WO2023234735A1 - 배터리 팩 - Google Patents

배터리 팩 Download PDF

Info

Publication number
WO2023234735A1
WO2023234735A1 PCT/KR2023/007553 KR2023007553W WO2023234735A1 WO 2023234735 A1 WO2023234735 A1 WO 2023234735A1 KR 2023007553 W KR2023007553 W KR 2023007553W WO 2023234735 A1 WO2023234735 A1 WO 2023234735A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
partition wall
auxiliary partition
gas flow
wall
Prior art date
Application number
PCT/KR2023/007553
Other languages
English (en)
French (fr)
Other versions
WO2023234735A9 (ko
Inventor
양창현
신주환
이재현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230049566A external-priority patent/KR20230168123A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380013277.5A priority Critical patent/CN117897858A/zh
Publication of WO2023234735A1 publication Critical patent/WO2023234735A1/ko
Publication of WO2023234735A9 publication Critical patent/WO2023234735A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems

Definitions

  • the present invention relates to a battery pack, and more specifically, the battery pack of the present invention uses an auxiliary barrier wall interposed between cell stack assemblies and having a gas flow path formed therein to discharge high temperature gas generated from any one cell stack assembly to the outside. It is characterized by being able to block the influence of the gas on neighboring cell stack assemblies by discharging it.
  • Types of secondary batteries include lithium ion batteries, lithium polymer batteries, nickel cadmium batteries, nickel hydrogen batteries, and nickel zinc batteries.
  • the operating voltage of these unit secondary battery cells is approximately 2.5V to 4.2V. Therefore, when a higher output voltage is required, a battery pack is formed by connecting a plurality of battery cells in series. Additionally, a battery pack may be constructed by connecting multiple battery cells in parallel depending on the charge/discharge capacity required for the battery pack. Accordingly, the number of battery cells included in the battery pack can be set in various ways depending on the required output voltage or charge/discharge capacity.
  • a battery module consisting of a plurality of battery cells is first constructed, and other components are added using the plurality of battery modules to build the battery pack.
  • the configuration method is common.
  • a battery module refers to a component in which multiple secondary batteries are connected in series or parallel
  • a battery pack refers to a component in which multiple battery modules are connected in series or parallel to increase capacity and output. there is.
  • a battery pack with such a multi-battery module structure it is important for a battery pack with such a multi-battery module structure to easily release high-temperature gases generated from each battery module. If the high-temperature gas generated during the charging and discharging process is not effectively removed, heat accumulation occurs and as a result, deterioration of the battery module is accelerated, and in some cases, ignition or explosion may occur. In addition, the heat of the gas may be transferred to other normally operating battery modules, causing the entire battery module contained within the battery pack to deteriorate or explode.
  • the present invention was created to solve the above problems, and when deterioration occurs in any one of a plurality of cell stack assemblies and high temperature gas is released, the gas can be quickly discharged to the outside.
  • the purpose is to provide a battery pack that can
  • the present invention provides a battery pack that can prevent the heat of the gas from being transferred to other neighboring cell stack assemblies when deterioration occurs in any one of a plurality of cell stack assemblies and high temperature gas is released.
  • the purpose is to provide.
  • a pack case in which the cell stack assembly is seated; and an auxiliary partition wall coupled to the pack case to partition the inner space of the pack case. It includes: a lower plate supporting a lower portion of the seated cell stack assembly; and a hollow side wall coupled to the lower plate to support the side of the cell stack assembly and including a gas discharge passage therein. It provides a battery pack, wherein the auxiliary partition wall is coupled to the lower plate and the side wall of the pack case, and includes a gas flow path inside communicating with a gas discharge path of the side wall.
  • One side of the auxiliary partition wall coupled to the side wall may be open so that the gas flow path is connected to the gas discharge path of the side wall.
  • the auxiliary partition wall may include a suction hole on a side corresponding to the gas flow path.
  • At least one suction hole may be formed on a side of the auxiliary partition.
  • the pack case further includes a main partition wall extending across the center of the lower plate, and both ends of the auxiliary partition wall may be coupled to the main partition wall and the side wall, respectively.
  • the auxiliary partition wall may be disposed on the lower plate at a predetermined interval along the main partition wall.
  • the interior of the auxiliary partition wall includes a main partition wall extending along the longitudinal direction of the auxiliary partition wall to partition the gas flow path, and the partition wall is formed extending in the thickness direction of the auxiliary partition wall and partitioning the gas flow path. It may include a separation part, and the gas flow path may include a pair of first gas flow paths partitioned by the main separation part of the separation wall.
  • the separation wall may include a sub-separation part extending from the main separation part to an inner surface of the auxiliary partition wall to partition the first gas flow path in the thickness direction of the auxiliary partition wall.
  • the first gas flow path may include a plurality of second gas flow paths partitioned by sub-separation portions of the separation wall.
  • the suction hole may be formed on one side of the auxiliary partition wall to be connected to all of the plurality of second gas passages.
  • the second gas flow path may be connected to the gas discharge path of the side wall.
  • the pack case may include an exhaust hole open to the outside to allow gas to enter and exit at least one of the front and rear surfaces.
  • the gas discharge path may extend along the longitudinal direction of the side wall and be connected to the exhaust hole.
  • the cross-sectional area of the gas discharge passage may be larger than the cross-sectional area of the gas flow path.
  • the present invention even if deterioration occurs in the cell stack assembly and high temperature gas is generated, it is possible to prevent the cell stack assembly from igniting or exploding.
  • FIG. 1 is a plan view of a battery pack according to a first embodiment of the present invention.
  • Figure 2 shows a cross-section of the side wall of the battery pack according to the first embodiment of the present invention.
  • Figure 3 is a partial perspective view of a battery pack according to the first embodiment of the present invention.
  • Figure 4 is a perspective view of an auxiliary partition included in a battery pack according to the first embodiment of the present invention.
  • Figure 5 is a side view of the auxiliary partition wall of the battery pack according to the first embodiment of the present invention.
  • Figure 6 is a cross-sectional view of the auxiliary partition wall of the battery pack according to the first embodiment of the present invention.
  • Figure 7 shows the direction of movement of gas generated in the module space located adjacent to both sides of the auxiliary partition wall included in the battery pack according to the first embodiment of the present invention.
  • Figure 8 shows a partial cross-section of the auxiliary partition wall of the battery pack according to the first embodiment of the present invention.
  • Figure 9 shows a portion of the side wall included in the battery pack according to the first embodiment of the present invention.
  • Figure 10 is a simplified diagram of the connection between the auxiliary partition wall and the side wall of the battery pack according to the first embodiment of the present invention.
  • Figure 11 shows a modified example of the side wall of the battery pack according to the first embodiment of the present invention.
  • Figure 12 is a partially enlarged view of the battery pack according to the first embodiment of the present invention.
  • Figure 13 is a perspective view of an auxiliary partition included in a battery pack according to a second embodiment of the present invention.
  • Figure 14 is a partial perspective view of a battery pack to which an auxiliary partition wall of the battery pack according to the second embodiment of the present invention is applied.
  • the battery pack of the present invention accommodates a plurality of cell stack assemblies, and electrically connects the received cell stack assemblies in series and/or parallel so that the battery pack has one output.
  • the cell stack assembly includes a plurality of cells electrically connected to each other.
  • the cell stack assembly includes a cell stack including a plurality of cells stacked in one direction, a bus bar electrically connected to the electrode lead of the cell stack, and a bus bar frame coupled to the front and back of the cell stack, respectively.
  • the cell stack assembly may further include an end plate coupled to protect the bus bar frame from external impact.
  • the cell stack assembly may further include a module frame that surrounds the cell stack and is coupled to the bus bar frame or end plate to protect the side of the cell stack.
  • FIGS. 1 to 12 relate to a battery pack according to a first embodiment of the present invention
  • FIGS. 13 to 14 relate to a battery pack according to a second embodiment of the present invention.
  • Figure 1 shows a top view of the battery pack of the present invention.
  • the battery pack of the present invention includes a pack case and an auxiliary partition wall.
  • the pack case provides a space in which the cell stack assembly is seated and includes a lower plate and side walls.
  • the lower plate corresponds to the bottom of the battery pack and serves to support the lower part of the cell stack assembly accommodated in the battery pack.
  • the side wall serves to support the side of the cell stack assembly located on the lower plate. Specifically, the side wall extends along the edge of the lower plate and is coupled to an end of the lower plate.
  • the side wall has a hollow structure including a gas discharge passage therein.
  • FIG. 2 shows a cross-section of a portion of the side wall included in the battery pack of FIG. 1.
  • the side wall is empty and includes a gas discharge path through which gas can move.
  • the pack case may further include a main partition extending across the center of the lower plate.
  • the main partition wall divides the space in which the cell stack assembly is accommodated in half.
  • the auxiliary partition wall is coupled to the pack case to partition the internal space of the pack case.
  • the auxiliary partition wall specifically partitions the inner space of the pack case and is coupled to the lower plate. Accordingly, each cell stack assembly is separately seated in the space partitioned by the auxiliary partition wall.
  • the auxiliary partition serves to separate each cell stack assembly and also supports each cell stack assembly through both sides.
  • the auxiliary partition wall is coupled to the lower plate and side wall of the pack case.
  • both ends are coupled to side walls provided at opposing positions.
  • both ends are coupled to the main partition wall and the side wall, respectively.
  • Two adjacent cell stack assemblies are separated from each other by the auxiliary partition wall and are accommodated in the battery pack.
  • the auxiliary partition walls are disposed on the lower plate to be spaced apart at a predetermined distance along the main partition wall, and the distance between the pair of spaced auxiliary partition walls is equal to or longer than the width of the cell stack assembly. desirable.
  • the battery pack of the present invention is finally partitioned by the combination of the pack case and the auxiliary partition wall, and includes a plurality of module spaces partitioned by the main partition wall, the side wall, and the auxiliary partition wall of the pack case.
  • FIG 3 is a partial perspective view of the battery pack of Figure 1.
  • the module space is formed surrounded by a main partition, a side wall, and an auxiliary partition.
  • the plurality of cell stack assemblies may be separated from each other by receiving one cell stack assembly in each module space.
  • the auxiliary partition wall of the present invention includes a gas flow path internally communicating with the gas discharge path of the side wall.
  • FIG. 4 is a perspective view of an auxiliary partition included in a battery pack according to the first embodiment of the present invention
  • FIG. 5 is a side view of the auxiliary partition of FIG. 4
  • FIG. 6 is a cross-sectional view of the auxiliary partition of FIG. 4.
  • the auxiliary partition wall has a hollow structure including a gas flow path therein, as shown.
  • a side of the auxiliary partition wall includes a suction hole formed through the side wall of the auxiliary partition wall to connect the gas flow path to the module space adjacent to the auxiliary partition wall. That is, the auxiliary partition wall includes a suction hole on the side corresponding to the internal gas flow path.
  • the module space and a gas flow path of an auxiliary partition adjacent to the module space may be connected by the suction hole, and when gas is generated from the cell stack assembly accommodated in the module space, the gas is discharged into the gas flow path through the suction hole. may flow into.
  • a plurality of suction holes may be formed on one side of the auxiliary partition wall.
  • suction holes are preferably formed on both sides of the auxiliary partition wall.
  • Figure 7 shows the direction of movement of gas generated in the module space located adjacent to both sides of the auxiliary partition wall. Since each module space is sealed except for the suction hole, if gas is generated from the cell stack assembly accommodated in the module space, the gas released from the cell stack assembly will travel to an adjacent auxiliary space like the gas movement path shown in FIG. 7. It flows into the suction hole of the partition wall and moves.
  • the gas flow path included in the auxiliary partition wall is connected to different module spaces through suction holes formed on both sides of the auxiliary partition wall.
  • the interior of the auxiliary partition wall includes a separation wall extending along the longitudinal direction of the auxiliary partition wall to partition the gas flow path, as shown in FIGS. 4 and 6.
  • the separation wall includes one main separation part and a plurality of sub separation parts.
  • the main separator extends in the thickness direction of the auxiliary partition, so that the gas flow path is divided into two sides centered on the main separator.
  • the gas flow path includes a pair of first gas flow paths partitioned by the main separation part of the separation wall.
  • the sub-separator includes a sub-separator extending from the main separator to an inner surface of the auxiliary partition wall to partition the first gas flow path in the thickness direction of the auxiliary partition wall.
  • the sub-separator may be formed on both sides of the main separator, and it is preferable that at least one sub-separator is included on one side of the main separator.
  • the first gas flow path includes a plurality of second gas flow paths partitioned by sub-separation portions of the separation wall.
  • the gas flow path inside the auxiliary partition of the present invention can be divided into a pair of first gas flow paths by the main separation part of the dividing wall, and the divided first gas flow flow path is divided by the sub-separating part of the dividing wall. It can again be divided into a plurality of second gas flow paths.
  • a plurality of second gas flow paths formed on one side of the main separator are preferably connected to the same suction hole.
  • Figure 8 shows a partial cross-section of the auxiliary partition of Figure 5.
  • a plurality of second gas flow paths are connected to one suction hole. That is, the gas generated in the module space flows into the inside of the auxiliary partition wall through the suction hole of the auxiliary partition wall adjacent to the module space, and the introduced gas flows through a plurality of second gas flow paths formed by the separation wall inside the auxiliary partition wall. are moved simultaneously through However, the introduced gas cannot flow into the gas flow path located on the opposite side due to the main separator as shown, and is not transmitted to the adjacent module space.
  • one side of the auxiliary partition wall coupled to the side wall is open so that the gas flow path is connected to the gas discharge path of the side wall.
  • Figure 9 shows a portion of the side wall excluding the auxiliary partition wall configuration. According to FIG. 9, an insertion hole into which an auxiliary partition wall is inserted is formed on the inner surface of the side wall.
  • the auxiliary partition wall is coupled to the side wall so that an opening on the side is inserted into an insertion hole of the side wall. That is, the opening on the side of the auxiliary partition is inserted into the insertion hole of the side wall so that the gas flow path is connected to the gas discharge path of the side wall.
  • FIG 10 is a simplified illustration of the connection between the auxiliary partition and the side wall, in which a plurality of auxiliary partition walls are connected to one side wall. At this time, each auxiliary partition is coupled to the side wall so that the gas flow path is connected to the gas discharge path of the side wall.
  • the gas generated in the module space moves through the gas flow path of the auxiliary partition wall, then flows into the gas discharge path of the side wall connected to the auxiliary partition wall and moves along the side wall. .
  • the cross-sectional size of the gas discharge path of the side wall is preferably larger than that of the gas flow path of the auxiliary partition wall so that gas generated in the module space and moving through the gas flow path can move more smoothly to the gas discharge path. That is, the gas moving within the gas flow path can move smoothly toward the gas discharge path where the space volume is larger than the gas flow path and the pressure is lower.
  • the spatial volume of the gas discharge passage is larger than the spatial volume of the second gas passage inside the auxiliary partition wall. Therefore, the gas that moves through the second gas flow path and flows into the gas discharge path may not flow back into the second gas flow path.
  • Figure 11 shows a modified example of the side wall.
  • the side wall includes an auxiliary suction hole open on an inner side facing the module space.
  • the auxiliary suction hole connects the gas discharge path inside the side wall and the module space to directly introduce gas generated in the module space into the gas discharge path.
  • the battery pack of the present invention includes an exhaust hole connected to the gas discharge path of the side wall and open to the outside. That is, the gas discharge path extends along the longitudinal direction of the side wall and is open to the outside through at least one of the front and rear surfaces of the pack case.
  • Figure 12 is a partially enlarged view of the battery pack according to the first embodiment of the present invention.
  • gas moving along the gas flow path of the auxiliary partition wall and the gas discharge path of the side wall is discharged to the outside of the battery pack through the exhaust hole. Therefore, the gas generated in the module space, moves through the gas flow path, and flows into the gas discharge path may move along the gas discharge path and then be discharged to the outside of the battery pack through the exhaust hole.
  • Figure 13 is a perspective view of an auxiliary partition included in a battery pack according to a second embodiment of the present invention.
  • the suction hole may be formed to extend long along the longitudinal direction of the auxiliary partition wall, as shown in FIG. 13. That is, the suction hole extends along the longitudinal direction of the auxiliary partition wall, so that the entire second gas flow path is wide open to the module space.
  • FIG. 14 is a partial perspective view of a battery pack to which the auxiliary partition of FIG. 13 is applied.
  • high-temperature gas generated in the module space can flow into the gas flow path of the auxiliary partition wall and move through the suction hole extending long along the auxiliary partition wall in a shorter time than in the first embodiment.

Abstract

본 발명은 배터리 팩에 관한 것이다. 보다 구체적으로 복수의 셀을 포함하는 셀 스택 조립체를 수용하는 본 발명의 배터리 팩은, 셀 스택 조립체가 안착되는 팩 케이스; 를 포함하고, 상기 팩 케이스는, 상기 안착된 셀 스택 조립체의 하부를 지지하는 하판; 상기 셀 스택 조립체의 측부를 지지하도록 상기 하판에 결합되고, 내부에 가스 배출로를 포함하는 중공 구조의 측벽; 및 상기 팩 케이스 내부 공간을 구획하도록 상기 하판 및 측벽에 결합되는 보조 격벽; 을 포함하고, 상기 보조 격벽은 내부에 상기 측벽의 가스 배출로와 연통되는 가스 유로를 포함하는 것을 특징으로 한다.

Description

배터리 팩
본 발명은 배터리 팩에 관한 것으로, 보다 구체적으로 본 발명의 배터리 팩은 셀 스택 조립체 사이에 개재되고 내부에 가스 유로가 형성된 보조 격벽을 이용하여 어느 하나의 셀 스택 조립체에서 발생한 고온의 가스를 외부로 배출시켜 이웃한 셀 스택 조립체로 상기 가스의 영향을 차단할 수 있는 것을 특징으로 한다.
본 출원은 2022.06.03일자 대한민국 특허 출원 제10-2022-0068268호 및 2023.04.14일자 대한민국 특허 출원 제10-2023-0049566호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
이차전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차전지 셀, 즉, 단위 배터리 셀의 작동 전압은 약 2.5V ~ 4.2V 이다. 따라서, 이보다 더 높은 출력 전압 이 요구될 경우, 복수 개의 배터리 셀을 직렬로 연결하여 배터리 팩을 구성하기도 한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리 셀을 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 상기 배터리 팩에 포함되는 배터 리 셀의 개수는 요구되는 출력 전압 또는 충방전 용량에 따라 다양하게 설정될 수 있다.
예컨대, 복수 개의 배터리 셀을 직렬/병렬로 연결하여 배터리 팩을 구성할 경우, 복수 개의 배터리 셀로 이루어지는 배터리 모듈을 먼저 구성하고, 이러한 복 수 개의 배터리 모듈을 이용하여 기타 구성요소를 추가하여 배터리 팩을 구성하는 방법이 일반적이다. 즉, 배터리 모듈은 다수의 이차 전지가 직렬 내지 병렬로 연결 된 구성요소를 의미하고, 배터리 팩은 용량 및 출력 등을 높이기 위해 다수의 배터 리 모듈이 직렬 내지 병렬로 연결된 구성요소를 의미한다고 할 수 있다.
한편, 이러한 멀티 배터리 모듈 구조의 배터리 팩은 각 배터리 모듈에서 발생되는 고온의 가스를 용이하게 방출하는 것이 중요하다. 충방전 과정에서 발생한 고온의 가스가 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 배터리 모듈의 열화가 촉진되고, 경우에 따라서는 발화 또는 폭발이 일어날 수 있다. 또 한, 정상적으로 작동하는 타 배터리 모듈로 상기 가스의 열이 전달되어 배터리 팩 내부에 수용된 전체 배터리 모듈이 열화되거나 폭발하는 문제가 생길 수 있다.
[선행기술문헌]
한국공개특허 제10-2018-0112617호
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 복수의 셀 스택 조립체 중 어느 하나의 셀 스택 조립체에서 열화가 발생하여 고온의 가스가 방출될 시, 상기 가스를 신속히 외부로 배출할 수 있는 배터리 팩을 제공하는 것을 목적으로 한다.
또한 본 발명은 복수의 셀 스택 조립체 중 어느 하나의 셀 스택 조립체에서 열화가 발생하여 고온의 가스가 방출될 시, 이웃한 타 셀 스택 조립체로 상기 가스의 열이 전달되는 것을 방지할 수 있는 배터리 팩을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 의하면, 셀 스택 조립체가 안착되는 팩 케이스; 및 상기 팩 케이스 내부 공간을 구획하도록 상기 팩 케이스와 결합되는 보조 격벽; 을 포함하고, 상기 팩 케이스는, 상기 안착된 셀 스택 조립체의 하부를 지지하는 하판; 및 상기 셀 스택 조립체의 측부를 지지하도록 상기 하판에 결합되고, 내부에 가스 배출로를 포함하는 중공 구조의 측벽; 을 포함하고, 상기 보조 격벽은 상기 팩 케이스의 하판 및 측벽에 결합되고, 내부에 상기 측벽의 가스 배출로와 연통되는 가스 유로를 포함하는 것을 특징으로 하는 배터리 팩을 제공한다.
상기 보조 격벽은 상기 가스 유로가 상기 측벽의 가스 배출로와 연결되도록 상기 측벽과 결합되는 일면이 개방될 수 있다.
상기 보조 격벽은 상기 가스 유로와 대응되는 측면에 흡입홀을 포함할 수 있다.
상기 흡입홀은 상기 보조 격벽의 측면에 적어도 하나 이상 형성될 수 있다.
상기 팩 케이스는 상기 하판의 중심부를 가로지르도록 연장 형성되는 메인 격벽을 더 포함하고, 상기 보조 격벽은 양단이 각각 상기 메인 격벽 및 측벽과 결합될 수 있다.
상기 보조 격벽은 상기 메인 격벽을 따라 소정 간격 이격 되도록 상기 하판 상에 배치될 수 있다.
상기 보조 격벽의 내부에는 상기 보조 격벽의 길이 방향을 따라 연장 형성되어 상기 가스 유로를 구획하는 분리벽을 포함하고, 상기 분리벽은 상기 보조 격벽의 두께 방향으로 연장 형성되고 상기 가스 유로를 구획하는 메인 분리부를 포함하고, 상기 가스 유로는 상기 분리벽의 메인 분리부에 의해 구획되어 형성된 한 쌍의 제1 가스 유로를 포함할 수 있다.
상기 분리벽은 상기 메인 분리부로부터 상기 보조 격벽의 안측면까지 연장 형성되어 상기 제1 가스 유로를 상기 보조 격벽의 두께 방향으로 구획하는 서브 분리부를 포함할 수 있다.
상기 제1 가스 유로는 상기 분리벽의 서브 분리부에 의해 구획되어 형성된 복수의 제2 가스 유로를 포함할 수 있다.
상기 흡입홀은 상기 복수의 제2 가스 유로와 모두 연결되도록 상기 보조 격벽의 일측에 형성될 수 있다.
상기 제2 가스 유로는 상기 측벽의 가스 배출로와 연결될 수 있다.
상기 팩 케이스는 전후면 중 적어도 어느 일면에 가스의 출입이 가능하도록 외부로 개방된 배기홀을 포함할 수 있다.
상기 가스 배출로는 상기 측벽의 길이 방향을 따라 연장 형성되어 상기 배기홀과 연결될 수 있다.
상기 가스 배출로의 단면적 크기는 상기 가스 유로의 단면적 크기 보다 클 수 있다.
본 발명에 의하면, 셀 스택 조립체에서 열화가 발생하고, 고온의 가스가 발생하더라도 셀 스택 조립체가 발화되거나 폭발되는 것을 방지할 수 있다.
또한 본 발명에 의하면, 셀 스택 조립체에서 발생한 고온의 가스가 이웃한 타 셀 스택 조립체로 전달되어 열이 전이되는 현상을 방지할 수 있다.
도 1은 본 발명의 제1 실시형태에 따른 배터리 팩의 평면도이다.
도 2는 본 발명의 제1 실시형태에 따른 배터리 팩의 측벽 단면을 나타낸 것 이다.
도 3은 본 발명의 제1 실시형태에 따른 배터리 팩의 부분 사시도이다.
도 4는 본 발명의 제1 실시형태에 따른 배터리 팩에 포함되는 보조 격벽의 사시도이다.
도 5는 본 발명의 제1 실시형태에 따른 배터리 팩의 보조 격벽의 측면도이 29-5 다.
도 6은 본 발명의 제1 실시형태에 따른 배터리 팩의 보조 격벽의 단면도이 다.
도 7은 본 발명의 제1 실시형태에 따른 배터리 팩에 포함된 보조 격벽 양측 에 인접하여 위치한 모듈 공간에서 발생한 가스의 이동 방향을 나타낸 것이다.
도 8은 본 발명의 제1 실시형태에 따른 배터리 팩의 보조 격벽의 부분 단면을 나타낸 것이다.
도 9는 본 발명의 제1 실시형태에 따른 배터리 팩에 포함된 측벽 일부를 나 타낸 것이다.
도 10은 본 발명의 제1 실시형태에 따른 배터리 팩의 보조 격벽 및 측벽의 연결을 단순화시켜 나타낸 것이다.
도 11은 본 발명의 제1 실시형태에 따른 배터리 팩의 측벽의 변형예를 나타 낸 것이다.
도 12는 본 발명의 제1 실시형태에 따른 배터리 팩의 부분 확대도이다.
도 13은 본 발명의 제2 실시형태에 따른 배터리 팩에 포함되는 보조 격벽의 사시도이다.
도 14는 본 발명의 제2 실시형태에 따른 배터리 팩의 보조 격벽이 적용된 배 터리 팩의 부분 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각 하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이 고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양 한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시형태는 통상의 기술자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이므로 도면에 서의 구성요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 따라서, 각 구성요소의 크기나 비율은 실제적인 크기나 비율을 전적으로 반영하는 것은 아니다.
본 발명의 배터리 팩은 복수의 셀 스택 조립체를 수용하고, 상기 배터리 팩이 하나의 출력을 갖도록 수용된 셀 스택 조립체 간 전기적으로 직렬 및/또는 병렬 연결시킨다.
상기 셀 스택 조립체는 서로 전기적으로 연결된 복수의 셀을 포함한다. 구체적으로 상기 셀 스택 조립체는 일방향으로 적층된 복수의 셀을 포함하는 셀 스택 및 상기 셀 스택의 전극 리드와 전기적으로 연결되는 버스바가 구비되고, 상기 셀 스택의 전후면에 각각 결합되는 버스바 프레임을 포함한다.
필요에 따라 상기 셀 스택 조립체는 상기 버스바 프레임을 외부 충격으로부터 보호하도록 결합되는 엔드 플레이트를 더 포함할 수 있다.
또한 상기 셀 스택 조립체는 상기 셀 스택의 측부를 보호하도록 상기 셀 스택의 둘레를 둘러 감싸고 상기 버스바 프레임 또는 엔드 플레이트와 결합되는 모듈 프레임을 더 포함할 수 있다.
도 1 내지 도 12는 본 발명의 제1 실시형태에 따른 배터리 팩에 관한 것이고, 도 13 내지 도 14는 본 발명의 제2 실시형태에 따른 배터리 팩에 관한 것이다.
이하, 상기 도면들을 참조하여 각 실시형태별로 본 발명의 배터리 팩을 설명한다.
(제1 실시형태)
도 1은 본 발명의 배터리 팩의 평면도를 나타낸 것이다.
상기 도 1에 따르면, 본 발명의 배터리 팩은 팩 케이스와 보조 격벽을 포함한다.
상기 팩 케이스는 셀 스택 조립체가 안착되는 공간을 제공하며, 하판 및 측벽을 포함한다.
상기 하판은 배터리 팩의 바닥에 해당하며, 상기 배터리 팩에 수용되는 셀 스택 조립체의 하부를 지지하는 역할을 한다.
상기 측벽은 상기 하판 상에 위치한 셀 스택 조립체의 측부를 지지하는 역할을 한다. 구체적으로 상기 측벽은 상기 하판의 테두리를 따라 연장되어 상기 하판의 단부에 결합된다.
상기 측벽은 내부에 가스 배출로를 포함하는 중공 구조를 갖는다.
도 2는 상기 도 1의 배터리 팩에 포함된 측벽 일부의 단면을 나타낸 것이다.
상기 측벽은 상기 도 2에 도시된 것처럼 내부가 비어서 가스가 이동할 수 있는 가스 배출로를 포함한다.
상기 팩 케이스는 상기 하판의 중심부를 가로지르도록 연장 형성되는 메인 격벽을 더 포함할 수 있다.
상기 메인 격벽은 셀 스택 조립체가 수용되는 공간을 반으로 구획한다.
상기 보조 격벽은 상기 팩 케이스 내부 공간을 구획하도록 상기 팩 케이스와 결합된다.
상기 보조 격벽은 구체적으로 상기 팩 케이스 내부 공간을 구획하며 상기 하판과 결합된다. 따라서, 각 셀 스택 조립체는 상기 보조 격벽에 의해 구획된 공간에 분리되어 안착 된다.
상기 보조 격벽은 각 셀 스택 조립체를 분리시키는 역할을 하며, 또한 양측면을 통해 각 셀 스택 조립체를 지지하는 역할을 한다.
상기 보조 격벽은 상기 팩 케이스의 하판 및 측벽에 결합된다.
상기 보조 격벽은 메인 격벽이 적용되지 않을 경우, 양단이 각각 서로 대향되는 위치에 구비된 측벽에 결합된다. 또한, 상기 보조 격벽은 메인 격벽이 적용될 경우, 양단이 각각 메인 격벽 및 측벽과 결합된다.
이웃한 두 개의 셀 스택 조립체는 상기 보조 격벽에 의해 서로 단절되어 배터리 팩에 수용된다.
상기 보조 격벽은 도 1에 도시된 것처럼 상기 메인 격벽을 따라 소정 간격 이격되도록 상기 하판 상에 배치되고, 상기 이격되어 있는 한 쌍의 보조 격벽의 간격은 셀 스택 조립체의 폭 길이와 동일하거나 보다 긴 것이 바람직하다.
본 발명의 배터리 팩은 상기 팩 케이스 및 보조 격벽의 결합에 의해 최종 구획되고, 상기 팩 케이스의 메인 격벽, 측벽 및 보조 격벽에 의해 구획된 복수의 모듈 공간을 포함한다.
도 3은 상기 도 1의 배터리 팩의 부분 사시도이다.
상기 도 3에 따르면, 상기 모듈 공간이 메인 격벽, 측벽 및 보조 격벽에 둘러싸여 형성되어 있다.
복수의 셀 스택 조립체는 상기 각 모듈 공간에 셀 스택 조립체가 하나씩 수용되어 서로 분리될 수 있다.
본 발명의 보조 격벽은 내부에 상기 측벽의 가스 배출로와 연통되는 가스 유로를 포함한다.
도 4는 본 발명의 제1 실시형태에 따른 배터리 팩에 포함되는 보조 격벽의 사시도이고, 도 5는 상기 도 4의 보조 격벽의 측면도이고, 도 6은 상기 도 4의 보조 격벽의 단면도이다.
상기 보조 격벽은 도시된 것처럼 내부에 가스 유로를 포함하는 중공 구조를 갖는다.
상기 보조 격벽의 측면에는 상기 가스 유로와 상기 보조 격벽에 인접한 모듈 공간이 연결되도록 상기 보조 격벽의 측벽을 관통하여 형성된 흡입홀이 포함된다. 즉, 상기 보조 격벽은 내부의 가스 유로와 대응되는 측면에 흡입홀을 포함한다.
상기 흡입홀에 의해서 상기 모듈 공간과 상기 모듈 공간에 이웃한 보조 격벽의 가스 유로가 연결될 수 있으며, 상기 모듈 공간에 수용된 셀 스택 조립체에서 가스가 발생할 시, 상기 가스는 상기 흡입홀을 통해 상기 가스 유로로 유입될 수 있다.
상기 흡입홀은 상기 보조 격벽의 일측면에 복수로 형성될 수 있다.
또한 상기 흡입홀은 바람직하게 상기 보조 격벽의 양측면에 각각 형성된다.
도 7은 보조 격벽의 양측에 인접하여 위치한 모듈 공간에서 발생한 가스의 이동 방향을 나타낸 것이다. 각 모듈 공간은 상기 흡입홀을 제외하고 밀폐된 상태이기 때문에 상기 모듈 공간에 수용된 셀 스택 조립체에서 가스가 발생한다면, 상기 셀 스택 조립체에서 방출된 가스는 상기 도 7에 도시된 가스 이동 경로처럼 인접한 보조 격벽의 흡입홀로 유입되어 이동한다.
상기 보조 격벽에 포함된 가스 유로는 상기 보조 격벽의 양측면에 형성된 흡입홀을 통해 각기 다른 모듈 공간과 연결된다.
상기 보조 격벽의 내부에는 도 4 및 도 6에 도시된 것처럼 상기 보조 격벽의 길이 방향을 따라 연장 형성되어 상기 가스 유로를 구획하는 분리벽을 포함한다.
상기 분리벽은 하나의 메인 분리부와 복수의 서브 분리부를 포함한다.
구체적으로, 상기 메인 분리부는 상기 보조 격벽의 두께 방향으로 연장 형성되어, 상기 가스 유로가 상기 메인 분리부를 중심으로 양측으로 나눠지도록 한다.
상기 가스 유로는 상기 분리벽의 메인 분리부에 의해 구획되어 형성된 한 쌍의 제1 가스 유로를 포함한다.
따라서, 어느 하나의 모듈 공간에서 발생된 가스가 상기 보조 격벽의 제1 가스 유로로 유입되더라도 상기 분리벽의 메인 분리부에 의해 가로 막혀서 이웃한 모듈 공간으로 역류되지 않는다.
상기 서브 분리부는 상기 메인 분리부로부터 상기 보조 격벽의 안측면까지 연장 형성되어 상기 제1 가스 유로를 상기 보조 격벽의 두께 방향으로 구획하는 서브 분리부를 포함한다.
상기 서브 분리부는 상기 메인 분리부의 양측에 각각 형성될 수 있으며, 상기 메인 분리부의 일측에 적어도 하나 이상 포함되는 것이 바람직하다.
상기 제1 가스 유로는 상기 분리벽의 서브 분리부에 의해 구획되어 형성된 복수의 제2 가스 유로를 포함한다.
즉, 본 발명의 보조 격벽 내부의 가스 유로는 상기 분리벽의 메인 분리부에 의해 한 쌍의 제1 가스 유로로 나눠질 수 있고, 상기 나눠진 제1 가스 유로는 상기 분리벽의 서브 분리부에 의해 다시 복수의 제2 가스 유로로 나눠질 수 있다.
상기 메인 분리부의 일측에 형성된 복수의 제2 가스 유로는 바람직하게 동일한 흡입홀과 연결된다.
도 8은 상기 도 5의 보조 격벽의 부분 단면을 나타낸 것이다.
상기 도 8에서 흡입홀이 형성된 부분의 보조 격벽 단면을 참조하면, 복수의 제2 가스 유로가 하나의 흡입홀과 연결되어 있다. 즉, 모듈 공간에서 발생된 가스는 상기 모듈 공간에 인접한 보조 격벽의 흡입홀을 통해 상기 보조 격벽 내부로 유입되고, 상기 유입된 가스는 보조 격벽 내부의 분리벽에 의해 형성된 복수의 제2 가스 유로를 통해 동시에 이동된다. 다만, 상기 유입된 가스는 도시된 것처럼 메인 분리부에 의해 반대편에 위치한 가스 유로로 유입되지 못하고, 더불어 이웃한 모듈 공간으로 전달되지 못한다.
상기 보조 격벽은 도 4에 도시된 것처럼 가스 유로가 상기 측벽의 가스 배출로와 연결되도록 상기 측벽과 결합되는 일면이 개방되어 있다.
도 9는 보조 격벽 구성을 배제한 측벽 일부를 나타낸 것이다. 상기 도 9에 따르면 상기 측벽의 안측면에 보조 격벽이 삽입되는 삽입홀이 형성되어 있다.
상기 보조 격벽은 상기 측면의 개방부가 상기 측벽의 삽입홀로 삽입되도록 상기 측벽과 결합된다. 즉, 상기 보조 격벽은 가스 유로가 상기 측벽의 가스 배출로와 연결되도록 상기 측면의 개방부가 상기 측벽의 삽입홀에 삽입된다.
도 10은 보조 격벽 및 측벽의 연결을 단순화시켜 나타낸 것으로, 하나의 측벽에 복수의 보조 격벽이 연결되어 있다. 이때, 각 보조 격벽은 가스 유로가 상기 측벽의 가스 배출로와 연결되도록 상기 측벽에 결합된다.
상기 도 10의 가스 이동 경로를 참조하면, 모듈 공간에서 발생한 가스가 보조 격벽의 가스 유로를 통해 이동한 후, 상기 보조 격벽과 결합되어 있는 상기 측벽의 가스 배출로로 유입되어 상기 측벽을 따라 이동된다.
상기 측벽의 가스 배출로의 단면적 크기는, 모듈 공간에서 발생하여 상기 가스 유로를 이동하는 가스가 상기 가스 배출로로 보다 원활히 이동할 수 있도록 상기 보조 격벽의 가스 유로의 단면적 크기보다 큰 것이 바람직하다. 즉, 가스 유로 내에 이동되는 가스는 공간 부피가 상기 가스 유로 보다 크고 압력이 적은 가스 배출로를 향해 원활히 이동할 수 있다.
상기 가스 배출로의 공간 부피는 상기 보조 격벽 내부의 제2 가스 유로의 공간 부피 보다 크다. 따라서 상기 제2 가스 유로를 이동하여 가스 배출로로 유입된 가스는 제2 가스 유로로 다시 역류하지 못할 수 있다.
도 11은 상기 측벽의 변형예를 나타낸 것이다.
상기 도 11에 따르면, 상기 측벽은 상기 모듈 공간을 향한 안쪽 측면에 개방된 보조 흡입홀을 포함한다.
상기 보조 흡입홀은 상기 측벽 내부의 가스 배출로와 상기 모듈 공간 사이를 연결하여 상기 모듈 공간에서 발생한 가스를 상기 가스 배출로로 직접적으로 유입시킨다.
본 발명의 배터리 팩은 상기 측벽의 가스 배출로와 연결되어 외부로 개방된 배기홀을 포함한다. 즉, 상기 가스 배출로는 상기 측벽의 길이 방향을 따라 연장 형성되고, 상기 팩 케이스의 전후면 중 적어도 어느 일면을 통해 외부로 개방된다.
도 12는 본 발명의 제1 실시형태에 따른 배터리 팩의 부분 확대도이다.
상기 도 12에 도시된 가스 이동 경로에 따르면, 보조 격벽의 가스 유로 및 측벽의 가스 배출로를 따라 이동된 가스가 배기홀을 통해 배터리 팩의 외부로 방출된다. 따라서, 모듈 공간에서 발생하여 가스 유로를 이동하여 상기 가스 배출로로 유입된 가스는 상기 가스 배출로를 따라 이동한 후, 상기 배기홀을 통해 배터리 팩 외부로 방출될 수 있다.
(제2 실시형태)
도 13은 본 발명의 제2 실시형태에 따른 배터리 팩에 포함되는 보조 격벽의 사시도이다.
상기 흡입홀은 도 13에 도시된 것처럼 보조 격벽의 길이 방향을 따라 길게 연장 형성될 수 있다. 즉, 상기 흡입홀은 상기 보조 격벽의 길이 방향을 따라 연장 형성되어, 제2 가스 유로가 전부 모듈 공간에 대해 넓게 개방되도록 한다.
도 14는 상기 도 13의 보조 격벽이 적용된 배터리 팩의 부분 사시도이다.
상기 도 13 및 도 14에서 상기 보조 격벽을 따라 길게 연장되어 형성된 흡입홀에 의해 모듈 공간에서 발생한 고온의 가스가 제1 실시형태 보다 짧은 시간 내에 상기 보조 격벽의 가스 유로로 유입되어 이동할 수 있다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
[부호의 설명]
1000: 배터리 팩
110: 하판
120: 메인 격벽
130: 측벽
131: 가스 배출로
132: 삽입홀
133: 보조 흡입홀
200: 보조 격벽
210: 흡입홀
220: 분리벽
220a: 메인 분리부
220b: 서브 분리부
230: 가스 유로
230a: 제1 가스 유로
230a1: 제2 가스 유로
300: 모듈 공간
400: 배기홀
Gpth: 가스 이동 경로

Claims (14)

  1. 복수의 셀을 포함하는 셀 스택 조립체를 수용하는 배터리 팩으로서,
    셀 스택 조립체가 안착되는 팩 케이스; 및
    상기 팩 케이스 내부 공간을 구획하도록 상기 팩 케이스와 결합되는 보조 격벽; 을 포함하고,
    상기 팩 케이스는,
    상기 안착된 셀 스택 조립체의 하부를 지지하는 하판; 및
    상기 셀 스택 조립체의 측부를 지지하도록 상기 하판에 결합되고, 내부에 가스 배출로를 포함하는 중공 구조의 측벽; 을 포함하고,
    상기 보조 격벽은 상기 팩 케이스의 하판 및 측벽에 결합되고, 내부에 상기 측벽의 가스 배출로와 연통되는 가스 유로를 포함하는 것을 특징으로 하는 배터리 팩.
  2. 제1항에 있어서,
    상기 보조 격벽은 상기 가스 유로가 상기 측벽의 가스 배출로와 연결되도록 상기 측벽과 결합되는 일면이 개방된 배터리 팩.
  3. 제1항에 있어서,
    상기 보조 격벽은 상기 가스 유로와 대응되는 측면에 흡입홀을 포함하는 배터리 팩.
  4. 제3항에 있어서,
    상기 흡입홀은 상기 보조 격벽의 측면에 적어도 하나 이상 형성되는 배터리 팩.
  5. 제1항에 있어서,
    상기 팩 케이스는 상기 하판의 중심부를 가로지르도록 연장 형성되는 메인 격벽을 더 포함하고,
    상기 보조 격벽은 양단이 각각 상기 메인 격벽 및 측벽과 결합되는 배터리 팩.
  6. 제5항에 있어서,
    상기 보조 격벽은 상기 메인 격벽을 따라 소정 간격 이격 되도록 상기 하판 상에 배치되는 배터리 팩.
  7. 제3항에 있어서,
    상기 보조 격벽의 내부에는 상기 보조 격벽의 길이 방향을 따라 연장 형성되어 상기 가스 유로를 구획하는 분리벽을 포함하고,
    상기 분리벽은 상기 보조 격벽의 두께 방향으로 연장 형성되고 상기 가스 유로를 구획하는 메인 분리부를 포함하고,
    상기 가스 유로는 상기 분리벽의 메인 분리부에 의해 구획되어 형성된 한 쌍의 제1 가스 유로를 포함하는 배터리 팩.
  8. 제7항에 있어서,
    상기 분리벽은 상기 메인 분리부로부터 상기 보조 격벽의 안측면까지 연장 형성되어 상기 제1 가스 유로를 상기 보조 격벽의 두께 방향으로 구획하는 서브 분리부를 포함하는 배터리 팩.
  9. 제8항에 있어서,
    상기 제1 가스 유로는 상기 분리벽의 서브 분리부에 의해 구획되어 형성된 복수의 제2 가스 유로를 포함하는 배터리 팩.
  10. 제9항에 있어서,
    상기 흡입홀은 상기 복수의 제2 가스 유로와 모두 연결되도록 상기 보조 격벽의 일측에 형성되는 배터리 팩.
  11. 제9항에 있어서,
    상기 제2 가스 유로는 상기 측벽의 가스 배출로와 연결되는 배터리 팩.
  12. 제1항에 있어서,
    상기 팩 케이스는 전후면 중 적어도 어느 일면에 가스의 출입이 가능하도록 외부로 개방된 배기홀을 포함하는 배터리 팩.
  13. 제12항에 있어서,
    상기 가스 배출로는 상기 측벽의 길이 방향을 따라 연장 형성되어 상기 배기홀과 연결되는 배터리 팩.
  14. 제1항에 있어서,
    상기 가스 배출로의 단면적 크기는 상기 가스 유로의 단면적 크기 보다 큰 배터리 팩.
PCT/KR2023/007553 2022-06-03 2023-06-01 배터리 팩 WO2023234735A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013277.5A CN117897858A (zh) 2022-06-03 2023-06-01 电池组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0068268 2022-06-03
KR20220068268 2022-06-03
KR10-2023-0049566 2023-04-14
KR1020230049566A KR20230168123A (ko) 2022-06-03 2023-04-14 배터리 팩

Publications (2)

Publication Number Publication Date
WO2023234735A1 true WO2023234735A1 (ko) 2023-12-07
WO2023234735A9 WO2023234735A9 (ko) 2024-03-28

Family

ID=89025214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007553 WO2023234735A1 (ko) 2022-06-03 2023-06-01 배터리 팩

Country Status (1)

Country Link
WO (1) WO2023234735A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112617A (ko) 2017-04-04 2018-10-12 주식회사 엘지화학 크래쉬 빔 구조를 갖는 배터리 팩
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
CN113594598A (zh) * 2021-07-29 2021-11-02 中国第一汽车股份有限公司 一种电池模组及电池包
EP3916894A1 (en) * 2019-09-19 2021-12-01 Contemporary Amperex Technology Co., Limited Lower box body, battery pack and vehicle
CN215816098U (zh) * 2021-06-04 2022-02-11 恒大新能源技术(深圳)有限公司 电池包热失控防护系统及电池包
JP2022516519A (ja) * 2018-12-29 2022-02-28 ビーワイディー カンパニー リミテッド 動力電池パック及び車両
KR20220068268A (ko) 2013-03-15 2022-05-25 타리스 바이오메디컬 엘엘씨 약물-투과성 구성요소를 가지는 약물 전달 장치 및 방법
KR20230049566A (ko) 2021-10-06 2023-04-13 주식회사 엘지화학 다공성 입자 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220068268A (ko) 2013-03-15 2022-05-25 타리스 바이오메디컬 엘엘씨 약물-투과성 구성요소를 가지는 약물 전달 장치 및 방법
KR20180112617A (ko) 2017-04-04 2018-10-12 주식회사 엘지화학 크래쉬 빔 구조를 갖는 배터리 팩
JP2022516519A (ja) * 2018-12-29 2022-02-28 ビーワイディー カンパニー リミテッド 動力電池パック及び車両
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
EP3916894A1 (en) * 2019-09-19 2021-12-01 Contemporary Amperex Technology Co., Limited Lower box body, battery pack and vehicle
CN215816098U (zh) * 2021-06-04 2022-02-11 恒大新能源技术(深圳)有限公司 电池包热失控防护系统及电池包
CN113594598A (zh) * 2021-07-29 2021-11-02 中国第一汽车股份有限公司 一种电池模组及电池包
KR20230049566A (ko) 2021-10-06 2023-04-13 주식회사 엘지화학 다공성 입자 및 그 제조방법

Also Published As

Publication number Publication date
WO2023234735A9 (ko) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2021091058A1 (ko) 배터리 모듈, 및 배터리 랙, 및 전력 저장 장치
WO2012044065A2 (ko) 배터리 팩 및 이를 구비하는 배터리 팩 조립체
WO2018190552A1 (ko) 서랍형 배터리 팩
WO2015186849A1 (ko) 전지 트레이
WO2022244994A1 (ko) 가스 벤팅 패스를 구비한 배터리 팩
WO2021201408A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023234735A1 (ko) 배터리 팩
WO2023146278A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2022265360A1 (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
WO2022108281A1 (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
WO2022124636A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2022149778A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2024029933A1 (ko) 배터리 팩
WO2023146083A1 (ko) 배터리팩 및 이를 구비한 자동차
WO2024019438A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023229139A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2023211161A2 (ko) 셀 스택 조립체 및 상기 셀 스택 조립체를 포함하는 배터리 팩
WO2023234734A1 (ko) 배터리 팩
WO2023243805A1 (ko) 이차전지 팩
WO2023128574A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2024072106A1 (ko) 배터리 팩
WO2023172049A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023229373A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2023085729A1 (ko) 배터리 모듈 및 이를 포함한 배터리 팩
WO2024085707A1 (ko) 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023816395

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023816395

Country of ref document: EP

Effective date: 20240216