WO2023234194A1 - 光源ユニット、映像表示装置及び自動車 - Google Patents

光源ユニット、映像表示装置及び自動車 Download PDF

Info

Publication number
WO2023234194A1
WO2023234194A1 PCT/JP2023/019643 JP2023019643W WO2023234194A1 WO 2023234194 A1 WO2023234194 A1 WO 2023234194A1 JP 2023019643 W JP2023019643 W JP 2023019643W WO 2023234194 A1 WO2023234194 A1 WO 2023234194A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
source unit
region
light source
Prior art date
Application number
PCT/JP2023/019643
Other languages
English (en)
French (fr)
Inventor
和 北原
貴紀 有賀
肇 秋元
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Publication of WO2023234194A1 publication Critical patent/WO2023234194A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • Embodiments relate to a light source unit, a video display device, and an automobile.
  • Patent Document 1 discloses that light emitted from a display device capable of displaying an image is sequentially reflected by a plurality of mirrors, and the light reflected by the last mirror is further directed toward the user by a reflective member such as a windshield.
  • a technique is disclosed in which a virtual image is reflected and allows a user to view a virtual image corresponding to an image displayed by a display device.
  • pixels corresponding to each color are required, resulting in a problem that the display device becomes larger.
  • An object of the embodiments of the present invention is to provide a light source unit, a video display device, and an automobile that are small and capable of displaying color images.
  • a light source unit includes a display device having a plurality of pixels and capable of displaying an image, a color changing sheet into which light emitted from the display device is incident, an imaging optical system, and the display device. and a drive unit that changes the positional relationship of the color change sheet.
  • the imaging optical system includes an input element into which the light emitted from the color change sheet enters, and an output element into which the light that passes through the input element enters, and the light emitted from the output element forms the image.
  • the color change sheet includes a first area into which light is incident from the pixel and emits light of a first color, and a first area into which light is incident from the pixel and which emits light of a second color different from the first color. and a second area that emits the radiation.
  • the drive unit sets the positional relationship between the display device and the color change sheet to a first positional relationship in which light emitted from one of the pixels enters the first area, and a first positional relationship in which light emitted from one of the pixels enters the first area. and a second positional relationship in which the light enters the second region.
  • the imaging optical system has substantially telecentricity on the first image side.
  • the light emitted from the display device has a substantially Lambertian light distribution.
  • An image display device includes the light source unit and a reflection unit that is spaced apart from the light source unit and reflects light emitted from the imaging optical system.
  • the first image is formed between the light source unit and the reflection unit.
  • the embodiment it is possible to realize a light source unit, a video display device, and a car that are small and capable of displaying color images.
  • FIG. 1 is an end view showing a video display device according to a first embodiment.
  • FIG. 2A is a plan view showing the display device of the light source unit according to the first embodiment.
  • FIG. 2B is a plan view showing the color changing sheet of the light source unit according to the first embodiment.
  • FIG. 2C is an end view showing the display device, color change sheet, and drive unit of the light source unit according to the first embodiment.
  • FIG. 3 is an end view showing the display device of the video display device according to the first embodiment.
  • FIG. 4 is an end view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet.
  • FIG. 5A is a plan view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet in the first embodiment.
  • FIG. 5B is a plan view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet in the first embodiment.
  • FIG. 5C is a plan view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet in the first embodiment.
  • FIG. 6 is a schematic diagram showing the scenery seen from a viewer in the driver's seat in the first embodiment.
  • FIG. 7A is a schematic diagram showing the principle of the light source unit according to the first embodiment.
  • FIG. 7B is a schematic diagram showing the principle of a light source unit according to a reference example.
  • FIG. 8A is a graph showing a light distribution pattern of light emitted from one light emitting area in Examples 1, 11 and Reference Example.
  • FIG. 8B is a graph showing the uniformity of brightness of the second image in Examples 1 to 12 and the reference example.
  • FIG. 9A is a plan view showing a color change sheet of a light source unit according to a first modification of the first embodiment.
  • FIG. 9B is a plan view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet in the first modification of the first embodiment.
  • FIG. 9C is a plan view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet in the first modification of the first embodiment.
  • FIG. 10 is a plan view showing a color change sheet of a light source unit according to a second modification of the first embodiment.
  • FIG. 11 is an end view showing a display device of a video display device according to the second embodiment.
  • FIG. 12 is a plan view showing a color changing sheet of a light source unit according to the second embodiment.
  • FIG. 13 is a plan view showing a color changing sheet of a light source unit according to a first modification of the second embodiment.
  • FIG. 14 is a plan view showing a color changing sheet of a light source unit according to a second modification of the second embodiment.
  • FIG. 15 is a plan view showing a color changing sheet of a light source unit according to the third embodiment.
  • FIG. 16 is a plan view showing a color change sheet of a light source unit according to a modification of the third embodiment.
  • FIG. 12 is a plan view showing a color changing sheet of a light source unit according to the second embodiment.
  • FIG. 13 is a plan view showing a color changing sheet of a light source unit according to a first modification of the second embodiment.
  • FIG. 14 is a plan view showing a color changing
  • FIG. 17 is a diagram showing the relationship between the color of light emitted from the pixels of the display device and the color change sheet.
  • FIG. 18 is a plan view showing a color changing sheet of a light source unit according to the fourth embodiment.
  • FIG. 19 is a plan view showing a color changing sheet of a light source unit according to the fifth embodiment.
  • FIG. 20 is a plan view showing a color changing sheet of a light source unit according to the sixth embodiment.
  • FIG. 21 is an end view showing a video display device according to the seventh embodiment.
  • FIG. 22 is a schematic diagram showing the scenery seen from a viewer in the driver's seat in the seventh embodiment.
  • FIG. 23 is an end view showing a video display device according to the eighth embodiment.
  • FIG. 24 is an enlarged cross-sectional view of a part of the display device and reflective polarizing element shown in FIG. 23.
  • FIG. 25 is a side view showing a light source unit according to the ninth embodiment.
  • FIG. 26 is a side view showing a light source unit according to a modification of the ninth embodiment.
  • FIG. 1 is an end view showing a video display device according to this embodiment.
  • FIG. 2A is a plan view showing the display device of the light source unit according to this embodiment.
  • FIG. 2B is a plan view showing the color change sheet of the light source unit according to this embodiment.
  • FIG. 2C is an end view showing the display device, color change sheet, and drive unit of the light source unit according to this embodiment.
  • the video display device 10 includes a light source unit 11 and a reflection unit 12.
  • the light source unit 11 includes a display device 110, an imaging optical system 120, a color change sheet 130, and a drive unit 140.
  • the display device 110 has a plurality of pixels and can display images. Light emitted from the display device 110 enters the color change sheet 130 .
  • the imaging optical system 120 receives the light emitted from the color change sheet 130 and forms a first image IM1 corresponding to the image displayed by the display device 110.
  • the first image IM1 is a real image and an intermediate image.
  • the drive unit 140 changes the positional relationship between the display device 110 and the color change sheet 130.
  • the reflection unit 12 is spaced apart from the light source unit 11 and reflects the light emitted from the imaging optical system 120.
  • the video display device 10 is mounted on, for example, a car 1000 and constitutes a HUD (Head Up Display).
  • the automobile 1000 includes a vehicle 13 and a video display device 10 fixed to the vehicle 13.
  • the viewer 14 is a passenger of the automobile 1000, for example, a driver.
  • the display device 110 of the light source unit 11 displays an image that is desired to be viewed by the viewer 14 using the HUD.
  • the color change sheet 130 changes the color of the image displayed by the display device 110 for each pixel. This mechanism will be described later.
  • the imaging optical system 120 outputs the light emitted from the color change sheet 130 to the reflection unit 12, and forms a first image IM1 between the light source unit 11 and the reflection unit 12.
  • the reflection unit 12 reflects the light emitted from the light source unit 11 toward the front windshield 13a of the vehicle 13.
  • the front windshield 13a includes, for example, glass.
  • the front windshield 13a reflects the light arriving from the reflection unit 12 on its inner surface and makes it enter the eyebox 14a of the viewer 14. Thereby, the viewer 14 can visually recognize the second image IM2 corresponding to the image displayed by the display device 110 on the other side of the front windshield 13a.
  • the second image IM2 is a virtual image larger than the first image IM1.
  • the "eye box" refers to the area in front of the viewer's eyes where a virtual image can be viewed.
  • the longitudinal direction of the vehicle 13 is referred to as the "X direction”
  • the left-right direction of the vehicle 13 is referred to as the "Y direction”
  • the vertical direction of the vehicle 13 is referred to as the "Z direction.”
  • the XY plane is a horizontal plane of the vehicle 13.
  • the direction of the arrow forward
  • the opposite direction backward
  • the direction of the arrow (to the left) is referred to as the "+Y direction”, and the opposite direction (to the right) is also referred to as the "-Y direction”.
  • the direction of the arrow (upward) is referred to as the "+Z direction”
  • the opposite direction (downward) is also referred to as the "-Z direction”.
  • the position where the first image IM1 is formed is indicated by a circular mark. Similar to the first image IM1, the position where the second image IM2 is formed is indicated by a circular mark.
  • the positions from which the principal ray L that reaches each mark of the first image IM1 is emitted are indicated by square marks.
  • the emission position of each principal ray L on the display device 110 is set to a different mark from the imaging position of the first image IM1 and the imaging position of the second image IM2. As shown in , the image displayed on the display device 110, the first image IM1, and the second image IM2 have a generally similar relationship.
  • a plurality of pixels 110p are arranged in a matrix along the first direction and the second direction.
  • the second direction intersects, for example is perpendicular to, the first direction.
  • the first direction is the horizontal direction of the image
  • the second direction is the vertical direction of the image.
  • the first direction is the X direction
  • the second direction is the Y direction.
  • the color of the light emitted from each pixel 110p is the same, and in this embodiment, it is white.
  • the light emitted from the display device 110 has a substantially Lambertian light distribution. The specific configuration of the display device 110 and the Lambertian light distribution will be described in detail later.
  • the color change sheet 130 has a plurality of regions 130p arranged in a matrix along the first direction and the second direction.
  • the shape and size of each region 130p are approximately equal to the shape and size of each pixel 110p of the display device 110, and the arrangement period of the regions 130p in the first direction and the second direction is approximately equal to the arrangement period of the pixels 110p. Therefore, the pixels 110p of the display device 110 and the regions 130p of the color change sheet 130 have a one-to-one correspondence, and all or most of the light emitted from one pixel 110p enters one region 130p. However, as described later, the combination of the pixel 110p and the region 130p changes depending on the operation of the drive unit 140.
  • the first region 130a receives light from the pixel 110p of the display device 110 and emits light of the first color.
  • the second region 130b receives light from the pixel 110p and emits light of a second color different from the first color.
  • the third region 130c receives light from the pixel 110p and emits light of a third color different from the first color and the second color.
  • the first region 130a, the second region 130b, and the third region 130c are repeatedly arranged along the first direction (X direction) and the second direction (Y direction). Therefore, when focusing on a specific area of the color change sheet 130, the first area 130a and the second area 130b are arranged along the first direction (X direction), and the first area 130a and the third area 130c are arranged along the first direction (X direction). They are arranged along the second direction (Y direction). Note that although 100 regions 130p are shown in 10 rows and 10 columns in FIG. 2B, the present invention is not limited to this, and for example, about several thousand regions 130p may be provided.
  • the first region 130a is made of a blue film, and the first color is blue.
  • the second region 130b is made of a green film, and the second color is green.
  • the third region 130c is made of a red film, and the third color is red. That is, white light enters the first region 130a from the pixel 110p of the display device 110, and blue light is emitted. White light enters the second region 130b from the pixel 110p, and green light is emitted. White light enters the third region 130c from the pixel 110p, and red light is emitted.
  • white light enters the first region 130a from the pixel 110p of the display device 110, and blue light is emitted.
  • White light enters the second region 130b from the pixel 110p, and green light is emitted.
  • White light enters the third region 130c from the pixel 110p, and red light is emitted.
  • the first region 130a that emits blue light is labeled with the letter "B”
  • the second region 130b that emits green light is labeled with the letter "G”
  • the second region 130b that emits red light is labeled with the letter "G.”
  • the letter “R” is attached to the third region 130c.
  • the color change sheet 130 is arranged on the light emission side of the display device 110, that is, on the ⁇ Z direction side.
  • the drive unit 140 includes, for example, an actuator, and changes the positional relationship between the display device 110 and the color change sheet 130 by moving the color change sheet 130. Note that the drive unit 140 may move the display device 110 or may move both the display device 110 and the color change sheet 130. In the following description, an example in which the drive unit 140 moves the color change sheet 130 will be described.
  • FIG. 3 is an end view showing the display device of the video display device according to this embodiment.
  • the display device 110 of the light source unit 11 is an LED display.
  • a plurality of LED elements 112 are arranged in a matrix.
  • One or more LED elements 112 are arranged in each pixel 110p of the display device 110.
  • each LED element 112 is mounted face-down on the substrate 111. However, each LED element may be mounted face-up on the board.
  • Each LED element 112 has a semiconductor stack 112a, an anode electrode 112b, and a cathode electrode 112c.
  • the semiconductor stack 112a includes a p-type semiconductor layer 112p1, an active layer 112p2 placed on the p-type semiconductor layer 112p1, and an n-type semiconductor layer 112p3 placed on the active layer 112p2.
  • a gallium nitride-based compound semiconductor represented by In X Al Y Ga 1-XY N (0 ⁇ X, 0 ⁇ Y, X+Y ⁇ 1) is used for the semiconductor stack 112a.
  • the light emitted by the LED element 112 is visible light in this embodiment.
  • the anode electrode 112b is electrically connected to the p-type semiconductor layer 112p1. Further, the anode electrode 112b is electrically connected to the wiring 118b.
  • the cathode electrode 112c is electrically connected to the n-type semiconductor layer 112p3. Further, the cathode electrode 112c is electrically connected to another wiring 118a.
  • a metal material can be used for each electrode 112b, 112c.
  • a wavelength conversion member 115 is provided on each LED element 112.
  • the light emitted from the LED element 112 enters the wavelength conversion member 115 .
  • the wavelength conversion member 115 faces the light exit surface 112s of the LED element 112.
  • the term "light exit surface of the LED element” refers to the surface of the LED element from which the light incident on the imaging optical system 120 mainly exits.
  • the surface of the n-type semiconductor layer 112p3 located on the opposite side of the surface facing the active layer 112p2 corresponds to the light exit surface 112s.
  • the wavelength conversion member 115 contains phosphor.
  • the LED element 112 emits blue light.
  • the wavelength conversion member 115 contains a phosphor that absorbs blue light and emits green light, and a phosphor that absorbs blue light and emits red light. As a result, the wavelength conversion member 115 emits white mixed color light consisting of blue light, green light, and red light.
  • optical axis C the optical axis of light emitted from each pixel 110p will be simply referred to as "optical axis C.”
  • the optical axis C is parallel to the XY plane on which the plurality of pixels 110p are arranged, and the light from one pixel 110p is irradiated on the first plane P1 located on the light emission side of the display device 110.
  • the brightness is at the point a1 in the range where the light from this pixel 110p is irradiated on the second plane P2 which is parallel to the XY plane and is separated from the first plane P1.
  • This is a straight line connecting the maximum point a2.
  • the center point of those points may be set as the point where the brightness is maximum. Note that from a productivity standpoint, it is desirable that the optical axis C be parallel to the Z axis.
  • the wavelength conversion member 115 is provided on the light emitting surface 112s of each LED element 112, the light emitted from the wavelength conversion member 115, that is, the light emitted from each pixel 110p, is as indicated by the broken line in FIG. As shown, it has a substantially Lambertian light distribution.
  • the light emitted from each pixel has a substantially Lambertian light distribution means that the luminous intensity in the direction of the angle ⁇ with respect to the optical axis C of each pixel is on the optical axis C, where n is a value larger than 0. This means that the light distribution pattern can be approximated by cos n ⁇ times the luminous intensity of .
  • n is preferably 11 or less, and even more preferably 1.
  • the light distribution pattern of the light emitted from this pixel 110p in each plane is approximately Lambertian light distribution, and The numerical values of n are also approximately equal.
  • the imaging optical system 120 of the light source unit 11 is an optical system that includes all optical elements necessary to form the first image IM1 at a predetermined position.
  • an input element 121 into which light emitted from the display device 110 enters an intermediate element 122 into which light reflected by the input element 121 enters, and an output element 123 into which light reflected by the intermediate element 122 enters. and has.
  • the light emitted from the output element 123 forms a first image IM1. Note that the light that has passed through the input element 121 may enter the output element 123, and the intermediate element 122 may not be provided.
  • the imaging optical system 120 has approximately telecentricity on the first image IM1 side.
  • the different positions are, for example, different pixels 110p of the display device 110.
  • the plurality of principal rays L are substantially parallel means that they are substantially parallel within a practical range that allows for errors due to manufacturing precision, assembly precision, etc. of the components of the light source unit 11.
  • the angle between the principal rays L is 10 degrees or less.
  • the imaging optical system 120 When the imaging optical system 120 has substantially telecentricity on the first image IM1 side, the plurality of principal rays L intersect with each other before entering the input element 121.
  • the point where the plurality of principal rays L intersect with each other will be referred to as a "focal point F.” Therefore, whether or not the imaging optical system 120 has substantially telecentricity on the first image IM1 side can be confirmed by the following method using, for example, the retrograde property of light.
  • a light source capable of emitting parallel light such as a laser light source, is placed near the position where the first image IM1 is formed.
  • the output element 123 of the imaging optical system 120 is irradiated with light emitted from this light source.
  • the imaging optical system 120 has approximately telecentricity on the first image IM1 side. It can be determined that there is.
  • the imaging optical system 120 Since the imaging optical system 120 has substantially telecentricity on the first image IM1 side, the imaging optical system 120 includes light that passes through the focal point F and its vicinity, out of the light emitted from each pixel of the display device 110. is mainly incident. Each optical element constituting the imaging optical system 120 will be described below.
  • the input element 121 is located on the ⁇ Z side of the display device 110 and is arranged to face the display device 110.
  • the input element 121 is a mirror having a concave mirror surface 121a.
  • the input element 121 reflects the light emitted from the display device 110.
  • the intermediate element 122 is located on the -X side of the display device 110 and the input element 121, and is arranged to face the input element 121.
  • the intermediate element 122 is a mirror having a concave mirror surface 122a. Intermediate element 122 further reflects the light reflected by input element 121.
  • the input element 121 and the intermediate element 122 constitute a bending portion 120a that bends the plurality of principal rays L so that the plurality of principal rays L emitted from different positions of the display device 110 are substantially parallel to each other.
  • the mirror surfaces 121a and 122a are biconic surfaces in this embodiment. However, the mirror surface may be a part of a spherical surface or may be a free-form surface.
  • the output element 123 is located on the +X side of the display device 110 and the input element 121, and is arranged to face the intermediate element 122.
  • the output element 123 is a mirror having a flat mirror surface 123a.
  • the output element 123 reflects the light that has passed through the input element 121 and the intermediate element 122 toward the formation position of the first image IM1. Specifically, a plurality of principal rays L that are substantially parallel due to the bending portion 120a are incident on the output element 123.
  • the mirror surface 123a is inclined with respect to the XY plane, which is the horizontal plane of the vehicle 13, so that the more it goes in the -Z direction, the more it goes in the +X direction.
  • the output element 123 reflects the light reflected by the intermediate element 122 in a direction inclined with respect to the Z direction such that the more it goes in the -Z direction, the more it goes in the +X direction.
  • the output element 123 directs the plurality of principal rays L so that the plurality of principal rays L, which have become substantially parallel due to the bending portion 120a, head toward the formation position P of the first image IM1.
  • a direction changing unit 120b for changing the direction is configured.
  • the optical path between the input element 121 and the intermediate element 122 extends in a direction intersecting the XY plane. Further, the optical path between the intermediate element 122 and the output element 123 extends in a direction along the XY plane. Since a part of the optical path within the imaging optical system 120 extends in a direction intersecting the XY plane, the light source unit 11 can be downsized to some extent in the direction along the XY plane. Furthermore, since the other part of the optical path within the imaging optical system 120 extends in the direction along the XY plane, the light source unit 11 can be downsized to some extent in the Z direction.
  • the optical path between the display device 110 and the input element 121 intersects with the optical path between the intermediate element 122 and the output element 123. In this way, by making the optical paths intersect with each other within the light source unit 11, the light source unit 11 can be made smaller.
  • optical path within the light source unit is not limited to the above.
  • all optical paths within the imaging optical system may extend in a direction along the XY plane, or may extend in a direction intersecting the XY plane. Further, the optical paths within the light source unit do not need to intersect with each other.
  • the input element 121, the intermediate element 122, and the output element 123 each include a main body member made of glass or a resin material, and a metal film or dielectric material provided on the surface of the main body member and forming mirror surfaces 121a, 122a, and 123a. It may also be configured with a reflective film such as a multilayer film. Further, the input element 121, the intermediate element 122, and the output element 123 may each be entirely made of a metal material.
  • the light source unit 11 is provided on the ceiling portion 13b of the vehicle 13.
  • the light source unit 11 is arranged, for example, inside a wall 13s1 exposed inside the vehicle at the ceiling portion 13b.
  • the wall 13s1 is provided with a through hole 13h1 through which light emitted from the output element 123 of the light source unit 11 can pass.
  • the light emitted from the output element 123 passes through the through hole 13h1 and is irradiated into the space between the viewer 14 and the front windshield 13a.
  • the light source unit may be attached to the ceiling surface.
  • the through hole 13h1 may be provided with a transparent or translucent cover having a small haze value.
  • the haze value is preferably 50% or less, and even more preferably 20% or less.
  • the configuration and position of the coupling optical system are not limited to the above as long as it has substantially telecentricity on the first image side.
  • the number of optical elements constituting the direction changing section may be two or more.
  • the reflection unit 12 includes a mirror 131 having a concave mirror surface 131a.
  • Mirror 131 is arranged to face front windshield 13a.
  • the mirror 131 reflects the light emitted from the output element 123 and irradiates it onto the front windshield 13a.
  • the mirror 131 may include a main body member made of glass, a resin material, or the like, and a reflective film such as a metal film or a dielectric multilayer film provided on the surface of the main body member and forming the mirror surface 131a. Further, the mirror 131 may be entirely made of a metal material.
  • mirror surface 131a is a biconic surface. However, the mirror surface may be a part of a spherical surface or may be a free-form surface.
  • the light irradiated onto the front windshield 13a is reflected on the inner surface of the front windshield 13a and enters the eye box 14a of the viewer 14. Thereby, the viewer 14 visually recognizes the second image IM2 corresponding to the image displayed on the display device 110 on the other side of the front windshield 13a.
  • the reflection unit 12 is provided on the dashboard portion 13c of the vehicle 13.
  • the reflection unit 12 is arranged, for example, inside a wall 13s2 of the dashboard portion 13c of the vehicle 13 that is exposed inside the vehicle.
  • the wall 13s2 is provided with a through hole 13h2 through which light emitted from the output element 123 of the light source unit 11 can pass.
  • the light emitted from the output element 123 passes through the through hole 13h1 to form a first image IM1, and then passes through the through hole 13h2 and is irradiated onto the reflection unit 12.
  • the reflection unit may be attached to the upper surface of the dashboard part.
  • the reflection unit may be placed on the ceiling and the light source unit may be placed on the dashboard.
  • the path of light from the inner surface of the front windshield 13a toward the eyebox 14a is generally horizontal, completely horizontal, or slightly inclined so that the eyebox 14a side is higher. That is, this path is approximately parallel to the XY plane.
  • the light source unit 11 is placed above (+Z direction) and the reflection unit 12 is placed below (-Z direction) with respect to the XY plane including the path of this light. That is, the light source unit 11 and the reflection unit 12 are separated from each other with the XY plane interposed therebetween.
  • the configuration and position of the reflection unit are not limited to the above.
  • the number of optical elements such as mirrors constituting the reflection unit may be two or more.
  • the reflection unit 12 needs to be arranged so that, for example, sunlight irradiated from outside the vehicle through the front windshield 13a is not reflected toward the eye box 14a.
  • FIG. 4 is an end view showing a change in the positional relationship between the pixels of the display device and the area of the color change sheet.
  • 5A to 5C are plan views showing changes in the positional relationship between the pixels of the display device and the area of the color change sheet in this embodiment.
  • FIG. 6 is a schematic diagram showing the scenery seen from the viewer in the driver's seat in this embodiment.
  • the drive unit 140 controls the positional relationship between the display device 110 and the color change sheet 130 such that light emitted from one pixel 110p of the display device 110 enters the first region 130a of the color change sheet 130.
  • the center 110c of a certain pixel 110p is the center of the first region 130a, the center of the second region 130b, and the center of the second region 130b along the X direction. It moves between the centers of three areas 130c. If the arrangement period of the regions 130p in the X direction is Px, the amount of movement of the center 110c of the pixel 110p is 2Px along the X direction. In this case, the drive unit 140 may vibrate the color change sheet 130 along the X direction at the same period.
  • the drive unit 140 may move the color change sheet 130 along the Y direction.
  • the arrangement period of the regions 130p in the Y direction is Py
  • the amount of movement of the center 110c of the pixel 110p is 2Py along the Y direction.
  • the drive unit 140 may vibrate the color change sheet 130 at the same period along the Y direction.
  • the drive unit 140 may move the color change sheet 130 in an annular manner in the XY plane.
  • the amount of movement of the center 110c of the pixel 110p is Px along the X direction and Py along the Y direction.
  • the area arranged directly above a certain pixel 110p is repeated in the order of, for example, first area 130a (blue) ⁇ second area 130b (green) ⁇ third area 130c (red) ⁇ second area 130b (green). Change.
  • the drive unit 140 may move the color-changing sheet 130 in a rectangular shape at the same period, or may move it in a circular motion or an elliptical motion.
  • the display device 110 lights up the pixel 110p. For example, by turning on a certain pixel 110p during a period in which the first region 130a (blue) is placed directly above the pixel 110p and turning off the light during other periods, blue color is transmitted from this pixel 110p through the color change sheet 130. can emit light. Further, the pixel 110p is turned on during the period when the first area 130a (blue) is placed directly above the pixel 110p and the period when the second area 130b (green) is placed directly above the pixel 110p, and the second area 130c (red) is placed directly above the pixel 110p.
  • the drive unit 140 controls each pixel 110p of the display device 110 in a time-sharing manner while changing the positional relationship between the display device 110 and the color change sheet 130, so that a color image can be emitted from the light source unit 11. I can do it.
  • the imaging optical system 120 of the light source unit 11 forms a first image IM1, which is a real image, at position P. Then, the light forming the first image IM1 is reflected by the reflection unit 12 and the front windshield 13a, and enters the eyebox 14a of the viewer 14.
  • the viewer 14 visually recognizes the second image IM2, which is a virtual image, on the other side of the front windshield 13a.
  • the second image IM2 can be a color image or a monochrome image.
  • the second image IM2 is shown as a character string "information", but the second image IM2 is not limited to a character string, and may be a figure or the like.
  • the display device 110 that emits light of a single color and the color change that has a plurality of color regions 130p are configured.
  • Sheet 130 allows color images to be displayed.
  • each pixel 110p of the display device 110 is provided with three sub-pixels, and each sub-pixel is provided with an LED element that emits blue light, an LED element that emits green light, and an LED element that emits red light. It is also conceivable that the device 110 displays color images. However, in this case, the number of LED elements is tripled compared to this embodiment, which increases the size and cost of the display device 110. It is also possible to reduce the number of pixels while keeping the number of LED elements the same as in this embodiment. However, in this case, the definition of the image decreases. In contrast, according to the present embodiment, it is possible to realize a small light source unit and an image display device that can display a high-definition color image.
  • the imaging optical system 120 since the imaging optical system 120 has substantially telecentricity on the first image IM1 side, it is possible to display high-quality images while downsizing the light source unit 11 and the image display device 10. This effect will be explained in detail below.
  • FIG. 7A is a schematic diagram showing the principle of the light source unit according to this embodiment.
  • FIG. 7B is a schematic diagram showing the principle of a light source unit according to a reference example.
  • FIG. 7A the light distribution pattern of light emitted from two pixels 110p of the plurality of pixels 110p of the display device 110 in this embodiment is shown by broken lines.
  • FIG. 7B the light distribution pattern of light emitted from two pixels 2110p of the plurality of pixels 2110p of the display device 2110 in the reference example is shown by broken lines.
  • FIGS. 7A and 7B the imaging optical systems 120 and 2120 are shown in a simplified manner.
  • the display device 2110 is an LCD (Liquid Crystal Display) including a plurality of pixels 2110p. As shown by the broken line in FIG. 7B, the light emitted from each pixel 2110p is mainly distributed in the normal direction of the light exit surface 2110s. Further, although there are many planes including the optical axis of light emitted from one pixel 2110p, in the display device 2110 which is an LCD, the light distribution pattern of light emitted from one pixel 2110p within each plane is mutually different. different.
  • the luminous intensity of the light emitted from each pixel 2110p in the direction of the angle ⁇ with respect to the optical axis is approximated by cos 20 ⁇ times the luminous intensity on the optical axis. It has a light distribution pattern.
  • the imaging optical system 2120 takes in light emitted from each pixel 2110p in a direction other than the normal direction, even if the brightness of the light emitted from all pixels 2110p is made uniform, the first image In IM1, variations in brightness and chromaticity occur. That is, the quality of the first image IM1 is degraded. Therefore, in order to prevent the quality of the first image IM1 from deteriorating, it is necessary to take in the light emitted from each pixel 2110p of the display device 2110 from the normal direction. As a result, the imaging optical system 2120 becomes larger.
  • the imaging optical system 120 has approximately telecentricity on the first image IM1 side, and the light emitted from the display device 110 has approximately Lambertian light distribution. have Therefore, the quality of the first image IM1 can be improved while reducing the size of the light source unit 11.
  • the display device 110 is an LED display having a plurality of LED elements 112, and the light emitted from each LED element 112 via the wavelength conversion member 15 has a substantially Lambertian light distribution.
  • the dependence of the luminous intensity and chromaticity of the light emitted from each pixel 110p of the display device 110 on the angle is the same as the dependence of the luminous intensity and chromaticity of the light emitted from each pixel 2110p of the display device 2110 on the angle in the reference example.
  • the closer to a strict Lambertian light distribution that is, the closer n in cos n ⁇ , which is an approximation formula for the light distribution pattern, approaches 1, the more the luminous intensity and chromaticity of the light emitted from each pixel 110p of the display device 110 becomes , it becomes approximately uniform regardless of the angle. Therefore, as shown in FIG.
  • the luminance of the first image IM1 It is possible to suppress variations in color and chromaticity and improve the quality of the first image IM1.
  • the imaging optical system 120 forms the first image IM1 using light that has mainly passed through the focal point F, it is possible to suppress the optical diameter of the light incident on the imaging optical system 120 from expanding. Thereby, the input element 121 can be miniaturized. Furthermore, the plurality of chief rays L emitted from the output element 123 are substantially parallel to each other. The fact that the plurality of chief rays L emitted from the output element 123 are substantially parallel to each other means that the range to which light contributing to image formation in the output element 123 is irradiated is approximately the same size as the first image IM1. It means that there is. Therefore, the output element 123 of the imaging optical system 120 can also be made smaller. As described above, it is possible to provide a light source unit 11 that can form a small and high-quality first image IM1.
  • the video display device 10 includes a light source unit 11 and a reflection unit 12 that is spaced apart from the light source unit 11 and reflects the light emitted from the imaging optical system 120.
  • the first image IM1 is formed between the light source unit 11 and the reflection unit 12.
  • the light emitted from one point on the display device 110 passes through the output element 123 and is then focused at the formation position of the first image IM1.
  • the optical diameter of the light emitted from one point of the display device 110 is from the input element 121 toward the reflection unit 12. , gradually spread.
  • the output element 123 in the output element 123, the range irradiated with light emitted from one point of the display device 110 can be made smaller compared to the case where the first image IM1 is not formed. Therefore, the output element 123 can be made smaller.
  • the light source unit 11 since the light source unit 11 according to the present embodiment is small, when the light source unit 11 is mounted on the vehicle 13 and used as a head-up display, the light source unit 11 can be easily placed in a limited space inside the vehicle 13. can.
  • the imaging optical system 120 in this embodiment includes a bending section 120a and a direction changing section 120b.
  • the imaging optical system 120 by separating the part having the function of making the principal rays L parallel to each other and the part forming the first image IM1 at a desired position, the imaging optical system The design of system 120 is facilitated.
  • a part of the optical path within the imaging optical system 120 extends in a direction intersecting the XY plane. Therefore, the imaging optical system 120 can be downsized to some extent in the direction along the XY plane. Further, another part of the optical path within the imaging optical system 120 extends in the direction along the XY plane. Therefore, the imaging optical system 120 can be downsized to some extent in the Z direction.
  • FIG. 8A is a graph showing a light distribution pattern of light emitted from one light emitting area in Examples 1, 11 and Reference Example.
  • FIG. 8B is a graph showing the uniformity of brightness of the second image in Examples 1 to 12 and the reference example.
  • the video display devices according to Examples 1 to 12 and reference examples include a light source unit and a reflection unit, and the light source unit includes a plurality of light emitting areas arranged in a matrix and an imaging optical system. were set on the simulation software. Each light emitting area corresponds to each pixel 110p of the display device 110 in the above embodiment.
  • the horizontal axis is the angle of the light emitting area with respect to the optical axis
  • the vertical axis is the luminous intensity normalized by dividing the luminous intensity at that angle by the luminous intensity on the optical axis.
  • the display device according to the first embodiment has an arrangement in which the luminous intensity of the light emitted from each light emitting area in the direction at an angle ⁇ with respect to the optical axis is expressed as cos ⁇ times the luminous intensity on the optical axis. It was set on the simulation software to have a light pattern. That is, in Example 1, the light emitted from each light emitting area has a strict Lambertian light distribution.
  • the simulation software is set so that the luminous intensity in the direction of angle ⁇ with respect to the optical axis of each light emitting area has a light distribution pattern expressed as cos 20 ⁇ times the luminous intensity on the optical axis. did.
  • the imaging optical systems in Examples 1 to 12 and Reference Example were all set to have telecentricity on the first image side.
  • the brightness distribution of the second image formed when the brightness of all light emitting areas was kept constant was simulated.
  • the second image was a rectangle with a long side of 111.2 mm and a short side of 27.8 mm.
  • the plane on which the second image was formed was divided into square areas having sides of 1 mm, and the brightness value of each area was simulated.
  • uniformity of brightness is a value expressed as a percentage of the minimum value to the maximum value of brightness within the second image.
  • uniformity of brightness is a value expressed as a percentage of the minimum value to the maximum value of brightness within the second image.
  • n in cos n ⁇ which is an approximate expression of the light distribution pattern, is preferably 11 or less, and even more preferably 1.
  • the display brightness of the display device 110 is set to a predetermined value in advance. A brightness distribution can be provided.
  • the display device 110 may be controlled so that the output of the LED element 112 of the pixel 110p on the outer edge side is larger than the output of the LED element 112 of the pixel 110p on the center side.
  • FIG. 9A is a plan view showing a color changing sheet of a light source unit according to this modification.
  • 9B and 9C are plan views showing changes in the positional relationship between the pixels of the display device and the area of the color change sheet in this modification.
  • a plurality of regions 130p are arranged in a matrix along the first direction and the second direction.
  • the first regions 130a and the second regions 130b are arranged alternately along the first direction (X direction) and the second direction (Y direction).
  • the first region 130a is made of a green film, and the first color is green.
  • the second region 130b is made of a red film, and the second color is red. That is, white light is incident on the first region 130a from the pixel 110p of the display device 110.
  • the first region 130a transmits the green component of this white light and blocks other components. Therefore, the first region 130a emits green light.
  • White light is incident on the second region 130b from the pixel 110p.
  • the second region 130b transmits the red component of this white light and blocks other components. Therefore, the second region 130b emits red light.
  • the center 110c of a certain pixel 110p moves between the center of the first region 130a and the center of the second region 130b along the X direction. .
  • the amount of movement of the center 110c of the pixel 110p is Px along the X direction.
  • the drive unit 140 may move the color change sheet 130e along the Y direction. In this case, the amount of movement of the center 110c of the pixel 110p is Py along the Y direction.
  • the light source unit when only two colors, green and red, are required to display an image, the light source unit can be made smaller compared to the first embodiment. Furthermore, compared to the first embodiment, the time period during which the region 130p of a desired color is placed directly above a certain pixel 110p is longer, so the brightness of the image is improved.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the first embodiment.
  • FIG. 10 is a plan view showing a color changing sheet of a light source unit according to this modification.
  • the color change sheet 130f is provided with a transparent area.
  • the first region 130a and the second region 130b are arranged alternately along the first direction (X direction) and the second direction (Y direction). has been done.
  • the first region 130a is made of a transparent film. Therefore, the first region 130a substantially transmits the white light emitted from the pixel 110p of the display device 110 as it is. Therefore, the first color is white. Note that the first region 130a may not be provided with a transparent film and may be an opening.
  • the second region 130b is made of a blue film, and the second color is blue. Note that in FIG. 10, the transparent first region 130a is labeled with the letter "C".
  • the second region 130b may be made of a green film or a red film. In these cases, the second color will be green or red, respectively.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the first modification.
  • FIG. 11 is an end view showing the display device of the video display device according to this embodiment.
  • FIG. 12 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • the wavelength conversion member 115 is not provided in the display device 110, and a plurality of recesses 112t are provided in the light emitting surface 112s of the LED element 112.
  • the light emitted from the LED element 112 has a substantially Lambertian light distribution.
  • the LED element 112 emits blue light. Therefore, blue light is emitted from the pixel 110p.
  • the color change sheet 230 is provided with a plurality of regions 230p.
  • the shape, size, and arrangement period of the region 230p are approximately the same as the shape, size, and arrangement period of the pixels 110p of the display device 110.
  • the region 230p includes a first region 230a, a second region 230b, and a third region 230c.
  • the first region 230a is made of a transparent film. Blue light is incident on the first region 230a from the pixel 110p of the display device 110. The first region 230a transmits this blue light and emits it substantially unchanged. Therefore, the light emitted from the first region 230a is blue light, and the first color is blue.
  • the second region 230b is composed of a phosphor layer.
  • the second region 230b includes a phosphor that absorbs light emitted from the pixel 110p and emits green light.
  • blue light is incident on the second region 230b from the pixel 110p of the display device 110, and the phosphor absorbs this blue light and emits green light. Therefore, the second color is green.
  • the light emitted from the second region 230b has a substantially Lambertian light distribution.
  • the third region 230c is also composed of a phosphor layer.
  • the third region 230c includes a phosphor that absorbs light emitted from the pixel 110p and emits red light. As a result, blue light enters the third region 230c from the pixel 110p of the display device 110, and the phosphor absorbs this blue light and emits red light. Therefore, the third color is red.
  • the light emitted from the third region 230c also has a substantially Lambertian light distribution.
  • blue light emitted from the LED elements 112 is incident on the first region 230a of the color change sheet 230.
  • the first region 230a transmits the incident blue light as it is and emits it, so the light utilization efficiency is high.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • FIG. 13 is a plan view showing a color changing sheet of a light source unit according to this modification.
  • blue light is emitted from the pixel 110p of the display device 110, and light of three colors, blue, green, and red, is emitted from the color change sheet 230.
  • blue light is emitted from the pixel 110p and two colors of green and red light are emitted from the color change sheet 230e.
  • the first region 230a and the second region 230b are arranged alternately along the first direction (X direction) and the second direction (Y direction). has been done.
  • the first region 230a and the second region 230b are composed of a phosphor layer.
  • the first region 230a includes a phosphor that absorbs blue light and emits green light.
  • the second region 230b includes a phosphor that absorbs blue light and emits red light. Therefore, in this modification, the first color is green and the second color is red.
  • the operation of the drive unit 140 in this modification that is, the change in the positional relationship between the display device 110 and the color change sheet 230e is as shown in FIG. 9B or FIG. 9C.
  • the light source unit when only two colors, green and red, are required to display an image, the light source unit can be made smaller compared to the second embodiment. Furthermore, compared to the second embodiment, the time period during which the region 230p of a desired color is placed directly above a certain pixel 110p is longer, so the brightness of the image is improved.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the second embodiment.
  • FIG. 14 is a plan view showing a color changing sheet of a light source unit according to this modification.
  • the color change sheet 230f is provided with a transparent area.
  • the first region 230a is made of a transparent film. Therefore, the first region 230a substantially transmits the blue light emitted from the pixel 110p of the display device 110 as is. Therefore, the first region 230a emits blue light. Therefore, the first color is blue. Note that the first region 230a may not be provided with a transparent film and may be an opening.
  • the second region 230b is constituted by a phosphor layer, and includes a phosphor that absorbs blue light and emits green light. Therefore, the second color is green.
  • the second region 230b may include a phosphor that absorbs blue light and emits green light, or may include a phosphor that absorbs blue light and emits red light. Often, it may include a phosphor that absorbs blue light and emits yellow light. In these cases, the second color will be green, red or yellow, respectively.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the first modification of the second embodiment.
  • FIG. 15 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • FIG. 15 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • an example in which blue light is emitted from the pixel 110p of the display device 110 has been described, but in this embodiment, an example in which ultraviolet light is emitted from the pixel 110p in the display device 110 will be described. .
  • the color change sheet 230g is provided with a first region 230a, a second region 230b, and a third region 230c.
  • the first region 230a, the second region 230b, and the third region 230c are each composed of a phosphor layer.
  • the first region 230a includes a phosphor that absorbs ultraviolet light and emits blue light. Therefore, the first color is blue.
  • the second region 230b includes a phosphor that absorbs ultraviolet light and emits green light. Therefore, the second color is green.
  • the third region 230c includes a phosphor that absorbs ultraviolet light and emits red light. Therefore, the third color is red.
  • the light emitted from the first region 230a, second region 230b, and third region 230c has approximately Lambertian light distribution.
  • FIG. 16 is a plan view showing a color changing sheet of a light source unit according to this modification.
  • ultraviolet light is emitted from the pixel 110p of the display device 110, and light in three colors of blue, green, and red is emitted from the color change sheet 230g, but in this modified example, An example in which two colors of light are emitted from the color change sheet 230h will be described.
  • the first region 230a and the second region 130b are arranged in the first direction (X direction) and the second direction, similarly to the color change sheet shown in FIG. They are arranged alternately along the (Y direction).
  • the first region 230a includes a phosphor that absorbs ultraviolet light and emits light of a first color.
  • the second region 230b includes a phosphor that absorbs ultraviolet light and emits light of a second color.
  • the first color is blue and the second color is green.
  • the combination of the first color and the second color is not limited to blue and green, and may be, for example, blue and red, blue and yellow, or green and red.
  • the operation of the drive unit 140 in this modification, that is, the change in the positional relationship between the display device 110 and the color change sheet 230h is as shown in FIG. 9B or 9C.
  • the light source unit when only two colors are required to display an image, the light source unit can be made smaller compared to the third embodiment. Furthermore, the brightness of the image is improved compared to the third embodiment.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the third embodiment.
  • FIG. 17 is a diagram showing the relationship between the color of light emitted from the pixels of the display device and the configuration of each region of the color change sheet.
  • the light emitted from the pixel 110p of the display device 110 is white light, blue light, or ultraviolet light, and the color changes.
  • each region of the sheet is a colored or transparent film, or a phosphor layer that emits light of a different color.
  • the present invention is not limited to the example shown in FIG. 17.
  • the color of the light emitted from the color change sheet is not limited to white, blue, green, red, and yellow, but may be other colors such as orange, pink, cyan, and magenta.
  • the number of colors of light emitted from the color change sheet is not limited to two or three colors, and may be four or more colors.
  • FIG. 18 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • the color change sheet 330 in the present embodiment, two second regions 330b that emit green light are arranged diagonally in the minimum units 330u arranged in two rows and two columns adjacent to each other.
  • One first region 330a that emits blue light and one third region 330c that emits red light are arranged.
  • the color change sheet 330 may be composed of a color film as in the first embodiment, or may be composed of a phosphor sheet as in the second and third embodiments, and may include a transparent area. It's okay to stay.
  • the operation of the drive unit 140 in this embodiment that is, the change in the positional relationship between the display device 110 and the color change sheet 330 is as shown in FIG. 5C.
  • the areas arranged directly above a certain pixel 110p are arranged in the order of, for example, first area 330a (blue) ⁇ second area 330b (green) ⁇ third area 330c (red) ⁇ second area 330b (green). Change repeatedly.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • FIG. 19 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • a first region 430a, a second region 430b, and a third region 430c are repeatedly arranged along the first direction (X direction).
  • regions of the same type are consecutively arranged.
  • the operation of the drive unit 140 in this embodiment that is, the change in the positional relationship between the display device 110 and the color change sheet 430 is as shown in FIG. 5A.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • FIG. 20 is a plan view showing the color changing sheet of the light source unit according to this embodiment.
  • a first region 530a, a second region 530b, and a third region 530c are repeatedly arranged along the second direction (Y direction).
  • regions of the same type are consecutively arranged.
  • the operation of the drive unit 140 in this embodiment that is, the change in the positional relationship between the display device 110 and the color change sheet 530 is as shown in FIG. 5B.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • FIG. 21 is an end view showing the video display device according to this embodiment.
  • FIG. 22 is a schematic diagram showing the scenery seen from the viewer in the driver's seat in this embodiment.
  • an automobile 1000 includes a vehicle 13 and a video display device 20 fixed to the vehicle 13.
  • the video display device 20 includes a light source unit 11 and a reflection unit 22.
  • the video display device 20 according to the present embodiment differs from the first embodiment in that the mirror surface 322a of the mirror 322 of the reflection unit 22 also serves as a reflection surface that allows the viewer 14 to view the second image IM2. This is different from the video display device 10.
  • the configuration of the light source unit 11 in the video display device 20 is the same as that in the first embodiment.
  • the light source unit 11 is arranged on the ceiling part 13b of the vehicle 13.
  • the reflection unit 22 is arranged on the dashboard section 13c of the vehicle 13.
  • Reflection unit 22 has a mirror 322.
  • the mirror surface 322a of the mirror 322 is, for example, a concave surface.
  • the mirror surface 322a is arranged at a position and at an angle facing the eye box 14a of the viewer 14 when the viewer 14 is in the driver's seat of the vehicle 13.
  • the mirror surface 322a faces in a direction between the -X direction (rearward) and the +Z direction (upward).
  • the angle of this mirror surface 322a can be finely adjusted depending on the position of the eyebox 14a of the viewer 14.
  • the principal ray L emitted from the light source unit 11 travels in a direction between the +X direction (front) and the -Z direction (downward), is reflected at the mirror surface 322a of the mirror 322 of the reflection unit 22, and travels in the -X direction ( The light travels in a direction between the +Z direction (upward) and the +Z direction (upwards) and enters the eyebox 14a of the viewer 14.
  • the path of the chief ray L from the light source unit 11 toward the reflection unit 12 is located inside the front windshield 13a of the vehicle 13, and generally follows the front windshield 13a.
  • the chief ray L forms a first image IM1 at a position P between the light source unit 11 and the reflection unit 22.
  • the drive unit 140 changes the positional relationship between the display device 110 and the color change sheet 130, and the display device 110 is controlled in a time-sharing manner, thereby changing the first image IM1 into a color image including a plurality of colors. do.
  • the viewer 14 can visually recognize the second image IM2, which is a virtual image, behind the mirror surface 322a of the dashboard portion 13c.
  • the second image IM2 is formed far away from the mirror surface 322a, for example, 3 m ahead. Therefore, the viewer 14 can view the second image IM2 without significantly changing the focal length of his eyes from a state where he is viewing a distant scene through the front windshield 13a.
  • the video display device 20 is divided into a light source unit 11 and a reflection unit 22, and is fixed at different positions in the vehicle 13, similarly to the first embodiment.
  • the video display device 20 requires a long optical path length in order to form the second image IM2 at a position several meters in front of the vehicle. Part of the optical path length can be configured using the thirteen internal spaces. This eliminates the need to form the entire required optical path length inside the video display device 20, and the video display device 20 can be made smaller.
  • the configuration of the reflection unit 22 can be simplified, and the reflection unit 22 can be made smaller.
  • the viewer 14 can reliably view the second image IM2 without being affected by the background of the reflective surface.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • the mirror 322 of the reflection unit 22 may be constituted by a half mirror or a transparent plate. Even in this case, by keeping the inside of the dashboard portion 13c dark, it is possible to prevent the viewer 14 from seeing the inside of the dashboard portion 13c.
  • the mirror surface 322a of the mirror 322 may be black enough to sufficiently reflect the chief ray L emitted from the light source unit 11. Thereby, it is possible to suppress a decrease in visibility due to reflection of external light or the like by the mirror surface 322a of the mirror 322.
  • the mirror 322 may be arranged continuously with the surface of the dashboard portion 13c. This eliminates the need to make a hole in the dashboard portion 13c, and improves the design of the interior of the automobile 1000.
  • FIG. 23 is an end view showing the video display device according to this embodiment.
  • FIG. 24 is an enlarged cross-sectional view of a part of the display device and reflective polarizing element shown in FIG. 23.
  • a video display device 70A according to the present embodiment differs from the first embodiment in that it includes a display device 710A instead of the display device 110 and further includes a reflective polarizing element 740. This is different from the video display device 10.
  • the display device 710A in this embodiment is different from the display device in the first embodiment in that the light exit surface of the LED element 712 is generally flat, and further includes a protective layer 714, a wavelength conversion member 715, and a light scattering member 716A. It is different from 110.
  • the other configuration of the display device 710A is the same as the display device 110 in the first embodiment.
  • the light source unit 71A according to the present embodiment includes a color change sheet 130 and a drive unit 140 similarly to the light source unit 11 according to the first embodiment. However, in FIG. 23, illustration of the color change sheet 130 and the drive unit 140 is omitted.
  • the protective layer 714 covers the plurality of LED elements 712 arranged in rows and columns.
  • the protective layer 714 is made of, for example, a polymer material having a sulfur (S)-containing substituent or a phosphorus (P) atom-containing group, or a high refractive material in which inorganic nanoparticles with a high refractive index are introduced into a polymer matrix such as polyimide.
  • Transparent materials such as composite nanocomposite materials can be used.
  • the wavelength conversion member 715 is arranged on the protective layer 714.
  • the wavelength conversion member 715 includes one or more wavelength conversion materials such as a general phosphor material, a perovskite phosphor material, or a quantum dot (QD).
  • the light emitted from each LED element 712 enters the wavelength conversion member 715.
  • the wavelength conversion material emits light having an emission peak wavelength different from the emission peak wavelength of each LED element 712.
  • the light emitted by the wavelength conversion member 715 has a substantially Lambertian light distribution.
  • the light scattering member 716A includes, for example, a translucent resin member and light scattering particles or holes arranged in the resin member.
  • the resin member include polycarbonate.
  • light-scattering particles include materials that have a refractive index difference with the resin member, such as titanium oxide. Note that the light scattering member 716A may obtain a light scattering effect by roughening its surface to provide unevenness.
  • the reflective polarizing element 740 for example, a multilayer thin film laminated polarizing plate in which thin film layers having different polarization characteristics are laminated can be used.
  • Reflective polarizing element 740 is placed on display device 710A.
  • the reflective polarizing element 740 is placed on the light scattering member 716A. Therefore, the light emitted from the LED element 712 and the wavelength conversion member 715 enters the reflective polarizing element 740.
  • the reflective polarizing element 740 transmits the first polarized light 710p of the light emitted from the display device 710A, and reflects the second polarized light 710s toward the display device 710A.
  • the direction of vibration of the electric field of the second polarized light 710s is approximately orthogonal to the direction of vibration of the electric field of the first polarized light 710p.
  • the first polarized light 710p is P polarized light
  • the second polarized light 710s is S polarized light
  • P-polarized light means light whose electric field vibration direction is substantially parallel to the XY plane
  • S-polarized light means light whose electric field vibration direction is approximately perpendicular to the XY plane including incident light and reflected light.
  • the viewer 14 driving the vehicle 13 may wear polarized sunglasses 14b in order to reduce the glare of sunlight that is reflected from a puddle in front of the vehicle 13 and transmitted through the front windshield 13a.
  • the component corresponding to P-polarized light when viewed from the front windshield 13a is particularly reduced in sunlight reflected by a puddle or the like, so the polarized sunglasses 14b blocks most of the S-polarized light.
  • the polarized sunglasses 14b blocks most of the S-polarized light.
  • most of the S-polarized light included in the light emitted by the display device 710A is also blocked by the polarized sunglasses 14b, so that the viewer 14 cannot visually recognize the second image IM2. It may become difficult.
  • P-polarized light and S-polarized light in this specification are physically defined by the presence of a reflective object such as the above-mentioned puddle.
  • the reflective polarizing element 740 transmits the first polarized light 710p of the light emitted from the display device 710A and reflects the second polarized light 710s. Most of the first polarized light 710p transmitted through the reflective polarizing element 740 passes through the imaging optical system 120, the reflective unit 12, and the inner surface of the front windshield 13a, and then passes through the eye box without being blocked by the polarized sunglasses 14b. 14a. Note that the incident angle of the first polarized light 710p when it enters the inner surface of the front windshield 13a is set to be an angle different from the Brewster angle.
  • the light emitted from the LED element 712 is irradiated onto the wavelength conversion member 715.
  • the wavelength conversion member 715 is excited and emits light having a peak emission wavelength longer than the peak emission wavelength of the light emitted from the LED element 712.
  • the light emitted from the display device 710A includes light emitted from the LED element 712 and light emitted from the wavelength conversion member 715.
  • the light emitted from the LED element 712 is also referred to as "short wavelength light”
  • the light emitted from the wavelength conversion member 715 is also referred to as "long wavelength light”.
  • most of the light emitted from the LED element 712 may be absorbed by the wavelength conversion member 715.
  • Most of the first polarized light 710p included in these short wavelength lights and long wavelength lights passes through the reflective polarizing element 740 and exits from the imaging optical system 120. Furthermore, most of the second polarized light 710s included in these short wavelength lights and long wavelength lights is reflected by the reflective polarizing element 740. A portion of the second polarized light 710s reflected by the reflective polarizing element 740 is scattered and reflected by components of the display device 710A, such as the light scattering member 716A and the wavelength conversion member 715. Due to scattered reflection, a portion of the second polarized light 710s is converted into the first polarized light 710p.
  • a part of the first polarized light 710p converted from the second polarized light 710s passes through the reflective polarizing element 740 and is emitted from the light source unit 71A. Therefore, the brightness of the first image IM1 can be improved while increasing the proportion of the first polarized light 710p included in the light emitted from the light source unit 71A.
  • the brightness of the second image IM2 also improves. This makes it easier for the viewer 14 to visually recognize the second image IM2.
  • the wavelength conversion member 715 absorbs the short wavelength light of the second polarized light 710s and newly emits long wavelength light. Both the scattered reflected light and the emitted light have approximately Lambertian light distribution.
  • the reflective polarizing element 740 itself may scatter and reflect the second polarized light 710s. Also in this case, a portion of the second polarized light 710s is converted into the first polarized light 710p due to scattering and reflection.
  • one reflective polarizing element 740 covers all pixels of the display device 710A.
  • the light source unit may include a plurality of reflective polarizing elements, and each reflective polarizing element may be arranged on each pixel.
  • the configuration of the display device used in combination with the reflective polarizing element is not limited to the above.
  • the display device may be configured without the light scattering member.
  • the display device may be configured without the wavelength conversion member.
  • the display device can be converted into a wavelength converting member and a light scattering member.
  • a configuration in which neither is provided may be used.
  • the light source unit 71A is arranged on the display device 710A, transmits the first polarized light 710p of the light emitted from the display device 710A, and transmits the second polarized light 710s of the light emitted from the display device 710A. It further includes a reflective polarizing element 740 that reflects. Therefore, the brightness of the first image IM1 can be improved while increasing the proportion of the first polarized light 710p included in the light emitted from the light source unit 71A.
  • the light emitted from the reflective polarizing element 740 also has a substantially Lambertian light distribution. Therefore, also in this embodiment, it is possible to provide the light source unit 71A that can form the first image IM1 that is small and of high quality. Note that since the plurality of LED elements 712 are discretely mounted on the substrate 111, a grainy appearance may occur in the first image IM1.
  • the wavelength conversion member 715 has the effect of alleviating this graininess.
  • the light scattering member 716A can further enhance the effect of alleviating this graininess.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the first embodiment.
  • FIG. 25 is a side view showing the light source unit according to this embodiment.
  • a light source unit 71B includes a display device 710A having a configuration similar to that of the eighth embodiment instead of the display device 110, and a reflective polarizing element 750.
  • the video display device 10 is different from the video display device 10 according to the first embodiment in that it further includes a light shielding member 760. Note that in FIG. 25, only the light shielding member 760 is shown in cross section.
  • the reflective polarizing element 750 for example, a wire grid type reflective polarizing element using a plurality of metal nanowires can be used.
  • the reflective polarizing element 750 is arranged in a portion of the optical path from the display device 710A to the reflective unit 12, where the plurality of principal rays L are substantially parallel to each other.
  • the plurality of principal rays L are substantially parallel to each other in the optical path between the intermediate element 122 and the reflection unit 12, and the reflective polarizing element 750 is arranged between the intermediate element 122 and the output element 123. be done.
  • the reflective polarizing element 750 transmits the first polarized light 710p, which is P-polarized light, and reflects the second polarized light 710s, which is S-polarized light, back to the display device 710A. Specifically, light 710a including first polarized light 710p and second polarized light 710s is emitted from display device 710A. This light 710a enters the reflective polarizing element 750 after passing through the input element 121 and the intermediate element 122.
  • the reflective polarizing element 750 transmits most of the first polarized light 710p included in this light 710a. Most of the first polarized light 710p that has passed through the reflective polarizing element 750 is output from the reflective unit 12 after passing through the output element 123.
  • the reflective polarizing element 750 reflects most of the second polarized light 710s included in this light 710a so as to return along the optical path from the display device 710A to the reflective polarizing element 750.
  • the shape of the reflective polarizing element 750 is a flat plate.
  • the reflective polarizing element 750 is arranged so as to be substantially perpendicular to the principal ray L.
  • the reflective polarizing element 750 specularly reflects most of the second polarized light 710s. Therefore, most of the second polarized light 710s reflected by the reflective polarizing element 750 passes through the intermediate element 122 and the input element 121 in this order, and then returns to the display device 710A.
  • a part of the second polarized light 710s that has returned to the display device 710A is scattered and reflected by components of the display device 710A, such as the light scattering member 716A and the wavelength conversion member 715. Due to scattered reflection, a portion of the second polarized light 710s is converted into the first polarized light 710p.
  • a part of the first polarized light 710p converted from the second polarized light 710s passes through the reflective polarizing element 750 after passing through the input element 121 and the intermediate element 122. Most of the first polarized light 710p that has passed through the reflective polarizing element 750 is output from the reflective unit 12 after passing through the output element 123. Therefore, the brightness of the second image IM2 can be improved while increasing the proportion of the first polarized light 710p included in the light emitted from the video display device 70B. This makes it easier for the viewer 14 to visually recognize the second image IM2.
  • a portion of the short wavelength light included in the second polarized light 710s returned to the display device 710A may be irradiated onto the wavelength conversion member 715, as in the eleventh embodiment.
  • the effect can be expected that the wavelength conversion member 715 absorbs the short wavelength light of the second polarized light 710s and newly emits long wavelength light.
  • the light shielding member 760 is arranged between the display device 710A and the input element 121 of the imaging optical system 120.
  • the shape of the light shielding member 760 is, for example, a flat plate substantially parallel to the XY plane.
  • the light shielding member 760 is provided with an opening 761 that penetrates the light shielding member 760 in the Z direction.
  • the focal point F of the imaging optical system 120 is located within the aperture 761.
  • the light that passes through the focal point F and its vicinity passes through the opening 761 of the light shielding member 760 and enters the input element 121, and most of the other light passes through the light shielding member 760. is blocked by.
  • the light along the optical path that is, the light passing through the focal point F and its vicinity, passes through the opening 761 of the light shielding member 760 and returns to the display device 710A.
  • most of the second polarized light 710s reflected by the reflective polarizing element 750 which does not go along the optical path but goes toward the display device 710A, is blocked by the light shielding member 760.
  • the video display device 70B further includes a reflective polarizing element 750.
  • the reflective polarizing element 750 is configured so that, in the optical path from the display device 710A to the reflection unit 12, a plurality of chief rays L that are emitted from different positions in the display device 710A and pass through the first image IM1 are substantially parallel to each other.
  • the first polarized light 710p of the light emitted from the display device 710A is transmitted therethrough, and the second polarized light 710s of the light emitted from the display device 710A is reflected back to the display device 710A. Therefore, the brightness of the second image IM2 can be improved while increasing the proportion of the first polarized light 710p included in the light emitted from the video display device 70B.
  • a light shielding member 760 is provided between the display device 710A and the input element 121.
  • the light shielding member 760 is provided with an opening 761 through which the second polarized light 710s returning to the display device 710A along the optical path passes. Therefore, while allowing the light along the optical path of the second polarized light 710s reflected by the reflective polarizing element 750 to return to the display device 710A, the light along the optical path of the second polarized light 710s reflected by the reflective polarizing element 750 is allowed to return to the display device 710A. Stray light that does not follow the direction can be suppressed from heading toward the display device 710A.
  • the quality of the first image IM1 and the second image IM2 can be improved.
  • the light shielding member 760 due to the light shielding member 760, stray light out of the light emitted from the display device 710A that does not follow the optical path is reflected by the reflective polarizing element 750 and the optical elements of the imaging optical system 120, and heads toward the display device 710A. It is possible to suppress re-excitation and scattering reflection in places where it is not possible.
  • the light shielding member 760 may not be provided in the video display device 70B.
  • the reflective polarizing element 740 described in the third embodiment may be further provided on the display device 710A of the video display device 70B.
  • the second polarized light 710s that was not completely reflected by the reflective polarizing element 740 on the display device 710A can be reflected by the reflective polarizing element 750. Therefore, the brightness of the second image IM2 can be improved while increasing the proportion of the first polarized light 710p included in the light emitted from the video display device 70B.
  • the configuration, operation, and effects of this embodiment other than those described above are the same as those of the third embodiment.
  • FIG. 26 is a side view showing a light source unit according to this modification. Also in FIG. 26, only the light shielding member 760 is shown in cross section.
  • a reflective polarizing element 750 is arranged between the output element 123 and the reflective unit 12. Note that although FIG. 26 shows an example in which the reflective polarizing element 750 is located between the output element 123 and the first image IM1, the reflective polarizing element 570 is positioned between the first image IM1 and the reflective unit 12. may be placed between.
  • the configuration, operation, and effects of this modification other than those described above are the same as those of the ninth embodiment.
  • the embodiment includes the following aspects.
  • a display device having multiple pixels and capable of displaying an image; a color-changing sheet on which light emitted from the display device enters; an input element into which light emitted from the color change sheet is incident; and an output element into which light that has passed through the input element is incident; the light emitted from the output element forms a first image corresponding to the image; an imaging optical system that forms a drive unit that changes the positional relationship between the display device and the color change sheet; Equipped with The color change sheet is a first region into which light enters from the pixel and emits light of a first color; a second region into which light enters from the pixel and emits light of a second color different from the first color; has The drive unit sets the positional relationship between the display device and the color change sheet to a first positional relationship in which light emitted from one of the pixels enters the first area, and a first positional relationship in which light emitted from one of the pixels enters the first area. changing between a second positional relationship of incidence
  • the color of the light emitted from the pixel is the first color
  • the color change sheet further includes a third region into which light enters from the pixel and emits light of a third color different from the first color and the second color
  • the drive unit determines the positional relationship between the display device and the color change sheet according to the first positional relationship, the second positional relationship, and the light emitted from the one pixel entering the third area.
  • the light source unit according to any one of Supplementary Notes 1 to 4, wherein the light source unit is changed between the third positional relationship.
  • Appendix 6 In the display device, the plurality of pixels are arranged along a first direction and a second direction crossing the first direction, The light source unit according to appendix 5, wherein in the color change sheet, the first region, the second region, and the third region are arranged along the first direction.
  • the plurality of pixels are arranged along a first direction and a second direction crossing the first direction,
  • the first region and the second region are arranged along the first direction, and the first region and the third region are arranged along the second direction.
  • the light source unit according to supplementary note 5.
  • the light emitted from the display device has a light distribution pattern in which the luminous intensity in a direction at an angle ⁇ with respect to the optical axis of the light emitted from the display device is approximated by cos n ⁇ times the luminous intensity on the optical axis.
  • the light source unit according to any one of Supplementary Notes 1 to 7, wherein the n is a value larger than 0.
  • Appendix 10 The light source unit according to any one of appendices 1 to 9, wherein the display device is an LED display having a plurality of LED elements.
  • the imaging optical system includes a bending section including the input element, and a direction changing section including the output element,
  • the bending portion is configured such that a plurality of chief rays exit from different positions in the display device and cross each other to reach the first image before entering the input element, before and after the first image. bending the plurality of chief rays so that they become substantially parallel; Any one of Supplementary Notes 1 to 12, wherein the direction changing unit changes the traveling direction of the plurality of chief rays so that the plurality of chief rays that have passed through the bending part head toward the formation position of the first image.
  • An opening is provided between the display device and the imaging optical system, through which a portion of light directed from the display device to the imaging optical system passes, and is directed from the display device to the imaging optical system.
  • the light source unit according to any one of Supplementary Notes 1 to 13, further comprising a light shielding member that blocks another part of the light.
  • a light source unit according to any one of Supplementary Notes 1 to 14, a reflection unit that is separated from the light source unit and reflects the light emitted from the imaging optical system; Equipped with The first image is an image display device formed between the light source unit and the reflection unit.
  • the display device is arranged on an optical path from the display device to the reflection unit, transmits the first polarized light of the light emitted from the display device, and transmits the second polarized light of the light emitted from the display device to the display device. 16.
  • the present invention can be used, for example, in a head-up display.
  • Video display device 11 Light source unit 12: Reflection unit 13: Vehicle 13a: Front windshield 13b: Ceiling section 13c: Dashboard section 13h1, 13h2: Through holes 13s1, 13s2: Wall 14: Viewer 14a: Eye box 14b : Polarized sunglasses 20: Image display device 22: Reflection units 70A, 70B: Image display devices 71A, 71B: Light source unit 110: Display device 110c: Center 110p: Pixel 111: Substrate 112 LED element 112a: Semiconductor laminate 112b: Anode electrode 112c: cathode electrode 112p1: p-type semiconductor layer 112p2: active layer 112p3: n-type semiconductor layer 112s: light exit surface 112t: recess 115: wavelength conversion members 118a, 118b: wiring 120, 2120: imaging optical system 120a: bending part 120b: Direction change unit 121: Input elements 121a, 122a: Mirror surface 122: Intermediate element 122a: Mirror surface 123:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

光源ユニットは、複数の画素を有し画像を表示可能な表示装置と、前記表示装置から出射した光が入射する色変化シートと、結像光学系と、前記表示装置と前記色変化シートの位置関係を変化させる駆動ユニットと、を備える。前記結像光学系は、前記画像に応じた第1の像を形成する。前記色変化シートは、前記画素から光が入射され、第1の色の光を出射する第1領域と、前記画素から光が入射され、第2の色の光を出射する第2領域と、を有する。前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、一の前記画素から出射した光が前記第1領域に入射する第1の位置関係と、前記一の画素から出射した光が前記第2領域に入射する第2の位置関係と、の間で変化させる。

Description

光源ユニット、映像表示装置及び自動車
 実施形態は、光源ユニット、映像表示装置及び自動車に関する。
 特許文献1には、画像を表示可能な表示装置から出射した光を、複数のミラーで順次反射し、最後のミラーにおいて反射された光を、ウインドシールド等の反射部材で使用者に向けてさらに反射し、使用者に表示装置が表示する画像に応じた虚像を視認させる技術が開示されている。しかしながら、特許文献1に開示された技術において画像をカラー化しようとすると、各色に対応した画素が必要となるため、表示装置が大型化するという問題がある。
国際公開第2016/208195号
 本発明の実施形態は、小型でカラー画像を表示可能な光源ユニット、映像表示装置及び自動車を提供することを目的とする。
 本発明の実施形態に係る光源ユニットは、複数の画素を有し画像を表示可能な表示装置と、前記表示装置から出射した光が入射する色変化シートと、結像光学系と、前記表示装置と前記色変化シートの位置関係を変化させる駆動ユニットと、を備える。前記結像光学系は、前記色変化シートから出射した光が入射する入力素子と、前記入力素子を経由した光が入射する出力素子と、を含み、前記出力素子から出射した光が前記画像に応じた第1の像を形成する。前記色変化シートは、前記画素から光が入射され、第1の色の光を出射する第1領域と、前記画素から光が入射され、前記第1の色とは異なる第2の色の光を出射する第2領域と、を有する。前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、一の前記画素から出射した光が前記第1領域に入射する第1の位置関係と、前記一の画素から出射した光が前記第2領域に入射する第2の位置関係と、の間で変化させる。前記結像光学系は、前記第1の像側において略テレセントリック性を有する。前記表示装置から出射する光は略ランバーシアン配光を有する。
 本発明の実施形態に係る映像表示装置は、前記光源ユニットと、前記光源ユニットから離隔し、前記結像光学系から出射した光を反射する反射ユニットと、を備える。前記第1の像は、前記光源ユニットと前記反射ユニットとの間に形成される。
 実施形態によれば、小型でカラー画像を表示可能な光源ユニット、映像表示装置及び自動車を実現できる。
図1は、第1の実施形態に係る映像表示装置を示す端面図である。 図2Aは、第1の実施形態に係る光源ユニットの表示装置を示す平面図である。 図2Bは、第1の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図2Cは、第1の実施形態に係る光源ユニットの表示装置、色変化シート及び駆動ユニットを示す端面図である。 図3は、第1の実施形態に係る映像表示装置の表示装置を示す端面図である。 図4は、表示装置の画素と色変化シートの領域の位置関係の変化を示す端面図である。 図5Aは、第1の実施形態における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。 図5Bは、第1の実施形態における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。 図5Cは、第1の実施形態における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。 図6は、第1の実施形態において、運転席にいる視認者から見た景色を示す模式図である。 図7Aは、第1の実施形態に係る光源ユニットの原理を示す模式図である。 図7Bは、参考例に係る光源ユニットの原理を示す模式図である。 図8Aは、実施例1、11および参考例において、1つの発光エリアから出射する光の配光パターンを示すグラフである。 図8Bは、実施例1~12および参考例における第2の像の輝度の均一性を示すグラフである。 図9Aは、第1の実施形態の第1の変形例に係る光源ユニットの色変化シートを示す平面図である。 図9Bは、第1の実施形態の第1の変形例における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。 図9Cは、第1の実施形態の第1の変形例における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。 図10は、第1の実施形態の第2の変形例に係る光源ユニットの色変化シートを示す平面図である。 図11は、第2の実施形態に係る映像表示装置の表示装置を示す端面図である。 図12は、第2の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図13は、第2の実施形態の第1の変形例に係る光源ユニットの色変化シートを示す平面図である。 図14は、第2の実施形態の第2の変形例に係る光源ユニットの色変化シートを示す平面図である。 図15は、第3の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図16は、第3の実施形態の変形例に係る光源ユニットの色変化シートを示す平面図である。 図17は、表示装置の画素から出射する光の色と、色変化シートとの関係を示す図である。 図18は、第4の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図19は、第5の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図20は、第6の実施形態に係る光源ユニットの色変化シートを示す平面図である。 図21は、第7の実施形態に係る映像表示装置を示す端面図である。 図22は、第7の実施形態において、運転席にいる視認者から見た景色を示す模式図である。 図23は、第8の実施形態に係る映像表示装置を示す端面図である。 図24は、図23に示す表示装置および反射型偏光素子の一部を拡大して示す断面図である。 図25は、第9の実施形態に係る光源ユニットを示す側面図である。 図26は、第9の実施形態の変形例に係る光源ユニットを示す側面図である。
 以下に、各実施形態及びその変形例について図面を参照しつつ説明する。なお、図面は模式的または概念的なものであり、適宜強調又は簡略化されている。例えば、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。さらに、本明細書と各図において、既出の図に関して説明したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
 <第1の実施形態>
 先ず、第1の実施形態について説明する。
 図1は、本実施形態に係る映像表示装置を示す端面図である。
 図2Aは、本実施形態に係る光源ユニットの表示装置を示す平面図である。
 図2Bは、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 図2Cは、本実施形態に係る光源ユニットの表示装置、色変化シート及び駆動ユニットを示す端面図である。
 図1に示すように、本実施形態に係る映像表示装置10は、光源ユニット11と、反射ユニット12と、を備える。光源ユニット11は、表示装置110と、結像光学系120と、色変化シート130と、駆動ユニット140と、を有する。表示装置110は複数の画素を有し、画像を表示可能である。色変化シート130には、表示装置110から出射した光が入射する。結像光学系120は、色変化シート130から出射した光が入射し、表示装置110が表示した画像に応じた第1の像IM1を形成する。第1の像IM1は、実像であって中間像である。駆動ユニット140は、表示装置110と色変化シート130の位置関係を変化させる。反射ユニット12は、光源ユニット11から離隔し、結像光学系120から出射した光を反射する。
 映像表示装置10は、例えば自動車1000に搭載されて、HUD(Head Up Display)を構成する。自動車1000は、車両13と、車両13に固定された映像表示装置10と、を備える。視認者14は自動車1000の搭乗者であり、例えば、運転者である。
 光源ユニット11の表示装置110は、HUDにより視認者14に視認させたい画像を表示する。色変化シート130は、表示装置110が表示した画像の色を画素毎に変化させる。このメカニズムについては後述する。結像光学系120は、色変化シート130から出射した光を反射ユニット12に対して出力すると共に、光源ユニット11と反射ユニット12との間に第1の像IM1を結像する。反射ユニット12は光源ユニット11から出射した光を車両13のフロントウインドシールド13aに向けて反射する。フロントウインドシールド13aは、例えば、ガラスを含む。
 フロントウインドシールド13aは、その内面において、反射ユニット12から到達した光を反射し、視認者14のアイボックス14aに入射させる。これにより、視認者14は、フロントウインドシールド13aの向こう側に、表示装置110が表示する画像に応じた第2の像IM2を視認できる。第2の像IM2は、第1の像IM1よりも大きい虚像である。「アイボックス」とは、視認者の眼の前の空間のうち、虚像が視認可能な範囲をいう。
 以下、説明をわかりやすくするために、XYZ直交座標系を用いて、各部分の配置および構成を説明する。本実施形態では、車両13の前後方向を「X方向」とし、車両13の左右方向を「Y方向」とし、車両13の上下方向を「Z方向」とする。XY平面は、車両13の水平面である。X方向のうち矢印の方向(前方)を「+X方向」といい、その逆方向(後方)を「-X方向」ともいう。また、Y方向のうち矢印の方向(左方)を「+Y方向」といい、その逆方向(右方)を「-Y方向」ともいう。また、Z方向のうち矢印の方向(上方)を「+Z方向」といい、その逆方向(下方)を「-Z方向」ともいう。
 また、図1においては、第1の像IM1が形成される位置を円形のマークにより示している。第1の像IM1と同様に、第2の像IM2が形成される位置を円形のマークにより示している。一方、表示装置110において第1の像IM1の各マークに到達する主光線Lが出射する位置を、四角形のマークにより示している。このように、説明をわかりやすくするために、各主光線Lにおいて表示装置110上の出射位置を、第1の像IM1の結像位置と第2の像IM2の結像位置とは別のマークで示しているが、表示装置110上に表示される画像と第1の像IM1と第2の像IM2とは、概ね相似関係にある。
 図2Aに示すように、表示装置110においては、複数の画素110pが第1方向と第2方向に沿って行列状に配列されている。第2方向は第1方向に対して交差、例えば、直交する。例えば、第1方向は画像の水平方向であり、第2方向は画像の垂直方向である。本実施形態においては、第1方向をX方向とし、第2方向をY方向とする。各画素110pから出射する光の色は同じであり、本実施形態においては白色である。表示装置110から出射する光は略ランバーシアン配光を有する。表示装置110の具体的な構成及びランバーシアン配光については、後に詳しく説明する。
 図2Bに示すように、色変化シート130は、複数の領域130pが第1方向と第2方向に沿って行列状に配列されている。各領域130pの形状及び大きさは、表示装置110の各画素110pの形状及び大きさと略等しく、第1方向及び第2方向における領域130pの配列周期は、画素110pの配列周期と略等しい。このため、表示装置110の画素110pと色変化シート130の領域130pとは一対一で対応しており、一の画素110pから出射した光の全部又は大部分は、一の領域130pに入射する。但し、後述の如く、画素110pと領域130pの組み合わせは、駆動ユニット140の動作によって変化する。
 領域130pには、第1領域130a、第2領域130b、第3領域130cの3種類がある。第1領域130aは、表示装置110の画素110pから光が入射され、第1の色の光を出射する。第2領域130bは、画素110pから光が入射され、第1の色とは異なる第2の色の光を出射する。第3領域130cは、画素110pから光が入射され、第1の色及び第2の色とは異なる第3の色の光を出射する。
 本実施形態においては、第1領域130a、第2領域130b、第3領域130cは、第1方向(X方向)及び第2方向(Y方向)に沿って、繰り返し配列されている。このため、色変化シート130の特定の領域に着目すると、第1領域130a及び第2領域130bは第1方向(X方向)に沿って配列されており、第1領域130a及び第3領域130cは第2方向(Y方向)に沿って配列されている。なお、図2Bにおいては、領域130pを10行10列で100個示しているが、これには限定されず、領域130pは例えば数千個程度設けられていてもよい。
 本実施形態においては、第1領域130aは青色フィルムから構成されており、第1の色は青色である。第2領域130bは緑色フィルムから構成されており、第2の色は緑色である。第3領域130cは赤色フィルムから構成されており、第3の色は赤色である。すなわち、第1領域130aには表示装置110の画素110pから白色の光が入射され、青色の光を出射する。第2領域130bには画素110pから白色の光が入射され、緑色の光を出射する。第3領域130cには画素110pから白色の光が入射され、赤色の光を出射する。図2Bにおいては、青色の光を出射する第1領域130aには文字「B」を付し、緑色の光を出射する第2領域130bには文字「G」を付し、赤色の光を出射する第3領域130cには文字「R」を付している。後述する他の実施形態及び変形例についても同様である。
 図2Cに示すように、色変化シート130は、表示装置110の光出射側、すなわち、-Z方向側に配置されている。駆動ユニット140は、例えば、アクチュエータを含み、色変化シート130を移動させることにより、表示装置110と色変化シート130との位置関係を変化させる。なお、駆動ユニット140は、表示装置110を移動させてもよく、表示装置110と色変化シート130の双方を移動させてもよい。以下の説明では、駆動ユニット140は色変化シート130を移動させる例を説明する。
 次に、映像表示装置10における上記以外の構成を説明する。
 先ず、表示装置110について説明する。
 図3は、本実施形態に係る映像表示装置の表示装置を示す端面図である。
 光源ユニット11の表示装置110はLEDディスプレイである。表示装置110においては、複数のLED素子112が行列状に配列されている。表示装置110の各画素110pには、1つ又は複数のLED素子112が配置されている。
 図3に示すように、表示装置110において、各LED素子112は、基板111にフェースダウン実装されている。ただし、各LED素子は、基板にフェースアップ実装されてもよい。各LED素子112は、半導体積層体112aと、アノード電極112bと、カソード電極112cと、を有する。
 半導体積層体112aは、p型半導体層112p1と、p型半導体層112p1上に配置される活性層112p2と、活性層112p2上に配置されるn型半導体層112p3と、を有する。半導体積層体112aには、例えばInAlGa1-X-YN(0≦X、0≦Y、X+Y<1)で表せる窒化ガリウム系化合物半導体が用いられる。LED素子112が発光する光は、本実施形態では可視光である。
 アノード電極112bは、p型半導体層112p1に電気的に接続される。また、アノード電極112bは、配線118bに電気的に接続される。カソード電極112cは、n型半導体層112p3に電気的に接続される。また、カソード電極112cは、別の配線118aに電気的に接続される。各電極112b、112cには、例えば金属材料を用いることができる。
 本実施形態では各LED素子112上には、波長変換部材115が設けられている。波長変換部材115には、LED素子112から出射した光が入射する。例えば、波長変換部材115はLED素子112の光出射面112sに対向している。本明細書において「LED素子の光出射面」とは、LED素子の表面のうち、結像光学系120に入射する光が主に出射する面を意味する。本実施形態では、n型半導体層112p3において、活性層112p2と対向する面の反対側に位置する面が、光出射面112sに相当する。
 波長変換部材115には、蛍光体が含有されている。本実施形態においては、LED素子112は青色の光を出射する。波長変換部材115には、青色の光を吸収して緑色の光を放射する蛍光体と、青色の光を吸収して赤色の光を放射する蛍光体が含有されている。これにより、波長変換部材115からは、青色の光、緑色の光、赤色の光からなる白色の混色光が出射する。
 以下、各画素110pから出射する光の光軸を、単に「光軸C」という。光軸Cは、例えば、複数の画素110pが配列されるXY平面に平行であり、かつ、表示装置110の光出射側に位置する第1平面P1において、1つの画素110pからの光が照射される範囲のうち、輝度が最大となる点a1と、XY平面に平行であり、第1平面P1から離隔した第2平面P2において、この画素110pからの光が照射される範囲のうち、輝度が最大となる点a2と、を結ぶ直線である。輝度が最大となる点が複数存在する場合、例えば、それらの点の中心点を、輝度が最大となる点としてもよい。なお、生産的な観点からは、光軸CはZ軸と平行であることが望ましい。
 このように、各LED素子112の光出射面112sに波長変換部材115が設けられていることにより、波長変換部材115から出射する光、すなわち各画素110pから出射する光は、図3に破線で示すように、略ランバーシアン配光を有する。ここで「各画素から出射する光が略ランバーシアン配光を有する」とは、各画素の光軸Cに対して角度θの方向の光度が、nを0より大きい値として、光軸C上の光度のcosθ倍で近似できる配光パターンであることを意味する。ここで、nは、11以下であることが好ましく、1であることがより一層好ましい。なお、1つの画素110pから出射する光の光軸Cを含む平面は多数存在するが、各平面内においてこの画素110pから出射する光の配光パターンは、略ランバーシアン配光であり、また、nの数値も概ね等しい。
 次に、結像光学系120について詳細に説明する。
 図1に示すように、光源ユニット11の結像光学系120は、第1の像IM1を所定の位置に結像させるのに必要な全ての光学素子を含む光学系である。本実施形態では、表示装置110から出射した光が入射する入力素子121と、入力素子121によって反射された光が入射する中間素子122と、中間素子122によって反射された光が入射する出力素子123と、を有する。出力素子123から出射した光は、第1の像IM1を形成する。なお、出力素子123には入力素子121を経由した光が入射すればよく、中間素子122は設けられていなくてもよい。
 結像光学系120は、第1の像IM1側において略テレセントリック性を有する。ここで「結像光学系120が、第1の像IM1側において略テレセントリック性を有する」とは、図1に示すように、表示装置110において互いに異なる位置から出射して、結像光学系120を経由し、第1の像IM1に至る複数の主光線L同士が、第1の像IM1の前後において、略平行であることを意味する。異なる位置とは、例えば表示装置110の異なる画素110pである。「複数の主光線L同士が略平行」とは、光源ユニット11の構成要素の製造精度や組み立て精度等による誤差を許容するような実用的な範囲で、概ね平行であることを意味する。「複数の主光線L同士が略平行」である場合、例えば、主光線L同士のなす角度は、10度以下ある。
 結像光学系120が第1の像IM1側において略テレセントリック性を有する場合、複数の主光線L同士は、入力素子121に入射する前に交差する。以下、複数の主光線L同士が交差するポイントを「焦点F」という。そのため、結像光学系120が第1の像IM1側において略テレセントリック性を有するか否かは、例えば、光の逆進性を利用して以下の方法で確認できる。先ず、第1の像IM1が形成される位置付近に、レーザ光源等の平行光を出射可能な光源を配置する。この光源から出射した光を、結像光学系120の出力素子123に照射する。この光源から出射して出力素子123を経由した光は、入力素子121に入射する。そして、入力素子121から出射した光が表示装置110に到達する前に、集光するポイント、すなわち焦点Fが存在する場合は、結像光学系120が第1の像IM1側において略テレセントリック性を有すると判断できる。
 結像光学系120が第1の像IM1側において略テレセントリック性を有するため、結像光学系120には、表示装置110の各画素から出射する光のうち、焦点Fおよびその近辺を通過する光が主に入射する。以下、結像光学系120を構成する各光学素子について説明する。
 入力素子121は、表示装置110の-Z側に位置し、表示装置110と対向するように配置される。入力素子121は、凹面状のミラー面121aを有するミラーである。入力素子121は、表示装置110から出射した光を反射する。
 中間素子122は、表示装置110および入力素子121よりも-X側に位置し、入力素子121と対向するように配置される。中間素子122は、凹面状のミラー面122aを有するミラーである。中間素子122は、入力素子121が反射した光をさらに反射する。
 入力素子121および中間素子122は、表示装置110の互いに異なる位置から出射した複数の主光線L同士が略平行になるように、複数の主光線Lを屈曲させる屈曲部120aを構成する。ミラー面121a、122aは、本実施形態では、バイコーニック面である。ただし、ミラー面は、球面の一部であってもよいし、自由曲面であってもよい。
 出力素子123は、表示装置110および入力素子121よりも+X側に位置し、中間素子122と対向するように配置される。出力素子123は、平坦なミラー面123aを有するミラーである。出力素子123は、入力素子121および中間素子122を経由した光を、第1の像IM1の形成位置に向けて反射する。具体的には、出力素子123には、屈曲部120aによって略平行となった複数の主光線Lが入射する。ミラー面123aは、-Z方向に向かうほど+X方向に向かうように、車両13の水平面であるXY平面に対して傾斜している。これにより、出力素子123は、中間素子122が反射した光を、-Z方向に向かうほど+X方向に向かうようにZ方向に対して傾斜した方向に反射する。図1に示すように、出力素子123は、屈曲部120aによって略平行となった複数の主光線Lが、第1の像IM1の形成位置Pに向かうように、複数の主光線Lの方向を変更する方向変更部120bを構成する。
 本実施形態では、入力素子121と中間素子122との間の光路は、XY平面と交差する方向に延びる。また、中間素子122と出力素子123との間の光路は、XY平面に沿った方向に延びる。結像光学系120内の光路の一部が、XY平面と交差する方向に延びるため、光源ユニット11をXY平面に沿う方向にある程度小型化できる。また、結像光学系120内の光路の他の一部が、XY平面に沿う方向に延びるため、光源ユニット11をZ方向にある程度小型化できる。
 また、表示装置110と入力素子121との間の光路は、中間素子122と出力素子123との間の光路と交差する。このように、光源ユニット11内で光路同士を交差させることで、光源ユニット11を小型化できる。
 ただし、光源ユニット内の光路は、上記に限定されない。例えば、結像光学系内の全ての光路が、XY平面に沿う方向に延びてもよいし、XY平面と交差する方向に延びてもよい。また、光源ユニット内の光路同士は交差しなくてもよい。
 入力素子121、中間素子122、および出力素子123は、それぞれ、ガラスまたは樹脂材料等からなる本体部材と、本体部材の表面に設けられてミラー面121a、122a、123aを構成する金属膜や誘電体多層膜等の反射膜と、により構成されていてもよい。また、入力素子121、中間素子122、および出力素子123は、それぞれ、全体が金属材料により構成されていてもよい。
 図1に示すように、本実施形態においては、光源ユニット11は車両13の天井部13bに設けられる。光源ユニット11は、例えば、天井部13bにおいて車内に露出する壁13s1の内側に配置される。壁13s1には、光源ユニット11の出力素子123から出射した光が通過可能な貫通穴13h1が設けられている。出力素子123から出射した光は、貫通穴13h1を通過し、視認者14とフロントウインドシールド13aとの間の空間に照射される。ただし、光源ユニットは、天井面に取り付けられていてもよい。貫通穴13h1には、透明あるいは半透明の、ヘイズ(Haze)値の小さいカバーが設けられていても良い。ヘイズ値は、50%以下であることが好ましく、20%以下であることがより一層好ましい。
 以上、結像光学系120について説明したが、結合光学系の構成および位置は、第1の像側において略テレセントリック性を有する限り、上記に限定されない。例えば、方向変更部を構成する光学素子の数は、2以上であってもよい。
 次に、反射ユニット12について説明する。
 図1に示すように、本実施形態においては、反射ユニット12は凹面状のミラー面131aを有するミラー131を含む。ミラー131は、フロントウインドシールド13aと対向するように配置される。ミラー131は、出力素子123から出射した光を反射してフロントウインドシールド13aに照射する。ミラー131は、ガラスまたは樹脂材料等からなる本体部材と、本体部材の表面に設けられてミラー面131aを構成する金属膜や誘電体多層膜等の反射膜と、により構成されていてもよい。また、ミラー131は、全体が金属材料により構成されていてもよい。一例では、ミラー面131aはバイコーニック面である。ただし、ミラー面は、球面の一部であってもよいし、自由曲面であってもよい。
 フロントウインドシールド13aに照射された光は、フロントウインドシールド13aの内面において反射され、視認者14のアイボックス14aに入射する。これにより、視認者14は、フロントウインドシールド13aの向こう側に、表示装置110に表示された画像に応じた第2の像IM2を視認する。
 反射ユニット12は、本実施形態では、車両13のダッシュボード部13cに設けられる。反射ユニット12は、例えば車両13のダッシュボード部13cにおいて車内に露出する壁13s2の内側に配置される。壁13s2には、光源ユニット11の出力素子123から出射した光が通過可能な貫通穴13h2が設けられている。出力素子123から出射した光は、貫通穴13h1を通過して、第1の像IM1を形成した後、貫通穴13h2を通過し、反射ユニット12に照射される。ただし、反射ユニットは、ダッシュボード部の上面に取り付けられてもよい。また、反射ユニットを天井部に配置し、光源ユニットをダッシュボード部に配置してもよい。
 フロントウインドシールド13aの内面からアイボックス14aに向かう光の経路は、概ね水平であり、完全な水平もしくはアイボックス14a側が高くなるように少し傾斜している。すなわち、この経路はXY平面に対して略平行である。そして、本実施形態においては、この光の経路を含むXY平面を基準として、光源ユニット11は上方(+Z方向)に配置され、反射ユニット12は下方(-Z方向)に配置されている。すなわち、光源ユニット11と反射ユニット12は、このXY平面を挟んで離隔している。
 以上、反射ユニット12について説明したが、反射ユニットの構成および位置は、上記に限定されない。例えば、反射ユニットを構成するミラー等の光学素子の数は、2以上であってもよい。なお、反射ユニット12は、例えば車外からフロントウインドシールド13aを介して照射した太陽光がアイボックス14aに向けて反射しないように配置する必要がある。
 次に、本実施形態に係る映像表示装置10の動作について説明する。
 図4は、表示装置の画素と色変化シートの領域の位置関係の変化を示す端面図である。
 図5A~図5Cは、本実施形態における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。
 図6は、本実施形態において、運転席にいる視認者から見た景色を示す模式図である。
 図4に示すように、駆動ユニット140は、表示装置110と色変化シート130の位置関係を、表示装置110の一の画素110pから出射した光が色変化シート130の第1領域130aに入射する第1の位置関係と、同じ一の画素110pから出射した光が第2領域130bに入射する第2の位置関係と、同じ一の画素110pから出射した光が第3領域130cに入射する第3の位置関係と、の間で変化させる。
 これにより、図5Aに示すように、色変化シート130を基準とすると、ある一の画素110pの中心110cは、X方向に沿って、第1領域130aの中心、第2領域130bの中心、第3領域130cの中心の間で移動する。X方向における領域130pの配列周期をPxとすると、画素110pの中心110cの移動量はX方向に沿って2Pxである。この場合、駆動ユニット140は、色変化シート130をX方向に沿って同一周期で振動させてもよい。
 なお、図5Bに示すように、駆動ユニット140は色変化シート130をY方向に沿って移動させてもよい。この場合は、Y方向における領域130pの配列周期をPyとすると、画素110pの中心110cの移動量はY方向に沿って2Pyである。この場合、駆動ユニット140は、色変化シート130をY方向に沿って同一周期で振動させてもよい。
 また、図5Cに示すように、駆動ユニット140は色変化シート130をXY平面において環状に移動させてもよい。この場合、画素110pの中心110cの移動量は、X方向に沿ってPx、Y方向に沿ってPyである。また、ある画素110pの直上に配置される領域は、例えば、第1領域130a(青)→第2領域130b(緑)→第3領域130c(赤)→第2領域130b(緑)の順に繰り返し変化する。この場合、駆動ユニット140は、色変化シート130を同一周期で矩形状に運動させてもよく、円運動又は楕円運動させてもよい。
 そして、表示装置110は、画素110pの直上に特定の色の領域が配置されたときに、この画素110pを点灯する。例えば、ある画素110pの直上に第1領域130a(青)が配置された期間にこの画素110pを点灯し、それ以外の期間に消灯することにより、この画素110pから色変化シート130を介して青色の光を出射できる。また、画素110pの直上に第1領域130a(青)が配置された期間及び第2領域130b(緑)が配置された期間にこの画素110pを点灯し、第2領域130c(赤)が配置された期間に消灯することにより、画素110pから色変化シート130を介して青色の光と緑色の光を出射できる。駆動ユニット140が色変化シート130を移動させる周期が十分に短ければ、視認者14は青色と緑色の混色を視認する。このように、駆動ユニット140が表示装置110と色変化シート130の位置関係を変化させつつ、表示装置110の各画素110pを時分割で制御することにより、光源ユニット11からカラー画像を出射することができる。
 このようにして、色変化シート130からカラー画像を構成する光線Lが出射する。この画像に基づいて、光源ユニット11の結像光学系120が、位置Pに実像である第1の像IM1を形成する。そして、第1の像IM1を形成した光が反射ユニット12及びフロントウインドシールド13aによって反射されて、視認者14のアイボックス14aに入射する。
 これにより、図6に示すように、視認者14はフロントウインドシールド13aの向こう側に、虚像である第2の像IM2を視認する。第2の像IM2はカラー画像とすることができ、モノクロ画像とすることもできる。なお、図6においては、第2の像IM2を「information」との文字列で示しているが、第2の像IM2は文字列には限定されず、図形等であってもよい。
 次に、本実施形態の効果について説明する。
 本実施形態においては、駆動ユニット140によって表示装置110と色変化シート130との位置関係を変化させることにより、単一色の光を出射する表示装置110と、複数の色の領域130pを有する色変化シート130により、カラー画像を表示することができる。表示装置110を単一色の表示装置とすることにより、光源ユニット11を小型化でき、したがって、映像表示装置10を小型化できる。
 なお、表示装置110の各画素110pに3つのサブ画素を設け、各サブ画素にそれぞれ青色光を出射するLED素子、緑色光を出射するLED素子、赤色光を出射するLED素子を設けて、表示装置110がカラー画像を表示することも考えられる。しかしながら、この場合は、本実施形態と比較してLED素子の数が3倍になるため、表示装置110が大型化し、高コスト化する。また、LED素子の数を本実施形態と同じとして、画素数を減らすことも考えられる。しかしながら、この場合は、画像の精細度が低下する。これに対して、本実施形態によれば、高精細のカラー画像を表示可能な小型の光源ユニット及び映像表示装置を実現できる。
 また、本実施形態においては、結像光学系120が第1の像IM1側において略テレセントリック性を有することにより、光源ユニット11及び映像表示装置10を小型化しつつ、高品位な映像を表示できる。以下、この効果について詳細に説明する。
 図7Aは、本実施形態に係る光源ユニットの原理を示す模式図である。
 図7Bは、参考例に係る光源ユニットの原理を示す模式図である。
 図7Aでは、本実施形態における表示装置110の複数の画素110pのうちの2つの画素110pから出射する光の配光パターンを破線で示している。同様に、図7Bでは、参考例における表示装置2110の複数の画素2110pのうちの2つの画素2110pから出射する光の配光パターンを破線で示している。また、図7A及び図7Bでは、結像光学系120、2120を簡略化して示している。
 図7Bに示すように、参考例に係る光源ユニット2011において、表示装置2110は、複数の画素2110pを含むLCD(Liquid Crystal Display:液晶表示装置)である。図7Bに破線で示すように、各画素2110pから出射する光は、光出射面2110sの法線方向に主に配光される。また、1つの画素2110pから出射する光の光軸を含む平面は多数存在するが、LCDである表示装置2110では、各平面内において1つの画素2110pから出射する光の配光パターンは、相互に異なる。そして、複数の平面のうちの一の平面内において、各画素2110pから出射する光は、光軸に対して角度θの方向の光度が、光軸上の光度のcos20θ倍で近似される配光パターンを有する。
 このような表示装置2110においては、表示装置2110の同じ位置から出射した光でも、視認者の見る角度によって光度や色度が変化する。したがって、仮に結像光学系2120が、各画素2110pから法線方向以外の方向に出射する光を取り込んだ場合、全ての画素2110pから出射する光の輝度を均一にしたとしても、第1の像IM1において輝度や色度のばらつきが生じる。すなわち、第1の像IM1の品位が低下する。したがって、第1の像IM1の品位が低下しないようにするためには、表示装置2110の各画素2110pから出射した光を法線方向から取り込む必要がある。その結果、結像光学系2120が大型化する。
 これに対して、本実施形態に係る光源ユニット11では、結像光学系120は、第1の像IM1側において略テレセントリック性を有し、表示装置110から出射する光が略ランバーシアン配光を有する。そのため、光源ユニット11を小型化しつつ、第1の像IM1の品位を向上できる。具体的には、表示装置110は複数のLED素子112を有するLEDディスプレイであり、各LED素子112から波長変換部材15を介して出射する光が、略ランバーシアン配光を有する。このため、表示装置110の各画素110pから出射した光の光度や色度の角度に対する依存性は、参考例における表示装置2110の各画素2110pから出射する光の光度や色度の角度に対する依存性と比較して低い。特に、厳密なランバーシアン配光に近づくほど、すなわち、配光パターンの近似式であるcosθのnが1に近づくほど、表示装置110の各画素110pから出射した光の光度や色度は、角度によらず概ね均一になる。そのため、図7Aに示すように、結像光学系120が焦点Fを通過した光を取り込んだとしても、すなわち、法線方向以外の方向から光を取り込んだとしても、第1の像IM1の輝度や色度のばらつきを抑制し、第1の像IM1の品位を向上できる。
 また、結像光学系120は、主に焦点Fを通過した光で第1の像IM1を形成するため、結像光学系120に入射する光の光径が広がることを抑制できる。これにより、入力素子121を小型化できる。さらに、出力素子123から出射する複数の主光線Lは、互いに略平行である。出力素子123から出射する複数の主光線L同士が互いに略平行であるということは、出力素子123において結像に寄与する光が照射される範囲が、第1の像IM1のサイズと概ね同じであるということである。そのため、結像光学系120の出力素子123も小型化できる。以上より、小型かつ品位が高い第1の像IM1を形成可能な光源ユニット11を提供できる。
 また、本実施形態に係る映像表示装置10は、光源ユニット11と、光源ユニット11から離隔し、結像光学系120から出射した光を反射する反射ユニット12と、を備える。第1の像IM1は、光源ユニット11と反射ユニット12との間に形成される。このような場合、表示装置110のある一つの点から出射した光は、出力素子123を経由した後に、第1の像IM1の形成位置において集光する。一方、光源ユニット11と反射ユニット12との間に第1の像IM1が形成されない場合、表示装置110のある一つの点から出射した光の光径は、入力素子121から反射ユニット12に向けて、徐々に広がる。したがって、本実施形態では、出力素子123において、表示装置110のある一つの点から出射した光が照射される範囲を、第1の像IM1が形成されない場合と比較して、小さくできる。そのため、出力素子123を小型化できる。
 また、本実施形態に係る光源ユニット11は小型であるため、光源ユニット11を車両13に搭載し、ヘッドアップディスプレイとして用いる場合は、光源ユニット11を車両13内の限られたスペースに容易に配置できる。
 また、本実施形態における結像光学系120は、屈曲部120aと、方向変更部120bと、を有する。このように、結像光学系120において、主光線L同士を平行にする機能を有する部分と、第1の像IM1を所望の位置に形成する部分と、を別々にすることで、結像光学系120の設計が容易になる。
 また、結像光学系120内の光路の一部は、XY平面と交差する方向に延びる。そのため、結像光学系120をXY平面に沿う方向にある程度小型化できる。また、結像光学系120内の光路の他の一部は、XY平面に沿う方向に延びる。そのため、結像光学系120をZ方向にある程度小型化できる。
 <実施例>
 次に、実施例および参考例に係る光源ユニットについて説明する。
 図8Aは、実施例1、11および参考例において、1つの発光エリアから出射する光の配光パターンを示すグラフである。
 図8Bは、実施例1~12および参考例における第2の像の輝度の均一性を示すグラフである。
 実施例1~12および参考例に係る映像表示装置は、光源ユニットと、反射ユニットと、を備え、光源ユニットは、行列状に配列された複数の発光エリアと、結像光学系とを備えるように、シミュレーションソフト上で設定した。各発光エリアが、上記実施形態における表示装置110の各画素110pに相当する。
 図8Aでは、横軸は発光エリアの光軸に対する角度であり、縦軸は、その角度における光度を光軸上の光度で除算することにより正規化した光度である。実施例1に係る表示装置は、図8Aに示すように、各発光エリアから出射する光が、光軸に対して角度θの方向の光度が光軸上の光度のcosθ倍で表される配光パターンを有するように、シミュレーションソフト上で設定した。すなわち、実施例1では、各発光エリアから出射する光は、厳密なランバーシアン配光を有する。
 実施例2~12では、各発光エリアから出射する光が、光軸に対して角度θの方向の光度が光軸上の光度のcosθ倍で表される配光パターンを有するように、シミュレーションソフト上で設定した。なお、実施例2では、n=2であり、実施例2から実施例12まで順に、nが1ずつ大きくなるように設定した。
 また、LCDの画素から出射する光の一の平面内の配光パターンを調査したところ、図8Aに細い破線で示すような配光パターンであることがわかった。そして、前述したように、この配光パターンは、光軸に対して角度θの方向の光度が光軸上の光度のcos20θ倍で表される配光パターンに近似できることがわかった。そこで、参考例では、各発光エリアの光軸に対して角度θの方向の光度が、光軸上の光度のcos20θ倍で表される配光パターンを有するように、シミュレーションソフト上で設定した。
 実施例1~12および参考例における結像光学系は、いずれも第1の像側においてテレセントリック性を有するように設定した。
 次に、実施例1~12および参考例のそれぞれについて、全ての発光エリアの輝度を一定にした場合に形成される第2の像の輝度分布をシミュレーションした。この際、第2の像は、長辺が111.2mm、短辺が27.8mmの長方形とした。また、この際、第2の像が形成される平面を1mmの辺を有する正方形のエリアに区画し、各エリアの輝度値をシミュレーションした。
 また、その際の第2の像の輝度の均一性を評価した。ここで、「輝度の均一性」とは、第2の像内の輝度の最大値に対する最小値の割合を百分率で表した値である。その結果を、図8Bに示す。なお、図8Bでは、横軸は、各実施例および参考例であり、縦軸は輝度の均一性である。
 図8Bに示すように、nが大きくなるほど、輝度の均一性が低下することがわかった。これは、nが大きくなるほど、第2の像において中心から離れる位置の輝度が低下するためである。特に、実施例11、すなわちn=11で、輝度の均一性が30%であることがわかった。視認者は、第2の像と第2の像が形成されていない領域とを判別し易いため、第2の像の輝度の均一性は、30%以上あればよいと考えられる。
 したがって、結像光学系が略テレセントリック性を有するように構成した場合に、第1の像および第2の像の輝度ムラを抑制するためには、表示装置から出射する光が略ランバーシアン配光を有することが好ましいことがわかった。具体的には、配光パターンの近似式であるcosθのnは、11以下であることが好ましく、1であることがより一層好ましいことがわかった。なお上記のようにnが1から外れるに従って第2の像IM2の輝度の均一性が低下するが、このような輝度の不均一性を補完できるように、予め表示装置110の表示輝度に所定の輝度分布を設けておくことができる。例えば、表示装置110の各画素110pから出射する光が結像光学系120を経由することで、第2の像IM2の外縁部の輝度が中心部の輝度より低下し易い場合は、表示装置110の外縁側の画素110pのLED素子112の出力を中心側の画素110pのLED素子112の出力よりも大きくなるように、表示装置110を制御してもよい。
 <第1の実施形態の第1の変形例>
 次に、第1の実施形態の第1の変形例について説明する。
 図9Aは、本変形例に係る光源ユニットの色変化シートを示す平面図である。
 図9B及び図9Cは、本変形例における表示装置の画素と色変化シートの領域の位置関係の変化を示す平面図である。
 前述の第1の実施形態においては、表示装置110の画素110pから白色の光が出射し、色変化シート130から青色、緑色、赤色の3色の光が出射する例を説明したが、本変形例においては、色変化シート130eから緑色及び赤色の2色の光が出射する例を説明する。
 図9Aに示すように、本変形例における色変化シート130eにおいても、複数の領域130pが第1方向と第2方向に沿って行列状に配列されている。領域130pには、第1領域130a及び第2領域130bの2種類がある。第1領域130a及び第2領域130bは、第1方向(X方向)及び第2方向(Y方向)に沿って、交互に配列されている。
 本変形例においては、第1領域130aは緑色フィルムから構成されており、第1の色は緑色である。第2領域130bは赤色フィルムから構成されており、第2の色は赤色である。すなわち、第1領域130aには表示装置110の画素110pから白色の光が入射される。第1領域130aは、この白色の光のうち緑色成分を透過させ、それ以外の成分を遮断する。したがって、第1領域130aは緑色の光を出射する。第2領域130bには画素110pから白色の光が入射される。第2領域130bは、この白色の光のうち赤色成分を透過させ、それ以外の成分を遮断する。したがって、第2領域130bは赤色の光を出射する。
 図9Bに示すように、色変化シート130eを基準とすると、ある一の画素110pの中心110cは、X方向に沿って、第1領域130aの中心と第2領域130bの中心の間で移動する。画素110pの中心110cの移動量はX方向に沿ってPxである。又は、図9Cに示すように、駆動ユニット140は色変化シート130eをY方向に沿って移動させてもよい。この場合は、画素110pの中心110cの移動量はY方向に沿ってPyである。
 本変形例によれば、画像の表示に緑色と赤色の2色しか必要としない場合に、第1の実施形態と比較して、光源ユニットを小型化できる。また、第1の実施形態と比較して、ある画素110pの直上に所望の色の領域130pが配置される時間が長くなるため、画像の輝度が向上する。本変形例における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第1の実施形態の第2の変形例>
 次に、第1の実施形態の第2の変形例について説明する。
 図10は、本変形例に係る光源ユニットの色変化シートを示す平面図である。
 本変形例においては、色変化シート130fに透明な領域が設けられている例を説明する。
 図10に示すように、本変形例における色変化シート130fにおいても、第1領域130a及び第2領域130bが第1方向(X方向)及び第2方向(Y方向)に沿って、交互に配列されている。
 本変形例においては、第1領域130aは透明フィルムから構成されている。このため、第1領域130aは、表示装置110の画素110pから出射された白色の光を実質的にそのまま透過させる。したがって、第1の色は白色である。なお、第1領域130aには透明フィルムを設けず、開口部としてもよい。第2領域130bは青色フィルムから構成されており、第2の色は青色である。なお、図10においては、透明な第1領域130aには文字「C」を付している。
 本変形例によれば、白色と青色の2色の画像を表示できる。なお、第2領域130bは、緑色フィルムによって構成されていてもよく、赤色フィルムによって構成されていてもよい。これらの場合は、それぞれ、第2の色は緑色又は赤色となる。本変形例における上記以外の構成、動作及び効果は、第1の変形例と同様である。
 <第2の実施形態>
 次に、第2の実施形態について説明する。
 図11は、本実施形態に係る映像表示装置の表示装置を示す端面図である。
 図12は、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 前述の第1の実施形態においては、表示装置110の画素110pから白色の光が出射し、色変化シート130がカラーフィルムである例を説明したが、本実施形態においては、表示装置110の画素110pから青色の光が出射し、色変化シート230が蛍光体シートである例を説明する。
 図11に示すように、本実施形態においては、表示装置110において波長変換部材115が設けられておらず、LED素子112の光出射面112sに、複数の凹部112tが設けられている。これにより、LED素子112から出射する光が略ランバーシアン配光を有する。LED素子112は青色の光を出射する。したがって、画素110pから青色の光が出射する。
 図12に示すように、本実施形態においては、色変化シート230には複数の領域230pが設けられている。領域230pの形状、大きさ、配列周期は、表示装置110の画素110pの形状、大きさ、配列周期と略同じである。領域230pには、第1領域230a、第2領域230b、第3領域230cがある。
 第1領域230aは、透明フィルムにより構成されている。第1領域230aには表示装置110の画素110pから青色の光が入射される。第1領域230aはこの青色の光を透過させて、実質的にそのまま出射する。したがって、第1領域230aから出射される光は青色の光であり、第1の色は青色である。
 第2領域230bは蛍光体層により構成されている。第2領域230bは、画素110pから出射した光を吸収して緑色の光を放射する蛍光体を含む。これにより、第2領域230bには表示装置110の画素110pから青色の光が入射され、蛍光体がこの青色の光を吸収して緑色の光を放射する。したがって、第2の色は緑色である。第2領域230bから出射する光は、略ランバーシアン配光を有する。
 第3領域230cも蛍光体層により構成されている。第3領域230cは、画素110pから出射した光を吸収して赤色の光を放射する蛍光体を含む。これにより、第3領域230cには表示装置110の画素110pから青色の光が入射され、蛍光体がこの青色の光を吸収して赤色の光を放射する。したがって、第3の色は赤色である。第3領域230cから出射する光も、略ランバーシアン配光を有する。
 本実施形態においては、LED素子112から出射した青色の光が色変化シート230の第1領域230aに入射される。第1領域230aは、入射した青色の光をそのまま透過させて出射しているため、光の利用効率が高い。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第2の実施形態の第1の変形例>
 次に、第2の実施形態の第1の変形例について説明する。
 図13は、本変形例に係る光源ユニットの色変化シートを示す平面図である。
 第2の実施形態においては、表示装置110の画素110pから青色の光が出射し、色変化シート230から青色、緑色、赤色の3色の光が出射する例を説明したが、本変形例においては、画素110pから青色の光が出射し、色変化シート230eから緑色及び赤色の2色の光が出射する例を説明する。
 図13に示すように、本変形例における色変化シート230eにおいても、第1領域230a及び第2領域230bが第1方向(X方向)及び第2方向(Y方向)に沿って、交互に配列されている。第1領域230a及び第2領域230bは蛍光体層により構成されている。第1領域230aは青色の光を吸収して緑色の光を放射する蛍光体を含む。第2領域230bは青色の光を吸収して赤色の光を放射する蛍光体を含む。したがって、本変形例においては、第1の色は緑色であり、第2の色は赤色である。本変形例における駆動ユニット140の動作、すなわち、表示装置110と色変化シート230eとの位置関係の変化は、図9B又は図9Cに示すとおりである。
 本変形例によれば、画像の表示に緑色と赤色の2色しか必要としない場合に、第2の実施形態と比較して、光源ユニットを小型化できる。また、第2の実施形態と比較して、ある画素110pの直上に所望の色の領域230pが配置される時間が長くなるため、画像の輝度が向上する。本変形例における上記以外の構成、動作及び効果は、第2の実施形態と同様である。
 <第2の実施形態の第2の変形例>
 次に、第2の実施形態の第2の変形例について説明する。
 図14は、本変形例に係る光源ユニットの色変化シートを示す平面図である。
 本変形例においては、色変化シート230fに透明な領域が設けられている例を説明する。
 図14に示すように、本変形例における色変化シート230fにおいては、第1領域230aが透明フィルムから構成されている。このため、第1領域230aは、表示装置110の画素110pから出射された青色の光を実質的にそのまま透過させる。このため、第1領域230aは青色の光を出射する。したがって、第1の色は青色である。なお、第1領域230aには透明フィルムを設けず、開口部としてもよい。第2領域230bは蛍光体層により構成されており、青色の光を吸収して緑色の光を放射する蛍光体を含む。したがって、第2の色は緑色である。
 本変形例によれば、青色と緑色の2色の画像を表示できる。なお、第2領域230bは、青色の光を吸収して緑色の光を放射する蛍光体を含んでいてもよく、青色の光を吸収して赤色の光を放射する蛍光体を含んでいてもよく、青色の光を吸収して黄色の光を放射する蛍光体を含んでいてもよい。これらの場合、第2の色は、それぞれ、緑色、赤色又は黄色となる。本変形例における上記以外の構成、動作及び効果は、第2の実施形態の第1の変形例と同様である。
 <第3の実施形態>
 次に、第3の実施形態について説明する。
 図15は、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 前述の第2の実施形態においては、表示装置110の画素110pから青色の光が出射する例を説明したが、本実施形態においては、表示装置110の画素110pから紫外線が出射する例を説明する。
 図15に示すように、本実施形態においては、色変化シート230gには、第1領域230a、第2領域230b、第3領域230cが設けられている。第1領域230a、第2領域230b、第3領域230cは、それぞれ、蛍光体層により構成されている。第1領域230aは、紫外線を吸収して青色の光を出射する蛍光体を含む。したがって、第1の色は青色である。第2領域230bは、紫外線を吸収して緑色の光を放射する蛍光体を含む。したがって、第2の色は緑色である。第3領域230cは、紫外線を吸収して赤色の光を放射する蛍光体を含む。したがって、第3の色は赤色である。第1領域230a、第2領域230b、第3領域230cから出射する光は、略ランバーシアン配光を有する。
 本実施形態においては、全ての色を蛍光体によって調整できるため、色の選択性が高い。本実施形態における上記以外の構成、動作及び効果は、第2の実施形態と同様である。
 <第3の実施形態の変形例>
 次に、第3の実施形態の変形例について説明する。
 図16は、本変形例に係る光源ユニットの色変化シートを示す平面図である。
 第3の実施形態においては、表示装置110の画素110pから紫外線が出射し、色変化シート230gから青色、緑色、赤色の3色の光が出射する例を説明したが、本変形例においては、色変化シート230hから2色の光が出射する例を説明する。
 図16に示すように、本変形例における色変化シート230hにおいては、図13に示す色変化シートと同様に、第1領域230a及び第2領域130bが第1方向(X方向)及び第2方向(Y方向)に沿って、交互に配列されている。第1領域230aは紫外線を吸収して第1の色の光を放射する蛍光体を含む。第2領域230bは紫外線を吸収して第2の色の光を放射する蛍光体を含む。図16に示す例では、第1の色は青色であり、第2の色は緑色である。
 第1の色と第2の色の組み合わせは、青色と緑色には限定されず、例えば、青色と赤色、青色と黄色、緑色と赤色であってもよい。本変形例における駆動ユニット140の動作、すなわち、表示装置110と色変化シート230hとの位置関係の変化は、図9B又は図9Cに示すとおりである。
 本変形例によれば、画像の表示に2色しか必要としない場合に、第3の実施形態と比較して、光源ユニットを小型化できる。また、第3の実施形態と比較して、画像の輝度が向上する。本変形例における上記以外の構成、動作及び効果は、第3の実施形態と同様である。
 図17は、表示装置の画素から出射する光の色と、色変化シートの各領域の構成との関係を示す図である。
 図17に示すように、上述の第1~第3の実施形態及びそれらの変形例においては、表示装置110の画素110pから出射する光が白色の光、青色の光又は紫外線であり、色変化シートの各領域が各色若しくは透明のフィルム、又は、各色の光を放射する蛍光体層である例を説明した。
 但し、本発明は図17に示す例には限定されない。例えば、色変化シートから出射する光の色は、白色、青色、緑色、赤色、黄色には限定されず、橙色、桃色、シアン、マゼンタ等の他の色でもよい。また、色変化シートから出射する光の色の数も2色又は3色には限定されず、4色以上であってもよい。
 <第4の実施形態>
 次に、第4の実施形態について説明する。
 図18は、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 図18に示すように、本実施形態においては、色変化シート330において、隣り合う2行2列の最小ユニット330uにおいて、緑色の光を出射する第2領域330bが2つ対角に配置されており、青色の光を出射する第1領域330aと赤色の光を出射する第3領域330cがそれぞれ1つ配置されている。色変化シート330は第1の実施形態のようにカラーフィルムによって構成されていてもよく、第2及び第3の実施形態のように蛍光体シートによって構成されていてもよく、透明な領域を含んでいてもよい。
 本実施形態における駆動ユニット140の動作、すなわち、表示装置110と色変化シート330との位置関係の変化は、図5Cに示すとおりである。これにより、ある画素110pの直上に配置される領域は、例えば、第1領域330a(青)→第2領域330b(緑)→第3領域330c(赤)→第2領域330b(緑)の順に繰り返し変化する。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第5の実施形態>
 次に、第5の実施形態について説明する。
 図19は、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 図19に示すように、本実施形態においては、色変化シート430において、第1領域430a、第2領域430b、第3領域430cが、第1方向(X方向)に沿って繰り返し配列されている。一方、第2方向(Y方向)に沿っては、同じ種類の領域が連続して配列されている。本実施形態における駆動ユニット140の動作、すなわち、表示装置110と色変化シート430との位置関係の変化は、図5Aに示すとおりである。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第6の実施形態>
 次に、第6の実施形態について説明する。
 図20は、本実施形態に係る光源ユニットの色変化シートを示す平面図である。
 図20に示すように、本実施形態においては、色変化シート530において、第1領域530a、第2領域530b、第3領域530cが、第2方向(Y方向)に沿って繰り返し配列されている。一方、第1方向(X方向)に沿っては、同じ種類の領域が連続して配列されている。本実施形態における駆動ユニット140の動作、すなわち、表示装置110と色変化シート530との位置関係の変化は、図5Bに示すとおりである。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第7の実施形態>
 次に、第7の実施形態について説明する。
 図21は、本実施形態に係る映像表示装置を示す端面図である。
 図22は、本実施形態において、運転席にいる視認者から見た景色を示す模式図である。
 図21に示すように、本実施形態に係る自動車1000は、車両13と、車両13に固定された映像表示装置20と、を有する。映像表示装置20は、光源ユニット11と、反射ユニット22と、を有する。本実施形態に係る映像表示装置20は、反射ユニット22のミラー322のミラー面322aが、視認者14に第2の像IM2を視認させる反射面を兼ねている点で、第1の実施形態に係る映像表示装置10と相違する。
 映像表示装置20における光源ユニット11の構成は、第1の実施形態と同様である。光源ユニット11は、車両13の天井部13bに配置されている。反射ユニット22は、車両13のダッシュボード部13cに配置されている。反射ユニット22はミラー322を有する。ミラー322のミラー面322aは例えば凹面である。ミラー面322aは、視認者14が車両13の運転席にいるときに、視認者14のアイボックス14aに対向する位置及び角度で配置されている。例えば、ミラー面322aは、-X方向(後方)と+Z方向(上方)の間の方向に向いている。このミラー面322aの角度は、視認者14のアイボックス14aの位置に応じて微調整が可能である。
 次に、本実施形態の動作について説明する。
 光源ユニット11から出射した主光線Lは、+X方向(前方)と-Z方向(下側)の間の方向に進行し、反射ユニット22のミラー322のミラー面322aにおいて反射され、-X方向(後方)と+Z方向(上方)の間の方向に進行し、視認者14のアイボックス14aに入射する。光源ユニット11から反射ユニット12に向かう主光線Lの経路は、車両13のフロントウインドシールド13aの内側に位置し、概ねフロントウインドシールド13aに沿っている。主光線Lは、光源ユニット11と反射ユニット22との間の位置Pにおいて、第1の像IM1を形成する。このとき、駆動ユニット140が表示装置110と色変化シート130との位置関係を変化させ、表示装置110が時分割で制御されることにより、第1の像IM1を複数の色を含むカラー画像とする。
 これにより、図21及び図22に示すように、視認者14は、ダッシュボード部13cのミラー面322aの奥に虚像である第2の像IM2を視認できる。第2の像IM2は、ミラー面322aの遠方、例えば3m先に結像される。このため、視認者14は、フロントウインドシールド13aを介して遠方の景色を見ている状態から、目の焦点距離を大きく動かさずに、第2の像IM2を見ることができる。
 次に、本実施形態の効果について説明する。
 本実施形態に係る映像表示装置20は、第1の実施形態と同様に、光源ユニット11と反射ユニット22に分かれ、車両13における別の位置に固定されている。映像表示装置20は、第2の像IM2を前方数メートルの位置に結像するために長い光路長を必要とするが、光源ユニット11と反射ユニット22とを分離して配置することにより、車両13の内部空間を利用して光路長の一部を構成することができる。これにより、必要な光路長の全体を映像表示装置20の内部に形成する必要がなくなり、映像表示装置20の小型化を図ることができる。
 また、映像表示装置20においては、反射ユニット22にミラー322のみを設けている。これにより、反射ユニット22の構成を簡略化することができ、反射ユニット22を小型化できる。
 さらに、反射面として、ダッシュボード部13cに配置されたミラー面322aを用いることにより、反射面の背景に影響されず、視認者14が第2の像IM2を確実に視認することができる。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 なお、反射ユニット22のミラー322はハーフミラー又は透明板により構成してもよい。この場合でも、ダッシュボード部13cの内部を暗くしておけば、視認者14にダッシュボード部13cの内部が見えてしまうことを抑制できる。又は、ミラー322のミラー面322aは、光源ユニット11から出射した主光線Lを十分に反射する程度の黒色としてもよい。これによって外光等がミラー322のミラー面322aで反射することによる視認性の低下を抑制できる。また、ミラー322はダッシュボード部13cの表面と連続して配置してもよい。これにより、ダッシュボード部13cに穴をあける必要がなくなり、自動車1000のインテリアの意匠性が向上する。
 <第8の実施形態>
 次に、第8の実施形態について説明する。
 図23は、本実施形態に係る映像表示装置を示す端面図である。
 図24は、図23に示す表示装置および反射型偏光素子の一部を拡大して示す断面図である。
 図23及び図24に示すように、本実施形態に係る映像表示装置70Aは、表示装置110の代わりに表示装置710Aを備え、反射型偏光素子740をさらに備える点で、第1の実施形態に係る映像表示装置10と相違する。本実施形態における表示装置710Aは、LED素子712の光出射面が概ね平坦であり、保護層714、波長変換部材715、および光散乱部材716Aをさらに有する点で、第1の実施形態における表示装置110と相違する。表示装置710Aの他の構成は第1の実施形態における表示装置110と同様である。また、本実施形態に係る光源ユニット71Aは、第1の実施形態に係る光源ユニット11と同様に、色変化シート130及び駆動ユニット140を有する。但し、図23においては、色変化シート130及び駆動ユニット140の図示を省略している。
 保護層714は、行列状に配列された複数のLED素子712を覆っている。保護層714には、例えば、硫黄(S)含有置換基もしくはリン(P)原子含有基を有する高分子材料、または、ポリイミド等の高分子マトリックスに高屈折率の無機ナノ粒子を導入した高屈折率ナノコンポジット材料等の透光性材料を用いることができる。
 波長変換部材715は、保護層714上に配置される。波長変換部材715は、一般的な蛍光体材料、ペロブスカイト蛍光体材料、または量子ドット(Quantum Dot:QD)等の波長変換材料を1種以上含む。各LED素子712から出射した光は、波長変換部材715に入射する。波長変換部材715に含まれる波長変換材料は、各LED素子712から出射した光が入射することにより、各LED素子712の発光ピーク波長と異なる発光ピーク波長の光を発する。波長変換部材715が発する光は、略ランバーシアン配光を有する。
 光散乱部材716Aは、例えば、透光性を有する樹脂部材と、樹脂部材中に配置される光散乱パーティクルまたは空孔と、を含む。樹脂部材としては、例えば、ポリカーボネート等が挙げられる。光散乱パーティクルとしては、例えば、酸化チタン等のように樹脂部材と屈折率差を有する材料等が挙げられる。なお、光散乱部材716Aは、その表面を粗面加工して凹凸を設けることで、光の散乱効果を得てもよい。
 反射型偏光素子740としては、例えば、偏光特性が異なる薄膜層を積層した多層薄膜積層偏光板等を用いることができる。反射型偏光素子740は、表示装置710A上に配置される。本実施形態では、反射型偏光素子740は光散乱部材716A上に配置される。そのため、LED素子712および波長変換部材715から出射した光が反射型偏光素子740に入射する。反射型偏光素子740は、表示装置710Aから出射する光のうちの第1偏光710pを透過し、第2偏光710sを表示装置710Aに向けて反射する。第2偏光710sの電場の振動方向は、第1偏光710pの電場の振動方向と概ね直交する。
 本実施形態では、第1偏光710pはP偏光であり、第2偏光710sはS偏光である。ここで、「P偏光」とは、電場の振動方向がXY平面に略平行な光を意味する。また、「S偏光」とは、電場の振動方向が入射光および反射光を含むXY平面に概ね垂直な光を意味する。
 車両13を運転する視認者14は、車両13の前方の水溜まり等で反射され、フロントウインドシールド13aを透過した日光等の眩しさを軽減するために、偏光サングラス14bを着用する場合がある。この場合、水溜まり等で反射された日光等は、反射の際にフロントウインドシールド13aから見た場合のP偏光に相当する成分が特に減少するため、偏光サングラス14bはS偏光の大部分を遮断するように設計される。したがって、視認者14が偏光サングラス14bを着用した場合、表示装置710Aが発する光に含まれるS偏光の大部分も偏光サングラス14bに遮断されてしまい、視認者14が第2の像IM2が視認し難くなる可能性がある。なお、本明細書におけるP偏光およびS偏光は、上述した水たまり等の反射物があることにより物理的に定義される。
 本実施形態においては、反射型偏光素子740が、表示装置710Aから出射する光のうちの第1偏光710pを透過し、第2偏光710sを反射する。反射型偏光素子740を透過した第1偏光710pの大部分は、結像光学系120、反射ユニット12、およびフロントウインドシールド13aの内面を経由した後、偏光サングラス14bに遮られることなく、アイボックス14aに入射する。なお、フロントウインドシールド13aの内面に入射する際の第1偏光710pの入射角は、ブリュースター角とは異なる角度となるように設定されている。
 具体的には図24に示すように、LED素子712から出射した光は、波長変換部材715に照射される。これにより、波長変換部材715が励起されて、LED素子712から出射する光の発光ピーク波長よりも長い発光ピーク波長の光を発する。表示装置710Aから出射する光は、本実施形態では、LED素子712から出射する光および波長変換部材715から出射する光を含む。以下、表示装置710Aから出射する光のうち、LED素子712から出射した光を、「短波長光」ともいい、波長変換部材715から出射した光を「長波長光」ともいう。ただし、LED素子712から出射した光の大部分が、波長変換部材715に吸収されてもよい。
 これらの短波長光および長波長光に含まれる第1偏光710pの大部分は、反射型偏光素子740を透過して結像光学系120から出射する。また、これらの短波長光および長波長光に含まれる第2偏光710sの大部分は、反射型偏光素子740によって反射される。反射型偏光素子740によって反射された第2偏光710sの一部は、光散乱部材716Aや波長変換部材715等の表示装置710Aの構成要素において散乱反射する。散乱反射により、第2偏光710sの一部は第1偏光710pに変換される。第2偏光710sから変換した第1偏光710pの一部は、反射型偏光素子740を透過して光源ユニット71Aから出射する。そのため、光源ユニット71Aから出射する光に含まれる第1偏光710pの割合を高めつつ、第1の像IM1の輝度を向上できる。第1の像IM1の輝度が向上することで、第2の像IM2の輝度も向上する。これにより、視認者14は第2の像IM2を視認し易くなる。
 また、第2偏光710sに含まれる短波長光の一部は、反射型偏光素子740によって反射された後、波長変換部材715に入射してもよい。この場合、波長変換部材715が第2偏光710sの短波長光を吸収して、新たに長波長光を放射する効果が期待できる。これらの散乱反射光および放射光は、いずれも略ランバーシアン配光を有する。また、反射型偏光素子740自体が第2偏光710sを散乱反射してもよい。このような場合も、散乱反射により、第2偏光710sの一部は第1偏光710pに変換される。
 本実施形態では、1つの反射型偏光素子740が表示装置710Aの全ての画素を覆う。ただし、光源ユニットは複数の反射型偏光素子を備え、各反射型偏光素子が、各画素上に配置されてもよい。また、反射型偏光素子と組み合わせて使用する表示装置の構成は、上記に限定されない。例えば、波長変換部材の有する光の散乱反射効果を用いることで、表示装置を、光散乱部材を設けない構成としてもよい。また、光散乱部材の有する散乱反射効果を用いることで、表示装置を、波長変換部材を設けない構成としてもよい。また、第1の実施形態のように、LED素子の光出射面に設けた複数の凹部または複数の凸部による光の散乱反射効果を用いることで、表示装置を波長変換部材および光散乱部材のどちらも設けない構成としてもよい。
 次に、本実施形態の効果を説明する。
 本実施形態に係る光源ユニット71Aは、表示装置710A上に配置され、表示装置710Aから出射する光のうちの第1偏光710pを透過し、表示装置710Aから出射する光のうちの第2偏光710sを反射する反射型偏光素子740をさらに備える。そのため、光源ユニット71Aから出射する光に含まれる第1偏光710pの割合を高めつつ、第1の像IM1の輝度を向上できる。
 また、反射型偏光素子740から出射した光も、略ランバーシアン配光を有する。そのため、本実施形態においても、小型かつ品位が高い第1の像IM1を形成可能な光源ユニット71Aを提供できる。なお、複数のLED素子712が基板111上に離散的に実装されているため、第1の像IM1に粒状感が生じる場合がある。波長変換部材715はこの粒状感を緩和する効果を有する。そして光散乱部材716Aはこの粒状感を緩和する効果を更に補強できる。本実施形態における上記以外の構成、動作及び効果は、第1の実施形態と同様である。
 <第9の実施形態>
 次に、第9の実施形態について説明する。
 図25は、本実施形態に係る光源ユニットを示す側面図である。
 図25に示すように、本実施形態に係る映像表示装置70Bは、光源ユニット71Bが、表示装置110の代わりに第8の実施形態と同様な構成の表示装置710Aを備え、反射型偏光素子750および遮光部材760をさらに備える点で、第1の実施形態に係る映像表示装置10と相違する。なお、図25では、遮光部材760のみを断面で示している。
 反射型偏光素子750には、例えば、複数の金属製のナノワイヤを用いたワイヤグリッド型の反射型偏光素子を用いることができる。反射型偏光素子750は、表示装置710Aから反射ユニット12に至る光路のうち、複数の主光線L同士が略平行になる部分に配置される。本実施形態では、複数の主光線Lは、中間素子122から反射ユニット12までの間の光路において互いに略平行になり、反射型偏光素子750は、中間素子122と出力素子123との間に配置される。
 反射型偏光素子750は、P偏光である第1偏光710pを透過し、S偏光である第2偏光710sを、表示装置710Aに戻るように反射する。具体的には、表示装置710Aからは、第1偏光710pおよび第2偏光710sを含む光710aが出射する。この光710aは、入力素子121および中間素子122を経由した後、反射型偏光素子750に入射する。
 反射型偏光素子750は、この光710aに含まれる第1偏光710pの大部分を透過する。反射型偏光素子750を透過した第1偏光710pの大部分は、出力素子123を経由した後、反射ユニット12から出射する。
 反射型偏光素子750は、この光710aに含まれる第2偏光710sの大部分を、表示装置710Aから反射型偏光素子750に至るまでの光路を戻るように反射する。具体的には、反射型偏光素子750の形状は、平板状である。反射型偏光素子750は、主光線Lと概ね直交するように配置される。反射型偏光素子750は、第2偏光710sの大部分を正反射する。そのため、反射型偏光素子750によって反射された第2偏光710sの大部分は、中間素子122および入力素子121をこの順で経由した後、表示装置710Aに戻る。
 表示装置710Aに戻った第2偏光710sの一部は、光散乱部材716Aや波長変換部材715等の表示装置710Aの構成要素によって散乱反射する。散乱反射により、第2偏光710sの一部は、第1偏光710pに変換される。第2偏光710sから変換した第1偏光710pの一部は、入力素子121および中間素子122を経由した後、反射型偏光素子750を透過する。反射型偏光素子750を透過した第1偏光710pの大部分は、出力素子123を経由した後、反射ユニット12から出射する。そのため、映像表示装置70Bから出射する光に含まれる第1偏光710pの割合を高めつつ、第2の像IM2の輝度を向上できる。これにより、視認者14は、第2の像IM2を視認し易くなる。
 また、表示装置710Aに戻った第2偏光710sに含まれる短波長光の一部は、第11の実施形態と同様に、波長変換部材715に照射されてもよい。この場合も、第11の実施形態と同様に、波長変換部材715が第2偏光710sの短波長光を吸収して、新たに長波長光を放射する効果が期待できる。
 遮光部材760は、表示装置710Aと結像光学系120の入力素子121との間に配置されている。遮光部材760の形状は、例えばXY平面に略平行な平板状である。遮光部材760には、遮光部材760をZ方向に貫通する開口761が設けられている。結像光学系120の焦点Fは、開口761内に位置する。
 表示装置710Aから出射した光のうち、焦点Fおよびその近辺を通過する光は、遮光部材760の開口761を通過して入力素子121に入射し、それ以外の光の大部分は、遮光部材760に遮断される。また、反射型偏光素子750によって反射した第2偏光710sのうち、光路に沿う光、すなわち焦点Fおよびその近辺を通過する光は、遮光部材760の開口761を通過して表示装置710Aに戻る。一方、反射型偏光素子750によって反射した第2偏光710sのうち、光路に沿わずに表示装置710Aに向かう光の大部分は、遮光部材760によって遮断される。
 次に、本実施形態の効果を説明する。
 本実施形態に係る映像表示装置70Bは、反射型偏光素子750をさらに備える。反射型偏光素子750は、表示装置710Aから反射ユニット12に至るまでの光路のうち、表示装置710Aにおいて互いに異なる位置から出射して第1の像IM1を通る複数の主光線L同士が略平行となる部分に配置され、表示装置710Aから出射した光のうちの第1偏光710pを透過し、表示装置710Aから出射した光のうちの第2偏光710sを表示装置710Aに戻るように反射する。そのため、映像表示装置70Bから出射する光に含まれる第1偏光710pの割合を高めつつ、第2の像IM2の輝度を向上できる。
 また、表示装置710Aと入力素子121との間には、遮光部材760が設けられている。遮光部材760には、光路に沿って表示装置710Aに戻る第2偏光710sが通過する開口761が設けられている。そのため、反射型偏光素子750によって反射した第2偏光710sのうちの光路に沿う光が表示装置710Aに戻ることを許容しつつ、反射型偏光素子750によって反射した第2偏光710sのうちの光路に沿わない迷光が、表示装置710Aに向かうことを抑制できる。これにより、第1の像IM1および第2の像IM2の品位を高めることができる。また、遮光部材760により、表示装置710Aから出射した光のうちの光路に沿わない迷光が、反射型偏光素子750や結像光学系120の光学素子においてが反射し、表示装置710Aに向かい、予期せぬ場所で再励起や散乱反射することを抑制できる。
 なお、映像表示装置70Bに、遮光部材760は設けられていなくてもよい。また、映像表示装置70Bの表示装置710A上に第3の実施形態において説明した反射型偏光素子740をさらに設けてもよい。このような場合、表示装置710A上の反射型偏光素子740によって反射しきれなかった第2偏光710sを、反射型偏光素子750によって反射できる。そのため、映像表示装置70Bから出射する光に含まれる第1偏光710pの割合を高めつつ、第2の像IM2の輝度を向上できる。本実施形態における上記以外の構成、動作及び効果は、第3の実施形態と同様である。
 <第9の実施形態の変形例>
 次に、第9の実施形態の変形例について説明する。
 図26は、本変形例に係る光源ユニットを示す側面図である。
 図26においても、遮光部材760のみを断面で示している。
 図26に示すように、本変形例においては、反射型偏光素子750は、出力素子123と反射ユニット12との間に配置されている。なお、図26では、反射型偏光素子750が、出力素子123と第1の像IM1の間に位置する例を示しているが、反射型偏光素子570は、第1の像IM1と反射ユニット12との間に配置されてもよい。本変形例における上記以外の構成、動作及び効果は、第9の実施形態と同様である。
 前述の各実施形態及びその変形例は、本発明を具現化した例であり、本発明はこれらの実施形態及び変形例には限定されない。例えば、前述の各実施形態及び各変形例において、いくつかの構成要素又は工程を追加、削除又は変更したものも本発明に含まれる。また、前述の各実施形態及び各変形例は、相互に組み合わせて実施することができる。
 実施形態は、以下の態様を含む。
 (付記1)
 複数の画素を有し画像を表示可能な表示装置と、
 前記表示装置から出射した光が入射する色変化シートと、
 前記色変化シートから出射した光が入射する入力素子と、前記入力素子を経由した光が入射する出力素子と、を含み、前記出力素子から出射した光が前記画像に応じた第1の像を形成する結像光学系と、
 前記表示装置と前記色変化シートの位置関係を変化させる駆動ユニットと、
 を備え、
 前記色変化シートは、
  前記画素から光が入射され、第1の色の光を出射する第1領域と、
  前記画素から光が入射され、前記第1の色とは異なる第2の色の光を出射する第2領域と、
 を有し、
 前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、一の前記画素から出射した光が前記第1領域に入射する第1の位置関係と、前記一の画素から出射した光が前記第2領域に入射する第2の位置関係と、の間で変化させ、
 前記結像光学系は、前記第1の像側において略テレセントリック性を有し、
 前記表示装置から出射する光が略ランバーシアン配光を有する、光源ユニット。
 (付記2)
 前記画素から出射する光の色は前記第1の色であり、
 前記第1領域は、前記画素から入射した光を透過させる付記1に記載の光源ユニット。
 (付記3)
 前記第2領域は、前記画素から出射した光のうち前記第2の色の光を透過させる付記1または2に記載の光源ユニット。
 (付記4)
 前記第2領域は、前記画素から出射した光を吸収して前記第2の色の光を放射する蛍光体を含む付記1または2に記載の光源ユニット。
 (付記5)
 前記色変化シートは、前記画素から光が入射され、前記第1の色及び前記第2の色とは異なる第3の色の光を出射する第3領域をさらに有し、
 前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、前記第1の位置関係と、前記第2の位置関係と、前記一の画素から出射した光が前記第3領域に入射する第3の位置関係と、の間で変化させる付記1~4のいずれか1つに記載の光源ユニット。
 (付記6)
 前記表示装置において、前記複数の画素は第1方向及び前記第1方向に対して交差した第2方向に沿って配列されており、
 前記色変化シートにおいて、前記第1領域、前記第2領域及び前記第3領域は、前記第1方向に沿って配列された付記5に記載の光源ユニット。
 (付記7)
 前記表示装置において、前記複数の画素は第1方向及び前記第1方向に対して交差した第2方向に沿って配列されており、
 前記色変化シートにおいて、前記第1領域及び前記第2領域は、前記第1方向に沿って配列されており、前記第1領域及び前記第3領域は、前記第2方向に沿って配列されている付記5に記載の光源ユニット。
 (付記8)
 前記表示装置から出射する光は、前記表示装置から出射する光の光軸に対して角度θの方向の光度が前記光軸上の光度のcosθ倍で近似される配光パターンを有し、
 前記nは0より大きい値である付記1~7のいずれか1つに記載の光源ユニット。
 (付記9)
 前記nは、11以下である付記8に記載の光源ユニット。
 (付記10)
 前記表示装置は、複数のLED素子を有するLEDディスプレイである付記1~9のいずれか1つに記載の光源ユニット。
 (付記11)
 前記LED素子から出射する光が、略ランバーシアン配光を有する付記10に記載の光源ユニット。
 (付記12)
 前記表示装置は、前記LED素子上に配置され、前記LED素子から出射した光が入射する波長変換部材をさらに有する付記10または11に記載の光源ユニット。
 (付記13)
 前記結像光学系は、前記入力素子を含む屈曲部、及び、前記出力素子を含む方向変更部を含み、
 前記屈曲部は、前記表示装置において互いに異なる位置から出射して前記入力素子に入射する前に互いに交差して前記第1の像に至る複数の主光線同士が、前記第1の像の前後で略平行になるように前記複数の主光線を屈曲し、
 前記方向変更部は、前記屈曲部を経由した前記複数の主光線が、前記第1の像の形成位置に向かうように前記複数の主光線の進行方向を変更する付記1~12のいずれか1つに記載の光源ユニット。
 (付記14)
 前記表示装置と前記結像光学系との間に配置され、前記表示装置から前記結像光学系に向かう光の一部が通過する開口が設けられ、前記表示装置から前記結像光学系に向かう光の他の一部を遮断する遮光部材をさらに備えた付記1~13のいずれか1つに記載の光源ユニット。
 (付記15)
 付記1~14のいずれか1つに記載の光源ユニットと、
 前記光源ユニットから離隔し、前記結像光学系から出射した光を反射する反射ユニットと、
 を備え、
 前記第1の像は、前記光源ユニットと前記反射ユニットとの間に形成される映像表示装置。
 (付記16)
 前記表示装置から前記反射ユニットに至るまでの光路に配置され、前記表示装置から出射した光のうちの第1偏光を透過させ、前記表示装置から出射した光のうちの第2偏光を前記表示装置に戻るように反射する反射型偏光素子をさらに備えた付記15に記載の映像表示装装置。
 (付記17)
 車両と、
 前記車両に固定された付記15または16に記載の映像表示装置と、
 を備えた自動車。
 本発明は、例えば、ヘッドアップディスプレイに利用することができる。
10:映像表示装置
11:光源ユニット
12:反射ユニット
13:車両
13a:フロントウインドシールド
13b:天井部
13c:ダッシュボード部
13h1、13h2:貫通穴
13s1、13s2:壁
14:視認者
14a:アイボックス
14b:偏光サングラス
20:映像表示装置
22:反射ユニット
70A、70B:映像表示装置
71A、71B:光源ユニット
110:表示装置
110c:中心
110p:画素
111:基板
112  LED素子
112a:半導体積層体
112b:アノード電極
112c:カソード電極
112p1:p型半導体層
112p2:活性層
112p3:n型半導体層
112s:光出射面
112t:凹部
115:波長変換部材
118a、118b:配線
120、2120:結像光学系
120a:屈曲部
120b:方向変更部
121:入力素子
121a、122a:ミラー面
122:中間素子
122a:ミラー面
123:出力素子
123a:ミラー面
130、130e、130f:色変化シート
130a:第1領域
130b:第2領域
130c:第3領域
130p:領域
131:ミラー
131a:ミラー面
140:駆動ユニット
230、230e、230f、230h、230g:色変化シート
230a:第1領域
230b:第2領域
230c:第3領域
230p:領域
322:ミラー
322a:ミラー面
330:色変化シート
330a:第1領域
330b:第2領域
330c:第3領域
330u:最小ユニット
430:色変化シート
430a:第1領域
430b:第2領域
430c:第3領域
530:色変化シート
570:反射型偏光素子
710A:表示装置
710a:光
710p:第1偏光
710s:第2偏光
712:LED素子
714:保護層
715:波長変換部材
716A:光散乱部材
740:反射型偏光素子
750:反射型偏光素子
760:遮光部材
761:開口
1000:自動車
2011:光源ユニット
2110:表示装置
2110p:画素
2110s:光出射面
2120:結像光学系
C:光軸
F:焦点
IM1:第1の像
IM2:第2の像
L:主光線
P:位置
P1:第1平面
P2:第2平面
a1、a2:点
θ:角度

Claims (17)

  1.  複数の画素を有し画像を表示可能な表示装置と、
     前記表示装置から出射した光が入射する色変化シートと、
     前記色変化シートから出射した光が入射する入力素子と、前記入力素子を経由した光が入射する出力素子と、を含み、前記出力素子から出射した光が前記画像に応じた第1の像を形成する結像光学系と、
     前記表示装置と前記色変化シートの位置関係を変化させる駆動ユニットと、
     を備え、
     前記色変化シートは、
      前記画素から光が入射され、第1の色の光を出射する第1領域と、
      前記画素から光が入射され、前記第1の色とは異なる第2の色の光を出射する第2領域と、
     を有し、
     前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、一の前記画素から出射した光が前記第1領域に入射する第1の位置関係と、前記一の画素から出射した光が前記第2領域に入射する第2の位置関係と、の間で変化させ、
     前記結像光学系は、前記第1の像側において略テレセントリック性を有し、
     前記表示装置から出射する光が略ランバーシアン配光を有する、光源ユニット。
  2.  前記画素から出射する光の色は前記第1の色であり、
     前記第1領域は、前記画素から入射した光を透過させる請求項1に記載の光源ユニット。
  3.  前記第2領域は、前記画素から出射した光のうち前記第2の色の光を透過させる請求項1または2に記載の光源ユニット。
  4.  前記第2領域は、前記画素から出射した光を吸収して前記第2の色の光を放射する蛍光体を含む請求項1または2に記載の光源ユニット。
  5.  前記色変化シートは、前記画素から光が入射され、前記第1の色及び前記第2の色とは異なる第3の色の光を出射する第3領域をさらに有し、
     前記駆動ユニットは、前記表示装置と前記色変化シートの位置関係を、前記第1の位置関係と、前記第2の位置関係と、前記一の画素から出射した光が前記第3領域に入射する第3の位置関係と、の間で変化させる請求項1~4のいずれか1つに記載の光源ユニット。
  6.  前記表示装置において、前記複数の画素は第1方向及び前記第1方向に対して交差した第2方向に沿って配列されており、
     前記色変化シートにおいて、前記第1領域、前記第2領域及び前記第3領域は、前記第1方向に沿って配列された請求項5に記載の光源ユニット。
  7.  前記表示装置において、前記複数の画素は第1方向及び前記第1方向に対して交差した第2方向に沿って配列されており、
     前記色変化シートにおいて、前記第1領域及び前記第2領域は、前記第1方向に沿って配列されており、前記第1領域及び前記第3領域は、前記第2方向に沿って配列されている請求項5に記載の光源ユニット。
  8.  前記表示装置から出射する光は、前記表示装置から出射する光の光軸に対して角度θの方向の光度が前記光軸上の光度のcosθ倍で近似される配光パターンを有し、
     前記nは0より大きい値である請求項1~7のいずれか1つに記載の光源ユニット。
  9.  前記nは、11以下である請求項8に記載の光源ユニット。
  10.  前記表示装置は、複数のLED素子を有するLEDディスプレイである請求項1~9のいずれか1つに記載の光源ユニット。
  11.  前記LED素子から出射する光が、略ランバーシアン配光を有する請求項10に記載の光源ユニット。
  12.  前記表示装置は、前記LED素子上に配置され、前記LED素子から出射した光が入射する波長変換部材をさらに有する請求項10または11に記載の光源ユニット。
  13.  前記結像光学系は、前記入力素子を含む屈曲部、及び、前記出力素子を含む方向変更部を含み、
     前記屈曲部は、前記表示装置において互いに異なる位置から出射して前記入力素子に入射する前に互いに交差して前記第1の像に至る複数の主光線同士が、前記第1の像の前後で略平行になるように前記複数の主光線を屈曲し、
     前記方向変更部は、前記屈曲部を経由した前記複数の主光線が、前記第1の像の形成位置に向かうように前記複数の主光線の進行方向を変更する請求項1~12のいずれか1つに記載の光源ユニット。
  14.  前記表示装置と前記結像光学系との間に配置され、前記表示装置から前記結像光学系に向かう光の一部が通過する開口が設けられ、前記表示装置から前記結像光学系に向かう光の他の一部を遮断する遮光部材をさらに備えた請求項1~13のいずれか1つに記載の光源ユニット。
  15.  請求項1~14のいずれか1つに記載の光源ユニットと、
     前記光源ユニットから離隔し、前記結像光学系から出射した光を反射する反射ユニットと、
     を備え、
     前記第1の像は、前記光源ユニットと前記反射ユニットとの間に形成される映像表示装置。
  16.  前記表示装置から前記反射ユニットに至るまでの光路に配置され、前記表示装置から出射した光のうちの第1偏光を透過させ、前記表示装置から出射した光のうちの第2偏光を前記表示装置に戻るように反射する反射型偏光素子をさらに備えた請求項15に記載の映像表示装装置。
  17.  車両と、
     前記車両に固定された請求項15または16に記載の映像表示装置と、
     を備えた自動車。
PCT/JP2023/019643 2022-05-30 2023-05-26 光源ユニット、映像表示装置及び自動車 WO2023234194A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087981 2022-05-30
JP2022087981 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234194A1 true WO2023234194A1 (ja) 2023-12-07

Family

ID=89024943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019643 WO2023234194A1 (ja) 2022-05-30 2023-05-26 光源ユニット、映像表示装置及び自動車

Country Status (1)

Country Link
WO (1) WO2023234194A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319877A (ja) * 1997-05-16 1998-12-04 Toshiba Corp 画像表示装置及び発光装置
JP2008186777A (ja) * 2007-01-31 2008-08-14 Seiko Instruments Inc 照明装置及びこれを備える表示装置
DE102010062634A1 (de) * 2010-12-08 2012-06-14 Qioptiq Photonics Gmbh & Co. Kg Head-up Display mit Projektionseinheit
KR20140077299A (ko) * 2012-12-14 2014-06-24 엘지이노텍 주식회사 엘이디 매트릭스 광원을 가지는 헤드 업 디스플레이 장치
WO2016208195A1 (ja) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイおよびヘッドアップディスプレイを搭載した移動体
US20180203505A1 (en) * 2017-01-17 2018-07-19 Oculus Vr, Llc Varifocal head-mounted display including modular air spaced optical assembly
US20210199949A1 (en) * 2019-12-27 2021-07-01 Samsung Electronics Co., Ltd. Projector
WO2023047678A1 (ja) * 2021-09-22 2023-03-30 日亜化学工業株式会社 光源ユニットおよび映像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319877A (ja) * 1997-05-16 1998-12-04 Toshiba Corp 画像表示装置及び発光装置
JP2008186777A (ja) * 2007-01-31 2008-08-14 Seiko Instruments Inc 照明装置及びこれを備える表示装置
DE102010062634A1 (de) * 2010-12-08 2012-06-14 Qioptiq Photonics Gmbh & Co. Kg Head-up Display mit Projektionseinheit
KR20140077299A (ko) * 2012-12-14 2014-06-24 엘지이노텍 주식회사 엘이디 매트릭스 광원을 가지는 헤드 업 디스플레이 장치
WO2016208195A1 (ja) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイおよびヘッドアップディスプレイを搭載した移動体
US20180203505A1 (en) * 2017-01-17 2018-07-19 Oculus Vr, Llc Varifocal head-mounted display including modular air spaced optical assembly
US20210199949A1 (en) * 2019-12-27 2021-07-01 Samsung Electronics Co., Ltd. Projector
WO2023047678A1 (ja) * 2021-09-22 2023-03-30 日亜化学工業株式会社 光源ユニットおよび映像表示装置

Similar Documents

Publication Publication Date Title
US11474349B2 (en) Head-up display device
US8810752B2 (en) Thin backlight system and liquid crystal display device using the same
US8643928B2 (en) Illumination systems for visual displays
CN210403049U (zh) 基于Mirco LED的微投影光引擎和近眼显示设备
US8300161B2 (en) Reduction of cross-talk for a dual view display device
CN110850669A (zh) 基于MicroLED的显像设备及其显像方法
US20220244627A1 (en) Lighting arrangement, light guide arrangement and method
US10606074B2 (en) Head-up display apparatus
WO2020225963A1 (ja) 虚像表示装置
WO2023047678A1 (ja) 光源ユニットおよび映像表示装置
CN112802403A (zh) 基于Micro LED的微投影光引擎及其方法和近眼显示设备
WO2019087615A1 (ja) 虚像表示装置
WO2017130481A1 (ja) ヘッドアップディスプレイ装置及びその生産方法
WO2023234194A1 (ja) 光源ユニット、映像表示装置及び自動車
WO2018150736A1 (ja) ヘッドアップディスプレイ装置
WO2023243538A1 (ja) 光源ユニット及び映像表示装置
WO2023233737A1 (ja) 映像表示システム
WO2023238460A1 (ja) 光源ユニット及び映像表示装置
US20240160014A1 (en) Image display device
JP2024071852A (ja) 映像表示装置
US11665928B2 (en) Optical module and image display device
JP2005128349A (ja) 液晶パネルおよびプロジェクタ
CN115210629B (zh) 虚像显示装置
US20240127767A1 (en) Display device and projector
JP6881535B2 (ja) 画像光生成モジュール及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815951

Country of ref document: EP

Kind code of ref document: A1