WO2023216014A1 - Methods and apparatus of mapping order of csi reporting for coherent joint transmission - Google Patents

Methods and apparatus of mapping order of csi reporting for coherent joint transmission Download PDF

Info

Publication number
WO2023216014A1
WO2023216014A1 PCT/CN2022/091368 CN2022091368W WO2023216014A1 WO 2023216014 A1 WO2023216014 A1 WO 2023216014A1 CN 2022091368 W CN2022091368 W CN 2022091368W WO 2023216014 A1 WO2023216014 A1 WO 2023216014A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
group
csi reporting
pmi2
pmi1
Prior art date
Application number
PCT/CN2022/091368
Other languages
French (fr)
Inventor
Yi Zhang
Chenxi Zhu
Wei Ling
Bingchao LIU
Lingling Xiao
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/091368 priority Critical patent/WO2023216014A1/en
Publication of WO2023216014A1 publication Critical patent/WO2023216014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of mapping order of CSI reporting for coherent joint transmission.
  • 5G Fifth Generation Partnership Project
  • 5G New Radio
  • NR New Radio
  • 5G Node B gNB
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • E-UTRAN Node B eNB
  • Universal Mobile Telecommunications System UMTS
  • WiMAX Evolved UMTS Terrestrial Radio Access Network
  • E-UTRAN Wireless Local Area Networking
  • WLAN Wireless Local Area Networking
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • DL Downlink
  • UL Uplink
  • UL User Entity/Equipment
  • UE Network Equipment
  • RAT Radio Access Technology
  • RX Receive or Receiver
  • TX Transmit or Transmitter
  • Physical Uplink Shared Channel PUSCH
  • Channel State Information CSI
  • a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) .
  • the wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
  • the 5G New Radio is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology.
  • Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2.
  • FR1 Frequency of sub-6 GHz range (from 450 to 6000 MHz)
  • millimeter wave range from 24.25 GHz to 52.6 GHz
  • the 5G NR supports both FR1 and FR2 frequency bands.
  • a TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
  • NC-JT non-coherent joint transmission
  • CJT coherent joint transmission
  • an apparatus including: a receiver that receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part; a processor that generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and a transmitter that transmits the CSI reporting.
  • CSI Channel State Information
  • an apparatus including: a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; and a receiver that receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
  • CSI Channel State Information
  • a method including: receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part; generating, by a processor, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and transmitting, by a transmitter, the CSI reporting.
  • CSI Channel State Information
  • a method including: transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; receiving, by a receiver, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
  • CSI Channel State Information
  • Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure
  • Figure 4 is a schematic diagram illustrating an example of coherent joint transmission with multiple TRPs in accordance with some implementations of the present disclosure.
  • Figure 5 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by UE in accordance with some implementations of the present disclosure.
  • Figure 6 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by gNB in accordance with some implementations of the present disclosure.
  • embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
  • one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ”
  • code computer readable code
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • references throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example.
  • instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed.
  • Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise.
  • the terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
  • first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise.
  • a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily.
  • a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
  • a and/or B may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B.
  • the character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items.
  • A/B means “Aor B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
  • Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100.
  • the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
  • UE user equipment
  • NE network equipment
  • the UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
  • the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like.
  • the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like.
  • the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
  • the NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art.
  • a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
  • the NEs 104 may be distributed over a geographic region.
  • the NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
  • the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) .
  • the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme.
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX.
  • WiMAX open or proprietary communication protocols
  • the NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link.
  • the NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
  • Communication links are provided between the NE 104 and the UEs 102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
  • RATs Radio Access Technologies
  • the NE 104 may also include one or more transmit receive points (TRPs) 104a.
  • the network equipment may be a gNB 104 that controls a number of TRPs 104a.
  • the network equipment may be a TRP 104a that is controlled by a gNB.
  • Communication links are provided between the NEs 104, 104a and the UEs 102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some UEs 102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
  • RATs Radio Access Technologies
  • the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously.
  • a TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) .
  • the two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs.
  • TRP and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment.
  • a UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the UE 200 may not include any input device 206 and/or display 208.
  • the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment.
  • the memory 204 also stores program code and related data.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audio, and/or haptic signals.
  • the transceiver 210 in one embodiment, is configured to communicate wirelessly with the network equipment.
  • the transceiver 210 comprises a transmitter 212 and a receiver 214.
  • the transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
  • the transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214.
  • the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment.
  • the NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310.
  • the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
  • the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200.
  • the processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200.
  • the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
  • the transceiver 310 comprises a transmitter 312 and a receiver 314.
  • the transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
  • the transceiver 310 may communicate simultaneously with a plurality of UEs 200.
  • the transmitter 312 may transmit DL communication signals to the UE 200.
  • the receiver 314 may simultaneously receive UL communication signals from the UE 200.
  • the transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314.
  • the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
  • enhanced CSI reporting schemes with specific mapping order are designed with consideration of: 1) . CSIs from multiple TRPs for one coherent joint transmission, 2) . CSI reporting with one joint or multiple linked or paired CSI reportings, 3) . PMI feedback based on Release 16 enhanced Type2 codebook, Release 16 enhanced port selection Type 2 codebook, or Release 17 further enhanced port selection Type 2 codebook including additional CSI information between TRPs, and 4) . good compatibility between coherent joint transmission and single TRP transmission.
  • TRPs may also be referred to as transmitting-receiving entities.
  • mapping order is defined for CSI reporting with PUSCH in section 6.3.2.1.2 of TS 38.212.
  • the related description for CSI reporting based on Release 16 eType2 codebook, Release 16 eType2 port selection codebook, Release 17 feType2 port selection codebook is shown as follows.
  • Table 6.3.2.1.2-6 Mapping order of CSI reports to UCI bit sequence with two-part CSI report (s)
  • CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.2.1.2-6 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2.5 of [6, TS38.214] .
  • Table 6.3.2.1.2-7 Mapping order of CSI reports to UCI bit sequence with two-part CSI report (s)
  • CSI report #1, CSI report #2, ..., CSI report #n in Table 6.3.2.1.2-7 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2.5 of [6, TS38.214] .
  • n RI is the number of allowed rank indicator values according to Clauses 5.2.2.2.5 and 5.2.2.2.6 [6, TS 38.214] , where p 1 , N 3 , R, and ⁇ are given by Clause 5.2.2.2.5 and 5.2.2.2.6 in [6, TS 38.214] .
  • the values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where '0'is mapped to the smallest allowed rank indicator value.
  • n RI is the number of allowed rank indicator values according to Clauses 5.2.2.2.7 [6, TS 38.214] , where K 1 , M, and ⁇ are given by Clause 5.2.2.2.7 in [6, TS 38.214] .
  • the values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where '0'is mapped to the smallest allowed rank indicator value.
  • mapping order for CSI reporting is designed based on eType2 codebook, eType2 port selection codebook and feType2 port selection codebook as shown above in TS 38.212.
  • the designs are based on single TRP transmission since MU-MIMO is typical use scenario for eType2 codebook, eType2 port selection codebook and feType2 port selection codebook.
  • CSI for one TRP is divided into two parts since large feedback overhead is needed for eType2 codebook, where a fixed payload size is used for CSI reporting part 1, including RI (Rank Indicator) , CQI (Channel quality indicator) , total number of non-zero coefficients summed across all layers K NZ for PMI (Precoding matrix indicator) ; and a variable payload size is used for CSI reporting part 2 depending on the feedback information (such as RI information) from part 1, which includes PMI information. For the PMI information, it includes 3 groups of feedback bits with different dropping priorities.
  • mapping order for CSI reporting for coherent joint transmission is proposed, where enhanced codebook based on eType2 codebook, eType2 port selection codebook and feType2 port selection codebook is used for PMI feedback including phase adjustment information and/or amplitude adjustment information.
  • the mapping order is designed for both part 1 CSI and part 2 CSI, where CSI contents include RI, CQI, total number of nonzero coefficients across layers in part 1, and PMI for TRP1/TRP2 and phase adjustment information between TRPs in part 2.
  • mapping order schemes are proposed for multiple bit groups from different TRPs and for additional phase adjustment and/or amplitude adjustment indication bits in one group considering different CSI reporting configurations, where priority/importance for CSI bits, similar overhead between bit groups, enhanced codebook design, etc. are considered.
  • part 1 of a CSI report may also be referred to as “part 1 CSI” , and the two terms are used interchangeably.
  • part 2 of a CSI report may also referred to as “part 2 CSI” .
  • the same information bits are transmitted from multiple coordinated TRPs to improve cell edge and average throughput.
  • FIG. 4 is a schematic diagram illustrating an example of coherent joint transmission with multiple TRPs in accordance with some implementations of the present disclosure.
  • the UE 102a is located at the edge of the coverage 410 of the first TRP 104a, and at the edge of the coverage 420 of the second TRP 104b.
  • the UE may be in communication with TRP1 104a and TRP2 104b with communication links 411 and 421, respectively.
  • the CSI feedback may be used for gNB to determine precoding matrix, which includes PMI1 for TRP1, PMI2 for TRP2, and phase adjustment information (which may also be called cophasing information) and/or amplitude adjustment information between TRP1 104a and TRP2 104b.
  • PMI1 for TRP1 and PMI2 for TRP2 may be determined based on CSI between TRP 1 and UE and CSI between TRP2 and UE, respectively, according to existing enhanced Type2 codebook, including e-Type2 codebook in Release 16, e-Type2 port selection codebook in Release 16, and/or fe-Type2 port selection codebook in Release 17.
  • e-Type2 codebook in Release 16
  • e-Type2 port selection codebook in Release 16 e-Type2 port selection codebook in Release 16
  • fe-Type2 port selection codebook in Release 17.
  • gNB can determine precoding matrix based on enhanced Type2 codebook or Type2 port selection codebook for coherent JT.
  • the UE 102a may perform CSI reporting 412 to TRP1 104a and/or CSI reporting 422 to TRP2 104b.
  • both CSI reporting 412 and CSI reporting 422 include two parts: a first part (i.e. part 1) and a second part (i.e. part 2) .
  • Part 1 of a CSI report may include the CSI fields of Rank Indicator (RI) , Channel Quality Indicator (CQI) , indicator of total number of non-zero coefficients summed across all layers ( NZ ) .
  • Part 2 of a CSI report may include the CSI fields of PMI, and/or CSI adjustment information between TRPs.
  • the PMI may include several groups of feedback bits with different dropping priorities, e.g. group 0, group 1, and group 2.
  • the CSI reporting 412 and CSI reporting 422 may be included in one joint CSI report or two paired (or linked) CSI reports.
  • the CSI reporting may include a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and/or a second indicator of total number of non-zero coefficients summed across all layers
  • the CSI reporting may include a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers and a second Channel Quality Indicator (CQI2) .
  • Part 1 of CSI reporting 412 may include the CSI fields of RI1, CQI1 (including wideband and/or subband CQI) , and total number of non-zero coefficients summed across all layers based on assumption of single TRP transmission.
  • Part 1 of CSI reporting 422 may include the CSI fields of RI2, CQI2 (including wideband and/or subband CQI) , and total number of non-zero coefficients summed across all layers based on assumption of coherent JT.
  • Part 2 of CSI reporting 412 may include the CSI field PMI1 for TRP1.
  • Part 2 of CSI reporting 422 may include CSI fields of PMI2 for TRP2, and ⁇ CSI1 for CSI adjustment between TRP1 and TRP2 (i.e. additional adjustment indication bits) .
  • the CSI adjustment ⁇ CSI1 may include phase and/or amplitude adjustment information between TRP1 and TRP2.
  • Part 1 CSI bits and part 2 CSI bits are separately concatenated, for encoding and rate matching.
  • Multiple mapping order schemes during bit concatenation are proposed for part 1 CSI and part 2 CSI based on consideration of different CSI reporting configurations, priority/importance for CSI reporting, or similar overhead between bit groups.
  • the mapping order for multiple bit groups for different TRPs and the mapping order for additional phase and/or amplitude adjustment indication bits in one group are proposed.
  • One joint CSI reporting may be used to carry CSI for coherent JT, where CSI from one joint or more linked or paired reports are used together for one coherent joint transmission.
  • three or more TRPs may be used for coherent JT, and thus there may be three or more linked CSI reportings.
  • two TRPs may be used for coherent JT, and thus there may be two paired (or linked) CSI reportings.
  • part 1 CSI it may include RI1, CQI1, based on assumption of single TRP transmission and RI2, CQI2, based on assumption of coherent JT if CSI reporting is designed to support both single TRP transmission and coherent joint transmission.
  • mapping order for the part 1 CSI When one joint CSI reporting is configured, the following two options may be used as mapping order for the part 1 CSI.
  • the mapping order is defined by first RI1, CQI1, and then RI2, CQI2, This is a natural extension based on CSI reporting for single TRP transmission. This mapping order may be also extended to coherent joint transmission with three TRPs, followed by RI3, CQI3, where RI3 represents a third Rank Indicator, CQI3 represents a third Channel Quality Indicator, and represents a third indicator of total number of non-zero coefficients summed across all layers.
  • the mapping order is defined by first RI1, RI2, then CQI1, CQI2 and lastly
  • the same feedback contents i.e. RI, CQI, K NZ
  • RI, CQI, K NZ The same feedback contents (i.e. RI, CQI, K NZ ) are mapped continuously. It may be also extended to coherent joint transmission with three TRPs by first RI1, RI2, RI3, then CQI1, CQI2, CQI3, and lastly
  • coherent JT is designed with more restriction for simplicity, namely common RI and K NZ may be assumed for single TRP transmission and coherent JT.
  • the mapping order may be RI1, CQI1, CQI2,
  • the CQI2 may be the second Channel Quality Indicator (CQI2) for coherent JT, or alternatively a differential CQI, or delta CQI, relative to CQI1.
  • This mapping order may be also extended to coherent joint transmission with three TRPs by first RI1, then CQI1, CQI2, CQI3 and lastly
  • the CQI3 may be the third Channel Quality Indicator (CQI3) for coherent JT with three TRPs, or alternatively a differential CQI, or delta CQI, relative to CQI1.
  • part 1 CSI may be concatenated according to configured report ID.
  • the mapping order is first for CSI report with smaller report ID. That is, the mapping order for a first part of each of the linked CSI reportings may be in ascending order of their corresponding report index (ID) .
  • part 1 CSI may include common RI1, CQI1 (including wideband CQI and subband CQI) , based on assumption of coherent JT if CSI reporting is designed only for coherent JT.
  • one CSI reporting is configured for only coherent JT, it may reuse legacy mapping order with first RI then wideband CQI, subband CQI and lastly total number of non-zero coefficients
  • part 1 CSI may be carried in the CSI report with lowest index and no reporting is made for other paired or linked CSI reports. That is, the common RI, CQI, and K NZ may be mapped to a specified one of the linked CSI reportings.
  • the specified one of the linked CSI reportings may one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  • CSI For part 2 CSI, it may include a first Precoder Matrix Indicator (PMI1) for TRP1, a second PMI (PMI2) for TRP2, and/or CSI adjustment ⁇ CSI1 , or cross CSI, between TRP1 and TRP2 (i.e. additional phase adjustment indication bits) .
  • PMI1 Precoder Matrix Indicator
  • PMI2 PMI 2
  • CSI adjustment ⁇ CSI1 i.e. additional phase adjustment indication bits
  • the CSI adjustment ⁇ CSI1 between TRP1 and TRP2 may also referred to as “cross CSI” or “cross CSI bits” throughout this disclosure.
  • each of them includes 3 groups (Groups 0-2) according to legacy scheme.
  • Groups of feedback bits in the PMI2 with the additional phase adjustment may be referred as enhanced groups of PMI2.
  • the bit location for additional phase and/or amplitude adjustment indication bits is related with phase and/or amplitude adjustment schemes.
  • mapping order may be used as mapping order:
  • Option 1 Additional bits for the phase and/or amplitude adjustments may be put at the end of group 0.
  • the phase adjustment bits mapped may be mapped in, or at the end of, the enhanced group 0.
  • Option 2 Additional bits for the phase and/or amplitude adjustments may be put at the end of group 1.
  • gNB can make coherent JT with reporting including only group 0 and group 1 (for worse uplink channel quality with dropping for part of CSI part 2)
  • phase adjustment bits mapped may be mapped in, or at the end of, the enhanced group 1.
  • N is subband number
  • Option 1 Additional bits for the phase and/or amplitude adjustments may be put at the end of group 1 or group 2 according to bit priority.
  • the bit priority for phase adjustment bits is determined by subband index with higher priority for lower subband index. For this scheme, it is designed for similar overhead between group 1 and group 2 on account of large bit number for phase adjustment indication.
  • CSI information in group 2 When CSI information in group 2 is dropped because of not enough capacity for PUSCH to carry CSI in the case of worse uplink channel quality for example, with this scheme, it may still provide phase adjustment information for some subbands.
  • a first group of bits for a subband with a first half smaller subband index value are mapped in, or at the end of, the enhanced group 1
  • a second group of bits for a subband with a second half larger subband index value are mapped in, or at the end of, the enhanced group 2.
  • this scheme it is designed to provide full phase adjustment information for all subbands in group 1. It can support gNB’s scheduling in full band even when group 2 is dropped.
  • additional bits for the phase and/or amplitude adjustments may be put at the end of group 1 or group 2 according to bit priority.
  • phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient may be mapped in, or at the end of, the enhanced group 1.
  • the first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient may be mapped in, or at the end of, the enhanced group 1; and the second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient may be mapped in, or at the end of, the enhanced group 2.
  • a new bit group 3, or enhanced group 3 may be introduced.
  • the phase adjustment bits may be mapped to the enhanced group 3 for mapping order of all three phase adjustment schemes, namely beam based phase adjustment scheme, subband based phase adjustment scheme, and linear combination coefficient based phase adjustment scheme.
  • Part 2 CSI it may include groups 0-2 for PMI1 and groups 0-2 (i.e. enhanced groups 0-2) for PMI2 with additional phase adjustment bits.
  • Part 2 CSI may include the CSI fields of group 0, group 1, and group 2 for both PMI1 and PMI2.
  • mapping order When one joint CSI reporting is configured, the following three options may be used as mapping order:
  • mapping order is defined by concatenating PMI1 and PMI2.
  • mapping order for one CSI report is ⁇ group 0 for PMI1, group 1 for PMI1, group 2 for PMI1, enhanced group 0 for PMI2, enhanced group 1 for PMI2, enhanced group 2 for PMI2 ⁇ .
  • mapping order is defined by concatenating group 0 from PMI1 and PMI2, group 1 from PMI1 and PMI2 and group 2 from PMI1 and PMI2.
  • mapping order for one CSI report is ⁇ group 0 for PMI1, enhanced group 0 for PMI2, group 1 for PMI1, enhanced group 1 for PMI2, group 2 for PMI1, enhanced group 2 for PMI2 ⁇ .
  • mapping order is defined by aligning dropping priority for two CSI reportings as defined in legacy system.
  • mapping order for one CSI report is ⁇ group 0 for PMI1, enhanced group 0 for PMI2, group 1 for PMI1, group 2 for PMI1, enhanced group 1 for PMI2, enhanced group 2 for PMI2 ⁇ .
  • part 2 CSI is concatenated according to configured report ID with first for CSI report with smaller report ID.
  • the legacy mapping order may be used, where the order is ⁇ group 0 of PMI1, group 1 of PMI1, group 2 of PMI1 ⁇ .
  • the legacy mapping order may be used, where the order is ⁇ enhanced group 0 of PMI2, enhanced group 1 of PMI2, enhanced group 2 of PMI2, enhanced group 3 of PMI2 if present ⁇ .
  • the legacy mapping order may be used, where the mapping order is ⁇ enhanced group 0 of PMI3, enhanced group 1 of PMI3, enhanced group 2 of PMI3, enhanced group 3 of PMI3 if present ⁇ .
  • Figure 5 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by UE 200 in accordance with some implementations of the present disclosure.
  • the receiver 214 of UE 200 receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part.
  • CSI Channel State Information
  • the processor 202 of UE 200 generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order.
  • the transmitter 212 of UE 200 transmits the CSI reporting.
  • Figure 6 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by gNB 300 in accordance with some implementations of the present disclosure.
  • the transmitter 312 of gNB 300 transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part.
  • CSI Channel State Information
  • the receiver 314 of gNB 300 receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
  • An apparatus comprising:
  • a receiver that receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
  • CSI Channel State Information
  • the first part comprises CSI fields with a first mapping order
  • the second part comprises CSI fields with a second mapping order
  • a transmitter that transmits the CSI reporting.
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, CQI1, RI2, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
  • the first mapping order comprises: RI1, RI2, CQI1, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
  • the CSI reporting comprises the linked CSI reportings
  • the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
  • the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises mapping RI1, CQI1, and to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  • RI1 Rank Indicator
  • CQI1 Channel Quality Indicator
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID)
  • the PMI comprise:
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
  • phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
  • An apparatus comprising:
  • a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; and
  • CSI Channel State Information
  • the first part comprises CSI fields with a first mapping order
  • the second part comprises CSI fields with a second mapping order.
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, CQI1, RI2, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, RI2, CQI1, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
  • the CSI reporting comprises the linked CSI reportings
  • the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
  • the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises mapping RI1, CQI1, and to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  • RI1 Rank Indicator
  • CQI1 Channel Quality Indicator
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID)
  • the PMI comprise:
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
  • phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
  • a method comprising:
  • CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
  • the CSI reporting wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order;
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, CQI1, RI2, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, RI2, CQI1, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
  • the CSI reporting comprises the linked CSI reportings
  • the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
  • the first mapping order comprises mapping RI1, CQI1, and to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID)
  • the PMI comprise:
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
  • phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
  • a method comprising:
  • CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part;
  • the CSI reporting wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, CQI1, RI2, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises: RI1, RI2, CQI1, CQI2, and
  • the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
  • the CSI reporting comprises the linked CSI reportings
  • the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
  • the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers the first mapping order comprises mapping RI1, CQI1, and to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  • RI1 Rank Indicator
  • CQI1 Channel Quality Indicator
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  • the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity
  • the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID)
  • the PMI comprise:
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
  • the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
  • any one of items 76 to 80 wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
  • any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
  • phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus of mapping order of CSI reporting for coherent joint transmission are disclosed. The apparatus includes: a receiver that receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part; a processor that generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and a transmitter that transmits the CSI reporting.

Description

METHODS AND APPARATUS OF MAPPING ORDER OF CSI REPORTING FOR COHERENT JOINT TRANSMISSION FIELD
The subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of mapping order of CSI reporting for coherent joint transmission.
BACKGROUND
The following abbreviations and acronyms are herewith defined, at least some of which are referred to within the specification:
Third Generation Partnership Project (3GPP) , 5th Generation (5G) , New Radio (NR) , 5G Node B (gNB) , Long Term Evolution (LTE) , LTE Advanced (LTE-A) , E-UTRAN Node B (eNB) , Universal Mobile Telecommunications System (UMTS) , Worldwide Interoperability for Microwave Access (WiMAX) , Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) , Wireless Local Area Networking (WLAN) , Orthogonal Frequency Division Multiplexing (OFDM) , Single-Carrier Frequency-Division Multiple Access (SC-FDMA) , Downlink (DL) , Uplink (UL) , User Entity/Equipment (UE) , Network Equipment (NE) , Radio Access Technology (RAT) , Receive or Receiver (RX) , Transmit or Transmitter (TX) , Physical Uplink Shared Channel (PUSCH) , Channel State Information (CSI) , Channel State Information Reference Signal (CSI-RS) , Frequency Division Duplex (FDD) , Frequency Division Multiple Access (FDMA) , Index/Identifier (ID) , Multiple Input Multiple Output (MIMO) , Multi-User MIMO (MU-MIMO) , Quadrature Phase Shift Keying (QPSK) , Reference Signal (RS) , Time-Division Duplexing (TDD) , Transmission and Reception Point (TRP) , Uplink Control Information (UCI) , Channel Quality Indicator (CQI) , Frequency Range 1 (FR1) , Frequency Range 2 (FR2) , Precoder Matrix Indicator (PMI) , Rank Indicator (RI) , Technical Specification (TS) , Not Applicable (N/A) , Coherent Joint Transmission (CJT) , Joint Transmission (JT) , Non-Coherent Joint Transmission (NC-JT) .
In wireless communication, such as a Third Generation Partnership Project (3GPP) mobile network, a wireless mobile network may provide a seamless  wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) . The wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
The 5G New Radio (NR) is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology. Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2. The 5G NR supports both FR1 and FR2 frequency bands.
Enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul between these TRPs (Transmit Receive Points) are studied. A TRP is an apparatus to transmit and receive signals, and is controlled by a gNB through the backhaul between the gNB and the TRP.
It is important to identify and specify necessary enhancements for both downlink and uplink MIMO for facilitating the use of large antenna array, not only for FR1 but also for FR2, to fulfil the request for evolution of NR deployments in Release 18.
In 3GPP specification Release 16 and Release 17, features for facilitating multi-TRP deployments have been introduced, focusing on non-coherent joint transmission (NC-JT) .
As coherent joint transmission (CJT) improves coverage and average throughput in commercial deployments with high-performance backhaul and synchronization, enhancement on CSI acquisition for FDD and TDD, targeting FR1, may be beneficial in expanding the utility of multi-TRP deployments.
SUMMARY
Methods and apparatus of mapping order of CSI reporting for coherent joint transmission are disclosed.
According to a first aspect, there is provided an apparatus, including: a receiver that receives a configuration signalling for Channel State Information (CSI)  reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part; a processor that generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and a transmitter that transmits the CSI reporting.
According to a second aspect, there is provided an apparatus, including: a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; and a receiver that receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
According to a third aspect, there is provided a method, including: receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part; generating, by a processor, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and transmitting, by a transmitter, the CSI reporting.
According to a fourth aspect, there is provided a method, including: transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; receiving, by a receiver, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments will be rendered by reference to specific embodiments illustrated in the appended drawings. Given that these drawings depict only some embodiments and are not therefore considered to be limiting in scope, the embodiments will be described and explained with additional specificity and details through the use of the accompanying drawings, in which:
Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure;
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure;
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure;
Figure 4 is a schematic diagram illustrating an example of coherent joint transmission with multiple TRPs in accordance with some implementations of the present disclosure.
Figure 5 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by UE in accordance with some implementations of the present disclosure; and
Figure 6 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by gNB in accordance with some implementations of the present disclosure.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
Furthermore, one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to  hereafter as “code. ” The storage devices may be tangible, non-transitory, and/or non-transmission.
Reference throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example. Thus, instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed. Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” , and similarly items expressed in plural form also include reference to one or multiple instances of the item, unless expressly specified otherwise.
Throughout the disclosure, the terms “first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise. For example, a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily. Similarly, a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
It should be understood that the term “and/or” as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. For example, “A and/or B” may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B. The character “/” generally indicates an “or” relationship of the associated  items. This, however, may also include an “and” relationship of the associated items. For example, “A/B” means “Aor B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of various embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, as well as combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, may be implemented by code. This code may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions executed via the processor of the computer or other programmable data processing apparatus create a means for implementing the functions or acts specified in the schematic flowchart diagrams and/or schematic block diagrams.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of different apparatuses, systems, methods, and program products  according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) . One skilled in the relevant art will recognize, however, that the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
It should also be noted that, in some alternative implementations, the functions noted in the identified blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be substantially executed in concurrence, or the blocks may sometimes be executed in reverse order, depending upon the functionality involved.
Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100. In one embodiment, the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
The UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, user device, or by other terminology used in the art.
In one embodiment, the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like. In some other embodiments, the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like. In some embodiments, the UEs 102 include wearable devices, such as smart watches,  fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
The NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art. Throughout this specification, a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
The NEs 104 may be distributed over a geographic region. The NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) . In some implementations, the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link. The NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
Communication links are provided between the NE 104 and the  UEs  102a, 102b, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
The NE 104 may also include one or more transmit receive points (TRPs) 104a. In some embodiments, the network equipment may be a gNB 104 that controls a number of TRPs 104a. In addition, there is a backhaul between two TRPs 104a. In some other embodiments, the network equipment may be a TRP 104a that is controlled by a gNB.
Communication links are provided between the  NEs  104, 104a and the  UEs  102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some  UEs  102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
In some embodiments, the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal or ideal backhaul, simultaneously. A TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) . The two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs. The terms “TRP” and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment. A UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the UE 200 may not include any input device 206 and/or display 208. In various embodiments, the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines  described herein. The processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment. In some embodiments, the memory 204 also stores program code and related data.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audio, and/or haptic signals.
The transceiver 210, in one embodiment, is configured to communicate wirelessly with the network equipment. In certain embodiments, the transceiver 210 comprises a transmitter 212 and a receiver 214. The transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
The transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214. For example, in some embodiments, the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the  transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment. The NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
In some embodiments, the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200. The processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200. In another example, the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
In some embodiments, the transceiver 310 comprises a transmitter 312 and a receiver 314. The transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
The transceiver 310 may communicate simultaneously with a plurality of UEs 200. For example, the transmitter 312 may transmit DL communication signals to the UE 200. As another example, the receiver 314 may simultaneously receive UL communication signals from the UE 200. The transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314. For example, the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
In Release 18, coherent joint transmission will be further studied, where the same information may be transmitted coherently from multiple TRPs. In the present disclosure, enhanced CSI reporting schemes with specific mapping order are  designed with consideration of: 1) . CSIs from multiple TRPs for one coherent joint transmission, 2) . CSI reporting with one joint or multiple linked or paired CSI reportings, 3) . PMI feedback based on Release 16 enhanced Type2 codebook, Release 16 enhanced port selection Type 2 codebook, or Release 17 further enhanced port selection Type 2 codebook including additional CSI information between TRPs, and 4) . good compatibility between coherent joint transmission and single TRP transmission. In the disclosure, TRPs may also be referred to as transmitting-receiving entities.
In 3GPP specifications, mapping order is defined for CSI reporting with PUSCH in section 6.3.2.1.2 of TS 38.212. The related description for CSI reporting based on Release 16 eType2 codebook, Release 16 eType2 port selection codebook, Release 17 feType2 port selection codebook is shown as follows.
CSI on PUSCH
The bitwidth for PMI of codebookType=typeII-r16 is provided in Tables 6.3.2.1.2-1A, where the values of (N 1, N 2) , (O 1, O 2) , L, K NZ, N 3, and {M ll=1, …, υ are given by Clause 5.2.2.2.5 in [6, TS 38.214] .
Table 6.3.2.1.2-1A: PMI of codebookType= typeII-r16
Figure PCTCN2022091368-appb-000001
Figure PCTCN2022091368-appb-000002
Note: the bitwidth for {i 1, 7, ll=1, …, υ, {i 2, 4, ll=1, …, υ and {i 2, 5, ll=1, …, υ shown in Table 6.3.2.1.2-1A is the total bitwidth of {i 1, 7, l} , {i 2, 4, l} and {i 2, 5, l} up to Rank = υ, respectively, and the corresponding per layer bitwidths are 2 M υ
Figure PCTCN2022091368-appb-000003
and
Figure PCTCN2022091368-appb-000004
 (i.e., 1, 3, and 4 bits for each respective indicator elements
Figure PCTCN2022091368-appb-000005
and c l, i, f, respectively) , where
Figure PCTCN2022091368-appb-000006
as defined inClause 5.2.2.2.5 in [6, TS 38.214] is the number of nonzero coefficients for layer l such that
Figure PCTCN2022091368-appb-000007
Figure PCTCN2022091368-appb-000008
The bitwidth for PMI of codebookType=typeII-PortSelection-r16 is provided in Tables 6.3.2.1.2-2A, where the values of P CSI-RS, d, L, K NZ, N 3, and {M ll=1, …, υ are given by Clause 5.2.2.2.6 in [6, TS 38.214] .
Table 6.3.2.1.2-2A: PMI of codebookType= typeII-PortSelection-r16
Figure PCTCN2022091368-appb-000009
Figure PCTCN2022091368-appb-000010
Figure PCTCN2022091368-appb-000011
1 Note: the bitwidth for {i 1, 7, ll=1, …, υ, {i 2, 4, ll=1, …, υ and {i 2, 5, ll=1, …, υ shown in Table 6.3.2.1.2-2A is the total bitwidth of {i 1, 7, l} , {i 2, 4, l} and {i 2, 5, l} up to Rank = υ, respectively, and the corresponding per layer bitwidths are 2 M υ
Figure PCTCN2022091368-appb-000012
and
Figure PCTCN2022091368-appb-000013
 (i.e., 1, 3, and 4 bits for each respective indicator elements
Figure PCTCN2022091368-appb-000014
and c l, i, f, respectively) , where
Figure PCTCN2022091368-appb-000015
as defined in Clause 5.2.2.2.5 in [6, TS 38.214] is the number of nonzero coefficients for layer l such that
Figure PCTCN2022091368-appb-000016
The bitwidth for PMI of codebookType=typeII-PortSelection-r17 is provided in Tables 6.3.2.1.2-2B, where the values of P CSI-RS, K 1, K NZ, N 3, N and M are given by Clause 5.2.2.2.7 in [6, TS 38.214] .
Table 6.3.2.1.2-2B: PMI of codebookType= typeII-PortSelection-r17
Figure PCTCN2022091368-appb-000017
Figure PCTCN2022091368-appb-000018
Note: the bitwidth for {i 1, 7, ll=1, …, υ, {i 2, 4, ll=1, …, υ and {i 2, 5, ll=1, …, υ shown in Table 6.3.2.1.2-2B is the total bitwidth of {i 1, 7, l} , {i 2, 4, l} and {i 2, 5, l} up to Rank = v, respectively, and the corresponding per layer bitwidths are K 1M, 
Figure PCTCN2022091368-appb-000019
and
Figure PCTCN2022091368-appb-000020
 (i.e., 1, 3, and 4 bits for each respective indicator elements
Figure PCTCN2022091368-appb-000021
and c l, i, f, respectively) , where
Figure PCTCN2022091368-appb-000022
as defined in Clause 5.2.2.2.7 in [6, TS 38.214] is the number of nonzero coefficients for layer l such that
Figure PCTCN2022091368-appb-000023
Figure PCTCN2022091368-appb-000024
For CSI on PUSCH, two UCI bit sequences are generated, 
Figure PCTCN2022091368-appb-000025
and 
Figure PCTCN2022091368-appb-000026
The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.2.1.2-6, are mapped to the UCI bit sequence
Figure PCTCN2022091368-appb-000027
starting with
Figure PCTCN2022091368-appb-000028
The CSI fields of all CSI reports, in the order from upper part to lower part in Table 6.3.2.1.2-7, are mapped to the UCI bit sequence
Figure PCTCN2022091368-appb-000029
starting with
Figure PCTCN2022091368-appb-000030
Table 6.3.2.1.2-5A: Mapping order of CSI fields of one CSI report, CSI part 2 of codebookType=typeII-r16 or typeII-PortSelection-r16
Figure PCTCN2022091368-appb-000031
Table 6.3.2.1.2-5B: Mapping order of CSI fields of one CSI report, CSI part 2 of codebookType=typeII-PortSelection-r17
Figure PCTCN2022091368-appb-000032
Table 6.3.2.1.2-6: Mapping order of CSI reports to UCI bit sequence
Figure PCTCN2022091368-appb-000033
with two-part CSI report (s)
Figure PCTCN2022091368-appb-000034
where CSI report #1, CSI report #2, …, CSI report #n in Table 6.3.2.1.2-6 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2.5 of [6, TS38.214] .
Table 6.3.2.1.2-7: Mapping order of CSI reports to UCI bit sequence
Figure PCTCN2022091368-appb-000035
with two-part CSI report (s)
Figure PCTCN2022091368-appb-000036
where CSI report #1, CSI report #2, …, CSI report #n in Table 6.3.2.1.2-7 correspond to the CSI reports in increasing order of CSI report priority values according to Clause 5.2.5 of [6, TS38.214] .
The bitwidth for RI/CQI of codebookType= typeII-r16 or codebookType=typeII-PortSelection-r16 is provided in Table 6.3.2.1.2-8.
Table 6.3.2.1.2-8: RI and CQI of codebookType=typeII-r16 or typeII-PortSelection-r16
Figure PCTCN2022091368-appb-000037
where n RI is the number of allowed rank indicator values according to Clauses 5.2.2.2.5 and 5.2.2.2.6 [6, TS 38.214] , 
Figure PCTCN2022091368-appb-000038
where p 1, N 3, R, and β are given by Clause 5.2.2.2.5 and 5.2.2.2.6 in [6, TS 38.214] . The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where '0'is mapped to the smallest allowed rank indicator value. The values of the K NZ indicator field are mapped to the allowed values of K NZ, according to Clauses 5.2.2.2.5 and 5.2.2.2.6 [6, TS 38.214] , with increasing order, where '0'is mapped to K NZ=1.
Table 6.3.2.1.2-9: RI and CQI of codebookType=typeII-PortSelection-r17
Figure PCTCN2022091368-appb-000039
where n RI is the number of allowed rank indicator values according to Clauses 5.2.2.2.7 [6, TS 38.214] , 
Figure PCTCN2022091368-appb-000040
where K 1, M, and β are given by Clause 5.2.2.2.7 in [6, TS 38.214] . The values of the rank indicator field are mapped to allowed rank indicator values with increasing order, where '0'is mapped to the smallest allowed rank indicator value.
For Release 16 and Release 17, mapping order for CSI reporting is designed based on eType2 codebook, eType2 port selection codebook and feType2 port selection codebook as shown above in TS 38.212. The designs are based on single TRP transmission since MU-MIMO is typical use scenario for eType2 codebook, eType2 port selection codebook and feType2 port selection codebook.
For legacy reporting schemes, CSI for one TRP is divided into two parts since large feedback overhead is needed for eType2 codebook, where a fixed payload size is used for CSI reporting part 1, including RI (Rank Indicator) , CQI (Channel quality indicator) , total number of non-zero coefficients summed across all layers K NZ for PMI (Precoding matrix indicator) ; and a variable payload size is used for CSI reporting part 2 depending on the feedback information (such as RI information) from part 1, which includes PMI information. For the PMI information, it includes 3 groups of feedback bits with different dropping priorities.
In the present disclosure, several schemes of mapping order for CSI reporting for coherent joint transmission are proposed, where enhanced codebook based on eType2 codebook, eType2 port selection codebook and feType2 port selection codebook is used for PMI feedback including phase adjustment information and/or amplitude adjustment information. The mapping order is designed for both part 1 CSI and part 2 CSI, where CSI contents include RI, CQI, total number of nonzero coefficients across layers in part 1, and PMI for TRP1/TRP2 and phase adjustment information between TRPs in part 2. The mapping order schemes are proposed for multiple bit groups from different TRPs and for additional phase adjustment and/or  amplitude adjustment indication bits in one group considering different CSI reporting configurations, where priority/importance for CSI bits, similar overhead between bit groups, enhanced codebook design, etc. are considered.
Throughout the disclosure, “part 1 of a CSI report” may also be referred to as “part 1 CSI” , and the two terms are used interchangeably. Similarly, “part 2 of a CSI report” may also referred to as “part 2 CSI” .
For coherent joint transmission, the same information bits are transmitted from multiple coordinated TRPs to improve cell edge and average throughput.
Figure 4 is a schematic diagram illustrating an example of coherent joint transmission with multiple TRPs in accordance with some implementations of the present disclosure. In this example, the UE 102a is located at the edge of the coverage 410 of the first TRP 104a, and at the edge of the coverage 420 of the second TRP 104b. The UE may be in communication with TRP1 104a and TRP2 104b with  communication links  411 and 421, respectively. The CSI feedback may be used for gNB to determine precoding matrix, which includes PMI1 for TRP1, PMI2 for TRP2, and phase adjustment information (which may also be called cophasing information) and/or amplitude adjustment information between TRP1 104a and TRP2 104b. PMI1 for TRP1 and PMI2 for TRP2 may be determined based on CSI between TRP 1 and UE and CSI between TRP2 and UE, respectively, according to existing enhanced Type2 codebook, including e-Type2 codebook in Release 16, e-Type2 port selection codebook in Release 16, and/or fe-Type2 port selection codebook in Release 17. For phase and/or amplitude adjustment, it is assumed to be made on PMI2 for TRP2 as it is made relative adjustment based on, or with respect to, PMI1 for TRP1. With PMI2 and additional phase and/or amplitude adjustment information, gNB can determine precoding matrix based on enhanced Type2 codebook or Type2 port selection codebook for coherent JT. Upon evaluation of the channel conditions of the communication links/channels, the UE 102a may perform CSI reporting 412 to TRP1 104a and/or CSI reporting 422 to TRP2 104b.
In the example as shown in Figure 4, both CSI reporting 412 and CSI reporting 422 include two parts: a first part (i.e. part 1) and a second part (i.e. part 2) . Part 1 of a CSI report may include the CSI fields of Rank Indicator (RI) , Channel Quality  Indicator (CQI) , indicator of total number of non-zero coefficients summed across all layers (  NZ) . Part 2 of a CSI report may include the CSI fields of PMI, and/or CSI adjustment information between TRPs. The PMI may include several groups of feedback bits with different dropping priorities, e.g. group 0, group 1, and group 2.
In some examples, the CSI reporting 412 and CSI reporting 422 may be included in one joint CSI report or two paired (or linked) CSI reports.
The CSI reporting may include a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000041
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and/or a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000042
In some other examples, the CSI reporting may include a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000043
and a second Channel Quality Indicator (CQI2) .
Part 1 of CSI reporting 412 may include the CSI fields of RI1, CQI1 (including wideband and/or subband CQI) , and total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000044
based on assumption of single TRP transmission. Part 1 of CSI reporting 422 may include the CSI fields of RI2, CQI2 (including wideband and/or subband CQI) , and total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000045
based on assumption of coherent JT.
Part 2 of CSI reporting 412 may include the CSI field PMI1 for TRP1. Part 2 of CSI reporting 422 may include CSI fields of PMI2 for TRP2, and ΔCSI1 for CSI adjustment between TRP1 and TRP2 (i.e. additional adjustment indication bits) . The CSI adjustment ΔCSI1 may include phase and/or amplitude adjustment information between TRP1 and TRP2.
Part 1 CSI bits and part 2 CSI bits are separately concatenated, for encoding and rate matching. Multiple mapping order schemes during bit concatenation are proposed for part 1 CSI and part 2 CSI based on consideration of different CSI reporting configurations, priority/importance for CSI reporting, or similar overhead between bit groups. For part 2 CSI, the mapping order for multiple bit groups for different TRPs and the mapping order for additional phase and/or amplitude adjustment indication bits in one group are proposed.
One joint CSI reporting, or a plurality of linked or paired CSI reportings, may be used to carry CSI for coherent JT, where CSI from one joint or more linked or paired reports are used together for one coherent joint transmission. In some examples, three or more TRPs may be used for coherent JT, and thus there may be three or more linked CSI reportings. In some other examples, two TRPs may be used for coherent JT, and thus there may be two paired (or linked) CSI reportings.
Mapping Order for Part 1 CSI
For part 1 CSI, it may include RI1, CQI1, 
Figure PCTCN2022091368-appb-000046
based on assumption of single TRP transmission and RI2, CQI2, 
Figure PCTCN2022091368-appb-000047
based on assumption of coherent JT if CSI reporting is designed to support both single TRP transmission and coherent joint transmission.
When one joint CSI reporting is configured, the following two options may be used as mapping order for the part 1 CSI.
Option 1: the mapping order is defined by first RI1, CQI1, 
Figure PCTCN2022091368-appb-000048
and then RI2, CQI2, 
Figure PCTCN2022091368-appb-000049
This is a natural extension based on CSI reporting for single TRP transmission. This mapping order may be also extended to coherent joint transmission with three TRPs, followed by RI3, CQI3, 
Figure PCTCN2022091368-appb-000050
where RI3 represents a third Rank Indicator, CQI3 represents a third Channel Quality Indicator, and
Figure PCTCN2022091368-appb-000051
represents a third indicator of total number of non-zero coefficients summed across all layers.
Option 2: the mapping order is defined by first RI1, RI2, then CQI1, CQI2 and lastly
Figure PCTCN2022091368-appb-000052
The same feedback contents (i.e. RI, CQI, K NZ) are mapped continuously. It may be also extended to coherent joint transmission with three TRPs by first RI1, RI2, RI3, then CQI1, CQI2, CQI3, and lastly
Figure PCTCN2022091368-appb-000053
In some examples, coherent JT is designed with more restriction for simplicity, namely common RI and K NZ may be assumed for single TRP transmission and coherent JT. The mapping order may be RI1, CQI1, CQI2, 
Figure PCTCN2022091368-appb-000054
The CQI2 may be the second Channel Quality Indicator (CQI2) for coherent JT, or alternatively a differential CQI, or delta CQI, relative to CQI1. This mapping order may be also extended to coherent joint transmission with three TRPs by first RI1, then CQI1, CQI2, CQI3 and lastly
Figure PCTCN2022091368-appb-000055
The CQI3 may be the third Channel Quality  Indicator (CQI3) for coherent JT with three TRPs, or alternatively a differential CQI, or delta CQI, relative to CQI1.
When two or more paired or linked CSI reportings are configured, part 1 CSI may be concatenated according to configured report ID. The mapping order is first for CSI report with smaller report ID. That is, the mapping order for a first part of each of the linked CSI reportings may be in ascending order of their corresponding report index (ID) .
In some other examples, part 1 CSI may include common RI1, CQI1 (including wideband CQI and subband CQI) , 
Figure PCTCN2022091368-appb-000056
based on assumption of coherent JT if CSI reporting is designed only for coherent JT. When one CSI reporting is configured for only coherent JT, it may reuse legacy mapping order with first RI then wideband CQI, subband CQI and lastly total number of non-zero coefficients
Figure PCTCN2022091368-appb-000057
When two or more paired or linked CSI reportings are configured, part 1 CSI may be carried in the CSI report with lowest index and no reporting is made for other paired or linked CSI reports. That is, the common RI, CQI, and K NZ may be mapped to a specified one of the linked CSI reportings. The specified one of the linked CSI reportings may one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
Mapping Order for Part 2 CSI
For part 2 CSI, it may include a first Precoder Matrix Indicator (PMI1) for TRP1, a second PMI (PMI2) for TRP2, and/or CSI adjustment ΔCSI1 , or cross CSI, between TRP1 and TRP2 (i.e. additional phase adjustment indication bits) .
The CSI adjustment ΔCSI1 between TRP1 and TRP2 may also referred to as “cross CSI” or “cross CSI bits” throughout this disclosure.
For PMI1 and PMI2, each of them includes 3 groups (Groups 0-2) according to legacy scheme. For example with eType2 codebook or eType2 port selection codebook, i 1, 11, 2, i 1, 8, l: l=1, …, υ} are put in order in group 0; {i 2, 3, l: l=1, …, υ} , i 1, 5, {i 1, 6, l: l=1, …, υ} and
Figure PCTCN2022091368-appb-000058
highest priority bits of {i 2, 4, l: l=1, …, υ} , 
Figure PCTCN2022091368-appb-000059
highest priority bits of {i 2, 5, l: l=1, …, υ} and 
Figure PCTCN2022091368-appb-000060
highest priority bits of {i 1, 7, l: l=1, …, υ} , are put in order  in group 1; 
Figure PCTCN2022091368-appb-000061
lowest priority bits of {i 2, 4, l: l=1, …, υ} , 
Figure PCTCN2022091368-appb-000062
lowest priority bits of {i 2, 5, l: l=1, …, υ} and
Figure PCTCN2022091368-appb-000063
lowest priority bits of {i 1, 7, l: l=1, …, υ} are put in order in group 2. Additional phase and/or amplitude adjustment indication bits may be merged into PMI2.
Groups of feedback bits in the PMI2 with the additional phase adjustment may be referred as enhanced groups of PMI2.
Mapping Order for Cross CSI Bits in Groups of Part 2 CSI
The bit location for additional phase and/or amplitude adjustment indication bits is related with phase and/or amplitude adjustment schemes.
For beam based phase adjustment scheme, additional bits {i 1, 9, l: l=1, …, υ} are used for phase adjustment for each beam. The following two options may be used as mapping order:
Option 1: Additional bits for the phase and/or amplitude adjustments may be put at the end of group 0. In detail, additional bits {i 1, 9, l: l=1, …, υ} may be put after {i 1, 8, l: l=1, …, υ} in group 0 on account that beam selection bits are put in group 0 for legacy scheme. Both {i 1, 9, l: l=1, …, υ} and {i 1, 8, l: l=1, …, υ} are in group 0, and similar description scheme is used for other options. In this case, the phase adjustment bits mapped may be mapped in, or at the end of, the enhanced group 0.
Option 2: Additional bits for the phase and/or amplitude adjustments may be put at the end of group 1. In detail, additional bits {i 1, 9, l: l=1, …, υ} may be put after {i 1, 7, l: l=1, …, υ} in group 1 if limit overhead is assumed for group 0. With this option, gNB can make coherent JT with reporting including only group 0 and group 1 (for worse uplink channel quality with dropping for part of CSI part 2) 
but with performance loss. In this case, the phase adjustment bits mapped may be mapped in, or at the end of, the enhanced group 1.
For subband based phase adjustment scheme, additional bits {i 2, 6, n: n= 1, …, N} (N is subband number) are used to make phase adjustment for each subband. The following two options may be used as mapping order:
Option 1: Additional bits for the phase and/or amplitude adjustments may be put at the end of group 1 or group 2 according to bit priority. In detail, 
Figure PCTCN2022091368-appb-000064
bits (N is subband number; Q = 2/3/4 for QPSK/8PSK/16PSK phase quantization) with higher priority may be put after {i 1, 7, l: l=1, …, υ} in group 1 and
Figure PCTCN2022091368-appb-000065
Figure PCTCN2022091368-appb-000066
bits with lower priority may be put after {i 1, 7, l: l=1, …, υ} in group 2. The bit priority for phase adjustment bits is determined by subband index with higher priority for lower subband index. For this scheme, it is designed for similar overhead between group 1 and group 2 on account of large bit number for phase adjustment indication. When CSI information in group 2 is dropped because of not enough capacity for PUSCH to carry CSI in the case of worse uplink channel quality for example, with this scheme, it may still provide phase adjustment information for some subbands. In this case, a first group of bits for a subband with a first half smaller subband index value are mapped in, or at the end of, the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value are mapped in, or at the end of, the enhanced group 2.
Option 2: Additional bits for the phase and/or amplitude adjustments may be put at the end of group 1. In detail, phase adjustment bits {i 2, 6, n: l=1, …, N} are put after {i 1, 7, l: l=1, …, υ} in group 1. For this scheme, it is designed to provide full phase adjustment information for all subbands in group 1. It can support gNB’s scheduling in full band even when group 2 is dropped.
For linear combination coefficient based phase adjustment, the following two schemes may be used.
For the first scheme, additional bits for the phase and/or amplitude adjustments may be put at the end of group 1 or group 2 according to bit priority. In detail, additional bits {i 2, 6, l: l=1, …, v} may be used to indicate the phase adjustment information for nonzero linear combination coefficients. On account that {i 2, 6, l: l= 1, …, v} is similar to {i 2, 5, l: l=1, …, v} (phase information for nonzero linear combination coefficients) , 
Figure PCTCN2022091368-appb-000067
 (Q = 2/3/4 for QPSK/8PSK/16PSK phase quantization) highest priority bits of {i 2, 6, l: l=1, …, υ} may be put after {i 1, 7, l: l=1, …, υ} in group 1 and
Figure PCTCN2022091368-appb-000068
lowest priority bits of {i 2, 6, l: l=  1, …, υ} may be put after {i 1, 7, l: l=1, …, υ} in group 2. The priority definition for bits in {i 2, 6, l: l=1, …, v} is the same as that for {i 2, 5, l: l=1, …, v} defined in the legacy scheme in Release 16or Release 17. For the phase of the strongest nonzero coefficient, it is not included in {i 2, 5, l: l=1, …, v} . But it is needed for {i 2, 6, l: l= 1, …, v} and the responding Q×v bits may be put at the beginning of all additional bits {i 2, 6, l: l=1, …, v} in group 1 (following bits {i 1, 7, l: l=1, …, υ} in group 1) on account of importance of the strongest linear combination coefficient.
For the second scheme, it has lower feedback overhead by merging adjustment phase for nonzero coefficients and phase of nonzero coefficients. Additional bits {i 2, 6, l: l=1, …, v} may be avoided (i.e. the merged phase is reported by {i 2, 5, l: l= 1, …, v} ) except additional bits for indicating adjustment phase for the strongest coefficient. Here, only Q×v additional bits are used to indicate adjustment phase for the strongest coefficient and they may be put after {i 1, 7, l: l=1, …, υ} in group 1.
Thus, the phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient may be mapped in, or at the end of, the enhanced group 1. The first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient may be mapped in, or at the end of, the enhanced group 1; and the second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient may be mapped in, or at the end of, the enhanced group 2.
In some examples, a new bit group 3, or enhanced group 3, may be introduced. The phase adjustment bits may be mapped to the enhanced group 3 for mapping order of all three phase adjustment schemes, namely beam based phase adjustment scheme, subband based phase adjustment scheme, and linear combination coefficient based phase adjustment scheme. The phase adjustment bits may be mapped in group 3 after {i 1, 7, l: l=1, …, υ} in group 2, or following the end of the enhanced group 2.
Although the examples are described based on phase adjustment information. Similar mapping order may be used for additional amplitude adjustment information if present.
Mapping Order for Groups in Part 2 CSI
For part 2 CSI, it may include groups 0-2 for PMI1 and groups 0-2 (i.e. enhanced groups 0-2) for PMI2 with additional phase adjustment bits. Part 2 CSI may include the CSI fields of group 0, group 1, and group 2 for both PMI1 and PMI2.
When one joint CSI reporting is configured, the following three options may be used as mapping order:
Option 1: the mapping order is defined by concatenating PMI1 and PMI2. In detail, mapping order for one CSI report is {group 0 for PMI1, group 1 for PMI1, group 2 for PMI1, enhanced group 0 for PMI2, enhanced group 1 for PMI2, enhanced group 2 for PMI2} .
This is a natural mapping order. It is well matched for CSI reporting for single TRP transmission and coherent JT, where the first three bit groups are for single TRP transmission and all the bit groups are used for coherent JT.
It may be also extended to coherent joint transmission with three TRPs with mapping order of {group 0 for PMI1, group 1 for PMI1, group 2 for PMI1, enhanced group 0 for PMI2, enhanced group 1 for PMI2, enhanced group 2 for PMI2, enhanced group 0 for PMI3, enhanced group 1 for PMI3, enhanced group 2 for PMI3} .
Option 2: the mapping order is defined by concatenating group 0 from PMI1 and PMI2, group 1 from PMI1 and PMI2 and group 2 from PMI1 and PMI2. In detail, mapping order for one CSI report is {group 0 for PMI1, enhanced group 0 for PMI2, group 1 for PMI1, enhanced group 1 for PMI2, group 2 for PMI1, enhanced group 2 for PMI2} .
It is well matched for CSI reporting for coherent JT, where 3 groups are defined for part 2 CSI with PMI1 and PMI2 as a unity, or collectively.
It may be also extended to coherent joint transmission with three TRPs with mapping order of {group 0 for PMI1, enhanced group 0 for PMI2, enhanced group 0 for PMI3, group 1 for PMI1, enhanced group 1 for PMI2, enhanced group 1 for PMI3, group 2 for PMI1, enhanced group 2 for PMI2, enhanced group 2 for PMI3} .
Option 3: the mapping order is defined by aligning dropping priority for two CSI reportings as defined in legacy system. In detail, mapping order for one CSI report is {group 0 for PMI1, enhanced group 0 for PMI2, group 1 for PMI1, group 2 for PMI1, enhanced group 1 for PMI2, enhanced group 2 for PMI2} .
It is matched with legacy dropping order and may save a little realization complexity for dropping cases.
It may be also extended to coherent joint transmission with three TRPs with mapping order of {group 0 for PMI1, enhanced group 0 for PMI2, enhanced group 0 for PMI3, group 1 for PMI1, group 2 for PMI1, enhanced group 1 for PMI2, enhanced group 2 for PMI2, enhanced group 1 for PMI3, enhanced group 2 for PMI3} .
When two or more paired or linked CSI reportings are configured, part 2 CSI is concatenated according to configured report ID with first for CSI report with smaller report ID. For the CSI report with PMI1, the legacy mapping order may be used, where the order is {group 0 of PMI1, group 1 of PMI1, group 2 of PMI1} . For CSI report with PMI2, the legacy mapping order may be used, where the order is {enhanced group 0 of PMI2, enhanced group 1 of PMI2, enhanced group 2 of PMI2, enhanced group 3 of PMI2 if present} . For CSI report with PMI3 if present, the legacy mapping order may be used, where the mapping order is {enhanced group 0 of PMI3, enhanced group 1 of PMI3, enhanced group 2 of PMI3, enhanced group 3 of PMI3 if present} .
Figure 5 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by UE 200 in accordance with some implementations of the present disclosure.
At step 502, the receiver 214 of UE 200 receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part.
At step 504, the processor 202 of UE 200 generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order.
At step 506, the transmitter 212 of UE 200 transmits the CSI reporting.
Figure 6 is a flow chart illustrating steps of CSI reporting for coherent joint transmission by gNB 300 in accordance with some implementations of the present disclosure.
At step 602, the transmitter 312 of gNB 300 transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part.
At step 604, the receiver 314 of gNB 300 receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
In one aspect, some items as examples of the disclosure concerning UE may be summarized as follows:
1. An apparatus, comprising:
a receiver that receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
a processor that generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and
a transmitter that transmits the CSI reporting.
2. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total  number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000069
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000070
the first mapping order comprises: RI1, CQI1, 
Figure PCTCN2022091368-appb-000071
RI2, CQI2, and
Figure PCTCN2022091368-appb-000072
3. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000073
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000074
the first mapping order comprises: RI1, RI2, CQI1, CQI2, 
Figure PCTCN2022091368-appb-000075
and
Figure PCTCN2022091368-appb-000076
4. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000077
and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
Figure PCTCN2022091368-appb-000078
5. The apparatus of item 1, wherein the CSI reporting comprises the linked CSI reportings, and the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
6. The apparatus of item 1, wherein the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000079
the first mapping order comprises mapping RI1, CQI1, and
Figure PCTCN2022091368-appb-000080
to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
7. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, group 1 of PMI1,  group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
8. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
9. The apparatus of item 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
10. The apparatus of item 1, wherein the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID) , and the PMI comprise:
group 0 of PMI1, group 1 of PMI1, and group 2 of PMI1, for CSI report including PMI1; and/or
enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2, for CSI report including PMI2.
11. The apparatus of any one of items 7 to 10, wherein upon determined that the PMI2 comprises an enhanced group 3 indicating phase adjustments, the second mapping order is further followed by the enhanced group 3 of PMI2.
12. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 0.
13. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 0.
14. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 1.
15. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 1.
16. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
17. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
18. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped in the enhanced group 1.
19. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped at an end of the enhanced group 1.
20. The apparatus of any one of items 7 to 11 wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
21. The apparatus of any one of items 7 to 11, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
22. The apparatus of item 11, wherein the CSI reporting comprises phase adjustment bits mapped to the enhanced group 3 following the end of the enhanced group 2.
23. The apparatus of any one of items 12 to 22, wherein the phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
In another aspect, some items as examples of the disclosure concerning gNB may be summarized as follows:
24. An apparatus, comprising:
a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; and
a receiver that receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
25. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000081
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000082
the first mapping order comprises: RI1, CQI1, 
Figure PCTCN2022091368-appb-000083
RI2, CQI2, and
Figure PCTCN2022091368-appb-000084
26. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000085
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000086
the first mapping order comprises: RI1, RI2, CQI1, CQI2, 
Figure PCTCN2022091368-appb-000087
and
Figure PCTCN2022091368-appb-000088
27. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000089
and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
Figure PCTCN2022091368-appb-000090
28. The apparatus of item 24, wherein the CSI reporting comprises the linked CSI reportings, and the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
29. The apparatus of item 24, wherein the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000091
the first mapping order comprises mapping RI1, CQI1, and
Figure PCTCN2022091368-appb-000092
to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
30. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
31. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
32. The apparatus of item 24, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving  entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
33. The apparatus of item 24, wherein the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID) , and the PMI comprise:
group 0 of PMI1, group 1 of PMI1, and group 2 of PMI1, for CSI report including PMI1; and/or
enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2, for CSI report including PMI2.
34. The apparatus of any one of items 30 to 33, wherein upon determined that the PMI2 comprises an enhanced group 3 indicating phase adjustments, the second mapping order is further followed by the enhanced group 3 of PMI2.
35. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 0.
36. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 0.
37. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 1.
38. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 1.
39. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
40. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a  second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
41. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped in the enhanced group 1.
42. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped at an end of the enhanced group 1.
43. The apparatus of any one of items 30 to 34 wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
44. The apparatus of any one of items 30 to 34, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
45. The apparatus of item 34, wherein the CSI reporting comprises phase adjustment bits mapped to the enhanced group 3 following the end of the enhanced group 2.
46. The apparatus of any one of items 35 to 45, wherein the phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
In a further aspect, some items as examples of the disclosure concerning a method of UE may be summarized as follows:
47. A method, comprising:
receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second  transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
generating, by a processor, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and
transmitting, by a transmitter, the CSI reporting.
48. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000093
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000094
the first mapping order comprises: RI1, CQI1, 
Figure PCTCN2022091368-appb-000095
RI2, CQI2, and
Figure PCTCN2022091368-appb-000096
49. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000097
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000098
the first mapping order comprises: RI1, RI2, CQI1, CQI2, 
Figure PCTCN2022091368-appb-000099
and
Figure PCTCN2022091368-appb-000100
50. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000101
and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
Figure PCTCN2022091368-appb-000102
51. The method of item 47, wherein the CSI reporting comprises the linked CSI reportings, and the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
52. The method of item 47, wherein the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank  Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000103
the first mapping order comprises mapping RI1, CQI1, and
Figure PCTCN2022091368-appb-000104
to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
53. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
54. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
55. The method of item 47, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
56. The method of item 47, wherein the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID) , and the PMI comprise:
group 0 of PMI1, group 1 of PMI1, and group 2 of PMI1, for CSI report including PMI1; and/or
enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2, for CSI report including PMI2.
57. The method of any one of items 53 to 56, wherein upon determined that the PMI2 comprises an enhanced group 3 indicating phase adjustments, the second mapping order is further followed by the enhanced group 3 of PMI2.
58. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 0.
59. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 0.
60. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 1.
61. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 1.
62. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
63. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
64. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped in the enhanced group 1.
65. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped at an end of the enhanced group 1.
66. The method of any one of items 53 to 57 wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient  mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
67. The method of any one of items 53 to 57, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
68. The method of item 57, wherein the CSI reporting comprises phase adjustment bits mapped to the enhanced group 3 following the end of the enhanced group 2.
69. The method of any one of items 58 to 68, wherein the phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
In a yet further aspect, some items as examples of the disclosure concerning a method of gNB may be summarized as follows:
70. A method, comprising:
transmitting, by a transmitter, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part;
receiving, by a receiver, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
71. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000105
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator  of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000106
the first mapping order comprises: RI1, CQI1, 
Figure PCTCN2022091368-appb-000107
RI2, CQI2, and
Figure PCTCN2022091368-appb-000108
72. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000109
a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000110
the first mapping order comprises: RI1, RI2, CQI1, CQI2, 
Figure PCTCN2022091368-appb-000111
and
Figure PCTCN2022091368-appb-000112
73. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000113
and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
Figure PCTCN2022091368-appb-000114
74. The method of item 70, wherein the CSI reporting comprises the linked CSI reportings, and the first mapping order comprises a first part of each of the linked CSI reportings in ascending order of their corresponding report index (ID) .
75. The method of item 70, wherein the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
Figure PCTCN2022091368-appb-000115
the first mapping order comprises mapping RI1, CQI1, and
Figure PCTCN2022091368-appb-000116
to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
76. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
77. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
78. The method of item 70, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
79. The method of item 70, wherein the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID) , and the PMI comprise:
group 0 of PMI1, group 1 of PMI1, and group 2 of PMI1, for CSI report including PMI1; and/or
enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2, for CSI report including PMI2.
80. The method of any one of items 76 to 79, wherein upon determined that the PMI2 comprises an enhanced group 3 indicating phase adjustments, the second mapping order is further followed by the enhanced group 3 of PMI2.
81. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 0.
82. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 0.
83. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits mapped in the enhanced group 1.
84. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 1.
85. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped in the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped in the enhanced group 2.
86. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits for a subband with a first half smaller subband index value mapped at an end the enhanced group 1, and a second group of bits for a subband with a second half larger subband index value mapped at an end of the enhanced group 2.
87. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped in the enhanced group 1.
88. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped at an end of the enhanced group 1.
89. The method of any one of items 76 to 80 wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped in the enhanced group 2.
90. The method of any one of items 76 to 80, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 1, and a second group of bits having lowest priority for indicating adjustment phase of nonzero linear combination coefficient mapped at an end of the enhanced group 2.
91. The method of item 80, wherein the CSI reporting comprises phase adjustment bits mapped to the enhanced group 3 following the end of the enhanced group 2.
92. The method of any one of items 81 to 91, wherein the phase adjustment bits indicate adjustment of phase for each beam, each subband, or each nonzero linear combination coefficient.
Various embodiments and/or examples are disclosed to provide exemplary and explanatory information to enable a person of ordinary skill in the art to put the disclosure into practice. Features or components disclosed with reference to one embodiment or example are also applicable to all embodiments or examples unless specifically indicated otherwise.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. An apparatus, comprising:
    a receiver that receives a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
    a processor that generates the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and
    a transmitter that transmits the CSI reporting.
  2. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100001
    a second Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100002
    the first mapping order comprises: RI1, CQI1, 
    Figure PCTCN2022091368-appb-100003
    RI2, CQI2, and
    Figure PCTCN2022091368-appb-100004
  3. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a first Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a first indicator of total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100005
    asecond Rank Indicator (RI2) , a second Channel Quality Indicator (CQI2) , and a second indicator of total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100006
    the first mapping order comprises: RI1, RI2, CQI1, CQI2, 
    Figure PCTCN2022091368-appb-100007
    and
    Figure PCTCN2022091368-appb-100008
  4. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a first Channel Quality Indicator (CQI1) , a common indicator of  total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100009
    and a second Channel Quality Indicator (CQI2) , the first mapping order comprises: RI1, CQI1, CQI2, and
    Figure PCTCN2022091368-appb-100010
  5. The apparatus of claim 1, wherein the CSI reporting comprises the linked CSI reportings, and upon determined that the CSI reporting comprises a common Rank Indicator (RI1) , a common Channel Quality Indicator (CQI1) , a common indicator of total number of non-zero coefficients summed across all layers
    Figure PCTCN2022091368-appb-100011
    the first mapping order comprises mapping RI1, CQI1, and
    Figure PCTCN2022091368-appb-100012
    to a specified one of the linked CSI reportings, wherein the specified one of the linked CSI reportings is one with the smallest report ID, or one that is firstly configured in the linked CSI reportings.
  6. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, group 1 of PMI1, group 2 of PMI1, enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  7. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group 0 of PMI2, group 1 of PMI1, enhanced group 1 of PMI2, group 2 of PMI1, and enhanced group 2 of PMI2.
  8. The apparatus of claim 1, wherein the CSI reporting comprises the joint CSI reporting having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises: group 0 of PMI1, enhanced group  0 of PMI2, group 1 of PMI1, group 2 of PMI1, enhanced group 1 of PMI2, and enhanced group 2 of PMI2.
  9. The apparatus of claim 1, wherein the CSI reporting comprises the linked CSI reportings each having a first Precoder Matrix Indicator (PMI1) for the first transmitting-receiving entity and/or a second PMI (PMI2) for the second transmitting-receiving entity, and the second mapping order comprises PMI of each of the linked CSI reportings in ascending order of their corresponding report index (ID) , and the PMI comprise:
    group 0 of PMI1, group 1 of PMI1, and group 2 of PMI1, for CSI report including PMI1; and/or
    enhanced group 0 of PMI2, enhanced group 1 of PMI2, and enhanced group 2 of PMI2, for CSI report including PMI2.
  10. The apparatus of any one of claims 6 to 9, wherein upon determined that the PMI2 comprises an enhanced group 3 indicating phase adjustments, the second mapping order is further followed by the enhanced group 3 of PMI2; and the CSI reporting comprises phase adjustment bits mapped to the enhanced group 3 following the end of the enhanced group 2.
  11. The apparatus of any one of claims 6 to 10, wherein the CSI reporting comprises phase adjustment bits mapped at an end of the enhanced group 0 or at an end of the enhanced group 1.
  12. The apparatus of any one of claims 6 to 10, wherein the CSI reporting comprises phase adjustment bits, with a first group of bits having the highest priority for mapped at an end of the enhanced group 1, and a second group of bits having lowest priority mapped at an end of the enhanced group 2.
  13. The apparatus of any one of claims 6 to 10, wherein the CSI reporting comprises phase adjustment bits for indicating adjustment phase for strongest linear combination coefficient mapped at an end of the enhanced group 1.
  14. An apparatus, comprising:
    a transmitter that transmits a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the joint CSI reporting or each one of the linked CSI reportings comprises a first part and a second part; and
    a receiver that receives the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, the second part comprises CSI fields with a second mapping order.
  15. A method, comprising:
    receiving, by a receiver, a configuration signalling for Channel State Information (CSI) reporting for a first transmitting-receiving entity and a second transmitting-receiving entity, wherein the CSI reporting comprises a joint CSI reporting or a plurality of linked CSI reportings, and the CSI reporting comprises a first part and a second part;
    generating, by a processor, the CSI reporting, wherein the first part comprises CSI fields with a first mapping order, and the second part comprises CSI fields with a second mapping order; and
    transmitting, by a transmitter, the CSI reporting.
PCT/CN2022/091368 2022-05-07 2022-05-07 Methods and apparatus of mapping order of csi reporting for coherent joint transmission WO2023216014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091368 WO2023216014A1 (en) 2022-05-07 2022-05-07 Methods and apparatus of mapping order of csi reporting for coherent joint transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091368 WO2023216014A1 (en) 2022-05-07 2022-05-07 Methods and apparatus of mapping order of csi reporting for coherent joint transmission

Publications (1)

Publication Number Publication Date
WO2023216014A1 true WO2023216014A1 (en) 2023-11-16

Family

ID=88729370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091368 WO2023216014A1 (en) 2022-05-07 2022-05-07 Methods and apparatus of mapping order of csi reporting for coherent joint transmission

Country Status (1)

Country Link
WO (1) WO2023216014A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081678A1 (en) * 2017-09-08 2019-03-14 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
CN114390579A (en) * 2020-10-20 2022-04-22 维沃移动通信有限公司 Channel state information processing method and device and terminal
US20220140981A1 (en) * 2020-10-30 2022-05-05 Lenovo (Singapore) Pte. Ltd. Channel state information report configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081678A1 (en) * 2017-09-08 2019-03-14 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
CN114390579A (en) * 2020-10-20 2022-04-22 维沃移动通信有限公司 Channel state information processing method and device and terminal
US20220140981A1 (en) * 2020-10-30 2022-05-05 Lenovo (Singapore) Pte. Ltd. Channel state information report configuration

Similar Documents

Publication Publication Date Title
US11705950B2 (en) Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
EP3895330B1 (en) Reporting of coefficients for channel state information
WO2021159471A1 (en) Apparatus and method of enhanced csi feedback for enhanced pdcch transmission with multiple beams from multiple trps
US20240014985A1 (en) Channel state information report configuration
CN117713882A (en) Method and apparatus for channel quality indicator and channel state information reporting
US20230058765A1 (en) Data transmissions using multiple transmission reception points
CN112806050B (en) Channel state information report calculation
WO2020087518A1 (en) Determining power offset parameter
WO2023216014A1 (en) Methods and apparatus of mapping order of csi reporting for coherent joint transmission
WO2023206367A1 (en) Methods and apparatus of csi reporting for coherent joint transmission
CN116888905A (en) Method and apparatus for measuring and reporting communication parameters in a wireless communication system
WO2024021012A1 (en) Methods and apparatus of csi omission for coherent joint transmission
WO2023206353A1 (en) Methods and apparatus of codebook enhancement for coherent joint transmission
KR20230135079A (en) CSI reporting methods and devices
WO2022091031A1 (en) Channel state information report configuration
WO2024065291A1 (en) Methods and apparatus of csi reporting on amplitude and phase coefficients for coherent joint transmission
WO2021035385A1 (en) Using multiple downlink reference signals for channel estimation
EP3874631A1 (en) Channel state information calculation
WO2024074040A1 (en) Methods and apparatus of srs resource indication for non-codebook based pusch
WO2023236193A1 (en) Methods and apparatus of csi reporting for ai-enabled beam management
WO2024016302A1 (en) Methods and apparatus of srs resource mapping hopping
WO2024074001A1 (en) Methods and apparatus of dynamic pdsch power allocation and csi feedback
US20230353209A1 (en) Reporting channel state information based on a transmission hypothesis
US20240154755A1 (en) Channel state information overhead reduction by network signaled user equipment specific adjustments before measurements
WO2023151025A1 (en) Methods and apparatus of resource mapping for ptrs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940985

Country of ref document: EP

Kind code of ref document: A1