
  • the jet tube connects the water inlet and the entrance of the pressurized water chamber.
  • a first channel is provided on the outer periphery of the jet tube.
  • the first channel connects the water inlet and the inlet of the pressurized water chamber.
  • the cross section of the first channel is a closed or open annular structure.
  • the first channel surrounds the outer periphery of the jet tube.
  • a valve core is installed in the first channel.
  • the advantage of this application is that a first channel is provided on the outer periphery of the jet tube, and the first channels are connected to the water inlet and the entrance of the pressurized water chamber, that is, the distance from the water outlet to the entrance of the pressurized water chamber can be increased. conduction flow.
  • the first channel When the jet pump is at low lift, that is, when the pressure at the water inlet is greater than the predetermined pressure value at the entrance of the pressurized water chamber, the first channel opens, further increasing the passing flow rate and effectively increasing the upper limit of the pump flow rate.
  • the head When the head is low, that is, when the pressure at the water inlet is not greater than the predetermined value of the pressure at the entrance of the pressurized water chamber, the first channel is in a closed state. As a result, the inlet flow rate reaching the entrance of the pressurized water chamber is reduced, effectively increasing the upper limit of the water pump lift.
  • the valve core closes the first channel; or, when the pressure at the water inlet is greater than the predetermined value of the pressure at the inlet of the pressurized water chamber, the valve core moves Open the first channel.
  • This application adopts a circular first channel structure.
  • the cross-sectional area of the first channel will be larger. That is to say, the passable fluid flow rate in the solution of this application will be larger, and the corresponding effect of alleviating the cavitation problem will be better.
  • the first channel is arranged around the periphery of the jet tube, so that the overall volume of the entire jet pump does not increase significantly.
  • this application only provides a valve core at the first channel, and does not involve other structures such as partitions, guide sleeves, movable rods, movable baffles, and compression springs. Therefore, compared with the prior art, the production process of this application is simple and the production cost is low.
  • the first channel is a straight channel.
  • the technology of the present application conveniently avoids phenomena such as flow disturbance and turbulence during the passage of fluid.
  • the flow rate of the straight channel is faster and the water inlet efficiency is high.
  • the flow-increasing channel In order to install the one-way check mechanism of the flow-increasing water pump in the prior art, the flow-increasing channel must be provided with a curved channel.
  • the cross section of the first channel is a circular ring structure
  • the first channel is sleeved outside the jet tube
  • the valve core is a circular ring structure.
  • the valve core is made of elastic material.
  • the valve core can block the valve port very well and close the first channel.
  • the structure of the valve core is similar to a sealing ring, which is a component with simple structure and mature technology. Therefore the production cost of the product is lower.
  • One side wall of the first channel is connected to the wall of the pressurized water chamber. Therefore, the fluid exported from the jet tube will form a negative pressure at the outlet of the first channel, driving the fluid in the first channel to be rapidly exported outward.
  • the first channel is arranged around the periphery of the jet tube, that is, around the nozzle in the jet pump, the fluid ejected from the nozzle will form negative pressure at both the inlet of the jet tube and the inlet of the first channel, driving The fluid quickly enters the jet tube and the first channel.
  • the flow-increasing channel in the prior art, it is set close to the water inlet pipe. Under the action of the nozzle, the fluid will reach the jet tube through the flow-increasing channel. The fluid can easily "pass" the flow-increasing channel. Therefore, the generation of the flow-increasing channel The effect is not ideal, and it may be impossible to open the one-way check mechanism.
  • valve core has an annular structure, it is equivalent to the valve core being set outside the first channel wall. During the movement of the valve core, it is limited by the first channel wall, and the movement is stable and reliable. .
  • both the first channel and the valve core have highly symmetrical structures. Therefore, when the fluid passes through the first channel or the fluid acts on the valve core, the force on the valve core is balanced. This also makes the working condition of the valve core stable and reliable.
  • a valve port is provided on the side of the first channel close to the water inlet, and the valve port is a circular annular structure or a plurality of regularly arranged rectangular, circular, and arc-shaped structures.
  • the above structures can meet the water inlet demand of the first channel.
  • Regularly arranged multiple rectangular, circular, and arc-shaped structures can also achieve balanced force on the valve core and achieve stable and reliable operation of the valve core.
  • a guide piece is provided on the wall of the first channel or the second channel near the valve opening, and the valve core located in the first channel or the second channel moves to the valve opening through the guide piece.
  • a guide piece is provided to ensure that the valve core can move to the valve port position stably and reliably to achieve blockage of the valve port.
  • a limiting piece is provided in the first channel or the second channel, and the valve core is located between the valve port and the limiting piece.
  • the limit piece limits the movement stroke of the valve core to prevent the valve core from moving beyond the limit when the force is large, and when the first channel and the second channel should be blocked, it is difficult for the valve core to move to the valve port.
  • a jet is provided in the pump body.
  • the jet includes a jet pipe, a water inlet pipe and a pressurized water chamber, and the impeller is installed in the pressurized water chamber.
  • the water inlet pipe is connected to the water inlet
  • the water inlet pipe is connected to the jet pipe
  • the valve port of the first channel or the valve port of the second channel the jet pipe connects the water inlet pipe and the pressurized water chamber
  • the first The channel or the second channel connects the water inlet pipe and the pressurized water chamber
  • the pressurized water chamber is connected with the water outlet of the pump body.
  • the conduction of the first channel or the second channel depends on the working status of the injection pump. If it is in a conductive state, the fluid entering the water inlet pipe will reach the pressurized water chamber through the first channel or the second channel.
  • the ejector includes a first housing, a second housing, a third housing and a fourth housing.
  • the first housing and the second housing are connected to form a water inlet pipe, and the valve end of the jet pipe part, the first channel or the second channel is located in the second housing.
  • the jet tube part, the first channel or the second channel part is located in the third housing.
  • the second housing and the third housing form a jet tube, and the second housing and the third housing form a first channel or a second channel.
  • the third housing and the fourth housing constitute a pressurized water chamber.
  • the jet tube composed of four parts can not only meet the generated molding requirements, but also facilitate the assembly of the valve core, impeller and other structures, which is the preferred structural arrangement of the present application.
  • the third housing is provided with an installation groove
  • the second housing is provided with a corresponding installation portion
  • the installation portion is inserted into the installation groove.
  • a sealing structure is provided between the second housing and the third housing.
  • the sealing structure may specifically be a sealing member.
  • the second housing and the third housing can be locked by bolts.
  • a self-priming jet pump includes a pump body with a water inlet and a water outlet.
  • a jet tube and an impeller are provided in the pump body.
  • the jet tube connects the water inlet and the entrance of the pressurized water chamber.
  • At least two holes are provided on the periphery of the jet tube.
  • a second channel connects the water inlet and the inlet of the pressurized water chamber.
  • the second channel is equipped with a valve core. At least two second channels are arranged around the periphery of the jet tube; the pressure at the water inlet is greater than the pressure When the pressure at the inlet of the water chamber reaches a predetermined value, the valve core moves to open the second channel.
  • the advantage of this application is that at least two second channels are provided on the outer periphery of the jet tube, and the second channels are both connected to the water inlet and the inlet of the pressurized water chamber, that is, the distance from the water outlet to the pressurized water chamber can be increased. Conductive flow at the entrance.
  • the second channel opens, further increasing the passing flow rate and effectively increasing the upper limit of the water pump flow rate.
  • the head is low, that is, when the pressure at the water inlet is not greater than the predetermined value of the pressure at the entrance of the pressurized water chamber, the second channel is in a closed state. As a result, the inlet flow rate reaching the entrance of the pressurized water chamber is reduced, effectively increasing the upper limit of the water pump lift.
  • This application uses at least two second channels around the periphery of the jet tube. Compared with the prior art, the cross-sectional areas of at least two second channels will also be larger. That is to say, the passable fluid flow rate in the solution of this application will be larger, and the corresponding effect of mitigating the cavitation problem will be better. Moreover, the second channel is arranged around the periphery of the jet tube, so that the overall volume of the entire jet pump does not increase significantly. In addition, this application only provides a valve core at the second channel, and does not involve other structures such as partitions, guide sleeves, movable rods, movable baffles, and compression springs. Therefore, compared with the prior art, the production process of this application is simple and the production cost is low.
  • the cross section of the second channel is circular or rectangular.
  • the cross section of the second channel can also be triangular, semicircular, special-shaped, or other shapes.
  • the cross-section of the second channel is a curved line segment, and at least two second channels are arranged in an annular structure.
  • a valve port is provided on the side of the second channel close to the water inlet.
  • the valve core installed in the second channel is adapted to the valve port structure, and the valve core blocks the valve port. Then the second channel is disconnected.
  • valve port is adapted to the cross-section of the second channel, and the valve port is a circular, rectangular, or curved line segment.
  • valve core is a block structural member with a circular, rectangular or curved cross-section.
  • the valve core is made of elastic material.
  • the valve core can block the valve port very well and close the second channel.
  • the second channel is generally a straight channel.
  • the molding is simple and the production cost is low. Through the regular arrangement of two or more second channels, large flow changes can be achieved without basically increasing the volume of the jet pump.
  • Figure 1 is a schematic structural diagram of the present application
  • Figure 2 is a side view of the application
  • Figure 3 is a cross-sectional view of the AA section in Figure 2;
  • Figure 4 is a schematic structural diagram of the ejector
  • Figure 5 is a schematic diagram of the exploded structure of the ejector
  • Figure 6 is a schematic diagram 2 of the exploded structure of the ejector
  • Figure 7 is a cross-sectional view of Embodiment 7 of the present application.
  • Figure 8 is a performance comparison graph of this application.
  • the I curve is the performance curve of the existing self-priming jet pump
  • the K curve is the performance curve of the present application.
  • a self-priming jet pump As shown in Figures 1 to 3 and 8, it includes a pump body 3 with a water inlet 1 and a water outlet 2.
  • the pump body 3 is provided with a jet tube 4 and an impeller 5.
  • the jet tube 4 connects the water inlet 1 and the entrance of the pressurized water chamber 12, and a first channel is provided on the periphery of the jet tube 4;
  • the first channel 6 connects the water inlet 1 and the entrance of the pressurized water chamber 12, and the The cross section of a channel 6 is a closed or open annular structure.
  • the first channel 6 is around the periphery of the jet tube 4, and a valve core 7 is installed in the first channel 6; when the pressure at the water inlet 1 is less than or equal to the pressure water chamber 12 When the pressure at the inlet is a predetermined value, the valve core 7 closes the first channel 6; or when the pressure at the water inlet 1 is greater than the predetermined pressure value at the entrance of the pressurized water chamber 12, the valve core 7 moves to open the first channel 6 or the first channel 6. Two channels.
  • a first channel 6 is provided on the outer periphery of the jet tube 4.
  • the first channel 6 connects the water inlet 1 and the entrance of the pressurized water chamber 12, that is, it can increase the conductive flow rate from the water outlet 2 to the entrance of the pressurized water chamber 12. The corresponding effect of mitigating cavitation problems will be better.
  • the first channel 6 is arranged around the periphery of the jet tube 4, so that the overall volume of the entire jet pump does not increase significantly.
  • this application only provides the valve core 7 at the first channel 6 and does not involve other structures such as partitions, guide sleeves, movable rods, movable baffles, and compression springs. Therefore, compared with the prior art, the production process of this application is simple and the production cost is low.
  • the jet pump when the jet pump is at low lift, that is, when the pressure of the water inlet 1 is greater than the predetermined value of the pressure at the entrance of the pressurized water chamber 12, the first channel 6 is opened, further increasing the passing flow rate and effectively increasing the upper limit of the water pump flow rate. numerical value.
  • the head When the head is low, that is, when the pressure of the water inlet 1 is not greater than the predetermined value of the pressure at the entrance of the pressurized water chamber 12, the first channel 6 is in a closed state. Thereby reaching the inlet water at the entrance of the pressurized water chamber 12.
  • Embodiment 2 as shown in Figures 1 to 3, the cross section of the first channel 6 is an annular structure, the first channel 6 is sleeved outside the jet tube 4, and the valve core is Ring structure.
  • the first channel 6 is provided with a valve port 8 on one side close to the water inlet 1.
  • the valve port 8 is an annular structure or a plurality of regularly arranged rectangular, circular, and arc-shaped structures. When the valve port 8 structure is provided, the above structures can meet the water inlet demand of the first channel 6 . Regularly arranged multiple rectangular, circular, and arc-shaped structures can also achieve balanced force on the valve core 7 and achieve stable and reliable operation of the valve core 7 .
  • the valve core 7 is made of elastic material.
  • the valve core 7 can block the valve port 8 well and close the first channel 6 .
  • the structure of the valve core is similar to a sealing ring, which is a component with simple structure and mature technology. Therefore the production cost of the product is lower.
  • valve core 7 has an annular structure, it is equivalent to the valve core 7 being set outside the wall of the first channel 6. During the movement of the valve core 7, it is limited by the wall of the first channel 6. Movement is stable and reliable.
  • both the first channel 6 and the valve core 7 are highly symmetrical structures. Therefore, when the fluid passes through the first channel 6 or the fluid acts on the valve core 7, the valve core 7 is The force is balanced, which also makes the working state of the valve core 7 stable and reliable.
  • Embodiment 2 Other contents of Embodiment 2 are the same as Embodiment 1.
  • Embodiment 3 as shown in Figures 3 to 6, the wall of the first channel 6 or the second channel close to the valve port 8 is provided with a guide piece 9, and the valve core located in the first channel 6 or the second channel 7 moves to the valve port 8 through the guide piece 9.
  • a guide piece 9 is provided to ensure that the valve core 7 can move stably and reliably to the position of the valve port 8 to achieve blocking of the valve port 8.
  • a limiting piece 10 is provided in the first channel 6 or the second channel, and the valve core 7 is located between the valve port 8 and the limiting piece 10 .
  • the limiting piece 10 limits the movement stroke of the valve core 7 to prevent the movement path of the valve core 7 from exceeding the limit when the force is large, and when the first channel 6 and the second channel should be blocked, the valve core 7 It is difficult to move to the valve port 8 position.
  • Embodiment 4 as shown in Figures 3 to 6, the pump body 3 is provided with a jet device.
  • the jet device includes a jet pipe 4, a water inlet pipe 11 and a pressurized water chamber 12.
  • the impeller 5 is installed In the pressurized water chamber 12.
  • the water inlet pipe 11 is connected with the water inlet.
  • the water inlet pipe 11 is connected with the jet pipe 4, the valve port 8 of the first channel 6 or the valve port 8 of the second channel.
  • the jet pipe 4 is connected with the water inlet pipe. 11 and the pressurized water chamber 12, the first channel 6 or the second channel connects the water inlet pipe 11 and the pressurized water chamber 12, and the pressurized water chamber 12 is connected with the water outlet 2 of the pump body 3.
  • the conduction of the first channel 6 or the second channel depends on the working status of the injection pump. If it is in the conductive state, the fluid entering the water inlet pipe 11 will reach the pressurized water chamber 12 through the first channel 6 or the second channel.
  • the ejector includes a first housing 13 , a second housing 14 , a third housing 15 and a fourth housing 16 .
  • the first housing 13 and the second housing 14 are connected to form a water inlet pipe 11.
  • the jet pipe 4 part, the first channel 6 or the valve port 8 end of the second channel is located in the second housing 14.
  • the jet tube 4 part, the first channel 6 or the second channel part is located in the third housing 15 .
  • the second housing 14 and the third housing 15 form the jet tube 4, and the second housing 14 and the third housing 15 form the first channel 6 or the second channel.
  • the third housing 15 and the fourth housing 16 constitute a pressurized water chamber 12 .
  • the jet tube 4 composed of four parts can not only meet the generated molding requirements, but also facilitate the assembly of the valve core 7, impeller 5 and other structures, which is the preferred structural arrangement of this application.
  • the third housing 15 is provided with an installation groove 15a, and the second housing 14 is provided with a corresponding installation portion 14a, and the installation portion 14a is inserted into the installation groove 15a.
  • a sealing structure is provided between the second housing 14 and the third housing 15 .
  • the sealing structure may specifically be a sealing member.
  • the second housing 14 and the third housing 15 can be locked by bolts.
  • Embodiment 4 Other contents of Embodiment 4 are the same as any of the above embodiments.
  • Embodiment 5 as shown in Figure 7, the section of the first channel 6 or the second channel close to the impeller 5 is marked as a lead-out channel 17, and the lead-out channel 17 is a curved channel.
  • the outlet of the outlet channel 17 is opened on the wall surface of the jet tube 4 close to the impeller 5 . Due to the structural arrangement of the above-mentioned lead-out channel 17, the fluid led out by the first channel 6 or the second channel has better jet efficiency.
  • the outlet of the outlet channel 17 is located in the diffusion section of the jet tube 4 .
  • the fluid passing through the first channel 6 or the second channel will enter the jet tube 4 and be directed to the inlet of the pressurized water chamber 12 together with the fluid passing through the jet tube 4 . Since the outlet is located in the diffusion section of the jet tube 4 , the fluid derived from the first channel 6 and the second channel has less influence on the fluid in the jet tube 4 . It also avoids the influence of the jet that increases turbulence on the fluid in the first channel 6 or the second channel when ejecting at high speed.
  • the longitudinal section of the outer wall surface of the lead-out channel 17 is a multi-step stepped surface.
  • the fluid passes through the outlet channel 17 and forms a certain buffer on its outer wall. This prevents the fluid from impacting at the outlet, thereby affecting the fluid in the jet tube 4 .
  • Embodiment 6 It includes a pump body 3 with a water inlet 1 and a water outlet 2.
  • the pump body 3 is provided with a jet tube 4 and an impeller 5.
  • the jet tube 4 connects the water inlet 1 and the entrance of the pressurized water chamber 12.
  • the jet At least two second channels are provided on the periphery of the tube 4.
  • the second channels connect the water inlet 1 and the entrance of the pressurized water chamber 12.
  • the second channels are equipped with a valve core 7. At least two second channels surround the jet tube 4. Peripheral setting; when the pressure at the water inlet 1 is greater than the predetermined value of the pressure at the inlet of the pressurized water chamber 12, the valve core 7 moves to open the first channel 6 or the second channel.
  • At least two second channels are provided on the outer periphery of the jet tube 4.
  • the second channels are both connected to the water inlet 1 and the entrance of the pressurized water chamber 12, that is, the conductive flow rate from the water outlet 2 to the entrance of the pressurized water chamber 12 can be increased.
  • the corresponding effect of mitigating cavitation problems will be better.
  • the second channel is arranged around the periphery of the jet tube 4, so that the overall volume of the entire jet pump does not increase significantly.
  • this application only provides the valve core 7 in the second channel, and does not involve other structures such as partitions, guide sleeves, movable rods, movable baffles, and compression springs. Therefore, compared with the prior art, the production process of this application is simple and the production cost is low.
  • the second channel is opened, further increasing the passing flow rate, and effectively increasing the upper limit of the water pump flow rate.
  • the head is low, that is, when the pressure of the water inlet 1 is not greater than the predetermined value of the pressure at the entrance of the pressurized water chamber 12, the second channel is in a closed state. As a result, the inlet flow rate reaching the inlet of the pressurized water chamber 12 is reduced, effectively increasing the upper limit of the water pump lift.
  • Embodiment 7 The cross section of the second channel is circular or rectangular.
  • the cross section of the second channel is a curved line segment, and at least two second channels are arranged in a ring structure.
  • the second channel is provided with a valve port 8 on one side close to the water inlet 1.
  • the valve core 7 installed in the second channel is structurally adapted to the valve port 8. If the valve core 7 blocks the valve port 8, the second The channel is disconnected.
  • the valve port 8 is adapted to the cross-section of the second channel, and the valve port 8 is a circular, rectangular, or curved line segment.
  • the valve core 7 is a block structural member with a circular, rectangular, or curved cross-section.
  • the valve core 7 is made of elastic material. The valve core 7 can block the valve port 8 well and close the second channel.
  • the second channel is generally a straight channel.
  • the molding is simple and the production cost is low. Through the regular arrangement of two or more second channels, a larger flow rate change can be achieved without basically increasing the volume of the jet pump.
  • Embodiment 7 Other contents of Embodiment 7 are the same as Embodiment 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本申请公开了一种自吸式喷射泵,包括具有进水口与出水口的泵体,泵体内设置有射流管与叶轮,所述的射流管连通了进水口与压水室入口,射流管外周设置有一个第一通道或者至少两个第二通道,所述的第一通道或第二通道连通了进水口与叶轮;第一通道的横截面为闭合或开口的环形结构,第一通道绕于射流管外周;至少两个第二通道绕在射流管外周设置;第一通道、第二通道安装有阀芯,在进水口处的压强大于叶轮处的压强预定值时,阀芯移动打开第一通道或第二通道。设置增流通道缓解空化问题,且生产工艺简单、生产成本低。

Description

一种自吸式喷射泵 技术领域
本申请涉及喷射泵技术领域,尤其是涉及一种自吸式喷射泵。
背景技术
水泵是一种用于输送液体的设备,包括电机与泵体,在泵体上设有进水口、进水通道、增压室、出水通道与出水口,所述增压室内设有叶轮,进水口连接着进水通道,出水口连接着出水通道,增压室分别与进水通道、出水通道连接。通过电机驱动叶轮高速旋转,外界水流依次经过进水口、进水通道进入增压室内,经过叶轮的增压作用形成高压水流并进入出水通道,继而从出水口排出。随着叶轮内部流体的不断排出,在叶轮中心位置逐渐形成低压区,甚至达到真空,此时水泵入口处的流体在大气压力的作用下,通过进水口源源不断地流入叶轮,再由叶轮甩出。在这个过程中,叶轮将泵轴的机械能传给流体,变成流体的压能和动能,并体现为水泵的扬程输出。
其中,水泵的性能取决于扬程与流量两个工作参数,扬程与流量的曲线关系图呈反比关系,即扬程高、则流量小;扬程低、则流量大。当达到特定流速值时水泵还会发生性能衰减。这种影响是由于在文丘里管的开口处在喷射喷嘴周围的区域中生成的初生空化而引起的。其不仅使水泵的扬程、效率降低,还会引发振动、噪声与空蚀等问题。
为了控制空化或缓解空化所带来的损害,目前所采取的主要措施有压水室入口优化、叶片载荷优化、加装诱导轮、入口引射增压以及采用双吸结构等,以期降低泵入口流速及增大泵入口压力,而实现对空化的控制或缓解。
中国专利申请《一种增流水泵》,申请号:CN201910335203.9,公开了包括有具有进水口与出水口的泵体,泵体内设置有进水腔室、压水室室以及水流通道,进水腔室与压水室室之间还通过增流通道连通,增流通道内设置有单向止回机构,进水腔室的液体压强大于压水室室的液体压强时、单向止回机构导通增流通道;进水腔室的液体压强小于压水室室的液体压强时、单向止回机构阻断增流通道。本发明合理改进泵体结构设计,在进水腔室与压水室室之间额外开设一增流通道,并借助单向止回机构根据泵体内压水室室与进水腔室之间的压强变化、控制增流通道内液体流动的导通或阻断,从而优化水泵流量与扬程的曲线关系图,显著提升水泵性能。
但上述专利申请存在如下问题:1.在进水腔室、压水室室的一侧设置增流通道的通道流量非常有限,在不增大泵体体积的前提下,优化效果并不理想。2、在狭隘的增流通道内设置单向止回机构,单向止回机构包括隔板、导向套筒、活动杆、活动挡板、压缩弹簧等,其结构复杂、造价成本过高,而且装配困难,使用过程中容易损坏。
发明内容
本申请所要解决的技术问题是提供一种自吸式喷射泵,设置增流通道缓解空化问题,且生产工艺简单、生产成本低。
本申请采用的技术方案为:一种自吸式喷射泵,包括具有进水口与出水口的泵体,泵体内设置有射流管与叶轮,所述的射流管连通了进水口与压水室入口,射流管外周设置有一个第一通道,所述的第一通道连通了进水口与压水室入口,第一通道的横截面为闭合或开口的环形结构,第一通道绕于射流管外周,第一通道内安装有阀芯。
与现有技术相比,本申请的优点在于,在射流管的外周设置一个第一通道,第一通道均连通进水口与压水室入口,即能够增大从出水口到压水室入口处的导通流量。
在喷射泵处于低扬程时,也就是进水口的压强大于压水室入口处的压强预定值时,第一通道打开,进一步增大了通过的流量,有效提高水泵流量的上限数值。而在低扬程时,也就是进水口的压强不大于压水室入口处的压强预定值时,第一通道处于关闭状态。从而到达压水室入口处的进水流量减少,有效提高水泵扬程的上限数值。
当进水口处的压强小于或等于压水室入口处的压强预定值时,阀芯关闭第一通道;或,当进水口处的压强大于压水室入口处的压强预定值时,阀芯移动打开第一通道。
本申请采用的圆环形的第一通道结构。相比较于现有技术,第一通道的通道的截面积会更大。即本申请的方案中的可通过流体流量会更大,相应的缓解空化问题的效果会更好。而且第一通道是绕在射流管外周设置,使得整个喷射泵整体的体积并不会明显增大。此外,本申请在第一通道处仅设置阀芯,而并不涉及隔板、导向套筒、活动杆、活动挡板、压缩弹簧等其它结构。因此,本申请相对于现有技术,其生产工艺简单、生产成本低。
在本申请的一些实施例中,所述的第一通道为直通道。相比较于,现有技术中类似于Z形走向的增流通道,本申请的技术方便避免了在流体通过过程中存在扰流、紊流等现象。而且直通道的流速更快,进水效率高。而现有技术中的增流水泵,为了实现单向止回机构的安装,其在增流通道的设置中,所必须采用存在弯折的通道。
在本申请的一些实施例中,所述的第一通道的横截面为圆环形结构,所述的第一通道套设在射流管外,所述的阀芯为圆环形结构。优选的,所述的阀芯为弹性材料制成。阀芯能够很好的将阀口阻塞,关闭第一通道。在本实施例中,阀芯的结构类似于密封圈,是结构简单、工艺成熟的部件。因此产品的生产成本较低。
第一通道的一侧壁面与压水室壁面连接。因此从射流管导出的流体将在第一通道的出口处形成负压,带动第一通道内的流体快速向外导出。在本申请中,因为第一通道是环绕设置在射流管外周,也就是绕喷射泵内的喷嘴设置,从喷嘴喷射出来的流体将在射流管入口、第一通道的入口均形成负压,带动流体快速进入射流管、第一通道。对现有技术中的增流通道而言,其靠近入水管设置,在喷嘴的作用下,流体会通过增流通道到达射流管,流体容易“路过”增流通道,因此,增流通道的产生的效果并不理想,且可能出现无法打开单向止回机构的可能。
此外,因为阀芯为圆环形结构,就相当于阀芯是套设在第一通道壁面外的,在阀芯的运动过程中,受到了第一通道壁面的限位,运动是稳定可靠的。
在本实施例中,不论是第一通道,还是阀芯,都是高度对称的结构,因此在流体通过第一通道或是流体作用于阀芯的过程中,阀芯的受力是均衡的,这也使得阀芯的工作状态是稳定可靠的。
具体的,所述的第一通道靠近进水口一侧设置有阀口,所述的阀口为圆环形结构或是规则排列的多个矩形、圆形、弧形结构。在设置阀口结构时,上述结构均能满足第一通道的进水需求。而规则排列的多个矩形、圆形、弧形结构,也能够实现阀芯的受力均衡,实现阀芯稳定可靠的工作。
在本申请的一些实施例中,所述的第一通道或第二通道靠近阀口处的壁面设置有导向片,位于第一通道或第二通道内的阀芯通过导向片移动至阀口处。本申请中设置导向片确保阀芯能够稳定可靠的移动到阀口位置,实现阀口的阻塞。
在本申请的一些实施例中,所述的第一通道或第二通道内设置有限位片,阀芯位于阀口与限位片之间。所述的限位片限定了阀芯的移动行程,避免阀芯在受力较大时,移动路径超出限制,而在第一通道、第二通道应该阻塞状态下,阀芯难以运动到阀口位置。
在本申请的一些实施例中,所述的泵体内设置有射流器,所述的射流器包括射流管、入水管与压水室,所述的叶轮安装在压水室。
所述的入水管与入水口连接,所述的入水管与射流管、第一通道的阀口或第二通道的阀口连通,所述的射流管连通了入水管与压水室,第一通道或第二通道连通了入水管 与压水室,所述的压水室与泵体的出水口连通。至此,本申请就实现了流体从入水口进入,依次通过入水管、射流管、压水室,之后从泵体的出水口导出。
而第一通道或者第二通道的导通与否取决于喷射泵的工作状态。若是处于导通状态,则进入入水管的流体将通过第一通道或第二通道到达压水室。
在本申请的一些实施例中,所述的射流器包括第一壳体、第二壳体、第三壳体与第四壳体。
所述的第一壳体与第二壳体连接构成入水管,所述的射流管部分、第一通道或第二通道的阀口端位于第二壳体。
所述的射流管部分、第一通道或第二通道部分位于第三壳体。所述的第二壳体与第三壳体构成射流管,所述的第二壳体与第三壳体构成第一通道或第二通道。
所述的第三壳体与第四壳体构成压水室。
在本实施例中,通过四部分组成的射流管,即能够满足产生的成型需求,又方便阀芯、叶轮等结构的装配,是本申请的优选结构设置。
具体的,所述的第三壳体上设置有安装槽,所述的第二壳体对应设置有安装部,安装部插入安装槽内。所述的第二壳体与第三壳体之间设置有密封结构。密封结构具体可以是密封件。第二壳体与第三壳体可以通过螺栓锁固。
一种自吸式喷射泵,包括具有进水口与出水口的泵体,泵体内设置有射流管与叶轮,所述的射流管连通了进水口与压水室入口,射流管外周设置有至少两个第二通道,所述的第二通道连通了进水口与压水室入口,第二通道安装有阀芯,至少两个第二通道绕在射流管外周设置;在进水口处的压强大于压水室入口处的压强预定值时,阀芯移动打开第二通道。
与现有技术相比,本申请的优点在于,在射流管的外周设置至少两个第二通道,第二通道均连通进水口与压水室入口,即能够增大从出水口到压水室入口处的导通流量。
在喷射泵处于低扬程时,也就是进水口的压强大于压水室入口处的压强预定值时,第二通道打开,进一步增大了通过的流量,有效提高水泵流量的上限数值。而在低扬程时,也就是进水口的压强不大于压水室入口处的压强预定值时,第二通道处于关闭状态。从而到达压水室入口处的进水流量减少,有效提高水泵扬程的上限数值。
本申请采用的是至少两个绕在射流管外周的第二通道。相比较于现有技术,至少两个第二通道的截面积也会更大。即本申请的方案中的可通过流体流量会更大,相应的缓 解空化问题的效果会更好。而且第二通道是绕在射流管外周设置,使得整个喷射泵整体的体积并不会明显增大。此外,本申请在第二通道处仅设置阀芯,而并不涉及隔板、导向套筒、活动杆、活动挡板、压缩弹簧等其它结构。因此,本申请相对于现有技术,其生产工艺简单、生产成本低。
在本申请的一些实施例中,所述的第二通道的横截面为圆形或矩形。此外,第二通道的横截面还可以为三角形、半圆形、异形等形状。
在本申请的一些实施例中,所述的第二通道的横截面为弯曲线段,至少两个第二通道排列成环状结构。
在本申请的一些实施例中,所述的第二通道靠近进水口一侧设置有阀口,安装在第二通道内的阀芯与阀口结构相适应,所述的阀芯将阀口阻塞则第二通道断开。
优选的,所述的阀口与第二通道的横截面相适应,所述的阀口为圆形、矩形、弯曲线段。对应的,所述的阀芯为横截面成圆形、矩形、弯曲线段的块状结构件。
优选的,所述的阀芯为弹性材料制成。阀芯能够很好的将阀口阻塞,关闭第二通道。
在上述实施例中,第二通道一般为直通道。成型简单,生产成本低。而通过两个以及更多数量的第二通道的规则排列,在基本不增大喷射泵体积的基础上,实现较大流量的变化。
附图说明
以下将结合附图和优选实施例来对本申请进行进一步详细描述,但是本领域技术人员将领会的是,这些附图仅是出于解释优选实施例的目的而绘制的,并且因此不应当作为对本申请范围的限制。此外,除非特别指出,附图仅示意在概念性地表示所描述对象的组成或构造并可能包含夸张性显示,并且附图也并非一定按比例绘制。
图1为本申请的结构示意图;
图2为本申请的侧视图;
图3为图2中AA截面的剖视图;
图4为射流器的结构示意图;
图5为射流器的分解结构示意图一;
图6为射流器的分解结构示意图二;
图7为本申请实施例七的剖视图;
图8为本申请的性能对比曲线图。
其中,附图标记具体说明如下:1、进水口;2、出水口;3、泵体;4、射流管;5、叶轮;6、第一通道;7、阀芯;8、阀口;9、导向片;10、限位片;
11、入水管;12、压水室;13、第一壳体;14、第二壳体;14a、安装部;15、第三壳体;15a、安装槽;16、第四壳体;17、导出通道。
图8中,I曲线为现有的自吸式喷射泵的性能曲线,K曲线为本申请的性能曲线。
具体实施方式
下面结合附图,对本申请作详细的说明。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
一种自吸式喷射泵,实施例一:如图1至图3、图8所示:包括具有进水口1与出水口2的泵体3,泵体3内设置有射流管4与叶轮5,所述的射流管4连通了进水口1与压水室12入口,射流管4外周设置有一个第一通道;所述的第一通道6连通了进水口1与压水室12入口,第一通道6的横截面为闭合或开口的环形结构,第一通道6绕在射流管4外周,第一通道6内安装有阀芯7;当进水口1处的压强小于或等于压水室12入口处的压强预定值时,阀芯7关闭第一通道6;或,当进水口1处的压强大于压水室12入口处的压强预定值时,阀芯7移动打开第一通道6或第二通道。
在射流管4的外周设置一个第一通道6,第一通道6连通进水口1与压水室12入口,即能够增大从出水口2到压水室12入口处的导通流量。相应的缓解空化问题的效果会更好。而且第一通道6是绕在射流管4外周设置,使得整个喷射泵整体的体积并不会明显增大。此外,本申请在第一通道6处仅设置阀芯7,而并不涉及隔板、导向套筒、活动杆、活动挡板、压缩弹簧等其它结构。因此,本申请相对于现有技术,其生产工艺简单、生产成本低。
本申请在喷射泵处于低扬程时,也就是进水口1的压强大于压水室12入口处的压强预定值时,第一通道6打开,进一步增大了通过的流量,有效提高水泵流量的上限数值。而在低扬程时,也就是进水口1的压强不大于压水室12入口处的压强预定值时,第一通道6处于关闭状态。从而到达压水室12入口处的进水流。
实施例二,如图1至图3所示,所述的第一通道6的横截面为圆环形结构,所述的第 一通道6套设在射流管4外,所述的阀芯为圆环形结构。
所述的第一通道6靠近进水口1一侧设置有阀口8,所述的阀口8为圆环形结构或是规则排列的多个矩形、圆形、弧形结构。在设置阀口8结构时,上述结构均能满足第一通道6的进水需求。而规则排列的多个矩形、圆形、弧形结构,也能够实现阀芯7的受力均衡,实现阀芯7稳定可靠的工作。
优选的,所述的阀芯7为弹性材料制成。阀芯7能够很好的将阀口8阻塞,关闭第一通道6。在本实施例中,阀芯的结构类似于密封圈,是结构简单、工艺成熟的部件。因此产品的生产成本较低。
此外,因为阀芯7为圆环形结构,就相当于阀芯7是套设在第一通道6壁面外的,在阀芯7的运动过程中,受到了第一通道6壁面的限位,运动是稳定可靠的。
在本实施例中,不论是第一通道6,还是阀芯7,都是高度对称的结构,因此在流体通过第一通道6或是流体作用于阀芯7的过程中,阀芯7的受力是均衡的,这也使得阀芯7的工作状态是稳定可靠的。
实施例二的其它内容与实施例一相同。
实施例三,如图3至图6所示,所述的第一通道6或第二通道靠近阀口8处的壁面设置有导向片9,位于第一通道6或第二通道内的阀芯7通过导向片9移动至阀口8处。本申请中设置导向片9确保阀芯7能够稳定可靠的移动到阀口8位置,实现阀口8的阻塞。
所述的第一通道6或第二通道内设置有限位片10,阀芯7位于阀口8与限位片10之间。所述的限位片10限定了阀芯7的移动行程,避免阀芯7在受力较大时,移动路径超出限制,而在第一通道6、第二通道应该阻塞状态下,阀芯7难以运动到阀口8位置。
实施例三的其它内容与上述任一实施例相同。
实施例四,如图3至图6所示,所述的泵体3内设置有射流器,所述的射流器包括射流管4、入水管11与压水室12,所述的叶轮5安装在压水室12。
所述的入水管11与入水口连接,所述的入水管11与射流管4、第一通道6的阀口8或第二通道的阀口8连通,所述的射流管4连通了入水管11与压水室12,第一通道6或第二通道连通了入水管11与压水室12,所述的压水室12与泵体3的出水口2连通。至此,本申请就实现了流体从入水口进入,依次通过入水管11、射流管4、压水室12,之后从泵体3的出水口2导出。
而第一通道6或者第二通道的导通与否取决于喷射泵的工作状态。若是处于导通状态,则进入入水管11的流体将通过第一通道6或第二通道到达压水室12。
所述的射流器包括第一壳体13、第二壳体14、第三壳体15与第四壳体16。
所述的第一壳体13与第二壳体14连接构成入水管11,所述的射流管4部分、第一通道6或第二通道的阀口8端位于第二壳体14。
所述的射流管4部分、第一通道6或第二通道部分位于第三壳体15。所述的第二壳体14与第三壳体15构成射流管4,所述的第二壳体14与第三壳体15构成第一通道6或第二通道。
所述的第三壳体15与第四壳体16构成压水室12。
在本实施例中,通过四部分组成的射流管4,即能够满足产生的成型需求,又方便阀芯7、叶轮5等结构的装配,是本申请的优选结构设置。
具体的,所述的第三壳体15上设置有安装槽15a,所述的第二壳体14对应设置有安装部14a,安装部14a插入安装槽15a内。所述的第二壳体14与第三壳体15之间设置有密封结构。密封结构具体可以是密封件。第二壳体14与第三壳体15可以通过螺栓锁固。
实施例四的其它内容与上述任一实施例相同。
实施例五,如图7所示,所述的第一通道6或第二通道靠近叶轮5的一段记为导出通道17,导出通道17为弯曲的通道。所述的导出通道17的导出口开设在射流管4靠近叶轮5的壁面处。上述导出通道17的结构设置,第一通道6或第二通道导出的流体具有更好的射流效率。
具体的,所述的导出通道17的导出口位于射流管4的扩散段。通过第一通道6或第二通道的流体会进入到射流管4内,与通过射流管4的流体一起导向压水室12入口。因导出口开设在射流管4的扩散段,第一通道6、第二通道导出的流体对射流管4内的流体影响较小。也避免了射流器在高速喷射时对第一通道6或第二通道内的流体增加湍流的影响。
优选的,所述的导出通道17外侧壁面的纵截面为多级阶梯面。流体经过导出通道17在其外壁面形成了一定的缓冲。避免流体在导出口处产生冲击,进而对射流管4内的流体产生影响。
实施例五的其它内容与上述任一实施例相同。
实施例六:包括具有进水口1与出水口2的泵体3,泵体3内设置有射流管4与叶轮5,所述的射流管4连通了进水口1与压水室12入口,射流管4外周设置有至少两个第二通道,所述的第二通道连通了进水口1与压水室12入口,第二通道安装有阀芯7,至少两个第二通道绕在射流管4外周设置;在进水口1处的压强大于压水室12入口处的压强预定值时,阀芯7移动打开第一通道6或第二通道。
在射流管4的外周设置至少两个第二通道,第二通道均连通进水口1与压水室12入口,即能够增大从出水口2到压水室12入口处的导通流量。相应的缓解空化问题的效果会更好。而且第二通道是绕在射流管4外周设置,使得整个喷射泵整体的体积并不会明显增大。此外,本申请在第二通道内仅设置阀芯7,而并不涉及隔板、导向套筒、活动杆、活动挡板、压缩弹簧等其它结构。因此,本申请相对于现有技术,其生产工艺简单、生产成本低。
本申请在喷射泵处于低扬程时,也就是进水口1的压强大于压水室12入口处的压强预定值时,第二通道打开,进一步增大了通过的流量,有效提高水泵流量的上限数值。而在低扬程时,也就是进水口1的压强不大于压水室12入口处的压强预定值时,第二通道处于关闭状态。从而到达压水室12入口处的进水流量减少,有效提高水泵扬程的上限数值。
实施例七,所述的第二通道的横截面为圆形或矩形。
所述的第二通道的横截面为弯曲线段,至少两个第二通道排列成环状结构。
所述的第二通道靠近进水口1一侧设置有阀口8,安装在第二通道内的阀芯7与阀口8结构相适应,所述的阀芯7将阀口8阻塞则第二通道断开。优选的,所述的阀口8与第二通道的横截面相适应,所述的阀口8为圆形、矩形、弯曲线段。对应的,所述的阀芯7为横截面成圆形、矩形、弯曲线段的块状结构件。优选的,所述的阀芯7为弹性材料制成。阀芯7能够很好的将阀口8阻塞,关闭第二通道。
在上述实施例中,第二通道一般为直通道。成型简单,生产成本低。而通过两个以及更多数量的第二通道的规则排列,在基本不增大喷射泵体3积的基础上,实现较大流量的变化。
实施例七的其它内容与实施例六相同。
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及核心思想。应当指出,对于 本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (18)

  1. 一种自吸式喷射泵,其特征在于包括具有进水口(1)与出水口(2)的泵体(3),泵体(3)内设置有射流管(4)与叶轮(5),所述的射流管(4)连通了进水口(1)与压水室(12)入口,射流管(4)外周设置有一个第一通道(6),所述的第一通道(6)连通了进水口(1)与压水室(12)入口,第一通道(6)的横截面为闭合或开口的环形结构,第一通道(6)绕于射流管(4)外周,第一通道(6)安装有阀芯(7)。
  2. 根据权利要求1所述的一种自吸式喷射泵,其特征在于当进水口(1)处的压强小于或等于压水室(12)入口处的压强预定值时,阀芯(7)关闭第一通道(6);或,当进水口(1)处的压强大于压水室(12)入口处的压强预定值时,阀芯(7)移动打开第一通道(6)。
  3. 根据权利要求1所述的一种自吸式喷射泵,其特征在于所述的第一通道(6)的横截面为圆环形结构,所述的第一通道(6)为直通道,所述的第一通道(6)套设在射流管(4)外,所述的阀芯(7)为圆环形结构。
  4. 根据权利要求3所述的一种自吸式喷射泵,其特征在于所述的第一通道(6)靠近进水口(1)一侧设置有阀口(8),所述的阀口(8)为圆环形结构或是规则排列的多个矩形、圆形、弧形结构。
  5. 根据权利要求3所述的一种自吸式喷射泵,其特征在于,所述的第一通道(6)靠近阀口(8)处的壁面设置有导向片(9),位于第一通道(6)内的阀芯(7)通过导向片(9)移动至阀口(8)处。
  6. 根据权利要求3所述的一种自吸式喷射泵,其特征在于所述的第一通道(6)内设置有限位片(10),阀芯(7)位于阀口(8)与限位片(10)之间。
  7. 根据权利要求1所述的一种自吸式喷射泵,其特征在于所述的泵体(3)内设置有射流器,射流器包括射流管(4)、入水管(11)与压水室(12),所述的叶轮(5)安装在压水室(12);所述的入水管(11)与入水口连接,所述的入水管(11)与射流管(4)、第一通道(6)的阀口(8)的阀口(8)连通,所述的射流管(4)连通了入水管(11)与压水室(12),第一通道(6)连通了入水管(11)与压水室(12),所述的压水室(12)与泵体(3)的出水口(2)连通。
  8. 根据权利要求7所述的一种自吸式喷射泵,其特征在于所述的射流器包括第一 壳体(13)、第二壳体(14)、第三壳体(15)与第四壳体(16);所述的第一壳体(13)与第二壳体(14)构成入水管(11),所述的射流管(4)部分、第一通道(6)的阀口(8)端位于第二壳体(14);所述的射流管(4)部分、第一通道(6)部分位于第三壳体(15),所述的第二壳体(14)与第三壳体(15)构成射流管(4),所述的第二壳体(14)与第三壳体(15)构成第一通道(6);所述的第三壳体(15)与第四壳体(16)构成压水室(12)。
  9. 根据权利要求1所述的一种自吸式喷射泵,其特征在于所述的第一通道(6)靠近叶轮(5)的一段记为导出通道(17),导出通道(17)为弯曲的通道;所述的导出通道(17)的导出口开设在射流管(4)靠近叶轮(5)的壁面处。
  10. 一种自吸式喷射泵,其特征在于包括具有进水口(1)与出水口(2)的泵体(3),泵体(3)内设置有射流管(4)与叶轮(5),所述的射流管(4)连通了进水口(1)与压水室(12)入口,射流管(4)外周设置有至少两个第二通道,所述的第二通道连通了进水口(1)与压水室(12)入口,至少两个第二通道绕射流管(4)外周设置,第二通道安装有阀芯(7);所述的第二通道为直通道。
  11. 根据权利要求10所述的一种自吸式喷射泵,其特征在于所述的第二通道的横截面为圆形或矩形。
  12. 根据权利要求10所述的一种自吸式喷射泵,其特征在于所述的第二通道的横截面为弯曲线段,至少两个第二通道排列成环状结构。
  13. 根据权利要求11或12所述的一种自吸式喷射泵,其特征在于至少两个第二通道均匀分布在射流管(4)外周;所述的第二通道靠近进水口(1)一侧设置有阀口(8),安装在第二通道内的阀芯(7)与阀口(8)结构相适应,所述的阀芯(7)将阀口(8)阻塞则第二通道断开。
  14. 根据权利要求13所述的一种自吸式喷射泵,其特征在于,所述的第二通道靠近阀口(8)处的壁面设置有导向片(9),位于第二通道内的阀芯(7)通过导向片(9)移动至阀口(8)处。
  15. 根据权利要求14所述的一种自吸式喷射泵,其特征在于所述的第二通道内设置有限位片(10),阀芯(7)位于阀口(8)与限位片(10)之间。
  16. 根据权利要求11所述的一种自吸式喷射泵,其特征在于所述的泵体(3)内设置有射流器,射流器包括射流管(4)、入水管(11)与压水室(12),所述的叶轮(5) 安装在压水室(12);所述的入水管(11)与入水口连接,所述的入水管(11)与射流管(4)、第二通道的阀口(8)连通,所述的射流管(4)连通了入水管(11)与压水室(12),第二通道连通了入水管(11)与压水室(12),所述的压水室(12)与泵体(3)的出水口(2)连通。
  17. 根据权利要求16所述的一种自吸式喷射泵,其特征在于所述的射流器包括第一壳体(13)、第二壳体(14)、第三壳体(15)与第四壳体(16);所述的第一壳体(13)与第二壳体(14)构成入水管(11),所述的射流管(4)部分、第二通道的阀口(8)端位于第二壳体(14);所述的射流管(4)部分、第二通道部分位于第三壳体(15),所述的第二壳体(14)与第三壳体(15)构成射流管(4),所述的第二壳体(14)与第三壳体(15)构成第二通道;所述的第三壳体(15)与第四壳体(16)构成压水室(12)。
  18. 根据权利要求11所述的一种自吸式喷射泵,其特征在于所述的第二通道靠近叶轮(5)的一段记为导出通道(17),导出通道(17)为弯曲的通道;所述的导出通道(17)的导出口开设在射流管(4)靠近叶轮(5)的壁面处。
PCT/CN2022/102110 2022-06-09 2022-06-29 一种自吸式喷射泵 WO2023236276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/975,643 US20230400027A1 (en) 2022-06-09 2022-10-28 Self-priming jet pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210646174.XA CN114992133B (zh) 2022-06-09 2022-06-09 一种自吸式喷射泵
CN202210646174.X 2022-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/975,643 Continuation-In-Part US20230400027A1 (en) 2022-06-09 2022-10-28 Self-priming jet pump

Publications (1)

Publication Number Publication Date
WO2023236276A1 true WO2023236276A1 (zh) 2023-12-14

Family

ID=83032152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102110 WO2023236276A1 (zh) 2022-06-09 2022-06-29 一种自吸式喷射泵

Country Status (2)

Country Link
CN (1) CN114992133B (zh)
WO (1) WO2023236276A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218207212U (zh) * 2022-06-09 2023-01-03 宁波君禾智能科技有限公司 一种喷射泵

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1201721A (en) * 1967-07-07 1970-08-12 Muanyagipari Ki A single-stage or multistage self-priming pump
EP2037125A2 (en) * 2007-09-14 2009-03-18 Dab Pumps S.p.A. Self-priming centrifugal jet pump
CN104696269A (zh) * 2015-03-31 2015-06-10 邢宇 封闭式机械密封泵效环和具有该泵效环的轴封冲洗系统
CN206280265U (zh) * 2016-12-13 2017-06-27 浙江新控泵业有限公司 一种自吸屏蔽复合泵
CN206582123U (zh) * 2017-02-10 2017-10-24 台州市高典机电有限公司 一种喷射泵
CN110067777A (zh) * 2019-04-24 2019-07-30 利欧集团浙江泵业有限公司 一种增流水泵
CN210317784U (zh) * 2019-07-04 2020-04-14 利欧集团浙江泵业有限公司 一种喷射水泵
CN111022333A (zh) * 2019-07-04 2020-04-17 利欧集团浙江泵业有限公司 一种喷射水泵
CN111828340A (zh) * 2020-06-17 2020-10-27 普轩特泵业股份有限公司 一种高效节能自吸离心水力系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2027911C1 (ru) * 1991-04-29 1995-01-27 Опытное конструкторское бюро машиностроения Центробежный насос
RU2351805C1 (ru) * 2007-12-12 2009-04-10 Закрытое акционерное общество "Гидрогаз" Самовсасывающий центробежный насос
CN202348688U (zh) * 2011-10-13 2012-07-25 江苏万丰船用设备制造有限公司 喷射式自吸离心水泵
CN107269544A (zh) * 2017-08-16 2017-10-20 利欧集团浙江泵业有限公司 一种射流自吸泵
CN207297390U (zh) * 2017-09-27 2018-05-01 利欧集团浙江泵业有限公司 一种增压水泵
CN107740770A (zh) * 2017-11-15 2018-02-27 上海中韩杜科泵业制造有限公司 一种小型冲压注塑自吸泵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1201721A (en) * 1967-07-07 1970-08-12 Muanyagipari Ki A single-stage or multistage self-priming pump
EP2037125A2 (en) * 2007-09-14 2009-03-18 Dab Pumps S.p.A. Self-priming centrifugal jet pump
CN104696269A (zh) * 2015-03-31 2015-06-10 邢宇 封闭式机械密封泵效环和具有该泵效环的轴封冲洗系统
CN206280265U (zh) * 2016-12-13 2017-06-27 浙江新控泵业有限公司 一种自吸屏蔽复合泵
CN206582123U (zh) * 2017-02-10 2017-10-24 台州市高典机电有限公司 一种喷射泵
CN110067777A (zh) * 2019-04-24 2019-07-30 利欧集团浙江泵业有限公司 一种增流水泵
CN210317784U (zh) * 2019-07-04 2020-04-14 利欧集团浙江泵业有限公司 一种喷射水泵
CN111022333A (zh) * 2019-07-04 2020-04-17 利欧集团浙江泵业有限公司 一种喷射水泵
CN111828340A (zh) * 2020-06-17 2020-10-27 普轩特泵业股份有限公司 一种高效节能自吸离心水力系统

Also Published As

Publication number Publication date
CN114992133A (zh) 2022-09-02
CN114992133B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2023236276A1 (zh) 一种自吸式喷射泵
CN203879753U (zh) 离心泵体外射流自吸装置
CN102430534B (zh) 脉冲蓄能式高压水射流清洗系统
WO2018045606A1 (zh) 低噪音自吸复合泵
CN104533846A (zh) 一种适用于泵压式供应系统的高压环形射流泵
CN111828388A (zh) 一种适用于离心式/混流式水泵的自循环防汽蚀机匣
CN201318488Y (zh) 水力控制阀
CN108204382A (zh) 一种基于中心射流和环形射流相结合的复合射流泵
CN113007100A (zh) 一种可调节射流式自吸离心泵
WO2023236389A1 (zh) 一种喷射泵
CN212360314U (zh) 一种离心式/混流式水泵的自循环防汽蚀机匣
CN101581312B (zh) 一种大流量自吸泵
CN204553358U (zh) 一种适用于泵压式供应系统的高压环形射流泵
RU2810938C1 (ru) Насос
EP4310336A1 (en) Jet pump
US20230400027A1 (en) Self-priming jet pump
CN218235565U (zh) 一种射流器及应用该射流器的离心泵
EP2481928B1 (en) Pumps priming adjustable ejector
CN201818559U (zh) 自动排气回流阀
CN204663903U (zh) 一种射流泵装置
CN112610536B (zh) 一种燃油泵抗气蚀结构
CN218934861U (zh) 一种射流器及其喷射泵
CN103573723B (zh) 射流气体压缩系统
CN207814052U (zh) 一种抑制汽蚀的离心泵
CN208162164U (zh) 一种带安全阀的高压清洗机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945414

Country of ref document: EP

Kind code of ref document: A1