WO2023236193A1 - Methods and apparatus of csi reporting for ai-enabled beam management - Google Patents

Methods and apparatus of csi reporting for ai-enabled beam management Download PDF

Info

Publication number
WO2023236193A1
WO2023236193A1 PCT/CN2022/098148 CN2022098148W WO2023236193A1 WO 2023236193 A1 WO2023236193 A1 WO 2023236193A1 CN 2022098148 W CN2022098148 W CN 2022098148W WO 2023236193 A1 WO2023236193 A1 WO 2023236193A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
beams
recommended
report
csi report
Prior art date
Application number
PCT/CN2022/098148
Other languages
French (fr)
Inventor
Jianfeng Wang
Bingchao LIU
Congchi ZHANG
Xin Guo
Tingnan BAO
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/098148 priority Critical patent/WO2023236193A1/en
Publication of WO2023236193A1 publication Critical patent/WO2023236193A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of CSI reporting for Artificial Intelligence enabled (AI-enabled) beam management.
  • AI-enabled Artificial Intelligence enabled
  • 5G Fifth Generation Partnership Project
  • 5G New Radio
  • NR New Radio
  • 5G Node B gNB
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • E-UTRAN Node B eNB
  • Universal Mobile Telecommunications System UMTS
  • WiMAX Evolved UMTS Terrestrial Radio Access Network
  • E-UTRAN Wireless Local Area Networking
  • WLAN Wireless Local Area Networking
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • DL Downlink
  • UL Uplink
  • UE User Equipment
  • NE Network Equipment
  • RAT Radio Access Technology
  • RX Receive
  • a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) .
  • the wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
  • the 5G New Radio is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology.
  • Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2.
  • FR1 Frequency of sub-6 GHz range (from 450 to 6000 MHz)
  • millimeter wave range from 24.25 GHz to 52.6 GHz
  • the 5G NR supports both FR1 and FR2 frequency bands.
  • a TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
  • an apparatus including: a receiver that receives a configuration signalling for Channel State Information (CSI) reporting; a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and a transmitter that transmits the CSI report.
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Synchronization Signals and Physical Broadcast Channel
  • an apparatus including: a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting; a receiver that receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Synchronization Signals and Physical Broadcast Channel
  • a method including: receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting; generating, by a processor, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and transmitting, by a transmitter, the CSI report.
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Synchronization Signals and Physical Broadcast Channel
  • a method including: transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting; receiving, by a receiver, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Synchronization Signals and Physical Broadcast Channel
  • Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure
  • Figure 4A is a schematic diagram illustrating an example of using AI/ML approach to use less RS for estimation of the best beam pairs in accordance with some implementations of the present disclosure.
  • Figure 4B is a schematic diagram illustrating an example of using AI/ML approach to predict beam pairs for moving UEs in accordance with some implementations of the present disclosure.
  • Figure 5A is a schematic diagram illustrating an example of a full resource set for beam measurement without an AI model in accordance with some implementations of the present disclosure.
  • Figure 5B is a schematic diagram illustrating an example of a resource subset for beam measurement with an AI model in accordance with some implementations of the present disclosure.
  • Figure 6 is a schematic diagram illustrating an example of enhanced CSI report procedure with recommended beam subset in accordance with some implementations of the present disclosure.
  • Figure 7 is a schematic diagram illustrating an example of a CSI report with the recommended beam index in accordance with some implementations of the present disclosure.
  • Figure 8 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by UE in accordance with some implementations of the present disclosure.
  • Figure 9 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by gNB in accordance with some implementations of the present disclosure.
  • embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
  • one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ”
  • code computer readable code
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • references throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example.
  • instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed.
  • Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise.
  • the terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
  • first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise.
  • a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily.
  • a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
  • a and/or B may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B.
  • the character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items.
  • A/B means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
  • Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100.
  • the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
  • UE user equipment
  • NE network equipment
  • the UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
  • the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like.
  • the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like.
  • the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
  • the NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art.
  • a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
  • the NEs 104 may be distributed over a geographic region.
  • the NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
  • the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) .
  • the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme.
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX.
  • WiMAX open or proprietary communication protocols
  • the NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link.
  • the NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
  • Communication links are provided between the NE 104 and the UEs 102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
  • RATs Radio Access Technologies
  • the NE 104 may also include one or more transmit receive points (TRPs) 104a.
  • the network equipment may be a gNB 104 that controls a number of TRPs 104a.
  • the network equipment may be a TRP 104a that is controlled by a gNB.
  • Communication links are provided between the NEs 104, 104a and the UEs 102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some UEs 102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
  • RATs Radio Access Technologies
  • the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously.
  • a TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) .
  • the two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs.
  • TRP and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment.
  • a UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the UE 200 may not include any input device 206 and/or display 208.
  • the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment.
  • the memory 204 also stores program code and related data.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audio, and/or haptic signals.
  • the transceiver 210 in one embodiment, is configured to communicate wirelessly with the network equipment.
  • the transceiver 210 comprises a transmitter 212 and a receiver 214.
  • the transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
  • the transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214.
  • the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment.
  • the NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310.
  • the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
  • the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200.
  • the processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200.
  • the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
  • the transceiver 310 comprises a transmitter 312 and a receiver 314.
  • the transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
  • the transceiver 310 may communicate simultaneously with a plurality of UEs 200.
  • the transmitter 312 may transmit DL communication signals to the UE 200.
  • the receiver 314 may simultaneously receive UL communication signals from the UE 200.
  • the transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314.
  • the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
  • the beam management framework in NR is designed to measure the configured beamformed reference signals (RSs) , either Channel State Information Reference Signal (CSI-RS) and Synchronization Signal Block (SSB) from gNB or Sounding Reference Signal (SRS) from UE in FR2, to acquire the link quality with beamforming.
  • RSs configured beamformed reference signals
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • SRS Sounding Reference Signal
  • the serving gNB For downlink (DL) , the serving gNB transmits a set of transmitting (Tx) beams through the periodic SSBs or configured CSI-RS, i.e., CSI-RS for beam management, in a beam sweeping manner, and each SSB or each CSI-RS resource corresponds to a DL beam.
  • the UE measures the quality, i.e., L1-RSRP or L1-SINR, of each received RS using different receiving (Rx) beams or a same Rx beam and reports the resource indices and quality (i.e., L1-RSRP/L1-SINR) of the best N beams to the gNB (where N may be a pre-set or configured number) .
  • the gNB may configure or indicate the expected beam for the UE among the reported beams for the following DL data transmission.
  • the UE may transmit different SRS resources with different Tx beams (e.g., associated to different spatial relations) for UL beam management, and the serving gNB may configure an SRS resource indicator to indicate the Tx beam for a UL transmission based on the measurement of each SRS at the gNB side.
  • different SRS resources with different Tx beams (e.g., associated to different spatial relations) for UL beam management
  • the serving gNB may configure an SRS resource indicator to indicate the Tx beam for a UL transmission based on the measurement of each SRS at the gNB side.
  • the beam management framework includes four kinds of operations: beam sweeping, beam measurement and reporting, beam indication, and beam failure detection and recovery.
  • beam sweeping the gNB and the UE have a set of analogue beams, and sequentially use beams from the entire set or subset in order to find the good Tx-Rx beam pairs.
  • Tx beam refinement for the base station which means that the UE fixes its Rx beam while the gNB performs Tx beam sweeping possibly using narrower beams than in P-1 to select a suitable Tx beam;
  • P-3 Procedure 3 (P-3) : Rx beam refinement for the UE, which means that the gNB fixes its Tx beam while the UE performs Rx beam sweeping to select a suitable Rx beam.
  • each Synchronization Signal (SS) period contains at most 64 SS blocks to sweep the candidate beams, which significantly increases the messaging overhead and process delay in UEs for the exhaustive searching, especially for the UE with multiple Rx beams.
  • an AI/ML approach is proposed to explore the correlation among the beams, leverage the side information (e.g., environment) and improve efficiency.
  • a typical deployment with the AI/ML approach, i.e., spatial domain beam selection, is to apply an AI model to assist the best beams selection with less resources and potential less latency, as illustrated in Figure 4A.
  • FIG 4A is a schematic diagram illustrating an example of using AI/ML approach to use less RS for the estimation of the best beam pairs in accordance with some implementations of the present disclosure.
  • Tx beams each being represented with a Tx beam index 410a from #0 to #7; and two Rx beams, each being represented with a Rx beam index 410b from #0 to #1.
  • Each Tx beam and each Rx beam form a beam pair represented by a circle in Figure 4.
  • Four of the beam pairs that are shaded may be measured, and the L1-RSRP measurement results 410 may be inputted into an AI model 420.
  • the trained AI model 420 using the measurement results from some resources, e.g., 4 from 16 as illustrated in the example, the best Tx beam indices and the corresponding L1-RSRP 430 may be obtained and reported.
  • FIG. 4B is a schematic diagram illustrating an example of using AI/ML approach to predict the beam pairs for moving UEs in accordance with some implementations of the present disclosure.
  • the UE 102 may be moving along a path or trajectory 412 in the servicing area of the gNB 104. Different beam pairs may be used at different locations along the trajectory 412.
  • the beam pair may be predicted via an AI model 420 according to the history measurement and/or trajectories, e.g., highways and high-speed train scenario.
  • the best Tx beam indices 430, and in some examples with the corresponding L1-RSRP, may be obtained and reported.
  • the AI approach can greatly facilitate the beam switching and tracking, efficient handovers, and less beam failures.
  • the air interface design may be enhanced, to enjoy the benefit from the AI/ML approach, via introducing new signals and message exchanging to facilitate the relevant operations.
  • the beam management is to establish and retain a suitable beam pair, that is, a transmitter-side beam direction and a corresponding receiver-side beam direction that jointly provide good connectivity.
  • a suitable beam pair that is, a transmitter-side beam direction and a corresponding receiver-side beam direction that jointly provide good connectivity.
  • For the downlink transmitter beam adjustment it aims at refining the network transmit beam, given the receiver beam currently used at the device side.
  • the reporting framework based on the CSI report configurations is reused. More specifically, the measurement/reporting is described by a report configuration having L1-RSRP or L1-SINR as the quantity to be reported.
  • the set of reference signals to be measured on, corresponding to the set of beams should be included in the NZP-CSI-RS resource set associated with the report configuration, which may either include a set of configured CSI-RS or a set of SS blocks (SSBs) . Measurements for beam management can thus be carried out on either CSI-RS or SS block.
  • the CSI-RS should be limited to single- port or dual-port CSI-RS.
  • the reported L1-RSRP should be a linear average of the L1-RSRP measured on each port.
  • the device e.g., UE
  • Each such report may include indications of the up to four reference signals, the measured L1-RSRP for the strongest beam and the difference between the measured L1-RSRP and the measured L1-RSRP of the best beam for the remaining up to three beams.
  • the relevant signals, resource indications and procedures are defined in the 3GPP specifications.
  • the information bits to carry the beam measurement reports are defined as:
  • mapping order of CSI fields in a CSI report is defined as:
  • Table 6.3.1.1.2-8 Mapping order of CSI fields of one report for CRI/RSRP or SSBRI/RSRP or CRI/RSRP/CapabilityIndex or SSBRI/RSRP/CapabilityIndex reporting, or mapping order of CSI fields of one report for inter-cell SSBRI/RSRP reporting
  • a UE may be configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to either 'none' , 'cri-RI-PMI-CQI' , 'cri-RI-i1' , 'cri-RI-i1-CQI' , 'cri-RI-CQI' , 'cri-RSRP' , 'cri-SINR' , 'ssb-Index-RSRP' , 'ssb-Index-SINR' , 'cri-RI-LI-PMI-CQI' , 'cri-RSRP-Capability [Set] Index' , 'ssb-Index-RSRP-Capability [Set] Index' , 'cri-SINR-Capability [Set] Index' or 'ssb-Index-SINR-Capability [Set] Index' .
  • the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'cri-RSRP' , 'ssb-Index-RSRP' , 'cri-RSRP-Capability [Set] Index' or 'ssb-Index-RSRP-Capability [Set] Index' ,
  • the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single report nrofReportedRS (higher layer configured) different CRI or SSBRI for each report setting.
  • the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single reporting instance two different CRI or SSBRI for each report setting, where CSI-RS and/or SSB resources can be received simultaneously by the UE either with a single spatial domain receive filter, or with multiple simultaneous spatial domain receive filters.
  • the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single reporting instance nrofReportedRSgroup, if configured, group (s) of two CRIs or SSBRIs selecting one CSI-RS or SSB from each of the two CSI Resource Sets for the report setting, where CSI-RS and/or SSB resources of each group can be received simultaneously by the UE.
  • the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'cri-SINR' , 'ssb-Index-SINR' , 'cri-SINR-Capability [Set] Index' or 'ssb-Index-SINR-Capability [Set] Index' ,
  • the UE shall report in a single report nrofReportedRS (higher layer configured) different CRI or SSBRI for each report setting.
  • the UE shall report in a single reporting instance two different CRI or SSBRI for each report setting, where CSI-RS and/or SSB resources can be received simultaneously by the UE.
  • the UE shall report SSBRI, where SSBRI k (k ⁇ 0) corresponds to the configured (k+1) -th entry of the associated csi-SSB-ResourceList in the corresponding CSI-SSB-ResourceSet.
  • the UE shall derive L1-SINR conditioned on the reported SSBRI, where SSBRI k (k ⁇ 0) corresponds to the configured (k+1) -th entry of the associated csi-SSB-ResourceList in the corresponding CSI-SSB-ResourceSet for channel measurement, and (k+1) -th entry of associated csi-IM-Resource in the corresponding csi-IM-ResourceSet (if configured) or (k+1) -th entry of associated nzp-CSI-RS-Resources in the corresponding NZP-CSI-RS-ResourceSet (if configured) for interference measurement.
  • the UE may be configured with CSI-RS resources, SS/PBCH Block resources or both CSI-RS and SS/PBCH block resources, when resource-wise quasi co-located with 'type C' and 'typeD' when applicable.
  • the UE may be configured with CSI-RS resource setting up to 16 CSI-RS resource sets having up to 64 resources within each set.
  • the total number of different CSI-RS resources over all resource sets is no more than 128.
  • the reported L1-RSRP value is defined by a 7-bit value in the range [-140, -44] dBm with 1dB step size, if the higher layer parameter nrofReportedRS is configured to be larger than one, or if the higher layer parameter groupBasedBeamReporting is configured as 'enabled' , or if the higher layer parameter groupBasedBeamReporting-r17 is configured, the UE shall use differential L1-RSRP based reporting, where the largest measured value of L1-RSRP is quantized to a 7-bit value in the range [-140, -44] dBm with 1dB step size, and the differential L1-RSRP is quantized to a 4-bit value.
  • the differential L1-RSRP value is computed with 2 dB step size with a reference to the largest measured L1-RSRP value which is part of the same L1-RSRP reporting instance.
  • the mapping between the reported L1-RSRP value and the measured quantity is described in [11, TS 38.133] .
  • the IE CSI-ReportConfig is used to configure a periodic or semi-persistent report sent on PUCCH on the cell in which the CSI-ReportConfig is included, or to configure a semi-persistent or aperiodic report sent on PUSCH triggered by DCI received on the cell in which the CSI-ReportConfig is included (in this case, the cell on which the report is sent is determined by the received DCI) . See TS 38.214 [19] , clause 5.2.1.
  • UE would always be enabled to report the measurement results from the configured resources according to the CSI report configuration.
  • This CSI report configuration may to be enhanced to support the UEs with AI-enhanced beam management.
  • the beam measurement report may be enhanced within the CSI report framework to report some additional information, i.e., recommended beam sub-set, for the UEs with the AI capability for beam management.
  • N txb Tx-beams at gNB and N rxb Rx-beams at UE the number of resources used for the beam measurement for full beam sweeping is N txb N rxb .
  • FIG. 5A is a schematic diagram illustrating an example of a full resource set for beam measurement without an AI model in accordance with some implementations of the present disclosure. As illustrated in Figure 5A, there are eight Tx-beams 510a (indicated by #TxB0 to #TxB7) and two Rx-beams 510b (indicated by #RxB0 and #RxB1) , then the gNB may use sixteen resources (CSI-RS or SSB) to sweep all beam pairs.
  • Tx-beams 510a indicated by #TxB0 to #TxB7
  • Rx-beams 510b indicated by #RxB0 and #RxB1
  • the gNB may use sixteen resources (CSI-RS or SSB) to sweep all beam pairs.
  • FIG. 5B is a schematic diagram illustrating an example of a resource subset for beam measurement with an AI model in accordance with some implementations of the present disclosure.
  • the results of beam pairs ⁇ #TxB2, #RxB0 ⁇ , ⁇ #TxB3, #RxB1 ⁇ , ⁇ #TxB4, #RxB0 ⁇ and ⁇ #TxB5, #RxB1 ⁇ , are used as the input of the AI model 420.
  • the best beam pairs among the original 16 beam pairs can be inferred from the well-trained AI model, i.e., the output of the AI model is the best beam pairs.
  • the following issues may exist for this case: 1) some information of the Tx-beams for all configured resources should be available at UE, such as the number of all candidate Tx-beams, mapping information between the resources and the Tx-beams; 2) the number of the Rx-beams could be different for different UEs, and accordingly, the number of Tx-beam repetitions, the indices of the recommended Tx-beams for the AI model may also be different; and 3) the ground truth for the AI model training, i.e., the results of the best K beam pairs, is available at UE.
  • a new message, and/or procedure may be introduced to indicate the recommended beam subset for following measurement request as illustrated in Figure 6.
  • Figure 6 is a schematic diagram illustrating an example of enhanced CSI report procedure with recommended beam subset in accordance with some implementations of the present disclosure.
  • the UE can predict the best beam (s) from a beam set A, based on the measurement on another set of sparse beams, e.g., beam set B, where the size of set B can be much less than the size of set A.
  • the procedure to enable the enhanced CSI report includes:
  • Step 1 The serving gNB 104 sends a request on the recommended CRIs/SSBRIs 602 to the UE 102.
  • This message may be delivered to the UE via high layer configuration, e.g., RRC or MAC CE, to request the UE 102 to report the recommended beams.
  • the request may be a configuration signalling for Channel State Information (CSI) reporting.
  • CSI Channel State Information
  • a request for one or more CSI reportings with beam recommendation may be sent to the UE102.
  • Step 2 The UE 102 reports the recommended CRI/SSBRIs 604 as the beam subset (e.g., beam set B) to the serving gNB 104.
  • the subset is the indications to the preferred sparse beams or the preferred beam indices if the UE can predict the beams.
  • the results may be included in a CSI report.
  • the CSI report may comprise a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • Step 3 The serving gNB 104 sends the recommended resource set to the UE 102 according to the recommended beam subset, i.e., the sparse beam set.
  • the resources are beamformed with the same beams for the previous recommended CRI/SSBRI, so each resource represents a beam.
  • the UE may further measure the resources and report the L1-RSRP or L1-SINR results for measurement if configured.
  • a new report quantity (i.e., reportQuantity) , e.g., recommendBeams, may be defined for CSI report configuration CSI-ReportConfig to indicate the UE to report the recommended beam subset for potential beam tracking, either for beam selection or for prediction, which is illustrated as follows.
  • nk (in relation to nrofReportedRS) needs to be further defined to indicate the maximum number of recommended beams, and it can be configured in the CSI-ReportConfig or according to the UE’s capability.
  • L1-RSRPs of the recommended beams may also be indicated in the configuration of CSI-ReportConfig.
  • the L1-RSRP may be disabled or enabled.
  • L1-SINR may be configured in the recommendBeams.
  • the UE shall report the configured N CRIs/SSBRIs (e.g., nrofReportedRS) and the corresponding L1-RSRPs for AI based beam measurement/indication if enabled.
  • N CRIs/SSBRIs e.g., nrofReportedRS
  • rCRI/rSSBRI a set of recommended CRI/SSBRI (termed as rCRI/rSSBRI below, where rCRI represents recommended CRI, and rSSBRI represents recommended SSBRI) is proposed together with the current definition as in Table 1.
  • a CSI report with the recommended CRIs/SSBRIs may include CSI fields according to Table 2, as an example.
  • the recommended CRIs/SSBRIs i.e., rCRIs/rSSBRIs
  • the CSI report including the recommended CRIs/SSBRIs may be referred to as the extended CSI report.
  • the rCRI with value k indicates the (k+1) th CSI-RS resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation; and rSSBRI with value k indicates the (k+1) th SSB resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
  • Figure 7 is a schematic diagram illustrating an example of a CSI report with the recommended beam index in accordance with some implementations of the present disclosure.
  • the CSI report 700 enhanced with the recommended beam index includes two parts, i.e., a first part for reporting a set of expected beams 710 that is expected to be reported in the CSI report; and a second part for reporting a set of recommended beams 720 that is determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  • AI Artificial Intelligence
  • ML Machine Leaning
  • information of the set of recommended beams 720 is appended to information of the set of expected beams 710 in the CSI report 700.
  • the first part of expected beams 710 may include a first beam index (SSBRI or CRI) 712 and corresponding L1-RSRP 712a, a second beam index (SSBRI or CRI) 714 and corresponding differential L1-RSRP 714a, and a third beam index (SSBRI or CRI) 716 and corresponding differential L1-RSRP 716a.
  • the second part of recommended beams 720 is attached to the CSI report according to existing mapping order, and may include one or a number of recommended beam indices.
  • information of the recommended beams 720 may also include information of L1-RSRP or L1-SINR corresponding to each one of the recommended beams, in addition to the recommended beam indices.
  • the recommended beam index or recommended beam indices i.e., the recommended beam subset for beam selection or for prediction, are derived, which will be used for the following RS transmission for measurement.
  • the recommended CRIs/SSBRIs may be reported reusing the current CSI report.
  • An example of the corresponding CSI report to report the beam measurement for AI based beam measurement recommendation is provided as follows.
  • CRI with value k in the CSI report for beam recommendation indicates the (k+1) th CSI-RS resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
  • SSBRI with value k in the CSI report for beam recommendation indicates the (k+1) th SSB resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
  • the CSI report may comprise only information of the set of recommended beams 720, and does not comprise information of the set of expected beams 710.
  • the reported number of beams N is configured in the CSI-ReportConfig, it may not be reported in the CSI report.
  • the higher layer parameter reportQuantity in CSI-ReportConfig is set to enable recommendBeams, the higher layer parameter repetition configured for the NZP CSI-RS resources should be configured as ‘off’ .
  • the UE may measure the L1-RSRP/L1-SINR of each CSI-RS resource or SSB resource from the resource set associated with the CSI-ReportConfig, e.g., beam set 0, as the input of a deployed AI model.
  • the output of the model may be reported in a CSI Report as the measurement results of the recommended beam set, e.g., beam set 1, which is a subset of a bigger beam set.
  • the gNB may obtain the measurement results of the recommended or predicted beam set, including the CRI/SSBRI and L1-RSRP/L1-SINR.
  • a UE is configured with a CSI-ReportConfig#1, where the associated CSI-RS-ResourceSet for beam measurement contains 128 CSI-RS resources, e.g., CSI-RS resource 0, CSI-RS resource 1, ..., CSI-RS resource 127, and the measurement results of 8 beams are requested to be reported. Then, the UE will report the results of the best 8 beams, e.g., CRI 1, CRI 6, CRI 8, CRI 16, CRI 28, CRI 66, CRI 88, CRI 99, in the CSI report corresponding to CSI-ReportConfig#1.
  • the UE will report the results of the best 8 beams, e.g., CRI 1, CRI 6, CRI 8, CRI 16, CRI 28, CRI 66, CRI 88, CRI 99, in the CSI report corresponding to CSI-ReportConfig#1.
  • the Network could configure CSI-ReportConfig#2 for AI based beam prediction, a CSI-RS-ResourceSet only containing 8 CSI-RS resources, e.g., CSI-RS resource 1, CSI-RS resource 6, ..., CSI-RS resource 99, and the UE measures the 8 beams and predicts up to 4 beams in the CSI report associated with CSI-ReportConfig#2.
  • the beam report (i.e., beam prediction) for CSI-ReportConfig#2 is based on all 128 CSI-RS resources as indicated before with a deployed AI model to predict the beams in spatial and/or time domain, which is different with the CSI report in NR Release 17.
  • CRI with value k in the CSI report for beam prediction indicates the (k+1) th CSI-RS resources within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation associated with this CSI-ReportConfig for beam prediction.
  • SSBRI with value k in the CSI report for beam prediction indicates the (k+1) th SSB resources within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation associated with this CSI-ReportConfig for beam prediction.
  • Figure 8 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by UE 200 in accordance with some implementations of the present disclosure.
  • the receiver 214 of UE 200 receives a configuration signalling for Channel State Information (CSI) reporting.
  • CSI Channel State Information
  • the processor 202 of UE 200 generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • the transmitter 212 of UE 200 transmits the CSI report.
  • Figure 9 is a flow chart illustrating steps of CSI reporting for CSI reporting for AI-enabled beam management by gNB 300 in accordance with some implementations of the present disclosure.
  • the transmitter 312 of gNB 300 transmits a configuration signalling for Channel State Information (CSI) reporting.
  • CSI Channel State Information
  • the receiver 314 of gNB 300 receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • An apparatus comprising:
  • a receiver that receives a configuration signalling for Channel State Information (CSI) reporting;
  • CSI Channel State Information
  • a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  • AI Artificial Intelligence
  • ML Machine Leaning
  • the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  • RRC Radio Resource Control
  • IE Radio Resource Control
  • the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
  • the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
  • the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
  • An apparatus comprising:
  • a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting;
  • CSI Channel State Information
  • a receiver that receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  • AI Artificial Intelligence
  • ML Machine Leaning
  • the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  • RRC Radio Resource Control
  • IE Radio Resource Control
  • the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
  • the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
  • the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
  • the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
  • each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
  • L1-RSRP Layer 1 Reference Signal Received Power
  • L1-SINR Layer 1 Signal to Interference plus Noise Ratio
  • a method comprising:
  • CSI Channel State Information
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • the method of item 19, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  • AI Artificial Intelligence
  • ML Machine Leaning
  • the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  • RRC Radio Resource Control
  • IE Radio Resource Control
  • the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
  • a method comprising:
  • CSI Channel State Information
  • CSI-RS Channel State Information Reference Signal
  • CRI Resource Indicator
  • SS/PBCH Synchronization Signals and Physical Broadcast Channel
  • SSBRI Block Resource Indicator
  • the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  • AI Artificial Intelligence
  • ML Machine Leaning
  • the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  • RRC Radio Resource Control
  • IE Radio Resource Control
  • the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
  • the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
  • the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus of CSI reporting for AI-enabled beam management are disclosed. The apparatus includes: a receiver that receives a configuration signalling for Channel State Information (CSI) reporting; a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI); and a transmitter that transmits the CSI report.

Description

METHODS AND APPARATUS OF CSI REPORTING FOR AI-ENABLED BEAM MANAGEMENT FIELD
The subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of CSI reporting for Artificial Intelligence enabled (AI-enabled) beam management.
BACKGROUND
The following abbreviations and acronyms are herewith defined, at least some of which are referred to within the specification:
Third Generation Partnership Project (3GPP) , 5th Generation (5G) , New Radio (NR) , 5G Node B (gNB) , Long Term Evolution (LTE) , LTE Advanced (LTE-A) , E-UTRAN Node B (eNB) , Universal Mobile Telecommunications System (UMTS) , Worldwide Interoperability for Microwave Access (WiMAX) , Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) , Wireless Local Area Networking (WLAN) , Orthogonal Frequency Division Multiplexing (OFDM) , Single-Carrier Frequency-Division Multiple Access (SC-FDMA) , Downlink (DL) , Uplink (UL) , User Equipment (UE) , Network Equipment (NE) , Radio Access Technology (RAT) , Receive or Receiver (RX, or Rx) , Transmit or Transmitter (TX, or Tx) , Physical Uplink Control Channel (PUCCH) , Physical Uplink Shared Channel (PUSCH) , Physical Broadcast Channel (PBCH) , Control Element (CE) , Channel State Information (CSI) , Channel State Information Reference Signal (CSI-RS) , Downlink Control Information (DCI) , Frequency Division Multiple Access (FDMA) , Index/Identifier (ID) , Information Element (IE) , Artificial Intelligence (AI) , Machine Leaning (ML) , Media Access Control (MAC) , Media Access Control -Control Element (MAC CE) , Multiple Input Multiple Output (MIMO) , Radio Resource Control (RRC) , Reference Signal (RS) , Reference Signal Received Power (RSRP) , Signal-to-Interference-Plus-Noise Ratio (SINR) , Sounding Reference Signal (SRS) , Synchronization Signal Block (SSB) , Transmission and Reception Point (TRP) , Channel Quality Indicator (CQI) , Frequency Range 1 (FR1) , Frequency Range 2 (FR2) , Layer 1 Reference Signal Received Power (L1-RSRP) ,  Non-Zero-Power CSI-RS (NZP-CSI-RS) , Precoder Matrix Indicator (PMI) , Synchronization Signal (SS) , Technical Specification (TS) , Layer 1 /physical layer (L1) , CSI-RS Resource Indicator (CRI) , SS/PBCH Block Resource Indicator (SSBRI) , Non-Zero Power CSI-RS (NZP CSI-RS) , Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) , Synchronization Signals and Physical Broadcast Channel (SS/PBCH) .
In wireless communication, such as a Third Generation Partnership Project (3GPP) mobile network, a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) . The wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
The 5G New Radio (NR) is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology. Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2. The 5G NR supports both FR1 and FR2 frequency bands.
Enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul between these TRPs (Transmit Receive Points) are studied. A TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
It is important to identify and specify necessary enhancements for both downlink and uplink MIMO for facilitating the use of large antenna array, not only for FR1 but also for FR2, to fulfil the request for evolution of NR deployments in Release 18.
In 3GPP, it is under discussion to introduce Artificial Intelligence (AI) or Machine Leaning (ML) into air interface in NR Release 18, including potential use-cases, evaluation methodologies and the framework.
SUMMARY
Methods and apparatus of CSI reporting for AI-enabled beam management are disclosed.
According to a first aspect, there is provided an apparatus, including: a receiver that receives a configuration signalling for Channel State Information (CSI) reporting; a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and a transmitter that transmits the CSI report.
According to a second aspect, there is provided an apparatus, including: a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting; a receiver that receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
According to a third aspect, there is provided a method, including: receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting; generating, by a processor, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and transmitting, by a transmitter, the CSI report.
According to a fourth aspect, there is provided a method, including: transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting; receiving, by a receiver, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments will be rendered by reference to specific embodiments illustrated in the appended drawings. Given that these drawings depict only some embodiments and are not therefore considered to be limiting in scope, the embodiments will be described and explained with additional specificity and details through the use of the accompanying drawings, in which:
Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure;
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure;
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure;
Figure 4A is a schematic diagram illustrating an example of using AI/ML approach to use less RS for estimation of the best beam pairs in accordance with some implementations of the present disclosure.
Figure 4B is a schematic diagram illustrating an example of using AI/ML approach to predict beam pairs for moving UEs in accordance with some implementations of the present disclosure.
Figure 5A is a schematic diagram illustrating an example of a full resource set for beam measurement without an AI model in accordance with some implementations of the present disclosure.
Figure 5B is a schematic diagram illustrating an example of a resource subset for beam measurement with an AI model in accordance with some implementations of the present disclosure.
Figure 6 is a schematic diagram illustrating an example of enhanced CSI report procedure with recommended beam subset in accordance with some implementations of the present disclosure.
Figure 7 is a schematic diagram illustrating an example of a CSI report with the recommended beam index in accordance with some implementations of the present disclosure.
Figure 8 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by UE in accordance with some implementations of the present disclosure; and
Figure 9 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by gNB in accordance with some implementations of the present disclosure.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
Furthermore, one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ” The storage devices may be tangible, non-transitory, and/or non-transmission.
Reference throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example. Thus, instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed. Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” , and similarly items expressed in plural form also  include reference to one or multiple instances of the item, unless expressly specified otherwise.
Throughout the disclosure, the terms “first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise. For example, a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily. Similarly, a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
It should be understood that the term “and/or” as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. For example, “A and/or B” may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B. The character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items. For example, “A/B” means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of various embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products. It will be understood that each block  of the schematic flowchart diagrams and/or schematic block diagrams, as well as combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, may be implemented by code. This code may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions executed via the processor of the computer or other programmable data processing apparatus create a means for implementing the functions or acts specified in the schematic flowchart diagrams and/or schematic block diagrams.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of different apparatuses, systems, methods, and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) . One skilled in the relevant art will recognize, however, that the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
It should also be noted that, in some alternative implementations, the functions noted in the identified blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be substantially executed in concurrence, or the blocks may sometimes be executed in reverse order, depending upon the functionality involved.
Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100. In one embodiment, the wireless communication system 100 may include a user  equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
The UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
In one embodiment, the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like. In some other embodiments, the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like. In some embodiments, the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
The NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art. Throughout this specification, a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
The NEs 104 may be distributed over a geographic region. The NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) . In some implementations, the wireless  communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link. The NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
Communication links are provided between the NE 104 and the  UEs  102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
The NE 104 may also include one or more transmit receive points (TRPs) 104a. In some embodiments, the network equipment may be a gNB 104 that controls a number of TRPs 104a. In addition, there is a backhaul between two TRPs 104a. In some other embodiments, the network equipment may be a TRP 104a that is controlled by a gNB.
Communication links are provided between the  NEs  104, 104a and the  UEs  102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some  UEs  102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
In some embodiments, the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously. A TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) . The two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs. The terms “TRP” and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment. A UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the UE 200 may not include any input device 206 and/or display 208. In various embodiments, the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment. In some embodiments, the memory 204 also stores program code and related data.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone,  or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audio, and/or haptic signals.
The transceiver 210, in one embodiment, is configured to communicate wirelessly with the network equipment. In certain embodiments, the transceiver 210 comprises a transmitter 212 and a receiver 214. The transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
The transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214. For example, in some embodiments, the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment. The NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
In some embodiments, the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200. The processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200. In another example, the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
In some embodiments, the transceiver 310 comprises a transmitter 312 and a receiver 314. The transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
The transceiver 310 may communicate simultaneously with a plurality of UEs 200. For example, the transmitter 312 may transmit DL communication signals to the UE 200. As another example, the receiver 314 may simultaneously receive UL communication signals from the UE 200. The transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314. For example, the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
In general, the beam management framework in NR is designed to measure the configured beamformed reference signals (RSs) , either Channel State Information Reference Signal (CSI-RS) and Synchronization Signal Block (SSB) from gNB or Sounding Reference Signal (SRS) from UE in FR2, to acquire the link quality with beamforming.
For downlink (DL) , the serving gNB transmits a set of transmitting (Tx) beams through the periodic SSBs or configured CSI-RS, i.e., CSI-RS for beam management, in a beam sweeping manner, and each SSB or each CSI-RS resource corresponds to a DL beam. The UE measures the quality, i.e., L1-RSRP or L1-SINR, of each received RS using different receiving (Rx) beams or a same Rx beam and reports the resource indices and quality (i.e., L1-RSRP/L1-SINR) of the best N beams to the gNB (where N may be a pre-set or configured number) . Based on the UE feedback, the gNB may configure or indicate the expected beam for the UE among the reported beams for the following DL data transmission.
For uplink (UL) , the UE may transmit different SRS resources with different Tx beams (e.g., associated to different spatial relations) for UL beam management, and the serving gNB may configure an SRS resource indicator to indicate the Tx beam for a UL transmission based on the measurement of each SRS at the gNB side.
The beam management framework includes four kinds of operations: beam sweeping, beam measurement and reporting, beam indication, and beam failure detection and recovery. For beam sweeping, the gNB and the UE have a set of analogue beams, and sequentially use beams from the entire set or subset in order to find the good Tx-Rx beam pairs.
There are further three types of beam-sweeping operations:
- Procedure 1 (P-1) : Both gNB and UE perform beam sweeping to select a Tx-Rx beam pair;
- Procedure 2 (P-2) : Tx beam refinement for the base station, which means that the UE fixes its Rx beam while the gNB performs Tx beam sweeping possibly using narrower beams than in P-1 to select a suitable Tx beam;
- Procedure 3 (P-3) : Rx beam refinement for the UE, which means that the gNB fixes its Tx beam while the UE performs Rx beam sweeping to select a suitable Rx beam.
In the current NR system, each Synchronization Signal (SS) period contains at most 64 SS blocks to sweep the candidate beams, which significantly increases the messaging overhead and process delay in UEs for the exhaustive searching, especially for the UE with multiple Rx beams.
To reduce the latency and RS overhead, an AI/ML approach is proposed to explore the correlation among the beams, leverage the side information (e.g., environment) and improve efficiency. A typical deployment with the AI/ML approach, i.e., spatial domain beam selection, is to apply an AI model to assist the best beams selection with less resources and potential less latency, as illustrated in Figure 4A.
Figure 4A is a schematic diagram illustrating an example of using AI/ML approach to use less RS for the estimation of the best beam pairs in accordance with some implementations of the present disclosure. In this example, it is assumed that there are eight Tx beams, each being represented with a Tx beam index 410a from #0 to #7; and two Rx beams, each being represented with a Rx beam index 410b from #0 to #1. Each Tx beam and each Rx beam form a beam pair represented by a circle in Figure 4. Four of the beam pairs that are shaded may be measured, and the L1-RSRP measurement results 410 may be inputted into an AI model 420. With the  trained AI model 420, using the measurement results from some resources, e.g., 4 from 16 as illustrated in the example, the best Tx beam indices and the corresponding L1-RSRP 430 may be obtained and reported.
Another AI approach, i.e., time domain beam prediction, is to predict the beams for the following transmission as illustrated in Figure4B. Figure 4B is a schematic diagram illustrating an example of using AI/ML approach to predict the beam pairs for moving UEs in accordance with some implementations of the present disclosure. In this example, the UE 102 may be moving along a path or trajectory 412 in the servicing area of the gNB 104. Different beam pairs may be used at different locations along the trajectory 412. The beam pair may be predicted via an AI model 420 according to the history measurement and/or trajectories, e.g., highways and high-speed train scenario. The best Tx beam indices 430, and in some examples with the corresponding L1-RSRP, may be obtained and reported. The AI approach can greatly facilitate the beam switching and tracking, efficient handovers, and less beam failures.
The air interface design may be enhanced, to enjoy the benefit from the AI/ML approach, via introducing new signals and message exchanging to facilitate the relevant operations.
The beam management is to establish and retain a suitable beam pair, that is, a transmitter-side beam direction and a corresponding receiver-side beam direction that jointly provide good connectivity. For the downlink transmitter beam adjustment, it aims at refining the network transmit beam, given the receiver beam currently used at the device side.
To enable measurements and reporting on a set of beams, the reporting framework based on the CSI report configurations is reused. More specifically, the measurement/reporting is described by a report configuration having L1-RSRP or L1-SINR as the quantity to be reported. The set of reference signals to be measured on, corresponding to the set of beams, should be included in the NZP-CSI-RS resource set associated with the report configuration, which may either include a set of configured CSI-RS or a set of SS blocks (SSBs) . Measurements for beam management can thus be carried out on either CSI-RS or SS block. In the case of L1-RSRP measurements based on CSI-RS, the CSI-RS should be limited to single- port or dual-port CSI-RS. In the latter case, the reported L1-RSRP should be a linear average of the L1-RSRP measured on each port. The device (e.g., UE) can report measurements corresponding to up to four reference signals (CSI-RS or SS blocks) , in practice, up to four beams, in a single reporting instance. Each such report may include indications of the up to four reference signals, the measured L1-RSRP for the strongest beam and the difference between the measured L1-RSRP and the measured L1-RSRP of the best beam for the remaining up to three beams.
To support the beam measurement within the CSI report framework, the relevant signals, resource indications and procedures are defined in the 3GPP specifications.
In 3GPP Technical Specification TS38.212 v17.1.0 (2022-03) , the information bits to carry the beam measurement reports are defined as:
The bitwidth for CRI, SSBRI, RSRP, differential RSRP, and CapabilityIndex are provided in Table
6.3.1.1.2-6.
Table 6.3.1.1.2-6: CRI, SSBRI, RSRP, and CapabilityIndex
Figure PCTCN2022098148-appb-000001
where
Figure PCTCN2022098148-appb-000002
is the number of CSI-RS resources in the corresponding resource set, and
Figure PCTCN2022098148-appb-000003
is the configured number of SS/PBCH blocks in the corresponding resource set for reporting 'ssb-Index-RSRP' .
The mapping order of CSI fields in a CSI report is defined as:
Table 6.3.1.1.2-8: Mapping order of CSI fields of one report for CRI/RSRP or SSBRI/RSRP or CRI/RSRP/CapabilityIndex or SSBRI/RSRP/CapabilityIndex reporting, or mapping order of CSI fields of one report for inter-cell SSBRI/RSRP reporting
Figure PCTCN2022098148-appb-000004
In 3GPP Technical Specification TS38.214 v17.1.0 (2022-03) , the configurations to enable the beam measurement procedure are defined as:
5.2.1.4.2 Report Quantity Configurations
A UE may be configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to either 'none' , 'cri-RI-PMI-CQI' , 'cri-RI-i1' , 'cri-RI-i1-CQI' , 'cri-RI-CQI' , 'cri-RSRP' , 'cri-SINR' , 'ssb-Index-RSRP' , 'ssb-Index-SINR' , 'cri-RI-LI-PMI-CQI' , 'cri-RSRP-Capability [Set] Index' , 'ssb-Index-RSRP-Capability [Set] Index' , 'cri-SINR-Capability [Set] Index' or 'ssb-Index-SINR-Capability [Set] Index' .
If the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'cri-RSRP' , 'ssb-Index-RSRP' , 'cri-RSRP-Capability [Set] Index' or 'ssb-Index-RSRP-Capability [Set] Index' ,
- if the UE is configured with the higher layer parameter groupBasedBeamReporting set to 'disabled' , the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single report nrofReportedRS (higher layer configured) different CRI or SSBRI for each report setting.
- if the UE is configured with the higher layer parameter groupBasedBeamReporting set to 'enabled' , the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single reporting instance two different CRI or SSBRI for each report setting, where CSI-RS and/or SSB resources can be received simultaneously by the UE either with a single spatial domain receive filter, or with multiple simultaneous spatial domain receive filters.
- if the UE is configured with the higher layer parameter groupBasedBeamReporting-r17, the UE is not required to update measurements for more than 64 CSI-RS and/or SSB resources, and the UE shall report in a single reporting instance nrofReportedRSgroup, if configured, group (s) of two CRIs or SSBRIs selecting one CSI-RS or SSB from each of the two CSI Resource Sets for the report setting, where CSI-RS and/or SSB resources of each group can be received simultaneously by the UE.
If the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'cri-SINR' , 'ssb-Index-SINR' , 'cri-SINR-Capability [Set] Index' or 'ssb-Index-SINR-Capability [Set] Index' ,
- if the UE is configured with the higher layer parameter groupBasedBeamReporting set to 'disabled' , the UE shall report in a single report nrofReportedRS (higher layer configured) different CRI or SSBRI for each report setting.
- if the UE is configured with the higher layer parameter groupBasedBeamReporting set to 'enabled' , the UE shall report in a single reporting instance two different CRI or SSBRI for each report setting, where CSI-RS and/or SSB resources can be received simultaneously by the UE.
If the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'ssb-Index-RSRP' or 'ssb-Index-RSRP-Capability [Set] Index' , the UE shall report SSBRI, where SSBRI k (k ≥ 0) corresponds to the configured (k+1) -th entry of the associated csi-SSB-ResourceList in the corresponding CSI-SSB-ResourceSet.
If the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'ssb-Index-SINR' or 'ssb-Index-SINR-Capability [Set] Index' , the UE shall derive L1-SINR conditioned on the reported SSBRI, where SSBRI k (k ≥ 0) corresponds to the configured (k+1) -th entry of the associated csi-SSB-ResourceList in the corresponding CSI-SSB-ResourceSet for channel measurement, and (k+1) -th entry of associated csi-IM-Resource in the corresponding csi-IM-ResourceSet (if configured) or (k+1) -th entry of associated nzp-CSI-RS-Resources in the corresponding NZP-CSI-RS-ResourceSet (if configured) for interference measurement.
5.2.1.4.3 L1-RSRP Reporting
For L1-RSRP computation
- the UE may be configured with CSI-RS resources, SS/PBCH Block resources or both CSI-RS and SS/PBCH block resources, when resource-wise quasi co-located with 'type C' and 'typeD' when applicable.
- the UE may be configured with CSI-RS resource setting up to 16 CSI-RS resource sets having up to 64 resources within each set. The total number of different CSI-RS resources over all resource sets is no more than 128.
For L1-RSRP reporting, if the higher layer parameter nrofReportedRS in CSI-ReportConfig is configured to be one, the reported L1-RSRP value is defined by a 7-bit value in the range [-140, -44] dBm with 1dB step size, if the higher layer parameter nrofReportedRS is configured to be larger than one, or if the higher layer parameter groupBasedBeamReporting is configured as 'enabled' , or if the higher layer parameter groupBasedBeamReporting-r17 is configured, the UE shall use differential L1-RSRP based reporting, where the largest measured value of L1-RSRP is quantized to a 7-bit value in the range [-140, -44] dBm with 1dB step size, and the differential L1-RSRP is quantized to a 4-bit value. The differential L1-RSRP value is computed with 2 dB step size with a reference to the largest measured L1-RSRP value which is part of the same L1-RSRP reporting instance. The mapping between the reported L1-RSRP value and the measured quantity is described in [11, TS 38.133] .
When the UE is configured with a CSI-ReportConfig with the higher layer parameter reportQuantity set to 'cri-RSRP-Capability [Set] Index' or 'ssb-Index-RSRP-Capability [Set] Index' an index of UE capability value set, indicating the maximum supported number of SRS antenna ports, is reported along with the pair of SSBRI/CRI and L1-RSRP.
In 3GPP Technical Specification TS38.331 v17.0.0 (2022-03) , the high layer
information about CSI report is defined as below.
The IE CSI-ReportConfig is used to configure a periodic or semi-persistent report sent on PUCCH on the cell in which the CSI-ReportConfig is included, or to configure a semi-persistent or aperiodic report sent on PUSCH triggered by DCI received on the cell in which the CSI-ReportConfig is included (in this case, the cell on which the report is sent is determined by the received DCI) . See TS 38.214 [19] , clause 5.2.1.
Figure PCTCN2022098148-appb-000005
Figure PCTCN2022098148-appb-000006
Figure PCTCN2022098148-appb-000007
In summary, in the current CSI report framework, UE would always be enabled to report the measurement results from the configured resources according to the CSI report configuration. This CSI report configuration may to be enhanced to support the UEs with AI-enhanced beam management.
In some examples of the disclosure, the beam measurement report may be enhanced within the CSI report framework to report some additional information, i.e., recommended beam sub-set, for the UEs with the AI capability for beam management.
Assuming there are N txb Tx-beams at gNB and N rxb Rx-beams at UE, the number of resources used for the beam measurement for full beam sweeping is N txbN rxb.
The traditional approach for a UE is to exhaustively calculate the L1-RSRPs of the beam pairs from the resources and report the best K results (i.e., resource indices and the quantized L1-RSRP values) . Figure 5A is a schematic diagram illustrating an example of a full resource set for beam measurement without an AI model in accordance with some implementations of the present disclosure. As illustrated in Figure 5A, there are eight Tx-beams 510a (indicated by #TxB0 to #TxB7) and two Rx-beams 510b (indicated by #RxB0 and #RxB1) , then the gNB may use sixteen resources (CSI-RS or SSB) to sweep all beam pairs.
To reduce the overhead for beam measurement, an AI model with some of the results of the L1-RSRP values as the input to obtain the best K beam pairs may be used. Figure 5B is a schematic diagram illustrating an example of a resource subset for beam measurement with an AI model in accordance with some implementations of the present disclosure. As illustrated in Figure 5B, the results of beam pairs, {#TxB2, #RxB0} , {#TxB3, #RxB1} , {#TxB4, #RxB0} and {#TxB5, #RxB1} , are used as the input of the AI model 420. Then, the best beam pairs among the original 16 beam pairs can be inferred from the well-trained AI model, i.e., the output of the AI model is the best beam pairs.
However, the following issues may exist for this case: 1) some information of the Tx-beams for all configured resources should be available at UE, such as the number of all candidate Tx-beams, mapping information between the resources and the Tx-beams; 2) the number of the Rx-beams could be different for different UEs, and accordingly, the number of Tx-beam repetitions, the indices of the recommended Tx-beams for the AI model may also be different; and 3) the ground truth for the AI model training, i.e., the results of the best K beam pairs, is available at UE.
There are similar issues for the application with beam prediction as illustrated in Figure 4B as well. In the present disclosure, a scenario that the AI model is deployed at the UE side to acquire the best K beam measurement report from the  less resources and predict the best K Tx-beams from the historical measurements is considered.
In some examples of the disclosure, a new message, and/or procedure, may be introduced to indicate the recommended beam subset for following measurement request as illustrated in Figure 6.
Figure 6 is a schematic diagram illustrating an example of enhanced CSI report procedure with recommended beam subset in accordance with some implementations of the present disclosure.
With the procedure, it is assumed that the UE’s capability to support the AI-based beam management is available at the serving gNB, for example, the UE can predict the best beam (s) from a beam set A, based on the measurement on another set of sparse beams, e.g., beam set B, where the size of set B can be much less than the size of set A.
In this example, the procedure to enable the enhanced CSI report includes:
Step 1: The serving gNB 104 sends a request on the recommended CRIs/SSBRIs 602 to the UE 102. This message may be delivered to the UE via high layer configuration, e.g., RRC or MAC CE, to request the UE 102 to report the recommended beams. The request may be a configuration signalling for Channel State Information (CSI) reporting. In this example, a request for one or more CSI reportings with beam recommendation may be sent to the UE102.
Step 2: The UE 102 reports the recommended CRI/SSBRIs 604 as the beam subset (e.g., beam set B) to the serving gNB 104. The subset is the indications to the preferred sparse beams or the preferred beam indices if the UE can predict the beams. The results may be included in a CSI report. Thus, the CSI report may comprise a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
Step 3: The serving gNB 104 sends the recommended resource set to the UE 102 according to the recommended beam subset, i.e., the sparse beam set. The  resources are beamformed with the same beams for the previous recommended CRI/SSBRI, so each resource represents a beam.
The UE may further measure the resources and report the L1-RSRP or L1-SINR results for measurement if configured.
New Report Quantity to Indicate the Beam Subset
In some examples, a new report quantity (i.e., reportQuantity) , e.g., recommendBeams, may be defined for CSI report configuration CSI-ReportConfig to indicate the UE to report the recommended beam subset for potential beam tracking, either for beam selection or for prediction, which is illustrated as follows.
Figure PCTCN2022098148-appb-000008
The value of nk (in relation to nrofReportedRS) needs to be further defined to indicate the maximum number of recommended beams, and it can be configured in the CSI-ReportConfig or according to the UE’s capability.
Whether the L1-RSRPs of the recommended beams are reported or not may also be indicated in the configuration of CSI-ReportConfig. The L1-RSRP may be disabled or enabled. In some other examples, in addition to, or instead of, configuring L1-RSRP, L1-SINR may be configured in the recommendBeams.
Once a UE receive a CSI-ReportConfig configured with the higher layer parameter reportQuantity as recommendBeams to enable the reporting of the recommended beam subset, the UE shall report the configured N CRIs/SSBRIs (e.g., nrofReportedRS) and the corresponding L1-RSRPs for AI based beam measurement/indication if enabled.
New Indications for the Recommended Beams
To differentiate the indications with the current CSI report, a set of recommended CRI/SSBRI (termed as rCRI/rSSBRI below, where rCRI represents  recommended CRI, and rSSBRI represents recommended SSBRI) is proposed together with the current definition as in Table 1.
Table 1. CRI/SSBRI for recommended beams
Figure PCTCN2022098148-appb-000009
where, 
Figure PCTCN2022098148-appb-000010
and
Figure PCTCN2022098148-appb-000011
are the numbers of potential or recommended beams, indicated by CSI-RS resources and SS/PBCH blocks, respectively. Thus, a CSI report with the recommended CRIs/SSBRIs may include CSI fields according to Table 2, as an example. In this example, the recommended CRIs/SSBRIs (i.e., rCRIs/rSSBRIs) are appended to the currently available CSI report as disclosed in the prior art. The CSI report including the recommended CRIs/SSBRIs may be referred to as the extended CSI report.
Table 2. Mapping order of CSI fields in extended CSI report with recommended beams
Figure PCTCN2022098148-appb-000012
In the example, the rCRI with value k indicates the (k+1) th CSI-RS resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation; and rSSBRI with value k indicates the (k+1) th SSB resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
Figure 7 is a schematic diagram illustrating an example of a CSI report with the recommended beam index in accordance with some implementations of the present disclosure.
As illustrated in Figure 7, the CSI report 700 enhanced with the recommended beam index includes two parts, i.e., a first part for reporting a set of expected beams 710 that is expected to be reported in the CSI report; and a second part for reporting a set of recommended beams 720 that is determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) . In this example, information of the set of recommended beams 720 is appended to information of the set of expected beams 710 in the CSI report 700. In this example, the first part of expected beams 710 may include a first beam index (SSBRI or CRI) 712 and corresponding L1-RSRP 712a, a second beam index (SSBRI or CRI) 714 and corresponding differential L1-RSRP 714a, and a third beam index (SSBRI or CRI) 716 and corresponding differential L1-RSRP 716a. The second part of recommended beams 720 is attached to the CSI report according to existing mapping order, and may include one or a number of recommended beam indices.
In some examples, information of the recommended beams 720 may also include information of L1-RSRP or L1-SINR corresponding to each one of the recommended beams, in addition to the recommended beam indices.
Once the serving gNB receives the extended CSI report, the recommended beam index or recommended beam indices, i.e., the recommended beam subset for beam selection or for prediction, are derived, which will be used for the following RS transmission for measurement.
Reuse of the Current CSI Report
In some other examples, the recommended CRIs/SSBRIs may be reported reusing the current CSI report. An example of the corresponding CSI report to report the beam measurement for AI based beam measurement recommendation is provided as follows.
CSI Report
{reported number of beams N,
CRI#1,
CRI#2,
…,
CRI#N,
RSRP#1,
Differential RSRP #2,
…,
Differential RSRP #N}
In this example, CRI with value k in the CSI report for beam recommendation indicates the (k+1) th CSI-RS resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
SSBRI with value k in the CSI report for beam recommendation indicates the (k+1) th SSB resource within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation.
In this case, the CSI report may comprise only information of the set of recommended beams 720, and does not comprise information of the set of expected beams 710.
In some examples, if the reported number of beams N is configured in the CSI-ReportConfig, it may not be reported in the CSI report.
If the higher layer parameter reportQuantity in CSI-ReportConfig is set to enable recommendBeams, the higher layer parameter repetition configured for the NZP CSI-RS resources should be configured as ‘off’ .
When receiving the CSI-ReportConfig, the UE may measure the L1-RSRP/L1-SINR of each CSI-RS resource or SSB resource from the resource set associated with the CSI-ReportConfig, e.g., beam set 0, as the input of a deployed AI model. The output of the model may be reported in a CSI Report as the measurement results of the recommended beam set, e.g., beam set 1, which is a subset of a bigger beam set.
When the CSI Report containing N recommended beams, e.g., beam set 1, corresponding to the associated CSI-ReportConfig above, is received by the gNB, the gNB may obtain the measurement results of the recommended or predicted beam set, including the CRI/SSBRI and L1-RSRP/L1-SINR.
For example, as a current configuration, if a UE is configured with a CSI-ReportConfig#1, where the associated CSI-RS-ResourceSet for beam measurement contains 128 CSI-RS resources, e.g., CSI-RS resource 0, CSI-RS resource 1, …, CSI-RS resource 127, and the measurement results of 8 beams are requested to be reported. Then, the UE will report the results of the best 8 beams, e.g., CRI 1, CRI 6, CRI 8, CRI 16, CRI 28, CRI 66, CRI 88, CRI 99, in the CSI report corresponding to CSI-ReportConfig#1.
With the proposed scheme, the Network could configure CSI-ReportConfig#2 for AI based beam prediction, a CSI-RS-ResourceSet only containing 8 CSI-RS resources, e.g., CSI-RS resource 1, CSI-RS resource 6, …, CSI-RS resource 99, and the UE measures the 8 beams and predicts up to 4 beams in the CSI report associated with CSI-ReportConfig#2. However, the beam report (i.e., beam prediction) for CSI-ReportConfig#2 is based on all 128 CSI-RS resources as indicated before with a deployed AI model to predict the beams in spatial and/or time domain, which is different with the CSI report in NR Release 17.
CRI with value k in the CSI report for beam prediction indicates the (k+1) th CSI-RS resources within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation associated with this CSI-ReportConfig for beam prediction.
SSBRI with value k in the CSI report for beam prediction indicates the (k+1) th SSB resources within the CSI-RS-ResourceSet associated with the CSI-ReportConfig for beam recommendation associated with this CSI-ReportConfig for beam prediction.
Figure 8 is a flow chart illustrating steps of CSI reporting for AI-enabled beam management by UE 200 in accordance with some implementations of the present disclosure.
At step 802, the receiver 214 of UE 200 receives a configuration signalling for Channel State Information (CSI) reporting.
At step 804, the processor 202 of UE 200 generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a  Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
At step 806, the transmitter 212 of UE 200 transmits the CSI report.
Figure 9 is a flow chart illustrating steps of CSI reporting for CSI reporting for AI-enabled beam management by gNB 300 in accordance with some implementations of the present disclosure.
At step 902, the transmitter 312 of gNB 300 transmits a configuration signalling for Channel State Information (CSI) reporting.
At step 904, the receiver 314 of gNB 300 receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
In one aspect, some items as examples of the disclosure concerning UE may be summarized as follows:
1. An apparatus, comprising:
a receiver that receives a configuration signalling for Channel State Information (CSI) reporting;
a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and
a transmitter that transmits the CSI report.
2. The apparatus of item 1, wherein the receiver further receives a request for one or more CSI reportings with beam recommendation.
3. The apparatus of item 1, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
4. The apparatus of item 1, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig,  with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
5. The apparatus of item 4, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
6. The apparatus of item 5, wherein the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
7. The apparatus of item 1, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
8. The apparatus of item 1, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
9. The apparatus of item 6, wherein the measurement result of each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
In another aspect, some items as examples of the disclosure concerning gNB may be summarized as follows:
10. An apparatus, comprising:
a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting;
a receiver that receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
11. The apparatus of item 10, wherein the transmitter further transmits a request for one or more CSI reportings with beam recommendation.
12. The apparatus of item 10, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
13. The apparatus of item 10, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
14. The apparatus of item 13, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
15. The apparatus of item 14, wherein the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
16. The apparatus of item 10, wherein the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
17. The apparatus of item 10, wherein the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
18. The apparatus of item 15, wherein the measurement result of each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
In a further aspect, some items as examples of the disclosure concerning a method of UE may be summarized as follows:
19. A method, comprising:
receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting;
generating, by a processor, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and
transmitting, by a transmitter, the CSI report.
20. The method of item 19, wherein the receiver further receives a request for one or more CSI reportings with beam recommendation.
21. The method of item 19, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
22. The method of item 19, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
23. The method of item 22, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
24. The method of item 23, wherein the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
25. The method of item 19, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
26. The method of item 19, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
27. The method of item 24, wherein the measurement result of each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
In a yet further aspect, some items as examples of the disclosure concerning a method of gNB may be summarized as follows:
28. A method, comprising:
transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting;
receiving, by a receiver, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
29. The method of item 28, wherein the transmitter further transmits a request for one or more CSI reportings with beam recommendation.
30. The method of item 28, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
31. The method of item 28, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
32. The method of item 31, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
33. The method of item 32, wherein the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
34. The method of item 28, wherein the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
35. The method of item 28, wherein the transmitter further transmits a set of expected beams that is expected to be reported in the CSI report; and the CSI report  comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
36. The method of item 33, wherein the measurement result of each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
Various embodiments and/or examples are disclosed to provide exemplary and explanatory information to enable a person of ordinary skill in the art to put the disclosure into practice. Features or components disclosed with reference to one embodiment or example are also applicable to all embodiments or examples unless specifically indicated otherwise.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. An apparatus, comprising:
    a receiver that receives a configuration signalling for Channel State Information (CSI) reporting;
    a processor that generates a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and
    a transmitter that transmits the CSI report.
  2. The apparatus of claim 1, wherein the receiver further receives a request for one or more CSI reportings with beam recommendation.
  3. The apparatus of claim 1, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  4. The apparatus of claim 1, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  5. The apparatus of claim 4, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
  6. The apparatus of claim 5, wherein the CSI report containing the recommended beams further comprises an indication that each of the set of recommended beams is accompanied with a resource index and a measurement result.
  7. The apparatus of claim 1, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and information of the set of recommended beams is appended to information of the set of expected beams in the CSI report.
  8. The apparatus of claim 1, wherein the receiver further receives a set of expected beams that is expected to be reported in the CSI report; and the CSI report comprises information of the set of recommended beams, and does not comprise information of the set of expected beams.
  9. The apparatus of claim 6, wherein the measurement result of each of the recommended beam includes a value of Layer 1 Reference Signal Received Power (L1-RSRP) or Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) .
  10. An apparatus, comprising:
    a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting;
    a receiver that receives a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) .
  11. The apparatus of claim 10, wherein the transmitter further transmits a request for one or more CSI reportings with beam recommendation.
  12. The apparatus of claim 10, wherein the set of recommended beams comprises one or more beams determined by the processor according to an algorithm based on Artificial Intelligence (AI) or Machine Leaning (ML) .
  13. The apparatus of claim 10, wherein the configuration signalling comprises a Radio Resource Control (RRC) layer Information Element (IE) , CSI-ReportConfig, with a  field indicating that the CSI-ReportConfig is used for configuring CSI reporting with beam recommendation.
  14. The apparatus of claim 13, wherein the CSI report corresponding to the CSI-ReportConfig comprises an indication of a number of resources for the set of recommended beams.
  15. A method, comprising:
    receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting;
    generating, by a processor, a CSI report comprising a set of recommended beams, each recommended beam being indicated by a Channel State Information Reference Signal (CSI-RS) Resource Indicator (CRI) and/or a Synchronization Signals and Physical Broadcast Channel (SS/PBCH) Block Resource Indicator (SSBRI) ; and
    transmitting, by a transmitter, the CSI report.
PCT/CN2022/098148 2022-06-10 2022-06-10 Methods and apparatus of csi reporting for ai-enabled beam management WO2023236193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098148 WO2023236193A1 (en) 2022-06-10 2022-06-10 Methods and apparatus of csi reporting for ai-enabled beam management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098148 WO2023236193A1 (en) 2022-06-10 2022-06-10 Methods and apparatus of csi reporting for ai-enabled beam management

Publications (1)

Publication Number Publication Date
WO2023236193A1 true WO2023236193A1 (en) 2023-12-14

Family

ID=89117416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098148 WO2023236193A1 (en) 2022-06-10 2022-06-10 Methods and apparatus of csi reporting for ai-enabled beam management

Country Status (1)

Country Link
WO (1) WO2023236193A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886425A (en) * 2016-09-29 2018-11-23 华为技术有限公司 A kind of method, terminal device and the base station of mixed channel status information feedback
WO2021159471A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Apparatus and method of enhanced csi feedback for enhanced pdcch transmission with multiple beams from multiple trps
WO2022021216A1 (en) * 2020-07-30 2022-02-03 Lenovo (Beijing) Limited Based beam reporting for multi-trp dl transmission with l1-sinr measurement
WO2022031541A1 (en) * 2020-08-07 2022-02-10 Intel Corporation Beam management for multi-trp operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886425A (en) * 2016-09-29 2018-11-23 华为技术有限公司 A kind of method, terminal device and the base station of mixed channel status information feedback
WO2021159471A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Apparatus and method of enhanced csi feedback for enhanced pdcch transmission with multiple beams from multiple trps
WO2022021216A1 (en) * 2020-07-30 2022-02-03 Lenovo (Beijing) Limited Based beam reporting for multi-trp dl transmission with l1-sinr measurement
WO2022031541A1 (en) * 2020-08-07 2022-02-10 Intel Corporation Beam management for multi-trp operation

Similar Documents

Publication Publication Date Title
EP3637838B1 (en) Communication method and communication apparatus
CN114390580A (en) Beam reporting method, beam information determining method and related equipment
US11799520B2 (en) Communication method and communications apparatus
WO2021159471A1 (en) Apparatus and method of enhanced csi feedback for enhanced pdcch transmission with multiple beams from multiple trps
KR20230156362A (en) Method and apparatus for channel estimation and mobility improvement in wireless communication system
WO2018205435A1 (en) Power control method and relevant device
CN111819878B (en) Non-codebook based UL transmission method and device
WO2023236193A1 (en) Methods and apparatus of csi reporting for ai-enabled beam management
WO2023000298A1 (en) Methods and apparatus of monitoring enhanced pdcch scheduling common information with multiple trp transmission
WO2022027446A1 (en) Apparatus and methods of simultaneous ue rx beam refinement
WO2022141212A1 (en) Methods and apparatus of restriction on linked epdcch candidates for epdcch soft combining
WO2024065291A1 (en) Methods and apparatus of csi reporting on amplitude and phase coefficients for coherent joint transmission
WO2024074001A1 (en) Methods and apparatus of dynamic pdsch power allocation and csi feedback
WO2024073970A1 (en) Methods and apparatus of srs power control for coherent joint transmission
WO2024000559A1 (en) Methods and apparatus of monitoring artificial intelligence model in radio access network
WO2024021012A1 (en) Methods and apparatus of csi omission for coherent joint transmission
WO2024124477A1 (en) Techniques for beam management
WO2023010274A1 (en) Methods and apparatus of determining trp-specific beam failure detection reference signal set
WO2023206353A1 (en) Methods and apparatus of codebook enhancement for coherent joint transmission
WO2022262554A1 (en) Communication method and communication apparatus
WO2023206367A1 (en) Methods and apparatus of csi reporting for coherent joint transmission
WO2023216014A1 (en) Methods and apparatus of mapping order of csi reporting for coherent joint transmission
WO2023231041A1 (en) Machine learning based predictive initial beam pairing for sidelink
WO2024082276A1 (en) Antenna location configurations for predictive beam management
US20230101994A1 (en) Relative beam direction indication for beam management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945334

Country of ref document: EP

Kind code of ref document: A1