WO2023234044A1 - Rotary electric machine unit - Google Patents

Rotary electric machine unit Download PDF

Info

Publication number
WO2023234044A1
WO2023234044A1 PCT/JP2023/018536 JP2023018536W WO2023234044A1 WO 2023234044 A1 WO2023234044 A1 WO 2023234044A1 JP 2023018536 W JP2023018536 W JP 2023018536W WO 2023234044 A1 WO2023234044 A1 WO 2023234044A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
electric machine
capacitor
rotating electric
positive
Prior art date
Application number
PCT/JP2023/018536
Other languages
French (fr)
Japanese (ja)
Inventor
皓太 葛城
範之 別芝
憲一 田村
優 岸和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023234044A1 publication Critical patent/WO2023234044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a rotating electric machine unit.
  • This application claims priority based on Japanese Patent Application No. 2022-090052 filed in Japan on June 2, 2022, the contents of which are incorporated herein.
  • a rotating electrical machine unit in which a rotating electrical machine and a power conversion device are integrated is known.
  • a rotating electric machine unit is provided with a cooler that cools a power conversion device.
  • a cooling channel through which a refrigerant flows is formed in the cooler.
  • Patent Document 1 a plurality of power modules are arranged along the flow of refrigerant flowing through a cooling channel.
  • the temperature of the refrigerant on the downstream side of the cooling channel is higher than the temperature of the refrigerant on the upstream side of the cooling channel, so the power module disposed on the downstream side of the cooling channel is cooling may not be possible. That is, since the temperature of the refrigerant is uneven between the upstream side and the downstream side of the cooling flow path, it is difficult to cool the plurality of power modules uniformly.
  • the present disclosure has been made in view of the above-mentioned circumstances, and aims to provide a rotating electric machine unit that can uniformly cool a plurality of power modules and improve cooling performance.
  • a rotating electrical machine unit includes a rotating electrical machine including a stator, a rotor that rotates around an axis relative to the stator, and a plurality of coils wound around the stator; A power conversion device disposed in parallel with the rotating electric machine in an axial direction along the axis of the child; a first cooling section in which a first cooling channel through which a refrigerant flows and cools the power conversion device; , the power conversion device includes a plurality of power modules each electrically connected to the plurality of coils, and a capacitor unit electrically connected to the plurality of power modules, The first cooling channel is branched from the inlet channel to which the refrigerant is supplied, and overlaps the first group of power modules among the plurality of power modules when viewed from the axial direction.
  • the condenser unit is arranged to surround the first cooling section from the outside in the radial direction.
  • FIG. 1 is a circuit diagram of a rotating electric machine unit according to Embodiment 1.
  • FIG. 1 is a perspective view of a rotating electrical machine unit according to Embodiment 1.
  • FIG. 1 is a perspective view of the rotating electric machine unit according to Embodiment 1, with the case removed.
  • FIG. FIG. 4 is a plan view of FIG. 3; 5 is a sectional view taken along line AA in FIG. 4.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4.
  • FIG. FIG. 2 is a perspective view of the rotating electric machine unit, with the case, terminal block, signal connector, and control board removed.
  • FIG. 9 is a sectional view taken along line DD in FIG. 8.
  • FIG. 9 is a cross-sectional view taken along line EE in FIG. 8.
  • FIG. 1 is a perspective view of a capacitor module according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of the capacitor module according to Embodiment 1, with the storage case removed.
  • 1 is a perspective view of a positive electrode conductor according to Embodiment 1.
  • FIG. 1 is a perspective view of a negative electrode conductor according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of a power module, a bus bar, a current sensor, and a resin member according to the first embodiment.
  • 1 is a perspective view of a bus bar according to Embodiment 1.
  • FIG. 1 is a perspective view of a rotating electric machine according to Embodiment 1.
  • FIG. 1 is a perspective view of a rotating electric machine and a cooler according to Embodiment 1.
  • FIG. 1 is a perspective view of a plate according to Embodiment 1.
  • FIG. 1 is a perspective view of a plate according to Embodiment 1.
  • FIG. 3 is a perspective view of a base and a refrigerant inlet portion according to the first embodiment.
  • FIG. 3 is a perspective view of the inner cylinder portion according to the first embodiment.
  • FIG. 3 is a perspective view of the inner cylinder portion according to the first embodiment.
  • FIG. 3 is a perspective view of a housing case for a capacitor module according to a second embodiment.
  • FIG. 3 is a cross-sectional view of a rotating electric machine unit according to a second embodiment.
  • FIG. 1 is a circuit diagram of the rotating electrical machine unit 1.
  • FIG. 2 is a perspective view of the rotating electric machine unit 1.
  • the rotating electrical machine unit 1 includes a rotating electrical machine 2, a power conversion device 3, and a cooler 4 (first cooling section).
  • the rotating electrical machine 2, the power converter 3, and the cooler 4 are integrated.
  • the rotating electric machine unit 1 can be downsized. Note that in this specification, the direction along the axis O (see FIG.
  • the axial direction is referred to as the "axial direction.”
  • the direction intersecting the axis O of the rotor 22 is referred to as the "radial direction”
  • the direction in which the rotor 22 rotates around the axis O is referred to as the "circumferential direction”.
  • the circuit configuration (electrical configuration) of the rotating electric machine unit 1 will be explained with reference to FIG.
  • a six-phase drive type rotating electrical machine unit will be described as an example of the rotating electrical machine unit 1.
  • the rotating electric machine unit 1 is mounted on a vehicle, for example.
  • the rotating electric machine 2 includes six coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 corresponding to each of six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase).
  • the coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 are also simply referred to as the coils 25.
  • the power conversion device 3 includes a capacitor unit 34 and six power modules 35U1, 35V1, 35W1, 35U2, 35V2 corresponding to each of six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). , 35W2. Note that in this specification, the power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are also simply referred to as the power module 35.
  • DC power is input to the power conversion device 3 from a DC power source E such as a battery.
  • the power conversion device 3 converts the DC power output from the DC power supply E into AC power and supplies the AC power to the rotating electric machine 2 .
  • the capacitor unit 34 is a smoothing capacitor that stabilizes the voltage so that it does not fluctuate greatly in response to power fluctuations in the DC power source E or power fluctuations on the power module 35 side.
  • the capacitor unit 34 includes a plurality of (two in this embodiment) capacitor modules 51. Each capacitor module 51 is connected between a positive power terminal and a negative power terminal of a DC power source E. Each capacitor module 51 has a plurality of capacitor elements 52 connected in parallel. Capacitor module 51 may have only one capacitor element 52.
  • Each power module 35 is connected between the positive power terminal and negative power terminal of the DC power source E.
  • Each power module 35 includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side.
  • the switching elements SW1 and SW2 are, for example, IGBTs (Insulated Gate Bipolar Transistors) or SiC (Silicon Carbide). Switching elements SW1 and SW2 are connected in series. The connection point between switching element SW1 and switching element SW2 is electrically connected to the coil 25 of the corresponding phase.
  • the diode D1 is connected in parallel in the opposite direction to the switching element SW1.
  • Diode D2 is connected in parallel in the opposite direction to switching element SW2.
  • FIG. 18 is a perspective view of the rotating electric machine 2.
  • the rotating electric machine 2 includes a stator 21, a rotor 22, a shaft 23, a housing 24, and a plurality of coils 25 (in this embodiment, six coils 25U1, 25V1, 25W1). , 25U2, 25V2, 25W2), first and second bearings 26a and 26b, and a resolver 27.
  • the stator 21 is annular.
  • the stator 21 is provided so as to surround the outer periphery of the rotor 22.
  • Stator 21 is fixed to housing 24.
  • the rotor 22 is provided inside the stator 21.
  • the rotor 22 is rotatable around the axis O with respect to the stator 21 .
  • a shaft 23 is arranged at the center of the rotor 22.
  • One axial side (lower side) of the shaft 23 is an output side that transmits the rotation of the rotor 22 to a vehicle or the like.
  • the housing 24 accommodates the stator 21, rotor 22, and shaft 23.
  • the housing 24 includes a lid part 61, an inner cylinder part 62, an outer cylinder part 63, and a bottom part 64.
  • the lid portion 61 is a circular plate-like member.
  • the lid part 61 is fixed to the upper end of the inner cylinder part 62.
  • the lid portion 61 covers the stator 21 and rotor 22 from above.
  • the lid portion 61 is formed with a coil through hole 61a through which the coil end 25a of the coil 25 is inserted.
  • the six coil through holes 61a are arranged at equal intervals (60° intervals) in the circumferential direction.
  • a joint accommodation hole 61b is formed in the lid portion 61, in which a relay joint 47, which will be described later, is accommodated.
  • the inner cylinder portion 62 has a cylindrical shape.
  • the inner cylinder portion 62 covers the stator 21 from the outside in the radial direction.
  • the stator 21 is fixed to the inner cylinder portion 62 by, for example, shrink fitting or press fitting.
  • the outer cylinder portion 63 has a cylindrical shape.
  • the outer cylinder part 63 covers the inner cylinder part 62 from the outside in the radial direction.
  • the outer cylinder part 63 is fixed to the inner cylinder part 62 by, for example, shrink fitting or press fitting.
  • the inner cylinder part 62 and the outer cylinder part 63 constitute a second cooling part 65 that cools the rotating electrical machine 2 . Details of the second cooling unit 65 will be described later.
  • the bottom portion 64 is a circular plate-like member.
  • the bottom portion 64 is fixed to the lower end of the outer cylinder portion 63.
  • the bottom portion 64 covers the stator 21 and rotor 22 from below.
  • the bottom portion 64 is provided with an attachment portion 64a for attaching the rotating electric machine unit 1 to a vehicle.
  • the coil 25 is wound around the stator 21.
  • the coil 25 is wound around the stator 21 in a distributed manner, for example.
  • the coil terminal 25a of the coil 25 of each phase is electrically connected to the power module 35 of the corresponding phase.
  • the six coil terminals 25a are arranged at equal intervals (60° intervals) in the circumferential direction. After the coil terminal 25a is inserted into the coil through hole 61a, it is bent radially outward, and then bent again to extend in the axial direction.
  • the resolver 27 detects the rotation angle of the shaft 23.
  • the resolver 27 includes a resolver stator 27a, a resolver rotor 27b, and a resolver harness 27c (signal line).
  • the resolver stator 27a is fixed to the lid 61.
  • the resolver rotor 27b is attached to the upper end (non-output side end) of the shaft 23.
  • the detection result of the resolver 27 is output to the control board 36 of the power conversion device 3, which will be described later, via the resolver harness 27c.
  • the resolver harness 27c is pulled out from the resolver stator 27a, extends toward the control board 36, and is connected to the control board 36.
  • the resolver harness 27c extends avoiding a portion where the power module 35 is arranged. Thereby, noise caused by the power module 35 can be prevented from being transmitted to the resolver harness 27c, and the detection accuracy of the rotation angle of the shaft 23 can be improved.
  • a first bearing 26a is provided at the upper end (non-output side end) of the shaft 23.
  • the first bearing 26a is fixed to the lid 61.
  • a second bearing 26b is provided at the lower end (output side end) of the shaft 23.
  • the second bearing 26b is fixed to the bottom 64.
  • the first bearing 26a and the second bearing 26b rotatably support the shaft 23.
  • the power converter 3 includes a case 31, a terminal block 32 (second external connection), and a signal connector 33 (first external connection). , a capacitor unit 34, a control board 36, a plurality of power modules 35 (in this embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), and a plurality (in this embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), bus bars 37; a plurality (six in this embodiment) of current sensors 38; and a plurality (six in this embodiment) of resin members 39.
  • a plurality of power modules 35 in this embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2
  • the case 31 covers electronic components such as the capacitor unit 34, the power module 35, and the control board 36 from above. This ensures insulation between these electronic components and components mounted around the rotating electrical machine unit 1, and prevents foreign matter from entering the rotating electrical machine unit 1 from outside.
  • the terminal block 32 is provided on the top surface of the case 31.
  • the terminal block 32 connects the DC power supply E and the capacitor unit 34.
  • the terminal block 32 is a second external connection part that connects the power conversion device 3 and a DC power supply E that is an external power supply.
  • the terminal block 32 includes a positive connection terminal 32a, a negative connection terminal 32b, and a housing case 32c.
  • the positive side connection terminal 32a is connected to the positive power supply terminal of the DC power supply E and the positive conductor 54 of two capacitor modules 51 of the capacitor unit 34, which will be described later.
  • the negative electrode side connection terminal 32b is connected to the negative electrode power terminal of the DC power source E and the negative electrode conductor 55 of two capacitor modules 51 of the capacitor unit 34, which will be described later.
  • the housing case 32c houses the positive side connection terminal 32a and the negative side connection terminal 32b.
  • the upper surface of the positive connection terminal 32a is exposed from the housing case 32c, and the positive power terminal of the DC power source E is connected to this upper surface. Both side surfaces in the circumferential direction of the positive electrode side connection terminal 32a are exposed from the housing case 32c, and the positive electrode conductors 54 of the two capacitor modules 51 are respectively connected to these side surfaces.
  • the upper surface portion of the negative electrode side connection terminal 32b is exposed from the housing case 32c, and the negative electrode power terminal of the DC power source E is connected to this upper surface portion. Both side surfaces of the negative electrode side connection terminal 32b in the circumferential direction are exposed from the housing case 32c, and the negative electrode conductors 55 of the two capacitor modules 51 are respectively connected to these side surfaces.
  • the signal connector 33 is provided on the top surface of the case 31.
  • the signal connector 33 is electrically connected to the control board 36.
  • the signal connector 33 is used to exchange various signals between the power conversion device 3 and an external control device mounted on a vehicle or the like.
  • the signal connector 33 is a first external connection section that connects the power conversion device 3 and an external control device.
  • the front side when viewed from the axial direction, the side where the signal connector 33 is arranged with respect to the axis O of the rotor 22 is called the front side, and the opposite side is called the rear side.
  • the signal connector 33 is arranged on the front side of the rotating electric machine unit 1.
  • the terminal block 32 is arranged on the rear side of the rotating electric machine unit 1.
  • the capacitor unit 34 will be explained with reference to FIGS. 7, 8, and 12 to 15. As shown in FIG. 8, the capacitor unit 34 is arranged at the outer periphery of the power converter 3. When viewed from the axial direction, the capacitor unit 34 extends in the circumferential direction. The capacitor unit 34 is fixed to the lid portion 61.
  • the capacitor unit 34 has two capacitor modules 51 arranged in the circumferential direction.
  • One of the two capacitor modules 51 is provided corresponding to half of the power modules 35 (for example, power modules 35U1, 35V1, 35W1) among the six power modules 35, and the other is provided corresponding to the other half of the power modules 35 (for example, power modules 35U1, 35V1, 35W1).
  • the power modules 35U2, 35V2, 35W2 When viewed from the axial direction, each capacitor module 51 has an arc shape extending in the circumferential direction. The two capacitor modules 51 have the same shape. A gap is formed between the ends of the two capacitor modules 51 in the circumferential direction.
  • the capacitor module 51 includes a plurality of capacitor elements 52, a housing case 53, a positive conductor 54, and a negative conductor 55.
  • the housing case 53 houses a plurality of capacitor elements 52, a portion of the positive electrode conductor 54, and a portion of the negative electrode conductor 55. In this state, each component accommodated in the accommodation case 53 is fixed by filling the inside of the accommodation case 53 with resin.
  • the capacitor element 52 is arranged so that the positive electrode is located at the lower end and the negative electrode is located at the upper end.
  • a plurality of attachment parts 53a for attaching the capacitor module 51 to the lid part 61 are formed at the lower part of the housing case 53.
  • the attachment portion 53a is a protrusion that protrudes radially outward from the outer peripheral surface of the storage case 53.
  • a bolt hole is formed in the attachment portion 53a, and the capacitor module 51 is attached to the lid portion 61 by fastening a bolt 53b (see FIG. 8) to this bolt hole.
  • FIG. 14 is a perspective view of the positive electrode conductor 54.
  • FIG. 15 is a perspective view of the negative electrode conductor 55.
  • the positive electrode conductor 54 and the negative electrode conductor 55 are formed of plate-like members.
  • oxygen-free copper is used as the material for the positive electrode conductor 54 and the negative electrode conductor 55.
  • Tough pitch copper may be used as the material for the positive electrode conductor 54 and the negative electrode conductor 55 in order to reduce the cost of materials, improve availability, and the like.
  • the thickness of the positive electrode conductor 54 and the negative electrode conductor 55 is, for example, 0.5 to 2.5 mm.
  • the positive conductor 54 is connected to the positive side connection terminal 32a of the terminal block 32 and the positive terminal 35b of the power module 35, which will be described later.
  • the positive electrode conductor 54 includes a plurality of (in this embodiment, three) first positive end portions 54a, a second positive end portion 54b, a plurality of third positive end portions 54c, a positive electrode side connection portion 54d, It has a plurality (in this embodiment, three) of positive electrode side cooled parts 54e.
  • the three first positive end portions 54a are provided corresponding to half (three) of the power modules 35, respectively.
  • the first positive end portion 54a is connected to the positive terminal 35b of the corresponding power module 35.
  • the three first positive end portions 54a are arranged at equal intervals (60° intervals) in the circumferential direction.
  • the three first positive end portions 54a have the same shape.
  • the first positive end portion 54a is pulled out from the upper part of the storage case 53. As shown in FIG. 8, the first positive end portion 54a is arranged to face the positive electrode terminal 35b of the corresponding power module 35 in the radial direction.
  • the second positive end portion 54b is connected to the positive side connection terminal 32a of the terminal block 32.
  • the second positive end portion 54b is pulled out from the upper part of the storage case 53.
  • the second positive end portion 54b is arranged to face the side surface of the positive connection terminal 32a.
  • a bolt hole is formed at the tip of the second positive end portion 54b, and by fastening a bolt 54f to this bolt hole, the second positive end portion 54b is fixed to the side surface of the positive connection terminal 32a.
  • the plurality of third positive end portions 54c are provided corresponding to the plurality of capacitor elements 52, respectively.
  • the third positive end portion 54c is fixed to the lower end portion of the capacitor element 52, for example, by soldering. Thereby, the third positive end portion 54c is connected to the positive electrode provided at the lower end portion of the capacitor element 52.
  • the third positive end portion 54c is housed in the housing case 53.
  • the positive electrode side connecting portion 54d electrically connects the first positive end portion 54a, the second positive end portion 54b, and the third positive end portion 54c.
  • the positive electrode side connection portion 54d is housed in the housing case 53.
  • the positive electrode side connection portion 54d includes a plurality of first straight portions 54d1, a plurality of first bent portions 54d2, and a first connection end portion 54d3.
  • the plurality of first straight portions 54d1 are formed, for example, by bending a plate-like member, and are formed to extend generally in the circumferential direction as a whole.
  • the plurality of first bent portions 54d2 connect the plurality of first straight portions 54d1.
  • the first connecting end portion 54d3 is connected to a first straight portion 54d1 disposed on one side in the circumferential direction, and is bent toward the outside in the radial direction with respect to the first straight portion 54d1.
  • the positive electrode conductor 54 is formed by joining a separate first positive end portion 54a, second positive end portion 54b, and third positive end portion 54c to a positive electrode side connection portion 54d.
  • the first positive end portion 54a is joined to the upper end portion of the first straight portion 54d1.
  • the second positive end portion 54b is joined to the upper end portion of the first connection end portion 54d3.
  • the third positive end portion 54c is joined to the lower end portion of the first straight portion 54d1.
  • the positive electrode side cooled part 54e is provided so as to extend downward from the first positive end part 54a.
  • the positive side cooled portion 54e is integrally formed with the first positive end portion 54a.
  • the positive side cooled portion 54e may be formed separately from the first positive end portion 54a.
  • the positive electrode side cooled portion 54e is arranged inside the capacitor module 51 in the radial direction.
  • the positive electrode side cooled part 54e is arranged outside the housing case 53.
  • the positive electrode side cooled part 54e is thermally connected to the cooler 4.
  • the negative electrode conductor 55 is connected to the negative electrode side connection terminal 32b of the terminal block 32 and the negative electrode terminal 35c of the power module 35, which will be described later.
  • the negative electrode conductor 55 includes a plurality of (in this embodiment, three) first negative end portions 55a, a second negative end portion 55b, a plurality of third negative end portions 55c, a negative electrode side connection portion 55d, It has a plurality (in this embodiment, three) of negative electrode side cooled parts 55e.
  • the three first negative end portions 55a are provided corresponding to half (three) of the power modules 35, respectively.
  • the first negative end portion 55a is connected to the negative electrode terminal 35c of the corresponding power module 35.
  • the three first negative end portions 55a are arranged at equal intervals (60° intervals) in the circumferential direction.
  • the three first negative end portions 55a have the same shape.
  • the first negative end portion 55a is pulled out from the upper part of the storage case 53. As shown in FIG. 8, the first negative end portion 55a is arranged to face the negative electrode terminal 35c of the corresponding power module 35 in the radial direction.
  • the second negative end portion 55b is connected to the negative connection terminal 32b of the terminal block 32.
  • the second negative end portion 55b is pulled out from the upper part of the storage case 53.
  • the second negative end portion 55b is arranged to face the side surface of the negative connection terminal 32b.
  • a bolt hole is formed at the tip of the second negative end portion 55b, and by fastening a bolt 55f to this bolt hole, the second negative end portion 55b is fixed to the side surface of the negative electrode side connection terminal 32b.
  • the plurality of third negative end portions 55c are provided corresponding to the plurality of capacitor elements 52, respectively.
  • the third negative end portion 55c is fixed to the upper end portion of the capacitor element 52, for example, by soldering. Thereby, the third negative end portion 55c is connected to the negative electrode provided at the upper end portion of the capacitor element 52.
  • the third negative end portion 55c is housed in the housing case 53.
  • the negative electrode side connection portion 55d electrically connects the first negative end portion 55a, the second negative end portion 55b, and the third negative end portion 55c.
  • the negative electrode side connection portion 55d is housed in the housing case 53.
  • the negative electrode side connection portion 55d includes a plurality of second straight portions 55d1, a plurality of second bent portions 55d2, and a second connection end portion 55d3.
  • the plurality of second straight portions 55d1 are formed, for example, by bending a plate-like member, and are formed to extend generally in the circumferential direction as a whole.
  • the plurality of second bent portions 55d2 connect the plurality of second straight portions 55d1.
  • the second connecting end portion 55d3 is connected to a second straight portion 55d1 disposed on one side in the circumferential direction, and is bent toward the outside in the radial direction with respect to the second straight portion 55d1.
  • the negative electrode conductor 55 is formed by joining a first negative end portion 55a, a second negative end portion 55b, and a third negative end portion 55c, which are separate bodies, to a negative electrode side connection portion 55d.
  • the first negative end portion 55a is joined to the upper end portion of the second straight portion 55d1.
  • the second negative end portion 55b is joined to the upper end portion of the second connection end portion 55d3.
  • the third negative end portion 55c is joined to the upper end portion of the second straight portion 55d1.
  • the negative electrode side cooled part 55e is provided so as to extend downward from the first negative end part 55a.
  • the negative electrode side cooled portion 55e is integrally formed with the first negative end portion 55a.
  • the negative electrode side cooled part 55e may be formed separately from the first negative end part 55a.
  • the negative electrode side cooled portion 55e is arranged inside the capacitor module 51 in the radial direction.
  • the negative electrode side cooled part 55e is arranged outside the housing case 53.
  • the negative electrode side cooled part 55e is thermally connected to the cooler 4.
  • the power module 35 will be described with reference to FIGS. 7, 8, and 16. As shown in FIGS. 7 and 8, six power modules 35 are arranged at the center of the power conversion device 3. As shown in FIGS. When viewed from the axial direction, the six power modules 35 are surrounded by the capacitor unit 34 from the outside in the radial direction. The six power modules 35 are arranged at equal intervals (60° intervals) in the circumferential direction. Power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are arranged in this order in the circumferential direction. Therefore, power modules 35 of the same phase (for example, power modules 35U1 and 35U2 of U1 phase and U2 phase) are arranged to face each other in the radial direction.
  • the same phase for example, power modules 35U1 and 35U2 of U1 phase and U2 phase
  • each power module 35 includes a main body 35a, a positive terminal 35b, a negative terminal 35c, an output terminal 35d, a signal terminal 35e on the upper arm side, and a signal terminal 35f on the lower arm side. and has.
  • the power module 35 is fixed to a plate 41 of the cooler 4, which will be described later.
  • the main body portion 35a has a substantially rectangular shape when viewed from the axial direction.
  • the main body portion 35a includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side.
  • a projection 35a1 for fixing the signal terminal 35e on the upper arm side is provided at a corner of the main body 35a.
  • the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side are plate-shaped members.
  • oxygen-free copper is used as the material for the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side.
  • Tough pitch copper is used as the material for the positive terminal 35b, negative terminal 35c, output terminal 35d, upper arm signal terminal 35e, and lower arm signal terminal 35f in order to reduce material costs and improve availability. It's okay to be hit.
  • the thickness of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side is, for example, 0.5 to 1.5 mm.
  • the positive electrode terminal 35b is arranged to face the first positive end portion 54a.
  • the positive terminal 35b is directly connected to the first positive end 54a.
  • being directly connected means that the positive electrode terminal 35b and the first positive end portion 54a are connected by contacting each other without using a wire or the like.
  • resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the positive electrode terminal 35b and the first positive end portion 54a.
  • the connection portion between the first positive end portion 54a and the positive electrode terminal 35b is located between the housing case 53 and the main body portion 35a.
  • the negative electrode terminal 35c is arranged to face the first negative end portion 55a.
  • the negative terminal 35c is directly connected to the first negative end 55a. Note that being directly connected means that the negative electrode terminal 35c and the first negative end portion 55a are connected by contacting each other without using a wire or the like.
  • resistance welding, ultrasonic bonding, TIG welding, and laser welding are used to connect the negative electrode terminal 35c and the first negative end portion 55a.
  • the connection portion between the first negative end portion 55a and the negative electrode terminal 35c is located between the housing case 53 and the main body portion 35a.
  • the length of the path from the positive conductor 54 of the capacitor unit 34 to the negative conductor 55 of the capacitor unit 34 via the positive terminal 35b and the negative terminal 35c of the power module 35 is the same as that for all power modules 35.
  • the capacitor unit 34 and the power module 35 are provided so that they are substantially the same. That is, the length of the connection path between the capacitor unit 34 and the power module 35 is substantially the same for all the power modules 35.
  • the term "the lengths of the paths are approximately the same” means that the lengths of the paths are approximately the same between each power module 35 with respect to the entire length of the path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and the negative electrode terminal 35c.
  • the lengths of the connection paths between the capacitor unit 34 and the power module 35 may be approximately the same for at least two power modules 35. Even in this case, the surge voltages generated in these two power modules 35 can be made equal. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the positive electrode terminal 35b is directly connected to the first positive end portion 54a, and the negative electrode terminal 35c is directly connected to the first negative end portion 55a. That is, the capacitor unit 34 and the power module 35 are connected through the shortest path. Thereby, the inductance of the connection path between the capacitor unit 34 and the power module 35 can be reduced, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
  • the output terminal 35d is connected to the coil terminal 25a of the coil 25 via the bus bar 37.
  • the output terminals 35d are arranged so as to be symmetrical with respect to an imaginary line passing through the axis O and the intermediate position of the gap between the positive electrode terminal 35b and the negative electrode terminal 35c. That is, the output terminal 35d is arranged so that the center position of the output terminal 35d coincides with the intermediate position of the gap between the positive electrode terminal 35b and the negative electrode terminal 35c when viewed from the radial direction.
  • the signal terminal 35e on the upper arm side is connected to the switching element SW1 and the diode D1 on the upper arm side.
  • the signal terminal 35f on the lower arm side is connected to the switching element SW2 and the diode D2 on the lower arm side.
  • the signal terminal 35e on the upper arm side and the signal terminal 35f on the lower arm side are connected to the control board 36. As shown in FIG. 3, the signal terminal 35e on the upper arm side and the signal terminal 35f on the lower arm side are directly attached to the control board 36.
  • the bus bar 37 will be described with reference to FIGS. 8, 16, and 17. Each bus bar 37 connects the power module 35 and coil 25 of the corresponding phase. As shown in FIG. 8, the bus bar 37 is arranged between the power modules 35 adjacent to each other in the circumferential direction.
  • the bus bar 37 is a plate-like member.
  • oxygen-free copper is used as the material for the bus bar 37.
  • Tough pitch copper may be used as the material for the bus bar 37 in order to reduce the cost and improve availability of the material.
  • the thickness of the bus bar 37 is, for example, 0.5 to 2.5 mm.
  • the bus bar 37 has a first terminal 37a connected to the output terminal 35d and a second terminal 37b connected to the coil terminal 25a.
  • the first terminal 37a is provided at one end of the bus bar 37. As shown in FIG. 16, the first terminal 37a is arranged to face the output terminal 35d. The first terminal 37a is directly connected to the output terminal 35d. Note that being directly connected means that the first terminal 37a and the output terminal 35d are connected to each other by contacting each other without using a wire or the like. For example, resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the first terminal 37a and the output terminal 35d. As shown in FIG. 8, when viewed from the axial direction, the connecting portion between the first terminal 37a and the output terminal 35d is located on the radially inner side of the main body portion 35a.
  • the second terminal 37b is provided at the other end of the bus bar 37. As shown in FIG. 16, the second terminal 37b is arranged to face the coil terminal 25a.
  • the second terminal 37b is directly connected to the coil terminal 25a. Note that being directly connected means that the second terminal 37b and the coil terminal 25a are connected to each other in contact with each other without using a wire or the like.
  • resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the second terminal 37b and the coil terminal 25a.
  • the connection portion between the second terminal 37b and the coil terminal 25a is located radially outward from the main body portion 35a.
  • a notch 37c is formed in the bus bar 37.
  • the cutout portion 37c is formed by cutting out a region of the bus bar 37 that faces the signal terminal 35f on the lower arm side of the power module 35.
  • the cutout portion 37c is provided to form a gap between the bus bar 37 and the signal terminal 35f on the lower arm side.
  • the cutout portion 37c is formed so that the bus bar 37 and the signal terminal 35f on the lower arm side are separated by 2.0 to 5.0 mm. Thereby, insulation between the bus bar 37 and the signal terminal 35f on the lower arm side can be ensured.
  • a fixing through hole 37d is formed in the bus bar 37. As shown in FIG. 16, a fixing column 41g attached to the plate 41 is inserted through the fixing through hole 37d.
  • Each bus bar 37 is provided with a current sensor 38 .
  • the bus bar 37 is inserted into the inner space of the core of the current sensor 38.
  • Current sensor 38 detects the current flowing through bus bar 37.
  • the current sensor 38 has a signal terminal 38a connected to the control board 36.
  • the detection result of the current sensor 38 is output to the control board 36 from the signal terminal 38a.
  • the signal terminal 38a is directly attached to the control board 36. This improves noise resistance and improves the detection accuracy of the current value of the bus bar 37 by the current sensor 38.
  • the bus bar 37 and current sensor 38 are covered with a resin member 39.
  • the signal terminal 38a is exposed from the resin member 39.
  • the resin member 39 integrally holds the bus bar 37 and the current sensor 38.
  • As a material for the resin member 39 for example, polyphenylene sulfide (PPS) is used.
  • PPS polyphenylene sulfide
  • the resin member 39 is fixed to the plate 41 together with the control board 36 by bolts 41f3 (see FIG. 4).
  • the control board 36 will be explained with reference to FIGS. 3 and 4.
  • the control board 36 has a polygonal shape.
  • the control board 36 is arranged at the center of the power conversion device 3. As shown in FIG. 4, when viewed from the axial direction, the control board 36 is surrounded by the capacitor unit 34 from the outside in the radial direction.
  • the control board 36 is fixed to the plate 41 with bolts 41f1 and 41f3.
  • a signal terminal 35e on the upper arm side, a signal terminal 35f on the lower arm side, and a signal terminal 38a are directly connected to the control board 36.
  • the signal connector 33 is connected to the control board 36 via a signal connector plug.
  • a harness insertion hole 36a is formed in the center of the control board 36, into which the resolver harness 27c is inserted. The detection results of the resolver 27 are input to the control board 36 via the resolver harness 27c.
  • the control board 36 controls the power module 35 based on control commands input from an external control device mounted on a vehicle or the like.
  • FIG. 19 is a perspective view of the cooler 4 and the rotating electric machine 2.
  • the cooler 4 includes a plate 41, a base 42, a refrigerant inlet 43, a first heat radiating member 44 (busbar heat radiating member), and a second heat radiating member 45 (condenser heat radiating member). , has.
  • 20A and 20B are perspective views of the plate 41.
  • the plate 41 is a substantially polygonal plate member.
  • the material of the plate 41 is aluminum.
  • the material of the plate 41 may be changed as appropriate.
  • the power module 35 is attached to the first surface 41a of the plate 41.
  • the power module 35 is fixed to the first surface 41a of the plate 41, for example, by soldering. Power module 35 is thermally connected to plate 41.
  • the first surface 41a of the plate 41 is provided with a first mounting hole 41h1, a second mounting hole 41h2, and a third mounting hole 41h3.
  • a fixing column 41g (see FIG. 8) for fixing the control board 36 to the plate 41 is attached to the first attachment hole 41h1.
  • the upper end of the fixed column 41g is brought into contact with the lower surface of the control board 36.
  • the control board 36 is fixed to the plate 41 by fixing the control board 36 and the fixing column 41g with bolts 41f1 (see FIG. 4).
  • a fixing through hole 37d formed in the bus bar 37 is inserted into the fixing column 41g, thereby fixing the bus bar 37 to the plate 41.
  • a bolt 41f2 (see FIG. 8) for fixing the resin member 39 to the plate 41 is attached to the second attachment hole 41h2.
  • a bolt 41f3 (see FIG. 4) for fixing the control board 36 and the resin member 39 to the plate 41 is attached to the third attachment hole 41h3.
  • the upper end of the resin member 39 is brought into contact with the lower surface of the control board 36 .
  • the control board 36 and the resin member 39 are fixed to the plate 41 by fastening the control board 36, the resin member 39, and the plate 41 with bolts 41f3.
  • the second surface 41b of the plate 41 is provided with radiation fins 41c. As shown in FIG. 11, the radiation fins 41c are arranged at a position overlapping the power module 35 in the axial direction. The second surface 41b of the plate 41 is fixed to the base 42.
  • a harness through hole 41d (insertion hole) through which the resolver harness 27c is inserted is formed in the plate 41.
  • a coil groove 41e in which the coil end 25a is arranged is formed on the outer peripheral surface of the plate 41.
  • Six coil grooves 41e are arranged at equal intervals (60° intervals) in the circumferential direction.
  • a first heat radiating member 44 is provided on the first surface 41a of the plate 41.
  • the first heat radiating member 44 has a hexagonal shape.
  • the first heat radiating member 44 is arranged between the plate 41 and the bus bar 37.
  • Bus bar 37 is thermally connected to plate 41 via first heat radiating member 44 .
  • FIG. 21 is a perspective view of the base 42 and the refrigerant inlet section 43.
  • the base 42 has a substantially polygonal shape having a first surface 42a, a second surface, and a plurality of side surfaces.
  • the material of the base 42 is aluminum.
  • the material of the base 42 may be changed as appropriate.
  • the base 42 is surrounded by the capacitor module 51 (capacitor unit 34) from the outside in the radial direction.
  • a side surface of the base 42 faces the capacitor module 51 in the radial direction.
  • a plate 41 is fixed to the first surface 42a of the base 42.
  • the second surface of the base 42 is fixed to the lid part 61.
  • a harness through hole 42b (insertion hole) through which the resolver harness 27c is inserted is formed in the center of the base 42.
  • a coil groove portion 42c extending in the axial direction is formed on the side surface of the base 42.
  • the coil terminal 25a is arranged in the coil groove 42c.
  • Six coil grooves 42c are formed at equal intervals (60° intervals) in the circumferential direction.
  • the coil groove portion 42c is filled with a filler 49 having thermal conductivity.
  • the coil end 25a is fixed to the coil groove 42c by a filler 49.
  • the coil terminal 25a is thermally connected to the base 42 via the filler 49.
  • the coil 25 can be cooled by releasing heat generated at the coil terminal 25a to the base 42 via the filler 49.
  • a condenser cooling section 42e for cooling the condenser module 51 is provided on the side surface of the base 42. As shown in FIG. 19, a second heat radiating member 45 is provided in the condenser cooling section 42e.
  • the second heat radiating member 45 has a rectangular shape.
  • the second heat radiating member 45 is provided so as to face the positive side cooled portion 54e of the positive electrode conductor 54 and the negative side cooled portion 55e of the negative electrode conductor 55 in the radial direction.
  • the positive side cooled part 54e and the negative side cooled part 55e are in contact with the second heat radiating member 45, and are thermally connected to the capacitor cooling part 42e via the second heat radiating member 45.
  • the refrigerant inlet section 43 is attached to the side surface of the base 42.
  • the refrigerant inlet portion 43 is provided to protrude radially outward from the base 42 .
  • the refrigerant inlet portion 43 is formed integrally with the base 42.
  • a flow path through which a refrigerant flows is formed inside the refrigerant inlet portion 43 .
  • the refrigerant inlet portion 43 is connected to a first joint 46 to which refrigerant is supplied from the outside.
  • the refrigerant inlet portion 43 and the first joint 46 are arranged on the front side of the rotating electrical machine unit 1.
  • a first cooling channel through which a refrigerant flows is formed in the cooler 4.
  • water cooling water
  • the first cooling channel includes an inlet channel P1, a first channel P2, a second channel P3, and an outlet channel P4.
  • Refrigerant is supplied from the first joint 46 to the inlet flow path P1.
  • the first flow path P2 and the second flow path P3 are branched from the inlet flow path P1.
  • the first flow path P2 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1) when viewed from the axial direction.
  • the first flow path P2 extends from the inlet flow path P1 to one side in the circumferential direction.
  • the second flow path P3 is formed at a position overlapping the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2) when viewed from the axial direction.
  • the second flow path P3 extends from the inlet flow path P1 to the other side in the circumferential direction.
  • the refrigerant from the first flow path P2 and the second flow path P3 join together in the outlet flow path P4.
  • the outlet flow path P4 communicates with a second cooling flow path formed inside the second cooling section 65.
  • the base 42 is provided with a refrigerant supply port 42f, an annular groove 42g, and a refrigerant discharge port 42h.
  • the refrigerant supply port 42f is a hole that penetrates the peripheral wall of the base 42 in the radial direction.
  • a refrigerant inlet portion 43 is connected to one end of the refrigerant supply port 42f.
  • the other end of the refrigerant supply port 42f is connected to the annular groove 42g.
  • the refrigerant inlet portion 43 and the refrigerant supply port 42f are used as the inlet flow path P1.
  • the refrigerant discharge port 42h is a hole that penetrates the peripheral wall of the base 42 in the radial direction.
  • the refrigerant discharge port 42h is arranged on the opposite side in the circumferential direction to the refrigerant supply port 42f.
  • One end of the refrigerant outlet 42h is connected to the annular groove 42g.
  • the other end of the refrigerant discharge port 42h is connected to the relay joint 47.
  • the relay joint 47 connects the refrigerant discharge port 42h and an opening 62c of the inner cylinder portion 62, which will be described later.
  • the refrigerant discharge port 42h and the relay joint 47 are used as the outlet flow path P4.
  • the refrigerant inlet portion 43 is arranged in the front gap of the two gaps between the ends of the capacitor module 51 in the circumferential direction.
  • the refrigerant discharge port 42h and the relay joint 47 are arranged in the rear gap of the two gaps between the ends of the capacitor module 51 in the circumferential direction. That is, at least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the capacitor module 51 in the circumferential direction.
  • the outlet flow path P4 is arranged on the opposite side of the inlet flow path P1 in the radial direction with the axis O interposed therebetween.
  • the annular groove 42g is formed on the first surface 42a of the base 42.
  • the annular groove 42g extends in the circumferential direction and is annular when viewed from the axial direction.
  • the annular groove portion 42g is formed avoiding the harness through hole 42b.
  • the refrigerant supply port 42f and the refrigerant discharge port 42h open on the radially outer side surface of the annular groove portion 42g.
  • the annular groove portion 42g includes a first groove portion 42g1 which is a portion on one side sandwiched between the refrigerant supply port 42f and the refrigerant discharge port 42h, and a first groove portion 42g1 which is a portion on the other side sandwiched between the refrigerant supply port 42f and the refrigerant discharge port 42h. 2 groove portions 42g2.
  • the first groove portion 42g1 is provided below half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1).
  • the second groove portion 42g2 is provided below the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2).
  • the first groove portion 42g1 and the second surface 41b of the plate 41 form a first flow path P2.
  • the second groove portion 42g2 and the second surface 41b of the plate 41 form a second flow path P3.
  • the radiation fins 41c are arranged inside the annular groove 42g (ie, the first flow path P2 or the second flow path P3).
  • the refrigerant supplied from the first joint 46 passes through the inlet flow path P1 and is branched into a first flow path P2 and a second flow path P3. Heat generated in the power modules 35U1, 35V1, and 35W1 is exchanged with the refrigerant flowing through the first flow path P2 via the radiation fins 41c. Thereby, power modules 35U1, 35V1, and 35W1 are cooled. Heat generated in the power modules 35U2, 35V2, and 35W2 is exchanged with the refrigerant flowing through the second flow path P3 via the radiation fins 41c. Thereby, power modules 35U2, 35V2, and 35W2 are cooled.
  • the positive side cooled part 54e and the negative side cooled part 55e of the capacitor module 51 are thermally connected to the capacitor cooling part 42e via the second heat radiating member 45.
  • the heat generated in the capacitor module 51 (capacitor element 52) is transmitted to the positive side cooled part 54e and the negative side cooled part 55e, and is transferred to the first flow path via the capacitor cooling part 42e and the second heat radiating member 45. Heat is exchanged with the refrigerant flowing through P2 and the second flow path P3. Thereby, the capacitor module 51 is cooled.
  • the bus bar 37 is thermally connected to the plate 41 via the first heat radiating member 44.
  • the heat generated in the bus bar 37 is exchanged with the refrigerant flowing through the first flow path P2 and the second flow path P3 via the first heat radiating member 44 and the plate 41. Thereby, the bus bar 37 is cooled.
  • the second cooling section 65 will be described with reference to FIGS. 9 and 22.
  • the inner cylinder part 62 and the outer cylinder part 63 constitute a second cooling part 65.
  • a second cooling channel through which a refrigerant flows is formed in the second cooling section 65 .
  • the second cooling flow path is formed between the outer peripheral surface of the inner cylinder part 62 and the inner peripheral surface of the outer cylinder part 63.
  • FIGS. 22A and 22B are perspective views of the inner cylinder portion 62.
  • the inner cylinder portion 62 includes a cylindrical main body portion 62a and a flange portion 62b that protrudes radially outward from the upper end of the main body portion 62a.
  • An opening 62c is formed in the flange portion 62b.
  • the refrigerant discharge port 42h and the opening 62c are connected by a relay joint 47.
  • the second cooling channel includes a communication channel P5, a third channel P6, a fourth channel P7, and a discharge channel P8.
  • the communication channel P5 communicates with the outlet channel P4.
  • the third flow path P6 and the fourth flow path P7 are branched from the communication flow path P5.
  • the third flow path P6 extends from the communication flow path P5 to one side in the circumferential direction.
  • the fourth flow path P7 extends from the communication flow path P5 to the other side in the circumferential direction.
  • the refrigerant from the third flow path P6 and the fourth flow path P7 join together in the discharge flow path P8.
  • the refrigerant is discharged to the outside from the discharge passage P8.
  • a first groove 62d, a second groove 62e, a third groove 62f, and a fourth groove 62g are formed on the outer peripheral surface of the main body 62a.
  • the first groove portion 62d is formed below the opening portion 62c.
  • the first groove portion 62d extends in the axial direction.
  • the upper end of the first groove portion 62d communicates with the opening portion 62c.
  • the lower end of the first groove portion 62d is closed.
  • a communication channel P5 is formed by the inner circumferential surface of the outer cylinder portion 63 and the first groove portion 62d.
  • the second groove portion 62e is formed on the opposite side in the circumferential direction to the first groove portion 62d.
  • the second groove portion 62e extends in the axial direction.
  • the upper and lower ends of the second groove portion 62e are closed.
  • the second groove portion 62e and the inner circumferential surface of the outer cylinder portion 63 form a discharge flow path P8.
  • the third groove portion 62f is connected to the first groove portion 62d and the second groove portion 62e.
  • the third groove portion 62f extends from the first groove portion 62d to the second groove portion 62e on one side in the circumferential direction.
  • a plurality of third groove portions 62f are formed at intervals in the axial direction.
  • the third groove portion 62f and the inner circumferential surface of the outer cylinder portion 63 form a third flow path P6.
  • the fourth groove 62g is connected to the first groove 62d and the second groove 62e.
  • the fourth groove 62g extends from the first groove 62d to the second groove 62e on the other side in the circumferential direction.
  • a plurality of fourth groove portions 62g are formed at intervals in the axial direction.
  • the fourth groove portion 62g and the inner circumferential surface of the outer cylinder portion 63 form a fourth flow path P7.
  • an opening 63a that radially penetrates the peripheral wall of the outer cylinder 63 is formed at the lower end of the outer cylinder 63.
  • the opening 63a communicates with the second groove 62e.
  • the opening 63a is connected to the second joint 48 that discharges the refrigerant to the outside. Note that the second joint 48 is arranged on the front side of the rotating electrical machine unit 1.
  • the refrigerant discharged from the refrigerant outlet 42h of the cooler 4 flows into the communication passage P5 via the relay joint 47 and the opening 62c.
  • the refrigerant flows through the communication flow path P5 from the opening 62c axially downward (that is, toward the output side), and is branched into the third flow path P6 and the fourth flow path P7.
  • the refrigerant flowing through the third flow path P6 cools one half of the rotating electric machine 2 on one side in the circumferential direction.
  • the refrigerant flowing through the fourth flow path P7 cools the other half of the rotating electric machine 2 in the circumferential direction.
  • the cooling efficiency of the rotating electric machine 2 by the second cooling section 65 is improved. Thereafter, the refrigerant from the third flow path P6 and the fourth flow path P7 join together in the discharge flow path P8, flow downward through the discharge flow path P8, and are discharged to the outside via the opening 63a and the second joint 48. be done.
  • the rotating electrical machine unit 1 includes the rotating electrical machine 2, the power converter 3, and the cooler 4 in which the first cooling channel through which the refrigerant flows is formed and cools the power converter 3. .
  • Power conversion device 3 includes a plurality of power modules 35 and a capacitor unit 34.
  • the first cooling flow path branches from the inlet flow path P1 to which refrigerant is supplied, and when viewed from the axial direction, the first cooling flow path is connected to the first group of power modules 35 among the plurality of power modules 35.
  • a first flow path P2 formed at an overlapping position branches from the inlet flow path P1, and when viewed from the axial direction, a second group of power modules 35 different from the first group among the plurality of power modules 35.
  • the condenser unit 34 is arranged to surround the cooler 4 from the outside in the radial direction.
  • the power conversion device 3 can be cooled by the cooler 4 .
  • the refrigerant is distributed in a branched manner into a first flow path P2 and a second flow path P3. Therefore, compared to the case where a plurality of power modules 35 are arranged on one cooling channel without branching the cooling channel, the temperature of the refrigerant is uneven between the upstream side and the downstream side of the cooling channel. can be suppressed.
  • the plurality of power modules 35 can be uniformly cooled, and the cooling performance of the rotating electric machine unit 1 can be improved. Moreover, as a result, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1. Furthermore, since the capacitor unit 34 is arranged to surround the cooler 4 from the outside in the radial direction, the rotating electric machine unit 1 can be made smaller in the axial direction than, for example, when the capacitor unit is arranged above the cooler. can do.
  • the plurality of power modules 35 are arranged in the circumferential direction.
  • the first flow path P2 extends from the inlet flow path P1 to one side in the circumferential direction
  • the second flow path P3 extends from the inlet flow path P1 to the other side in the circumferential direction.
  • the rotating electric machine unit 1 further includes a second cooling section 65 in which a second cooling channel through which a refrigerant flows is formed and cools the rotating electric machine 2.
  • the second cooling channel includes a communication channel P5 that communicates with the outlet channel P4, a third channel P6 that branches from the communication channel P5 and extends from the communication channel P5 to one side in the circumferential direction, and a communication channel P6 that is branched from the communication channel P5 and extends from the communication channel P5 to one side in the circumferential direction.
  • a fourth flow path P7 that branches from the path P5 and extends from the communication flow path P5 to the other side in the circumferential direction, and the refrigerants from the third flow path P6 and the fourth flow path P7 join together, and the second cooling section 65 and a discharge flow path P8 through which the refrigerant is discharged. Since the first cooling channel of the cooler 4 and the second cooling channel of the second cooling section 65 communicate within the rotating electrical machine unit 1, the rotating electrical machine unit 1 can be downsized. Furthermore, the refrigerant flowing through the third flow path P6 cools one half of the rotating electrical machine 2 in the circumferential direction, and the refrigerant flowing through the fourth flow path P7 cools the other half of the rotating electrical machine 2 in the circumferential direction. Since the cooling efficiency of the rotating electrical machine 2 by the second cooling unit 65 is improved.
  • the cooler 4 has a plurality of heat radiation fins 41c arranged in the first flow path P2 or the second flow path P3.
  • the plurality of radiation fins 41c are arranged at positions overlapping with the plurality of power modules 35. This improves the cooling efficiency of the power module 35 by the cooler 4. As a result, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the capacitor unit 34 includes a positive conductor 54 and a negative conductor 55.
  • the positive conductor 54 has a positive cooled portion 54e that is disposed radially inside the capacitor unit 34.
  • the negative electrode conductor 55 has a negative electrode side cooled portion 55e that is arranged radially inside the capacitor unit 34.
  • the cooler 4 has a condenser cooling part 42e that is arranged on the outside of the cooler 4 in the radial direction and is thermally connected to the positive cooled part 54e and the negative cooled part 55e.
  • the capacitor unit 34 includes a positive cooled part 54e and a negative cooled part 55e, which are arranged inside the capacitor unit 34 in the radial direction and are thermally connected to the capacitor cooling part 42e.
  • the condenser unit 34 can be cooled from the inside in the radial direction. Furthermore, compared to, for example, the case where the condenser unit is cooled from the upper side in the axial direction, it is possible to provide a larger area for cooling the condenser unit 34. As a result, the cooling performance of the condenser unit 34 by the cooler 4 can be improved, and the output of the rotating electric machine unit 1 can be increased. Furthermore, when the positive electrode conductor 54 and the negative electrode conductor 55 are made of copper having high thermal conductivity, the cooling performance of the capacitor unit 34 is further improved, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the capacitor unit 34 is cooled using the positive side cooled part 54e and the negative side cooled part 55e, which are not current flow paths, the inductance of the connection path between the capacitor unit 34 and the power module 35 does not increase. , surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
  • the cooler 4 includes a second heat radiating member 45 provided between the positive side cooled part 54e, the negative side cooled part 55e, and the capacitor cooling part 42e. This improves the cooling efficiency of the condenser unit 34 by the cooler 4.
  • the positive electrode conductor 54 has a plurality of positive electrode side cooled parts 54e
  • the negative electrode conductor 55 has a plurality of negative electrode side cooled parts 55e
  • the cooler 4 has a plurality of capacitor cooling parts 42e. This further improves the cooling performance of the condenser unit 34 by the cooler 4.
  • the capacitor unit 34 includes a plurality of capacitor modules 51 arranged in the circumferential direction.
  • the molds and the like for molding each member of the capacitor module 51 can be downsized, making it possible to reduce manufacturing costs.
  • the capacitor unit 34 can be transported as a plurality of capacitor modules 51, compared to the case where the capacitor unit 34 is formed of one capacitor module, for example, the space of the tray that accommodates the capacitor unit 34 can be saved during transportation. This makes it possible to reduce transportation costs.
  • each of the plurality of capacitor modules 51 has an arc shape when viewed from the axial direction. At least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the plurality of capacitor modules 51 in the circumferential direction.
  • the outlet flow path P4 is arranged on the opposite side of the inlet flow path P1 in the radial direction with the axis O of the rotor 22 interposed therebetween. Since at least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the plurality of capacitor modules 51 in the circumferential direction, it is possible to downsize the rotating electric machine unit 1. Become.
  • the direction of flow of the refrigerant in the inlet flow path P1 and the flow direction of the refrigerant in the outlet flow path P4 can be arranged in a straight line, pressure loss in the inlet flow path P1 and the outlet flow path P4 can be reduced. Therefore, the cooling performance of the cooler 4 can be improved.
  • the power conversion device 3 further includes a plurality of bus bars 37 that connect the plurality of power modules 35 and the plurality of coils 25, respectively. Thereby, the power module 35 and the coil 25 can be easily electrically connected using the bus bar 37.
  • the cooler 4 further includes a plate 41 to which the plurality of power modules 35 are attached, and a first heat radiating member 44 provided between the plurality of bus bars 37 and the plate 41.
  • the bus bar 37 can be cooled by the cooler 4. Therefore, it becomes possible to input a larger amount of current to the bus bar 37, and it becomes possible to further increase the output of the rotating electric machine unit 1.
  • the cooler 4 is formed with a plurality of coil grooves 42c in which the plurality of coils 25 are respectively arranged.
  • the plurality of coil grooves 42c are filled with a thermally conductive filler 49. Since the heat generated in the coil 25 is exchanged with the cooler 4 via the filler 49, the coil 25 can be cooled by the cooler 4. Therefore, it becomes possible to input a large amount of current to the coil 25, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the filler 49 allows the coil 25 to be fixed to the coil groove 42c. Therefore, damage to the coil 25 or electrical connection failure between the coil 25 and the power module 35 due to vibration of the rotating electrical machine unit 1, external force applied to the rotating electrical machine unit 1, etc. can be suppressed, and the rotating electrical machine The reliability of unit 1 can be improved.
  • harness through holes 41d and 42b are formed in the center of the cooler 4, into which the resolver harness 27c of the resolver 27 is inserted. Since the resolver harness 27c can be arranged in the center of the cooler 4, a plurality of power modules 35 can be arranged, for example, at equal intervals in the circumferential direction, and the degree of freedom in arrangement of the power modules 35 is improved. . Therefore, for example, the plurality of power modules 35 can be arranged closer to each other, and the mounting density of members in the power conversion device 3 can be improved, and the rotating electric machine unit 1 can be downsized.
  • the capacitor unit 34 includes a positive conductor 54 and a negative conductor 55.
  • Power module 35 has a positive terminal 35b and a negative terminal 35c.
  • the length of the first path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is the same as that of the plurality of power modules 35. This is approximately the same length as the second path to the negative conductor 55 via the positive terminal 35b and negative terminal 35c of the second power module 35 among the power modules 35.
  • the length of the first route is approximately the same as the length of the second route, which means that the difference between the length of the first route and the length of the second route is ⁇ 5% with respect to the total length of the first route. means within the range of Thereby, the surge voltages generated in the first power module 35 and the second power module 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the length of the path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and the negative electrode terminal 35c is approximately the same. This makes it possible to equalize the surge voltage generated in each power module 35 for all power modules 35. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
  • the cooler 4 is arranged closer to the rotating electric machine 2 than the plurality of power modules 35 in the axial direction. Thereby, the heat generated from the rotating electric machine 2 can be cut off by the cooler 4, so that the heat generated from the rotating electric machine 2 can be prevented from being transmitted to the power module 35. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
  • the condenser unit 34 and the cooler 4 are radially opposed to each other.
  • the cooler 4 can cool the power module 35 in the axial direction and the condenser unit 34 in the radial direction. Therefore, the rotating electric machine unit 1 can be made smaller in the axial direction, compared to, for example, a case where the capacitor unit and the cooler are arranged side by side in the axial direction.
  • FIG. 23 is a perspective view of the housing case 53A of the capacitor module 51 according to the present embodiment.
  • FIG. 24 is a sectional view of the rotating electric machine unit 1 according to the present embodiment, and is a sectional view taken along line EE in FIG. 8.
  • the storage case 53A includes a main body 531 and a plurality of pressing members 532 fixed to the main body 531.
  • the pressing member 532 is provided on a surface of the main body portion 531 facing radially inward.
  • the pressing member 532 has elasticity.
  • An upper end portion of the pressing member 532 is fixed to a surface of the main body portion 531 facing radially inward.
  • a protrusion that protrudes radially inward is provided at the lower end of the pressing member 532.
  • the material of the main body portion 531 and the pressing member 532 is, for example, resin.
  • the main body portion 531 and the pressing member 532 are integrally molded. Note that the pressing member 532 may be attached to the surface of the main body portion 531 facing inward in the radial direction using an adhesive.
  • a positive cooled part 54e and a negative cooled part 55e are arranged inside the pressing member 532 in the radial direction. More specifically, the main body part 531, the pressing member 532, the positive side cooled part 54e or the negative side cooled part 55e, the second heat radiating member 45, and the base 42 (condenser cooling part 42e) have a diameter. They are arranged in this order from the outside to the inside. The lower end portion of the pressing member 532 contacts the positive cooled portion 54e and the negative cooled portion 55e from the outside in the radial direction. At this time, the lower end portion of the pressing member 532 is elastically deformed radially outward. Due to the elastic force of the pressing member 532, the positive side cooled portion 54e and the negative side cooled portion 55e are pressed against the second heat radiating member 45.
  • the capacitor unit 34 includes the pressing member 532 that presses the positive side cooled part 54e and the negative side cooled part 55e against the second heat radiating member 45. This improves the adhesion between the positive electrode side cooled part 54e and the negative electrode side cooled part 55e and the second heat radiating member 45, so that the cooling performance of the capacitor unit 34 can be improved, and the output of the rotating electric machine unit 1 can be increased. becomes possible.
  • the rotating electric machine unit 1 may be a multi-phase drive type rotating electric machine unit with six or more phases.
  • the capacitor unit 34 may be composed of only one capacitor module 51.
  • the capacitor unit 34 may include three or more capacitor modules 51.
  • a rotating electric machine including a stator, a rotor that rotates around an axis relative to the stator, and a plurality of coils wound around the stator; a power conversion device arranged in parallel with the rotating electric machine in an axial direction along the axis of the rotor; a first cooling section in which a first cooling channel through which a refrigerant flows is formed to cool the power converter; Equipped with The power conversion device includes a plurality of power modules each electrically connected to the plurality of coils, and a capacitor unit electrically connected to the plurality of power modules,
  • the first cooling channel is an inlet channel through which the refrigerant is supplied; a first flow path that branches from the inlet flow path and is formed at a position overlapping a first group of power modules among the plurality of power modules when viewed from the axial direction; a second flow path that branches from the inlet flow path and is formed at a position overlapping a second group of power modules different from the first group among the plurality of power
  • the plurality of power modules are arranged in a circumferential direction around the axis of the rotor,
  • the rotating electric machine unit according to supplementary note 1 wherein the first flow path extends from the inlet flow path to one side in the circumferential direction, and the second flow path extends from the inlet flow path to the other side in the circumferential direction.
  • a second cooling section in which a second cooling channel through which a refrigerant flows is formed and cools the rotating electric machine; Furthermore, The second cooling channel is a communication flow path communicating with the outlet flow path; a third flow path branching from the communication flow path and extending from the communication flow path to one side in the circumferential direction; a fourth flow path that branches from the communication flow path and extends from the communication flow path to the other side in the circumferential direction; a discharge flow path through which the refrigerant from the third flow path and the fourth flow path merge and the refrigerant is discharged from the second cooling section;
  • the rotating electrical machine unit according to Supplementary Note 1 or 2, which has:
  • the first cooling unit has a plurality of heat radiation fins arranged in the first flow path or the second flow path, The rotating electric machine unit according to any one of appendices 1 to 3, wherein the plurality of heat radiation fins are arranged at positions overlapping with the plurality of power modules when viewed from the axial direction.
  • the capacitor unit has a positive conductor and a negative conductor
  • the positive electrode conductor has a positive electrode side cooled portion disposed on the radially inner side of the capacitor unit
  • the negative electrode conductor has a negative electrode side cooled part disposed on the radially inner side of the capacitor unit
  • Supplementary notes 1 to 3 wherein the first cooling section has a condenser cooling section that is disposed radially outside the first cooling section and is thermally connected to the positive side cooled section and the negative side cooled section. 4.
  • the rotating electric machine unit according to any one of 4.
  • the positive electrode conductor has a plurality of positive electrode side cooled parts as the positive electrode side cooled parts
  • the negative electrode conductor has a plurality of negative electrode side cooled parts as the negative electrode side cooled parts
  • (Appendix 8) The rotating electric machine unit according to any one of appendices 1 to 7, wherein the capacitor unit includes a plurality of capacitor modules arranged in a circumferential direction.
  • Each of the plurality of capacitor modules has an arc shape when viewed from the axial direction, At least a portion of the inlet flow path and at least a portion of the outlet flow path are arranged between the ends of the plurality of capacitor modules in the circumferential direction, The rotating electrical machine unit according to appendix 8, wherein the outlet flow path is disposed on the opposite side of the inlet flow path in the radial direction with the axis of the rotor interposed therebetween.
  • Appendix 12 A plurality of coil grooves are formed in the first cooling part, in which the plurality of coils are respectively disposed, The rotating electric machine unit according to any one of appendices 1 to 11, wherein the plurality of coil grooves are filled with a thermally conductive filler.
  • the rotating electric machine further includes a resolver arranged between the stator and the power module and detecting a rotation angle of a shaft arranged at the center of the rotor,
  • the rotating electric machine unit according to any one of appendices 1 to 12, wherein an insertion hole through which a signal line of the resolver is inserted is formed in the center of the first cooling section.
  • the capacitor unit has a positive conductor and a negative conductor, Each of the plurality of power modules has a positive terminal connected to the positive conductor, and a negative terminal connected to the negative conductor,
  • the length of the first path from the positive conductor to the negative conductor via the positive terminal and the negative terminal of the first power module among the plurality of power modules is The rotation according to any one of Supplementary Notes 1 to 13, which is approximately the same as the length of the second path to the negative conductor via the positive terminal and the negative terminal of a second power module among the power modules. electrical unit.

Abstract

A rotary electric machine unit according to the present disclosure comprises a rotary electric machine, an electric power conversion device, and a first cooling part that cools the electric power conversion device and has formed therein a first cooling flow path through which refrigerant flows. The electric power conversion device has a plurality of power modules and a capacitor unit. The first cooling flow path has: an inlet flow path; a first flow path that branches from the inlet flow path and, as seen from an axial direction, is formed at a position overlapping a first group of power modules among the plurality of power modules; a second flow path that branches from the inlet flow path and, as seen from the axial direction, is formed at a position overlapping a second group of power modules among the plurality of power modules, the second group being different from the first group; and an outlet flow path. The capacitor unit is disposed so as to surround the first cooling part from the radially outer side.

Description

回転電機ユニットRotating electric machine unit
 本開示は、回転電機ユニットに関する。
 本願は、2022年6月2日に、日本に出願された特願2022-090052号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a rotating electric machine unit.
This application claims priority based on Japanese Patent Application No. 2022-090052 filed in Japan on June 2, 2022, the contents of which are incorporated herein.
 従来、回転電機と電力変換装置が一体化された回転電機ユニットが知られている。特許文献1においては、回転電機ユニットに、電力変換装置を冷却する冷却器が設けられている。冷却器には、冷媒が流通する冷却流路が形成されている。 Conventionally, a rotating electrical machine unit in which a rotating electrical machine and a power conversion device are integrated is known. In Patent Document 1, a rotating electric machine unit is provided with a cooler that cools a power conversion device. A cooling channel through which a refrigerant flows is formed in the cooler.
日本国特許第5501257号公報Japanese Patent No. 5501257
 特許文献1では、複数のパワーモジュールは、冷却流路を流通する冷媒の流れに沿って配置されている。特許文献1の構造では、冷却流路の下流側の冷媒の温度が、冷却流路の上流側の冷媒の温度に比べて高くなるため、冷却流路の下流側に配置されるパワーモジュールを十分に冷却できない可能性がある。すなわち、冷却流路の上流側と下流側との間で冷媒の温度の偏りが生じるため、複数のパワーモジュールを均一的に冷却することが難しい。 In Patent Document 1, a plurality of power modules are arranged along the flow of refrigerant flowing through a cooling channel. In the structure of Patent Document 1, the temperature of the refrigerant on the downstream side of the cooling channel is higher than the temperature of the refrigerant on the upstream side of the cooling channel, so the power module disposed on the downstream side of the cooling channel is cooling may not be possible. That is, since the temperature of the refrigerant is uneven between the upstream side and the downstream side of the cooling flow path, it is difficult to cool the plurality of power modules uniformly.
 本開示は、前述した事情に鑑みてなされたものであり、複数のパワーモジュールを均一的に冷却することができ、冷却性能を向上できる回転電機ユニットを提供することを目的とする。 The present disclosure has been made in view of the above-mentioned circumstances, and aims to provide a rotating electric machine unit that can uniformly cool a plurality of power modules and improve cooling performance.
 本開示に係る回転電機ユニットは、固定子と、前記固定子に対して軸心回りに回転する回転子と、前記固定子に巻装される複数のコイルと、を有する回転電機と、前記回転子の軸心に沿った軸方向において、前記回転電機と並んで配置される電力変換装置と、冷媒が流通する第1冷却流路が形成され、前記電力変換装置を冷却する第1冷却部と、を備え、前記電力変換装置は、前記複数のコイルとそれぞれ電気的に接続される複数のパワーモジュールと、前記複数のパワーモジュールと電気的に接続されるコンデンサユニットと、を有し、前記第1冷却流路は、前記冷媒が供給される入口流路と、前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち第1群のパワーモジュールに重なる位置に形成される第1流路と、前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち前記第1群と異なる第2群のパワーモジュールに重なる位置に形成される第2流路と、前記第1流路、前記第2流路からの前記冷媒が合流するとともに、前記第1冷却部から前記冷媒が排出される出口流路と、を有しており、前記コンデンサユニットは、前記第1冷却部を径方向の外側から囲むように配置される。 A rotating electrical machine unit according to the present disclosure includes a rotating electrical machine including a stator, a rotor that rotates around an axis relative to the stator, and a plurality of coils wound around the stator; A power conversion device disposed in parallel with the rotating electric machine in an axial direction along the axis of the child; a first cooling section in which a first cooling channel through which a refrigerant flows and cools the power conversion device; , the power conversion device includes a plurality of power modules each electrically connected to the plurality of coils, and a capacitor unit electrically connected to the plurality of power modules, The first cooling channel is branched from the inlet channel to which the refrigerant is supplied, and overlaps the first group of power modules among the plurality of power modules when viewed from the axial direction. a first flow path formed at a position that branches from the inlet flow path and overlaps a second group of power modules different from the first group among the plurality of power modules when viewed from the axial direction; a second flow path formed at a position, and an outlet flow path through which the refrigerant from the first flow path and the second flow path merges and the refrigerant is discharged from the first cooling section. The condenser unit is arranged to surround the first cooling section from the outside in the radial direction.
 本開示によれば、複数のパワーモジュールを均一的に冷却することができ、冷却性能を向上できる回転電機ユニットを提供することができる。 According to the present disclosure, it is possible to provide a rotating electric machine unit that can uniformly cool a plurality of power modules and improve cooling performance.
実施の形態1に係る回転電機ユニットの回路図である。1 is a circuit diagram of a rotating electric machine unit according to Embodiment 1. FIG. 実施の形態1に係る回転電機ユニットの斜視図である。1 is a perspective view of a rotating electrical machine unit according to Embodiment 1. FIG. 実施の形態1に係る回転電機ユニットの斜視図であって、ケースを取り外した状態を示す図である。1 is a perspective view of the rotating electric machine unit according to Embodiment 1, with the case removed. FIG. 図3の平面図である。FIG. 4 is a plan view of FIG. 3; 図4のA-A線に沿った断面図である。5 is a sectional view taken along line AA in FIG. 4. FIG. 図4のB-B線に沿った断面図である。5 is a sectional view taken along line BB in FIG. 4. FIG. 回転電機ユニットの斜視図であって、ケース、端子台、信号コネクタ、及び制御基板を取り外した状態を示す図である。FIG. 2 is a perspective view of the rotating electric machine unit, with the case, terminal block, signal connector, and control board removed. 図7の平面図である。FIG. 8 is a plan view of FIG. 7; 図8のC-C線に沿った断面図である。9 is a sectional view taken along line CC in FIG. 8. FIG. 図8のD-D線に沿った断面図である。9 is a sectional view taken along line DD in FIG. 8. FIG. 図8のE-E線に沿った断面図である。9 is a cross-sectional view taken along line EE in FIG. 8. FIG. 実施の形態1に係るコンデンサモジュールの斜視図である。1 is a perspective view of a capacitor module according to Embodiment 1. FIG. 実施の形態1に係るコンデンサモジュールの斜視図であって、収容ケースを取り外した状態を示す図である。FIG. 2 is a perspective view of the capacitor module according to Embodiment 1, with the storage case removed. 実施の形態1に係る正極導体の斜視図である。1 is a perspective view of a positive electrode conductor according to Embodiment 1. FIG. 実施の形態1に係る負極導体の斜視図である。1 is a perspective view of a negative electrode conductor according to Embodiment 1. FIG. 実施の形態1に係るパワーモジュール、バスバー、電流センサ、及び樹脂部材の斜視図である。FIG. 2 is a perspective view of a power module, a bus bar, a current sensor, and a resin member according to the first embodiment. 実施の形態1に係るバスバーの斜視図である。1 is a perspective view of a bus bar according to Embodiment 1. FIG. 実施の形態1に係る回転電機の斜視図である。1 is a perspective view of a rotating electric machine according to Embodiment 1. FIG. 実施の形態1に係る回転電機及び冷却器の斜視図である。1 is a perspective view of a rotating electric machine and a cooler according to Embodiment 1. FIG. 実施の形態1に係るプレートの斜視図である。1 is a perspective view of a plate according to Embodiment 1. FIG. 実施の形態1に係るプレートの斜視図である。1 is a perspective view of a plate according to Embodiment 1. FIG. 実施の形態1に係るベース及び冷媒入口部の斜視図である。FIG. 3 is a perspective view of a base and a refrigerant inlet portion according to the first embodiment. 実施の形態1に係る内筒部の斜視図である。FIG. 3 is a perspective view of the inner cylinder portion according to the first embodiment. 実施の形態1に係る内筒部の斜視図である。FIG. 3 is a perspective view of the inner cylinder portion according to the first embodiment. 実施の形態2に係るコンデンサモジュールの収容ケースの斜視図である。FIG. 3 is a perspective view of a housing case for a capacitor module according to a second embodiment. 実施の形態2に係る回転電機ユニットの断面図である。FIG. 3 is a cross-sectional view of a rotating electric machine unit according to a second embodiment.
実施の形態1.
 以下、実施の形態1に係る回転電機ユニット1について、図面を参照して説明する。
 図1は、回転電機ユニット1の回路図である。図2は、回転電機ユニット1の斜視図である。図2及び図19に示されるように、回転電機ユニット1は、回転電機2と、電力変換装置3と、冷却器4(第1冷却部)と、を備える。回転電機2と、電力変換装置3と、冷却器4とは、一体化されている。これにより、回転電機ユニット1の小型化を図ることができる。
 なお、本明細書では、回転電機2の回転子22の軸心O(図9を参照)に沿う方向を「軸方向」という。また、軸方向から見て、回転子22の軸心Oと交差する方向を「径方向」といい、回転子22の軸心O回りに周回する方向を「周方向」という。
Embodiment 1.
The rotating electric machine unit 1 according to the first embodiment will be described below with reference to the drawings.
FIG. 1 is a circuit diagram of the rotating electrical machine unit 1. As shown in FIG. FIG. 2 is a perspective view of the rotating electric machine unit 1. As shown in FIGS. 2 and 19, the rotating electrical machine unit 1 includes a rotating electrical machine 2, a power conversion device 3, and a cooler 4 (first cooling section). The rotating electrical machine 2, the power converter 3, and the cooler 4 are integrated. Thereby, the rotating electric machine unit 1 can be downsized.
Note that in this specification, the direction along the axis O (see FIG. 9) of the rotor 22 of the rotating electric machine 2 is referred to as the "axial direction." Further, when viewed from the axial direction, the direction intersecting the axis O of the rotor 22 is referred to as the "radial direction", and the direction in which the rotor 22 rotates around the axis O is referred to as the "circumferential direction".
 最初に、図1を参照して、回転電機ユニット1の回路構成(電気的構成)を説明する。なお、本実施の形態では、回転電機ユニット1として、6相駆動方式の回転電機ユニットを例に説明する。回転電機ユニット1は、例えば、車両に搭載される。 First, the circuit configuration (electrical configuration) of the rotating electric machine unit 1 will be explained with reference to FIG. In this embodiment, a six-phase drive type rotating electrical machine unit will be described as an example of the rotating electrical machine unit 1. The rotating electric machine unit 1 is mounted on a vehicle, for example.
 回転電機2は、6相(U1相、V1相、W1相、U2相、V2相、W2相)のそれぞれに対応する6つのコイル25U1、25V1、25W1、25U2、25V2、25W2を備える。なお、本明細書では、コイル25U1、25V1、25W1、25U2、25V2、25W2を、単にコイル25とも称する。 The rotating electric machine 2 includes six coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 corresponding to each of six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). In addition, in this specification, the coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 are also simply referred to as the coils 25.
 電力変換装置3は、コンデンサユニット34と、6相(U1相、V1相、W1相、U2相、V2相、W2相)のそれぞれに対応する6つのパワーモジュール35U1、35V1、35W1、35U2、35V2、35W2と、を備える。なお、本明細書では、パワーモジュール35U1、35V1、35W1、35U2、35V2、35W2を、単にパワーモジュール35とも称する。 The power conversion device 3 includes a capacitor unit 34 and six power modules 35U1, 35V1, 35W1, 35U2, 35V2 corresponding to each of six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). , 35W2. Note that in this specification, the power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are also simply referred to as the power module 35.
 電力変換装置3には、バッテリー等の直流電源Eから直流電力が入力される。電力変換装置3は、直流電源Eから出力される直流電力を交流電力に変換して回転電機2に供給する。 DC power is input to the power conversion device 3 from a DC power source E such as a battery. The power conversion device 3 converts the DC power output from the DC power supply E into AC power and supplies the AC power to the rotating electric machine 2 .
 コンデンサユニット34は、直流電源Eの電力変動、またはパワーモジュール35側の電力変動に対して、電圧が大きく変動しないよう安定化させる平滑コンデンサである。コンデンサユニット34は、複数(本実施の形態では、2つ)のコンデンサモジュール51を有する。各コンデンサモジュール51は、直流電源Eの正極電源端子と負極電源端子との間に接続される。各コンデンサモジュール51は、並列接続された複数のコンデンサ素子52を有する。コンデンサモジュール51は1つのコンデンサ素子52のみを有してもよい。 The capacitor unit 34 is a smoothing capacitor that stabilizes the voltage so that it does not fluctuate greatly in response to power fluctuations in the DC power source E or power fluctuations on the power module 35 side. The capacitor unit 34 includes a plurality of (two in this embodiment) capacitor modules 51. Each capacitor module 51 is connected between a positive power terminal and a negative power terminal of a DC power source E. Each capacitor module 51 has a plurality of capacitor elements 52 connected in parallel. Capacitor module 51 may have only one capacitor element 52.
 各パワーモジュール35は直流電源Eの正極電源端子と負極電源端子との間に接続される。各パワーモジュール35は、上アーム側のスイッチング素子SW1及びダイオードD1と、下アーム側のスイッチング素子SW2及びダイオードD2と、を備える。スイッチング素子SW1、SW2は、例えばIGBT(Insulated Gate Bipolar Transistor;絶縁ベースバイポーラトランジスタ)、またはSiC(Silicon Carbide)である。スイッチング素子SW1、SW2は直列接続される。スイッチング素子SW1とスイッチング素子SW2との接続点は、対応する相のコイル25に電気的に接続される。ダイオードD1は、スイッチング素子SW1に逆方向に並列接続される。ダイオードD2は、スイッチング素子SW2に逆方向に並列接続される。 Each power module 35 is connected between the positive power terminal and negative power terminal of the DC power source E. Each power module 35 includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side. The switching elements SW1 and SW2 are, for example, IGBTs (Insulated Gate Bipolar Transistors) or SiC (Silicon Carbide). Switching elements SW1 and SW2 are connected in series. The connection point between switching element SW1 and switching element SW2 is electrically connected to the coil 25 of the corresponding phase. The diode D1 is connected in parallel in the opposite direction to the switching element SW1. Diode D2 is connected in parallel in the opposite direction to switching element SW2.
 次に、回転電機ユニット1の構造を説明する。 Next, the structure of the rotating electrical machine unit 1 will be explained.
<回転電機>
 まず、図9、図18等を参照して、回転電機2について説明する。図18は、回転電機2の斜視図である。
<Rotating electrical machinery>
First, the rotating electric machine 2 will be explained with reference to FIGS. 9, 18, and the like. FIG. 18 is a perspective view of the rotating electric machine 2.
 図9に示されるように、回転電機2は、固定子21と、回転子22と、シャフト23と、ハウジング24と、複数のコイル25(本実施の形態では、6つのコイル25U1、25V1、25W1、25U2、25V2、25W2)と、第1、第2の軸受26a、26bと、レゾルバ27と、を備える。 As shown in FIG. 9, the rotating electric machine 2 includes a stator 21, a rotor 22, a shaft 23, a housing 24, and a plurality of coils 25 (in this embodiment, six coils 25U1, 25V1, 25W1). , 25U2, 25V2, 25W2), first and second bearings 26a and 26b, and a resolver 27.
 固定子21は、環状である。固定子21は、回転子22の外周を囲むように設けられる。固定子21は、ハウジング24に固定されている。 The stator 21 is annular. The stator 21 is provided so as to surround the outer periphery of the rotor 22. Stator 21 is fixed to housing 24.
 回転子22は、固定子21の内側に設けられる。回転子22は、固定子21に対して軸心O回りに回転自在である。 The rotor 22 is provided inside the stator 21. The rotor 22 is rotatable around the axis O with respect to the stator 21 .
 回転子22の中心には、シャフト23が配置される。シャフト23の軸方向の一方側(下側)は、回転子22の回転を、車両等に伝達する出力側である。 A shaft 23 is arranged at the center of the rotor 22. One axial side (lower side) of the shaft 23 is an output side that transmits the rotation of the rotor 22 to a vehicle or the like.
 ハウジング24は、固定子21、回転子22、及びシャフト23を収容する。ハウジング24は、蓋部61と、内筒部62と、外筒部63と、底部64と、を備える。 The housing 24 accommodates the stator 21, rotor 22, and shaft 23. The housing 24 includes a lid part 61, an inner cylinder part 62, an outer cylinder part 63, and a bottom part 64.
 蓋部61は、円形状の板状部材である。蓋部61は、内筒部62の上端に固定される。蓋部61は、固定子21及び回転子22を上方から覆う。図18に示されるように、蓋部61には、コイル25のコイル端末25aが挿通されるコイル貫通穴61aが形成される。6つのコイル貫通穴61aは、周方向に等間隔(60°間隔)に配置される。蓋部61には、後述する中継継手47が収容される継手収容穴61bが形成される。 The lid portion 61 is a circular plate-like member. The lid part 61 is fixed to the upper end of the inner cylinder part 62. The lid portion 61 covers the stator 21 and rotor 22 from above. As shown in FIG. 18, the lid portion 61 is formed with a coil through hole 61a through which the coil end 25a of the coil 25 is inserted. The six coil through holes 61a are arranged at equal intervals (60° intervals) in the circumferential direction. A joint accommodation hole 61b is formed in the lid portion 61, in which a relay joint 47, which will be described later, is accommodated.
 内筒部62は、円筒形状である。内筒部62は、固定子21を径方向外側から覆う。固定子21は、内筒部62に、例えば、焼き嵌めまたは圧入により固定される。
 外筒部63は、円筒形状である。外筒部63は、内筒部62を径方向外側から覆う。外筒部63は、内筒部62に、例えば、焼き嵌めまたは圧入により固定される。
 内筒部62及び外筒部63により、回転電機2を冷却する第2冷却部65が構成される。第2冷却部65の詳細については後述する。
The inner cylinder portion 62 has a cylindrical shape. The inner cylinder portion 62 covers the stator 21 from the outside in the radial direction. The stator 21 is fixed to the inner cylinder portion 62 by, for example, shrink fitting or press fitting.
The outer cylinder portion 63 has a cylindrical shape. The outer cylinder part 63 covers the inner cylinder part 62 from the outside in the radial direction. The outer cylinder part 63 is fixed to the inner cylinder part 62 by, for example, shrink fitting or press fitting.
The inner cylinder part 62 and the outer cylinder part 63 constitute a second cooling part 65 that cools the rotating electrical machine 2 . Details of the second cooling unit 65 will be described later.
 底部64は、円形状の板状部材である。底部64は、外筒部63の下端に固定される。底部64は、固定子21及び回転子22を下方から覆う。底部64には、回転電機ユニット1を車両に取り付けるための取付部64aが設けられる。 The bottom portion 64 is a circular plate-like member. The bottom portion 64 is fixed to the lower end of the outer cylinder portion 63. The bottom portion 64 covers the stator 21 and rotor 22 from below. The bottom portion 64 is provided with an attachment portion 64a for attaching the rotating electric machine unit 1 to a vehicle.
 コイル25は、固定子21に巻装される。コイル25は、例えば、固定子21に分布巻きされる。コイル25として、例えば、一辺が0.5~6.0mmの四角形状の断面を有する平角線が用いられる。各相のコイル25のコイル端末25aは、対応する相のパワーモジュール35に電気的に接続される。図18に示されるように、6つのコイル端末25aは、周方向に等間隔(60°間隔)に配置される。コイル端末25aは、コイル貫通穴61aに挿通された後、径方向外側に向けて屈曲され、その後、再度屈曲されて軸方向に延びる。 The coil 25 is wound around the stator 21. The coil 25 is wound around the stator 21 in a distributed manner, for example. As the coil 25, for example, a rectangular wire having a rectangular cross section of 0.5 to 6.0 mm on a side is used. The coil terminal 25a of the coil 25 of each phase is electrically connected to the power module 35 of the corresponding phase. As shown in FIG. 18, the six coil terminals 25a are arranged at equal intervals (60° intervals) in the circumferential direction. After the coil terminal 25a is inserted into the coil through hole 61a, it is bent radially outward, and then bent again to extend in the axial direction.
 レゾルバ27は、シャフト23の回転角を検出する。図18に示されるように、レゾルバ27は、レゾルバ固定子27aと、レゾルバ回転子27bと、レゾルバ用ハーネス27c(信号線)と、を備える。レゾルバ固定子27aは、蓋部61に固定されている。レゾルバ回転子27bは、シャフト23の上端部(非出力側の端部)に取り付けられる。 The resolver 27 detects the rotation angle of the shaft 23. As shown in FIG. 18, the resolver 27 includes a resolver stator 27a, a resolver rotor 27b, and a resolver harness 27c (signal line). The resolver stator 27a is fixed to the lid 61. The resolver rotor 27b is attached to the upper end (non-output side end) of the shaft 23.
 レゾルバ27の検出結果は、レゾルバ用ハーネス27cを介して、後述する電力変換装置3の制御基板36へ出力される。レゾルバ用ハーネス27cは、レゾルバ固定子27aから引き出され、制御基板36に向けて延び、制御基板36に接続される。レゾルバ用ハーネス27cは、パワーモジュール35が配置される部分を避けて延びる。これにより、レゾルバ用ハーネス27cに、パワーモジュール35に起因するノイズが伝わることを防止でき、シャフト23の回転角の検出精度を向上できる。 The detection result of the resolver 27 is output to the control board 36 of the power conversion device 3, which will be described later, via the resolver harness 27c. The resolver harness 27c is pulled out from the resolver stator 27a, extends toward the control board 36, and is connected to the control board 36. The resolver harness 27c extends avoiding a portion where the power module 35 is arranged. Thereby, noise caused by the power module 35 can be prevented from being transmitted to the resolver harness 27c, and the detection accuracy of the rotation angle of the shaft 23 can be improved.
 シャフト23の上端部(非出力側の端部)には、第1の軸受26aが設けられる。第1の軸受26aは、蓋部61に固定されている。シャフト23の下端部(出力側の端部)には、第2の軸受26bが設けられる。第2の軸受26bは、底部64に固定されている。第1の軸受26a及び第2の軸受26bは、シャフト23を回転自在に支持する。 A first bearing 26a is provided at the upper end (non-output side end) of the shaft 23. The first bearing 26a is fixed to the lid 61. A second bearing 26b is provided at the lower end (output side end) of the shaft 23. The second bearing 26b is fixed to the bottom 64. The first bearing 26a and the second bearing 26b rotatably support the shaft 23.
<電力変換装置>
 次に、図2~17を参照して、電力変換装置3について説明する。
 図2、図3、図7等に示されるように、電力変換装置3は、ケース31と、端子台32(第2の外部接続部)と、信号コネクタ33(第1の外部接続部)と、コンデンサユニット34と、制御基板36と、複数のパワーモジュール35(本実施の形態では、6つのパワーモジュール35U1、35V1、35W1、35U2、35V2、35W2)と、複数(本実施の形態では、6つ)のバスバー37と、複数(本実施の形態では、6つ)の電流センサ38と、複数(本実施の形態では、6つ)の樹脂部材39と、を備える。
<Power converter>
Next, the power conversion device 3 will be explained with reference to FIGS. 2 to 17.
As shown in FIGS. 2, 3, 7, etc., the power converter 3 includes a case 31, a terminal block 32 (second external connection), and a signal connector 33 (first external connection). , a capacitor unit 34, a control board 36, a plurality of power modules 35 (in this embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), and a plurality (in this embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), bus bars 37; a plurality (six in this embodiment) of current sensors 38; and a plurality (six in this embodiment) of resin members 39.
 ケース31は、コンデンサユニット34、パワーモジュール35、制御基板36等の電子部品を上方から覆う。これにより、これら電子部品と、回転電機ユニット1の周辺に搭載される部品との絶縁性を確保し、回転電機ユニット1の外部から異物が侵入することを防ぐ。 The case 31 covers electronic components such as the capacitor unit 34, the power module 35, and the control board 36 from above. This ensures insulation between these electronic components and components mounted around the rotating electrical machine unit 1, and prevents foreign matter from entering the rotating electrical machine unit 1 from outside.
 端子台32は、ケース31の上面に設けられる。端子台32は、直流電源Eとコンデンサユニット34とを接続する。端子台32は、電力変換装置3と外部電源である直流電源Eとを接続する第2の外部接続部である。端子台32は、正極側接続端子32aと、負極側接続端子32bと、収容ケース32cと、を有する。 The terminal block 32 is provided on the top surface of the case 31. The terminal block 32 connects the DC power supply E and the capacitor unit 34. The terminal block 32 is a second external connection part that connects the power conversion device 3 and a DC power supply E that is an external power supply. The terminal block 32 includes a positive connection terminal 32a, a negative connection terminal 32b, and a housing case 32c.
 正極側接続端子32aは、直流電源Eの正極電源端子、及び後述するコンデンサユニット34の2つのコンデンサモジュール51の正極導体54に接続される。
 負極側接続端子32bは、直流電源Eの負極電源端子、及び後述するコンデンサユニット34の2つのコンデンサモジュール51の負極導体55に接続される。
 収容ケース32cは、正極側接続端子32a及び負極側接続端子32bを収容する。
The positive side connection terminal 32a is connected to the positive power supply terminal of the DC power supply E and the positive conductor 54 of two capacitor modules 51 of the capacitor unit 34, which will be described later.
The negative electrode side connection terminal 32b is connected to the negative electrode power terminal of the DC power source E and the negative electrode conductor 55 of two capacitor modules 51 of the capacitor unit 34, which will be described later.
The housing case 32c houses the positive side connection terminal 32a and the negative side connection terminal 32b.
 図3に示されるように、正極側接続端子32aの上面部は、収容ケース32cから露出しており、この上面部に直流電源Eの正極電源端子が接続される。正極側接続端子32aの周方向における両側面は、収容ケース32cから露出しており、これらの側面に、2つのコンデンサモジュール51の正極導体54がそれぞれ接続される。
 負極側接続端子32bの上面部は、収容ケース32cから露出しており、この上面部に直流電源Eの負極電源端子が接続される。負極側接続端子32bの周方向における両側面は、収容ケース32cから露出しており、これらの側面に、2つのコンデンサモジュール51の負極導体55がそれぞれ接続される。
As shown in FIG. 3, the upper surface of the positive connection terminal 32a is exposed from the housing case 32c, and the positive power terminal of the DC power source E is connected to this upper surface. Both side surfaces in the circumferential direction of the positive electrode side connection terminal 32a are exposed from the housing case 32c, and the positive electrode conductors 54 of the two capacitor modules 51 are respectively connected to these side surfaces.
The upper surface portion of the negative electrode side connection terminal 32b is exposed from the housing case 32c, and the negative electrode power terminal of the DC power source E is connected to this upper surface portion. Both side surfaces of the negative electrode side connection terminal 32b in the circumferential direction are exposed from the housing case 32c, and the negative electrode conductors 55 of the two capacitor modules 51 are respectively connected to these side surfaces.
 信号コネクタ33は、ケース31の上面に設けられる。信号コネクタ33は、制御基板36と電気的に接続される。信号コネクタ33は、車両等に搭載される外部の制御装置と電力変換装置3との間で各種信号の受け渡しに用いられる。信号コネクタ33は、電力変換装置3と外部の制御装置とを接続する第1の外部接続部である。 The signal connector 33 is provided on the top surface of the case 31. The signal connector 33 is electrically connected to the control board 36. The signal connector 33 is used to exchange various signals between the power conversion device 3 and an external control device mounted on a vehicle or the like. The signal connector 33 is a first external connection section that connects the power conversion device 3 and an external control device.
 図4に示されるように、軸方向から見たときに、回転子22の軸心Oに対して信号コネクタ33が配置される側を前方側と称し、その反対側を後方側と称する。信号コネクタ33は、回転電機ユニット1の前方側に配置される。端子台32は、回転電機ユニット1の後方側に配置される。 As shown in FIG. 4, when viewed from the axial direction, the side where the signal connector 33 is arranged with respect to the axis O of the rotor 22 is called the front side, and the opposite side is called the rear side. The signal connector 33 is arranged on the front side of the rotating electric machine unit 1. The terminal block 32 is arranged on the rear side of the rotating electric machine unit 1.
 コンデンサユニット34について、図7、8、12~15を参照して説明する。
 図8に示されるように、コンデンサユニット34は、電力変換装置3の外周部に配置される。軸方向から見たときに、コンデンサユニット34は、周方向に延びる。コンデンサユニット34は、蓋部61に固定される。
The capacitor unit 34 will be explained with reference to FIGS. 7, 8, and 12 to 15.
As shown in FIG. 8, the capacitor unit 34 is arranged at the outer periphery of the power converter 3. When viewed from the axial direction, the capacitor unit 34 extends in the circumferential direction. The capacitor unit 34 is fixed to the lid portion 61.
 コンデンサユニット34は、周方向に配置される2つのコンデンサモジュール51を有する。2つのコンデンサモジュール51のうち一方は、6つのパワーモジュール35のうち半数のパワーモジュール35(例えば、パワーモジュール35U1、35V1、35W1)に対応して設けられ、他方は、もう半数のパワーモジュール35(例えば、パワーモジュール35U2、35V2、35W2)に対応して設けられる。軸方向から見たときに、各コンデンサモジュール51は、周方向に延びる円弧状を有する。2つのコンデンサモジュール51は同一形状である。2つのコンデンサモジュール51の周方向における端部同士の間には、隙間が形成されている。 The capacitor unit 34 has two capacitor modules 51 arranged in the circumferential direction. One of the two capacitor modules 51 is provided corresponding to half of the power modules 35 (for example, power modules 35U1, 35V1, 35W1) among the six power modules 35, and the other is provided corresponding to the other half of the power modules 35 (for example, power modules 35U1, 35V1, 35W1). For example, it is provided corresponding to the power modules 35U2, 35V2, 35W2). When viewed from the axial direction, each capacitor module 51 has an arc shape extending in the circumferential direction. The two capacitor modules 51 have the same shape. A gap is formed between the ends of the two capacitor modules 51 in the circumferential direction.
 図12及び図13に示されるように、コンデンサモジュール51は、複数のコンデンサ素子52と、収容ケース53と、正極導体54と、負極導体55と、を有する。 As shown in FIGS. 12 and 13, the capacitor module 51 includes a plurality of capacitor elements 52, a housing case 53, a positive conductor 54, and a negative conductor 55.
 収容ケース53は、複数のコンデンサ素子52、正極導体54の一部、及び負極導体55の一部を収容する。この状態で、収容ケース53の内部に樹脂が充填されることにより、収容ケース53に収容された各部品が固定される。なお、収容ケース53において、コンデンサ素子52は、下端部に正極が、上端部に負極が位置するよう配置される。 The housing case 53 houses a plurality of capacitor elements 52, a portion of the positive electrode conductor 54, and a portion of the negative electrode conductor 55. In this state, each component accommodated in the accommodation case 53 is fixed by filling the inside of the accommodation case 53 with resin. In addition, in the housing case 53, the capacitor element 52 is arranged so that the positive electrode is located at the lower end and the negative electrode is located at the upper end.
 収容ケース53の下部には、コンデンサモジュール51を蓋部61に取り付けるための複数の取付部53aが形成される。取付部53aは、収容ケース53の外周面から径方向外側に突出する突起である。取付部53aにはボルト穴が形成されており、このボルト穴にボルト53b(図8を参照)を締結することにより、コンデンサモジュール51が蓋部61に取り付けられる。 A plurality of attachment parts 53a for attaching the capacitor module 51 to the lid part 61 are formed at the lower part of the housing case 53. The attachment portion 53a is a protrusion that protrudes radially outward from the outer peripheral surface of the storage case 53. A bolt hole is formed in the attachment portion 53a, and the capacitor module 51 is attached to the lid portion 61 by fastening a bolt 53b (see FIG. 8) to this bolt hole.
 図14は、正極導体54の斜視図である。図15は、負極導体55の斜視図である。正極導体54及び負極導体55は、板状部材により形成される。正極導体54及び負極導体55の材料として、例えば、無酸素銅が用いられる。材料のコスト削減、入手性の向上等のために、正極導体54及び負極導体55の材料として、タフピッチ銅が用いられてもよい。また、正極導体54及び負極導体55の板厚は、例えば、0.5~2.5mmである。 FIG. 14 is a perspective view of the positive electrode conductor 54. FIG. 15 is a perspective view of the negative electrode conductor 55. The positive electrode conductor 54 and the negative electrode conductor 55 are formed of plate-like members. As the material for the positive electrode conductor 54 and the negative electrode conductor 55, for example, oxygen-free copper is used. Tough pitch copper may be used as the material for the positive electrode conductor 54 and the negative electrode conductor 55 in order to reduce the cost of materials, improve availability, and the like. Further, the thickness of the positive electrode conductor 54 and the negative electrode conductor 55 is, for example, 0.5 to 2.5 mm.
 正極導体54は、端子台32の正極側接続端子32a、及び後述するパワーモジュール35の正極端子35bに接続される。正極導体54は、複数(本実施の形態では、3つ)の第1正極端部54aと、第2正極端部54bと、複数の第3正極端部54cと、正極側接続部54dと、複数(本実施の形態では、3つ)の正極側被冷却部54eと、を有する。 The positive conductor 54 is connected to the positive side connection terminal 32a of the terminal block 32 and the positive terminal 35b of the power module 35, which will be described later. The positive electrode conductor 54 includes a plurality of (in this embodiment, three) first positive end portions 54a, a second positive end portion 54b, a plurality of third positive end portions 54c, a positive electrode side connection portion 54d, It has a plurality (in this embodiment, three) of positive electrode side cooled parts 54e.
 3つの第1正極端部54aは、上記半数(3つ)のパワーモジュール35にそれぞれ対応して設けられる。第1正極端部54aは、対応するパワーモジュール35の正極端子35bに接続される。3つの第1正極端部54aは、周方向に等間隔(60°間隔)に配置される。3つの第1正極端部54aは、同一形状である。第1正極端部54aは、収容ケース53の上部から引き出される。図8に示されるように、第1正極端部54aは、対応するパワーモジュール35の正極端子35bと径方向に対向するよう配置される。 The three first positive end portions 54a are provided corresponding to half (three) of the power modules 35, respectively. The first positive end portion 54a is connected to the positive terminal 35b of the corresponding power module 35. The three first positive end portions 54a are arranged at equal intervals (60° intervals) in the circumferential direction. The three first positive end portions 54a have the same shape. The first positive end portion 54a is pulled out from the upper part of the storage case 53. As shown in FIG. 8, the first positive end portion 54a is arranged to face the positive electrode terminal 35b of the corresponding power module 35 in the radial direction.
 第2正極端部54bは、端子台32の正極側接続端子32aに接続される。第2正極端部54bは、収容ケース53の上部から引き出される。図3に示されるように、第2正極端部54bは、正極側接続端子32aの側面と対向するよう配置される。第2正極端部54bの先端部にはボルト穴が形成されており、このボルト穴にボルト54fを締結することにより、第2正極端部54bが正極側接続端子32aの側面に固定される。 The second positive end portion 54b is connected to the positive side connection terminal 32a of the terminal block 32. The second positive end portion 54b is pulled out from the upper part of the storage case 53. As shown in FIG. 3, the second positive end portion 54b is arranged to face the side surface of the positive connection terminal 32a. A bolt hole is formed at the tip of the second positive end portion 54b, and by fastening a bolt 54f to this bolt hole, the second positive end portion 54b is fixed to the side surface of the positive connection terminal 32a.
 複数の第3正極端部54cは、複数のコンデンサ素子52にそれぞれ対応して設けられる。第3正極端部54cは、コンデンサ素子52の下端部に、例えば半田付けにより固定される。これにより、第3正極端部54cは、コンデンサ素子52の下端部に設けられる正極と接続される。第3正極端部54cは、収容ケース53に収容される。 The plurality of third positive end portions 54c are provided corresponding to the plurality of capacitor elements 52, respectively. The third positive end portion 54c is fixed to the lower end portion of the capacitor element 52, for example, by soldering. Thereby, the third positive end portion 54c is connected to the positive electrode provided at the lower end portion of the capacitor element 52. The third positive end portion 54c is housed in the housing case 53.
 正極側接続部54dは、第1正極端部54aと、第2正極端部54bと、第3正極端部54cとを電気的に接続する。正極側接続部54dは、収容ケース53に収容される。 The positive electrode side connecting portion 54d electrically connects the first positive end portion 54a, the second positive end portion 54b, and the third positive end portion 54c. The positive electrode side connection portion 54d is housed in the housing case 53.
 正極側接続部54dは、複数の第1直線部54d1と、複数の第1曲げ部54d2と、第1接続端部54d3と、を有する。複数の第1直線部54d1は、例えば板状部材を折曲することにより形成されており、全体として略周方向に延びるよう形成される。複数の第1曲げ部54d2は、複数の第1直線部54d1同士を接続する。第1接続端部54d3は、周方向の一方側に配置される第1直線部54d1と接続されており、この第1直線部54d1に対して径方向の外側に向けて折曲されている。 The positive electrode side connection portion 54d includes a plurality of first straight portions 54d1, a plurality of first bent portions 54d2, and a first connection end portion 54d3. The plurality of first straight portions 54d1 are formed, for example, by bending a plate-like member, and are formed to extend generally in the circumferential direction as a whole. The plurality of first bent portions 54d2 connect the plurality of first straight portions 54d1. The first connecting end portion 54d3 is connected to a first straight portion 54d1 disposed on one side in the circumferential direction, and is bent toward the outside in the radial direction with respect to the first straight portion 54d1.
 正極導体54は、別体の第1正極端部54a、第2正極端部54b、及び第3正極端部54cが、正極側接続部54dと接合されて形成されている。第1正極端部54aは、第1直線部54d1の上端部に接合されている。第2正極端部54bは、第1接続端部54d3の上端部に接合されている。第3正極端部54cは、第1直線部54d1の下端部に接合されている。 The positive electrode conductor 54 is formed by joining a separate first positive end portion 54a, second positive end portion 54b, and third positive end portion 54c to a positive electrode side connection portion 54d. The first positive end portion 54a is joined to the upper end portion of the first straight portion 54d1. The second positive end portion 54b is joined to the upper end portion of the first connection end portion 54d3. The third positive end portion 54c is joined to the lower end portion of the first straight portion 54d1.
 正極側被冷却部54eは、第1正極端部54aから下方に延びるように設けられる。正極側被冷却部54eは、第1正極端部54aと一体的に形成される。正極側被冷却部54eは、第1正極端部54aと別体に形成されていてもよい。
 図12に示されるように、正極側被冷却部54eは、コンデンサモジュール51における径方向の内側に配置される。正極側被冷却部54eは、収容ケース53の外側に配置される。正極側被冷却部54eは、冷却器4と熱的に接続される。
The positive electrode side cooled part 54e is provided so as to extend downward from the first positive end part 54a. The positive side cooled portion 54e is integrally formed with the first positive end portion 54a. The positive side cooled portion 54e may be formed separately from the first positive end portion 54a.
As shown in FIG. 12, the positive electrode side cooled portion 54e is arranged inside the capacitor module 51 in the radial direction. The positive electrode side cooled part 54e is arranged outside the housing case 53. The positive electrode side cooled part 54e is thermally connected to the cooler 4.
 負極導体55は、端子台32の負極側接続端子32b、及び後述するパワーモジュール35の負極端子35cに接続される。負極導体55は、複数(本実施の形態では、3つ)の第1負極端部55aと、第2負極端部55bと、複数の第3負極端部55cと、負極側接続部55dと、複数(本実施の形態では、3つ)の負極側被冷却部55eと、を有する。 The negative electrode conductor 55 is connected to the negative electrode side connection terminal 32b of the terminal block 32 and the negative electrode terminal 35c of the power module 35, which will be described later. The negative electrode conductor 55 includes a plurality of (in this embodiment, three) first negative end portions 55a, a second negative end portion 55b, a plurality of third negative end portions 55c, a negative electrode side connection portion 55d, It has a plurality (in this embodiment, three) of negative electrode side cooled parts 55e.
 3つの第1負極端部55aは、上記半数(3つ)のパワーモジュール35にそれぞれ対応して設けられる。第1負極端部55aは、対応するパワーモジュール35の負極端子35cに接続される。3つの第1負極端部55aは、周方向に等間隔(60°間隔)に配置される。3つの第1負極端部55aは、同一形状である。第1負極端部55aは、収容ケース53の上部から引き出される。図8に示されるように、第1負極端部55aは、対応するパワーモジュール35の負極端子35cと径方向に対向するよう配置される。 The three first negative end portions 55a are provided corresponding to half (three) of the power modules 35, respectively. The first negative end portion 55a is connected to the negative electrode terminal 35c of the corresponding power module 35. The three first negative end portions 55a are arranged at equal intervals (60° intervals) in the circumferential direction. The three first negative end portions 55a have the same shape. The first negative end portion 55a is pulled out from the upper part of the storage case 53. As shown in FIG. 8, the first negative end portion 55a is arranged to face the negative electrode terminal 35c of the corresponding power module 35 in the radial direction.
 第2負極端部55bは、端子台32の負極側接続端子32bに接続される。第2負極端部55bは、収容ケース53の上部から引き出される。図3に示されるように、第2負極端部55bは、負極側接続端子32bの側面と対向するよう配置される。第2負極端部55bの先端部にはボルト穴が形成されており、このボルト穴にボルト55fを締結することにより、第2負極端部55bが負極側接続端子32bの側面に固定される。 The second negative end portion 55b is connected to the negative connection terminal 32b of the terminal block 32. The second negative end portion 55b is pulled out from the upper part of the storage case 53. As shown in FIG. 3, the second negative end portion 55b is arranged to face the side surface of the negative connection terminal 32b. A bolt hole is formed at the tip of the second negative end portion 55b, and by fastening a bolt 55f to this bolt hole, the second negative end portion 55b is fixed to the side surface of the negative electrode side connection terminal 32b.
 複数の第3負極端部55cは、複数のコンデンサ素子52にそれぞれ対応して設けられる。第3負極端部55cは、コンデンサ素子52の上端部に、例えば半田付けにより固定される。これにより、第3負極端部55cは、コンデンサ素子52の上端部に設けられる負極と接続される。第3負極端部55cは、収容ケース53に収容される。 The plurality of third negative end portions 55c are provided corresponding to the plurality of capacitor elements 52, respectively. The third negative end portion 55c is fixed to the upper end portion of the capacitor element 52, for example, by soldering. Thereby, the third negative end portion 55c is connected to the negative electrode provided at the upper end portion of the capacitor element 52. The third negative end portion 55c is housed in the housing case 53.
 負極側接続部55dは、第1負極端部55aと、第2負極端部55bと、第3負極端部55cとを電気的に接続する。負極側接続部55dは、収容ケース53に収容される。 The negative electrode side connection portion 55d electrically connects the first negative end portion 55a, the second negative end portion 55b, and the third negative end portion 55c. The negative electrode side connection portion 55d is housed in the housing case 53.
 負極側接続部55dは、複数の第2直線部55d1と、複数の第2曲げ部55d2と、第2接続端部55d3と、を有する。複数の第2直線部55d1は、例えば板状部材を折曲することにより形成されており、全体として略周方向に延びるよう形成される。複数の第2曲げ部55d2は、複数の第2直線部55d1同士を接続する。第2接続端部55d3は、周方向の一方側に配置される第2直線部55d1と接続されており、この第2直線部55d1に対して径方向の外側に向けて折曲されている。 The negative electrode side connection portion 55d includes a plurality of second straight portions 55d1, a plurality of second bent portions 55d2, and a second connection end portion 55d3. The plurality of second straight portions 55d1 are formed, for example, by bending a plate-like member, and are formed to extend generally in the circumferential direction as a whole. The plurality of second bent portions 55d2 connect the plurality of second straight portions 55d1. The second connecting end portion 55d3 is connected to a second straight portion 55d1 disposed on one side in the circumferential direction, and is bent toward the outside in the radial direction with respect to the second straight portion 55d1.
 負極導体55は、別体の第1負極端部55a、第2負極端部55b、及び第3負極端部55cが、負極側接続部55dと接合されて形成されている。第1負極端部55aは、第2直線部55d1の上端部に接合されている。第2負極端部55bは、第2接続端部55d3の上端部に接合されている。第3負極端部55cは、第2直線部55d1の上端部に接合されている。 The negative electrode conductor 55 is formed by joining a first negative end portion 55a, a second negative end portion 55b, and a third negative end portion 55c, which are separate bodies, to a negative electrode side connection portion 55d. The first negative end portion 55a is joined to the upper end portion of the second straight portion 55d1. The second negative end portion 55b is joined to the upper end portion of the second connection end portion 55d3. The third negative end portion 55c is joined to the upper end portion of the second straight portion 55d1.
 負極側被冷却部55eは、第1負極端部55aから下方に延びるように設けられる。負極側被冷却部55eは、第1負極端部55aと一体的に形成される。負極側被冷却部55eは、第1負極端部55aと別体に形成されていてもよい。
 図12に示されるように、負極側被冷却部55eは、コンデンサモジュール51における径方向の内側に配置される。負極側被冷却部55eは、収容ケース53の外側に配置される。負極側被冷却部55eは、冷却器4と熱的に接続される。
The negative electrode side cooled part 55e is provided so as to extend downward from the first negative end part 55a. The negative electrode side cooled portion 55e is integrally formed with the first negative end portion 55a. The negative electrode side cooled part 55e may be formed separately from the first negative end part 55a.
As shown in FIG. 12, the negative electrode side cooled portion 55e is arranged inside the capacitor module 51 in the radial direction. The negative electrode side cooled part 55e is arranged outside the housing case 53. The negative electrode side cooled part 55e is thermally connected to the cooler 4.
 図7、8、16を参照して、パワーモジュール35について説明する。
 図7及び図8に示されるように、6つのパワーモジュール35は、電力変換装置3の中央部に配置される。軸方向から見たときに、6つのパワーモジュール35は、コンデンサユニット34に径方向の外側から囲まれる。6つのパワーモジュール35は、周方向に等間隔(60°間隔)に配置される。パワーモジュール35U1、35V1、35W1、35U2、35V2、35W2は、周方向にこの順に配置される。したがって、同じ相のパワーモジュール35(例えば、U1相とU2相のパワーモジュール35U1、35U2)は、径方向に対向するよう配置される。
The power module 35 will be described with reference to FIGS. 7, 8, and 16.
As shown in FIGS. 7 and 8, six power modules 35 are arranged at the center of the power conversion device 3. As shown in FIGS. When viewed from the axial direction, the six power modules 35 are surrounded by the capacitor unit 34 from the outside in the radial direction. The six power modules 35 are arranged at equal intervals (60° intervals) in the circumferential direction. Power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are arranged in this order in the circumferential direction. Therefore, power modules 35 of the same phase (for example, power modules 35U1 and 35U2 of U1 phase and U2 phase) are arranged to face each other in the radial direction.
 図16に示されるように、各パワーモジュール35は、本体部35aと、正極端子35bと、負極端子35cと、出力端子35dと、上アーム側の信号端子35eと、下アーム側の信号端子35fとを有する。パワーモジュール35は、後述する冷却器4のプレート41に固定される。 As shown in FIG. 16, each power module 35 includes a main body 35a, a positive terminal 35b, a negative terminal 35c, an output terminal 35d, a signal terminal 35e on the upper arm side, and a signal terminal 35f on the lower arm side. and has. The power module 35 is fixed to a plate 41 of the cooler 4, which will be described later.
 本体部35aは、軸方向から見たときに、略矩形状を有する。本体部35aは、上アーム側のスイッチング素子SW1及びダイオードD1と、下アーム側のスイッチング素子SW2及びダイオードD2と、を備える。本体部35aの角部には、上アーム側の信号端子35eを固定するための突起部35a1が設けられる。 The main body portion 35a has a substantially rectangular shape when viewed from the axial direction. The main body portion 35a includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side. A projection 35a1 for fixing the signal terminal 35e on the upper arm side is provided at a corner of the main body 35a.
 正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fは、板状部材である。
 正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの材料として、例えば、無酸素銅が用いられる。材料のコスト削減、入手性の向上等のために、正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの材料として、タフピッチ銅が用いられてもよい。また、正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの板厚は、例えば、0.5~1.5mmである。
The positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side are plate-shaped members.
For example, oxygen-free copper is used as the material for the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side. Tough pitch copper is used as the material for the positive terminal 35b, negative terminal 35c, output terminal 35d, upper arm signal terminal 35e, and lower arm signal terminal 35f in order to reduce material costs and improve availability. It's okay to be hit. Further, the thickness of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side is, for example, 0.5 to 1.5 mm.
 図8に示されるように、正極端子35bは、第1正極端部54aと対向するように配置される。正極端子35bは、第1正極端部54aに直接接続される。なお、直接接続されるとは、正極端子35bと第1正極端部54aとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。正極端子35bと第1正極端部54aとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、レーザー溶接が用いられる。軸方向から見て、第1正極端部54aと正極端子35bとの接続部は、収容ケース53と本体部35aとの間に位置している。 As shown in FIG. 8, the positive electrode terminal 35b is arranged to face the first positive end portion 54a. The positive terminal 35b is directly connected to the first positive end 54a. Note that being directly connected means that the positive electrode terminal 35b and the first positive end portion 54a are connected by contacting each other without using a wire or the like. For example, resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the positive electrode terminal 35b and the first positive end portion 54a. Seen from the axial direction, the connection portion between the first positive end portion 54a and the positive electrode terminal 35b is located between the housing case 53 and the main body portion 35a.
 負極端子35cは、第1負極端部55aと対向するように配置される。負極端子35cは、第1負極端部55aに直接接続される。なお、直接接続されるとは、負極端子35cと第1負極端部55aとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。負極端子35cと第1負極端部55aとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、レーザー溶接が用いられる。軸方向から見て、第1負極端部55aと負極端子35cとの接続部は、収容ケース53と本体部35aとの間に位置している。 The negative electrode terminal 35c is arranged to face the first negative end portion 55a. The negative terminal 35c is directly connected to the first negative end 55a. Note that being directly connected means that the negative electrode terminal 35c and the first negative end portion 55a are connected by contacting each other without using a wire or the like. For example, resistance welding, ultrasonic bonding, TIG welding, and laser welding are used to connect the negative electrode terminal 35c and the first negative end portion 55a. When viewed from the axial direction, the connection portion between the first negative end portion 55a and the negative electrode terminal 35c is located between the housing case 53 and the main body portion 35a.
 本実施の形態では、コンデンサユニット34の正極導体54から、パワーモジュール35の正極端子35b及び負極端子35cを経由した、コンデンサユニット34の負極導体55までの経路の長さが、全てのパワーモジュール35で略同一となるように、コンデンサユニット34及びパワーモジュール35が設けられている。すなわち、コンデンサユニット34とパワーモジュール35との接続経路の長さが、全てのパワーモジュール35で略同一となっている。ここで、上記経路の長さが略同一であるとは、正極導体54から、正極端子35b及び負極端子35cを経由した、負極導体55までの経路の全長に対して、各パワーモジュール35間での上記経路長さの差異が、±5%の範囲内であることを意味する。これにより、それぞれのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。 In the present embodiment, the length of the path from the positive conductor 54 of the capacitor unit 34 to the negative conductor 55 of the capacitor unit 34 via the positive terminal 35b and the negative terminal 35c of the power module 35 is the same as that for all power modules 35. The capacitor unit 34 and the power module 35 are provided so that they are substantially the same. That is, the length of the connection path between the capacitor unit 34 and the power module 35 is substantially the same for all the power modules 35. Here, the term "the lengths of the paths are approximately the same" means that the lengths of the paths are approximately the same between each power module 35 with respect to the entire length of the path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and the negative electrode terminal 35c. means that the difference in the above path length of is within the range of ±5%. This makes it possible to equalize the surge voltages generated in each power module 35. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
 なお、本開示では、少なくとも2つのパワーモジュール35について、コンデンサユニット34とパワーモジュール35との接続経路の長さが略同一となっていればよい。この場合であっても、これら2つのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。 Note that in the present disclosure, the lengths of the connection paths between the capacitor unit 34 and the power module 35 may be approximately the same for at least two power modules 35. Even in this case, the surge voltages generated in these two power modules 35 can be made equal. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
 また、正極端子35bは、第1正極端部54aに直接接続され、負極端子35cは、第1負極端部55aに直接接続される。すなわち、コンデンサユニット34とパワーモジュール35とは、最短経路で接続されている。これにより、コンデンサユニット34とパワーモジュール35との接続経路のインダクタンスを低減でき、パワーモジュール35に発生するサージ電圧を抑制できる。したがって、パワーモジュール35に、より大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。 Further, the positive electrode terminal 35b is directly connected to the first positive end portion 54a, and the negative electrode terminal 35c is directly connected to the first negative end portion 55a. That is, the capacitor unit 34 and the power module 35 are connected through the shortest path. Thereby, the inductance of the connection path between the capacitor unit 34 and the power module 35 can be reduced, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
 出力端子35dは、バスバー37を介して、コイル25のコイル端末25aに接続される。
 全てのパワーモジュール35において、出力端子35dは、軸心Oと、正極端子35bと負極端子35cとの隙間の中間位置とを通る仮想線に対して線対称となるよう配置される。すなわち、出力端子35dは、径方向から見たときに、出力端子35dの中心位置が、正極端子35bと負極端子35cとの隙間の中間位置と一致するよう、配置される。これにより、全てのパワーモジュール35において、正極導体54からコイル端末25aまで、及び負極導体55からコイル端末25aまでの接続経路の配線抵抗が均一となる。したがって、複数のパワーモジュール35の間で、パワーモジュール35を流れる電流に偏りが生じることを防止できる。
The output terminal 35d is connected to the coil terminal 25a of the coil 25 via the bus bar 37.
In all the power modules 35, the output terminals 35d are arranged so as to be symmetrical with respect to an imaginary line passing through the axis O and the intermediate position of the gap between the positive electrode terminal 35b and the negative electrode terminal 35c. That is, the output terminal 35d is arranged so that the center position of the output terminal 35d coincides with the intermediate position of the gap between the positive electrode terminal 35b and the negative electrode terminal 35c when viewed from the radial direction. Thereby, in all the power modules 35, the wiring resistance of the connection path from the positive electrode conductor 54 to the coil terminal 25a and from the negative electrode conductor 55 to the coil terminal 25a becomes uniform. Therefore, it is possible to prevent the current flowing through the power modules 35 from being uneven among the plurality of power modules 35.
 上アーム側の信号端子35eは、上アーム側のスイッチング素子SW1及びダイオードD1と接続される。下アーム側の信号端子35fは、下アーム側のスイッチング素子SW2及びダイオードD2と接続される。上アーム側の信号端子35e及び下アーム側の信号端子35fは、制御基板36と接続される。図3に示されるように、上アーム側の信号端子35e及び下アーム側の信号端子35fは、制御基板36に直接取り付けられる。 The signal terminal 35e on the upper arm side is connected to the switching element SW1 and the diode D1 on the upper arm side. The signal terminal 35f on the lower arm side is connected to the switching element SW2 and the diode D2 on the lower arm side. The signal terminal 35e on the upper arm side and the signal terminal 35f on the lower arm side are connected to the control board 36. As shown in FIG. 3, the signal terminal 35e on the upper arm side and the signal terminal 35f on the lower arm side are directly attached to the control board 36.
 図8、16、17を参照して、バスバー37について説明する。
 各バスバー37は、対応する相のパワーモジュール35とコイル25とを接続する。図8に示されるように、バスバー37は、周方向に隣り合うパワーモジュール35同士の間に配置される。
The bus bar 37 will be described with reference to FIGS. 8, 16, and 17.
Each bus bar 37 connects the power module 35 and coil 25 of the corresponding phase. As shown in FIG. 8, the bus bar 37 is arranged between the power modules 35 adjacent to each other in the circumferential direction.
 図17に示されるように、バスバー37は、板状部材である。バスバー37の材料として、例えば、無酸素銅が用いられる。バスバー37の材料として、材料のコスト削減、入手性の向上等のために、タフピッチ銅が用いられてもよい。バスバー37の板厚は、例えば、0.5~2.5mmである。 As shown in FIG. 17, the bus bar 37 is a plate-like member. As the material for the bus bar 37, for example, oxygen-free copper is used. Tough pitch copper may be used as the material for the bus bar 37 in order to reduce the cost and improve availability of the material. The thickness of the bus bar 37 is, for example, 0.5 to 2.5 mm.
 バスバー37は、出力端子35dと接続される第1端子37aと、コイル端末25aと接続される第2端子37bと、を有する。 The bus bar 37 has a first terminal 37a connected to the output terminal 35d and a second terminal 37b connected to the coil terminal 25a.
 第1端子37aは、バスバー37の一方側の端部に設けられる。図16に示されるように、第1端子37aは、出力端子35dと対向するように配置される。第1端子37aは、出力端子35dに直接接続される。なお、直接接続されるとは、第1端子37aと出力端子35dとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。第1端子37aと出力端子35dとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、レーザー溶接が用いられる。図8に示されるように、軸方向から見て、第1端子37aと出力端子35dとの接続部は、本体部35aよりも径方向内側に位置している。 The first terminal 37a is provided at one end of the bus bar 37. As shown in FIG. 16, the first terminal 37a is arranged to face the output terminal 35d. The first terminal 37a is directly connected to the output terminal 35d. Note that being directly connected means that the first terminal 37a and the output terminal 35d are connected to each other by contacting each other without using a wire or the like. For example, resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the first terminal 37a and the output terminal 35d. As shown in FIG. 8, when viewed from the axial direction, the connecting portion between the first terminal 37a and the output terminal 35d is located on the radially inner side of the main body portion 35a.
 第2端子37bは、バスバー37の他方側の端部に設けられる。図16に示されるように、第2端子37bは、コイル端末25aと対向するように配置される。第2端子37bは、コイル端末25aに直接接続される。なお、直接接続されるとは、第2端子37bとコイル端末25aとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。第2端子37bとコイル端末25aとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、レーザー溶接が用いられる。図8に示されるように、軸方向から見て、第2端子37bとコイル端末25aとの接続部は、本体部35aよりも径方向外側に位置している。 The second terminal 37b is provided at the other end of the bus bar 37. As shown in FIG. 16, the second terminal 37b is arranged to face the coil terminal 25a. The second terminal 37b is directly connected to the coil terminal 25a. Note that being directly connected means that the second terminal 37b and the coil terminal 25a are connected to each other in contact with each other without using a wire or the like. For example, resistance welding, ultrasonic welding, TIG welding, and laser welding are used to connect the second terminal 37b and the coil terminal 25a. As shown in FIG. 8, when viewed from the axial direction, the connection portion between the second terminal 37b and the coil terminal 25a is located radially outward from the main body portion 35a.
 バスバー37には、切欠き部37cが形成される。切欠き部37cは、バスバー37のうち、パワーモジュール35の下アーム側の信号端子35fと対向する領域を切り欠くよう形成される。切欠き部37cは、バスバー37と下アーム側の信号端子35fとの間に隙間を形成するために設けられる。例えば、バスバー37と下アーム側の信号端子35fとが2.0~5.0mm離間するように、切欠き部37cが形成される。これにより、バスバー37と下アーム側の信号端子35fとの絶縁性を確保することができる。 A notch 37c is formed in the bus bar 37. The cutout portion 37c is formed by cutting out a region of the bus bar 37 that faces the signal terminal 35f on the lower arm side of the power module 35. The cutout portion 37c is provided to form a gap between the bus bar 37 and the signal terminal 35f on the lower arm side. For example, the cutout portion 37c is formed so that the bus bar 37 and the signal terminal 35f on the lower arm side are separated by 2.0 to 5.0 mm. Thereby, insulation between the bus bar 37 and the signal terminal 35f on the lower arm side can be ensured.
 バスバー37には、固定用貫通穴37dが形成される。図16に示されるように、固定用貫通穴37dには、プレート41に取り付けられる固定柱41gが挿通される。 A fixing through hole 37d is formed in the bus bar 37. As shown in FIG. 16, a fixing column 41g attached to the plate 41 is inserted through the fixing through hole 37d.
 各バスバー37には、電流センサ38が設けられる。バスバー37は、電流センサ38のコアの内側空間に挿通される。電流センサ38は、バスバー37を流れる電流を検出する。電流センサ38は、制御基板36と接続される信号端子38aを有する。
 電流センサ38の検出結果は、信号端子38aから制御基板36に出力される。図3に示されるように、信号端子38aは、制御基板36に直接取り付けられる。これにより、耐ノイズ性が向上し、電流センサ38によるバスバー37の電流値の検出精度が向上する。
Each bus bar 37 is provided with a current sensor 38 . The bus bar 37 is inserted into the inner space of the core of the current sensor 38. Current sensor 38 detects the current flowing through bus bar 37. The current sensor 38 has a signal terminal 38a connected to the control board 36.
The detection result of the current sensor 38 is output to the control board 36 from the signal terminal 38a. As shown in FIG. 3, the signal terminal 38a is directly attached to the control board 36. This improves noise resistance and improves the detection accuracy of the current value of the bus bar 37 by the current sensor 38.
 図16に示されるように、バスバー37及び電流センサ38は、樹脂部材39に覆われる。なお、信号端子38aは、樹脂部材39から露出している。樹脂部材39は、バスバー37と電流センサ38とを一体的に保持する。樹脂部材39の材料として、例えば、ポリフェニレンサルファイド(PPS)が用いられる。樹脂部材39は、制御基板36とともに、ボルト41f3(図4を参照)によってプレート41に固定される。 As shown in FIG. 16, the bus bar 37 and current sensor 38 are covered with a resin member 39. Note that the signal terminal 38a is exposed from the resin member 39. The resin member 39 integrally holds the bus bar 37 and the current sensor 38. As a material for the resin member 39, for example, polyphenylene sulfide (PPS) is used. The resin member 39 is fixed to the plate 41 together with the control board 36 by bolts 41f3 (see FIG. 4).
 図3及び図4を参照して、制御基板36について説明する。
 制御基板36は、多角形状を有する。制御基板36は、電力変換装置3の中央部に配置される。図4に示されるように、軸方向から見たときに、制御基板36は、コンデンサユニット34に径方向の外側から囲まれる。制御基板36は、ボルト41f1、41f3により、プレート41に対して固定される。
The control board 36 will be explained with reference to FIGS. 3 and 4.
The control board 36 has a polygonal shape. The control board 36 is arranged at the center of the power conversion device 3. As shown in FIG. 4, when viewed from the axial direction, the control board 36 is surrounded by the capacitor unit 34 from the outside in the radial direction. The control board 36 is fixed to the plate 41 with bolts 41f1 and 41f3.
 制御基板36には、上アーム側の信号端子35e、下アーム側の信号端子35f、及び信号端子38aが直接接続される。制御基板36には、信号コネクタ用プラグを介して信号コネクタ33が接続される。制御基板36の中央部には、レゾルバ用ハーネス27cが挿通されるハーネス挿通穴36aが形成される。制御基板36には、レゾルバ用ハーネス27cを介して、レゾルバ27の検出結果が入力される。制御基板36は、車両等に搭載される外部の制御装置から入力される制御指令に基づいてパワーモジュール35を制御する。 A signal terminal 35e on the upper arm side, a signal terminal 35f on the lower arm side, and a signal terminal 38a are directly connected to the control board 36. The signal connector 33 is connected to the control board 36 via a signal connector plug. A harness insertion hole 36a is formed in the center of the control board 36, into which the resolver harness 27c is inserted. The detection results of the resolver 27 are input to the control board 36 via the resolver harness 27c. The control board 36 controls the power module 35 based on control commands input from an external control device mounted on a vehicle or the like.
<冷却器>
 図5、6、9、11、19~21等を参照して、冷却器4について説明する。
 冷却器4は、電力変換装置3を冷却する。図5に示されるように、冷却器4は、コンデンサモジュール51(コンデンサユニット34)の径方向の内側に配置される。冷却器4は、蓋部61に固定される。
 図19は、冷却器4及び回転電機2の斜視図である。図19に示されるように、冷却器4は、プレート41と、ベース42と、冷媒入口部43と、第1放熱部材44(バスバー放熱部材)と、第2放熱部材45(コンデンサ放熱部材)と、を有する。
<Cooler>
The cooler 4 will be explained with reference to FIGS. 5, 6, 9, 11, 19 to 21, etc.
Cooler 4 cools power converter 3 . As shown in FIG. 5, the cooler 4 is arranged inside the condenser module 51 (condenser unit 34) in the radial direction. The cooler 4 is fixed to the lid part 61.
FIG. 19 is a perspective view of the cooler 4 and the rotating electric machine 2. As shown in FIG. 19, the cooler 4 includes a plate 41, a base 42, a refrigerant inlet 43, a first heat radiating member 44 (busbar heat radiating member), and a second heat radiating member 45 (condenser heat radiating member). , has.
 図20A及び20Bは、プレート41の斜視図である。図20A及び20Bに示されるように、プレート41は、略多角形の板状部材である。例えば、プレート41の材質は、アルミニウムである。プレート41の材質は、適宜変更してもよい。プレート41の第1面41aには、パワーモジュール35が取り付けられる。パワーモジュール35は、プレート41の第1面41aに、例えばはんだ付けにより固定される。パワーモジュール35は、プレート41と熱的に接続される。 20A and 20B are perspective views of the plate 41. As shown in FIGS. 20A and 20B, the plate 41 is a substantially polygonal plate member. For example, the material of the plate 41 is aluminum. The material of the plate 41 may be changed as appropriate. The power module 35 is attached to the first surface 41a of the plate 41. The power module 35 is fixed to the first surface 41a of the plate 41, for example, by soldering. Power module 35 is thermally connected to plate 41.
 図20Aに示されるように、プレート41の第1面41aには、有底の第1取付孔41h1、第2取付孔41h2、及び第3取付孔41h3が設けられている。 As shown in FIG. 20A, the first surface 41a of the plate 41 is provided with a first mounting hole 41h1, a second mounting hole 41h2, and a third mounting hole 41h3.
 第1取付孔41h1には、制御基板36をプレート41に対して固定するための固定柱41g(図8を参照)が取り付けられる。固定柱41gの上端は、制御基板36の下面に当接される。この状態で、制御基板36と固定柱41gとをボルト41f1(図4を参照)で固定することにより、制御基板36がプレート41に対して固定される。また、図16に示されるように、固定柱41gには、バスバー37に形成された固定用貫通穴37dが挿通され、これによりバスバー37がプレート41に対して固定される。 A fixing column 41g (see FIG. 8) for fixing the control board 36 to the plate 41 is attached to the first attachment hole 41h1. The upper end of the fixed column 41g is brought into contact with the lower surface of the control board 36. In this state, the control board 36 is fixed to the plate 41 by fixing the control board 36 and the fixing column 41g with bolts 41f1 (see FIG. 4). Further, as shown in FIG. 16, a fixing through hole 37d formed in the bus bar 37 is inserted into the fixing column 41g, thereby fixing the bus bar 37 to the plate 41.
 第2取付孔41h2には、樹脂部材39をプレート41に固定するためのボルト41f2(図8を参照)が取り付けられる。 A bolt 41f2 (see FIG. 8) for fixing the resin member 39 to the plate 41 is attached to the second attachment hole 41h2.
 第3取付孔41h3には、制御基板36及び樹脂部材39をプレート41に固定するためのボルト41f3(図4を参照)が取り付けられる。樹脂部材39の上端は、制御基板36の下面に当接される。この状態で、制御基板36、樹脂部材39、及びプレート41を、ボルト41f3で締結することにより、制御基板36及び樹脂部材39がプレート41に対して固定される。 A bolt 41f3 (see FIG. 4) for fixing the control board 36 and the resin member 39 to the plate 41 is attached to the third attachment hole 41h3. The upper end of the resin member 39 is brought into contact with the lower surface of the control board 36 . In this state, the control board 36 and the resin member 39 are fixed to the plate 41 by fastening the control board 36, the resin member 39, and the plate 41 with bolts 41f3.
 図20Bに示されるように、プレート41の第2面41bには、放熱フィン41cが設けられる。図11に示されるように、放熱フィン41cは、パワーモジュール35と、軸方向に重なる位置に配置される。プレート41の第2面41bは、ベース42に固定される。 As shown in FIG. 20B, the second surface 41b of the plate 41 is provided with radiation fins 41c. As shown in FIG. 11, the radiation fins 41c are arranged at a position overlapping the power module 35 in the axial direction. The second surface 41b of the plate 41 is fixed to the base 42.
 プレート41には、レゾルバ用ハーネス27cが挿通されるハーネス貫通穴41d(挿通孔)が形成される。プレート41の外周面には、コイル端末25aが配置されるコイル溝部41eが形成される。6つのコイル溝部41eが、周方向に等間隔(60°間隔)に配置される。 A harness through hole 41d (insertion hole) through which the resolver harness 27c is inserted is formed in the plate 41. A coil groove 41e in which the coil end 25a is arranged is formed on the outer peripheral surface of the plate 41. Six coil grooves 41e are arranged at equal intervals (60° intervals) in the circumferential direction.
 図19に示されるように、プレート41の第1面41aには、第1放熱部材44が設けられている。第1放熱部材44は、六角形状である。図11に示されるように、第1放熱部材44は、プレート41とバスバー37との間に配置される。バスバー37は、第1放熱部材44を介して、プレート41と熱的に接続される。 As shown in FIG. 19, a first heat radiating member 44 is provided on the first surface 41a of the plate 41. The first heat radiating member 44 has a hexagonal shape. As shown in FIG. 11, the first heat radiating member 44 is arranged between the plate 41 and the bus bar 37. Bus bar 37 is thermally connected to plate 41 via first heat radiating member 44 .
 図21は、ベース42及び冷媒入口部43の斜視図である。図21に示されるように、ベース42は、第1面42aと、第2面と、複数の側面とを有する略多角形状である。例えば、ベース42の材質は、アルミニウムである。ベース42の材質は、適宜変更してもよい。図11に示されるように、ベース42は、コンデンサモジュール51(コンデンサユニット34)に、径方向の外側から囲まれる。ベース42の側面は、コンデンサモジュール51と径方向に対向する。
 ベース42の第1面42aには、プレート41が固定される。ベース42の第2面は、蓋部61に固定される。
FIG. 21 is a perspective view of the base 42 and the refrigerant inlet section 43. As shown in FIG. 21, the base 42 has a substantially polygonal shape having a first surface 42a, a second surface, and a plurality of side surfaces. For example, the material of the base 42 is aluminum. The material of the base 42 may be changed as appropriate. As shown in FIG. 11, the base 42 is surrounded by the capacitor module 51 (capacitor unit 34) from the outside in the radial direction. A side surface of the base 42 faces the capacitor module 51 in the radial direction.
A plate 41 is fixed to the first surface 42a of the base 42. The second surface of the base 42 is fixed to the lid part 61.
 ベース42の中央部には、レゾルバ用ハーネス27cが挿通されるハーネス貫通穴42b(挿通孔)が形成される。ベース42の側面には、軸方向に延びるコイル溝部42cが形成される。図19に示されるように、コイル溝部42cには、コイル端末25aが配置される。6つのコイル溝部42cが、周方向に等間隔(60°間隔)に形成される。コイル溝部42cには、熱伝導性を有する充填剤49が充填されている。コイル端末25aは、充填剤49により、コイル溝部42cに固定されている。コイル端末25aは、充填剤49を介して、ベース42と熱的に接続される。コイル端末25aにて発生する熱を、充填剤49を介してベース42へ放出することにより、コイル25を冷却することができる。 A harness through hole 42b (insertion hole) through which the resolver harness 27c is inserted is formed in the center of the base 42. A coil groove portion 42c extending in the axial direction is formed on the side surface of the base 42. As shown in FIG. 19, the coil terminal 25a is arranged in the coil groove 42c. Six coil grooves 42c are formed at equal intervals (60° intervals) in the circumferential direction. The coil groove portion 42c is filled with a filler 49 having thermal conductivity. The coil end 25a is fixed to the coil groove 42c by a filler 49. The coil terminal 25a is thermally connected to the base 42 via the filler 49. The coil 25 can be cooled by releasing heat generated at the coil terminal 25a to the base 42 via the filler 49.
 ベース42の側面には、コンデンサモジュール51を冷却するコンデンサ冷却部42eが設けられる。図19に示されるように、コンデンサ冷却部42eには、第2放熱部材45が設けられる。第2放熱部材45は、矩形状である。 A condenser cooling section 42e for cooling the condenser module 51 is provided on the side surface of the base 42. As shown in FIG. 19, a second heat radiating member 45 is provided in the condenser cooling section 42e. The second heat radiating member 45 has a rectangular shape.
 図6に示されるように、第2放熱部材45は、正極導体54の正極側被冷却部54e及び負極導体55の負極側被冷却部55eと径方向に対向するよう設けられる。正極側被冷却部54e及び負極側被冷却部55eは、第2放熱部材45に接触しており、第2放熱部材45を介して、コンデンサ冷却部42eと熱的に接続される。 As shown in FIG. 6, the second heat radiating member 45 is provided so as to face the positive side cooled portion 54e of the positive electrode conductor 54 and the negative side cooled portion 55e of the negative electrode conductor 55 in the radial direction. The positive side cooled part 54e and the negative side cooled part 55e are in contact with the second heat radiating member 45, and are thermally connected to the capacitor cooling part 42e via the second heat radiating member 45.
 図19に戻り、冷媒入口部43は、ベース42の側面に取り付けられる。冷媒入口部43は、ベース42から径方向の外側に突出して設けられる。冷媒入口部43は、ベース42と一体に形成される。冷媒入口部43の内部には、冷媒が流通する流路が形成される。冷媒入口部43は、外部から冷媒が供給される第1継手46と接続される。冷媒入口部43及び第1継手46は、回転電機ユニット1の前方側に配置される。 Returning to FIG. 19, the refrigerant inlet section 43 is attached to the side surface of the base 42. The refrigerant inlet portion 43 is provided to protrude radially outward from the base 42 . The refrigerant inlet portion 43 is formed integrally with the base 42. A flow path through which a refrigerant flows is formed inside the refrigerant inlet portion 43 . The refrigerant inlet portion 43 is connected to a first joint 46 to which refrigerant is supplied from the outside. The refrigerant inlet portion 43 and the first joint 46 are arranged on the front side of the rotating electrical machine unit 1.
 冷却器4には、冷媒が流通する第1冷却流路が形成される。冷媒としては、例えば、水(冷却水)が用いられる。図21に示されるように、第1冷却流路は、入口流路P1と、第1流路P2と、第2流路P3と、出口流路P4と、を有する。入口流路P1には、第1継手46から冷媒が供給される。第1流路P2、第2流路P3は、入口流路P1から分岐する。第1流路P2は、軸方向から見たときに、6つのパワーモジュール35のうち半数のパワーモジュール35(具体的には、パワーモジュール35U1、35V1、35W1)に重なる位置に形成される。第1流路P2は、入口流路P1から周方向における一方側に延びる。第2流路P3は、軸方向から見たときに、6つのパワーモジュール35のうちもう半数のパワーモジュール35(具体的には、パワーモジュール35U2、35V2、35W2)に重なる位置に形成される。第2流路P3は、入口流路P1から周方向における他方側に延びる。出口流路P4は、第1流路P2、第2流路P3からの冷媒が合流する。出口流路P4は、第2冷却部65の内部に形成される第2冷却流路と連通している。 A first cooling channel through which a refrigerant flows is formed in the cooler 4. For example, water (cooling water) is used as the refrigerant. As shown in FIG. 21, the first cooling channel includes an inlet channel P1, a first channel P2, a second channel P3, and an outlet channel P4. Refrigerant is supplied from the first joint 46 to the inlet flow path P1. The first flow path P2 and the second flow path P3 are branched from the inlet flow path P1. The first flow path P2 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1) when viewed from the axial direction. The first flow path P2 extends from the inlet flow path P1 to one side in the circumferential direction. The second flow path P3 is formed at a position overlapping the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2) when viewed from the axial direction. The second flow path P3 extends from the inlet flow path P1 to the other side in the circumferential direction. The refrigerant from the first flow path P2 and the second flow path P3 join together in the outlet flow path P4. The outlet flow path P4 communicates with a second cooling flow path formed inside the second cooling section 65.
 ベース42には、冷媒供給口42fと、環状溝部42gと、冷媒排出口42hと、が設けられる。 The base 42 is provided with a refrigerant supply port 42f, an annular groove 42g, and a refrigerant discharge port 42h.
 冷媒供給口42fは、ベース42の周壁を径方向に貫通する孔である。冷媒供給口42fの一端には、冷媒入口部43が接続される。冷媒供給口42fの他端は、環状溝部42gに接続される。冷媒入口部43及び冷媒供給口42fは、入口流路P1として用いられる。 The refrigerant supply port 42f is a hole that penetrates the peripheral wall of the base 42 in the radial direction. A refrigerant inlet portion 43 is connected to one end of the refrigerant supply port 42f. The other end of the refrigerant supply port 42f is connected to the annular groove 42g. The refrigerant inlet portion 43 and the refrigerant supply port 42f are used as the inlet flow path P1.
 冷媒排出口42hは、ベース42の周壁を径方向に貫通する孔である。冷媒排出口42hは、冷媒供給口42fに対して周方向の反対側に配置される。冷媒排出口42hの一端は、環状溝部42gに接続される。冷媒排出口42hの他端は、中継継手47に接続される。中継継手47は、冷媒排出口42hと、後述する内筒部62の開口部62cとを接続する。冷媒排出口42h及び中継継手47は、出口流路P4として用いられる。 The refrigerant discharge port 42h is a hole that penetrates the peripheral wall of the base 42 in the radial direction. The refrigerant discharge port 42h is arranged on the opposite side in the circumferential direction to the refrigerant supply port 42f. One end of the refrigerant outlet 42h is connected to the annular groove 42g. The other end of the refrigerant discharge port 42h is connected to the relay joint 47. The relay joint 47 connects the refrigerant discharge port 42h and an opening 62c of the inner cylinder portion 62, which will be described later. The refrigerant discharge port 42h and the relay joint 47 are used as the outlet flow path P4.
 図8に示されるように、冷媒入口部43は、コンデンサモジュール51の周方向における端部同士の2つの隙間のうち、前方側の隙間に配置される。冷媒排出口42h及び中継継手47は、コンデンサモジュール51の周方向における端部同士の2つの隙間のうち、後方側の隙間に配置される。すなわち、入口流路P1の少なくとも一部、及び出口流路P4の少なくとも一部は、コンデンサモジュール51の周方向における端部同士の間に配置される。出口流路P4は、軸心Oを挟んで、入口流路P1と径方向の反対側に配置される。 As shown in FIG. 8, the refrigerant inlet portion 43 is arranged in the front gap of the two gaps between the ends of the capacitor module 51 in the circumferential direction. The refrigerant discharge port 42h and the relay joint 47 are arranged in the rear gap of the two gaps between the ends of the capacitor module 51 in the circumferential direction. That is, at least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the capacitor module 51 in the circumferential direction. The outlet flow path P4 is arranged on the opposite side of the inlet flow path P1 in the radial direction with the axis O interposed therebetween.
 環状溝部42gは、ベース42の第1面42aに形成される。環状溝部42gは、周方向に延びており、軸方向から見て環状である。環状溝部42gは、ハーネス貫通穴42bを避けて形成される。冷媒供給口42f及び冷媒排出口42hは、環状溝部42gの径方向外側の側面に開口する。 The annular groove 42g is formed on the first surface 42a of the base 42. The annular groove 42g extends in the circumferential direction and is annular when viewed from the axial direction. The annular groove portion 42g is formed avoiding the harness through hole 42b. The refrigerant supply port 42f and the refrigerant discharge port 42h open on the radially outer side surface of the annular groove portion 42g.
 環状溝部42gは、冷媒供給口42fと冷媒排出口42hとに挟まれる一方側の部分である第1溝部42g1と、冷媒供給口42fと冷媒排出口42hとに挟まれる他方側の部分である第2溝部42g2と、を有する。第1溝部42g1は、6つのパワーモジュール35のうち半数のパワーモジュール35(具体的には、パワーモジュール35U1、35V1、35W1)の下方に設けられる。第2溝部42g2は、6つのパワーモジュール35のうちもう半数のパワーモジュール35(具体的には、パワーモジュール35U2、35V2、35W2)の下方に設けられる。 The annular groove portion 42g includes a first groove portion 42g1 which is a portion on one side sandwiched between the refrigerant supply port 42f and the refrigerant discharge port 42h, and a first groove portion 42g1 which is a portion on the other side sandwiched between the refrigerant supply port 42f and the refrigerant discharge port 42h. 2 groove portions 42g2. The first groove portion 42g1 is provided below half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1). The second groove portion 42g2 is provided below the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2).
 第1溝部42g1と、プレート41の第2面41bとにより、第1流路P2が形成される。第2溝部42g2と、プレート41の第2面41bとにより、第2流路P3が形成される。図11に示されるように、放熱フィン41cは、環状溝部42gの内部(すなわち、第1流路P2または第2流路P3)に配置される。 The first groove portion 42g1 and the second surface 41b of the plate 41 form a first flow path P2. The second groove portion 42g2 and the second surface 41b of the plate 41 form a second flow path P3. As shown in FIG. 11, the radiation fins 41c are arranged inside the annular groove 42g (ie, the first flow path P2 or the second flow path P3).
 第1継手46から供給される冷媒は、入口流路P1を通って、第1流路P2と、第2流路P3とに分岐される。パワーモジュール35U1、35V1、35W1にて発生する熱は、放熱フィン41cを介して、第1流路P2を流れる冷媒と熱交換される。これにより、パワーモジュール35U1、35V1、35W1が冷却される。パワーモジュール35U2、35V2、35W2にて発生する熱は、放熱フィン41cを介して、第2流路P3を流れる冷媒と熱交換される。これにより、パワーモジュール35U2、35V2、35W2が冷却される。 The refrigerant supplied from the first joint 46 passes through the inlet flow path P1 and is branched into a first flow path P2 and a second flow path P3. Heat generated in the power modules 35U1, 35V1, and 35W1 is exchanged with the refrigerant flowing through the first flow path P2 via the radiation fins 41c. Thereby, power modules 35U1, 35V1, and 35W1 are cooled. Heat generated in the power modules 35U2, 35V2, and 35W2 is exchanged with the refrigerant flowing through the second flow path P3 via the radiation fins 41c. Thereby, power modules 35U2, 35V2, and 35W2 are cooled.
 コンデンサモジュール51の正極側被冷却部54e及び負極側被冷却部55eは、第2放熱部材45を介して、コンデンサ冷却部42eと熱的に接続されている。コンデンサモジュール51(コンデンサ素子52)にて発生する熱は、正極側被冷却部54e及び負極側被冷却部55eに伝達され、コンデンサ冷却部42e及び第2放熱部材45を介して、第1流路P2及び第2流路P3を流れる冷媒と熱交換される。これにより、コンデンサモジュール51が冷却される。 The positive side cooled part 54e and the negative side cooled part 55e of the capacitor module 51 are thermally connected to the capacitor cooling part 42e via the second heat radiating member 45. The heat generated in the capacitor module 51 (capacitor element 52) is transmitted to the positive side cooled part 54e and the negative side cooled part 55e, and is transferred to the first flow path via the capacitor cooling part 42e and the second heat radiating member 45. Heat is exchanged with the refrigerant flowing through P2 and the second flow path P3. Thereby, the capacitor module 51 is cooled.
 バスバー37は、第1放熱部材44を介して、プレート41と熱的に接続されている。バスバー37にて発生する熱は、第1放熱部材44及びプレート41を介して、第1流路P2及び第2流路P3を流れる冷媒と熱交換される。これにより、バスバー37が冷却される。 The bus bar 37 is thermally connected to the plate 41 via the first heat radiating member 44. The heat generated in the bus bar 37 is exchanged with the refrigerant flowing through the first flow path P2 and the second flow path P3 via the first heat radiating member 44 and the plate 41. Thereby, the bus bar 37 is cooled.
 その後、第1流路P2、第2流路P3からの冷媒は、出口流路P4にて合流し、第2冷却部65へ向けて排出される。 Thereafter, the refrigerant from the first flow path P2 and the second flow path P3 join together at the outlet flow path P4 and are discharged toward the second cooling section 65.
<第2冷却部>
 図9、22を参照して、第2冷却部65について説明する。
 図9に示されるように、内筒部62と外筒部63とにより、第2冷却部65が構成される。第2冷却部65には、冷媒が流通する第2冷却流路が形成される。第2冷却流路は、内筒部62の外周面と外筒部63の内周面との間に形成される。
<Second cooling section>
The second cooling section 65 will be described with reference to FIGS. 9 and 22.
As shown in FIG. 9, the inner cylinder part 62 and the outer cylinder part 63 constitute a second cooling part 65. A second cooling channel through which a refrigerant flows is formed in the second cooling section 65 . The second cooling flow path is formed between the outer peripheral surface of the inner cylinder part 62 and the inner peripheral surface of the outer cylinder part 63.
 図22A及び22Bは、内筒部62の斜視図である。図22A及び22Bに示されるように、内筒部62は、円筒形状の本体部62aと、本体部62aの上端から径方向外側に突出するフランジ部62bとを有する。フランジ部62bには、開口部62cが形成されている。図9に示されるように、冷媒排出口42hと開口部62cとは、中継継手47により接続されている。 22A and 22B are perspective views of the inner cylinder portion 62. As shown in FIGS. 22A and 22B, the inner cylinder portion 62 includes a cylindrical main body portion 62a and a flange portion 62b that protrudes radially outward from the upper end of the main body portion 62a. An opening 62c is formed in the flange portion 62b. As shown in FIG. 9, the refrigerant discharge port 42h and the opening 62c are connected by a relay joint 47.
 第2冷却流路は、連通流路P5と、第3流路P6と、第4流路P7と、排出流路P8と、を有する。連通流路P5は、出口流路P4と連通する。第3流路P6及び第4流路P7は、連通流路P5から分岐する。第3流路P6は、連通流路P5から周方向における一方側に延びる。第4流路P7は、連通流路P5から周方向における他方側に延びる。排出流路P8は、第3流路P6及び第4流路P7からの冷媒が合流する。冷媒は、排出流路P8から外部に排出される。 The second cooling channel includes a communication channel P5, a third channel P6, a fourth channel P7, and a discharge channel P8. The communication channel P5 communicates with the outlet channel P4. The third flow path P6 and the fourth flow path P7 are branched from the communication flow path P5. The third flow path P6 extends from the communication flow path P5 to one side in the circumferential direction. The fourth flow path P7 extends from the communication flow path P5 to the other side in the circumferential direction. The refrigerant from the third flow path P6 and the fourth flow path P7 join together in the discharge flow path P8. The refrigerant is discharged to the outside from the discharge passage P8.
 本体部62aの外周面には、第1溝部62dと、第2溝部62eと、第3溝部62fと、第4溝部62gと、が形成される。 A first groove 62d, a second groove 62e, a third groove 62f, and a fourth groove 62g are formed on the outer peripheral surface of the main body 62a.
 第1溝部62dは、開口部62cの下方に形成される。第1溝部62dは、軸方向に延びる。第1溝部62dの上端は、開口部62cに連通する。第1溝部62dの下端は閉塞されている。外筒部63の内周面と、第1溝部62dとにより、連通流路P5が形成される。 The first groove portion 62d is formed below the opening portion 62c. The first groove portion 62d extends in the axial direction. The upper end of the first groove portion 62d communicates with the opening portion 62c. The lower end of the first groove portion 62d is closed. A communication channel P5 is formed by the inner circumferential surface of the outer cylinder portion 63 and the first groove portion 62d.
 第2溝部62eは、第1溝部62dに対して周方向の反対側に形成される。第2溝部62eは、軸方向に延びる。第2溝部62eの上端及び下端は閉塞している。第2溝部62eと、外筒部63の内周面とにより、排出流路P8が形成される。 The second groove portion 62e is formed on the opposite side in the circumferential direction to the first groove portion 62d. The second groove portion 62e extends in the axial direction. The upper and lower ends of the second groove portion 62e are closed. The second groove portion 62e and the inner circumferential surface of the outer cylinder portion 63 form a discharge flow path P8.
 第3溝部62fは、第1溝部62d及び第2溝部62eと接続される。第3溝部62fは、第1溝部62dから第2溝部62eまで、周方向における一方側に延びる。複数の第3溝部62fが、軸方向に間隔をあけて形成される。第3溝部62fと、外筒部63の内周面とにより、第3流路P6が形成される。 The third groove portion 62f is connected to the first groove portion 62d and the second groove portion 62e. The third groove portion 62f extends from the first groove portion 62d to the second groove portion 62e on one side in the circumferential direction. A plurality of third groove portions 62f are formed at intervals in the axial direction. The third groove portion 62f and the inner circumferential surface of the outer cylinder portion 63 form a third flow path P6.
 第4溝部62gは、第1溝部62d及び第2溝部62eと接続される。第4溝部62gは、第1溝部62dから第2溝部62eまで、周方向における他方側に延びる。複数の第4溝部62gが、軸方向に間隔をあけて形成される。第4溝部62gと、外筒部63の内周面とにより、第4流路P7が形成される。 The fourth groove 62g is connected to the first groove 62d and the second groove 62e. The fourth groove 62g extends from the first groove 62d to the second groove 62e on the other side in the circumferential direction. A plurality of fourth groove portions 62g are formed at intervals in the axial direction. The fourth groove portion 62g and the inner circumferential surface of the outer cylinder portion 63 form a fourth flow path P7.
 図9に示されるように、外筒部63の下端部には、外筒部63の周壁を径方向に貫通する開口部63aが形成される。開口部63aは、第2溝部62eと連通している。開口部63aは、外部へ冷媒を排出する第2継手48に接続される。なお、第2継手48は、回転電機ユニット1の前方側に配置される。 As shown in FIG. 9, an opening 63a that radially penetrates the peripheral wall of the outer cylinder 63 is formed at the lower end of the outer cylinder 63. The opening 63a communicates with the second groove 62e. The opening 63a is connected to the second joint 48 that discharges the refrigerant to the outside. Note that the second joint 48 is arranged on the front side of the rotating electrical machine unit 1.
 冷却器4の冷媒排出口42hから排出された冷媒は、中継継手47及び開口部62cを介して連通流路P5に流入する。冷媒は、連通流路P5を、開口部62cから、軸方向の下方に向けて(すなわち、出力側に向けて)流れつつ、第3流路P6と第4流路P7とに分岐される。第3流路P6を流れる冷媒は、回転電機2のうち、周方向の一方側の半分を冷却する。第4流路P7を流れる冷媒は、回転電機2のうち、周方向の他方側の半分を冷却する。複数の第3流路P6及び第4流路P7が軸方向に間隔をあけて設けられているため、第2冷却部65による回転電機2の冷却効率が向上する。その後、第3流路P6及び第4流路P7からの冷媒は、排出流路P8にて合流し、排出流路P8を下方に流れ、開口部63a及び第2継手48を介して外部に排出される。 The refrigerant discharged from the refrigerant outlet 42h of the cooler 4 flows into the communication passage P5 via the relay joint 47 and the opening 62c. The refrigerant flows through the communication flow path P5 from the opening 62c axially downward (that is, toward the output side), and is branched into the third flow path P6 and the fourth flow path P7. The refrigerant flowing through the third flow path P6 cools one half of the rotating electric machine 2 on one side in the circumferential direction. The refrigerant flowing through the fourth flow path P7 cools the other half of the rotating electric machine 2 in the circumferential direction. Since the plurality of third flow paths P6 and fourth flow paths P7 are provided at intervals in the axial direction, the cooling efficiency of the rotating electric machine 2 by the second cooling section 65 is improved. Thereafter, the refrigerant from the third flow path P6 and the fourth flow path P7 join together in the discharge flow path P8, flow downward through the discharge flow path P8, and are discharged to the outside via the opening 63a and the second joint 48. be done.
 以上説明したように、回転電機ユニット1は、回転電機2と、電力変換装置3と、冷媒が流通する第1冷却流路が形成され、電力変換装置3を冷却する冷却器4と、を備える。電力変換装置3は、複数のパワーモジュール35と、コンデンサユニット34と、を有する。第1冷却流路は、冷媒が供給される入口流路P1と、入口流路P1から分岐するとともに、軸方向から見たときに、複数のパワーモジュール35のうち第1群のパワーモジュール35に重なる位置に形成される第1流路P2と、入口流路P1から分岐するとともに、軸方向から見たときに、複数のパワーモジュール35のうち第1群と異なる第2群のパワーモジュール35に重なる位置に形成される第2流路P3と、第1流路P2、第2流路P3からの冷媒が合流するとともに、冷却器4から冷媒が排出される出口流路P4と、を有する。コンデンサユニット34は、冷却器4を径方向の外側から囲むように配置される。
 冷却器4により、電力変換装置3を冷却することができる。また、冷媒が、第1流路P2と第2流路P3とに分岐されて流通する。したがって、冷却流路を分岐せずに、1系統の冷却流路上に複数のパワーモジュール35を配置する場合と比べて、冷却流路の上流側と下流側との間で冷媒の温度が偏ることを抑制できる。したがって、複数のパワーモジュール35を均一的に冷却することができ、回転電機ユニット1の冷却性能を向上できる。また、この結果、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。さらに、コンデンサユニット34が、冷却器4を径方向の外側から囲むように配置されるため、例えばコンデンサユニットを冷却器の上方に配置する場合に比べて、回転電機ユニット1を軸方向において小型化することができる。
As described above, the rotating electrical machine unit 1 includes the rotating electrical machine 2, the power converter 3, and the cooler 4 in which the first cooling channel through which the refrigerant flows is formed and cools the power converter 3. . Power conversion device 3 includes a plurality of power modules 35 and a capacitor unit 34. The first cooling flow path branches from the inlet flow path P1 to which refrigerant is supplied, and when viewed from the axial direction, the first cooling flow path is connected to the first group of power modules 35 among the plurality of power modules 35. A first flow path P2 formed at an overlapping position branches from the inlet flow path P1, and when viewed from the axial direction, a second group of power modules 35 different from the first group among the plurality of power modules 35. It has a second flow path P3 formed at an overlapping position, and an outlet flow path P4 where the refrigerant from the first flow path P2 and the second flow path P3 join together and the refrigerant is discharged from the cooler 4. The condenser unit 34 is arranged to surround the cooler 4 from the outside in the radial direction.
The power conversion device 3 can be cooled by the cooler 4 . Further, the refrigerant is distributed in a branched manner into a first flow path P2 and a second flow path P3. Therefore, compared to the case where a plurality of power modules 35 are arranged on one cooling channel without branching the cooling channel, the temperature of the refrigerant is uneven between the upstream side and the downstream side of the cooling channel. can be suppressed. Therefore, the plurality of power modules 35 can be uniformly cooled, and the cooling performance of the rotating electric machine unit 1 can be improved. Moreover, as a result, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1. Furthermore, since the capacitor unit 34 is arranged to surround the cooler 4 from the outside in the radial direction, the rotating electric machine unit 1 can be made smaller in the axial direction than, for example, when the capacitor unit is arranged above the cooler. can do.
 また、複数のパワーモジュール35は、周方向に配置されている。第1流路P2は、入口流路P1から周方向における一方側に延び、第2流路P3は、入口流路P1から周方向における他方側に延びる。
 これにより、複数のパワーモジュール35を、より均一的かつ効率的に冷却することができる。
Further, the plurality of power modules 35 are arranged in the circumferential direction. The first flow path P2 extends from the inlet flow path P1 to one side in the circumferential direction, and the second flow path P3 extends from the inlet flow path P1 to the other side in the circumferential direction.
Thereby, the plurality of power modules 35 can be cooled more uniformly and efficiently.
 また、回転電機ユニット1は、冷媒が流通する第2冷却流路が形成され、回転電機2を冷却する第2冷却部65、をさらに備える。第2冷却流路は、出口流路P4と連通する連通流路P5と、連通流路P5から分岐するとともに、連通流路P5から周方向における一方側に延びる第3流路P6と、連通流路P5から分岐するとともに、連通流路P5から周方向における他方側に延びる第4流路P7と、第3流路P6及び第4流路P7からの冷媒が合流するとともに、第2冷却部65から冷媒が排出される排出流路P8と、を有する。
 冷却器4の第1冷却流路と第2冷却部65の第2冷却流路とが回転電機ユニット1内で連通しているため、回転電機ユニット1を小型化できる。さらに、第3流路P6を流れる冷媒によって、回転電機2のうち、周方向の一方側の半分を冷却し、第4流路P7を流れる冷媒によって、回転電機2のうち、周方向の他方側の半分を冷却できるため、第2冷却部65による回転電機2の冷却効率が向上する。
Further, the rotating electric machine unit 1 further includes a second cooling section 65 in which a second cooling channel through which a refrigerant flows is formed and cools the rotating electric machine 2. The second cooling channel includes a communication channel P5 that communicates with the outlet channel P4, a third channel P6 that branches from the communication channel P5 and extends from the communication channel P5 to one side in the circumferential direction, and a communication channel P6 that is branched from the communication channel P5 and extends from the communication channel P5 to one side in the circumferential direction. A fourth flow path P7 that branches from the path P5 and extends from the communication flow path P5 to the other side in the circumferential direction, and the refrigerants from the third flow path P6 and the fourth flow path P7 join together, and the second cooling section 65 and a discharge flow path P8 through which the refrigerant is discharged.
Since the first cooling channel of the cooler 4 and the second cooling channel of the second cooling section 65 communicate within the rotating electrical machine unit 1, the rotating electrical machine unit 1 can be downsized. Furthermore, the refrigerant flowing through the third flow path P6 cools one half of the rotating electrical machine 2 in the circumferential direction, and the refrigerant flowing through the fourth flow path P7 cools the other half of the rotating electrical machine 2 in the circumferential direction. Since the cooling efficiency of the rotating electrical machine 2 by the second cooling unit 65 is improved.
 また、冷却器4は、第1流路P2または第2流路P3に配置される複数の放熱フィン41cを有する。軸方向から見たときに、複数の放熱フィン41cは、複数のパワーモジュール35と重なる位置に配置される。
 これにより、冷却器4による、パワーモジュール35の冷却効率が向上する。この結果、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
Moreover, the cooler 4 has a plurality of heat radiation fins 41c arranged in the first flow path P2 or the second flow path P3. When viewed from the axial direction, the plurality of radiation fins 41c are arranged at positions overlapping with the plurality of power modules 35.
This improves the cooling efficiency of the power module 35 by the cooler 4. As a result, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
 また、コンデンサユニット34は、正極導体54と、負極導体55と、を有する。正極導体54は、コンデンサユニット34における径方向の内側に配置される正極側被冷却部54eを有する。負極導体55は、コンデンサユニット34における径方向の内側に配置される負極側被冷却部55eを有する。冷却器4は、冷却器4における径方向の外側に配置され、正極側被冷却部54e及び負極側被冷却部55eと熱的に接続されるコンデンサ冷却部42eを有する。
 コンデンサユニット34は、コンデンサユニット34における径方向の内側に配置され、コンデンサ冷却部42eと熱的に接続される正極側被冷却部54e及び負極側被冷却部55eを有する。これにより、コンデンサユニット34を径方向の内側から冷却することができる。また、例えばコンデンサユニットを軸方向の上側から冷却する場合と比べて、コンデンサユニット34を冷却する面積を広く設けることが可能となる。この結果、冷却器4による、コンデンサユニット34の冷却性能を向上でき、回転電機ユニット1の高出力化が可能となる。
 また、正極導体54及び負極導体55が熱伝導率の高い銅製である場合、コンデンサユニット34の冷却性能がより向上し、回転電機ユニット1の高出力化が可能となる。
 また、電流の流通経路ではない正極側被冷却部54e及び負極側被冷却部55eを用いて、コンデンサユニット34を冷却するため、コンデンサユニット34とパワーモジュール35との接続経路のインダクタンスが増加せず、パワーモジュール35に発生するサージ電圧を抑制できる。したがって、パワーモジュール35に、より大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
Further, the capacitor unit 34 includes a positive conductor 54 and a negative conductor 55. The positive conductor 54 has a positive cooled portion 54e that is disposed radially inside the capacitor unit 34. The negative electrode conductor 55 has a negative electrode side cooled portion 55e that is arranged radially inside the capacitor unit 34. The cooler 4 has a condenser cooling part 42e that is arranged on the outside of the cooler 4 in the radial direction and is thermally connected to the positive cooled part 54e and the negative cooled part 55e.
The capacitor unit 34 includes a positive cooled part 54e and a negative cooled part 55e, which are arranged inside the capacitor unit 34 in the radial direction and are thermally connected to the capacitor cooling part 42e. Thereby, the condenser unit 34 can be cooled from the inside in the radial direction. Furthermore, compared to, for example, the case where the condenser unit is cooled from the upper side in the axial direction, it is possible to provide a larger area for cooling the condenser unit 34. As a result, the cooling performance of the condenser unit 34 by the cooler 4 can be improved, and the output of the rotating electric machine unit 1 can be increased.
Furthermore, when the positive electrode conductor 54 and the negative electrode conductor 55 are made of copper having high thermal conductivity, the cooling performance of the capacitor unit 34 is further improved, and it becomes possible to increase the output of the rotating electric machine unit 1.
In addition, since the capacitor unit 34 is cooled using the positive side cooled part 54e and the negative side cooled part 55e, which are not current flow paths, the inductance of the connection path between the capacitor unit 34 and the power module 35 does not increase. , surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
 また、冷却器4は、正極側被冷却部54e及び負極側被冷却部55eと、コンデンサ冷却部42eとの間に設けられる第2放熱部材45を有する。
 これにより、冷却器4による、コンデンサユニット34の冷却効率が向上する。
Furthermore, the cooler 4 includes a second heat radiating member 45 provided between the positive side cooled part 54e, the negative side cooled part 55e, and the capacitor cooling part 42e.
This improves the cooling efficiency of the condenser unit 34 by the cooler 4.
 また、正極導体54は、複数の正極側被冷却部54eを有し、負極導体55は、複数の負極側被冷却部55eを有し、冷却器4は、複数のコンデンサ冷却部42eを有する。
 これにより、冷却器4による、コンデンサユニット34の冷却性能が更に向上する。
Further, the positive electrode conductor 54 has a plurality of positive electrode side cooled parts 54e, the negative electrode conductor 55 has a plurality of negative electrode side cooled parts 55e, and the cooler 4 has a plurality of capacitor cooling parts 42e.
This further improves the cooling performance of the condenser unit 34 by the cooler 4.
 また、コンデンサユニット34は、周方向に配置される複数のコンデンサモジュール51を含む。
 これにより、コンデンサモジュール51の各部材を成型するための金型等を小型化できるため、製造コストの低減が可能となる。また、コンデンサユニット34を複数のコンデンサモジュール51として運搬できるため、コンデンサユニット34が1つのコンデンサモジュールにより形成されている場合と比べて、例えば、運搬時にコンデンサユニット34を収容するトレイの省スペース化を図ることができ、運搬コストの低減が可能となる。
Further, the capacitor unit 34 includes a plurality of capacitor modules 51 arranged in the circumferential direction.
As a result, the molds and the like for molding each member of the capacitor module 51 can be downsized, making it possible to reduce manufacturing costs. Furthermore, since the capacitor unit 34 can be transported as a plurality of capacitor modules 51, compared to the case where the capacitor unit 34 is formed of one capacitor module, for example, the space of the tray that accommodates the capacitor unit 34 can be saved during transportation. This makes it possible to reduce transportation costs.
 また、複数のコンデンサモジュール51はそれぞれ、軸方向から見たときに、円弧状を有する。入口流路P1の少なくとも一部、及び出口流路P4の少なくとも一部は、複数のコンデンサモジュール51の周方向における端部同士の間に配置される。出口流路P4は、回転子22の軸心Oを挟んで、入口流路P1と径方向の反対側に配置される。
 入口流路P1の少なくとも一部、及び出口流路P4の少なくとも一部が、複数のコンデンサモジュール51の周方向における端部同士の間に配置されるため、回転電機ユニット1の小型化が可能となる。また、入口流路P1における冷媒の流通方向と、出口流路P4における冷媒の流通方向とを直線状に配置することができるため、入口流路P1及び出口流路P4における圧力損失を低減することができ、冷却器4の冷却性能を向上できる。
Furthermore, each of the plurality of capacitor modules 51 has an arc shape when viewed from the axial direction. At least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the plurality of capacitor modules 51 in the circumferential direction. The outlet flow path P4 is arranged on the opposite side of the inlet flow path P1 in the radial direction with the axis O of the rotor 22 interposed therebetween.
Since at least a portion of the inlet flow path P1 and at least a portion of the outlet flow path P4 are arranged between the ends of the plurality of capacitor modules 51 in the circumferential direction, it is possible to downsize the rotating electric machine unit 1. Become. Furthermore, since the direction of flow of the refrigerant in the inlet flow path P1 and the flow direction of the refrigerant in the outlet flow path P4 can be arranged in a straight line, pressure loss in the inlet flow path P1 and the outlet flow path P4 can be reduced. Therefore, the cooling performance of the cooler 4 can be improved.
 また、電力変換装置3は、複数のパワーモジュール35と複数のコイル25とをそれぞれ接続する複数のバスバー37をさらに有する。
 これにより、バスバー37を用いて、パワーモジュール35とコイル25とを容易に電気的に接続することができる。
Moreover, the power conversion device 3 further includes a plurality of bus bars 37 that connect the plurality of power modules 35 and the plurality of coils 25, respectively.
Thereby, the power module 35 and the coil 25 can be easily electrically connected using the bus bar 37.
 また、冷却器4は、複数のパワーモジュール35が取り付けられるプレート41と、複数のバスバー37とプレート41との間に設けられる第1放熱部材44と、をさらに有する。
 冷却器4により、バスバー37を冷却できる。したがって、バスバー37に、より大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
The cooler 4 further includes a plate 41 to which the plurality of power modules 35 are attached, and a first heat radiating member 44 provided between the plurality of bus bars 37 and the plate 41.
The bus bar 37 can be cooled by the cooler 4. Therefore, it becomes possible to input a larger amount of current to the bus bar 37, and it becomes possible to further increase the output of the rotating electric machine unit 1.
 また、冷却器4には、複数のコイル25がそれぞれ配置される複数のコイル溝部42cが形成されている。複数のコイル溝部42cには、熱伝導性を有する充填剤49が充填されている。
 コイル25にて発生する熱が、充填剤49を介して、冷却器4と熱交換されるため、冷却器4によってコイル25を冷却することができる。したがって、コイル25に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。また、充填剤49により、コイル25をコイル溝部42cに固定することができる。したがって、回転電機ユニット1の振動、回転電機ユニット1に加わる外力等によって、コイル25が破損したり、コイル25とパワーモジュール35との電気的な接続不良が生じたりすることを抑制でき、回転電機ユニット1の信頼性を向上できる。
Further, the cooler 4 is formed with a plurality of coil grooves 42c in which the plurality of coils 25 are respectively arranged. The plurality of coil grooves 42c are filled with a thermally conductive filler 49.
Since the heat generated in the coil 25 is exchanged with the cooler 4 via the filler 49, the coil 25 can be cooled by the cooler 4. Therefore, it becomes possible to input a large amount of current to the coil 25, and it becomes possible to increase the output of the rotating electric machine unit 1. Further, the filler 49 allows the coil 25 to be fixed to the coil groove 42c. Therefore, damage to the coil 25 or electrical connection failure between the coil 25 and the power module 35 due to vibration of the rotating electrical machine unit 1, external force applied to the rotating electrical machine unit 1, etc. can be suppressed, and the rotating electrical machine The reliability of unit 1 can be improved.
 また、冷却器4の中央部には、レゾルバ27のレゾルバ用ハーネス27cが挿通されるハーネス貫通穴41d、42bが形成されている。
 レゾルバ用ハーネス27cを冷却器4の中央部に配置することができるため、複数のパワーモジュール35を、例えば周方向に等間隔に配置することができ、パワーモジュール35の配置の自由度が向上する。したがって、例えば、複数のパワーモジュール35をより近接させて配置することができるなど、電力変換装置3における部材の実装密度を向上させることができ、回転電機ユニット1の小型化が可能となる。
Furthermore, harness through holes 41d and 42b are formed in the center of the cooler 4, into which the resolver harness 27c of the resolver 27 is inserted.
Since the resolver harness 27c can be arranged in the center of the cooler 4, a plurality of power modules 35 can be arranged, for example, at equal intervals in the circumferential direction, and the degree of freedom in arrangement of the power modules 35 is improved. . Therefore, for example, the plurality of power modules 35 can be arranged closer to each other, and the mounting density of members in the power conversion device 3 can be improved, and the rotating electric machine unit 1 can be downsized.
 また、コンデンサユニット34は、正極導体54と、負極導体55と、を有する。パワーモジュール35は、正極端子35bと、負極端子35cと、を有する。正極導体54から、複数のパワーモジュール35のうち第1のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体55までの第1経路の長さが、正極導体54から、複数のパワーモジュール35のうち第2のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体55までの第2経路の長さと略同一である。なお、第1経路の長さが第2経路の長さと略同一であるとは、第1経路の全長に対して、第1経路の長さと第2経路の長さとの差が、±5%の範囲内であることを意味する。
 これにより、第1のパワーモジュール35及び第2のパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
Further, the capacitor unit 34 includes a positive conductor 54 and a negative conductor 55. Power module 35 has a positive terminal 35b and a negative terminal 35c. The length of the first path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is the same as that of the plurality of power modules 35. This is approximately the same length as the second path to the negative conductor 55 via the positive terminal 35b and negative terminal 35c of the second power module 35 among the power modules 35. Note that the length of the first route is approximately the same as the length of the second route, which means that the difference between the length of the first route and the length of the second route is ±5% with respect to the total length of the first route. means within the range of
Thereby, the surge voltages generated in the first power module 35 and the second power module 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
 また、複数のパワーモジュール35の全てにおいて、正極導体54から、正極端子35b及び負極端子35cを経由した、負極導体55までの経路の長さが略同一である。
 これにより、全てのパワーモジュール35について、それぞれのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に、より大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
Further, in all of the plurality of power modules 35, the length of the path from the positive electrode conductor 54 to the negative electrode conductor 55 via the positive electrode terminal 35b and the negative electrode terminal 35c is approximately the same.
This makes it possible to equalize the surge voltage generated in each power module 35 for all power modules 35. Therefore, it becomes possible to input a larger amount of current to the power module 35, and it becomes possible to further increase the output of the rotating electric machine unit 1.
 また、冷却器4は、軸方向において、複数のパワーモジュール35よりも回転電機2側に配置される。
 これにより、回転電機2から発生する熱を冷却器4で遮断することができるため、回転電機2から発生する熱がパワーモジュール35に伝わることを防止できる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
Moreover, the cooler 4 is arranged closer to the rotating electric machine 2 than the plurality of power modules 35 in the axial direction.
Thereby, the heat generated from the rotating electric machine 2 can be cut off by the cooler 4, so that the heat generated from the rotating electric machine 2 can be prevented from being transmitted to the power module 35. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotating electric machine unit 1.
 また、コンデンサユニット34と冷却器4とは、径方向に対向している。
 これにより、冷却器4は、軸方向でパワーモジュール35を冷却し、径方向でコンデンサユニット34を冷却することができる。したがって、例えばコンデンサユニットを冷却器と軸方向に並んで配置する場合に比べて、回転電機ユニット1を軸方向において小型化することができる。
Further, the condenser unit 34 and the cooler 4 are radially opposed to each other.
Thereby, the cooler 4 can cool the power module 35 in the axial direction and the condenser unit 34 in the radial direction. Therefore, the rotating electric machine unit 1 can be made smaller in the axial direction, compared to, for example, a case where the capacitor unit and the cooler are arranged side by side in the axial direction.
実施の形態2.
 次に、実施の形態2に係る回転電機ユニット1について説明する。本実施の形態に係る回転電機ユニットは、基本的な構成は実施の形態1の回転電機ユニット1と同様であるため、異なる点を中心に説明する。図23は、本実施の形態に係るコンデンサモジュール51の収容ケース53Aの斜視図である。図24は、本実施の形態に係る回転電機ユニット1の断面図であって、図8のE-E線に沿った断面図である。
Embodiment 2.
Next, the rotating electric machine unit 1 according to the second embodiment will be explained. The basic configuration of the rotating electrical machine unit according to this embodiment is the same as that of the rotating electrical machine unit 1 of Embodiment 1, so the explanation will focus on the differences. FIG. 23 is a perspective view of the housing case 53A of the capacitor module 51 according to the present embodiment. FIG. 24 is a sectional view of the rotating electric machine unit 1 according to the present embodiment, and is a sectional view taken along line EE in FIG. 8.
 図23に示されるように、収容ケース53Aは、本体部531と、本体部531に固定される複数の押付部材532と、を有する。押付部材532は、本体部531の径方向内側を向く面に設けられている。押付部材532は、弾性を有する。押付部材532の上端部は、本体部531の径方向内側を向く面に固定されている。押付部材532の下端部には、径方向内側に向けて突出する突起が設けられている。本体部531および押付部材532の材質は、例えば、樹脂である。本体部531および押付部材532は、一体成型されている。なお、押付部材532は、本体部531の径方向内側を向く面に、接着剤を用いて取り付けられてもよい。 As shown in FIG. 23, the storage case 53A includes a main body 531 and a plurality of pressing members 532 fixed to the main body 531. The pressing member 532 is provided on a surface of the main body portion 531 facing radially inward. The pressing member 532 has elasticity. An upper end portion of the pressing member 532 is fixed to a surface of the main body portion 531 facing radially inward. A protrusion that protrudes radially inward is provided at the lower end of the pressing member 532. The material of the main body portion 531 and the pressing member 532 is, for example, resin. The main body portion 531 and the pressing member 532 are integrally molded. Note that the pressing member 532 may be attached to the surface of the main body portion 531 facing inward in the radial direction using an adhesive.
 図24に示されるように、押付部材532の径方向内側には、正極側被冷却部54e及び負極側被冷却部55eが配置される。より具体的には、本体部531と、押付部材532と、正極側被冷却部54eまたは負極側被冷却部55eと、第2放熱部材45と、ベース42(コンデンサ冷却部42e)とは、径方向の外側から内側に向かい、この順で配置される。押付部材532の下端部は、正極側被冷却部54e及び負極側被冷却部55eに径方向外側から当接する。このとき、押付部材532の下端部は、径方向外側に向けて弾性変形されている。押付部材532の弾性力により、正極側被冷却部54e及び負極側被冷却部55eは、第2放熱部材45に押し付けられている。 As shown in FIG. 24, a positive cooled part 54e and a negative cooled part 55e are arranged inside the pressing member 532 in the radial direction. More specifically, the main body part 531, the pressing member 532, the positive side cooled part 54e or the negative side cooled part 55e, the second heat radiating member 45, and the base 42 (condenser cooling part 42e) have a diameter. They are arranged in this order from the outside to the inside. The lower end portion of the pressing member 532 contacts the positive cooled portion 54e and the negative cooled portion 55e from the outside in the radial direction. At this time, the lower end portion of the pressing member 532 is elastically deformed radially outward. Due to the elastic force of the pressing member 532, the positive side cooled portion 54e and the negative side cooled portion 55e are pressed against the second heat radiating member 45.
 以上説明したように、本実施の形態では、コンデンサユニット34は、正極側被冷却部54e及び負極側被冷却部55eを、第2放熱部材45に押し付ける押付部材532を有する。これにより、正極側被冷却部54e及び負極側被冷却部55eと、第2放熱部材45との密着性が向上するため、コンデンサユニット34の冷却性能を向上でき、回転電機ユニット1の高出力化が可能となる。 As described above, in this embodiment, the capacitor unit 34 includes the pressing member 532 that presses the positive side cooled part 54e and the negative side cooled part 55e against the second heat radiating member 45. This improves the adhesion between the positive electrode side cooled part 54e and the negative electrode side cooled part 55e and the second heat radiating member 45, so that the cooling performance of the capacitor unit 34 can be improved, and the output of the rotating electric machine unit 1 can be increased. becomes possible.
 なお、本開示の技術的範囲は前記実施の形態に限定されず、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the technical scope of the present disclosure is not limited to the embodiments described above, and various changes can be made without departing from the spirit of the present disclosure.
 例えば、回転電機ユニット1は、6相以上の多相駆動方式の回転電機ユニットであってもよい。
 コンデンサユニット34は、1つのコンデンサモジュール51のみで構成されていてもよい。コンデンサユニット34は、3つ以上のコンデンサモジュール51を有していてもよい。
For example, the rotating electric machine unit 1 may be a multi-phase drive type rotating electric machine unit with six or more phases.
The capacitor unit 34 may be composed of only one capacitor module 51. The capacitor unit 34 may include three or more capacitor modules 51.
 以下、本開示の諸態様を付記としてまとめて記載する。 Hereinafter, various aspects of the present disclosure will be collectively described as supplementary notes.
 (付記1)
 固定子と、前記固定子に対して軸心回りに回転する回転子と、前記固定子に巻装される複数のコイルと、を有する回転電機と、
 前記回転子の軸心に沿った軸方向において、前記回転電機と並んで配置される電力変換装置と、
 冷媒が流通する第1冷却流路が形成され、前記電力変換装置を冷却する第1冷却部と、
を備え、
 前記電力変換装置は、前記複数のコイルとそれぞれ電気的に接続される複数のパワーモジュールと、前記複数のパワーモジュールと電気的に接続されるコンデンサユニットと、を有し、
 前記第1冷却流路は、
  前記冷媒が供給される入口流路と、
  前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち第1群のパワーモジュールに重なる位置に形成される第1流路と、
  前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち前記第1群と異なる第2群のパワーモジュールに重なる位置に形成される第2流路と、
  前記第1流路、前記第2流路からの前記冷媒が合流するとともに、前記第1冷却部から前記冷媒が排出される出口流路と、を有しており、
 前記コンデンサユニットは、前記第1冷却部を径方向の外側から囲むように配置される、回転電機ユニット。
(Additional note 1)
A rotating electric machine including a stator, a rotor that rotates around an axis relative to the stator, and a plurality of coils wound around the stator;
a power conversion device arranged in parallel with the rotating electric machine in an axial direction along the axis of the rotor;
a first cooling section in which a first cooling channel through which a refrigerant flows is formed to cool the power converter;
Equipped with
The power conversion device includes a plurality of power modules each electrically connected to the plurality of coils, and a capacitor unit electrically connected to the plurality of power modules,
The first cooling channel is
an inlet channel through which the refrigerant is supplied;
a first flow path that branches from the inlet flow path and is formed at a position overlapping a first group of power modules among the plurality of power modules when viewed from the axial direction;
a second flow path that branches from the inlet flow path and is formed at a position overlapping a second group of power modules different from the first group among the plurality of power modules when viewed from the axial direction;
It has an outlet flow path through which the refrigerant from the first flow path and the second flow path joins together, and through which the refrigerant is discharged from the first cooling section,
The capacitor unit is a rotating electrical machine unit arranged so as to surround the first cooling section from the outside in a radial direction.
 (付記2)
 前記複数のパワーモジュールは、前記回転子の軸心回りの周方向に配置されており、
 前記第1流路は、前記入口流路から前記周方向における一方側に延び、前記第2流路は、前記入口流路から前記周方向における他方側に延びる、付記1に記載の回転電機ユニット。
(Additional note 2)
The plurality of power modules are arranged in a circumferential direction around the axis of the rotor,
The rotating electric machine unit according to supplementary note 1, wherein the first flow path extends from the inlet flow path to one side in the circumferential direction, and the second flow path extends from the inlet flow path to the other side in the circumferential direction. .
 (付記3)
 冷媒が流通する第2冷却流路が形成され、前記回転電機を冷却する第2冷却部、
をさらに備え、
 前記第2冷却流路は、
  前記出口流路と連通する連通流路と、
  前記連通流路から分岐するとともに、前記連通流路から周方向における一方側に延びる第3流路と、
  前記連通流路から分岐するとともに、前記連通流路から前記周方向における他方側に延びる第4流路と、
  前記第3流路及び前記第4流路からの前記冷媒が合流するとともに、前記第2冷却部から前記冷媒が排出される排出流路と、
を有する、付記1または2に記載の回転電機ユニット。
(Additional note 3)
a second cooling section in which a second cooling channel through which a refrigerant flows is formed and cools the rotating electric machine;
Furthermore,
The second cooling channel is
a communication flow path communicating with the outlet flow path;
a third flow path branching from the communication flow path and extending from the communication flow path to one side in the circumferential direction;
a fourth flow path that branches from the communication flow path and extends from the communication flow path to the other side in the circumferential direction;
a discharge flow path through which the refrigerant from the third flow path and the fourth flow path merge and the refrigerant is discharged from the second cooling section;
The rotating electrical machine unit according to Supplementary Note 1 or 2, which has:
 (付記4)
 前記第1冷却部は、前記第1流路または前記第2流路に配置される複数の放熱フィンを有し、
 前記軸方向から見たときに、前記複数の放熱フィンは、前記複数のパワーモジュールと重なる位置に配置される、付記1~3のいずれか一つに記載の回転電機ユニット。
(Additional note 4)
The first cooling unit has a plurality of heat radiation fins arranged in the first flow path or the second flow path,
The rotating electric machine unit according to any one of appendices 1 to 3, wherein the plurality of heat radiation fins are arranged at positions overlapping with the plurality of power modules when viewed from the axial direction.
 (付記5)
 前記コンデンサユニットは、正極導体と、負極導体と、を有し、
 前記正極導体は、前記コンデンサユニットにおける径方向の内側に配置される正極側被冷却部を有し、
 前記負極導体は、前記コンデンサユニットにおける径方向の内側に配置される負極側被冷却部を有し、
 前記第1冷却部は、前記第1冷却部における径方向の外側に配置され、前記正極側被冷却部及び前記負極側被冷却部と熱的に接続されるコンデンサ冷却部を有する、付記1~4のいずれか一つに記載の回転電機ユニット。
(Appendix 5)
The capacitor unit has a positive conductor and a negative conductor,
The positive electrode conductor has a positive electrode side cooled portion disposed on the radially inner side of the capacitor unit,
The negative electrode conductor has a negative electrode side cooled part disposed on the radially inner side of the capacitor unit,
Supplementary notes 1 to 3, wherein the first cooling section has a condenser cooling section that is disposed radially outside the first cooling section and is thermally connected to the positive side cooled section and the negative side cooled section. 4. The rotating electric machine unit according to any one of 4.
 (付記6)
 前記第1冷却部は、前記正極側被冷却部及び前記負極側被冷却部と、前記コンデンサ冷却部との間に設けられるコンデンサ放熱部材を有する、付記5に記載の回転電機ユニット。
(Appendix 6)
The rotating electric machine unit according to supplementary note 5, wherein the first cooling section includes a capacitor heat dissipation member provided between the positive electrode side cooled section, the negative electrode side cooled section, and the capacitor cooling section.
 (付記7)
 前記正極導体は、前記正極側被冷却部として、複数の正極側被冷却部を有し、
 前記負極導体は、前記負極側被冷却部として、複数の負極側被冷却部を有し、
 前記第1冷却部は、前記コンデンサ冷却部として、複数のコンデンサ冷却部を有する、付記5または6に記載の回転電機ユニット。
(Appendix 7)
The positive electrode conductor has a plurality of positive electrode side cooled parts as the positive electrode side cooled parts,
The negative electrode conductor has a plurality of negative electrode side cooled parts as the negative electrode side cooled parts,
The rotating electric machine unit according to appendix 5 or 6, wherein the first cooling section includes a plurality of capacitor cooling sections as the capacitor cooling section.
 (付記8)
 前記コンデンサユニットは、周方向に配置される複数のコンデンサモジュールを含む、付記1~7のいずれか一つに記載の回転電機ユニット。
(Appendix 8)
8. The rotating electric machine unit according to any one of appendices 1 to 7, wherein the capacitor unit includes a plurality of capacitor modules arranged in a circumferential direction.
 (付記9)
 前記複数のコンデンサモジュールはそれぞれ、前記軸方向から見たときに、円弧状を有しており、
 前記入口流路の少なくとも一部、及び前記出口流路の少なくとも一部は、前記複数のコンデンサモジュールの前記周方向における端部同士の間に配置され、
 前記出口流路は、前記回転子の軸心を挟んで、前記入口流路と径方向の反対側に配置される、付記8に記載の回転電機ユニット。
(Appendix 9)
Each of the plurality of capacitor modules has an arc shape when viewed from the axial direction,
At least a portion of the inlet flow path and at least a portion of the outlet flow path are arranged between the ends of the plurality of capacitor modules in the circumferential direction,
The rotating electrical machine unit according to appendix 8, wherein the outlet flow path is disposed on the opposite side of the inlet flow path in the radial direction with the axis of the rotor interposed therebetween.
 (付記10)
 前記電力変換装置は、前記複数のパワーモジュールと前記複数のコイルとをそれぞれ接続する複数のバスバーをさらに有する、付記1~9のいずれか一つに記載の回転電機ユニット。
(Appendix 10)
The rotating electric machine unit according to any one of Supplementary Notes 1 to 9, wherein the power conversion device further includes a plurality of bus bars that respectively connect the plurality of power modules and the plurality of coils.
 (付記11)
 前記第1冷却部は、前記複数のパワーモジュールが取り付けられるプレートと、前記複数のバスバーと前記プレートとの間に設けられるバスバー放熱部材と、をさらに有する、付記10に記載の回転電機ユニット。
(Appendix 11)
The rotating electric machine unit according to appendix 10, wherein the first cooling unit further includes a plate to which the plurality of power modules are attached, and a busbar heat dissipation member provided between the plurality of busbars and the plate.
 (付記12)
 前記第1冷却部には、前記複数のコイルがそれぞれ配置される複数のコイル溝部が形成されており、
 前記複数のコイル溝部には、熱伝導性を有する充填材が充填されている、付記1~11のいずれか一つに記載の回転電機ユニット。
(Appendix 12)
A plurality of coil grooves are formed in the first cooling part, in which the plurality of coils are respectively disposed,
The rotating electric machine unit according to any one of appendices 1 to 11, wherein the plurality of coil grooves are filled with a thermally conductive filler.
 (付記13)
 前記回転電機は、前記固定子と前記パワーモジュールとの間に配置され、前記回転子の中心に配置されるシャフトの回転角を検出するレゾルバ、をさらに有し、
 前記第1冷却部の中央部には、前記レゾルバの信号線が挿通される挿通孔が形成されている、付記1~12のいずれか一つに記載の回転電機ユニット。
(Appendix 13)
The rotating electric machine further includes a resolver arranged between the stator and the power module and detecting a rotation angle of a shaft arranged at the center of the rotor,
The rotating electric machine unit according to any one of appendices 1 to 12, wherein an insertion hole through which a signal line of the resolver is inserted is formed in the center of the first cooling section.
 (付記14)
 前記コンデンサユニットは、正極導体と、負極導体と、を有し、
 前記複数のパワーモジュールはそれぞれ、前記正極導体と接続される正極端子と、前記負極導体と接続される負極端子と、を有し、
 前記正極導体から、前記複数のパワーモジュールのうち第1のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第1経路の長さが、前記正極導体から、前記複数のパワーモジュールのうち第2のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第2経路の長さと略同一である、付記1~13のいずれか一つに記載の回転電機ユニット。
(Appendix 14)
The capacitor unit has a positive conductor and a negative conductor,
Each of the plurality of power modules has a positive terminal connected to the positive conductor, and a negative terminal connected to the negative conductor,
The length of the first path from the positive conductor to the negative conductor via the positive terminal and the negative terminal of the first power module among the plurality of power modules is The rotation according to any one of Supplementary Notes 1 to 13, which is approximately the same as the length of the second path to the negative conductor via the positive terminal and the negative terminal of a second power module among the power modules. electrical unit.
 (付記15)
 前記複数のパワーモジュールの全てにおいて、前記正極導体から、前記正極端子及び前記負極端子を経由した、前記負極導体までの経路の長さが略同一である、付記14に記載の回転電機ユニット。
(Appendix 15)
The rotating electrical machine unit according to appendix 14, wherein the length of the path from the positive conductor to the negative conductor via the positive terminal and the negative terminal is approximately the same in all of the plurality of power modules.
 (付記16)
 前記第1冷却部は、前記軸方向において、前記複数のパワーモジュールよりも前記回転電機側に配置される、付記1~15のいずれか一つに記載の回転電機ユニット。
(Appendix 16)
16. The rotating electric machine unit according to any one of appendices 1 to 15, wherein the first cooling unit is arranged closer to the rotating electric machine than the plurality of power modules in the axial direction.
 (付記17)
 前記コンデンサユニットと前記第1冷却部とは、径方向に対向している、付記1~16のいずれか一つに記載の回転電機ユニット。
(Appendix 17)
17. The rotating electrical machine unit according to any one of appendices 1 to 16, wherein the capacitor unit and the first cooling section are radially opposed to each other.
 (付記18)
 前記コンデンサユニットは、前記正極側被冷却部及び前記負極側被冷却部を、前記コンデンサ放熱部材に押し付ける押付部材を有する、付記6または7に記載の回転電機ユニット。
(Appendix 18)
The rotating electric machine unit according to appendix 6 or 7, wherein the capacitor unit includes a pressing member that presses the positive electrode side cooled part and the negative electrode side cooled part against the capacitor heat radiating member.
1 回転電機ユニット
2 回転電機
3 電力変換装置
21 固定子
22 回転子
23 シャフト
25 コイル
27 レゾルバ
34 コンデンサユニット
35 パワーモジュール
35b 正極端子
35c 負極端子
37 バスバー
41 プレート
41c 放熱フィン
42 ベース
42c コイル溝部
42e コンデンサ冷却部
44 第1放熱部材(バスバー放熱部材)
45 第2放熱部材(コンデンサ放熱部材)
51 コンデンサモジュール
54 正極導体
54e 正極側被冷却部
55 負極導体
55e 負極側被冷却部
65 第2冷却部
532 押付部材
O 軸心
P1 入口流路
P2 第1流路
P3 第2流路
P4 出口流路
P5 連通流路
P6 第3流路
P7 第4流路
P8 排出流路
1 Rotating electrical machine unit 2 Rotating electrical machine 3 Power converter 21 Stator 22 Rotor 23 Shaft 25 Coil 27 Resolver 34 Capacitor unit 35 Power module 35b Positive terminal 35c Negative terminal 37 Bus bar 41 Plate 41c Radiation fin 42 Base 42c Coil groove 42e Capacitor cooling Part 44 First heat radiating member (busbar heat radiating member)
45 Second heat dissipation member (capacitor heat dissipation member)
51 Capacitor module 54 Positive electrode conductor 54e Positive electrode side cooled part 55 Negative electrode conductor 55e Negative electrode side cooled part 65 Second cooling part 532 Pressing member O Axis center P1 Inlet flow path P2 First flow path P3 Second flow path P4 Outlet flow path P5 Communication channel P6 Third channel P7 Fourth channel P8 Discharge channel

Claims (18)

  1.  固定子と、前記固定子に対して軸心回りに回転する回転子と、前記固定子に巻装される複数のコイルと、を有する回転電機と、
     前記回転子の軸心に沿った軸方向において、前記回転電機と並んで配置される電力変換装置と、
     冷媒が流通する第1冷却流路が形成され、前記電力変換装置を冷却する第1冷却部と、
    を備え、
     前記電力変換装置は、前記複数のコイルとそれぞれ電気的に接続される複数のパワーモジュールと、前記複数のパワーモジュールと電気的に接続されるコンデンサユニットと、を有し、
     前記第1冷却流路は、
      前記冷媒が供給される入口流路と、
      前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち第1群のパワーモジュールに重なる位置に形成される第1流路と、
      前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち前記第1群と異なる第2群のパワーモジュールに重なる位置に形成される第2流路と、
      前記第1流路、前記第2流路からの前記冷媒が合流するとともに、前記第1冷却部から前記冷媒が排出される出口流路と、を有しており、
     前記コンデンサユニットは、前記第1冷却部を径方向の外側から囲むように配置される、回転電機ユニット。
    A rotating electric machine including a stator, a rotor that rotates around an axis relative to the stator, and a plurality of coils wound around the stator;
    a power conversion device arranged in parallel with the rotating electric machine in an axial direction along the axis of the rotor;
    a first cooling section in which a first cooling channel through which a refrigerant flows is formed to cool the power converter;
    Equipped with
    The power conversion device includes a plurality of power modules each electrically connected to the plurality of coils, and a capacitor unit electrically connected to the plurality of power modules,
    The first cooling channel is
    an inlet channel through which the refrigerant is supplied;
    a first flow path that branches from the inlet flow path and is formed at a position overlapping a first group of power modules among the plurality of power modules when viewed from the axial direction;
    a second flow path that branches from the inlet flow path and is formed at a position overlapping a second group of power modules different from the first group among the plurality of power modules when viewed from the axial direction;
    It has an outlet flow path through which the refrigerant from the first flow path and the second flow path joins together, and through which the refrigerant is discharged from the first cooling section,
    The capacitor unit is a rotating electric machine unit arranged so as to surround the first cooling section from the outside in a radial direction.
  2.  前記複数のパワーモジュールは、前記回転子の軸心回りの周方向に配置されており、
     前記第1流路は、前記入口流路から前記周方向における一方側に延び、前記第2流路は、前記入口流路から前記周方向における他方側に延びる、請求項1に記載の回転電機ユニット。
    The plurality of power modules are arranged in a circumferential direction around the axis of the rotor,
    The rotating electric machine according to claim 1, wherein the first flow path extends from the inlet flow path to one side in the circumferential direction, and the second flow path extends from the inlet flow path to the other side in the circumferential direction. unit.
  3.  冷媒が流通する第2冷却流路が形成され、前記回転電機を冷却する第2冷却部、
    をさらに備え、
     前記第2冷却流路は、
      前記出口流路と連通する連通流路と、
      前記連通流路から分岐するとともに、前記連通流路から周方向における一方側に延びる第3流路と、
      前記連通流路から分岐するとともに、前記連通流路から前記周方向における他方側に延びる第4流路と、
      前記第3流路及び前記第4流路からの前記冷媒が合流するとともに、前記第2冷却部から前記冷媒が排出される排出流路と、
    を有する、請求項1または2に記載の回転電機ユニット。
    a second cooling section in which a second cooling channel through which a refrigerant flows is formed and cools the rotating electric machine;
    Furthermore,
    The second cooling channel is
    a communication flow path communicating with the outlet flow path;
    a third flow path branching from the communication flow path and extending from the communication flow path to one side in the circumferential direction;
    a fourth flow path that branches from the communication flow path and extends from the communication flow path to the other side in the circumferential direction;
    a discharge flow path through which the refrigerant from the third flow path and the fourth flow path merge and the refrigerant is discharged from the second cooling section;
    The rotating electric machine unit according to claim 1 or 2, comprising:
  4.  前記第1冷却部は、前記第1流路または前記第2流路に配置される複数の放熱フィンを有し、
     前記軸方向から見たときに、前記複数の放熱フィンは、前記複数のパワーモジュールと重なる位置に配置される、請求項1または2に記載の回転電機ユニット。
    The first cooling unit has a plurality of heat radiation fins arranged in the first flow path or the second flow path,
    The rotating electric machine unit according to claim 1 , wherein the plurality of heat radiation fins are arranged at positions overlapping with the plurality of power modules when viewed from the axial direction.
  5.  前記コンデンサユニットは、正極導体と、負極導体と、を有し、
     前記正極導体は、前記コンデンサユニットにおける径方向の内側に配置される正極側被冷却部を有し、
     前記負極導体は、前記コンデンサユニットにおける径方向の内側に配置される負極側被冷却部を有し、
     前記第1冷却部は、前記第1冷却部における径方向の外側に配置され、前記正極側被冷却部及び前記負極側被冷却部と熱的に接続されるコンデンサ冷却部を有する、請求項1に記載の回転電機ユニット。
    The capacitor unit has a positive conductor and a negative conductor,
    The positive electrode conductor has a positive electrode side cooled portion disposed on the radially inner side of the capacitor unit,
    The negative electrode conductor has a negative electrode side cooled part disposed on the radially inner side of the capacitor unit,
    1 . The first cooling section includes a capacitor cooling section that is arranged radially outside the first cooling section and is thermally connected to the positive side cooled section and the negative side cooled section. The rotating electric machine unit described in .
  6.  前記第1冷却部は、前記正極側被冷却部及び前記負極側被冷却部と、前記コンデンサ冷却部との間に設けられるコンデンサ放熱部材を有する、請求項5に記載の回転電機ユニット。 The rotating electric machine unit according to claim 5, wherein the first cooling section includes a capacitor heat dissipation member provided between the positive electrode side cooled section, the negative electrode side cooled section, and the capacitor cooling section.
  7.  前記正極導体は、前記正極側被冷却部として、複数の正極側被冷却部を有し、
     前記負極導体は、前記負極側被冷却部として、複数の負極側被冷却部を有し、
     前記第1冷却部は、前記コンデンサ冷却部として、複数のコンデンサ冷却部を有する、請求項5または6に記載の回転電機ユニット。
    The positive electrode conductor has a plurality of positive electrode side cooled parts as the positive electrode side cooled parts,
    The negative electrode conductor has a plurality of negative electrode side cooled parts as the negative electrode side cooled parts,
    The rotating electric machine unit according to claim 5 , wherein the first cooling unit includes a plurality of capacitor cooling units as the capacitor cooling unit.
  8.  前記コンデンサユニットは、周方向に配置される複数のコンデンサモジュールを含む、請求項1または2に記載の回転電機ユニット。 The rotating electric machine unit according to claim 1 or 2, wherein the capacitor unit includes a plurality of capacitor modules arranged in a circumferential direction.
  9.  前記複数のコンデンサモジュールはそれぞれ、前記軸方向から見たときに、円弧状を有しており、
     前記入口流路の少なくとも一部、及び前記出口流路の少なくとも一部は、前記複数のコンデンサモジュールの前記周方向における端部同士の間に配置され、
     前記出口流路は、前記回転子の軸心を挟んで、前記入口流路と径方向の反対側に配置される、請求項8に記載の回転電機ユニット。
    Each of the plurality of capacitor modules has an arc shape when viewed from the axial direction,
    At least a portion of the inlet flow path and at least a portion of the outlet flow path are arranged between the ends of the plurality of capacitor modules in the circumferential direction,
    The rotating electric machine unit according to claim 8, wherein the outlet flow path is arranged on the opposite side in the radial direction from the inlet flow path with the axis of the rotor interposed therebetween.
  10.  前記電力変換装置は、前記複数のパワーモジュールと前記複数のコイルとをそれぞれ接続する複数のバスバーをさらに有する、請求項1または2に記載の回転電機ユニット。 The rotating electric machine unit according to claim 1 or 2, wherein the power conversion device further includes a plurality of bus bars that respectively connect the plurality of power modules and the plurality of coils.
  11.  前記第1冷却部は、前記複数のパワーモジュールが取り付けられるプレートと、前記複数のバスバーと前記プレートとの間に設けられるバスバー放熱部材と、をさらに有する、請求項10に記載の回転電機ユニット。 The rotating electrical machine unit according to claim 10, wherein the first cooling unit further includes a plate to which the plurality of power modules are attached, and a busbar heat dissipation member provided between the plurality of busbars and the plate.
  12.  前記第1冷却部には、前記複数のコイルがそれぞれ配置される複数のコイル溝部が形成されており、
     前記複数のコイル溝部には、熱伝導性を有する充填材が充填されている、請求項1または2に記載の回転電機ユニット。
    A plurality of coil grooves are formed in the first cooling part, in which the plurality of coils are respectively disposed,
    The rotating electric machine unit according to claim 1 or 2, wherein the plurality of coil grooves are filled with a thermally conductive filler.
  13.  前記回転電機は、前記固定子と前記パワーモジュールとの間に配置され、前記回転子の中心に配置されるシャフトの回転角を検出するレゾルバ、をさらに有し、
     前記第1冷却部の中央部には、前記レゾルバの信号線が挿通される挿通孔が形成されている、請求項1または2に記載の回転電機ユニット。
    The rotating electric machine further includes a resolver arranged between the stator and the power module and detecting a rotation angle of a shaft arranged at the center of the rotor,
    3. The rotating electric machine unit according to claim 1, wherein an insertion hole through which a signal line of the resolver is inserted is formed in a central portion of the first cooling section.
  14.  前記コンデンサユニットは、正極導体と、負極導体と、を有し、
     前記複数のパワーモジュールはそれぞれ、前記正極導体と接続される正極端子と、前記負極導体と接続される負極端子と、を有し、
     前記正極導体から、前記複数のパワーモジュールのうち第1のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第1経路の長さが、前記正極導体から、前記複数のパワーモジュールのうち第2のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第2経路の長さと略同一である、請求項1または2に記載の回転電機ユニット。
    The capacitor unit has a positive conductor and a negative conductor,
    Each of the plurality of power modules has a positive terminal connected to the positive conductor, and a negative terminal connected to the negative conductor,
    The length of the first path from the positive conductor to the negative conductor via the positive terminal and the negative terminal of the first power module among the plurality of power modules is The rotating electric machine unit according to claim 1 or 2, wherein the length of the second path to the negative electrode conductor via the positive electrode terminal and the negative electrode terminal of a second power module among the power modules is approximately the same.
  15.  前記複数のパワーモジュールの全てにおいて、前記正極導体から、前記正極端子及び前記負極端子を経由した、前記負極導体までの経路の長さが略同一である、請求項14に記載の回転電機ユニット。 The rotating electric machine unit according to claim 14, wherein the length of the path from the positive conductor to the negative conductor via the positive terminal and the negative terminal is approximately the same in all of the plurality of power modules.
  16.  前記第1冷却部は、前記軸方向において、前記複数のパワーモジュールよりも前記回転電機側に配置される、請求項1または2に記載の回転電機ユニット。 The rotating electrical machine unit according to claim 1 or 2, wherein the first cooling unit is arranged closer to the rotating electrical machine than the plurality of power modules in the axial direction.
  17.  前記コンデンサユニットと前記第1冷却部とは、径方向に対向している、請求項1または2に記載の回転電機ユニット。 The rotating electric machine unit according to claim 1 or 2, wherein the capacitor unit and the first cooling section are radially opposed to each other.
  18.  前記コンデンサユニットは、前記正極側被冷却部及び前記負極側被冷却部を、前記コンデンサ放熱部材に押し付ける押付部材を有する、請求項6に記載の回転電機ユニット。 The rotating electric machine unit according to claim 6, wherein the capacitor unit includes a pressing member that presses the positive electrode side cooled part and the negative electrode side cooled part against the capacitor heat radiating member.
PCT/JP2023/018536 2022-06-02 2023-05-18 Rotary electric machine unit WO2023234044A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090052 2022-06-02
JP2022090052 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023234044A1 true WO2023234044A1 (en) 2023-12-07

Family

ID=89026610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018536 WO2023234044A1 (en) 2022-06-02 2023-05-18 Rotary electric machine unit

Country Status (1)

Country Link
WO (1) WO2023234044A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116840A (en) * 2005-10-21 2007-05-10 Nichicon Corp Inverter module and inverter-integrated alternating current motor using the same
WO2013118703A1 (en) * 2012-02-07 2013-08-15 三菱電機株式会社 Mechanically and electronically integrated module
JP2013176193A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Mechatronic integrated drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116840A (en) * 2005-10-21 2007-05-10 Nichicon Corp Inverter module and inverter-integrated alternating current motor using the same
WO2013118703A1 (en) * 2012-02-07 2013-08-15 三菱電機株式会社 Mechanically and electronically integrated module
JP2013176193A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Mechatronic integrated drive device

Similar Documents

Publication Publication Date Title
US8063594B2 (en) Motor drive apparatus
US8064198B2 (en) Cooling device for semiconductor element module and magnetic part
US10362703B2 (en) Electric motor inverter
US6992409B2 (en) Liquid-cooled rotary electric machine integrated with an inverter
CN102804559B (en) Drive device
US9502945B2 (en) Cooling structure for electric motor
US11444510B2 (en) Controller and motor assembly comprising same
US10263495B2 (en) Rotary electric machine
JP7140262B2 (en) power converter
JP2020022357A (en) System including bus bar device and power converter housing, production method thereof, power converter for vehicle, and vehicle
US20230098103A1 (en) Controller and motor assembly comprising same
JP2017229174A (en) Rotary electric machine
KR102504424B1 (en) Controller for motor and motor assembly having the same
JP2008136273A (en) Rotary electric machine
WO2023234044A1 (en) Rotary electric machine unit
JP6393745B2 (en) Power converter
WO2023234045A1 (en) Rotating electric machine unit
CN108569125B (en) Electric drive system and motor vehicle comprising said electric drive system
US11777267B2 (en) Connector assembly
CN110247522A (en) Rotating electric machine
WO2023145420A1 (en) Rotating electric machine unit
KR102466611B1 (en) Controller and motor assembly having the same
JP2023154697A (en) Rotary electric machine unit
WO2023145419A1 (en) Dynamo-electric machine unit
JP7005732B1 (en) Power converter and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815803

Country of ref document: EP

Kind code of ref document: A1