WO2023234204A1 - 情報処理装置、情報処理方法、プログラム - Google Patents

情報処理装置、情報処理方法、プログラム Download PDF

Info

Publication number
WO2023234204A1
WO2023234204A1 PCT/JP2023/019673 JP2023019673W WO2023234204A1 WO 2023234204 A1 WO2023234204 A1 WO 2023234204A1 JP 2023019673 W JP2023019673 W JP 2023019673W WO 2023234204 A1 WO2023234204 A1 WO 2023234204A1
Authority
WO
WIPO (PCT)
Prior art keywords
breathing
correction
breathing correction
information
image
Prior art date
Application number
PCT/JP2023/019673
Other languages
English (en)
French (fr)
Inventor
崇史 川井
誠一 猪俣
和幸 高尾
章人 渡邉
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023234204A1 publication Critical patent/WO2023234204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present technology relates to an information processing device, an information processing method, and a program, and particularly relates to a breathing correction technology that corrects changes in the angle of view associated with focus adjustment.
  • Patent Document 1 listed below describes that breathing correction is performed on a moving image obtained by capturing an image with an image sensor.
  • breathing correction is performed in real time on an image obtained by capturing an image with an image sensor. Therefore, with the technology described in Patent Document 1, breathing correction cannot be performed depending on the processing load of breathing correction, or breathing cannot be completely removed by breathing correction to reduce image quality deterioration. Freedom was sometimes restricted.
  • This technology was developed in view of the above circumstances, and aims to improve the degree of freedom in breathing correction.
  • An information processing device includes an acquisition unit that acquires meta information regarding breathing correction associated with a moving image, and a breathing correction unit that performs breathing correction on the moving image based on the meta information. This allows the information processing device to perform breathing correction on a moving image based on the meta information, regardless of whether breathing correction was performed on the moving image at the time of imaging.
  • FIG. 1 is a diagram showing the configuration of a breathing correction system 1 as an embodiment of the present technology.
  • FIG. 2 is a diagram showing the configuration of the imaging device.
  • FIG. 3 is a block diagram showing the internal configuration of the imaging device and the interchangeable lens.
  • FIG. 4A is a diagram illustrating the subject position, subject distance, focus position, focusing distance, focus lens position, and zoom lens position.
  • FIG. 4B is a diagram illustrating focal length.
  • FIG. 5 is a functional block diagram of the lens-side control section.
  • FIG. 6 is a functional block diagram of the body-side control section.
  • FIG. 7 is a diagram illustrating an overview of breathing correction.
  • FIG. 8 is a diagram showing an example of a breathing correction amount table.
  • FIG. 9 is a diagram showing an example of a cam curve table.
  • FIG. 10 is a diagram showing an example of a focal length table that takes into account breathing.
  • FIG. 11 is a diagram illustrating meta information.
  • FIG. 12A is a diagram illustrating the internal breathing correction amount in the limit method.
  • FIG. 12B is a diagram illustrating the internal breathing correction amount in the proportional method.
  • FIG. 13 is a flowchart showing the processing procedure of the body-side control section.
  • FIG. 14 is a block diagram showing the configuration of the computer.
  • FIG. 15 is a functional block diagram of the control section.
  • FIG. 16 is a diagram illustrating the first latter-stage breathing correction.
  • FIG. 17 is a diagram illustrating the exposure center of gravity.
  • FIG. 18A is a diagram illustrating the amount of breathing correction in internal breathing correction.
  • FIG. 18B is a diagram illustrating the breathing correction amount in the first latter-stage breathing correction.
  • FIG. 19 is a diagram illustrating the second latter-stage breathing correction.
  • FIG. 20 is a diagram illustrating an example of a processing method for post-stage breathing correction.
  • FIG. 21 is a diagram illustrating another example of the processing method for post-stage breathing correction.
  • FIG. 22 is a diagram illustrating an example of a UI screen.
  • FIG. 23 is a diagram illustrating another example of the UI screen.
  • FIG. 24 is a diagram illustrating another example of the UI screen.
  • FIG. 25 is a diagram illustrating another example of the UI screen.
  • FIG. 26 is a flowchart showing the processing procedure of the control unit.
  • FIG. 1 is a diagram showing the configuration of a breathing correction system 1 as an embodiment of the present technology. As shown in FIG. 1, the breathing correction system 1 includes an imaging device 2 and a computer 4.
  • the imaging device 2 is capable of performing breathing correction in real time on an image (moving image) obtained by capturing an incident subject image through an interchangeable lens 3 including a focus lens 16 (see FIG. 3). be.
  • the imaging device 2 also acquires information regarding breathing correction and associates the acquired information with image data as meta information.
  • the computer 4 is, for example, a personal computer, a mobile terminal device, a tablet terminal device, or the like, and is capable of acquiring image data and meta information from the imaging device 2 .
  • the computer 4 may be the imaging device 2.
  • the computer 4 may be a server or the like that performs cloud computing.
  • the computer 4 acquires image data and meta information transmitted from the imaging device 2 to a personal computer, a mobile terminal device, a tablet terminal device, or the like via the network.
  • the computer 4 can perform breathing correction on a moving image based on the acquired image data based on meta information.
  • the imaging device 2 can perform breathing correction in real time, and the computer 4 can perform breathing correction after imaging. Further, in the breathing correction system 1, it is also possible to perform breathing correction on the computer 4 after imaging, without performing breathing correction on the imaging device 2.
  • breathing correction refers to correction of changes in the angle of view that occur with such focus adjustment.
  • Breathing correction is performed by trimming (electronic cropping) an image (frames forming a moving image).
  • internal breathing correction breathing correction performed in real time in the imaging device 2
  • post-stage breathing correction breathing correction performed in the computer 4 after imaging
  • FIG. 2 is a diagram showing the configuration of the imaging device 2. As shown in FIG.
  • the imaging device 2 (body) is configured as a digital camera device in which an interchangeable lens 3 is configured to be detachably attached.
  • the imaging device 2 has not only a still image imaging function but also a moving image imaging function.
  • the imaging device 2 includes an imaging device 55 that captures a subject image incident through the interchangeable lens 3, and a display capable of displaying the captured image obtained by the imaging device 55 and a GUI such as various operation screens. 61, an operation section 65 for the user to input various operations, and the like.
  • the imaging device 2 also includes, for example, a configuration for recording images captured by the image sensor 55, a configuration for performing image signal processing on images captured by the image sensor 55, a configuration for communicating with the interchangeable lens 3, etc. It is equipped with
  • the interchangeable lens 3 is a lens unit in which various lenses such as a focus lens and a zoom lens are provided. Further, the interchangeable lens 3 includes a drive unit that drives these lenses, a control unit that outputs a drive signal to the drive unit, a mount unit that has a connection function and a communication function with respect to the imaging device 2, and the like.
  • FIG. 3 is a block diagram showing the internal configuration of the imaging device 2 and the interchangeable lens 3.
  • the interchangeable lens 3 includes a mount section 11 that is detachably attached to a mount section 51 of the imaging device 2. As shown in FIG. The mount section 11 has a plurality of terminals for electrical connection to the imaging device 2.
  • the interchangeable lens 3 also includes a lens-side control section 12, a zoom lens 13, an image stabilization lens 14, an aperture 15, a focus lens 16, an operation section 31, a memory 32, and a power supply control section 33. Further, the interchangeable lens 3 includes a zoom lens drive section 21 , a camera shake control section 22 , an aperture control section 23 , a focus lens drive section 24 , and a detection section 17 .
  • the lens-side control unit 12 is configured to include, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. Overall control of the interchangeable lens 3 is performed by reading a program stored in the storage device into the RAM and executing it.
  • a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the lens-side control unit 12 controls the position of the zoom lens 13 based on an instruction from the imaging device 2 supplied via a predetermined communication terminal of the mount unit 11 or a user operation received by the operation unit 31. Control. Specifically, the lens-side control unit 12 acquires the current position of the zoom lens 13 detected by the detection unit 17, which includes, for example, a magnetic sensor (MR sensor). Then, the lens-side control unit 12 determines a drive direction and a drive amount for moving the zoom lens 13 to a predetermined position based on the obtained result, and sends the determined drive direction and drive amount to the zoom lens drive unit along with a movement command. Output to 21. The zoom lens drive section 21 moves the zoom lens 13 in the optical axis direction based on the movement command supplied from the lens side control section 12 so as to achieve the instructed drive direction and drive amount.
  • the detection unit 17 includes, for example, a magnetic sensor (MR sensor).
  • the lens-side control unit 12 determines a drive direction and a drive amount for moving the zoom lens 13 to a predetermined
  • the detection unit 17 comprehensively represents the configuration for detecting the state of the interchangeable lens 3, such as the positions of the zoom lens 13, the image stabilization lens 14, and the focus lens 16, and the aperture diameter of the diaphragm 15. It is.
  • the position of the lens can be detected using, for example, a magnetic sensor, a photodiode array, a potentiometer, a reflective encoder, or the like.
  • the lens-side control unit 12 controls the camera shake correction lens 14 to correct camera shake. Specifically, the lens-side control unit 12 determines the drive direction and drive amount of the image stabilization lens 14 in the direction of canceling the amount of camera shake based on the amount of camera shake detected by the camera shake detection sensor in the detection unit 17. The drive direction and drive amount are output to the camera shake control unit 22 along with the movement command.
  • the camera shake detection sensor in the detection unit 17 is configured of, for example, a gyro sensor and/or a triaxial acceleration sensor. The gyro sensor is used to detect a shift (shake) in a direction corresponding to pitch or yaw as the correction direction of the image stabilization lens 14.
  • the three-axis acceleration sensor is used to detect a shift (shake) between the X-axis and the Y-axis when the optical axis direction is the Z-axis.
  • the camera shake control unit 22 moves the camera shake correction lens 14 based on the movement command supplied from the lens side control unit 12 so as to achieve the instructed drive direction and drive amount.
  • the lens-side control unit 12 performs control to mechanically lock the image stabilization lens 14 when the power supply is turned off.
  • the camera shake correction lens 14 is maintained at a predetermined position under control via the camera shake control unit 22 while power is being supplied from the imaging device 2 to the interchangeable lens 3 .
  • the position control by the camera shake control section 22 is stopped, so the camera shake correction lens 14 falls by a predetermined amount in the direction of gravity. Therefore, the lens-side control section 12 mechanically locks the image stabilization lens 14 via the image stabilization control section 22 in accordance with the timing when the power supply is turned off, thereby preventing the lens from falling.
  • the camera shake control unit 22 mechanically locks the camera shake correction lens 14 based on the fixing command supplied from the lens side control unit 12 .
  • the lens-side control unit 12 controls (the aperture diameter of) the diaphragm 15 in accordance with instructions from the imaging device 2 supplied via a predetermined communication terminal of the mount unit 11 . Specifically, the lens side control unit 12 acquires the aperture diameter of the aperture 15 detected by the aperture detection sensor in the detection unit 17, and instructs the aperture control unit 23 to obtain the F value instructed by the imaging device 2. A command is issued to drive the aperture 15. The diaphragm control section 23 drives the diaphragm 15 to achieve the aperture diameter instructed by the lens-side control section 12.
  • the lens-side control unit 12 controls the position of the focus lens 16 based on instructions from the imaging device 2 supplied via a predetermined communication terminal of the mount unit 11 .
  • AF Auto Focus
  • information on a target focus lens position is instructed from the imaging device 2 to the lens side control unit 12.
  • the lens-side control unit 12 acquires the current position of the focus lens 16 from the detection unit 17 and controls the focus lens 16 based on the acquired current position information and information on the target focus lens position instructed by the imaging device 2.
  • the lens-side control unit 12 outputs the determined drive direction and drive amount to the focus lens drive unit 24 along with a movement command.
  • the focus lens drive unit 24 moves the focus lens 16 in the optical axis direction so as to achieve the instructed drive direction and drive amount.
  • the focus lens 16 is configured as a "focus lens group” including one or more optical elements.
  • these optical elements are integrally displaced during focus adjustment.
  • this also applies to the zoom lens 13. That is, the zoom lens 13 is configured as a "zoom lens group” including one or more optical elements, and when the zoom lens group includes a plurality of optical elements, these optical elements are integrated as a zoom adjustment. It becomes something that is displaced.
  • the zoom lens 13 and the focus lens 16 each include one zoom lens group and one focus lens group, but it is also possible to configure each of them to include a plurality of zoom lens groups and a plurality of focus lens groups. be.
  • the lens-side control unit 12 also detects the position of the zoom lens 13 (hereinafter referred to as “zoom lens position”) detected by the detection unit 17 and the position of the focus lens 16 (hereinafter referred to as “focus lens position”). A process of transmitting data to the imaging device 2 (body-side control unit 52) is performed.
  • the focus lens drive unit 24 can be configured to include, for example, an ultrasonic motor, a DC motor, a linear actuator, a stepping motor, a piezo element (piezoelectric element), etc. as a lens drive source.
  • the memory 32 is composed of a non-volatile memory such as an EEPROM (Electrically Erasable Programmable), and can be used to store operation programs for the lens-side control section 12 and various data.
  • the memory 32 stores lens identification information I1 and table information I2 (lens information), which will be explained later.
  • the power supply control unit 33 detects the amount of power of the power supply supplied from the imaging device 2, and controls the power to each part of the interchangeable lens 3 (the lens-side control unit 12 and various drive units) based on the detected amount of power. Supply power by optimally distributing the amount.
  • the imaging device 2 on the body side is provided with a mount portion 51 to which the interchangeable lens 3 is removably attached.
  • the mount portion 51 has a plurality of terminals for electrical connection to the mount portion 11 of the interchangeable lens 3.
  • the terminals to be connected include, for example, a terminal for supplying power (power supply terminal), a terminal for transmitting commands and data (communication terminal), a terminal for transmitting a synchronization signal (synchronization signal terminal), etc. be.
  • the imaging device 2 further includes a body-side control section 52, a shutter 53, a shutter control section 54, an image sensor 55, an ADC (Analog to Digital Converter) 56, a frame memory 57, an image signal processing section 58, a recording section 59, and a recording medium.
  • the power supply control section 63 supplies power supplied from the power supply section 64 to each section of the imaging device 2 including the body-side control section 52. Further, the power supply control unit 63 calculates the amount of power supply that can be supplied to the interchangeable lens 3 based on the operating state of the imaging device 2, and supplies power to the interchangeable lens 3 via the mount unit 51.
  • the power supply unit 64 includes, for example, a secondary battery such as a NiCd battery, a NiMH battery, or a Li battery. Note that the power supply section 64 can also be configured to be able to receive power supply from a commercial AC power source via an AC adapter or the like.
  • the body-side control unit 52 is configured with a microcomputer having a CPU, ROM, RAM, etc., and the CPU reads a program stored in a predetermined storage device such as the ROM or memory 62 into the RAM and executes the program. Performs overall control of the imaging device 2 and the interchangeable lens 3.
  • the memory 62 is composed of a non-volatile memory such as an EEPROM, and can be used to store operating programs for the body-side control section 52 and various data.
  • the body-side control unit 52 causes the image sensor 55 to perform imaging processing based on the operation signal representing the user's operation supplied from the operation unit 65. Furthermore, a predetermined command is transmitted to the interchangeable lens 3 side via the mount section 51 to drive the focus lens 16, zoom lens 13, etc.
  • the body-side control unit 52 is capable of acquiring, for example, information indicating the zoom lens position and the focus lens position from the detection unit 17 in the interchangeable lens 3.
  • the shutter 53 is arranged in front of the image sensor 55 (on the subject side), and opens and closes under the control of the shutter control section 54.
  • the shutter control section 54 detects the open/closed state of the shutter 53 and supplies information indicating the detection result to the body-side control section 52.
  • the shutter control section 54 drives the shutter 53 to an open state or a closed state based on the control of the body side control section 52.
  • the image sensor 55 is configured as an image sensor using, for example, a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and outputs a light reception signal obtained by imaging a subject.
  • a CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • an electronic shutter can be used, so the shutter 53 can be omitted.
  • the shutter control section 54 used for its control is also omitted.
  • the image sensor 55 includes pixels for image capturing (RGB pixels) and pixels for acquiring detection information used for AF processing using the image plane phase difference method, that is, phase difference information between a pair of images (formed by pupil division). phase difference detection pixels for obtaining phase difference information (between a pair of images).
  • the phase difference detection pixels are discretely arranged on a pixel array plane in which RGB pixels are two-dimensionally arranged according to a predetermined array pattern such as a Bayer array.
  • the light reception signal obtained by photoelectric conversion of RGB pixels in the image sensor 55 is converted into a digital signal by the ADC 56, temporarily stored in the frame memory 57, and then input to the image signal processing section 68.
  • the captured image signal obtained by digitally converting the light reception signals of the RGB pixels as described above is referred to as the "captured image signal Si.”
  • phase difference pixel signal Sp a light reception signal obtained by photoelectric conversion of the phase difference detection pixel in the image sensor 55 is converted into a digital signal by the ADC 56 and supplied to the body-side control section 52.
  • the signal obtained by digitally converting the light reception signal of the phase difference detection pixel in this way is referred to as a "phase difference pixel signal Sp.”
  • the body-side control unit 52 analyzes the phase difference between the pair of images based on the phase difference pixel signal Sp supplied via the ADC 56, and determines the focus on the subject to be focused (focus target). The amount of deviation, that is, the amount of defocus DF is calculated. The body-side control unit 52 performs AF processing based on the defocus amount DF calculated in this way, which will be explained again.
  • the body-side control unit 52 performs processing related to breathing correction.
  • the body-side control unit 52 performs a process of acquiring meta information regarding breathing correction (meta information acquisition process) and a process of internal breathing correction described above (internal breathing correction process), which will be described later.
  • the image signal processing unit 58 performs predetermined image signal processing on the captured image input via the frame memory 57. Examples of the image signal processing here include demosaic processing, white balance (WB) adjustment, and gamma correction processing.
  • the image signal processing unit 58 performs image signal processing on the captured image as a RAW image input via the frame memory 57, converts it into image data in a predetermined file format, and stores the image data on a recording medium via the recording unit 59. 60 to record.
  • the body-side control unit 52 associates the image data recorded on the recording medium 60 with meta information regarding breathing correction, as will be described in detail later.
  • a method for associating meta information it may be associated as part of image data, or it may be associated as data separate from image data.
  • the recording unit 59 may associate meta information with image data and cause the recording medium 60 to record the association.
  • the communication unit 66 may associate the meta information with the image data and transmit it to the computer 4. That is, the recording section 59 and the communication section 66 may function as a meta information association section.
  • the image signal processing unit 58 converts the captured image subjected to the image signal processing into an image signal according to a predetermined display format, and supplies the image signal to the display unit 61 to display the captured image.
  • the image signal processing unit 58 is capable of performing internal breathing correction processing on moving images.
  • the image signal processing unit 58 trims images (frames forming a moving image) based on instructions from the body-side control unit 52.
  • the image signal processing unit 58 in this example is capable of enlarging or reducing a captured image for correction of distortion aberration.
  • the distortion aberration correction method for example, the method described in “Japanese Patent Laid-Open No. 2019-208168” can be adopted.
  • the recording medium 60 is composed of a nonvolatile memory, and the recording unit 59 is configured to be able to write data to the recording medium 60 and read data recorded on the recording medium 60.
  • the recording medium 60 may be detachably attached to the imaging device 2.
  • the display section 61 is configured with a panel type display device such as a liquid crystal panel or an organic EL panel, and is capable of displaying images.
  • the display unit 61 is mounted on the back side of the imaging device 2 opposite to the front side where the mount unit 51 is arranged, and displays so-called through images, displays images read from the recording medium 60, various operation screens, etc. It is possible to display a GUI, etc.
  • the operation unit 65 allows the user to input operation inputs to the imaging device 2, such as various hardware keys such as a shutter button, mode dial, and zoom button, and a touch panel provided to be able to detect touch operations on the display screen of the display unit 61. It comprehensively represents the controls for performing the operations.
  • the operation section 65 receives a user's operation and supplies an operation signal corresponding to the operation to the body-side control section 52.
  • the communication unit 66 performs wired or wireless communication with the computer 4, for example.
  • FIG. 4A is a diagram illustrating the subject position, subject distance, focus position, focusing distance, focus lens position, and zoom lens position.
  • FIG. 4B is a diagram illustrating focal length.
  • “subject position” literally indicates the position where the subject exists, and “subject distance” indicates the distance from the imaging device 2 to the subject.
  • “Focus position” represents a position in focus, and can be translated as “in-focus position.”
  • “Focusingdistance” means the distance from the imaging device 2 to the focus position.
  • the subject distance and focusing distance are the distances to the outer position of the interchangeable lens 3, for example, 2 m, 3 m, 4 m, . . . The value is expressed as an actual distance.
  • “Focus lens position” means the position of the focus lens 16 within the movable range of the focus lens 16 within the interchangeable lens 3 as shown in FIG. 4A, and “zoom lens position” similarly 3 refers to the position of the zoom lens 13 within the movable range of the zoom lens 13 within the zoom lens 13.
  • the "focal length” represents the distance from the image sensor 55 to the focal point, as shown in FIG. 4B. Note that, as illustrated in FIG. 4B, the "subject distance” strictly corresponds to the distance from the focal point to the "subject position.”
  • the defocus amount DF determined by the image plane phase difference method is the amount of deviation between the "subject position" and the "focus position". It becomes what it represents. That is, the defocus amount DF in this case does not directly represent the amount of error in the focus lens position.
  • zoom position information which is information that correlates with the position of the zoom lens 13 and can be uniquely converted into information on the position of the zoom lens 13.
  • the basic flow of the AF process assumed in this example is that the body-side control unit 52 sets the target of the focus lens 16 necessary to focus on the object to be focused based on the defocus amount DF.
  • the flow is such that the position (hereinafter referred to as "target focus lens position") is determined, and information on the target focus lens position is instructed to the interchangeable lens 3 side.
  • FIG. 5 is a functional block diagram of the lens-side control section 12.
  • FIG. 6 is a functional block diagram of the body-side control section 52.
  • the lens-side control section 12 has the functions of a transmission processing section F11 and a regular communication processing section F12.
  • the body-side control section 52 has functions as an AF processing section F21, a meta information acquisition section F22, an internal breathing correction section F23, and a meta information association section F24.
  • the transmission processing unit F11 In response to an inquiry made by the imaging device 2 when the interchangeable lens 3 is attached, the transmission processing unit F11 generates lens identification information I1 for identifying the interchangeable lens 3 and a table indicating correction characteristics regarding breathing correction. A process of transmitting information I2 to the imaging device 2 is performed.
  • FIG. 7 is a diagram illustrating an overview of breathing correction.
  • “before correction” is an example of a change in the angle of view with respect to a change in focus position from infinity to the closest distance when the same subject at the same distance is imaged.
  • the size of the image (letter A in the example in the figure) in the captured image is the largest at infinity, the image is smallest at the closest distance, and the focus is intermediate between infinity and the closest distance.
  • the size of the image is smaller than at infinity and larger than at the closest point.
  • changes in the angle of view due to breathing occur because the angle of view at infinity is the narrowest, and the angle of view gradually widens as the focus position changes toward the closest distance. .
  • the trimming magnification at infinity is set to 1.0 (in other words, no trimming), and the focus position is shifted to the closest position, as shown in the "after correction" section at the bottom of the figure. This is done by gradually increasing the trimming magnification in response to changes. Thereby, even if the focus position changes (that is, even if focus adjustment is performed), the angle of view of the captured image can be prevented from changing.
  • FIG. 8 is a diagram showing an example of a breathing correction amount table.
  • FIG. 9 is a diagram showing an example of a cam curve table.
  • FIG. 10 is a diagram showing an example of a focal length table that takes into account breathing.
  • the table information I2 described above includes a breathing correction amount table as shown in FIG. 8, a cam curve table as shown in FIG. 9, and a focal length table taking breathing into consideration as shown in FIG.
  • the breathing correction amount table shows the breathing correction amount for each combination of zoom lens position and focus position.
  • the zoom lens position shown on the vertical axis represents each zoom lens position from the zoom lens position at one end of the zoom lens movable range shown in FIG. 4A to the zoom lens position at the other end.
  • the focus position on the horizontal axis represents each focus position from the focus position corresponding to infinity to the focus position corresponding to the closest distance.
  • the increments of the zoom lens position and the focus position are arbitrary.
  • the breathing correction amount is, in this example, information indicating a trimming magnification for performing breathing correction by trimming the captured image.
  • the characteristics of the change in angle of view due to breathing may vary depending on the type and individual of the interchangeable lens 3. Therefore, for each interchangeable lens 3, a breathing correction amount table corresponding to the characteristics of the interchangeable lens 3 is stored in the memory 32. By performing breathing correction using such a breathing correction amount table, it is possible to realize appropriate breathing correction according to the characteristics of each interchangeable lens 3.
  • the cam curve table shows the relationship among the zoom lens position, focus lens position, and focus position. Specifically, the cam curve table shows the focus lens position for each combination of the zoom lens position and the focus position. Note that in the cam curve table, the increments of the zoom lens position and focus position are arbitrary. By providing information on the zoom lens position and focus position using such a cam curve table, it is possible to obtain information on the focus lens position corresponding to the combination of the zoom lens position and focus position. Furthermore, by providing information on the zoom lens position and focus lens position, it is also possible to acquire information on the focus position corresponding to the combination of the zoom lens position and focus lens position.
  • cam curve table Since the characteristics of the cam curve table may vary depending on the type and individual of the interchangeable lens 3, a cam curve table corresponding to the characteristics of the interchangeable lens 3 is stored in the memory 32 for each interchangeable lens 3.
  • the focal length table that takes breathing into account shows the focal length (angle of view) for each combination of zoom lens position and focus position.
  • the increments of the zoom lens position and focus position are arbitrary.
  • This focal length table that takes into account breathing shows the change characteristics of the angle of view when the focus position is changed from infinity to the closest distance for each zoom lens position.
  • the focal length obtained from the focal length table that takes breathing into account calculates the breathing correction amount instead of the breathing correction amount obtained using the cam curve table and the breathing correction amount table when the zoom lens position does not change. Sometimes used. For example, it is possible to calculate the ratio of the focal length obtained from the focal length table to the focal length at infinity as the breathing correction amount.
  • the regular communication processing unit F12 has a function of transmitting information that needs to be sequentially transmitted from the interchangeable lens 3 to the imaging device 2. Specifically, it is a function that performs periodic transmission at regular intervals.
  • the information periodically transmitted to the imaging device 2 includes at least information on the focus lens position and the zoom lens position. That is, the regular communication processing unit F12 performs a process of sequentially transmitting information on the focus lens position and zoom lens position detected by the detection unit 17 to the imaging device 2 (body-side control unit 52).
  • the AF processing unit F21 performs AF processing, specifically, processing for obtaining the above-mentioned defocus amount DF, and obtaining a target focus lens position for focusing on a focused object based on the defocus amount DF. Process.
  • the AF processing unit F21 focuses on the object to be focused on based on the information on the current (current frame) zoom lens position and focus lens position transmitted from the interchangeable lens 3 side and the cam curve table. Find the focus position (hereinafter referred to as "target focus position"). That is, the AF processing unit F21 acquires the current focus position based on the current zoom lens position, focus lens position, and cam curve table.
  • the AF processing unit F21 calculates a target focus position based on the current focus position and the defocus amount DF. Next, the AF processing unit F21 obtains a target focus lens position based on the target focus position, the current zoom lens position, and the cam curve table.
  • the AF processing unit F21 instructs the lens-side control unit 12 with information on the target focus lens position acquired as described above. As a result, in the interchangeable lens 3, the focus lens 16 is driven so that the focus lens position matches the target focus lens position, and AF is realized.
  • the process of determining the target focus lens position from the defocus amount DF can also be performed on the interchangeable lens 3 side. It is. In that case, the body-side control unit 52 transmits information on the defocus amount DF to the lens-side control unit 12, and the lens-side control unit 12 determines the target focus lens position based on the cam curve table stored in the memory 32. What is necessary is to obtain it.
  • FIG. 11 is a diagram illustrating meta information.
  • the meta information acquisition unit F22 acquires meta information regarding breathing correction.
  • the meta information associated with the image data includes table information, minimum and maximum breathing correction amount information, focal length information, internal breathing correction information, internal breathing correction amount information, and breathing correction amount information. , optical breathing correction information, lens position information, imaging setting information, imaging device information, lens identification information, post-stage breathing correction information, and the like.
  • Meta-information include things that change for each frame that makes up the image data, and things that do not change for each frame that makes up the image data.
  • Meta information that changes from frame to frame is sometimes referred to as frame meta information
  • meta information that does not change depending on the frame is sometimes referred to as clip meta information.
  • the frame meta information includes meta information whose value changes for each frame, and meta information whose value changes only at a predetermined change and does not change at other times.
  • meta information that is acquired in real time, such as for each frame is sometimes called real-time meta information
  • meta information that is acquired only once is sometimes called non-real-time meta information.
  • the table information is a table used when determining the breathing correction amount, and specifically includes a cam curve table and a breathing correction amount table.
  • the meta information acquisition unit F22 acquires table information transmitted by the interchangeable lens 3 in response to an inquiry made to the interchangeable lens 3.
  • the table information is not changed unless the interchangeable lens 3 is removed during video shooting, so it is normally treated as clip meta information.
  • the table information will be acquired at the timing when the interchangeable lens 3 is replaced (at the time of change), so it will be treated as frame meta information.
  • the breathing correction amount minimum value and maximum value information indicates the breathing correction amount that is the minimum value and the breathing correction amount that is the maximum value among the breathing correction amounts obtained for each frame that makes up the image data.
  • This is meta information.
  • the meta information acquisition unit F22 acquires the breathing correction amount for each frame when capturing a moving image, it determines whether the acquired breathing correction amount is less than the minimum value or larger than the maximum value. Then, if the obtained breathing correction amount is less than the minimum value, the meta information acquisition unit F22 updates the minimum value to the obtained breathing correction amount. Further, if the obtained breathing correction amount is larger than the maximum value, the meta information acquisition unit F22 updates the maximum value to the obtained breathing correction amount. By doing so, the meta information acquisition unit F22 acquires the minimum value and maximum value of the breathing correction amount in the image data (moving image).
  • the focal length information is information indicating a focal length obtained based on a cam curve table and a focal length table that takes into account breathing, and is frame meta information.
  • the meta information acquisition unit F22 acquires the focal length based on the focus lens position and zoom lens position acquired from the detection unit 17 for each frame, and a cam curve table and a focal length table that takes into account breathing.
  • the internal breathing correction presence/absence information is information indicating whether or not internal breathing correction has been performed by the imaging device 2. Normally, execution or non-execution of internal breathing correction is determined for each image data, so it is treated as clip meta information. be exposed. However, in the imaging device 2, it is also possible to perform internal breathing correction only on a predetermined image range (part) of the image data, and not perform internal breathing correction on other image ranges. Therefore, if internal breathing correction has been performed only on a portion of the frame, it may be treated as frame meta information associated with the frame on which internal breathing correction has been performed. When the capturing of the moving image is completed, the meta information acquisition unit F22 determines whether internal breathing correction has been performed by the internal breathing correction unit F23, and acquires the determination result as internal breathing correction presence/absence information.
  • the internal breathing correction amount information is information indicating the internal breathing correction amount actually applied in internal breathing correction, and is frame meta information.
  • the meta information acquisition unit F22 acquires the internal breathing correction amount of the internal breathing correction performed by the internal breathing correction unit F23 for each frame.
  • the breathing correction amount information is information regarding the breathing correction amount and is frame meta information.
  • the breathing correction amount information includes, for example, the amount of breathing correction before internal breathing correction is performed using the limit method or proportional method, which will be described in detail later, and the amount of internal breathing correction when internal breathing correction is performed using the limit method or proportional method. , information on whether or not the limit method or proportional method is applied is included.
  • the meta information acquisition unit F22 acquires the breathing correction amount information for each frame, and the details will be described later.
  • the optical breathing correction information is information as to whether optical breathing correction has been performed and the amount of optical breathing correction, and is frame meta information. However, if optical breathing correction has not been performed, information indicating that optical breathing correction has not been performed may be associated as clip meta information.
  • optical breathing correction is a method of correcting breathing (change in angle of view) caused by moving the focus lens 16 by moving the zoom lens 13.
  • the meta information acquisition unit F22 acquires the amount of optical breathing correction for each frame when optical breathing correction is performed.
  • the lens position information is information indicating the focus lens position and the zoom lens position, and is frame meta information. That is, the meta information acquisition unit F22 acquires the focus lens position and zoom lens position detected by the detection unit 17 for each frame (frame period). Further, the meta information acquisition unit F22 may acquire the focus lens position and zoom lens position detected by the detection unit 17 at sampling intervals shorter than the frame period.
  • the sampling interval may be fixed or determined by the exposure time, frame rate, etc. of the image sensor 55. For example, the shorter the exposure time, the shorter the sampling interval, or the faster the frame rate, the shorter the sampling interval.
  • the imaging setting information is information regarding the imaging settings at the time of imaging, and includes, for example, the presence or absence of distortion aberration correction, exposure time, F value, and the like.
  • the imaging setting information is clip meta information if it is not changed during imaging, and is frame meta information if it is changed during imaging.
  • the meta information acquisition unit F22 acquires imaging setting information, for example, at the time of starting imaging of a moving image.
  • the image sensor information is information related to the settings of the image sensor 55 such as the number of readout lines of the image sensor 55, the coordinates of the imaging area in the image sensor 55, the read start time, and the read time, and if it is not changed during image capture, the clip meta This information is frame meta information if it is changed during imaging.
  • the meta information acquisition unit F22 acquires image sensor information, for example, at the start of capturing a moving image.
  • the lens identification information is lens identification information I1 stored in the memory 32 of the interchangeable lens 3, and includes, for example, a lens name, lens ID, and lens number. Since the lens identification information is not changed unless the interchangeable lens 3 is removed during video shooting, it is normally treated as clip meta information. However, if the interchangeable lens 3 is replaced during video imaging, the lens identification information will be acquired at the timing when the interchangeable lens 3 is replaced (at the time of change), so it will be treated as frame meta information.
  • the latter-stage breathing correction information is information indicating whether or not to perform second latter-stage breathing correction, which will be described in detail later, and is clip meta information.
  • the meta information acquisition unit F22 determines whether or not to perform the second latter-stage breathing correction based on various information acquired when capturing a moving image.
  • the meta information shown here is just an example, and it is sufficient that it includes information for performing post-stage breathing correction. Further, only part of the meta information shown here may be acquired.
  • the meta information acquisition unit F22 detects a change in the angle of view due to breathing based on the information on the current (current frame) zoom lens position and focus lens position transmitted from the interchangeable lens 3 side, the cam curve table, and the breathing correction amount table.
  • the breathing correction amount (trimming magnification in this example) for canceling is obtained. That is, first, the meta information acquisition unit F22 acquires the current focus position based on the current zoom lens position and focus lens position transmitted from the interchangeable lens 3 side and the cam curve table. Then, the meta information acquisition unit F22 acquires the corresponding breathing correction amount based on the current focus position, the current zoom lens position, and the breathing correction amount table.
  • the internal breathing correction unit F23 instructs the image signal processing unit 58 to use the trimming magnification information as the amount of breathing correction acquired by the meta information acquisition unit F22 in this manner, and causes the image signal processing unit 58 to perform trimming processing on the captured image. This realizes internal breathing correction by trimming.
  • a table based on the focus position is used instead of a table based on the focus lens position, which reduces the data volume of the breathing correction amount table.
  • the accuracy of breathing correction can be improved.
  • the breathing correction amount table based on the focus position since the angle of view variation characteristics depend on the focus position, by using the breathing correction amount table based on the focus position as described above, it is more effective than when using the correction amount table based on the focus lens position. Also, it becomes possible to obtain a breathing correction amount with less error. Therefore, it is possible to improve the accuracy of breathing correction.
  • zoom lens positions is assumed to be information on a combination of positions of each zoom lens group.
  • focus adjustment is performed by displacement of a plurality of focus lens groups
  • the information on the focus lens position is information on a combination of the positions of each focus lens group.
  • the breathing correction amount table should be set so that the breathing correction amount does not exceed a predetermined allowable amount (hereinafter referred to as "allowable correction amount P") from the perspective of image quality. It is conceivable to place a limit on the breathing correction amount determined based on this.
  • a limit method and a proportional method are considered as methods for limiting the amount of breathing correction in internal breathing correction.
  • FIG. 12A is a diagram illustrating the internal breathing correction amount in the limit method.
  • FIG. 12B is a diagram illustrating the internal breathing correction amount in the proportional method.
  • the breathing correction amount determined based on the breathing correction amount table (the breathing correction amount before the internal breathing correction by the limit method or the proportional method is performed) is shown by a broken line.
  • the internal breathing correction amount limited by the limit method is shown by a solid line.
  • the internal breathing correction amount limited by the proportional method is shown by a solid line.
  • the meta information acquisition unit F22 stores the breathing correction amount table without limiting the internal breathing correction amount.
  • the breathing correction amount obtained based on is directly used as the internal breathing correction amount.
  • the meta information acquisition unit F22 limits the internal breathing correction amount to the allowable correction amount P.
  • the internal breathing correction amount does not become larger than the allowable correction amount P, so it is possible to suppress image quality deterioration due to trimming.
  • the meta information acquisition unit F22 performs the following in the entire range of the focus position so that the internal breathing correction amount becomes the allowable correction amount P when the focus position is the closest.
  • An internal breathing correction amount is calculated by proportionally limiting the breathing correction amount determined based on the breathing correction amount table. That is, the meta information acquisition unit F22 adjusts the obtained breathing correction amount based on the breathing correction amount table so that a correction curve as shown by the solid line in FIG. 12B is realized.
  • the meta information association unit F24 associates the meta information acquired by the meta information acquisition unit F22 with the image data. That is, of the meta information acquired by the meta information acquisition unit F22, the meta information association unit F24 associates frame meta information with a frame and records it on the recording medium 60, and associates clip meta information with image data and records it on the recording medium 60. Record at 60. Furthermore, the meta information association unit F24 records the lens position information acquired at the sampling interval on the recording medium 60 in association with the acquired time.
  • the meta information association unit F24 determines whether or not to associate the meta information, and whether or not the meta information is associated, based on the relationship of the recording speed of the recording medium 60, whether or not internal breathing correction is executed, various settings of the interchangeable lens 3 and the imaging device 2, etc.
  • the meta information may be changed (determined).
  • the meta information association unit F24 may associate the lens position information, imaging setting information, image sensor information, and lens identification information so that post-stage breathing correction can be performed.
  • the table information of the interchangeable lens 3 can be obtained from the outside via, for example, a network, it becomes possible to perform post-stage breathing correction.
  • the meta information association unit F24 is configured not to associate all meta information. It's okay.
  • the meta information association unit F24 may not associate the internal breathing correction amount.
  • the image sensor 55 is a CCD sensor or a CMOS sensor employs a global shutter, there is no need to perform the second latter-stage breathing correction, which will be described later. Also, lens position information acquired at short sampling intervals may not be associated.
  • the meta information association unit F24 may not associate all meta information.
  • the obtained breathing correction amount hardly changes regardless of the focus position, there is almost no change in the angle of view due to breathing and there is no need to perform breathing correction.
  • the meta information may not be associated.
  • the background is likely to be blurred and changes in the angle of view due to breathing are difficult to see.
  • Location information may not be associated.
  • the meta information association unit F24 It may also be possible not to associate meta information or to associate lens position information acquired at a sampling interval shorter than the frame period.
  • the meta information association unit F24 switches (changes) the meta information to be associated, and switches (changes) whether to associate the meta information, depending on various conditions at the time of imaging. You can also do this.
  • step S1 the body-side control unit 52 waits for the start of video imaging. That is, based on a user's operation input or the like, processing is performed to wait for the moving image imaging operation to start.
  • the body-side control unit 52 acquires imaging setting information and imaging device information, which are part of the clip meta information, in step S2.
  • step S3 the body-side control unit 52 determines whether the sampling interval is determined based on the exposure time, the imaging cycle, etc. If it is determined that it is the sampling interval (Yes in step S3), the body-side control unit 52 acquires the zoom lens position and focus lens position detected by the detection unit 17 as lens position information in step S4, and performs the various operations described above. If writing to the recording medium 60 is possible based on the conditions, the acquired lens position information is recorded on the recording medium 60.
  • step S5 the body-side control unit 52 determines whether the frame period is a predetermined frame period. If it is determined that it is the frame period (Yes in step S5), the body-side control unit 52 acquires the focus position from the cam curve table based on the zoom lens position and focus lens position detected by the detection unit 17 in step S6. , the breathing correction amount is obtained from the breathing correction amount table based on the focus position and the zoom lens position. Furthermore, if there is a limit to the breathing correction amount, the body-side control unit 52 acquires the internal breathing correction amount using a limit method or a proportional method based on the breathing correction amount. Further, the body-side control unit 52 obtains the focal length from a focal length table that takes into account breathing, based on the focus position and the zoom lens position.
  • step S7 the body-side control unit 52 instructs the image signal processing unit 58 about the acquired internal breathing correction amount. This realizes internal breathing correction using the trimming correction method.
  • step S8 the body-side control unit 52 determines whether to associate meta information with image data based on the various conditions described above. If it is determined that the meta information is to be associated with the image data (Yes in step S8), the body-side control unit 52 adds meta information to the recording medium 60 based on the amount of image data written and the writing speed to the recording medium 60 in step S9. Determine whether information can be written. If it is determined that meta information can be written to the recording medium 60 (Yes in step S9), the body-side control unit 52 determines, in step S10, based on the amount of image data recorded, the writing speed to the recording medium 60, etc. All or part of the frame meta information is recorded on the recording medium 60 in association with the frame.
  • step S11 the body-side control unit 52 waits to see if the video capturing is finished. That is, this is a process of waiting for the end of the moving image imaging operation. If it is determined that the video capturing has not ended (No in step S11), the body-side control unit 52 returns to step S3. On the other hand, if it is determined that the video capturing has ended (Yes in step S11), the body-side control unit 52 calculates each clip meta information and records it on the recording medium 60 in association with the image data.
  • the imaging device 2 obtains the breathing correction amount based on the table information stored in the interchangeable lens 3 and associates it with the image data as meta information, regardless of whether internal breathing correction is executed or not.
  • the computer 4 that has acquired the meta information along with the image data can perform post-breathing correction on the image data (moving image) based on the acquired meta information.
  • FIG. 14 is a block diagram showing the configuration of the computer 4.
  • the computer 4 includes a control section 101, a storage section 102, a display section 103, an operation section 104, a recording section 105, a recording medium 106, and a communication section 107.
  • the control unit 101 includes, for example, a microcomputer having a CPU, a ROM, a RAM, etc., and the CPU reads a program stored in a predetermined storage device such as the ROM or the storage unit 102 into the RAM and executes the program. Performs overall control of the computer 4.
  • the storage unit 102 is composed of a storage medium such as a solid-state memory, for example.
  • the storage unit 102 is capable of storing various information. Furthermore, the storage unit 102 can also be used to store program data for the control unit 101 to execute various processes.
  • the display unit 103 is a liquid crystal display, an organic EL display, etc., and displays various screens (images).
  • the operation unit 104 is an input device used by the user, and includes various operators and operation devices such as a keyboard, a mouse, a button, a dial, a touch pad, and a touch panel.
  • various operators and operation devices such as a keyboard, a mouse, a button, a dial, a touch pad, and a touch panel.
  • the recording medium 106 is composed of a nonvolatile memory, and the recording unit 105 is configured to be able to write data to the recording medium 106 and read data recorded on the recording medium 106.
  • the recording medium 106 may be detachably attached to the computer 4.
  • the communication unit 107 performs wired or wireless communication with the imaging device 2, for example.
  • FIG. 15 is a functional block diagram of the control unit 101. As shown in FIG. 15, the control section 101 has functions as a data acquisition section F31, a post-breathing correction section F32, and a display control section F33.
  • the data acquisition unit F31 acquires image data and meta information generated by the imaging device 2.
  • the data acquisition unit F31 acquires image data and meta information from the recording medium 106 via the recording unit 105 when the recording medium 60 of the imaging device 2 is installed as the recording medium 106 in the computer 4. Further, the data acquisition unit F31 may acquire image data and meta information by communicating with the imaging device 2 via the communication unit 107.
  • the post-breathing correction unit F32 performs post-breathing correction on the moving image based on the image data acquired by the data acquisition unit F31, based on the meta information acquired by the data acquisition unit F31.
  • the display control unit F33 controls the screen (UI) displayed on the display unit 103 when the post-breathing correction unit F32 performs post-breathing correction.
  • Post-breathing correction includes the first post-breathing correction, which performs breathing correction with a uniform amount of breathing correction for each frame that makes up a moving image, and the first post-breathing correction that uses a breathing correction amount that varies depending on the line for each frame that makes up a moving image.
  • a second latter-stage breathing correction is included.
  • the first latter-stage breathing correction performs breathing correction with a uniform breathing correction amount for each frame, so that the processing load is low and correction can be performed at high speed. Therefore, the computer 4 is also used to display a preview in order to show the user an overview of the post-breathing correction.
  • the breathing correction amount is calculated and corrected for each line in each frame, so that highly accurate correction can be performed.
  • the post-breathing correction unit F32 performs post-breathing correction on the moving image using post-breathing correction selected by the user or automatically selected.
  • the second-stage breathing correction unit F32 performs the first second-stage breathing correction when the second-stage breathing correction information included in the meta information indicates that the second second-stage breathing correction cannot be performed.
  • the second-stage breathing correction unit F32 performs second second-stage breathing correction when any of the table information, lens position information acquired at sampling intervals, imaging setting information, and image sensor information cannot be acquired. Since this is not possible, the first latter-stage breathing correction is performed.
  • the post-breathing correction unit F32 performs the first post-breathing correction.
  • the second-stage breathing correction section F32 performs the first second-stage breathing correction. Furthermore, if the focus lens position indicated by the lens position information is greatly fluctuating, there is a high possibility that different changes in the angle of view have occurred for each line. I do.
  • the second-stage breathing correction unit F32 performs the second second-stage breathing correction.
  • the second-stage breathing correction section F32 performs the second second-stage breathing correction. conduct.
  • the post-breathing correction unit F32 may switch (change) the post-breathing correction to be performed based on various information included in the meta information. Further, the display control unit F33 may determine the recommended post-breathing correction in the same manner as when switching the post-breathing correction executed by the post-breathing correction unit F32, and may suggest the determined post-breathing correction to the user. . This allows the user to know which latter stage breathing correction should be performed.
  • FIG. 16 is a diagram illustrating the first latter-stage breathing correction.
  • the post-breathing correction unit F32 calculates the breathing correction amount at the exposure center of gravity 111 of each frame based on the meta information, and applies the breathing correction amount calculated for that frame to the breathing correction amount at the exposure gravity center 111 of each frame. Performs late-stage breathing correction accordingly.
  • the latter-stage breathing correction unit F32 may calculate the breathing correction amount based on the breathing correction amount information included in the meta information. That is, the latter-stage breathing correction unit F32 may use the breathing correction amount for each frame obtained by the imaging device 2 as it is as the breathing correction amount.
  • the subsequent breathing correction unit F32 may calculate the breathing correction amount based on the lens position information and table information included in the meta information. In this case, the subsequent breathing correction unit F32 calculates the breathing correction amount from the focus lens position and zoom lens position shown in the lens position information by referring to the cam curve table and the breathing correction amount table shown in the table information. Good too.
  • the post-breathing correction unit F32 adjusts the exposure gravity center 111 of each frame based on the imaging setting information and the image sensor information included in the meta information. seek. After determining the focus lens position and zoom lens position at the determined exposure center of gravity 111, the subsequent breathing correction unit F32 may determine the breathing correction amount based on the table information.
  • FIG. 17 is a diagram illustrating the exposure center of gravity 111.
  • FIG. 17 shows the vertical synchronization signal cV of the imaging device 2 and also shows the exposure timing range 110.
  • the exposure timing range 110 is a parallelogram that schematically represents the exposure period of each line of one frame when the exposure time is t3 in the rolling shutter method.
  • the solid line portion in the exposure timing range 110 corresponds to the imaging area and is the area that is actually read out as image data.
  • a broken line portion in the exposure timing range 110 corresponds to, for example, OPB (Optical Black), and is an area that does not become image data.
  • OPB Optical Black
  • FIG. 17 shows an image period t0, readout start time t1, readout time t2, and exposure time t3. Note that the read start time t1 is a time based on the vertical synchronization signal cV.
  • the post-breathing correction unit F32 calculates the exposure center of gravity 111 of each frame using the following equation (1).
  • Exposure center of gravity 111 Image period t0 + Readout start time t1 + Vertical direction (vertical direction) center line position L2 of imaging area / Number of readout lines L1 ⁇ Readout time t2 - Exposure time t3/2 (1)
  • the subsequent breathing correction unit F32 determines the focus lens position and zoom lens position at the calculated exposure center of gravity 111 based on the lens position information acquired at the sampling interval (only the focus position is shown). do).
  • the rear-stage breathing correction unit F32 calculates a breathing correction amount based on the calculated focus lens position and zoom lens position and table information (cam curve table, breathing correction amount table). Note that the focus lens position and zoom lens position indicated by the lens position information acquired at sampling intervals are used after being interpolated by, for example, linear interpolation.
  • FIG. 18A is a diagram illustrating the amount of breathing correction in internal breathing correction.
  • FIG. 18B is a diagram illustrating the breathing correction amount in the first latter-stage breathing correction.
  • the internal breathing correction amount (trimming magnification) is set to be "1.0" at infinity. Therefore, for example, as shown by the solid line in FIG.
  • the post-breathing correction unit F32 extracts the breathing correction amount that is the minimum value from among the breathing correction amounts obtained for each frame.
  • the breathing correction amount that is the minimum value may be extracted from breathing correction amount minimum and maximum value information included in the meta information.
  • the post-breathing correction unit F32 divides the breathing correction amount of each frame by the minimum breathing correction amount, and sets the post-breathing correction amount. Then, the post-breathing correction unit F32 performs post-breathing correction according to the post-breathing correction amount determined for each frame.
  • the post-breathing correction amount with the minimum value of the breathing correction amounts in the moving image multiplied by 1.0, so that image quality deterioration can be reduced.
  • FIG. 19 is a diagram illustrating the second latter-stage breathing correction.
  • breathing correction is performed with the same second-stage breathing correction amount for each frame. If the imaging device 2 employs a so-called rolling shutter and the focus lens 16 moves while capturing one frame, a change in the angle of view will occur within one frame, and the first latter-stage breathing correction will be performed. If you do so, the image may become distorted.
  • the amount of breathing correction is calculated for each line (horizontal line) that makes up the frame, and the breathing correction is performed using a different post-breathing correction amount for each line to reduce image distortion.
  • the post-breathing correction unit F32 adjusts the exposure center of gravity 112 of each line in the imaging area (only the top line, center line, and bottom line are shown in the figure) using metadata. It is determined based on the imaging setting information and imaging device information included in the information. Note that the method for determining the exposure center of gravity 112 is the same as that for the exposure center of gravity 111, so a description thereof will be omitted.
  • the subsequent breathing correction unit F32 determines the focus lens position and zoom lens position at the exposure center of gravity 112 based on the lens position information acquired at the sampling interval (focus (Only the location is shown).
  • the rear-stage breathing correction unit F32 calculates a breathing correction amount based on the calculated focus lens position and zoom lens position and table information (cam curve table, breathing correction amount table). That is, the latter-stage breathing correction unit F32 calculates the breathing correction amount for each line.
  • the post-breathing correction unit F32 extracts the breathing correction amount that is the minimum value from among the breathing correction amounts obtained for each line in each frame. Then, the post-stage breathing correction unit F32 calculates a value obtained by dividing the breathing correction amount for each line of each frame by the minimum breathing correction amount as the post-stage breathing correction amount.
  • the post-breathing correction unit F32 performs post-breathing correction on the moving image.
  • the image is enlarged line by line according to the post-breathing correction amount, and then the image is trimmed by cutting out the image using the center position of the image as a reference.
  • the latter-stage breathing correction amount described above is a correction amount when breathing correction is performed on a moving image (frame) on which internal breathing correction has not been performed. Therefore, when internal breathing correction is performed, it is necessary to perform subsequent breathing correction in consideration of the internal breathing correction amount due to internal breathing correction.
  • FIG. 20 is a diagram illustrating an example of a processing method for post-stage breathing correction.
  • the upper part of FIG. 20 shows an image (frame) obtained by imaging with the image sensor 55. If internal breathing correction is performed, the image is cut out according to the amount of internal breathing correction, as shown in the second row of FIG. The cut out image is then sent to the computer 4 as image data.
  • the post-breathing correction unit F32 inversely transforms (reduces) the extracted image, as shown in the third row of FIG. 20, using the reciprocal of the internal breathing correction amount indicated in the internal breathing correction information. . Note that since the size of the image itself is not changed when reducing the image, the edges of the image that are not included in the original image become, for example, black.
  • the post-breathing correction unit F32 performs post-breathing correction on the reduced image (cuts out the image) using the obtained post-breathing correction amount, as shown in the lower part of FIG. This makes it possible to perform the post-breathing correction with an arbitrary correction amount in the post-breathing correction.
  • the post-breathing correction unit F32 calculates a value obtained by dividing the post-breathing correction amount by the internal breathing correction amount for all frames, and if the minimum value of the calculated values is less than 1, the post-breathing correction unit F32 divides the post-breathing correction amount by the internal breathing correction amount. The value multiplied by the breathing correction amount is used as the subsequent breathing correction amount.
  • FIG. 21 is a diagram illustrating another example of the processing method for post-stage breathing correction.
  • the post-breathing correction unit F32 calculates a value by dividing the post-breathing correction amount by the internal breathing correction amount for all frames, and uses the calculated value as the post-breathing correction amount. Thereby, an image similar to the example shown in FIG. 20 can be generated. Note that if the minimum value of the value obtained by dividing the post-breathing correction amount by the internal breathing correction amount is less than 1, the value obtained by multiplying the reciprocal of the minimum value is used as the post-breathing correction amount, as in the example shown in FIG. Bye.
  • FIG. 22 is a diagram illustrating an example of the UI screen 130.
  • the display control unit F33 displays a UI screen 130 as shown in FIG. 22 on the display unit 103.
  • the UI screen 130 is provided with a menu section 131 at the upper left of the screen, and includes operators such as "File”, “Edit”, “Output”, and "Help". This allows the menu section 131 to perform various editing operations such as selecting and saving image files, output settings, and help display.
  • the UI screen 130 is provided with a list section 132 on the left side of the screen.
  • the list section 132 displays a list of thumbnail images 133 of image data recorded in the storage section 102 or the recording medium 106.
  • the display control unit F33 displays an icon 134 indicating that post-breathing correction is executable, superimposed on, for example, the upper right of the thumbnail image 133 that corresponds to image data for which post-breathing correction can be performed. do.
  • the display control unit F33 displays the icon 134 based on, for example, subsequent breathing correction information included in the meta information.
  • the UI screen 130 is provided with a work area 135 on the right side of the screen.
  • a moving image based on the image data to be processed can be displayed, and a slide bar and a playback operator are displayed as a bar/playback operator display section 136.
  • the slide bar represents the time axis of the moving image to be processed, and the user can perform operations such as moving a pointer on the slide bar.
  • the playback operator can perform a playback operation, a stop operation, a frame-by-frame forwarding operation, and a frame-by-frame backward operation.
  • the display control unit F33 can display the moving image 137 based on the image data and the moving image 138 after the post-breathing correction are performed side by side in the work area 135. Then, when the user operates the slide bar, images taken at the same time are displayed side by side as the moving image 137 and the moving image 138 in accordance with the user's operation. Thereby, the user can compare and view the images before and after the post-breathing correction, and can confirm the change in the angle of view due to the post-breathing correction.
  • FIG. 23 is a diagram illustrating another example of the UI screen 130.
  • the same parts as those in FIG. 22 are given the same reference numerals, and the description thereof will be omitted.
  • a moving image 137 based on image data to be processed is displayed in the work area 135, and a clipping frame 139 indicating an area that can be cut out by performing post-stage breathing correction is displayed on the moving image 137. will be displayed superimposed on the . Thereby, the user can easily understand the image to be cut out in the post-breathing correction.
  • FIG. 24 is a diagram illustrating another example of the UI screen 130.
  • the same parts as in FIGS. 22 and 23 are given the same reference numerals, and the description thereof will be omitted.
  • a timeline display area 141 is provided in the work area 135, and a focal length display area 142 is provided below the timeline display area 141.
  • thumbnail image 133 when a thumbnail image 133 is dropped onto the timeline display area 141 in response to a user operation, the thumbnail image 133 is displayed on the timeline display area 141.
  • the thumbnail image 133 In the example of FIG. 24, two thumbnail images 133 are displayed on the timeline display area 141.
  • the display control unit F33 displays the image data in the focal length display area 142 based on the focal length information included in the meta information associated with the image data corresponding to the thumbnail image 133 displayed on the timeline display area 141. Displays focal length along the time axis. The focal length displayed here corresponds to the angle of view of the image.
  • the display control unit F33 calculates a focal length corresponding to the angle of view of the corrected image based on the post-breathing correction amount.
  • the user can change the post-breathing correction amount so that the focal lengths (angles of view) of the image data placed before and after the timeline display area 141 are connected.
  • FIG. 25 is a diagram illustrating another example of the UI screen 130. Note that in FIG. 25, the same parts as those in FIGS. 22 to 24 are designated by the same reference numerals, and the description thereof will be omitted.
  • a moving image 137 based on image data is displayed in the work area 135 on the UI screen 130. It is assumed that this moving image 137 has undergone internal breathing correction in the imaging device 2, and has been subject to restrictions in the internal breathing correction.
  • the display control unit F33 identifies the restricted frame based on the internal breathing correction information included in the meta information, for example. .
  • the display control unit F33 displays a notification frame 143 indicating that a restriction has been applied to the internal breathing correction so as to surround the moving image. This allows the user to easily understand which frames have been restricted in internal breathing correction.
  • step S101 the control unit 101 determines whether the image data corresponding to the thumbnail image 133 displayed on the UI screen 130 can undergo post-breathing correction.
  • the determination is made based on the post-breathing correction information among the meta information associated with the image data.
  • control unit 101 displays the icon 134 superimposed on the upper right of the thumbnail image 133 in step S102.
  • step S103 when the user selects image data for which post-breathing correction can be performed, the control unit 101 determines a correction target range for post-breathing correction in the moving image based on the selected image data according to the user's operation. do.
  • step S104 the control unit 101 calculates the amount of breathing correction for each frame forming the moving image (correction target range).
  • the control unit 101 also acquires the internal breathing correction amount in the moving image (correction target range). Furthermore, the control unit 101 determines the minimum value of the breathing correction amount in the moving image (correction target range).
  • step S105 the control unit 101 calculates the subsequent breathing correction amount for each frame based on the breathing correction amount, the minimum value, and the internal breathing correction amount.
  • step S106 the control unit 101 performs the first post-breathing correction using the trimming correction method using the calculated post-breathing correction amount.
  • step S107 the control unit 101 displays the moving image 138 on which the first post-breathing correction has been performed in the work area 135 of the UI screen 130 for the user to confirm.
  • step S108 the control unit 101 determines whether a decision has been made to adjust the post-stage breathing correction amount in response to the user's operation. If a decision is made to adjust the breathing correction amount (Yes in step S108), the control unit 101 adjusts the latter-stage breathing correction amount in step S108, for example, according to the user's operation, and moves the process to step S105.
  • step S110 the control unit 101 determines whether to perform the second latter-stage breathing correction. As a result, if the second latter-stage breathing correction is to be performed (Yes in step S110), the control unit 101 calculates the breathing correction amount for each line for each frame constituting the moving image (correction target range) in step S111, and then The subsequent stage breathing correction amount for each line is calculated based on the calculated breathing correction amount for each line, the minimum value, and the internal breathing correction amount. Further, in step S112, the control unit 101 performs second rear-stage breathing correction using the trimming correction method using the calculated rear-stage breathing correction amount for each line.
  • step S113 the control unit 101 displays the moving image 138 on which the second latter-stage breathing correction has been performed in the work area 135 of the UI screen 130 for the user to confirm.
  • step S114 the control unit 101 determines whether a decision has been made to adjust the post-stage breathing correction amount in response to the user's operation. If it is determined to adjust the breathing correction amount (Yes in step S114), the control unit 101 adjusts the latter-stage breathing correction amount in accordance with a user operation, for example, in step S115, and moves the process to step S111.
  • step S116 the control unit 101 writes out the image data that has been subjected to the first post-breathing correction or the second post-breathing correction.
  • the second latter-stage breathing correction is performed after the first latter-stage breathing correction is performed.
  • only one of the first latter-stage breathing correction or the second latter-stage breathing correction designated by the user or automatically selected may be performed.
  • the embodiments are not limited to the specific examples described above, and various configurations may be adopted.
  • the imaging device 2 of the embodiment performs AF processing.
  • the imaging device 2 may not perform AF processing.
  • the information displayed on the UI screen 130 in the embodiment is merely an example, and other display methods may be used.
  • table information I2 (cam curve table, breathing correction amount table, and focal length table taking breathing into account) is stored in the memory 32 of the interchangeable lens 3.
  • the table information I2 may be stored in the memory 62 of the imaging device 2.
  • the imaging device 2 and the computer 4 may acquire the table information I2 from outside via a network or the like.
  • the imaging device 2 is configured such that the interchangeable lens 3 is detachable.
  • the imaging device 2 may have an integrated lens.
  • the table information I2 may be stored in the memory 62, or may be obtained from outside via a network or the like.
  • the information processing device (computer 4) of the embodiment includes an acquisition unit (data acquisition unit F31) that acquires meta information related to breathing correction associated with a moving image, and a breathing correction unit that performs breathing correction on a moving image based on the meta information.
  • a breathing correction section (post-stage breathing correction section F32) that performs correction is provided.
  • the computer 4 can perform post-stage breathing correction after imaging, regardless of whether real-time internal breathing correction has been performed by the imaging device 2.
  • the imaging device 2 may not be able to perform internal breathing correction in real time depending on the frame rate of the moving image and the processing load of internal breathing correction. Even in such a case, the computer 4 can perform post-stage breathing correction because the meta information is associated with the image data.
  • the amount of internal breathing correction may be limited from the viewpoint of image deterioration.
  • some users may desire to perform the breathing correction amount without any restriction.
  • the computer 4 can perform post-stage breathing correction with a value larger than the limited internal breathing correction amount. In this way, the computer 4 can improve the degree of freedom in breathing correction.
  • the breathing correction unit calculates a correction amount for each frame based on the meta information, and performs breathing correction on each frame using the calculated correction amount. Thereby, the computer 4 only needs to find the amount of post-breathing correction for each frame, so it is possible to reduce the processing load and perform the first post-breathing correction at high speed.
  • the breathing correction unit calculates a correction amount for each image position (line) for each frame forming a moving image based on the meta information, and performs breathing correction on each frame using the calculated correction amount.
  • the computer 4 can determine the post-breathing correction amount for each line and perform the second post-breathing correction based on the post-breathing correction amount that differs for each line, thereby making it possible to perform high-definition breathing correction.
  • the breathing correction unit determines the exposure center of gravity for each image position in the frame, and determines a correction amount according to the focus position at the determined exposure center of gravity. Thereby, the post-breathing correction amount for each line in each frame can be determined using the exposure center of gravity.
  • the breathing correction unit performs breathing correction on a predetermined correction target range in the moving image.
  • the computer 4 can reduce changes in the angle of view only for a range desired by the user, such as a portion of a moving image.
  • the breathing correction unit determines the minimum value of the correction values in the moving image, and determines the amount of correction based on the minimum value.
  • the computer 4 can use the latter breathing correction amount by setting the minimum value of the breathing correction amounts in the moving image by, for example, 1.0, thereby reducing image quality deterioration.
  • the breathing correction unit performs breathing correction with a uniform correction amount for each frame in a moving image (first breathing correction) and breathing correction with a different correction amount for each frame depending on the image position. It is possible to switch between the second breathing correction (second latter-stage breathing correction). This allows the computer 4 to perform post-breathing correction in consideration of image quality and processing speed.
  • the breathing correction section performs the first breathing correction and the second breathing correction based on the aperture information, lens information, lens identification information, information on the image sensor 55, or information on the focus position and zoom position included in the meta information. Switch. This allows the computer 4 to perform post-breathing correction in consideration of image quality and processing speed.
  • the breathing correction unit performs breathing correction in consideration of other breathing corrections when other breathing corrections have been performed on the moving image.
  • the computer 4 can calculate the latter-stage breathing correction amount in consideration of the internal breathing correction amount, so that the computer 4 can perform optimal breathing correction. .
  • the breathing correction unit inversely transforms the moving image using correction amounts of other breathing corrections, and then performs breathing correction on the inversely transformed moving image using a correction amount based on meta information.
  • the computer 4 can perform breathing correction using the latter-stage breathing correction amount that takes into account the internal breathing correction amount, so that the computer 4 can perform optimal breathing correction. It can be performed.
  • the breathing correction unit performs breathing correction based on the difference between the correction amount of other breathing corrections performed on the moving image and the correction amount included in the meta information.
  • the computer 4 can perform breathing correction using the latter-stage breathing correction amount that takes into account the internal breathing correction amount, so that the computer 4 can perform optimal breathing correction. It can be performed.
  • the information processing device includes a display control unit F33 that performs display regarding breathing correction. Thereby, the computer 4 can show the degree of breathing correction to the user.
  • the display control unit F33 displays the moving image 138 subjected to breathing correction and the moving image 137 before breathing correction side by side. Thereby, the computer 4 can allow the user to compare and view the moving image on which the breathing correction has been performed and the moving image before the breathing correction has been performed.
  • the display control unit F33 displays an image area (cutout frame 139) when breathing correction is performed on the moving image before breathing correction is performed. Thereby, the computer 4 allows the user to easily understand the portion of the image that will be cut out after the breathing correction has been performed.
  • the display control unit F33 displays information regarding the angle of view (focal length) of the moving images arranged on the timeline (the focal length displayed in the focal length display area 142). Thereby, the computer 4 can perform breathing correction to match the focal lengths (angles of view) of the moving images arranged in front and behind.
  • the display control unit F33 displays whether breathing correction can be performed on the moving image (icon 134). Thereby, the computer 4 can easily understand whether or not breathing correction can be executed.
  • the display control unit F33 displays a notification frame 143 to that effect (notification frame 143) when other breathing correction is performed that limits the moving image. Thereby, the computer 4 can easily make the user understand that breathing correction has been performed with restrictions.
  • the information processing method acquires meta information related to breathing correction associated with a moving image, and performs breathing correction on the moving image based on the meta information.
  • the program acquires meta information related to breathing correction associated with a moving image, and causes the information processing device to execute a process of performing breathing correction on the moving image based on the meta information.
  • Such a program can be recorded in advance in an HDD as a recording medium built into equipment such as a computer device, or in a ROM in a microcomputer having a CPU.
  • a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto Optical) disk, a DVD (Digital Versatile Disc), a Blu-ray Disc (registered trademark), a magnetic disk, a semiconductor memory It can be stored (recorded) temporarily or permanently in a removable recording medium such as a memory card.
  • a removable recording medium can be provided as so-called package software.
  • it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • the present technology can also adopt the following configuration.
  • An information processing device comprising: (2) The information processing device according to (1), wherein the breathing correction unit calculates a correction amount for each frame based on the meta information, and performs the breathing correction on each frame using the calculated correction amount.
  • (3) The breathing correction unit calculates a correction amount for each image position based on the meta information for each frame constituting the moving image, and performs the breathing correction on each frame using the calculated correction amount.
  • the information processing device according to 1) or (2).
  • the breathing correction unit determines the exposure center of gravity for each image position in the frame, and determines the correction amount according to the focus position at the determined exposure center of gravity.
  • the breathing correction unit performs the breathing correction on a predetermined correction target range in the moving image.
  • the breathing correction unit calculates a minimum value of correction values in the moving image, and calculates a correction amount based on the minimum value.
  • the breathing correction unit performs a first breathing correction that performs breathing correction with a uniform correction amount for each frame of the moving image, and a second breathing correction that performs breathing correction with a different correction amount for each frame depending on the image position.
  • the information processing device according to any one of (1) to (6).
  • the breathing correction unit performs the first breathing correction and the second breathing correction based on aperture information, lens information, lens identification information, image sensor information, or focus position and zoom position information included in the meta information.
  • the information processing device according to (7) which switches between correction and correction.
  • the breathing correction unit performs the breathing correction in consideration of the other breathing correction when another breathing correction has been performed on the moving image, according to any one of (1) to (8). information processing equipment.
  • the breathing correction unit inversely transforms the moving image using the correction amount of the other breathing correction, and then performs the breathing correction on the inversely transformed moving image using the correction amount based on the meta information.
  • the information processing device according to item 9).
  • the breathing correction unit performs the breathing correction based on the difference between the correction amount of the other breathing correction performed on the moving image and the correction amount included in the meta information.
  • Information processing device (12) The information processing device according to any one of (1) to (11), further comprising a display control unit that displays information regarding the breathing correction.
  • the display control unit displays the moving image subjected to the breathing correction and the moving image before the breathing correction side by side.
  • the information processing device (14) The information processing device according to (12) or (13), wherein the display control unit displays an image area when the breathing correction is performed on the moving image before the breathing correction is performed. (15) The information processing device according to any one of (12) to (14), wherein the display control unit displays information regarding the viewing angle of the moving images arranged on a timeline. (16) The information processing device according to any one of (12) to (15), wherein the display control unit displays whether or not breathing correction can be performed on the moving image. (17) The information processing device according to any one of (12) to (16), wherein the display control unit displays a message to that effect when another breathing correction with restrictions is applied to the moving image.

Abstract

情報処理装置は、動画像に関連付けられているブリージング補正に関するメタ情報を取得する取得部と、メタ情報に基づいて動画像にブリージング補正を行うブリージング補正部と、を備える。

Description

情報処理装置、情報処理方法、プログラム
 本技術は、情報処理装置、情報処理方法及びブログラムに関するものであり、特には、フォーカス調整に伴う画角変化の補正であるブリージング補正の技術に関する。
 フォーカス調整が可能に構成されたカメラシステムにおいては、フォーカス調整に伴い画角が変化する現象、所謂ブリージングが生じることが知られている。
 下記特許文献1には、撮像素子によって撮像することにより得られる動画像に対してブリージング補正を行うことが記載されている。
特開2008-42405号公報
 ここで、上記特許文献1に記載の技術では、撮像素子によって撮像することにより得られる画像に対してリアルタイムにブリージング補正が行われる。そのため、上記特許文献1に記載の技術では、ブリージング補正の処理負荷によってはブリージング補正を行えなかったり、画質劣化を低減するためにブリージング補正によってブリージングを完全には除去できなかったり等、ブリージング補正の自由度に制限がかかることがあった。
 本技術は上記事情に鑑み為されたものであり、ブリージング補正の自由度を向上することを目的とする。
 本技術に係る情報処理装置は、動画像に関連付けられているブリージング補正に関するメタ情報を取得する取得部と、前記メタ情報に基づいて前記動画像にブリージング補正を行うブリージング補正部と、を備える。
 これにより、情報処理装置は、撮像時に動画像に対してブリージング補正を行われたか否かに拘わらず、メタ情報に基づいて動画像に対してブリージング補正を行うことが可能となる。
図1は、本技術に係る実施形態としてのブリージング補正システム1の構成を示した図である。 図2は、撮像装置の構成を示した図である。 図3は、撮像装置及び交換レンズの内部構成を示したブロック図である。 図4Aは、被写体位置、被写体距離、ピント位置、合焦距離、フォーカスレンズ位置、ズームレンズ位置を説明する図である。図4Bは、焦点距離を説明する図である。 図5は、レンズ側制御部の機能ブロック図である。 図6は、ボディ側制御部の機能ブロック図である。 図7は、ブリージング補正の概要を説明する図である。 図8は、ブリージング補正量テーブルの例を示した図である。 図9は、カムカーブテーブルの例を示した図である。 図10は、ブリージングを加味した焦点距離テーブルの例を示した図である。 図11は、メタ情報を説明する図である。 図12Aは、リミット方式における内部ブリージング補正量を説明する図である。図12Bは、比例方式における内部ブリージング補正量を説明する図である。 図13は、ボディ側制御部の処理手順を示したフローチャートである。 図14は、コンピュータの構成を示したブロック図である。 図15は、制御部の機能ブロック図である。 図16は、第一後段ブリージング補正を説明する図である。 図17は、露光重心を説明する図である。 図18Aは、内部ブリージング補正におけるブリージング補正量を説明する図である。図18Bは、第一後段ブリージング補正におけるブリージング補正量を説明する図である。 図19は、第二後段ブリージング補正を説明する図である。 図20は、後段ブリージング補正の処理方法の一例を説明する図である。 図21は、後段ブリージング補正の処理方法の別例を説明する図である。 図22は、UI画面の一例を説明する図である。 図23は、UI画面の別例を説明する図である。 図24は、UI画面の別例を説明する図である。 図25は、UI画面の別例を説明する図である。 図26は、制御部の処理手順を示したフローチャートである。
 以下、実施の形態を次の順序で説明する。
<1.ブリージング補正システム>
<2.撮像装置>
[2.1.撮像装置の構成]
[2.2.フォーカス関連処理]
[2.3.AF処理]
[2.4.メタ情報取得処理]
[2.5.内部ブリージング補正]
[2.6.メタ情報関連付け処理]
[2.7.処理手順]
<3.コンピュータ>
[3.1.コンピュータの構成]
[3.2.後段ブリージング補正]
[3.2.1.第一後段ブリージング補正]
[3.2.2.第二後段ブリージング補正]
[3.2.3.内部ブリージング補正後の後段ブリージング補正]
[3.3.後段ブリージング補正のUI画面]
[3.4.処理手順]
<4.変形例>
<5.実施形態のまとめ>
<6.本技術>
<1.ブリージング補正システム>
 図1は、本技術に係る実施形態としてのブリージング補正システム1の構成を示した図である。図1に示すように、ブリージング補正システム1は、撮像装置2及びコンピュータ4を備える。
 撮像装置2は、フォーカスレンズ16(図3参照)を含む交換レンズ3を介して入射する被写体像を撮像することで得られる画像(動画像)に対してリアルタイムにブリージング補正を行うことが可能である。また、撮像装置2は、ブリージング補正に関する情報を取得するとともに、取得した情報をメタ情報として画像データに関連付ける。
 コンピュータ4は、例えばパーソナルコンピュータ、携帯端末装置又はタブレット端末装置等であり、撮像装置2から画像データ及びメタ情報を取得可能である。なお、コンピュータ4は、撮像装置2であってもよい。
 また、コンピュータ4は、クラウドコンピューティングを行うサーバ等であってもよい。この場合、コンピュータ4は、撮像装置2からパーソナルコンピュータ、携帯端末装置又はタブレット端末装置等に送信された画像データ及びメタ情報を、ネットワークを介して取得する。
 コンピュータ4は、取得した画像データに基づく動画像に対して、メタ情報に基づいてブリージング補正を行うことが可能である。
 このように、ブリージング補正システム1では、撮像装置2でリアルタイムにブリージング補正を行うとともに、コンピュータ4で撮像後にブリージング補正を行うことが可能となっている。
 また、ブリージング補正システム1では、撮像装置2でブリージング補正を行なわずに、コンピュータ4で撮像後にブリージング補正を行うことも可能である。
 なお、ここで言うブリージングとは、フォーカス調整に伴い画角が変化する現象を意味するものであり、ブリージング補正とは、そのようなフォーカス調整に伴う画角変化の補正を意味する。ブリージング補正は、画像(動画像を構成するフレーム)に対するトリミング(電子切り出し)により行われる。
 以下では、撮像装置2においてリアルタイムに行われるブリージング補正を内部ブリージング補正と表記し、コンピュータ4において撮像後に行われるブリージング補正を後段ブリージング補正と表記する。そして、内部ブリージング補正と後段ブリージング補正とを区別することなく説明する場合には単にブリージング補正と表記する。
<2.撮像装置>
[2.1.撮像装置の構成]
 図2は、撮像装置2の構成を示した図である。
 撮像装置2(ボディ)は、交換レンズ3が着脱自在に構成されたデジタルカメラ装置として構成されている。撮像装置2は、静止画像の撮像機能のみではなく、動画像の撮像機能を有する。
 図2に示すように、撮像装置2は、交換レンズ3を介して入射する被写体像を撮像する撮像素子55、撮像素子55により得られる撮像画像や各種の操作画面等のGUIを表示可能な表示部61、ユーザが各種の操作入力を行うための操作部65等を備えている。
 また、撮像装置2は、例えば撮像素子55による撮像画像を記録するための構成や、撮像素子55による撮像画像に対する画像信号処理を行うための構成、交換レンズ3との通信を行うための構成等を備えている。
 交換レンズ3は、フォーカスレンズ、ズームレンズ等、各種のレンズが内部に設けられたレンズユニットである。また、交換レンズ3は、これらのレンズを駆動する駆動部、駆動部に対する駆動信号を出力する制御部、撮像装置2に対する接続機能及び通信機能を備えたマウント部等を備えている。
 図3は、撮像装置2及び交換レンズ3の内部構成を示したブロック図である。
 図3に示すように、交換レンズ3は、撮像装置2のマウント部51に対して着脱自在に取り付けられるマウント部11を備えている。マウント部11は、撮像装置2と電気的に接続するための複数の端子を有する。
 また、交換レンズ3は、レンズ側制御部12、ズームレンズ13、手振れ補正レンズ14、絞り15、フォーカスレンズ16、操作部31、メモリ32、電源制御部33を備えている。
 さらに、交換レンズ3は、ズームレンズ駆動部21、手振れ制御部22、絞り制御部23、フォーカスレンズ駆動部24及び検出部17を備えている。
 レンズ側制御部12は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を有するマイクロコンピュータを備えて構成され、CPUがROMやメモリ32等の所定の記憶装置に記憶されたプログラムをRAMに読み出して実行することにより交換レンズ3の全体制御を行う。
 例えば、レンズ側制御部12は、マウント部11の所定の通信端子を介して供給された撮像装置2からの指示、又は、操作部31が受け付けたユーザの操作に基づき、ズームレンズ13の位置を制御する。
 具体的に、レンズ側制御部12は、例えば磁気センサ(MRセンサ)等で構成される検出部17により検出されたズームレンズ13の現在位置を取得する。そして、レンズ側制御部12は、取得結果に基づいてズームレンズ13を所定の位置に移動させるための駆動方向及び駆動量を決定し、決定した駆動方向及び駆動量を移動命令とともにズームレンズ駆動部21に出力する。
 ズームレンズ駆動部21は、レンズ側制御部12から供給された移動命令に基づいて、指示された駆動方向及び駆動量となるようにズームレンズ13を光軸方向に移動させる。
 ここで、検出部17は、ズームレンズ13、手振れ補正レンズ14、及びフォーカスレンズ16の位置や、絞り15の開口径等、交換レンズ3の状態を検出するための構成を包括的に表したものである。検出部17において、レンズの位置の検出は、例えば、磁気センサ、フォトダイオードアレイ、ポテンショメータ、反射式エンコーダ等で行うことができる。
 レンズ側制御部12は、手振れを補正するように手振れ補正レンズ14を制御する。具体的に、レンズ側制御部12は、検出部17における手振れ検出センサによって検出された手振れ量に基づいて、手振れ量を打ち消す方向の手振れ補正レンズ14の駆動方向及び駆動量を決定し、決定した駆動方向及び駆動量を移動命令とともに手振れ制御部22に出力する。
 検出部17における手振れ検出センサは、例えば、ジャイロセンサと三軸加速度センサの両方、又はいずれか一方で構成される。ジャイロセンサは、手振れ補正レンズ14の補正方向として、ピッチ(Pitch)又はヨー(Yaw)に対応する方向のずれ(ブレ)を検出する場合に用いられる。三軸加速度センサは、光軸方向をZ軸としたときに、X軸とY軸の方向のずれ(ブレ)を検出する場合に用いられる。
 手振れ制御部22は、レンズ側制御部12から供給された移動命令に基づいて、指示された駆動方向及び駆動量となるように手振れ補正レンズ14を移動させる。
 また、レンズ側制御部12は、電源の供給がオフされた場合に、手振れ補正レンズ14をメカニカルにロックする制御を行う。手振れ補正レンズ14は、撮像装置2から交換レンズ3へ電源が供給されている状態では、手振れ制御部22を介した制御によって、所定の位置に制御が保たれている。一方、電源の供給がオフされると、手振れ制御部22による位置制御が停止するため、手振れ補正レンズ14は重力方向に所定量だけ落下する。
 そこで、レンズ側制御部12は、電源の供給がオフされるタイミングに応じて、手振れ制御部22を介して、手振れ補正レンズ14をメカニカルにロックさせ、落下を防止する。手振れ制御部22は、レンズ側制御部12から供給された固定命令に基づいて手振れ補正レンズ14をメカニカルにロックする。
 また、レンズ側制御部12は、マウント部11の所定の通信端子を介して供給された撮像装置2からの指示等に応じて、絞り15(の開口径)を制御する。具体的に、レンズ側制御部12は、検出部17における絞り検出センサによって検出された絞り15の開口径を取得して、撮像装置2から指示されたF値となるように絞り制御部23に指令を出し、絞り15を駆動させる。絞り制御部23は、レンズ側制御部12から指示された開口径となるように絞り15を駆動させる。
 さらに、レンズ側制御部12は、マウント部11の所定の通信端子を介して供給された撮像装置2からの指示に基づき、フォーカスレンズ16の位置を制御する。
 ここで、例えばAF(Auto Focus)処理においては、撮像装置2から目標とするフォーカスレンズ位置の情報(目標フォーカスレンズ位置)がレンズ側制御部12に指示される。
 レンズ側制御部12は、検出部17からフォーカスレンズ16の現在位置を取得し、取得した該現在位置の情報と撮像装置2から指示された目標フォーカスレンズ位置の情報とに基づき、フォーカスレンズ16を目標とする位置に移動させるための駆動方向及び駆動量を決定する。そして、レンズ側制御部12は、決定した駆動方向及び駆動量を移動命令とともにフォーカスレンズ駆動部24に出力する。
 フォーカスレンズ駆動部24は、指示された駆動方向及び駆動量となるようにフォーカスレンズ16を光軸方向に移動させる。
 ここで、フォーカスレンズ16は、一又は複数の光学要素を含む「フォーカスレンズ群」として構成される。フォーカスレンズ群が複数の光学要素を含む場合、それらの光学要素は、フォーカス調整に伴い一体に変位されることになる。
 なお、この点はズームレンズ13についても同様である。すなわち、ズームレンズ13は、一又は複数の光学要素を含む「ズームレンズ群」として構成されるものであり、ズームレンズ群が複数の光学要素を含む場合、それら光学要素はズーム調整に伴い一体に変位されるものとなる。
 本例では、ズームレンズ13、フォーカスレンズ16はそれぞれ一つのズームレンズ群、フォーカスレンズ群で構成されるものとしているが、それぞれ複数のズームレンズ群、フォーカスレンズ群を備える構成とすることも可能である。
 また、レンズ側制御部12は、検出部17が検出するズームレンズ13の位置(以下「ズームレンズ位置」と表記する)、及びフォーカスレンズ16の位置(以下「フォーカスレンズ位置」と表記する)を撮像装置2(ボディ側制御部52)に送信する処理を行う。
 フォーカスレンズ駆動部24は、レンズの駆動源として、例えば超音波モータ、DCモータ、リニアアクチュエータ、ステッピングモータ、ピエゾ素子(圧電素子)等を有する構成とすることができる。
 なお、フォーカス調整については、操作部31が受け付けたユーザの操作に応じて行われるように構成することも可能である。
 メモリ32は、例えばEEPROM(EEP:Electrically Erasable Programmable)等の不揮発性メモリで構成され、レンズ側制御部12の動作プログラムや各種データの記憶に用いることができる。
 メモリ32には、レンズ識別情報I1、テーブル情報I2(レンズ情報)が記憶されるが、これらについては後に改めて説明する。
 電源制御部33は、撮像装置2から供給された電源の電力量を検出し、検出した電力量に基づいて交換レンズ3内の各部(レンズ側制御部12や各種の駆動部)に対して電力量を最適に配分して電源を供給する。
 ボディ側となる撮像装置2には、交換レンズ3が着脱可能に取り付けられるマウント部51が設けられる。マウント部51は、交換レンズ3のマウント部11と電気的に接続するための複数の端子を有する。
 撮像装置2のマウント部51に交換レンズ3が装着されると、マウント部51と交換レンズ3におけるマウント部11との間で、対応する端子同士が電気的かつ物理的に接続される。接続される端子には、例えば、電源供給のための端子(電源供給端子)、コマンドやデータを伝送するための端子(通信端子)、同期信号を伝送するための端子(同期信号端子)等がある。
 撮像装置2は、さらに、ボディ側制御部52、シャッタ53、シャッタ制御部54、撮像素子55、ADC(Analog to Digital Converter)56、フレームメモリ57、画像信号処理部58、記録部59、記録媒体60、表示部61、メモリ62、電源制御部63、電源部64、操作部65及び通信部66を備えている。
 電源制御部63は、電源部64から供給される電源を、ボディ側制御部52を始めとした撮像装置2の各部へ供給する。また、電源制御部63は、撮像装置2の動作状態に基づき、交換レンズ3に供給可能な電源電力量を算出し、マウント部51を介して交換レンズ3に電源を供給する。
 電源部64は、例えば、NiCd電池やNiMH電池、Li電池等の二次電池を有して構成される。なお、電源部64としては、ACアダプタ等を介して商用交流電源からの電源供給を受けることが可能に構成することもできる。
 ボディ側制御部52は、CPU、ROM及びRAM等を有するマイクロコンピュータを備えて構成され、CPUがROMやメモリ62等の所定の記憶装置に記憶されたプログラムをRAMに読み出して実行することにより、撮像装置2及び交換レンズ3の全体制御を行う。
 メモリ62は、例えばEEPROM等の不揮発性メモリで構成され、ボディ側制御部52の動作プログラムや各種データの記憶に用いることができる。
 ボディ側制御部52は、操作部65から供給されたユーザの操作を表す操作信号に基づいて、撮像素子55による撮像処理を実行させる。さらに、所定のコマンドを、マウント部51を介して交換レンズ3側に送信し、フォーカスレンズ16やズームレンズ13等を駆動させる。
 また、ボディ側制御部52は、例えばズームレンズ位置及びフォーカスレンズ位置を示す情報等を、交換レンズ3における検出部17から取得可能とされる。
 シャッタ53は、撮像素子55の前面(被写体側)に配置されており、シャッタ制御部54の制御に従って開閉する。シャッタ53が閉状態であるとき、交換レンズ3の光学系を通過してきた被写体の光が遮断される。シャッタ制御部54は、シャッタ53の開閉状態を検出し、検出結果を示す情報をボディ側制御部52に供給する。シャッタ制御部54は、ボディ側制御部52の制御に基づいてシャッタ53を開状態又は閉状態に駆動する。
 撮像素子55は、例えば、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等によるイメージセンサとして構成され、被写体を撮像することで得られる受光信号を出力する。
 撮像素子55がCCDセンサやCMOSセンサで構成される場合には、電子シャッタを用いることができるため、シャッタ53は省略することも可能である。シャッタ53が省略された場合、その制御に用いられるシャッタ制御部54も省略される。
 撮像素子55は、画像撮像用の画素(RGB画素)と、像面位相差法によるAF処理に用いる検波情報を取得するための画素、すなわち一対の像間の位相差情報(瞳分割で形成される一対の像間の位相差情報)を取得するための位相差検出画素とを有している。
 撮像素子55において位相差検出画素は、例えばベイヤ配列等の所定の配列パターンによりRGB画素が二次元配列された画素配列面において離散的に配置されている。
 撮像素子55においてRGB画素の光電変換で得られた受光信号は、ADC56でデジタル信号に変換され、フレームメモリ57に一時保持された後、画像信号処理部68に入力される。
 図3では、上記のようにRGB画素の受光信号がデジタル変換されて得られる撮像画像信号のことを「撮像画像信号Si」と表記している。
 一方、撮像素子55において位相差検出画素の光電変換で得られた受光信号は、ADC56でデジタル信号に変換されてボディ側制御部52に供給される。
 図3では、このように位相差検出画素の受光信号がデジタル変換されて得られる信号を「位相差画素信号Sp」と表記している。
 ボディ側制御部52は、ADC56を介して供給される位相差画素信号Spに基づき、一対の像間の位相差を解析して、フォーカスを合わせる対象となる被写体(合焦対象物)に対するフォーカスのずれ量、すなわちデフォーカス量DFを計算する。
 ボディ側制御部52は、このように計算されたデフォーカス量DFに基づいてAF処理を行うが、これについては改めて説明する。
 また、ボディ側制御部52は、ブリージング補正に関する処理を行う。
 ボディ側制御部52は、ブリージング補正に関するメタ情報を取得する処理(メタ情報取得処理)、及び、上記した内部ブリージング補正の処理(内部ブリージング補正処理)を行うが、これについては後述する。
 画像信号処理部58は、フレームメモリ57を介して入力される撮像画像に対して所定の画像信号処理を施す。ここでの画像信号処理としては、例えばデモザイク処理やホワイトバランス(WB)調整、ガンマ補正の処理等を挙げることができる。
 画像信号処理部58は、フレームメモリ57を介して入力されるRAW画像としての撮像画像に画像信号処理を施した後、所定のファイル形式の画像データに変換し、記録部59を介して記録媒体60に記録させる。
 このとき、ボディ側制御部52は、詳しくは後述するように、記録媒体60に記録される画像データと、ブリージング補正に関するメタ情報とを関連付ける。メタ情報を関連付ける方法としては、画像データの一部として関連付けるようにしてもよく、また、画像データとは別のデータとして関連付けるようにしてもよい。
 また、記録部59が、メタ情報と画像データとを関連付け、記録媒体60に記録させるようにしてもよい。また、通信部66が、メタ情報と画像データとを関連付け、コンピュータ4に送信するようにしてもよい。すなわち、記録部59及び通信部66がメタ情報関連付け部として機能してもよい。
 また、画像信号処理部58は、画像信号処理を施した後の撮像画像を、所定の表示フォーマットに従った画像信号に変換して、表示部61に供給し、撮像された画像を表示させる。
 また、画像信号処理部58は、動画像に対して内部ブリージング補正処理を行うことが可能とされる。内部ブリージング補正処理においては、ボディ側制御部52からの指示に基づき、画像信号処理部58による画像(動画像を構成するフレーム)のトリミングにより行われる。
 また、本例における画像信号処理部58は、歪曲収差補正のための撮像画像の拡大処理や縮小処理を行うことが可能とされる。
 なお、歪曲収差補正の手法については、例えば「特開2019-208168号公報」に記載の手法を採用することができる。
 記録媒体60は、不揮発性メモリで構成され、記録部59は、記録媒体60に対するデータの書き込み、及び記録媒体60に記録されたデータの読み出しを行うことが可能に構成されている。ここで、記録媒体60は、撮像装置2に対して着脱自在とされてもよい。
 表示部61は、液晶パネルや有機ELパネル等のパネル型表示装置で構成され、画像表示が可能とされる。
 表示部61は、マウント部51が配置された撮像装置2の正面とは反対側の背面に実装され、いわゆるスルー画像の表示や、記録媒体60から読み出された画像の表示、各種操作画面等としてのGUIの表示等を行うことができる。
 操作部65は、例えばシャッタボタン、モードダイヤル、ズームボタン等の各種ハードウエアキーや、表示部61の表示画面に対するタッチ操作を検出可能に設けられたタッチパネル等、ユーザが撮像装置2に対する操作入力を行うための操作子を包括的に表している。
 操作部65は、ユーザの操作を受け付けて、操作に応じた操作信号をボディ側制御部52に供給する。
 通信部66は、例えばコンピュータ4との間で有線又は無線による通信を行う。
 ここで、以降の説明においてはAF処理及び内部ブリージング補正処理を含むフォーカス関連処理について述べるが、本明細書ではフォーカス関連処理に係る用語として「被写体位置」「被写体距離」「ピント位置(合焦位置)」「合焦距離」「フォーカスレンズ位置」「ズームレンズ位置」「焦点距離」を使用する。
 これらの用語の定義を図4A及び図4Bを参照して説明しておく。図4Aは、被写体位置、被写体距離、ピント位置、合焦距離、フォーカスレンズ位置、ズームレンズ位置を説明する図である。図4Bは、焦点距離を説明する図である。
 先ず、図4Aにおいて、「被写体位置」は、文字通り被写体が存在する位置を表すものあり、「被写体距離」は、撮像装置2から被写体までの距離を表すものである。
 「ピント位置」は、ピントの合っている位置を表すものであり、「合焦位置」と換言できるものである。「合焦距離」は、撮像装置2からピント位置までの距離を意味する。
 ここで、図4Aを参照して理解されるように、被写体距離や合焦距離は、交換レンズ3の外側となる位置までの距離となるものであり、例えば2m、3m、4m、・・・といった実距離で表される値となる。
 「フォーカスレンズ位置」は、図4A中に示すような交換レンズ3内におけるフォーカスレンズ16の可動範囲内におけるフォーカスレンズ16の位置を意味するものであり、「ズームレンズ位置」は、同様に交換レンズ3内におけるズームレンズ13の可動範囲内におけるズームレンズ13の位置を意味するものである。
 さらに、「焦点距離」は、図4Bに示すように、撮像素子55から焦点までの距離を表すものである。なお、図4Bに例示しているように、「被写体距離」は、厳密には、焦点から「被写体位置」までの距離に相当するものである。
 ここで、像面位相差法で求まるデフォーカス量DFは、図4Aにおける「被写体位置」が合焦対象物の位置であるとすれば、「被写体位置」と「ピント位置」とのずれ量を表すものとなる。つまり、この場合におけるデフォーカス量DFは、フォーカスレンズ位置の誤差量を直接的に表すものではない。
 なお、以下の説明では、「ズームレンズ位置」として、ズームレンズ13の位置を直接的に示す情報を用いる例を挙げるが、「ズームレンズ位置」としては、必ずしもズームレンズ13の位置を直接的に示す情報に限らず、ズームレンズ13の位置に相関し、且つズームレンズ13の位置の情報に一意に変換可能な情報である「ズーム位置」の情報を用いることもできる。
 本例で前提とするAF処理の基本的な流れとしては、ボディ側制御部52が、デフォーカス量DFに基づいて、合焦対象物に対して合焦するのに必要なフォーカスレンズ16の目標位置(以下「目標フォーカスレンズ位置」と表記)を求め、目標フォーカスレンズ位置の情報を交換レンズ3側に指示するという流れとなる。
[2.2.フォーカス関連処理]
 図5及び図6を参照して、交換レンズ3及び撮像装置2がそれぞれ有する機能について説明する。
 図5は、レンズ側制御部12の機能ブロック図である。図6は、ボディ側制御部52の機能ブロック図である。
 図5に示すようにレンズ側制御部12は、送信処理部F11及び定常通信処理部F12しての機能を有する。
 また、図6に示すようにボディ側制御部52は、AF処理部F21、メタ情報取得部F22、内部ブリージング補正部F23及びメタ情報関連付け部F24としての機能を有する。
 送信処理部F11は、交換レンズ3の装着されたときに撮像装置2が行った問合せに応じて、交換レンズ3を識別するためのレンズ識別情報I1、及び、ブリージング補正についての補正特性を示すテーブル情報I2を撮像装置2に送信する処理を行う。
 ここで、テーブル情報I2の説明に先立ち、ブリージングとしての画角変化の態様とブリージング補正の概要について図7を参照して説明しておく。
 図7は、ブリージング補正の概要を説明する図である。
 図7において、上段に「補正前」として示しているのは、同距離の同被写体を撮像した場合の無限遠から最至近までのピント位置の変化に対する画角変化の例である。図示のように、無限遠では撮像画像における像(図中の例ではアルファベットのA)の大きさが最も大きく、最至近では像の大きさが最も小さく、無限遠と最至近の中間となるピント位置では像の大きさは無限遠の場合よりも小さく最至近の場合よりは大きくなる。この点からも理解されるように、ブリージングとしての画角変化は、無限遠における画角が最も狭く、最至近側へのピント位置の変化に対して画角が徐々に広がっていく態様により生じる。
 このため、トリミングによるブリージング補正としては、図中下段の「補正後」として示すように、無限遠でのトリミング倍率を「1.0」(つまりトリミングなし)とし、最至近側へのピント位置の変化に対してトリミング倍率を徐々に大きくしていくことで行われる。
 これにより、ピント位置が変化しても(つまりフォーカス調整が行われても)、撮像画像の画角が変化しないようにすることができる。
 図8は、ブリージング補正量テーブルの例を示した図である。図9は、カムカーブテーブルの例を示した図である。図10は、ブリージングを加味した焦点距離テーブルの例を示した図である。
 上記したテーブル情報I2には、図8に示すようなブリージング補正量テーブル、図9に示すようなカムカーブテーブル、及び、図10に示すようなブリージングを加味した焦点距離テーブルが含まれている。
 図8に示すように、ブリージング補正量テーブルは、ズームレンズ位置とピント位置との組み合わせ毎にブリージング補正量が示されている。具体的に、ブリージング補正量テーブルにおいて、縦軸に示すズームレンズ位置は、図4Aで示したズームレンズ可動範囲の一端となるズームレンズ位置から他端となるズームレンズ位置までの各ズームレンズ位置を表し、横軸のピント位置は、無限遠に対応するピント位置から最至近に対応するピント位置までの各ピント位置を表す。
 なお、ブリージング補正量テーブルにおいて、ズームレンズ位置やピント位置の刻み幅については任意である。
 また、ブリージング補正量テーブルにおいて、ブリージング補正量は、本例ではブリージング補正を撮像画像のトリミングにより行うためのトリミング倍率を示す情報とされる。
 ブリージングとしての画角変化の特性は交換レンズ3の種類や個体によって異なり得るものである。そのため、交換レンズ3毎に、その交換レンズ3の特性に応じたブリージング補正量テーブルをメモリ32に格納しておくようにしている。
 このようなブリージング補正量テーブルを用いてブリージング補正が行われることで、交換レンズ3毎の特性に応じた適切なブリージング補正を実現することができる。
 図9に示すように、カムカーブテーブルは、ズームレンズ位置とフォーカスレンズ位置とピント位置の三者の関係性を示している。具体的にカムカーブテーブルは、ズームレンズ位置とピント位置の組み合わせ毎にフォーカスレンズ位置が示されている。なお、カムカーブテーブルにおいて、ズームレンズ位置やピント位置の刻み幅については任意である。
 このようなカムカーブテーブルにより、ズームレンズ位置とピント位置の情報が与えられることで、それらズームレンズ位置とピント位置の組み合わせに対応するフォーカスレンズ位置の情報を取得できる。また、ズームレンズ位置とフォーカスレンズ位置の情報が与えられることで、それらズームレンズ位置とフォーカスレンズ位置の組み合わせに対応するピント位置の情報を取得することもできる。
 カムカーブテーブルとしても、交換レンズ3の種類や個体によって特性が異なり得るため、交換レンズ3毎にその交換レンズ3の特性に応じたカムカーブテーブルをメモリ32に記憶させている。
 図10に示すように、ブリージングを加味した焦点距離テーブルは、ズームレンズ位置とピント位置の組み合わせ毎に、焦点距離(画角)が示されている。なお、ブリージングを加味した焦点距離テーブルにおいて、ズームレンズ位置やピント位置の刻み幅については任意である。
 このブリージングを加味した焦点距離テーブルにより、ピント位置を無限遠から最至近に変化させた際の画角の変化特性が、ズームレンズ位置毎に示される。
 ブリージングを加味した焦点距離テーブルによって取得される焦点距離は、ズームレンズ位置が変動しない場合に、カムカーブテーブル及びブリージング補正量テーブルを用いて取得されるブリージング補正量に代えてブリージング補正量を算出する際に使用されることがある。例えば、無限遠での焦点距離に対する焦点距離テーブルによって取得される焦点距離の比率をブリージング補正量として算出することが可能である。
 また、図4において、定常通信処理部F12は、交換レンズ3から撮像装置2に対して逐次の送信が必要とされる情報を送信する機能となる。具体的には、一定間隔で定期的な送信を行う機能である。
 撮像装置2に対して定期的な送信を行う情報としては、少なくとも、フォーカスレンズ位置及びズームレンズ位置の情報を挙げることができる。すなわち、定常通信処理部F12は、検出部17が検出するフォーカスレンズ位置及びズームレンズ位置の情報を撮像装置2(ボディ側制御部52)に逐次送信する処理を行う。
[2.3.AF処理]
 続いて、ボディ側制御部52の機能について説明する。
 AF処理部F21は、AF処理、具体的には、上記したデフォーカス量DFを取得する処理や、デフォーカス量DFに基づき合焦対象物にピントを合わせるための目標フォーカスレンズ位置を取得するための処理を行う。
 デフォーカス量DFから目標フォーカスレンズ位置を求めるにあたっては、上記した定常通信処理部F12により交換レンズ3側から逐次送信されるフレーム毎のズームレンズ位置及びフォーカスレンズ位置の情報と、送信処理部F11により送信されたカムカーブテーブルとを用いる。
 具体的に、AF処理部F21は、交換レンズ3側から送信された現在の(現フレームの)ズームレンズ位置及びフォーカスレンズ位置の情報とカムカーブテーブルとに基づき、合焦対象物にピントを合わせるためのピント位置(以下「目標ピント位置」と表記する)を求める。
 すなわち、AF処理部F21は、現在のズームレンズ位置及びフォーカスレンズ位置とカムカーブテーブルとに基づき、現在のピント位置を取得する。そして、AF処理部F21は、現在のピント位置とデフォーカス量DFとに基づき、目標ピント位置を算出する。
 次いで、AF処理部F21は、目標ピント位置と現在のズームレンズ位置とカムカーブテーブルとに基づき、目標フォーカスレンズ位置を取得する。
 AF処理部F21は、上記のようにして取得した目標フォーカスレンズ位置の情報をレンズ側制御部12に指示する。これにより、交換レンズ3においては、フォーカスレンズ位置が目標フォーカスレンズ位置に一致するようにフォーカスレンズ16が駆動され、AFが実現される。
 なお、上記ではデフォーカス量DFから目標フォーカスレンズ位置を求める処理を撮像装置2側で行う例としたが、デフォーカス量DFから目標フォーカスレンズ位置を求める処理は交換レンズ3側で行うことも可能である。その場合、ボディ側制御部52は、デフォーカス量DFの情報をレンズ側制御部12に送信し、レンズ側制御部12が、メモリ32に記憶されたカムカーブテーブルに基づいて目標フォーカスレンズ位置を取得するものとすればよい。
[2.4.メタ情報取得処理]
 図11は、メタ情報を説明する図である。メタ情報取得部F22は、ブリージング補正に関するメタ情報を取得する。図11に示すように、画像データに対して関連付けられるメタ情報は、テーブル情報、ブリージング補正量最小値最大値情報、焦点距離情報、内部ブリージング補正有無情報、内部ブリージング補正量情報、ブリージング補正量情報、光学的ブリージング補正情報、レンズ位置情報、撮像設定情報、撮像素子情報、レンズ識別情報、後段ブリージング補正情報等が含まれている。
 これらメタ情報の中には、画像データを構成するフレーム毎に変化するものと、画像データを構成するフレーム毎には変化しないものが含まれている。そして、フレーム毎に変化するメタ情報をフレームメタ情報と表記し、フレームによっては変化しないメタ情報をクリップメタ情報と表記することがある。また、フレームメタ情報の中には、フレーム毎に値が変化するメタ情報と、所定の変化時にのみ値が変化してそれ以外のタイミングでは値が変化しないメタ情報とが含まれる。
 また、フレーム毎などリアルタイムに取得されるメタ情報をリアルタイムメタ情報、一度しか取得されないメタ情報をノンリアルタイムメタ情報と呼ぶこともある。
 テーブル情報は、ブリージング補正量を求める際に使用されるテーブルであり、具体的にはカムカーブテーブル及びブリージング補正量テーブルである。メタ情報取得部F22は、交換レンズ3に対して行った問合せに応じて交換レンズ3が送信したテーブル情報を取得する。
 ここで、テーブル情報は、動画撮影中に交換レンズ3が取り外されない限り変更されることはないため、通常はクリップメタ情報として扱われる。ただし、動画撮像中に交換レンズ3が交換された場合には、交換レンズ3が交換されたタイミング(変化時)でテーブル情報が取得されることになるため、フレームメタ情報として扱われる。
 ブリージング補正量最小値最大値情報は、画像データを構成する各フレームについて取得されるブリージング補正量のうち、最小値となるブリージング補正量と、最大値となるブリージング補正量とを示すものでありクリップメタ情報である。メタ情報取得部F22は、動画像の撮像時に、フレーム毎にブリージング補正量を取得すると、取得したブリージング補正量が最小値未満、又は、最大値より大きいかを判定する。そして、メタ情報取得部F22は、求めたブリージング補正量が最小値未満である場合には、求めたブリージング補正量に最小値を更新する。また、メタ情報取得部F22は、求めたブリージング補正量が最大値より大きい場合には、求めたブリージング補正量に最大値を更新する。このようにすることで、メタ情報取得部F22は、画像データ(動画像)におけるブリージング補正量の最小値及び最大値を取得する。
 焦点距離情報は、カムカーブテーブル及びブリージングを加味した焦点距離テーブルに基づいて取得される焦点距離を示す情報であり、フレームメタ情報である。メタ情報取得部F22は、フレーム毎に検出部17から取得されるフォーカスレンズ位置及びズームレンズ位置と、カムカーブテーブル及びブリージングを加味した焦点距離テーブルとに基づいて焦点距離を取得する。
 内部ブリージング補正有無情報は、撮像装置2によって内部ブリージング補正が行われたか否かを示す情報であり、通常は画像データ単位に内部ブリージング補正の実行又は不実行が決定されるためクリップメタ情報として扱われる。ただし、撮像装置2では、画像データにおける所定の画像範囲(一部)にだけ内部ブリージング補正が行われ、他の画像範囲は内部ブリージング補正が行われないようすることも可能である。そのため、一部にだけ内部ブリージング補正が行われた場合には、内部ブリージング補正が行われたフレームに関連付けるフレームメタ情報として扱われるようにしてもよい。
 メタ情報取得部F22は、動画像の撮像が終了すると、内部ブリージング補正部F23によって内部ブリージング補正が行われたか否かを判定し、その判定結果を内部ブリージング補正有無情報として取得する。
 内部ブリージング補正量情報は、内部ブリージング補正において実際に施した内部ブリージング補正量を示す情報であり、フレームメタ情報である。メタ情報取得部F22は、内部ブリージング補正部F23によって行われる内部ブリージング補正の内部ブリージング補正量をフレーム毎に取得する。
 ブリージング補正量情報は、ブリージング補正量に関する情報でありフレームメタ情報である。ブリージング補正量情報には、例えば、詳しくは後述するリミット手法又は比例手法による内部ブリージング補正が行われる前のブリージング補正量、リミット手法又は比例手法による内部ブリージング補正が行われた際の内部ブリージング補正量、リミット手法又は比例手法によって制限をかけたか否かの情報が含まれる。
 メタ情報取得部F22は、これらブリージング補正量情報をフレーム毎に取得するが、詳しい内容については後述する。
 光学的ブリージング補正情報は、光学的なブリージング補正が行われたか否かの情報、及び、光学的なブリージング補正量であり、フレームメタ情報である。ただし、光学的なブリージング補正が行われていな場合には、光学的なブリージング補正が行われていないことを示す情報をクリップメタ情報として関連付けるようにしてもよい。
 なお、光学的ブリージング補正とは、フォーカスレンズ16を移動させることにより発生したブリージング(画角変化)を、ズームレンズ13を移動させることにより補正する方法である。
 メタ情報取得部F22は、光学的ブリージング補正が行われた場合に、光学的なブリージング補正量をフレーム毎に取得する。
 レンズ位置情報は、フォーカスレンズ位置及びズームレンズ位置を示す情報であり、フレームメタ情報である。すなわち、メタ情報取得部F22は、検出部17で検出されるフォーカスレンズ位置及びズームレンズ位置を、フレーム毎(フレーム周期)で取得する。
 また、メタ情報取得部F22は、検出部17で検出されるフォーカスレンズ位置及びズームレンズ位置を、フレーム周期よりも短いサンプリング間隔で取得するようにしてもよい。サンプリング間隔は、固定、又は、撮像素子55の露光時間、フレームレート等によって決定されるようにすればよい。例えば、露光時間が短いほどサンプリング間隔を短くしたり、フレームレートが早いほどサンプリング間隔を短くしたりすることが考えられる。
 撮像設定情報は、撮像時の撮像設定に関する情報であり、例えば、歪曲収差補正の有無、露光時間、F値等が含まれている。撮像設定情報は、撮像中に変更されない場合にはクリップメタ情報であり、撮像中に変更される場合にはフレームメタ情報である。
 メタ情報取得部F22は、例えば動画像の撮像開始時に撮像設定情報を取得する。
 撮像素子情報は、撮像素子55の読み出しライン数、撮像素子55における撮像エリアの座標、読み出し開始時間、読み出し時間等の撮像素子55の設定に関する情報であり、撮像中に変更されない場合にはクリップメタ情報であり、撮像中に変更される場合にはフレームメタ情報である。
 メタ情報取得部F22は、例えば動画像の撮像開始時に撮像素子情報を取得する。
 レンズ識別情報は、交換レンズ3のメモリ32に記憶されたレンズ識別情報I1であり、例えばレンズ名、レンズID、レンズ番号等である。レンズ識別情報は、動画撮影中に交換レンズ3が取り外されない限り変更されることはないため、通常はクリップメタ情報として扱われる。ただし、動画撮像中に交換レンズ3が交換された場合には、交換レンズ3が交換されたタイミング(変化時)でレンズ識別情報が取得されることになるため、フレームメタ情報として扱われる。
 後段ブリージング補正情報は、詳しくは後述する第二後段ブリージング補正の実行可否を示す情報であり、クリップメタ情報である。メタ情報取得部F22は、動画像の撮像時に取得された各種情報に基づいて、第二後段ブリージング補正の実行可否を決定する。
 ここで示したメタ情報は一例であり、後段ブリージング補正を行うことができるための情報が含まれていればよい。また、ここで示したメタ情報の一部のみを取得するようにしてもよい。
[2.5.内部ブリージング補正]
 メタ情報取得部F22は、交換レンズ3側から送信された現在(現フレーム)のズームレンズ位置及びフォーカスレンズ位置の情報と、カムカーブテーブル及びブリージング補正量テーブルとに基づき、ブリージングとしての画角変化をキャンセルするためのブリージング補正量(本例ではトリミング倍率)を取得する。
 すなわち先ず、メタ情報取得部F22は、交換レンズ3側から送信された現在のズームレンズ位置及びフォーカスレンズ位置とカムカーブテーブルとに基づき、現在のピント位置を取得する。その上で、メタ情報取得部F22は、現在のピント位置と、現在のズームレンズ位置と、ブリージング補正量テーブルとに基づき、対応するブリージング補正量を取得する。
 内部ブリージング補正部F23は、このようにメタ情報取得部F22が取得したブリージング補正量としてのトリミング倍率の情報を画像信号処理部58に指示して、撮像画像に対するトリミング処理を実行させる。これにより、トリミングによる内部ブリージング補正が実現される。
 本実施形態では、ブリージング補正量テーブルとして、フォーカスレンズ位置を基準としたテーブルではなく、ピント位置を基準としたテーブルを用いるようにしているが、このことで、ブリージング補正量テーブルのデータ容量の削減やブリージング補正の精度向上を図ることができる。
 また、画角変動特性はピント位置に依存するものであるため、上記のようなピント位置を基準としたブリージング補正量テーブルを用いることで、フォーカスレンズ位置を基準とした補正量テーブルを用いる場合よりも、誤差の少ないブリージング補正量を求めることが可能となる。
 従って、ブリージング補正の精度向上を図ることができる。
 また、本明細書において、ズームレンズ位置の情報は、複数のズームレンズ群の変位によりズーム調整が行われる構成が採られる場合には、各ズームレンズ群の位置の組み合わせ情報とする。
 同様に、フォーカスレンズ位置の情報は、複数のフォーカスレンズ群の変位によりフォーカス調整が行われる構成が採られる場合には、各フォーカスレンズ群の位置の組み合わせ情報とする。
 ここで、トリミングによる内部ブリージング補正を行う際には、ブリージング補正量(トリミング倍率)が過大となると動画像の画質低下が顕著となってしまうことを考慮すべきである。
 トリミングによる画質低下の抑制を図るためには、例えば、ブリージング補正量が予め画質の面から定めた許容量(以下「許容補正量P」と表記する)を超えないように、ブリージング補正量テーブルに基づき求めたブリージング補正量に制限をかけることが考えられる。
 本実施形態では、内部ブリージング補正においてブリージング補正量に制限をかける方式として、リミット方式及び比例方式が考えられる。
 図12Aは、リミット方式における内部ブリージング補正量を説明する図である。図12Bは、比例方式における内部ブリージング補正量を説明する図である。図12A及び図12Bでは、ブリージング補正量テーブルに基づき求められたブリージング補正量(リミット手法又は比例手法による内部ブリージング補正が行われる前のブリージング補正量)を破線で示している。また、図12Aでは、リミット方式によって制限された内部ブリージング補正量を実線で示している。また、図12Bでは、比例方式によって制限された内部ブリージング補正量を実線で示している。
 リミット方式を採用した場合、図12Aに示すように、メタ情報取得部F22は、ブリージング補正量が許容補正量P以下である場合には、内部ブリージング補正量を制限することなく、ブリージング補正量テーブルに基づき求めたブリージング補正量をそのまま内部ブリージング補正量とする。一方、メタ情報取得部F22は、ブリージング補正量が許容補正量Pを超える場合には、内部ブリージング補正量を許容補正量Pに制限する。
 これにより、内部ブリージング補正量が許容補正量Pよりも大きくなることがないため、トリミングによる画質低下の抑制を図ることができる。
 しかしながら、リミット方式では、ピント位置を近づけていくと、ブリージング補正量が許容補正量Pを超えるピント位置を境にして画角変化が急に発生することになるため、ブリージングとしての画角変化がユーザに認識され易くなってしまう。
 そこで、比例方式では、メタ情報取得部F22は、図12Bに示すように、ピント位置が最至近であるときに内部ブリージング補正量が許容補正量Pとなるように、ピント位置の全範囲において、ブリージング補正量テーブルに基づき求めたブリージング補正量を比例的に制限した内部ブリージング補正量を算出する。すなわち、メタ情報取得部F22は、図12Bの実線で示すような補正カーブが実現されるように、ブリージング補正量テーブルに基づき取得したブリージング補正量の調整を行う。
 これにより、比例方式では、トリミングによる画質低下の抑制を図るとともに、画角変化が急に発生することを抑制することができる。
[2.6.メタ情報関連付け処理]
 メタ情報関連付け部F24は、メタ情報取得部F22により取得されたメタ情報と画像データとを関連付ける。すなわち、メタ情報関連付け部F24は、メタ情報取得部F22により取得されたメタ情報のうち、フレームメタ情報をフレームに関連付けて記録媒体60に記録するとともに、クリップメタ情報を画像データに関連付けて記録媒体60に記録する。さらに、メタ情報関連付け部F24は、サンプリング間隔で取得されたレンズ位置情報を、取得した時間に関連付けて記録媒体60に記録する。
 ただし、メタ情報関連付け部F24は、記録媒体60の記録速度の関係、内部ブリージング補正の実行有無、交換レンズ3及び撮像装置2の各種設定等に基づいて、メタ情報の関連付けの可否、及び、関連付けるメタ情報を変更(決定)するようにしてもよい。
 具体的には、交換レンズ3のメモリ32にテーブル情報が記憶されていない場合にはブリージング補正量を取得することができないため、メタ情報関連付け部F24は、全てのメタ情報を関連付けないようにしてもよい。また、このような場合にはメタ情報関連付け部F24は、後段ブリージング補正を実行可能なようにレンズ位置情報、撮像設定情報、撮像素子情報、レンズ識別情報を関連付けるようにしてもよい。これにより、例えばネットワーク等を介して外部から交換レンズ3のテーブル情報を入手することができれば、後段ブリージング補正を行うことが可能となる。
 また、内部ブリージング補正が行われ、且つ内部ブリージング補正量に制限がかけられていない場合には後段ブリージング補正を行う必要がないため、メタ情報関連付け部F24は、全てのメタ情報を関連付けないようにしてもよい。
 また、ブリージング補正量は取得できたが内部ブリージング補正が行われなかった場合には、メタ情報関連付け部F24は、内部ブリージング補正量を関連付けないようにしてもよい。
 また、撮像素子55がCCDセンサであったり、CMOSセンサにおいてグローバルシャッターが採用されている場合には、後述する第二後段ブリージング補正を行う必要がないため、メタ情報関連付け部F24は、フレーム周期よりも短いサンプリング間隔で取得されるレンズ位置情報を関連付けないようにしてもよい。
 また、動画像の撮像時にフォーカスレンズ位置が変動していない場合にはブリージングが発生しないため、メタ情報関連付け部F24は、全てのメタ情報を関連付けないようにしてもよい。
 また、取得されるブリージング補正量がピント位置によらず殆ど変化しないと判定される場合、ブリージングによる画角変化も殆ど発生せずブリージング補正を行う必要がないため、メタ情報関連付け部F24は、全てのメタ情報を関連付けないようにしてもよい。
 また、F値が小さい場合、背景がぼけやすくブリージングによる画角変化が見えにくいため、メタ情報関連付け部F24は、全てのメタ情報を関連付けなかったり、フレーム周期よりも短いサンプリング間隔で取得されるレンズ位置情報を関連付けないようにしてもよい。
 また、記録媒体60へは画像データとともにメタ情報が書き込まれることになるため、記録媒体60への書き込み量が、記録媒体60の書き込み速度に近い又は超える場合、メタ情報関連付け部F24は、全てのメタ情報を関連付けなかったり、フレーム周期よりも短いサンプリング間隔で取得されるレンズ位置情報を関連付けないようにしてもよい。
 このように、メタ情報関連付け部F24は、撮像時の種々の条件に応じて、関連付けるメタ情報を切り替えたり(変更したり)、メタ情報を関連付けるか否かを切り替えたり(変更したり)するようにしてもよい。
[2.7.処理手順]
 続いて、図13のフローチャートを参照し、上記したフォーカス関連処理のうちメタ情報を記録媒体60に記録するための具体的な処理手順例について説明する。
 なお、図13に示す処理は、本例では、ボディ側制御部52が前述したROM等に格納されたプログラムに基づきソフトウエア処理として実行する。
 先ず、ボディ側制御部52はステップS1で、動画撮像開始を待機する。すなわち、ユーザの操作入力等に基づき、動画像の撮像動作が開始状態となることを待機する処理を行う。
 動画撮像が開始されたと判定した場合(ステップS1でYes)、ボディ側制御部52はステップS2で、クリップメタ情報の一部である撮像設定情報及び撮像素子情報を取得する。
 ボディ側制御部52はステップS3で、露光時間及び撮像周期等に基づき決定されるサンプリング間隔であるかを判定する。サンプリング間隔であると判定した場合(ステップS3でYes)、ボディ側制御部52はステップS4で、検出部17によって検出されるズームレンズ位置及びフォーカスレンズ位置をレンズ位置情報として取得し、上記した種々の条件に基づいて記録媒体60への書き込みが可能な場合には、取得したレンズ位置情報を記録媒体60に記録する。
 ボディ側制御部52はステップS5で、所定のフレーム周期であるかを判定する。フレーム周期であると判定した場合(ステップS5でYes)、ボディ側制御部52はステップS6で、検出部17によって検出されるズームレンズ位置及びフォーカスレンズ位置に基づきカムカーブテーブルからピント位置を取得し、ピント位置とズームレンズ位置に基づきブリージング補正量テーブルからブリージング補正量を取得する。また、ボディ側制御部52は、ブリージング補正量に制限がある場合は、ブリージング補正量に基づきリミット方式又は比例方式を用いて内部ブリージング補正量を取得する。さらに、ボディ側制御部52は、ピント位置とズームレンズ位置に基づき、ブリージングを加味した焦点距離テーブルから焦点距離を取得する。
 続いて、ボディ側制御部52はステップS7で、取得した内部ブリージング補正量を画像信号処理部58に指示する。これにより、トリミング補正手法による内部ブリージング補正が実現される。
 ボディ側制御部52はステップS8で、上記した種々の条件に基づいて、メタ情報を画像データに関連付けるか否かを判定する。メタ情報を画像データに関連付けると判定した場合(ステップS8でYes)、ボディ側制御部52はステップS9で、画像データの書き込み量及び記録媒体60への書き込み速度に基づいて、記録媒体60にメタ情報を書き込み可能か判定する。記録媒体60にメタ情報を書き込み可能であると判定した場合(ステップS9でYes)、ボディ側制御部52はステップS10で、画像データの記録量及び記録媒体60への書き込み速度等に基づいて、フレームメタ情報の全部又は一部をフレームに関連付けて記録媒体60に記録する。
 ステップS11でボディ側制御部52は、動画撮像終了か否かを待機する。すなわち、動画像の撮像動作の終了を待機する処理である。動画撮像終了でないと判定した場合(ステップS11でNo)、ボディ側制御部52はステップS3に戻る。一方、動画撮像終了であると判定した場合(ステップS11でYes)、ボディ側制御部52は、クリップメタ情報をそれぞれ算出して画像データに関連付けて記録媒体60に記録する。
 このように、撮像装置2では、内部ブリージング補正の実行有無によらず、交換レンズ3に記憶されたテーブル情報に基づいてブリージング補正量を取得してメタ情報として画像データに関連付ける。これにより、画像データとともにメタ情報を取得したコンピュータ4では、取得したメタ情報に基づいて画像データ(動画像)に対して後段ブリージング補正を行うことが可能となる。
<3.コンピュータ>
[3.1.コンピュータの構成]
 次に、撮像装置2によって取得された画像データ及びメタ情報に基づいて、動画像に後段ブリージング補正を行うコンピュータ4について説明する。
 図14は、コンピュータ4の構成を示したブロック図である。図14に示すように、コンピュータ4は、制御部101、記憶部102、表示部103、操作部104、記録部105、記録媒体106及び通信部107を備える。
 制御部101は、例えば、CPU、ROM及びRAM等を有するマイクロコンピュータを備えて構成され、CPUがROMや記憶部102等の所定の記憶装置に記憶されたプログラムをRAMに読み出して実行することによりコンピュータ4の全体制御を行う。
 記憶部102は、例えば固体メモリなどの記憶媒体より構成される。記憶部102には、各種情報を記憶可能とされる。また、記憶部102は、制御部101が各種処理を実行するためのプログラムデータの格納にも用いることが可能とされる。
 表示部103は、液晶ディスプレイ、有機ELディスプレイ等であり、各種画面(画像)を表示する。
 操作部104は、ユーザが用いる入力デバイスであり、例えば、キーボード、マウス、ボタン、ダイヤル、タッチパッド、タッチパネル等の各種の操作子や操作デバイスである。操作部104によりユーザ操作が検知されると、入力された操作に応じた信号が制御部101に入力される。
 記録媒体106は、不揮発性メモリで構成され、記録部105は、記録媒体106に対するデータの書き込み、及び記録媒体106に記録されたデータの読み出しを行うことが可能に構成されている。ここで、記録媒体106は、コンピュータ4に対して着脱自在とされてもよい。
 通信部107は、例えば撮像装置2との間で有線又は無線による通信を行う。
 図15は、制御部101の機能ブロック図である。図15に示すように、制御部101は、データ取得部F31、後段ブリージング補正部F32、表示制御部F33としての機能を有する。
 データ取得部F31は、撮像装置2によって生成された画像データ及びメタ情報を取得する。データ取得部F31は、撮像装置2の記録媒体60が記録媒体106としてコンピュータ4に装着された場合に記録媒体106から記録部105を介して画像データ及びメタ情報を取得する。また、データ取得部F31は、通信部107を介して撮像装置2と通信することにより画像データ及びメタ情報を取得するようにしてもよい。
 後段ブリージング補正部F32は、データ取得部F31によって取得された画像データに基づく動画像に対して、データ取得部F31によって取得されたメタ情報に基づいて後段ブリージング補正を行う。
 表示制御部F33は、後段ブリージング補正部F32によって後段ブリージング補正が行われる際に表示部103に表示される画面(UI)の制御を行う。
[3.2.後段ブリージング補正]
 次に、後段ブリージング補正について説明する。後段ブリージング補正には、動画像を構成するフレーム毎に一様のブリージング補正量でブリージング補正を行う第一後段ブリージング補正と、動画像を構成するフレーム毎にラインに応じて異なるブリージング補正量でブリージング補正を行う第二後段ブリージング補正とが含まれている。
 第一後段ブリージング補正は、フレーム毎に一様のブリージング補正量でブリージング補正を行うため、処理負荷が低く高速で補正を行うことが可能である。そのため、コンピュータ4では、後段ブリージング補正の概要をユーザに見せるためにプレビュー表示を行う際にも用いられる。
 一方、第二後段ブリージング補正は、各フレームにおいてライン毎にブリージング補正量を算出して補正を行うため、高精度の補正を行うことが可能である。
 後段ブリージング補正部F32は、ユーザによって選択された後段ブリージング補正、又は、自動的に選択した後段ブリージング補正によって動画像に対して後段ブリージング補正を行う。
 具体的には、後段ブリージング補正部F32は、メタ情報に含まれる後段ブリージング補正情報に第二後段ブリージング補正の実行不可が示されている場合には第一後段ブリージング補正を行う。
 また、後段ブリージング補正部F32は、テーブル情報、サンプリング間隔で取得されたレンズ位置情報、撮像設定情報、及び、撮像素子情報のいずれかが取得できていない場合には、第二後段ブリージング補正を行うことができないため、第一後段ブリージング補正を行う。
 また、撮像設定情報に含まれるF値が小さい場合、背景がぼけやすくブリージングによる画角変化が見えにくいため、後段ブリージング補正部F32は、第一後段ブリージング補正を行う。
 また、レンズ位置情報に示されるフォーカスレンズ位置が殆ど変動していない場合にはブリージングが発生しないため、後段ブリージング補正部F32は、第一後段ブリージング補正を行う。
 また、レンズ位置情報に示されるフォーカスレンズ位置が大きく変動している場合にはライン毎に異なる画角変化が発生している可能性が高いため、後段ブリージング補正部F32は、第二後段ブリージング補正を行う。
 また、撮像素子情報に含まれる読み出し時間が長い場合には、ライン毎に異なる画角変化が発生している可能性が高いため、後段ブリージング補正部F32は、第二後段ブリージング補正を行う。
 また、テーブル情報I2(レンズ情報)に示されるブリージング補正量が大きい場合はライン毎に異なる画角変化が発生している可能性が高いため、後段ブリージング補正部F32は、第二後段ブリージング補正を行う。
 このように、後段ブリージング補正部F32は、メタ情報に含まれる様々な情報に基づいて、実行する後段ブリージング補正を切り替える(変更する)ようにしてもよい。また、表示制御部F33は、後段ブリージング補正部F32が実行する後段ブリージング補正を切り替える場合と同様にして推奨する後段ブリージング補正を決定し、決定した後段ブリージング補正をユーザに提案するようにしてもよい。これにより、ユーザは、どちらの後段ブリージング補正を行う方がよいのかを知ることができる。
 次に、第一後段ブリージング補正及び第二後段ブリージング補正について、内部ブリージング補正が行われていない動画像に対して補正を行う場合について説明した後、内部ブリージング補正が行われていた場合について説明する。また、ここでは、撮像素子55がCMOSセンサであり、且つローリングシャッターで動画像が撮像された場合について説明する。さらに、ここでは、画像データに基づく動画像全体について後段ブリージング補正を行う場合について説明するが、画像データに基づく動画像全体のうちの例えばユーザに指定された一部の補正対象範囲についてのみ後段ブリージング補正を行うようにしてもよい。
[3.2.1.第一後段ブリージング補正]
 図16は、第一後段ブリージング補正を説明する図である。図16に示すように、第一後段ブリージング補正では、後段ブリージング補正部F32は、各フレームの露光重心111におけるブリージング補正量をメタ情報に基づいて求め、そのフレームに対して求めたブリージング補正量に応じた後段ブリージング補正を行う。
 ここで、後段ブリージング補正部F32は、メタ情報に含まれるブリージング補正量情報に基づいてブリージング補正量を求めるようにしてもよい。すなわち、後段ブリージング補正部F32は、撮像装置2で求められたフレーム毎のブリージング補正量をそのままブリージング補正量として用いるようにしてもよい。
 また、後段ブリージング補正部F32は、メタ情報に含まれるレンズ位置情報、テーブル情報に基づいてブリージング補正量を求めるようにしてもよい。この場合、後段ブリージング補正部F32は、レンズ位置情報に示されるフォーカスレンズ位置及びズームレンズ位置から、テーブル情報に示されるカムカーブテーブル及びブリージング補正量テーブルを参照してブリージング補正量を求めるようにしてもよい。
 また、後段ブリージング補正部F32は、メタ情報に含まれるレンズ位置情報がサンプリング間隔毎に取得されている場合、メタ情報に含まれる撮像設定情報及び撮像素子情報に基づいて、各フレームの露光重心111を求める。そして、後段ブリージング補正部F32は、求めた露光重心111でのフォーカスレンズ位置及びズームレンズ位置を求めた後、テーブル情報に基づいてブリージング補正量を求めるようにしてもよい。
 図17は、露光重心111を説明する図である。図17には、撮像装置2の垂直同期信号cVを示すとともに露光タイミング範囲110を示している。露光タイミング範囲110は、ローリングシャッター方式で露光時間t3としたときの1フレームの各ラインの露光期間を平行四辺形で模式的に示したものである。露光タイミング範囲110における実線部分が撮像エリアに対応し実際に画像データとして読み出される領域である。そして、露光タイミング範囲110における破線部分が例えばOPB(Optical Black)等に対応し画像データとならない領域である。
 また、図17では、画周期t0、読み出し開始時間t1、読み出し時間t2、露光時間t3を示している。なお読み出し開始時間t1は垂直同期信号cVを基準とした時間である。
 そして、後段ブリージング補正部F32は、各フレームの露光重心111を下記(1)式により算出する。
 露光重心111=画周期t0+読み出し開始時間t1+撮像エリアの縦方向(垂直方向)の中心ライン位置L2/読み出しライン数L1×読み出し時間t2-露光時間t3/2   ・・・(1)
 露光重心111が算出されると、後段ブリージング補正部F32は、算出した露光重心111でのフォーカスレンズ位置及びズームレンズ位置を、サンプリング間隔で取得されたレンズ位置情報に基づいて求める(フォーカス位置のみ図示する)。後段ブリージング補正部F32は、求めたフォーカスレンズ位置及びズームレンズ位置と、テーブル情報(カムカーブテーブル、ブリージング補正量テーブル)とに基づいてブリージング補正量を求める。なお、サンプリング間隔で取得されたレンズ位置情報に示されるフォーカスレンズ位置及びズームレンズ位置は、例えば線形補間等により補間されて用いられる。
 図18Aは、内部ブリージング補正におけるブリージング補正量を説明する図である。図18Bは、第一後段ブリージング補正におけるブリージング補正量を説明する図である。
 ここで、上記したように、撮像装置2では、動画像の撮像と同時に内部ブリージング補正が行われることがあり、そのときフォーカスレンズ16がどの位置に移動するか不明である。そのため、図18Aに示すように、内部ブリージング補正量(トリミング倍率)は、無限遠のときに「1.0」となるように設定されている。そのため、例えば、図18Aにおいて実線で示すように、内部ブリージング補正量が1.15倍から1.2倍となる範囲でしかフォーカスレンズ16が移動しない場合であっても、内部ブリージング補正においては、1.15倍から1.2倍のトリミング倍率でトリミング(切り出し)が行われることになる。
 従って、内部ブリージング補正では、画質劣化が起こりやすくなる。
 そこで、第一後段ブリージング補正において後段ブリージング補正部F32は、各フレームについて求めたブリージング補正量のうち、最小値となるブリージング補正量を抽出する。なお、最小値となるブリージング補正量は、メタ情報に含まれるブリージング補正量最小値最大値情報から抽出するようにしてもよい。
 その後、図18Bに示すように、後段ブリージング補正部F32は、各フレームのブリージング補正量を、最小値となるブリージング補正量で除算した値を後段ブリージング補正量とする。そして、後段ブリージング補正部F32は、各フレームに対して求めた後段ブリージング補正量に応じて後段ブリージング補正を行う。
 これにより、第一後段ブリージング補正では、動画像内におけるブリージング補正量のうち最小値を1.0倍として後段ブリージング補正量を用いることができるため、画質劣化を低減することができる。
[3.2.2.第二後段ブリージング補正]
 図19は、第二後段ブリージング補正を説明する図である。第一後段ブリージング補正では、図16に示されるように、フレーム毎に同一の後段ブリージング補正量でブリージング補正を行う。そして、撮像装置2が所謂ローリングシャッターを採用しており、且つ1フレームを撮像する間にフォーカスレンズ16が移動した場合、1フレーム内において画角変化が発生してしまい、第一後段ブリージング補正を行うと画像が歪んでしまうことがある。
 そこで、第二後段ブリージング補正では、フレームを構成するライン(水平方向のライン)毎のブリージング補正量を算出し、ライン毎に異なる後段ブリージング補正量でブリージング補正を行うことで画像の歪みを低減する。
 具体的には、図19に示すように、後段ブリージング補正部F32は、撮像エリアにおける各ラインの露光重心112(図では、最上ライン、中央ライン、最下ラインのみを示している)を、メタ情報に含まれる撮像設定情報及び撮像素子情報に基づいて求める。なお、露光重心112の求める方法は、露光重心111と同様であるため、その説明は省略する。
 このようにしてライン毎の露光重心112が求まると、後段ブリージング補正部F32は、露光重心112でのフォーカスレンズ位置及びズームレンズ位置を、サンプリング間隔で取得されたレンズ位置情報に基づいて求める(フォーカス位置のみ図示する)。後段ブリージング補正部F32は、求めたフォーカスレンズ位置及びズームレンズ位置と、テーブル情報(カムカーブテーブル、ブリージング補正量テーブル)とに基づいてブリージング補正量を求める。すなわち、後段ブリージング補正部F32は、ライン毎のブリージング補正量を求める。
 その後、第二後段ブリージング補正において後段ブリージング補正部F32は、各フレームにおけるライン毎について求めたブリージング補正量のうち、最小値となるブリージング補正量を抽出する。そして、後段ブリージング補正部F32は、各フレームのライン毎でのブリージング補正量を、最小値となるブリージング補正量で除算した値を後段ブリージング補正量として算出する。
 後段ブリージング補正量が求められると、後段ブリージング補正部F32は、動画像に対して後段ブリージング補正を行う。ここでは、各フレームについて、ライン毎に後段ブリージング補正量に応じて画像を拡大した後、画像の中心位置を基準として画像を切り抜くことでトリミングが行われる。
 これにより、第二後段ブリージング補正では、撮像装置2が所謂ローリングシャッターを採用しており、且つ1フレームを撮像する間にフォーカスレンズ16が移動する場合であっても、ブリージング補正による画像の歪みを低減することができる。
[3.2.3.内部ブリージング補正後の後段ブリージング補正]
 次に、内部ブリージング補正が行われた動画像に対する後段ブリージング補正の処理方法について説明する。ここでは、2つの処理方法を説明する。上記した後段ブリージング補正量は、内部ブリージング補正が行われていない動画像(フレーム)に対してブリージング補正を行う際の補正量となっている。従って、内部ブリージング補正が行われている場合には、内部ブリージング補正による内部ブリージング補正量を考慮して後段ブリージング補正を行う必要がある。
 図20は、後段ブリージング補正の処理方法の一例を説明する図である。図20上段には撮像素子55で撮像することにより得られた画像(フレーム)を示す。そして、内部ブリージング補正が行われている場合、図20二段目に示すように、内部ブリージング補正量に応じて画像が切り出される。そして、切り出した画像が画像データとしてコンピュータ4に送られる。
 そこで、まず、後段ブリージング補正部F32は、内部ブリージング補正情報に示される内部ブリージング補正量の逆数を用いて、図20三段目に示すように、切り出された画像を逆変換する(縮小する)。なお、画像を縮小する際に画像のサイズ自体は変化させないため、元の画像には含まれていない画像端部は例えば黒色等となる。
 その後、後段ブリージング補正部F32は、図20下段に示すように、求められた後段ブリージング補正量を用いて、縮小した画像に対して後段ブリージング補正を行う(画像を切り出す)。これにより、後段ブリージング補正において任意の補正量で後段ブリージング補正を行うことが可能となる。
 ただし、内部ブリージング補正量が後段ブリージング補正量よりも大きい場合、画像端部に黒色となる画像部分が残ってしまうことになる。そこで、後段ブリージング補正部F32は、全てのフレームについて、後段ブリージング補正量を内部ブリージング補正量で除算した値を算出し、算出した値の最小値が1未満である場合、最小値の逆数を後段ブリージング補正量に掛けた値を、後段ブリージング補正量として用いる。
 これにより、内部ブリージング補正量が後段ブリージング補正量よりも大きい場合であっても、画像端部に黒色となる画像部分が残ってしまうことを防止することができる。
 図21は、後段ブリージング補正の処理方法の別例を説明する図である。図21に示すように、後段ブリージング補正部F32は、全てのフレームについて、後段ブリージング補正量を内部ブリージング補正量で除算した値を算出し、算出した値を後段ブリージング補正量として用いる。これにより、図20で示した例と同様の画像を生成することができる。
 なお、後段ブリージング補正量を内部ブリージング補正量で除算した値の最小値が1未満である場合、図20で示した例と同様に、最小値の逆数を掛けた値を後段ブリージング補正量として用いればよい。
[3.3.後段ブリージング補正のUI画面]
 次に、後段ブリージング補正を行う際に表示部103に表示されるUI画面130について説明する。
 図22は、UI画面130の一例を説明する図である。後段ブリージング補正を行うときに、表示制御部F33は、図22に示すようなUI画面130を表示部103に表示する。
 UI画面130には、画面左上にメニュー部131が設けられており、「File」「Edit」「Output」「Help」などの操作子が用意されている。これによりメニュー部131からも画像ファイルの選択や保存等、各種編集操作、出力設定、ヘルプ表示などが可能とされる。
 また、UI画面130には、画面左側に一覧部132が設けられている。一覧部132には、記憶部102又は記録媒体106に記録された画像データのサムネイル画像133が一覧表示されている。
 そして、表示制御部F33は、サムネイル画像133のうち、後段ブリージング補正の実行可能な画像データに対応するサムネイル画像133の例えば右上に、後段ブリージング補正が実行可能なことを示すアイコン134を重ねて表示する。
 ここでは、表示制御部F33は、例えばメタ情報に含まれる後段ブリージング補正情報に基づいてアイコン134を表示する。
 また、UI画面130には、画面右側に作業領域135が設けられている。作業領域135には、処理対象となる画像データに基づく動画像が表示可能であるとともに、バー/再生操作子表示部136としてスライドバーと再生操作子が表示される。
 スライドバーは、処理対象の動画像の時間軸を表現するものとされ、またユーザはスライドバー上のポインタを移動させるなどの操作を行うことができる。
 また再生操作子としては再生操作、停止操作、コマ送り操作、コマ戻し操作を行うことができるようにされる。
 ここで、表示制御部F33は、作業領域135において、画像データに基づく動画像137と、後段ブリージング補正が行われた後の動画像138とを並べて表示することができる。
 そして、ユーザがスライドバーを操作すると、ユーザ操作に応じて、動画像137及び動画像138として同一時刻の画像が並べて表示されることになる。
 これにより、ユーザは、後段ブリージング補正の前後の画像を比べて見ることができ、後段ブリージング補正による画角変化を確認することができる。
 図23は、UI画面130の別例を説明する図である。なお、図23では、図22と同一部分については同一の符号を付して説明を省略する。
 図23に示す例では、作業領域135において、処理対象となる画像データに基づく動画像137が表示されるとともに、後段ブリージング補正が行われることにより切り出さえる領域を示す切り出し枠139が、動画像137に重ねて表示される。
 これにより、ユーザは、後段ブリージング補正において切り出される画像を容易に把握することができる。
 図24は、UI画面130の別例を説明する図である。なお、図24では、図22及び図23と同一部分については同一の符号を付して説明を省略する。
 図24では、作業領域135にタイムライン表示領域141が設けられるとともに、タイムライン表示領域141の下に焦点距離表示領域142が設けられている。
 例えばユーザ操作に応じて例えばサムネイル画像133がタイムライン表示領域141にドロップされると、タイムライン表示領域141上にそのサムネイル画像133が表示される。図24の例では、タイムライン表示領域141上に2つのサムネイル画像133が表示される。
 表示制御部F33は、タイムライン表示領域141上に表示されたサムネイル画像133に対応する画像データに関連付けられたメタ情報に含まれる焦点距離情報に基づいて、焦点距離表示領域142に、画像データの焦点距離を時間軸に沿って表示する。ここで表示される焦点距離は、画像の画角に相当するものである。
 そして、表示制御部F33は、画像データ(動画像)に対して後段ブリージング補正が行われる場合、後段ブリージング補正量に基づいて、補正後の画像の画角に相当する焦点距離を算出する。
 このようにすることで、例えば、タイムライン表示領域141の前後に配置された画像データの焦点距離(画角)がつながるようにユーザに後段ブリージング補正量を変更させることができる。
 図25は、UI画面130の別例を説明する図である。なお、図25では、図22から図24と同一部分については同一の符号を付して説明を省略する。
 図25に示すように、UI画面130における作業領域135において画像データに基づく動画像137が表示されているとする。この動画像137は、撮像装置2において内部ブリージング補正が行われ、且つ、内部ブリージング補正において制限がかけられたものであるとする。
 このように、撮像装置2で内部ブリージング補正において制限がかけられていた場合、表示制御部F33は、例えば、制限がかけられたフレームを、メタ情報に含まれる内部ブリージング補正情報に基づいて特定する。
 そして、表示制御部F33は、特定されたフレームが再生されるときには、内部ブリージング補正において制限がかけられたことを示す通知枠143を、動画像を囲むように表示する。
 これにより、ユーザは、内部ブリージング補正において制限がかけられたフレームを容易に把握することができる。
[3.4.処理手順]
 続いて、図26のフローチャートを参照し、上記した後段ブリージング補正に関する具体的な処理手順例について説明する。なお、ここでは、まず、第一後段ブリージング補正を行ってユーザに見せてから(プレビュー表示してから)、後段ブリージング補正を調整する場合について示す。
 なお、図26に示す処理は、本例では、制御部101が前述したROM又は記憶部102等に格納されたプログラムに基づきソフトウエア処理として実行する。
 先ず、制御部101はステップS101で、UI画面130に表示されるサムネイル画像133に対応する画像データが、後段ブリージング補正を実行可能であるか判定する。ここでは、画像データに関連付けられているメタ情報のうち後段ブリージング補正情報に基づいて判定される。
 後段ブリージング補正を実行可能であると判定した場合(ステップS101でYes)、制御部101はステップS102で、サムネイル画像133の右上にアイコン134を重ねて表示する。
 制御部101はステップS103で、後段ブリージング補正が行える画像データがユーザに選択されると、選択された画像データに基づく動画像のうち、後段ブリージング補正を行う補正対象範囲をユーザ操作に応じて決定する。
 その後、制御部101はステップS104で、動画像(補正対象範囲)を構成するフレーム毎のブリージング補正量を算出する。また、制御部101は、動画像(補正対象範囲)における内部ブリージング補正量を取得する。また、制御部101は、動画像(補正対象範囲)におけるブリージング補正量の最小値を求める。
 その後、制御部101はステップS105で、ブリージング補正量、最小値及び内部ブリージング補正量に基づいて、各フレームの後段ブリージング補正量を算出する。
 制御部101はステップS106で、算出した後段ブリージング補正量を用いてトリミング補正手法による第一後段ブリージング補正を行う。
 制御部101はステップS107で、UI画面130の作業領域135に、第一後段ブリージング補正が行われた動画像138を表示し、ユーザに確認させる。
 制御部101はステップS108で、ユーザ操作に応じて、後段ブリージング補正量の調整を行う決定がなされたかを判定する。ブリージング補正量の調整を行う決定がなされた場合(ステップS108でYes)、制御部101はステップS108で、例えばユーザ操作に応じて後段ブリージング補正量の調整し、ステップS105に処理を移す。
 制御部101はステップS110で、第二後段ブリージング補正を行うかを判定する。その結果、第二後段ブリージング補正を行う場合(ステップS110でYes)、制御部101はステップS111で、動画像(補正対象範囲)を構成する各フレームについてライン毎のブリージング補正量を算出した後、算出したライン毎のブリージング補正量、最小値、内部ブリージング補正量に基づいて、ライン毎の後段ブリージング補正量を算出する。
 また、制御部101はステップS112で、算出したライン毎の後段ブリージング補正量を用いてトリミング補正手法による第二後段ブリージング補正を行う。
 制御部101はステップS113で、UI画面130の作業領域135に、第二後段ブリージング補正が行われた動画像138を表示し、ユーザに確認させる。
 制御部101はステップS114で、ユーザ操作に応じて、後段ブリージング補正量の調整を行う決定がなされたかを判定する。ブリージング補正量の調整を行う決定がなされた場合(ステップS114でYes)、制御部101はステップS115で、例えばユーザ操作に応じて後段ブリージング補正量の調整し、ステップS111に処理を移す。
 その後、制御部101はステップS116で、第一後段ブリージング補正又は第二後段ブリージング補正が行われた画像データを書き出す。
 なお、図26で示したフローチャートでは、第一後段ブリージング補正を行った後に第二後段ブリージング補正を行うようにした。しかしながら、ユーザによる指定又は自動で選択した第一後段ブリージング補正又は第二後段ブリージング補正のどちらかのみを行うようにしてもよい。
<4.変形例>
 なお、実施形態としては上記により説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
 上記では、実施形態の撮像装置2がAF処理を行うようにした。しかしながら、撮像装置2はAF処理を行わないようにしてもよい。
 また、実施形態におけるUI画面130に表示される情報は一例にすぎず、他の表示方法であってもよい。
 また、実施形態において、テーブル情報I2(カムカーブテーブル、ブリージング補正量テーブル及びブリージングを加味した焦点距離テーブル)が交換レンズ3のメモリ32に記憶されているようにした。しかしながら、テーブル情報I2は、撮像装置2のメモリ62に記憶されているようにしてもよい。
 また、撮像装置2及びコンピュータ4は、ネットワーク等を介して外部からテーブル情報I2を取得してもよい。
 また、実施形態において、撮像装置2は交換レンズ3が着脱自在に構成されるようにした。しかしながら、撮像装置2は、レンズが一体となっていてもよい。この場合、テーブル情報I2は、メモリ62に記憶されていてもよく、ネットワーク等を介して外部から取得するようにしてもよい。
<5.実施形態のまとめ>
 上記のように実施形態の情報処理装置(コンピュータ4)は、動画像に関連付けられているブリージング補正に関するメタ情報を取得する取得部(データ取得部F31)と、メタ情報に基づいて動画像にブリージング補正を行うブリージング補正部(後段ブリージング補正部F32)と、を備える。
 これにより、コンピュータ4は、撮像装置2によるリアルタイムな内部ブリージング補正が行われたか否かに拘わらず、撮像後に後段ブリージング補正を行うことができる。
 ここで、撮像装置2では、動画像のフレームレートや、内部ブリージング補正の処理負荷によっては、リアルタイムな内部ブリージング補正を行うことができない場合もある。このような場合であっても、画像データにメタ情報が関連付けられていることで、コンピュータ4は後段ブリージング補正を行うことができる。
 また、撮像装置2では、画像劣化の観点から、内部ブリージング補正量を制限することもある。しかしながら、ユーザによっては、制限することなくブリージング補正量を行いたいと所望することもある。このような場合に、コンピュータ4は、制限された内部ブリージング補正量よりも大きな値で後段ブリージング補正を行うことができる。
 このように、コンピュータ4は、ブリージング補正の自由度を向上することができる。
 ブリージング補正部は、メタ情報に基づいて各フレームの補正量を求め、求めた補正量を用いて各フレームに対してブリージング補正を行う。
 これにより、コンピュータ4は、各フレームの後段ブリージング補正量を求めるだけでよいため、処理負荷を低減して高速に第一後段ブリージング補正を行うことができる。
 ブリージング補正部は、動画像を構成する各フレームについて、メタ情報に基づいて画像位置(ライン)毎に補正量を求め、求めた補正量を用いて各フレームに対してブリージング補正を行う。
 例えば、コンピュータ4は、ライン毎の後段ブリージング補正量を求め、ライン毎に異なる後段ブリージング補正量に基づいて第二後段ブリージング補正を行うことができ、高精細なブリージング補正を行うことができる。
 ブリージング補正部は、フレームにおいて画像位置毎の露光重心を求め、求めた露光重心でのフォーカス位置に応じた補正量を求める。
 これにより、各フレームにおけるライン毎の後段ブリージング補正量を、露光重心を用いて求めることができる。
 ブリージング補正部は、動画像における所定の補正対象範囲についてブリージング補正を行う。
 これにより、コンピュータ4は、動画像の一部等、ユーザが所望する範囲だけについて画角変化を低減することができる。
 ブリージング補正部は、動画像における補正値の最小値を求め、最小値を基準とした補正量を求める。
 これにより、コンピュータ4は、動画像内におけるブリージング補正量のうち最小値を例えば1.0倍として後段ブリージング補正量を用いることができるため、画質劣化を低減することができる。
 ブリージング補正部は、動画像におけるフレーム毎に一様な補正量でブリージング補正を行う第一ブリージング補正(第一後段ブリージング補正)と、各フレームについて画像位置に応じて異なる補正量でブリージング補正を行う第二ブリージング補正(第二後段ブリージング補正)とを切替可能である。
 これにより、コンピュータ4は、画像品質及び処理速度を考慮した後段ブリージング補正を行うことができる。
 ブリージング補正部は、メタ情報に含まれる絞り情報、レンズ情報、レンズ識別情報、撮像素子55の情報、又は、フォーカス位置及びズーム位置の情報に基づいて、第一ブリージング補正と第二ブリージング補正とを切り替える。
 これにより、コンピュータ4は、画像品質及び処理速度を考慮した後段ブリージング補正を行うことができる。
 ブリージング補正部は、動画像に対して他のブリージング補正が行われている場合に、他のブリージング補正を考慮してブリージング補正を行う。
 これにより、コンピュータ4は、撮像装置2で内部ブリージング補正が行われていた場合であっても、内部ブリージング補正量を考慮した後段ブリージング補正量が求められるため、最適なブリージング補正を行うことができる。
 ブリージング補正部は、他のブリージング補正の補正量を用いて動画像を逆変換した後に、逆変換した動画像に対して、メタ情報に基づく補正量でブリージング補正を行う。
 これにより、コンピュータ4は、撮像装置2で内部ブリージング補正が行われていた場合であっても、内部ブリージング補正量を考慮した後段ブリージング補正量でブリージング補正を行うことができるため、最適なブリージング補正を行うことができる。
 ブリージング補正部は、動画像に対して行われた他のブリージング補正の補正量と、メタ情報に含まれる補正量との差分に基づいてブリージング補正を行う。
 これにより、コンピュータ4は、撮像装置2で内部ブリージング補正が行われていた場合であっても、内部ブリージング補正量を考慮した後段ブリージング補正量でブリージング補正を行うことができるため、最適なブリージング補正を行うことができる。
 情報処理装置は、ブリージング補正に関する表示を行う表示制御部F33を備える。
 これにより、コンピュータ4は、ユーザに対してブリージング補正の補正度合い等を見せることができる。
 表示制御部F33は、ブリージング補正が行われた動画像138と、ブリージング補正が行われる前の動画像137とを並べて表示する。
 これにより、コンピュータ4は、ブリージング補正が行われた動画像と、ブリージング補正が行われる前の動画像とをユーザに比べて見させることができる。
 表示制御部F33は、ブリージング補正が行われる前の動画像に対して、ブリージング補正が行われたときの画像領域(切り出し枠139)を表示する。
 これにより、コンピュータ4は、ブリージング補正が行われて切り出される画像部分をユーザに容易に把握させることができる。
 表示制御部F33は、タイムラインに並べられた動画像の画角(焦点距離)に関する情報(焦点距離表示領域142に表示された焦点距離)を表示する。
 これにより、コンピュータ4は、前後に並べられた動画像の焦点距離(画角)を合わせるようなブリージング補正を行うことができる。
 表示制御部F33は、動画像に対するブリージング補正の実行可否(アイコン134)を表示する。
 これにより、コンピュータ4は、ブリージング補正の実行可否を容易に把握することができる。
 表示制御部F33は、動画像に制限がかかった他のブリージング補正が行われている場合に、その旨(通知枠143)を表示する。
 これにより、コンピュータ4は、制限がかかったブリージング補正が行われたことをユーザに容易に把握させることができる。
 情報処理方法は、動画像に関連付けられているブリージング補正に関するメタ情報を取得し、メタ情報に基づいて動画像にブリージング補正を行う。
 プログラムは、動画像に関連付けられているブリージング補正に関するメタ情報を取得し、メタ情報に基づいて動画像にブリージング補正を行う処理を情報処理装置に実行させる。
 このようなプログラムはコンピュータ装置等の機器に内蔵されている記録媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。
 あるいはまた、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<6.本技術>
 本技術は以下のような構成も採ることができる。
(1)
 動画像に関連付けられているブリージング補正に関するメタ情報を取得する取得部と、
 前記メタ情報に基づいて前記動画像にブリージング補正を行うブリージング補正部と、
 を備える情報処理装置。
(2)
 前記ブリージング補正部は、前記メタ情報に基づいて各フレームの補正量を求め、求めた前記補正量を用いて各フレームに対して前記ブリージング補正を行う
 (1)に記載の情報処理装置。
(3)
 前記ブリージング補正部は、前記動画像を構成する各フレームについて、前記メタ情報に基づいて画像位置ごとに補正量を求め、求めた前記補正量を用いて各フレームに対して前記ブリージング補正を行う
 (1)又は(2)に記載の情報処理装置。
(4)
 前記ブリージング補正部は、前記フレームにおいて画像位置毎の露光重心を求め、求めた露光重心でのフォーカス位置に応じた前記補正量を求める
 (3)に記載の情報処理装置。
(5)
 前記ブリージング補正部は、前記動画像における所定の補正対象範囲について前記ブリージング補正を行う
 (1)から(4)のいずれかに記載の情報処理装置。
(6)
 前記ブリージング補正部は、前記動画像における補正値の最小値を求め、前記最小値を基準とした補正量を求める
 (1)から(5)のいずれかに記載の情報処理装置。
(7)
 前記ブリージング補正部は、前記動画像のフレーム毎に一様な補正量でブリージング補正を行う第一ブリージング補正と、各フレームについて画像位置に応じて異なる補正量でブリージング補正を行う第二ブリージング補正とを切替可能である
 (1)から(6)のいずれかに記載の情報処理装置。
(8)
 前記ブリージング補正部は、前記メタ情報に含まれる絞り情報、レンズ情報、レンズ識別情報、撮像素子の情報、又は、フォーカス位置及びズーム位置の情報に基づいて、前記第一ブリージング補正と前記第二ブリージング補正とを切り替える
 (7)に記載の情報処理装置。
(9)
 前記ブリージング補正部は、前記動画像に対して他のブリージング補正が行われている場合に、前記他のブリージング補正を考慮して前記ブリージング補正を行う
 (1)から(8)のいずれかに記載の情報処理装置。
(10)
 前記ブリージング補正部は、前記他のブリージング補正の補正量を用いて前記動画像を逆変換した後に、逆変換した前記動画像に対して、前記メタ情報に基づく補正量で前記ブリージング補正を行う
 (9)に記載の情報処理装置。
(11)
 前記ブリージング補正部は、前記動画像に対して行われた前記他のブリージング補正の補正量と、前記メタ情報に含まれる補正量との差分に基づいて前記ブリージング補正を行う
 (9)に記載の情報処理装置。
(12)
 前記ブリージング補正に関する表示を行う表示制御部を備える
 (1)から(11)のいずれかに記載の情報処理装置。
(13)
 前記表示制御部は、前記ブリージング補正が行われた前記動画像と、前記ブリージング補正が行われる前の前記動画像とを並べて表示する
 (12)に記載の情報処理装置。
(14)
 前記表示制御部は、前記ブリージング補正が行われる前の前記動画像に対して、前記ブリージング補正が行われたときの画像領域を表示する
 (12)又は(13)に記載の情報処理装置。
(15)
 前記表示制御部は、タイムラインに並べられた前記動画像の画角に関する情報を表示する
 (12)から(14)のいずれかに記載の情報処理装置。
(16)
 前記表示制御部は、前記動画像に対するブリージング補正の実行可否を表示する
 (12)から(15)のいずれかに記載の情報処理装置。
(17)
 前記表示制御部は、前記動画像に制限がかかった他のブリージング補正が行われている場合に、その旨を表示する
 (12)から(16)のいずれかに記載の情報処理装置。
(18)
 動画像に関連付けられているブリージング補正に関するメタ情報を取得し、
 前記メタ情報に基づいて前記動画像にブリージング補正を行う
 情報処理方法。
(19)
 動画像に関連付けられているブリージング補正に関するメタ情報を取得し、
 前記メタ情報に基づいて前記動画像にブリージング補正を行う
 処理を情報処理装置に実行させるプログラム。
1 ブリージング補正システム
2 撮像装置
3 交換レンズ
4 コンピュータ
F22 メタ情報取得部
F23 内部ブリージング補正部
F24 メタ情報関連付け部
F31 データ取得部
F32 後段ブリージング補正部
F33 通知部

Claims (19)

  1.  動画像に関連付けられているブリージング補正に関するメタ情報を取得する取得部と、
     前記メタ情報に基づいて前記動画像にブリージング補正を行うブリージング補正部と、
     を備える情報処理装置。
  2.  前記ブリージング補正部は、前記メタ情報に基づいて各フレームの補正量を求め、求めた前記補正量を用いて各フレームに対して前記ブリージング補正を行う
     請求項1に記載の情報処理装置。
  3.  前記ブリージング補正部は、前記動画像を構成する各フレームについて、前記メタ情報に基づいて画像位置ごとに補正量を求め、求めた前記補正量を用いて各フレームに対して前記ブリージング補正を行う
     請求項1に記載の情報処理装置。
  4.  前記ブリージング補正部は、前記フレームにおいて画像位置毎の露光重心を求め、求めた露光重心でのフォーカス位置に応じた前記補正量を求める
     請求項3に記載の情報処理装置。
  5.  前記ブリージング補正部は、前記動画像における所定の補正対象範囲について前記ブリージング補正を行う
     請求項1に記載の情報処理装置。
  6.  前記ブリージング補正部は、前記動画像における補正値の最小値を求め、前記最小値を基準とした補正量を求める
     請求項1に記載の情報処理装置。
  7.  前記ブリージング補正部は、前記動画像のフレーム毎に一様な補正量でブリージング補正を行う第一ブリージング補正と、各フレームについて画像位置に応じて異なる補正量でブリージング補正を行う第二ブリージング補正とを切替可能である
     請求項1に記載の情報処理装置。
  8.  前記ブリージング補正部は、前記メタ情報に含まれる絞り情報、レンズ情報、レンズ識別情報、撮像素子の情報、又は、フォーカス位置及びズーム位置の情報に基づいて、前記第一ブリージング補正と前記第二ブリージング補正とを切り替える
     請求項7に記載の情報処理装置。
  9.  前記ブリージング補正部は、前記動画像に対して他のブリージング補正が行われている場合に、前記他のブリージング補正を考慮して前記ブリージング補正を行う
     請求項1に記載の情報処理装置。
  10.  前記ブリージング補正部は、前記他のブリージング補正の補正量を用いて前記動画像を逆変換した後に、逆変換した前記動画像に対して、前記メタ情報に基づく補正量で前記ブリージング補正を行う
     請求項9に記載の情報処理装置。
  11.  前記ブリージング補正部は、前記動画像に対して行われた前記他のブリージング補正の補正量と、前記メタ情報に含まれる補正量との差分に基づいて前記ブリージング補正を行う
     請求項9に記載の情報処理装置。
  12.  前記ブリージング補正に関する表示を行う表示制御部を備える
     請求項1に記載の情報処理装置。
  13.  前記表示制御部は、前記ブリージング補正が行われた前記動画像と、前記ブリージング補正が行われる前の前記動画像とを並べて表示する
     請求項12に記載の情報処理装置。
  14.  前記表示制御部は、前記ブリージング補正が行われる前の前記動画像に対して、前記ブリージング補正が行われたときの画像領域を表示する
     請求項12に記載の情報処理装置。
  15.  前記表示制御部は、タイムラインに並べられた前記動画像の画角に関する情報を表示する
     請求項12に記載の情報処理装置。
  16.  前記表示制御部は、前記動画像に対するブリージング補正の実行可否を表示する
     請求項12に記載の情報処理装置。
  17.  前記表示制御部は、前記動画像に制限がかかった他のブリージング補正が行われている場合に、その旨を表示する
     請求項12に記載の情報処理装置。
  18.  動画像に関連付けられているブリージング補正に関するメタ情報を取得し、
     前記メタ情報に基づいて前記動画像にブリージング補正を行う
     情報処理方法。
  19.  動画像に関連付けられているブリージング補正に関するメタ情報を取得し、
     前記メタ情報に基づいて前記動画像にブリージング補正を行う
     処理を情報処理装置に実行させるプログラム。
PCT/JP2023/019673 2022-06-03 2023-05-26 情報処理装置、情報処理方法、プログラム WO2023234204A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091161 2022-06-03
JP2022091161 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234204A1 true WO2023234204A1 (ja) 2023-12-07

Family

ID=89024964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019673 WO2023234204A1 (ja) 2022-06-03 2023-05-26 情報処理装置、情報処理方法、プログラム

Country Status (1)

Country Link
WO (1) WO2023234204A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208168A (ja) * 2018-05-30 2019-12-05 キヤノン株式会社 撮像装置およびその制御方法ならびにプログラム
JP2020022012A (ja) * 2018-07-30 2020-02-06 キヤノン株式会社 撮像装置及びその制御方法
WO2020170604A1 (ja) * 2019-02-21 2020-08-27 ソニー株式会社 情報処理装置、情報処理方法、プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208168A (ja) * 2018-05-30 2019-12-05 キヤノン株式会社 撮像装置およびその制御方法ならびにプログラム
JP2020022012A (ja) * 2018-07-30 2020-02-06 キヤノン株式会社 撮像装置及びその制御方法
WO2020170604A1 (ja) * 2019-02-21 2020-08-27 ソニー株式会社 情報処理装置、情報処理方法、プログラム

Similar Documents

Publication Publication Date Title
JP5419647B2 (ja) 像振れ補正装置およびそれを備えた撮像装置、像振れ補正装置の制御方法
EP2401860B1 (en) Imaging apparatus, image display apparatus, imaging method, method of displaying image and method of correcting position of focusing-area frame
JP5864938B2 (ja) 撮像装置及びその制御方法
JP7086571B2 (ja) 撮像装置、レンズ装置およびこれらの制御方法
JP2007074629A (ja) 撮像装置
JP6539075B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6320105B2 (ja) 撮像装置およびその制御方法
WO2023234204A1 (ja) 情報処理装置、情報処理方法、プログラム
WO2023234203A1 (ja) 情報処理装置、情報処理方法
JP2006064986A (ja) 画像記録装置、その制御方法、並びにプログラム及び記憶媒体
JP2012095206A (ja) 撮像装置およびその制御方法
JP4925168B2 (ja) 撮像方法および装置
JP5607458B2 (ja) 撮像装置、及びその制御方法
JP5455485B2 (ja) 撮像装置
JP5332668B2 (ja) 撮像装置および被写体検出プログラム
JP2007067827A (ja) 撮像装置及びズーム制御方法
JP2016032180A (ja) 撮像装置、制御方法およびプログラム
JP2020123863A (ja) 撮像装置
JP6547742B2 (ja) 撮像制御装置、撮像装置および撮像制御方法
JP5790011B2 (ja) 撮像装置
JP6140975B2 (ja) 撮像装置
JP2011029719A5 (ja)
JP5664440B2 (ja) 撮像装置
JP5981793B2 (ja) 撮像装置及びその制御方法、プログラム、並びに記憶媒体
JP5759127B2 (ja) 焦点調節装置及び焦点調節方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815961

Country of ref document: EP

Kind code of ref document: A1