WO2023236176A1 - 一种目镜光学系统及头戴显示装置 - Google Patents

一种目镜光学系统及头戴显示装置 Download PDF

Info

Publication number
WO2023236176A1
WO2023236176A1 PCT/CN2022/098056 CN2022098056W WO2023236176A1 WO 2023236176 A1 WO2023236176 A1 WO 2023236176A1 CN 2022098056 W CN2022098056 W CN 2022098056W WO 2023236176 A1 WO2023236176 A1 WO 2023236176A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
focal length
human eye
Prior art date
Application number
PCT/CN2022/098056
Other languages
English (en)
French (fr)
Inventor
彭华军
曹鸿鹏
郭健飞
Original Assignee
深圳纳德光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纳德光学有限公司 filed Critical 深圳纳德光学有限公司
Priority to PCT/CN2022/098056 priority Critical patent/WO2023236176A1/zh
Publication of WO2023236176A1 publication Critical patent/WO2023236176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of optical technology, and more specifically, to an eyepiece optical system and a head-mounted display device.
  • the head-mounted display device uses optical technology to guide the video image light emitted by the micro-image display (such as a transmissive or reflective liquid crystal display, an organic electroluminescent device, and a DMD device) to the user's pupil.
  • the micro-image display such as a transmissive or reflective liquid crystal display, an organic electroluminescent device, and a DMD device
  • the scope realizes virtual and enlarged images, providing users with intuitive and visual images, videos, and text information. It can be used in outdoor, simulated driving, training, demonstration, teaching, training, medical, flight and other scenarios.
  • Patent Document 1 Choinese Patent Publication No. CN109212740A
  • Patent Document 2 Choinese Patent Publication No. CN210243956U
  • Patent Document 3 Choinese Patent Publication No. CN112731666A discloses an eyepiece optical system composed of six lenses, which achieves performance indicators such as a large field of view, high image quality, and low distortion. However, the eyepiece optical system relies heavily on The more complex Fresnel optical surface is difficult to process.
  • Patent Document 4 Choinese Patent Publication No. CN101609208A discloses an eyepiece optical system composed of six lenses, which achieves a large field of view, but its aberration correction is poor and its performance indicators are poor.
  • the technical problem to be solved by the present invention is to provide an eyepiece optical system and a head-mounted display device in view of the above-mentioned defects of the prior art.
  • an eyepiece optical system including a first lens group, a second lens group, a third lens group and a fourth lens group that are coaxially arranged in sequence from the human eye observation side to the micro image display side, and the third lens group
  • the effective focal length of one lens group is F 1 , F 1 is a positive value, the effective focal length of the second lens group is F 2 , F 2 is a negative value, the effective focal length of the third lens group is F 3 , F 3 is a positive value, the effective focal length of the fourth lens group is F 4 , the effective focal length of the eyepiece optical system is F, F 1 , F 2 , F 3 , F 4 and F satisfy the following relationships (1), ( 2), (3), (4):
  • the first lens group is composed of two lenses, namely a first lens close to the human eye side and a second lens far away from the human eye side.
  • the first lens and the second lens are both positive lenses
  • the second lens group is composed of two lenses, a third lens adjacent to the first lens group and a fourth lens far away from the human eye. Both the third lens and the fourth lens are negative lenses
  • the third lens group is composed of one lens, wherein the third lens group includes a fifth lens adjacent to the second lens group, and the fifth lens is a positive lens
  • the fourth lens group is composed of two lenses.
  • the lenses are composed of a sixth lens adjacent to the third lens group and a seventh lens far away from the human eye;
  • Nd is the refractive index of each lens in the eyepiece optical system at the d line
  • Vd is the Abbe number of each lens in the eyepiece optical system at the d line.
  • the first lens is a plano-convex lens, wherein the optical surface of the first lens close to the human eye is flat, and the optical surface of the first lens away from the human eye is concave toward the human eye.
  • both the second lens and the fifth lens are biconvex lenses.
  • the third lens is a biconcave lens; both optical surfaces of the third lens are concave toward the human eye.
  • the fourth lens, the sixth lens and the seventh lens are all meniscus-shaped lenses; the two optical surfaces of the fourth lens, the sixth lens and the seventh lens are both Concave toward the micro image display side.
  • the effective focal length of the first lens group is F 1
  • the effective focal length of the second lens group is F 2
  • the effective focal length of the third lens group is F 3
  • the effective focal length of the fourth lens group is F 3
  • the focal length is F 4
  • the effective focal length of the second lens is f 2
  • the effective focal length of the third lens is f 3
  • the effective focal length of the seventh lens is f 7
  • F 1 , F 2 , F 3 , F 4 , f 2 , f 3 and f 7 satisfy the following relations (7), (8), (9) and (10):
  • curvature radii of the two optical surfaces of the sixth lens and the two optical surfaces of the seventh lens satisfy the following relational expressions (11), (12), (13):
  • R 41 is the curvature radius of the sixth lens side close to the human eye
  • R 42 is the curvature radius of the sixth lens side close to the micro image display
  • R 43 is the curvature radius of the seventh lens side close to the human eye
  • R 44 is the curvature radius of the seventh lens side surface close to the micro image display.
  • R 21 the radius of curvature of the optical surface of the third lens close to the human eye side
  • R 24 the radius of curvature of the optical surface of the fourth lens close to the image source side
  • each lens in the first lens group, the second lens group, the third lens group and the fourth lens group is made of plastic resin material or glass material.
  • optical surface of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are located away from the human eye side.
  • the optical surfaces of the lens are all even-order aspheric surfaces, and the even-order aspheric surfaces satisfy the following relationship (15):
  • z is the sagittal height of the optical surface
  • c is the curvature at the vertex of the aspheric surface
  • k is the aspheric coefficient
  • is 2, 4, 6... are the coefficients of each order
  • r is the distance coordinate from the point on the curved surface to the optical axis of the lens system.
  • the present invention also provides a head-mounted display device, including a miniature image display and an eyepiece.
  • the eyepiece is located between the human eye and the miniature image display.
  • the eyepiece is the eyepiece optical system described in any one of the above.
  • micro image display is an organic electroluminescent device or a transmissive liquid crystal display.
  • the head-mounted display device includes two identical and symmetrically arranged eyepiece optical systems.
  • the eyepiece optical system has the advantages of compact structure, small size, large field of view, high optical resolution, etc.
  • the optical system of this eyepiece adopts a "positive, negative, positive" combination of the first lens group, the second lens group and the third lens group, as well as the first lens, the second lens, the third lens and the fourth lens with a lower refractive index.
  • the combination of the fifth lens, the sixth lens and the seventh lens effectively improves the shortcomings of the existing technology, has better aberration correction capabilities, better processability, and achieves a large field of view, low distortion, and high optical resolution. , thus reducing the manufacturing difficulty, manufacturing cost and product weight of the eyepiece optical system, and greatly improving the optical performance of the system and the user experience of the product.
  • Observers can watch full-frame high-definition, distortion-free, Large images with uniform image quality achieve a highly immersive visual experience.
  • Figure 1 is a schematic structural diagram of the eyepiece optical system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system in Embodiment 1 of the present invention
  • Figure 3 is a schematic diagram of the field curvature of the eyepiece optical system in Embodiment 1 of the present invention.
  • Figure 4 is a schematic diagram of the distortion of the eyepiece optical system in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural diagram of the eyepiece optical system according to Embodiment 2 of the present invention.
  • Figure 6 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system in Embodiment 2 of the present invention.
  • Figure 7 is a schematic diagram of the field curvature of the eyepiece optical system in Embodiment 2 of the present invention.
  • Figure 8 is a schematic diagram of the distortion of the eyepiece optical system in Embodiment 2 of the present invention.
  • Figure 9 is a schematic structural diagram of the eyepiece optical system of Embodiment 3 of the present invention.
  • Figure 10 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system in Embodiment 3 of the present invention.
  • Figure 11 is a schematic diagram of the field curvature of the eyepiece optical system in Embodiment 3 of the present invention.
  • Figure 12 is a schematic diagram of the distortion of the eyepiece optical system in Embodiment 3 of the present invention.
  • Figure 13 is a schematic structural diagram of the eyepiece optical system of Embodiment 4 of the present invention.
  • Figure 14 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system in Embodiment 4 of the present invention.
  • Figure 15 is a schematic diagram of the field curvature of the eyepiece optical system in Embodiment 4 of the present invention.
  • Figure 16 is a schematic diagram of the distortion of the eyepiece optical system in Embodiment 4 of the present invention.
  • the invention constructs an eyepiece optical system, which includes a first lens group, a second lens group, a third lens group and a fourth lens group that are coaxially arranged in sequence from the human eye observation side to the micro image display side along the optical axis direction.
  • the effective focal length of the first lens group is F 1
  • F 1 is a positive value
  • the effective focal length of the second lens group is F 2
  • F 2 is a negative value
  • the effective focal length of the third lens group is F 3
  • F 3 is a positive value
  • the effective focal length of the fourth lens group is F 4 and the effective focal length of the eyepiece optical system is F.
  • F 1 , F 2 , F 3 , F 4 and F satisfy the following relationships (1), (2), (3), ( 4):
  • F 1 /F the possible values of F 1 /F are 0.92, 0.922, 0.948, 0.955, 0.9581, 0.991, 1.051, 1.135, 1.20, etc.
  • F 2 /F are -0.84, -0.835, -0.795, -0.635, - 0.612, -0.58, -0.541, -0.518, -0.503, -0.49, etc.
  • F 3 /F can take values of 1.01, 1.035, 1.095, 1.135, 1.152, 1.258, 1.341, 1.38, 1.403, 1.44, etc.
  • F 4 /F can take values of 0.90, 1.02, 1.18, 1.295, 1.301, 1.491, 1.61, 2.15, 2.88, etc.
  • the value range of F 1 /F, F 2 /F, F 3 /F and F 4 /F corrects the system aberration
  • the processing difficulty of optical components is closely related to the sensitivity of assembly deviation of optical components.
  • the value of F 1 /F is greater than or equal to 0.92, which improves the processability of optical components in the eyepiece optical system. Its value is less than or equal to 1.20, which enables the system aberration to be fully corrected, thereby achieving better optical effects.
  • the value of F 2 /F is greater than or equal to -0.84, which allows the system aberration to be fully corrected, thereby achieving high-quality optical effects.
  • the value of F 3 /F is greater than or equal to 1.01, which improves the processability of the optical elements in the eyepiece optical system. Its value is less than or equal to 1.44, which allows the system aberration to be fully corrected, thereby achieving better quality optics. Effect.
  • the value of F 4 /F is greater than or equal to 0.90, which improves the processability of the optical elements in the eyepiece optical system. Its value is less than or equal to 2.88, which allows the system aberration to be fully corrected, thereby achieving better quality optics. Effect.
  • the first lens group is composed of two lenses, namely the first lens close to the human eye side and the second lens far away from the human eye side.
  • the first lens and the second lens are both positive lenses
  • the second lens group is composed of two lenses. It consists of a third lens adjacent to the first lens group and a fourth lens far away from the human eye. Both the third lens and the fourth lens are negative lenses
  • the third lens group is composed of one lens, in which the third lens group It includes a fifth lens that is adjacent to the second lens group, and the fifth lens is a positive lens
  • the fourth lens group is composed of two lenses, namely a sixth lens that is adjacent to the third lens group and a seventh lens that is far away from the human eye. ;
  • Nd is the refractive index of each lens in the eyepiece optical system at the d line
  • Vd is the Abbe number of each lens in the eyepiece optical system at the d line.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens with lower refractive index are used, and each positive lens is
  • the combination of negative lenses effectively improves the defects of the existing technology, with better aberration correction capabilities and better processability, achieving a large field of view, low distortion, and high optical resolution, thereby reducing the manufacturing cost of the optical system
  • the difficulty, manufacturing cost and product weight greatly improve the user experience of the product; and through the combination of material dispersion coefficients, the chromatic aberration of the optical system is improved and the optical performance of the system is improved.
  • Nd can take values of 1.63, 1.682, 1.698, 1.75, 1.781, 1.791, 1.851, 1.87, 2.00, etc.
  • Vd can take values of 20.40, 22.682, 33.698, 34.75, 35.781, 35.791, 41.851, 52.87, 54.9 0 etc. .
  • the first lens is a plano-convex lens, wherein the optical surface of the first lens close to the human eye is flat, and the optical surface of the first lens far away from the human eye is concave toward the human eye.
  • both the second lens and the fifth lens are biconvex lenses.
  • first lens with a plano-convex shape combined with a second lens with a surface close to the eye side that is concave toward the human eye effectively reduces the overall size of the eyepiece optical system.
  • the third lens is a biconcave lens; both optical surfaces of the third lens are concave toward the human eye.
  • the fourth lens, the sixth lens and the seventh lens are all meniscus-shaped lenses; both optical surfaces of the fourth lens, the sixth lens and the seventh lens are concave toward the micro image display side.
  • the effective focal length of the first lens group is F 1
  • the effective focal length of the second lens group is F 2
  • the effective focal length of the third lens group is F 3
  • the effective focal length of the fourth lens group is F 4
  • the effective focal length of the second lens is f 2
  • the effective focal length of the third lens is f 3
  • the effective focal length of the seventh lens is f 7 , F 1 , F 2 , F 3 , F 4 , f 2 , f 3 and f 7 satisfies the following relations (7), (8), (9), (10):
  • the value range of F 3 /F 1 in the above relationship (7) is closely related to the correction of system aberrations, the difficulty of processing optical components, and the sensitivity of assembly deviations of optical components.
  • F 3 /F 1 The value is greater than or equal to 0.98, which improves the processability of the optical elements in the system, and the value is less than 1.46, which enables the system aberrations to be fully corrected, thereby achieving better optical effects.
  • the value of f 2 /F 1 in the relationship (8) is greater than or equal to 16.79, which is used to reduce the difficulty of processing the second lens and the requirement for high refractive index of the material. Its value is less than or equal to 23.83, which is conducive to the realization of the image square of the system.
  • Telecentric the value of f 3 /F 2 in relation (9) is greater than or equal to 1.07, which is used to reduce the difficulty of processing the third lens and the requirement for high refractive index of the material. Its value is less than or equal to 1.20, which is beneficial to the system.
  • a value of 0.95 or less enables the system aberrations to be fully corrected, thereby achieving high-quality optical effects and improving the processability of optical elements in the system.
  • F 3 /F 1 the possible values of F 3 /F 1 are 0.98, 0.995, 1.005, 1.135, 1.212, 1.28, 1.341, 1.418, 1.453, 1.46, etc.
  • f 2 /F 1 the possible values of f 2 /F 1 are 16.79, 17.982, 18.998, 19.05, 19.51, 20.91, 21.251, 22.335, 23.83, etc.
  • f 3 /F 2 can take values of 1.07, 1.082, 1.10, 1.13, 1.192, 1.195, 1.20, etc.
  • f 7 /F 4 can take values of -3.51, - 3.35, -2.795, -2.635, -1.82, -1.58, -1.541, -1.18, -1.03, -0.95, etc.
  • the curvature radii of the two optical surfaces of the sixth lens and the two optical surfaces of the seventh lens satisfy the following relationships (11), (12), (13):
  • R 41 is the curvature radius of the sixth lens side close to the human eye
  • R 42 is the curvature radius of the sixth lens side close to the micro image display
  • R 43 is the curvature radius of the seventh lens close to the human eye side
  • R 44 is the seventh lens The lens is close to the curvature radius of the side surface of the micro image display.
  • the lower limit condition of R 42 /R 41 is greater than or equal to -16.27, so that the sixth lens can provide sufficient negative power, thereby better balancing the correction of system aberrations and achieving good optical effects.
  • its value is less than 2.16, which reduces the difficulty of correcting spherical aberration and facilitates the realization of large optical aperture.
  • the lower limit of the value of R 43 /R 41 is greater than or equal to 0.15, so that the seventh lens can provide sufficient positive power to ensure that the eyepiece optical system can achieve a sufficiently large field of view.
  • the upper limit of the value is less than or equal to 0.36, reducing It reduces the difficulty of correcting spherical aberration and facilitates the realization of large optical apertures.
  • the lower limit condition of R 44 / R 41 is greater than or equal to 0.12, so that the seventh lens can provide sufficient positive power to ensure that the eyepiece optical system can achieve a sufficiently large field of view.
  • the upper limit condition of the value is less than or equal to 0.51, which reduces It reduces the difficulty of correcting spherical aberration and facilitates the realization of large optical apertures.
  • R 42 /R 41 are -16.27, -14.082, -11.098, -4.15, -1.151, 1.191, 1.251, 2.16, etc.
  • R 43 /R 41 are 0.15, 0.182, 0.20, 0.213 , 0.292, 0.31, 0.36, etc.
  • R 44 /R 41 are 0.12, 0.122, 0.128, 0.213, 0.392, 0.431, 0.46, 0.51, etc.
  • the radius of curvature of the optical surface of the third lens close to the human eye side is R 21
  • the radius of curvature of the optical surface of the fourth lens close to the image source side is R 24 .
  • R 21 and R 24 satisfy the following relationship: (14):
  • R 21 /R 24 are -0.15, -0.121, -0.10, -0.09, -0.065, -0.051, -0.031, -0.02, etc.
  • the upper limit condition of R 21 /R 24 is greater than or equal to -0.15, so that the third lens can provide sufficient negative power, thereby better balancing the correction of system aberrations and achieving good optical effects.
  • its value is less than -0.02, which reduces the difficulty of correcting spherical aberration and facilitates the realization of large optical aperture.
  • the optical material of each lens in the first lens group, the second lens group, the third lens group and the fourth lens group is a plastic resin material or a glass material.
  • the optical surface of the first lens away from the human eye, the optical surfaces of the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are all even-order aspheric surfaces. , using even-order aspherical surfaces, is more mass-produced and unique in processing and production.
  • z is the sagittal height of the optical surface
  • c is the curvature at the vertex of the aspheric surface
  • k is the aspheric coefficient
  • is 2, 4, 6... are the coefficients of each order
  • r is the distance coordinate from the point on the curved surface to the optical axis of the lens system.
  • the aberrations of the optical system are fully corrected, which is beneficial to the eyepiece optical system in achieving a large field of view.
  • large aperture while further improving the image quality of the center field of view and the edge field of view, reducing the difference in image quality between the center field of view and the edge field of view, achieving more uniform image quality and low distortion within the full frame.
  • the aperture E can be the exit pupil of the eyepiece optical system for imaging, which is a virtual light exit aperture.
  • the micro image display I is the image plane of the eyepiece optical system.
  • Figure 1 is a schematic diagram of the optical path structure of the eyepiece optical system of Embodiment 1.
  • the first lens group A1 is composed of a first lens L1 and a second lens L2, and both the first lens L1 and the second lens L2 are positive lenses.
  • the second lens group A2 is composed of a third lens L3 and a fourth lens L4. Both the third lens L3 and the fourth lens L4 are negative lenses.
  • the third lens group A3 is composed of the fifth lens L5, and the fifth lens L5 is a positive lens.
  • the fourth lens group A4 is composed of a sixth lens L6 and a seventh lens L7.
  • the first lens L1 is a plano-convex lens, the optical surface close to the human eye is flat, and the optical surface far away from the human eye is concave toward the human eye.
  • the second lens L2 and the fifth lens L5 are both biconvex lenses.
  • the third lens L3 is a biconcave lens, and both optical surfaces of the third lens L3 are concave toward the human eye side.
  • the fourth lens L4, the sixth lens L6 and the seventh lens L7 are all meniscus lenses, and the optical surfaces of the fourth lens L4, the sixth lens L6 and the seventh lens L7 are all concave toward the micro image display 1 side.
  • the optical surface of the first lens L1 away from the human eye, the optical surfaces of the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 are all even-order aspheric surfaces. .
  • the effective focal length F of the eyepiece optical system is 18.43, the effective focal length F of the first lens group A1 is 19.05, the effective focal length F of the second lens group A2 is -10.14, and the effective focal length F of the third lens group A3 is 18.69,
  • the effective focal length F of the fourth lens group A4 is 23.06, the effective focal length f of the second lens L2 is 344.75 , the effective focal length f of the third lens L3 is -11.83, and the effective focal length f of the seventh lens L7 is 21.8.
  • the optical surface number close to the side of the aperture E is 1, and so on (from left to right), the optical surface close to the micro image display I is 14.
  • Figure 2 Figure 3 and Figure 4 are respectively the optical transfer function MTF curve, field curvature and distortion diagram of the eyepiece optical system in Embodiment 1 of the present invention, reflecting the transfer function MTF on the premise of ensuring a large field of view.
  • the resolution value of the schematic diagram at 10lp is greater than 0.8. From the above data, it can be concluded that the optical system has high imaging quality, small field curvature and optical distortion.
  • FIG. 5 is a schematic diagram of the optical path structure of the eyepiece optical system of Embodiment 2.
  • the first lens group A1 is composed of a first lens L1 and a second lens L2
  • both the first lens L1 and the second lens L2 are positive lenses
  • the second lens group A2 is composed of a third lens L3 and a fourth lens L4. Both the third lens L3 and the fourth lens L4 are negative lenses.
  • the third lens group A3 is composed of the fifth lens L5, and the fifth lens L5 is a positive lens.
  • the fourth lens group A4 is composed of a sixth lens L6 and a seventh lens L7.
  • the first lens L1 is a plano-convex lens, the optical surface close to the human eye is flat, and the optical surface far away from the human eye is concave toward the human eye.
  • the second lens L2 and the fifth lens L5 are both biconvex lenses.
  • the third lens L3 is a biconcave lens, and both optical surfaces of the third lens L3 are concave toward the human eye side.
  • the effective focal length F of the eyepiece optical system of this embodiment is 23.53, the effective focal length F 1 of the first lens group A1 is 22.79, the effective focal length F 2 of the second lens group A2 is -17.58, and the effective focal length F of the third lens group A3 3 is 30.43, the effective focal length F of the fourth lens group A4 is 67.83, the effective focal length f of the second lens L2 is 472.66, the effective focal length f of the third lens L3 is -20.38, and the effective focal length f of the seventh lens L7 7 is -238.17.
  • the optical surface number close to the side of the aperture E is 1, and so on (from left to right), the optical surface close to the micro image display I is 14.
  • Figure 6, Figure 7 and Figure 8 are respectively the optical transfer function MTF curve, field curvature and distortion diagram of the eyepiece optical system in Embodiment 2 of the present invention, reflecting the transfer function MTF on the premise of ensuring a large field of view.
  • the resolution value at 10lp in the diagram is greater than 0.9. From the above data, it can be concluded that the optical system has high imaging quality, small field curvature and optical distortion.
  • Figure 9 is a schematic diagram of the optical path structure of the eyepiece optical system of Embodiment 3.
  • the first lens group A1 is composed of a first lens L1 and a second lens L2
  • both the first lens L1 and the second lens L2 are positive lenses
  • the second lens group A2 is composed of a third lens L3 and a fourth lens L4. Both the third lens L3 and the fourth lens L4 are negative lenses.
  • the third lens group A3 is composed of the fifth lens L5, and the fifth lens L5 is a positive lens.
  • the fourth lens group A4 is composed of a sixth lens L6 and a seventh lens L7.
  • the first lens L1 is a plano-convex lens, the optical surface close to the human eye is flat, and the optical surface far away from the human eye is concave toward the human eye.
  • the second lens L2 and the fifth lens L5 are both biconvex lenses.
  • the third lens L3 is a biconcave lens, and both optical surfaces of the third lens L3 are concave toward the human eye side.
  • the effective focal length F of the eyepiece optical system of this embodiment is 15.88
  • the effective focal length F 1 of the first lens group A1 is 14.55
  • the effective focal length F 2 of the second lens group A2 is -7.83
  • the effective focal length F of the third lens group A3 The focal length F is 21.24
  • the effective focal length F of the fourth lens group A4 is 14.37
  • the effective focal length f of the second lens L2 is 346.78
  • the effective focal length f of the third lens L3 is -8.36
  • the effective focal length f of the seventh lens L7 Focal length f 7 is 20.83.
  • the optical surface number close to the side of the aperture E is 1, and so on (from left to right)
  • the optical surface close to the micro image display I is 14.
  • Figure 10, Figure 11 and Figure 12 are respectively the optical transfer function MTF curve, field curvature and distortion diagram of the eyepiece optical system in Embodiment 3 of the present invention, reflecting the transfer function MTF on the premise of ensuring a large field of view.
  • the resolution value of the schematic diagram at 10lp is greater than 0.9. From the above data, it can be concluded that the optical system has high imaging quality, small field curvature and optical distortion.
  • Figure 13 is a schematic diagram of the optical path structure of the eyepiece optical system of Embodiment 4.
  • the first lens group A1 is composed of a first lens L1 and a second lens L2
  • both the first lens L1 and the second lens L2 are positive lenses
  • the second lens group A2 is composed of a third lens L3 and a fourth lens L4. Both the third lens L3 and the fourth lens L4 are negative lenses.
  • the third lens group A3 is composed of the fifth lens L5, and the fifth lens L5 is a positive lens.
  • the fourth lens group A4 is composed of a sixth lens L6 and a seventh lens L7.
  • the first lens L1 is a plano-convex lens, the optical surface close to the human eye is flat, and the optical surface far away from the human eye is concave toward the human eye.
  • the second lens L2 and the fifth lens L5 are both biconvex lenses.
  • the third lens L3 is a biconcave lens, and both optical surfaces of the third lens L3 are concave toward the human eye side.
  • the effective focal length F of the eyepiece optical system of this embodiment is 14.42, the effective focal length F 1 of the first lens group A1 is 17.26, the effective focal length F 2 of the second lens group A2 is -12.06, and the effective focal length F of the third lens group A3
  • the focal length F is 20.75
  • the effective focal length F of the fourth lens group A4 is 19.51
  • the effective focal length f of the second lens L2 is 289.79
  • the effective focal length f of the third lens L3 is -14.5
  • the effective focal length f of the seventh lens L7 Focal length f 7 is 19.41.
  • the optical surface number close to the side of the aperture E is 1, and so on (from left to right), the optical surface close to the micro image display I is 14.
  • Figure 14, Figure 15 and Figure 16 are respectively the optical transfer function MTF curve, field curvature and distortion diagram of the eyepiece optical system in Embodiment 4 of the present invention, reflecting the transfer function MTF on the premise of ensuring a large field of view.
  • the resolution value of the schematic diagram at 10lp is greater than 0.9. From the above data, it can be concluded that the optical system has high imaging quality, small field curvature and optical distortion.
  • Example 1 -0.07 0.87 0.15 0.20
  • Example 2 -0.10 -16.27 0.16 0.12
  • Example 3 -0.02 2.16 0.34 0.51
  • Example 4 -0.15 1.00 0.36 0.50
  • the present invention also provides a head-mounted display device, which includes a miniature image display and an eyepiece.
  • the eyepiece is located between the human eye and the miniature image display.
  • the eyepiece is any one of the aforementioned eyepiece optical systems.
  • micro image display is an organic electroluminescent device or a transmissive liquid crystal display.
  • the head-mounted display device includes two identical and symmetrically arranged eyepiece optical systems.
  • the display content on the miniature image display is viewed by the observer's left and right eyes respectively through the eyepiece optical system, forming a clear and magnified visual experience.
  • Observers can watch full-frame high-definition, distortion-free, and uniform image quality through the head-mounted display device, achieving a highly immersive visual experience.
  • the eyepiece optical system of the head-mounted display device has the advantages of compact structure, small size, large field of view, and high optical resolution.
  • the optical system of this eyepiece adopts a "positive, negative, positive" combination of the first lens group, the second lens group and the third lens group, as well as the first lens, the second lens, the third lens and the fourth lens with a lower refractive index.
  • the combination of the fifth lens, the sixth lens and the seventh lens effectively improves the shortcomings of the existing technology, has better aberration correction capabilities, better processability, and achieves a large field of view, low distortion, and high optical resolution. , thereby reducing the manufacturing difficulty, manufacturing cost and product weight of the eyepiece optical system, and greatly improving the optical performance of the system and the user experience of the product.

Abstract

一种目镜光学系统及头戴显示装置,包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组(A1)、第二透镜组(A2)、第三透镜组(A3)与第四透镜组(A4),且满足一定的焦距关系,第一透镜组(A1)的有效焦距为正值,由靠近人眼侧的第一透镜(L1)与远离人眼侧的第二透镜(L2)构成,第二透镜组(A2)的有效焦距为负值,由第三透镜(L3)与第四透镜(L4)构成,第三透镜组(A3)的有效焦距为正值,由第五透镜(L5)构成,第四透镜组(A4)由第六透镜(L6)与第七透镜(L7)构成。其中,第一透镜(L1)、第二透镜(L2)与第五透镜(L5)为正透镜,第三透镜(L3)与第四透镜(L4)为负透镜,且各镜片的材料满足一定关系。目镜光学系统具有大视场、高分辨率、低畸变等优点,适用于头戴显示器及类似装置。

Description

一种目镜光学系统及头戴显示装置 技术领域
本发明涉及光学技术领域,更具体地说,涉及一种目镜光学系统及头戴显示装置。
背景技术
头戴显示装置通过光学技术,将微型图像显示器(例如透射式或反射式液晶显示屏,有机电致发光器件,DMD器件)发出的视频图像光引导到使用者的瞳孔,在使用者的近目范围实现虚拟、放大图像,为使用者提供直观、可视的图像、视频、文字信息,可以应用于户外、模拟驾驶、训练、演示、教学、培训、医疗、飞行等场景中。
随着光学技术的不断进步,头戴显示装置的目镜光学系统对高清晰度、低畸变等硬性能指标的要求也不断提升。在现有基础加工能力下,目镜光学系统需要尽可能地实现大视场角、高清晰度、低畸变等指标,同时满足上述光学性能对系统的设计和像差优化是很大挑战。
分别具有多个透镜组合构成常见的目镜光学系统,很多文献基于该结构提出各自的设计。专利文献1(中国专利公开号CN109212740A)、专利文献2(中国专利公开号CN210243956U)分别采用了五片透镜构成的光学系统,实现了较好的加工性,但上述光学系统的性能指标不佳。
专利文献3(中国专利公开号CN112731666A)公开了一种采用六片透镜构成的目镜光学系统,实现了大视场角、高像质、低畸变等性能指标,但该目镜 光学系统很大程度依赖较为复杂的菲涅尔光学面型,加工难度大。
专利文献4(中国专利公开号CN101609208A)公开了一种采用六片透镜构成的目镜光学系统,实现了大视场角的效果,但其像差矫正不佳,性能指标不佳。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种目镜光学系统及头戴显示装置。
本发明解决其技术问题所采用的技术方案是:
构造一种目镜光学系统,包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组、第三透镜组与第四透镜组,所述第一透镜组的有效焦距为F 1,F 1为正值,所述第二透镜组的有效焦距为F 2,F 2为负值,所述第三透镜组的有效焦距为F 3,F 3为正值,所述第四透镜组的有效焦距为F 4,所述目镜光学系统的有效焦距为F,F 1、F 2、F 3、F 4与F满足下列关系式(1)、(2)、(3)、(4):
0.92≤F 1/F≤1.20     (1);
-0.84≤F 2/F≤-0.49    (2);
1.01≤F 3/F≤1.44     (3);
0.90≤F 4/F≤2.88    (4);
所述第一透镜组由两片透镜构成,分别是靠近人眼侧的第一透镜与远离人眼侧的第二透镜,所述第一透镜与所述第二透镜均为正透镜;所述第二透镜组由两片透镜构成,分别是与所述第一透镜组近邻的第三透镜和远离人眼侧的第四透镜,所述第三透镜与所述第四透镜均为负透镜;所述第三透镜组由一片透 镜构成,其中所述第三透镜组包含与所述第二透镜组近邻的第五透镜,所述第五透镜为正透镜;所述第四透镜组由两片透镜构成,分别是与所述第三透镜组近邻的第六透镜与远离人眼侧的第七透镜;
所述目镜光学系统中各透镜的材料特性满足以下关系式(5)、(6):
1.63≤Nd≤2.00    (5);
20.4≤Vd≤54.90    (6);
其中,Nd为所述目镜光学系统中各透镜在d线的折射率,Vd为所述目镜光学系统中各透镜在d线的阿贝数。
进一步地,所述第一透镜为平凸形状透镜,其中所述第一透镜靠近人眼侧的光学面为平面,所述第一透镜远离人眼侧的光学面凹向人眼。
进一步地,所述第二透镜与所述第五透镜均为双凸形状透镜。
进一步地,所述第三透镜为双凹形状透镜;所述第三透镜的两个光学面均凹向人眼侧。
进一步地,所述第四透镜、所述第六透镜与所述第七透镜均为弯月形状透镜;所述第四透镜、所述第六透镜与所述第七透镜的两个光学面均凹向微型图像显示器侧。
进一步地,所述第一透镜组的有效焦距为F 1,所述第二透镜组的有效焦距为F 2,所述第三透镜组的有效焦距为F 3,所述第四透镜组的有效焦距为F 4,所述第二透镜的有效焦距为f 2,所述第三透镜的有效焦距为f 3,所述第七透镜的有效焦距为f 7,F 1、F 2、F 3、F 4、f 2、f 3和f 7满足下列关系式(7)、(8)、(9)、(10):
0.98≤F 3/F 1≤1.46     (7);
16.79≤f 2/F 1≤23.83    (8);
1.07≤f 3/F 2≤1.20     (9);
-3.51≤f 7/F 4≤0.95     (10)。
进一步地,所述第六透镜的两个光学面与所述第七透镜的两个光学面的曲率半径满足以下关系式(11)、(12)、(13):
-16.27≤R 42/R 41≤2.16    (11);
0.15≤R 43/R 41≤0.36    (12);
0.12≤R 44/R 41≤0.51    (13);
其中,R 41为所述第六透镜靠近人眼侧表面曲率半径,R 42为所述第六透镜靠近微型图像显示器侧表面曲率半径,R 43为所述第七透镜靠近人眼侧表面曲率半径,R 44为所述第七透镜靠近微型图像显示器侧表面曲率半径。
进一步地,所述第三透镜靠近人眼侧的光学面的曲率半径为R 21,所述第四透镜靠近像源侧的光学面的曲率半径为R 24,R 21和R 24满足下列关系式(14):
-0.15≤R 21/R 24≤-0.02    (14)。
进一步地,所述第一透镜组、所述第二透镜组、所述第三透镜组与所述第四透镜组中各透镜为塑胶树脂材料或玻璃材料。
进一步地,所述第一透镜远离人眼侧的光学面、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜与所述第七透镜的光学面均为偶次非球面面型,所述偶次非球面面型满足下列关系式(15):
Figure PCTCN2022098056-appb-000001
其中,z为光学面的矢高,c为非球面顶点处曲率,k为非球面系数,α为2,4,6…为各阶系数,r为曲面上点到透镜系统光轴的距离坐标。
本发明还提供一种头戴显示装置,包括微型图像显示器与目镜,所述目镜 位于人眼与所述微型图像显示器之间,所述目镜为前述中任一项所述的目镜光学系统。
进一步地,所述微型图像显示器为有机电致发光器件或透射式液晶显示器。
进一步地,所述头戴显示装置包含两个相同且对称设置的所述目镜光学系统。
本发明的有益效果在于:目镜光学系统具有结构紧凑、小尺寸、大视场、高光学分辨率等优点。该目镜的光学系统采用“正、负、正”组合的第一透镜组、第二透镜组与第三透镜组以及较低折射率的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜的结合,有效改善了现有技术的缺陷,像差矫正能力更好,加工性更好,实现了大视场角、低畸变、高光学分辨率,从而降低了目镜光学系统的制造难度、制造成本和产品重量,大大提升了系统的光学性能与产品的用户体验,观察者可以通过本发明的目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明实施例1的目镜光学系统的结构示意图;
图2是本发明实施例1的目镜光学系统的光学传递函数MTF示意图;
图3是本发明实施例1的目镜光学系统的场曲示意图;
图4是本发明实施例1的目镜光学系统的畸变示意图;
图5是本发明实施例2的目镜光学系统的结构示意图;
图6是本发明实施例2的目镜光学系统的光学传递函数MTF示意图;
图7是本发明实施例2的目镜光学系统的场曲示意图;
图8是本发明实施例2的目镜光学系统的畸变示意图;
图9是本发明实施例3的目镜光学系统的结构示意图;
图10是本发明实施例3的目镜光学系统的光学传递函数MTF示意图;
图11是本发明实施例3的目镜光学系统的场曲示意图;
图12是本发明实施例3的目镜光学系统的畸变示意图;
图13是本发明实施例4的目镜光学系统的结构示意图;
图14是本发明实施例4的目镜光学系统的光学传递函数MTF示意图;
图15是本发明实施例4的目镜光学系统的场曲示意图;
图16是本发明实施例4的目镜光学系统的畸变示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明构造一种目镜光学系统,包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组、第三透镜组与第四透镜组, 第一透镜组的有效焦距为F 1,F 1为正值,第二透镜组的有效焦距为F 2,F 2为负值,第三透镜组的有效焦距为F 3,F 3为正值,第四透镜组的有效焦距为F 4,目镜光学系统的有效焦距为F,F 1、F 2、F 3、F 4与F满足下列关系式(1)、(2)、(3)、(4):
0.92≤F 1/F≤1.20     (1);
-0.84≤F 2/F≤-0.49    (2);
1.01≤F 3/F≤1.44     (3);
0.90≤F 4/F≤2.88     (4);
其中F 1/F可取值为0.92、0.922、0.948、0.955、0.9581、0.991、1.051、1.135、1.20等等,F 2/F可取值为-0.84、-0.835、-0.795、-0.635、-0.612、-0.58、-0.541、-0.518、-0.503、-0.49等等,F 3/F可取值为1.01、1.035、1.095、1.135、1.152、1.258、1.341、1.38、1.403、1.44等等,F 4/F可取值为0.90、1.02、1.18、1.295、1.301、1.491、1.61、2.15、2.88等等。
上述关系式(1)、(2)、(3)、(4)中,F 1/F、F 2/F、F 3/F和F 4/F的取值范围对系统像差的校正、光学元件的加工难度、以及光学元件装配偏差的灵敏度密切相关,关系式(1)中F 1/F取值大于等于0.92,改善了目镜光学系统中光学元件的可加工性,其取值小于等于1.20,使系统像差得以充分校正,从而实现更加优质的光学效果。关系式(2)中F 2/F取值大于等于-0.84,使得系统像差得以充分校正,从而实现优质的光学效果,其取值小于-0.49,改善了目镜光学系统中光学元件的可加工性。关系式(3)中F 3/F取值大于等于1.01,改善了目镜光学系统中光学元件的可加工性,其取值小于等于1.44,使系统像差得以充分校正,从而实现更加优质的光学效果。关系式(4)中F 4/F取值大于等于0.90,改善了目镜光学系统中光学元件的可加工性,其取值小于等 于2.88,使系统像差得以充分校正,从而实现更加优质的光学效果。
第一透镜组由两片透镜构成,分别是靠近人眼侧的第一透镜与远离人眼侧的第二透镜,第一透镜与第二透镜均为正透镜;第二透镜组由两片透镜构成,分别是与第一透镜组近邻的第三透镜和远离人眼侧的第四透镜,第三透镜与第四透镜均为负透镜;第三透镜组由一片透镜构成,其中第三透镜组包含与第二透镜组近邻的第五透镜,第五透镜为正透镜;第四透镜组由两片透镜构成,分别是与第三透镜组近邻的第六透镜与远离人眼侧的第七透镜;
目镜光学系统中各透镜的材料特性满足以下关系式(5)、(6):
1.63≤Nd≤2.00     (5);
20.40≤Vd≤54.90    (6);
其中,Nd为目镜光学系统中各透镜在d线的折射率,Vd为目镜光学系统中各透镜在d线的阿贝数。
在上述实施例中,在上述特征的基础上,采用较低折射率的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜,与各正负透镜相结合,有效改善了现有技术的缺陷,像差矫正能力更好,加工性更好,实现了大视场角、低畸变、高光学分辨率,从而降低了所述光学系统的制造难度、制造成本和产品重量,大大提升了产品的用户体验;并通过对材料色散系数的组合,改善了光学系统的色差,提升了系统的光学性能。
上述Nd可取值为1.63、1.682、1.698、1.75、1.781、1.791、1.851、1.87、2.00等等,Vd可取值为20.40、22.682、33.698、34.75、35.781、35.791、41.851、52.87、54.90等等。
在进一步的实施例中,第一透镜为平凸形状透镜,其中第一透镜靠近人眼侧的光学面为平面,第一透镜远离人眼侧的光学面凹向人眼。
在进一步的实施例中,第二透镜与第五透镜均为双凸形状透镜。
采用平凸形状的第一透镜组合靠近人眼侧的表面凹向人眼的第二透镜,有效地减小了目镜光学系统的整体尺寸。
在进一步的实施例中,第三透镜为双凹形状透镜;第三透镜的两个光学面均凹向人眼侧。
在进一步的实施例中,第四透镜、第六透镜与第七透镜均为弯月形状透镜;第四透镜、第六透镜与第七透镜的两个光学面均凹向微型图像显示器侧。
进一步改善了系统的像散和场曲等像差,有利于目镜光学系统实现全画幅均匀像质的高分辨率光学效果。
在进一步的实施例中,第一透镜组的有效焦距为F 1,第二透镜组的有效焦距为F 2,第三透镜组的有效焦距为F 3,第四透镜组的有效焦距为F 4,第二透镜的有效焦距为f 2,第三透镜的有效焦距为f 3,第七透镜的有效焦距为f 7,F 1、F 2、F 3、F 4、f 2、f 3和f 7满足下列关系式(7)、(8)、(9)、(10):
0.98≤F 3/F 1≤1.46     (7);
16.79≤f 2/F 1≤23.83     (8);
1.07≤f 3/F 2≤1.20      (9);
-3.51≤f 7/F 4≤0.95     (10);
上述关系式(7)中F 3/F 1的取值范围对系统像差的校正、光学元件的加工难度、以及光学元件装配偏差的灵敏度密切相关,关系式(7)中F 3/F 1的取值大于等于0.98,改善了所述系统中光学元件的可加工性,其取值小于1.46,使系统像差得以充分校正,从而实现更加优质的光学效果。关系式(8)中f 2/F 1的取值大于等于16.79,用于降低第二透镜的加工造难度和对材料高折射率的要求,其取值小于等于23.83,有利于系统实现像方远心;关系式(9)中f 3/F 2 的取值大于等于1.07,用于降低第三透镜的加工造难度和对材料高折射率的要求,其取值小于等于1.20,有利于系统实现像方远心;关系式(10)中f 7/F 4的取值大于等于-3.51,用以保证系统有足够大的后焦距,有利于目镜光学系统实现大范围的视度调整,其取值小于等于0.95,使得系统像差得以充分校正,从而实现优质的光学效果,并改善了所述系统中光学元件的可加工性。
其中,F 3/F 1可取值为0.98、0.995、1.005、1.135、1.212、1.28、1.341、1.418、1.453、1.46等等,f 2/F 1可取值为16.79、17.982、18.998、19.05、19.51、20.91、21.251、22.335、23.83等等,f 3/F 2可取值为1.07、1.082、1.10、1.13、1.192、1.195、1.20等等,f 7/F 4可取值为-3.51、-3.35、-2.795、-2.635、-1.82、-1.58、-1.541、-1.18、-1.03、-0.95等等。
在进一步的实施例中,第六透镜的两个光学面与第七透镜的两个光学面的曲率半径满足以下关系式(11)、(12)、(13):
-16.27≤R 42/R 41≤2.16   (11);
0.15≤R 43/R 41≤0.36    (12);
0.12≤R 44/R 41≤0.51     (13);
其中,R 41为第六透镜靠近人眼侧表面曲率半径,R 42为第六透镜靠近微型图像显示器侧表面曲率半径,R 43为第七透镜靠近人眼侧表面曲率半径,R 44为第七透镜靠近微型图像显示器侧表面曲率半径。
在上述实施例中,R 42/R 41的取值下限条件大于等于-16.27,使第六透镜可以提供足够的负光焦度,从而可以更好地平衡校正系统像差,实现良好的光学效果,其取值小于2.16,降低了球差的校正难度,便于实现大光学孔径。R 43/R 41的取值下限条件大于等于0.15,使得第七透镜可以提供足够的正光焦度,以保证目镜光学系统可实现足够大的视场角,其取值上限条件小于等于0.36, 降低了球差的校正难度,便于实现大光学孔径。R 44/R 41的取值下限条件大于等于0.12,使得第七透镜可以提供足够的正光焦度,以保证目镜光学系统可实现足够大的视场角,其取值上限条件小于等于0.51,降低了球差的校正难度,便于实现大光学孔径。
其中,R 42/R 41可取值为-16.27、-14.082、-11.098、-4.15、-1.151、1.191、1.251、2.16等等,R 43/R 41可取值为0.15、0.182、0.20、0.213、0.292、0.31、0.36等等,R 44/R 41可取值为0.12、0.122、0.128、0.213、0.392、0.431、0.46、0.51等等。
在进一步的实施例中,第三透镜靠近人眼侧的光学面的曲率半径为R 21,第四透镜靠近像源侧的光学面的曲率半径为R 24,R 21和R 24满足下列关系式(14):
-0.15≤R 21/R 24≤-0.02     (14)。
其中,R 21/R 24可取值为-0.15、-0.121、-0.10、-0.09、-0.065、-0.051、-0.031、-0.02等等。
在上述实施例中,R 21/R 24的取值上限条件大于等于-0.15,使第三透镜可以提供足够的负光焦度,从而可以更好地平衡校正系统像差,实现良好的光学效果,其取值小于-0.02,降低了球差的校正难度,便于实现大光学孔径。
在进一步的实施例中,第一透镜组、第二透镜组、第三透镜组与第四透镜组中各透镜的光学材料为塑胶树脂材料或玻璃材料。
使得所述目镜光学系统的各级像差得到充分校正的同时,又控制了光学元件的制造成本和光学系统的重量。
在进一步的实施例中,第一透镜远离人眼侧的光学面、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜的光学面均为偶次非球面,采用偶次非球面,在加工生产上更具量产性与独特性。
偶次非球面面型满足下列关系式(15):
Figure PCTCN2022098056-appb-000002
其中,z为光学面的矢高,c为非球面顶点处曲率,k为非球面系数,α为2,4,6…为各阶系数,r为曲面上点到透镜系统光轴的距离坐标。
使所述光学系统的像差(包括球差、慧差、畸变、场曲、像散、色差和其它高阶像差)得到充分的校正,有利于所述目镜光学系统在实现大视场角、大孔径的同时,进一步提升中心视场和边缘视场的图像质量、缩小中心视场和边缘视场图像质量的差别,实现全画幅内更均匀的图像质量和低畸变。
下面通过更加具体的实施例对上述目镜光学系统的原理、方案及显示结果进行更进一步的阐述。
以下实施例中,光阑E可以为目镜光学系统成像的出瞳,为一个虚拟的出光孔径,人眼的瞳孔在光阑位置时,可以观察到最佳的成像效果。微型图像显示器I为目镜光学系统的像面。
[实施例1]
表一
Figure PCTCN2022098056-appb-000003
Figure PCTCN2022098056-appb-000004
图1为实施例1的目镜光学系统的光路结构示意图,如图所示从人眼观察侧到微型图像显示器I侧(从左至右),依次为光阑E、第一透镜组A1、第二透镜组A2、第三透镜组A3、第四透镜组A4和微型图像显示器I。其中,第一透镜组A1由第一透镜L1与第二透镜L2构成,第一透镜L1与第二透镜L2均为正透镜。第二透镜组A2由第三透镜L3与第四透镜L4构成,第三透镜L3与第四透镜L4均为负透镜。第三透镜组A3由第五透镜L5构成,第五透镜L5为正透镜。第四透镜组A4由第六透镜L6和第七透镜L7构成。第一透镜L1为平凸形状透镜,靠近人眼侧的光学面为平面,远离人眼侧的光学面凹向人眼。第二透镜L2与第五透镜L5均为双凸形状透镜。第三透镜L3为双凹形状透镜,第三透镜L3的两个光学面均凹向人眼侧。第四透镜L4、第六透镜L6与第七透镜L7均为弯月透镜,第四透镜L4、第六透镜L6与第七透镜L7的光学面均凹向微型图像显示器I侧。第一透镜L1远离人眼侧的光学面、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6与第七透镜L7的光学面均为偶次非球面。目镜光学系统的有效焦距F为18.43,第一透镜组A1的有效焦距F 1为19.05,第二透镜组A2的有效焦距F 2为-10.14,第三透镜组A3的有效焦距F 3为18.69,第四透镜组A4的有效焦距F 4为23.06,第二透镜L2的有效焦距f 2为344.75,第三透镜L3的有效焦距f 3为-11.83,第七透镜L7的有效焦距f 7为21.8。在此,以靠近光阑E侧的光学表面序号为1,依此类推(从左至右),靠近微型图像显示器I的光学表面为14。
附图2、附图3和附图4分别为本发明实施例1的目镜光学系统的光学传递函数MTF曲线图、场曲、畸变图,反映出在保证大视场的前提下,传递函数 MTF示意图在10lp处分辨率值大于0.8,从以上数据得出该光学系统有着很高的成像质量,很小的场曲和光学畸变。
[实施例2]
表二
Figure PCTCN2022098056-appb-000005
图5为实施例2的目镜光学系统的光路结构示意图,如图所示从人眼观察侧到微型图像显示器I侧(从左至右),依次为光阑E、第一透镜组A1、第二透镜组A2、第三透镜组A3、第四透镜组A4和微型图像显示器I。其中,第一透镜组A1由第一透镜L1与第二透镜L2构成,第一透镜L1与第二透镜L2均为正透镜。第二透镜组A2由第三透镜L3与第四透镜L4构成,第三透镜L3与第四透镜L4均为负透镜。第三透镜组A3由第五透镜L5构成,第五透镜L5为正透镜。第四透镜组A4由第六透镜L6和第七透镜L7构成。第一透镜L1为平凸形状透镜,靠近人眼侧的光学面为平面,远离人眼侧的光学面凹向人眼。 第二透镜L2与第五透镜L5均为双凸形状透镜。第三透镜L3为双凹形状透镜,第三透镜L3的两个光学面均凹向人眼侧。本实施例的目镜光学系统的有效焦距F为23.53,第一透镜组A1的有效焦距F 1为22.79,第二透镜组A2的有效焦距F 2为-17.58,第三透镜组A3的有效焦距F 3为30.43,第四透镜组A4的有效焦距F 4为67.83,第二透镜L2的有效焦距f 2为472.66,第三透镜L3的有效焦距f 3为-20.38,第七透镜L7的有效焦距f 7为-238.17。在此,以靠近光阑E侧的光学表面序号为1,依此类推(从左至右),靠近微型图像显示器I的光学表面为14。
附图6、附图7和附图8分别为本发明实施例2的目镜光学系统的光学传递函数MTF曲线图、场曲、畸变图,反映出在保证大视场的前提下,传递函数MTF示意图10lp处分辨率值大于0.9,从以上数据得出该光学系统有着很高的成像质量,很小的场曲和光学畸变。
[实施例3]
表三
Figure PCTCN2022098056-appb-000006
Figure PCTCN2022098056-appb-000007
图9为实施例3的目镜光学系统的光路结构示意图,如图所示从人眼观察侧到微型图像显示器I侧(从左至右),依次为光阑E、第一透镜组A1、第二透镜组A2、第三透镜组A3、第四透镜组A4和微型图像显示器I。其中,第一透镜组A1由第一透镜L1与第二透镜L2构成,第一透镜L1与第二透镜L2均为正透镜。第二透镜组A2由第三透镜L3与第四透镜L4构成,第三透镜L3与第四透镜L4均为负透镜。第三透镜组A3由第五透镜L5构成,第五透镜L5为正透镜。第四透镜组A4由第六透镜L6和第七透镜L7构成。第一透镜L1为平凸形状透镜,靠近人眼侧的光学面为平面,远离人眼侧的光学面凹向人眼。第二透镜L2与第五透镜L5均为双凸形状透镜。第三透镜L3为双凹形状透镜,第三透镜L3的两个光学面均凹向人眼侧。其中,本实施例的目镜光学系统的有效焦距F为15.88,第一透镜组A1的有效焦距F 1为14.55,第二透镜组A2的有效焦距F 2为-7.83,第三透镜组A3的有效焦距F 3为21.24,第四透镜组A4的有效焦距F 4为14.37,第二透镜L2的有效焦距f 2为346.78,第三透镜L3的有效焦距f 3为-8.36,第七透镜L7的有效焦距f 7为20.83。在此,以靠近光阑E侧的光学表面序号为1,依此类推(从左至右),靠近微型图像显示器I的光学表面为14。
附图10、附图11和附图12分别为本发明实施例3的目镜光学系统的光学传递函数MTF曲线图、场曲、畸变图,反映出在保证大视场的前提下,传递函数MTF示意图在10lp处分辨率值大于0.9,从以上数据得出该光学系统有着很高的成像质量,很小的场曲和光学畸变。
[实施例4]
表四
Figure PCTCN2022098056-appb-000008
图13为实施例4的目镜光学系统的光路结构示意图,如图所示从人眼观察侧到微型图像显示器I侧(从左至右),依次为光阑E、第一透镜组A1、第二透镜组A2、第三透镜组A3、第四透镜组A4和微型图像显示器I。其中,第一透镜组A1由第一透镜L1与第二透镜L2构成,第一透镜L1与第二透镜L2均为正透镜。第二透镜组A2由第三透镜L3与第四透镜L4构成,第三透镜L3与第四透镜L4均为负透镜。第三透镜组A3由第五透镜L5构成,第五透镜L5为正透镜。第四透镜组A4由第六透镜L6和第七透镜L7构成。第一透镜L1为平凸形状透镜,靠近人眼侧的光学面为平面,远离人眼侧的光学面凹向人眼。第二透镜L2与第五透镜L5均为双凸形状透镜。第三透镜L3为双凹形状透镜,第三透镜L3的两个光学面均凹向人眼侧。其中,本实施例的目镜光学系统的有效焦距F为14.42,第一透镜组A1的有效焦距F 1为17.26,第二透镜组A2 的有效焦距F 2为-12.06,第三透镜组A3的有效焦距F 3为20.75,第四透镜组A4的有效焦距F 4为19.51,第二透镜L2的有效焦距f 2为289.79,第三透镜L3的有效焦距f 3为-14.5,第七透镜L7的有效焦距f 7为19.41。在此,以靠近光阑E侧的光学表面序号为1,依此类推(从左至右),靠近微型图像显示器I的光学表面为14。
附图14、附图15和附图16分别为本发明实施例4的目镜光学系统的光学传递函数MTF曲线图、场曲、畸变图,反映出在保证大视场的前提下,传递函数MTF示意图在10lp处分辨率值大于0.9,从以上数据得出该光学系统有着很高的成像质量,很小的场曲和光学畸变。
上述实施例1-4的各项数据均满足发明内容中所记录的参数要求,结果如下表五、表六所示:
表五
  F 1/F F 2/F F 3/F F 4/F F 3/F 1 f 2/F 1 f 3/F 2 f 7/F 4
实施例1 1.03 -0.55 1.01 1.25 0.98 18.10 1.17 0.95
实施例2 0.97 -0.75 1.29 2.88 1.34 20.74 1.16 -3.51
实施例3 0.92 -0.49 1.34 0.90 1.46 23.83 1.07 1.45
实施例4 1.20 -0.84 1.44 1.35 1.20 16.79 1.20 0.99
表六
  R 21/R 24 R 42/R 41 R 43/R 41 R 44/R 41
实施例1 -0.07 0.87 0.15 0.20
实施例2 -0.10 -16.27 0.16 0.12
实施例3 -0.02 2.16 0.34 0.51
实施例4 -0.15 1.00 0.36 0.50
本发明还提供一种头戴显示装置,包括微型图像显示器与目镜,目镜位于人眼与微型图像显示器之间,目镜为前述中任一项的目镜光学系统。
进一步地,微型图像显示器为有机电致发光器件或透射式液晶显示器。
进一步地,头戴显示装置包含两个相同且对称设置的目镜光学系统。
具体实施应用过程中,微型图像显示器上的显示内容,通过目镜光学系统分别被观察者左右眼睛观看,形成清晰放大的视觉体验。观察者可通过头戴显示装置观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。
本实施例中,头戴显示装置的目镜光学系统具有结构紧凑、小尺寸、大视场、高光学分辨率等优点。该目镜的光学系统采用“正、负、正”组合的第一透镜组、第二透镜组与第三透镜组以及较低折射率的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜与第七透镜的结合,有效改善了现有技术的缺陷,像差矫正能力更好,加工性更好,实现了大视场角、低畸变、高光学分辨率,从而降低了目镜光学系统的制造难度、制造成本和产品重量,大大提升了系统的光学性能与产品的用户体验。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (13)

  1. 一种目镜光学系统,其特征在于:包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组、第三透镜组与第四透镜组,所述第一透镜组的有效焦距为F 1,F 1为正值,所述第二透镜组的有效焦距为F 2,F 2为负值,所述第三透镜组的有效焦距为F 3,F 3为正值,所述第四透镜组的有效焦距为F 4,所述目镜光学系统的有效焦距为F,F 1、F 2、F 3、F 4与F满足下列关系式(1)、(2)、(3)、(4):
    0.92≤F 1/F≤1.20  (1);
    -0.84≤F 2/F≤-0.49  (2);
    1.01≤F 3/F≤1.44  (3);
    0.90≤F 4/F≤2.88  (4);
    所述第一透镜组由两片透镜构成,分别是靠近人眼侧的第一透镜与远离人眼侧的第二透镜,所述第一透镜与所述第二透镜均为正透镜;所述第二透镜组由两片透镜构成,分别是与所述第一透镜组近邻的第三透镜和远离人眼侧的第四透镜,所述第三透镜与所述第四透镜均为负透镜;所述第三透镜组由一片透镜构成,其中所述第三透镜组包含与所述第二透镜组近邻的第五透镜,所述第五透镜为正透镜;所述第四透镜组由两片透镜构成,分别是与所述第三透镜组近邻的第六透镜与远离人眼侧的第七透镜;
    所述目镜光学系统中各透镜的材料特性满足以下关系式(5)、(6):
    1.63≤Nd≤2.00  (5);
    20.40≤Vd≤54.90  (6);
    其中,Nd为所述目镜光学系统中各透镜在d线的折射率,Vd为所述目镜 光学系统中各透镜在d线的阿贝数。
  2. 根据权利要求1所述的目镜光学系统,其特征在于,所述第一透镜为平凸形状透镜,其中所述第一透镜靠近人眼侧的光学面为平面,所述第一透镜远离人眼侧的光学面凹向人眼。
  3. 根据权利要求1所述的目镜光学系统,其特征在于,所述第二透镜与所述第五透镜均为双凸形状透镜。
  4. 根据权利要求1所述的目镜光学系统,其特征在于,所述第三透镜为双凹形状透镜;所述第三透镜的两个光学面均凹向人眼侧。
  5. 根据权利要求1所述的目镜光学系统,其特征在于,所述第四透镜、所述第六透镜与所述第七透镜均为弯月形状透镜;所述第四透镜、所述第六透镜与所述第七透镜的两个光学面均凹向微型图像显示器侧。
  6. 根据权利要求1所述的目镜光学系统,其特征在于,所述第一透镜组的有效焦距为F 1,所述第二透镜组的有效焦距为F 2,所述第三透镜组的有效焦距为F 3,所述第四透镜组的有效焦距为F 4,所述第二透镜的有效焦距为f 2,所述第三透镜的有效焦距为f 3,所述第七透镜的有效焦距为f 7,F 1、F 2、F 3、F 4、f 2、f 3和f 7满足下列关系式(7)、(8)、(9)、(10):
    0.98≤F 3/F 1≤1.46  (7);
    16.79≤f 2/F 1≤23.83  (8);
    1.07≤f 3/F 2≤1.20  (9);
    -3.51≤f 7/F 4≤0.95  (10)。
  7. 根据权利要求1所述的目镜光学系统,其特征在于,所述第六透镜的两个光学面与所述第七透镜的两个光学面的曲率半径满足以下关系式(11)、(12)、(13):
    -16.27≤R 42/R 41≤2.16  (11);
    0.15≤R 43/R 41≤0.36  (12);
    0.12≤R 44/R 41≤0.51  (13);
    其中,R 41为所述第六透镜靠近人眼侧表面曲率半径,R 42为所述第六透镜靠近微型图像显示器侧表面曲率半径,R 43为所述第七透镜靠近人眼侧表面曲率半径,R 44为所述第七透镜靠近微型图像显示器侧表面曲率半径。
  8. 根据权利要求1所述的目镜光学系统,其特征在于,所述第三透镜靠近人眼侧的光学面的曲率半径为R 21,所述第四透镜靠近像源侧的光学面的曲率半径为R 24,R 21和R 24满足下列关系式(14):
    -0.15≤R 21/R 24≤-0.02  (14)。
  9. 根据权利要求1所述的目镜光学系统,其特征在于,所述第一透镜组、所述第二透镜组、所述第三透镜组与所述第四透镜组中各透镜为塑胶树脂材料或玻璃材料。
  10. 根据权利要求1所述的目镜光学系统,其特征在于,所述第一透镜远离人眼侧的光学面、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜与所述第七透镜的光学面均为偶次非球面面型,所述偶次非球面面型满足下列关系式(15):
    Figure PCTCN2022098056-appb-100001
    其中,z为光学面的矢高,c为非球面顶点处曲率,k为非球面系数,α为2,4,6…为各阶系数,r为曲面上点到透镜系统光轴的距离坐标。
  11. 一种头戴显示装置,包括微型图像显示器与目镜,所述目镜位于人眼与所述微型图像显示器之间,其特征在于:所述目镜为权利要求1-10中任一 项所述的目镜光学系统。
  12. 根据权利要求11所述的头戴显示装置,其特征在于,所述微型图像显示器为有机电致发光器件或透射式液晶显示器。
  13. 根据权利要求11所述的头戴显示装置,其特征在于,所述头戴显示装置包含两个相同且对称设置的所述目镜光学系统。
PCT/CN2022/098056 2022-06-10 2022-06-10 一种目镜光学系统及头戴显示装置 WO2023236176A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098056 WO2023236176A1 (zh) 2022-06-10 2022-06-10 一种目镜光学系统及头戴显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098056 WO2023236176A1 (zh) 2022-06-10 2022-06-10 一种目镜光学系统及头戴显示装置

Publications (1)

Publication Number Publication Date
WO2023236176A1 true WO2023236176A1 (zh) 2023-12-14

Family

ID=89117294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098056 WO2023236176A1 (zh) 2022-06-10 2022-06-10 一种目镜光学系统及头戴显示装置

Country Status (1)

Country Link
WO (1) WO2023236176A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301508A (ja) * 2005-04-25 2006-11-02 Canon Inc 接眼レンズ及びそれを用いた光学機器
CN201345000Y (zh) * 2009-01-22 2009-11-11 重庆梧台科技发展有限公司 天文望远镜电子目镜镜头组
CN109358425A (zh) * 2018-11-02 2019-02-19 杭州有人光电技术有限公司 一种虚拟现实设备的全高清目镜光学系统
CN109375364A (zh) * 2018-12-26 2019-02-22 杭州有人光电技术有限公司 一种虚拟现实设备的2k目镜光学系统
CN112630978A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112630976A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301508A (ja) * 2005-04-25 2006-11-02 Canon Inc 接眼レンズ及びそれを用いた光学機器
CN201345000Y (zh) * 2009-01-22 2009-11-11 重庆梧台科技发展有限公司 天文望远镜电子目镜镜头组
CN109358425A (zh) * 2018-11-02 2019-02-19 杭州有人光电技术有限公司 一种虚拟现实设备的全高清目镜光学系统
CN109375364A (zh) * 2018-12-26 2019-02-22 杭州有人光电技术有限公司 一种虚拟现实设备的2k目镜光学系统
CN112630978A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112630976A (zh) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Similar Documents

Publication Publication Date Title
CN107683432B (zh) 大视场角的目镜光学系统及头戴显示装置
US6476974B1 (en) Projection lenses for use with reflective pixelized panels
CN108474946B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
WO2021016810A1 (zh) 一种目镜光学系统及头戴显示器
CN110426838B (zh) 一种目镜光学系统及头戴显示器
CN108604007B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
CN112630973A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934402U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630977A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN106707498A (zh) 大视场角高像质的目镜光学系统及头戴显示装置
CN112630974A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630976A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934401U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN107024766A (zh) 大视场角高像质的目镜光学系统及头戴显示装置
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934403U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112731666A (zh) 一种大视场角的目镜光学系统及头戴显示装置
US20230393383A1 (en) Diopter-adjustable eyepiece optical system and head-mounted display device
CN112764221A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630978A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630975A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
CN209044168U (zh) 一种投影镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945318

Country of ref document: EP

Kind code of ref document: A1