WO2023233862A1 - Inkjet head - Google Patents

Inkjet head Download PDF

Info

Publication number
WO2023233862A1
WO2023233862A1 PCT/JP2023/016050 JP2023016050W WO2023233862A1 WO 2023233862 A1 WO2023233862 A1 WO 2023233862A1 JP 2023016050 W JP2023016050 W JP 2023016050W WO 2023233862 A1 WO2023233862 A1 WO 2023233862A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
ink
channel
common flow
connection
Prior art date
Application number
PCT/JP2023/016050
Other languages
French (fr)
Japanese (ja)
Inventor
智志 末益
洋介 豊福
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023233862A1 publication Critical patent/WO2023233862A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/19Ink jet characterised by ink handling for removing air bubbles

Definitions

  • the present disclosure relates to an inkjet head.
  • An inkjet printing device applies droplets to an object to be printed by ejecting droplets from the nozzles while controlling the positional relationship between a plurality of nozzles included in the inkjet and the object to be printed.
  • This type of inkjet printing apparatus requires a drop-on-demand type inkjet head that can eject the required amount of droplets at the required timing onto the printing target with high precision.
  • Patent Document 1 discloses a method of suppressing fluid crosstalk using bubbles. Specifically, Patent Document 1 discloses a method in which a storage section for storing air bubbles is provided at an end (stop area) of a common flow path on the discharge side, and this storage section is used as a damper.
  • An inkjet head includes a plurality of pressure chambers communicating with a nozzle that discharges ink, a first common channel communicating with the plurality of pressure chambers, and a first common channel connected to the first common channel. and a connection flow path, the connection flow path having a bubble storage section for storing air bubbles.
  • FIG. 3A is a vertical cross-sectional view taken along the line III-III of FIG. 3A, showing an outline of the connecting channel.
  • FIG. 3A is a longitudinal cross-sectional view taken along the line III-III in FIG. 3A, and is an explanatory diagram of the action of the connecting channel.
  • FIG. 6A is a vertical cross-sectional view taken along line VI-VI in FIG. 6A, showing an outline of the connection channel.
  • FIG. 7A is a longitudinal cross-sectional view taken along the line VII-VII of FIG. 7A, showing an outline of the connecting channel.
  • FIG. 8A is a vertical cross-sectional view taken along the line VIII-VIII of FIG. 8A, showing an outline of the connecting channel.
  • a plan view showing an outline of an inkjet head according to a modification of the fourth embodiment A plan view showing an outline of an inkjet head according to another modification of the fourth embodiment
  • An explanatory diagram of a method for forming a connection flow path according to the fifth embodiment A cross-sectional view in the YZ plane near the upstream common flow path according to the seventh embodiment
  • a plan view showing an outline of a connection flow path according to a modified example A vertical cross-sectional view showing an outline of a connection channel according to another modification
  • Patent Document 1 describes a method in which a bubble generating means for generating bubbles and a bubble detecting means for detecting bubbles in a flow path are provided, and the bubbles are generated according to the detected amount of bubbles. ing.
  • a bubble generating means for generating bubbles and a bubble detecting means for detecting bubbles in a flow path are provided, and the bubbles are generated according to the detected amount of bubbles.
  • there is a trade-off between miniaturization and manufacturing cost so there are high barriers to mounting the bubble generating means and the bubble detecting means.
  • the detection accuracy of commonly used bubble detection means or the accuracy of bubble generation control in bubble generation means it is necessary to suppress variations in bubbles over time and to suppress variations in discharge speed and volume. becomes difficult.
  • An object of the present disclosure is to provide an inkjet head that can suppress variations in the state of ink ejection.
  • the direction parallel to the direction of ink ejection from the inkjet head is the Z-axis direction
  • the direction in which the nozzles in the inkjet head are lined up is the Y-axis direction
  • the direction perpendicular to the Z-axis direction and the Y-axis direction. is defined as the X-axis direction.
  • the ink ejection direction is defined as the ⁇ Z direction.
  • FIG. 1 is an exploded perspective view showing the basic configuration of an inkjet head.
  • the inkjet head 1 includes a housing section 10, a vibration plate 20, a channel plate 30, a nozzle plate 40, and a pressure variation section 50.
  • the nozzle plate 40 and the flow path plate 30, the flow path plate 30 and the vibration plate 20, the vibration plate 20 and the housing part 10, and the vibration plate 20 and the pressure variation part 50 are each fixed via an adhesive.
  • an adhesive for example, an epoxy adhesive having thermosetting properties can be used. Note that the same adhesive or different adhesives may be used for bonding the respective members. For example, a rubber adhesive may be used to bond certain members, and an epoxy adhesive may be used to bond other members.
  • the inkjet head 1 turns ink into droplets and discharges them from nozzles 41 formed in a nozzle plate 40.
  • the nozzles 41 may be provided in one row in the Y-axis direction, or may be provided in multiple rows in the Y-axis direction as shown in FIG.
  • FIG. 2 is a cross-sectional view in the XZ plane near the nozzles of the inkjet head.
  • the nozzle plate 40 is arranged on the bottom surface of the channel plate 30 so that one surface in the thickness direction is perpendicular to the Z-axis.
  • the nozzle plate 40 is formed, for example, by molding a stainless steel plate member with a thickness of 100 ⁇ m by etching or press working.
  • the nozzle plate 40 has a plurality of nozzles 41 arranged in the Y-axis direction.
  • the nozzle 41 discharges ink to the outside.
  • Nozzle 41 is formed to penetrate nozzle plate 40.
  • the diameter of the nozzle 41 is, for example, 3 ⁇ m or more and 100 ⁇ m or less.
  • the flow path plate 30 is formed in the shape of a rectangular parallelepiped, and is arranged between the vibration plate 20 and the nozzle plate 40 so that one surface in the thickness direction is perpendicular to the Z-axis.
  • the flow path plate 30 is formed by laminating stainless steel plate-shaped members having a thickness of, for example, 10 ⁇ m or more and 100 ⁇ m or less, which are formed by, for example, etching or press processing.
  • the number of layers of the stainless steel plate member is, for example, 3 or more and 10 or less.
  • the flow path plate 30 is formed with a plurality of pressure chambers 33 that communicate with the plurality of nozzles 41 on a one-to-one basis, and a silo portion 36 that communicates the pressure chambers 33 and the nozzles 41.
  • the pressure chamber 33 is formed in the shape of a rectangular parallelepiped, and an upper wall forming an upper surface (+Z direction side surface) is constituted by the vibration plate 20. Note that the pressure chamber 33 is not a rectangular parallelepiped, and may have a plurality of steps formed on at least one surface that partitions the pressure chamber 33.
  • the silo section 36 communicates the pressure chamber 33 and the nozzle 41 and stores ink. Note that the silo portion 36 may have a cylindrical shape or a quadrangular prism shape.
  • the channel plate 30 also includes a plurality of upstream individual channels 31, a first upstream common channel section 32, a plurality of downstream individual channels 34, and a first downstream common channel section 35. , is formed.
  • the plurality of upstream individual flow paths 31 are arranged one-to-one for each pressure chamber 33 on the upstream side (+X direction side) of the ink flow direction (hereinafter sometimes referred to as "ink flow direction") with respect to each pressure chamber 33. It is communicated with.
  • the first upstream common flow path portion 32 is communicated with the upstream end portions of the plurality of upstream individual flow paths 31 .
  • the plurality of downstream individual channels 34 communicate with the pressure chambers 33 on a one-to-one basis on the downstream side (-X direction side) of each pressure chamber 33 in the ink flow direction.
  • the first downstream common flow path section 35 communicates with the downstream ends of the plurality of downstream individual flow paths 34 .
  • the vibration plate 20 is arranged between the housing part 10 and the flow path plate 30 so that one surface in the thickness direction is perpendicular to the Z-axis.
  • the vibrating plate 20 is a thin film having a thickness of, for example, 5 ⁇ m or more and 50 ⁇ m or less, and is made of, for example, polyimide.
  • the vibration plate 20 is formed with an upstream opening 21 located directly above the first upstream common flow path section 32 (on the +Z direction side). Further, the vibrating plate 20 is formed with a downstream opening 22 disposed directly above the first downstream common flow path section 35 . Instead of opening the entire surface of the upstream opening 21 and the downstream opening 22, the upstream opening 21 and the downstream opening 22 are configured with a plurality of through holes each having a diameter of 10 ⁇ m, for example, to provide a filter function. It's okay.
  • the housing portion 10 is formed into a rectangular parallelepiped shape with a thickness of 1 cm in the Z-axis direction, for example, by cutting alloy steel such as stainless steel.
  • the housing part 10 includes a second upstream common channel section 12 disposed directly above the upstream opening 21 , a second downstream common channel section 14 disposed immediately above the downstream opening 22 , is formed.
  • the second upstream common flow path section 12 constitutes an upstream common flow path 61 together with the first upstream common flow path section 32 and the upstream opening 21 .
  • the second downstream common flow path section 14 forms a downstream common flow path 62 together with the first downstream common flow path section 35 and the downstream opening 22 .
  • the housing portion 10 is formed with an ink supply path (not shown) that supplies ink from the outside, and an ink discharge path (not shown) that discharges ink to the outside.
  • the ink supply path is a flow path that supplies ink stored in a first ink tank (not shown) to the upstream common flow path 61.
  • the ink supply path is formed in the housing portion 10, for example, along the Z-axis direction.
  • the ink discharge path is a flow path for discharging ink from the downstream common flow path 62 to a second ink tank (not shown).
  • the ink discharge path is formed in the housing portion 10, for example, along the Z-axis direction.
  • the ink supplied from the ink supply path is discharged from the ink discharge path via the upstream common flow path 61, the upstream individual flow path 31, the pressure chamber 33, the downstream individual flow path 34, and the downstream common flow path 62. be done. That is, the ink flow direction in each of the individual channels 31 and 34 (the upstream individual channel 31 and the downstream individual channel 34) is set to the ⁇ X direction. Note that while the ink flow direction in a predetermined individual flow path 31, 34 is set in the +X direction, the ink flow direction in the remaining individual flow paths 31, 34 may be set in the -X direction.
  • the first and second ink tanks are connected so that the pressure in the first ink tank connected to the ink supply path is higher than the pressure in the second ink tank connected to the ink discharge path. It is also possible to set the pressure of the tank and to flow ink from the second ink tank to the first ink tank using a pump (not shown).
  • each ink tank may be arranged so that the height in the Z-axis direction with respect to the pressure chamber 33 is different, or each ink tank may be The internal pressure of each may be individually controlled by a regulator. Further, in order to circulate the ink, the ink may be circulated by the thrust of a pump.
  • the drying prevention function of the nozzle 41 can be activated. Therefore, it is possible to prevent ink from remaining in the pressure chamber 33 or the nozzle 41 and clogging the nozzle.
  • the pressure fluctuation section 50 is arranged inside the housing section 10 and generates pressure fluctuations in the ink within the pressure chamber 33. This pressure fluctuation propagates toward the nozzle 41, and ink is ejected from the nozzle 41.
  • the vibration plate 20 is formed with a plurality of convex parts 24 that protrude in the +Z direction and extend along the X-axis direction so as to be lined up in the Y-axis direction.
  • the pressure variation section 50 includes a base section 51, a piezoelectric element 52, a substrate 53, and a control section (not shown).
  • the base portion 51 is formed in a rectangular parallelepiped shape extending in the Y-axis direction, and holds the piezoelectric element 52 and the substrate 53.
  • a plurality of piezoelectric elements 52 are arranged on the bottom surface side of the base portion 51.
  • the plurality of piezoelectric elements 52 are arranged so as to be in contact with the convex portions 24 of the vibrating plate 20 that constitute the upper wall (+Z direction side wall) of the pressure chamber 33, respectively.
  • the piezoelectric element 52 deforms to expand and contract along the Z-axis direction by applying a voltage.
  • the piezoelectric element 52 is a D33 mode stacked piezo actuator.
  • the substrate 53 applies a voltage to the piezoelectric element 52.
  • the board 53 is, for example, a flexible printed circuit board.
  • the control unit controls application of voltage to the piezoelectric element 52.
  • the piezoelectric element 52 to which a voltage is applied by the substrate 53 is deformed so as to extend along the Z-axis direction, and pushes the convex portion 24 downward (in the -Z direction).
  • the upper wall of the pressure chamber 33 (the wall on the +Z direction side) is deformed, and the pressure of the ink within the pressure chamber 33 changes.
  • the control unit controls the ejection of ink by controlling the application of voltage to the piezoelectric element 52.
  • FIG. 3A is a plan view showing an outline of the upstream common channel and the connecting channel.
  • FIG. 3B is a longitudinal cross-sectional view taken along line III-III in FIG. 3A, and shows an outline of the connection channel.
  • FIG. 3C is a longitudinal cross-sectional view taken along line III-III in FIG. 3A, and is an explanatory diagram of the function of the connecting channel.
  • connection channel 7 is connected to the upstream end of the upstream common channel 61.
  • the connection flow path 7 is formed to have a smaller cross-sectional area than the upstream common flow path 61.
  • an ink supply channel 11 is connected to the other end of the connection channel 7.
  • the connection flow path 7 is formed inside the flow path plate 30, it is not represented by a solid line in the plan view, but in order to show the concept, it is shown by a hatching pattern shown in FIG. 3A, and in the subsequent figures. A similar hatching pattern may also be used to illustrate the connection channel.
  • connection channel 7 is configured to include at least one step. That is, the upper wall surface 71 constituting the upper side of the connecting channel 7 has two upper downward steps 72 formed so that the height becomes gradually lower as it goes downstream, and the upper wall surface 71 that is formed so that the height becomes gradually higher. It is configured to include two upper upward steps 73 formed so as to be. In addition, the lower wall surface 74 constituting the lower side of the connecting channel 7 has two lower downward steps 75 formed so that the height decreases in stages as it goes downstream. It is configured to include two lower upward steps 76 formed such that the height is higher than the lower side. Note that at least one of the upper downward step 72, the upper upward step 73, the lower downward step 75, and the lower upward step 76 may be provided.
  • the upper downward step 72 connects a pair of first upper wall surface parts 721 that guide ink in the -Y direction (first direction) and the pair of first upper wall surface parts 721, and guides ink in the -Z direction (second direction). ), and a second upper wall surface portion 722 that guides ink.
  • the upper ascending step 73 includes a pair of first upper wall portions 731, a second upper wall portion 732 that connects the pair of first upper wall portions 731, and guides ink in the +Z direction (second direction); It is made up of.
  • the lower downward step 75 includes a pair of first lower wall sections 751 that guide ink in the -Y direction, and a second lower wall section that connects the pair of first lower wall sections 751 and guides ink in the -Z direction.
  • the lower ascending step 76 is composed of a pair of first lower wall surfaces 761 and a second lower wall surface section 762 that connects the pair of first lower wall surfaces 761 and guides ink in the +Z direction. There is.
  • the first upper wall surface parts 721, 731 and the first lower wall surface parts 751, 761 correspond to the first part of the present disclosure
  • the second upper wall surface parts 722, 732 and the second lower wall surface parts 752, 762 correspond to the first part of the present disclosure. This falls under Part 2 of
  • the first upper wall surface portion 721 and the second upper wall surface portion 722 on the upstream side forming the upper downward step 72 are connected to form a recessed corner portion 723.
  • the second upper wall surface portion 732 constituting the upper ascending step 73 and the first upper wall surface portion 731 on the downstream side are connected to form a recessed corner portion 733.
  • the second lower wall surface portion 752 constituting the lower downward step 75 and the first lower wall surface portion 751 on the downstream side are connected to form a recessed corner portion 753.
  • the first lower wall surface portion 761 and the second lower wall surface portion 762 on the upstream side forming the lower ascending step 76 are connected to form a recessed corner portion 763 . It is preferable that the angle formed by each wall surface portion 721, 731, 751, 761 constituting each corner portion 723, 733, 753, 763 and each wall surface portion 722, 732, 752, 762 is 90° or less.
  • the maximum width (length in the X-axis direction in FIG. 3A) of the upstream common flow path 61 is approximately 1 mm or more and 10 mm or less, and the height is approximately 0.3 mm or more and 3.0 mm or less, and the width of the connecting flow path 7 is approximately It is preferable that the length in the ink flow direction D is 1 mm or more and 10 mm or less, and the height of each step 72, 73, 75, 76 is about 10 ⁇ m or more and 200 ⁇ m or less. Further, the lengths of the upstream common flow path 61 and the connection flow path 7 in the ink flow direction D may be determined depending on the flow path configuration of the inkjet head 1.
  • the flow rate of ink flowing through the connecting channel 7, the ink supply channel 11, and the upstream common channel 61 is significantly lower than in the case where the connecting channel 7 is not provided due to the channel resistance of the connecting channel 7. .
  • the ink flow is locally weakened. Therefore, the main flow lines of the ink in the connection channel 7 flow to avoid the corners 723, 733, 753, and 763, as shown by the arrow D1 in FIG. 3C.
  • the upper wall surface 71 regulates the buoyant force acting on the bubbles B introduced into the connecting channel 7, and the force to push out the bubbles B due to the flow of ink is weak. A certain amount of bubbles B stays at each corner 723, 733. Further, at each corner 753, 763, the buoyant force acting on the bubble B is regulated by the flow of ink, so that a certain amount of the bubble B remains at each corner 753, 763. Therefore, the bubbles B are stored in a predetermined area near each corner 723, 733, 753, 763 of the connecting flow path 7.
  • Each of the steps 72, 73, 75, and 76 corresponds to the bubble storage section of the present disclosure.
  • the method for introducing the bubbles B into the connection channel 7 may be to introduce ink containing the bubbles B from the ink supply channel 11, or by sucking the bubbles B from the nozzle 41 and introducing them into the connection channel 7. Also good.
  • the size of the bubbles B introduced into the connection channel 7 may be the size that is stored in each corner 723, 733, 753, 763, or may be larger than the size that is stored. Even if bubbles B larger than the size to be stored in each corner 723, 733, 753, 763 are introduced, the bubbles B are divided into small pieces in the process of passing through the connecting channel 7 having a small cross-sectional area. , 733, 753, and 763.
  • the amount of bubbles B introduced need not be strictly controlled as long as it is equal to or greater than the amount that causes bubbles B to be stored in each corner 723, 733, 753, 763.
  • the air bubbles B that are not stored in the corners 723, 733, 753, 763 are washed away by the ink flow and are transferred to the first ink tank connected to the ink supply path or the second ink tank connected to the ink discharge path. This is because the ink is collected in an ink tank or the like. Therefore, bubbles B having a size equal to or less than the height of each of the steps 72, 73, 75, and 76 can be stored in the connecting channel 7 without using precise bubble detection.
  • the amount of bubbles B stored in each corner 723, 733, 753, 763 varies depending on processing variations of each corner 723, 733, 753, 763, ink viscosity, etc. Unlike when stored in still water, changes over time are less likely to occur. The reason why the amount of bubbles B stored is difficult to change over time is that the amount of bubbles B that exceeds the amount that can be stored in each corner 723, 733, 753, 763 is washed away by the flow of ink. This is because the amount of bubbles B stored in 733, 753, and 763 is kept constant.
  • each corner 723, 733, 753, 763 is small compared to the volume of the upstream common flow path 61, since the elasticity of air is greater than that of ink, each corner 723 , 733, 753, and 763, even if the amount of bubbles B is minute, the effect of suppressing fluid crosstalk is large. Therefore, it is possible to store the air bubbles B in the connection flow path 7 to suppress the influence of fluid crosstalk, and to reduce variations in the amount of the stored air bubbles B over time, so that the ink ejection state (ejection speed and Variations in at least one of the discharge amounts can be suppressed.
  • the upstream common channel 61 and the ink supply channel 11 are directly connected without the connection channel 7, air bubbles can be removed on the upstream side of the upstream common channel 61 (on the ink supply channel 11 side). There is no place to store it. For this reason, fluid crosstalk cannot be suppressed by utilizing the damper effect of air bubbles.
  • the downstream side of the upstream common flow path 61 (opposite side of the ink supply path 11) serves as a water stop area, so air bubbles tend to accumulate there. Variation occurs in the fluid crosstalk suppression effect between the arranged nozzles 41 and the nozzles 41 arranged on the downstream side.
  • connection channel 7 that can store the bubbles B is also present on the upstream side of the upstream common channel 61, the upstream and downstream sides of the upstream common channel 61 are Air bubbles B can be present on the side. Therefore, due to the fluid crosstalk suppressing effect using the damper effect of the bubbles B, variations in the ink ejection state between the nozzles 41 can be suppressed.
  • FIG. 4A is a vertical cross-sectional view schematically showing a portion including an upper downward step of the connecting channel.
  • FIG. 4B is a longitudinal cross-sectional view showing an example of a plate-like member used to form the upper downward step.
  • FIG. 4C is a longitudinal cross-sectional view showing another example of a plate-like member used to form the upper downward step. Note that although a method for forming a portion of the connecting channel including the upper downward step 72 will be exemplified below, the upper upward step 73, the lower downward step 75, and the lower upward step 76 can also be formed in the same manner.
  • the upper downward step 72 includes a pair of first upper wall portions 721 and a second upper wall portion 722 that connects the pair of first upper wall portions 721.
  • the angle of the corner 723 formed by the first upper wall surface section 721 and the second upper wall surface section 722 on the upstream side is set to 90 degrees or less.
  • the angle of the corner 723 is more preferably less than 90° in order to enhance the effect of storing the bubbles B.
  • connection flow path 7 including the upper downward step 72 having such a shape
  • a method of overlapping thin film members (plate-like members) 70 having flow path through holes 701 as shown in FIG. 4B may be used. is desirable. This is because the method of forming the upper downward step 72 by machining one member tends to cause variations in machining accuracy and increases the machining cost.
  • connection channel 7 When forming the connection channel 7 by overlapping the thin film members 70, by paying attention to the method of forming the channel through hole 701, it is possible to form the upper downward step 72 having a corner 723 of less than 90°. .
  • the channel through hole 701 using a photo-etching method (single-sided etching method), as shown by arrow E1
  • spraying an etching solution from the upper surface 702 side of the thin film member 70 by spraying an etching solution from the upper surface 702 side of the thin film member 70, the upper surface 702 A channel through hole 701 that becomes narrower toward the lower surface 703 can be formed.
  • the flow path through hole 701 can be formed such that the angle between the upper surface of the flow path through hole 701 and the inner peripheral surface is less than 90° when viewed in longitudinal section.
  • the upper downward step 72 having the corner portion 723 of less than 90° can be formed.
  • the thin film member 70 is etched from both sides as indicated by arrows E1 and E2
  • the upper surface and inner circumferential surface of the flow path through hole 701 are etched.
  • the flow path through hole 701 can be formed such that the angle formed by the flow path through hole 701 and the angle formed between the lower surface and the inner circumferential surface of the flow path through hole 701 are each less than 90°.
  • the height of the second upper wall surface portion 722 is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the height of the second upper wall surface portion 722 exceeds 200 ⁇ m, the flow amount of ink increases, so that the bubbles B may not be stored in the corner portion 723 .
  • the height of the second upper wall surface portion 722 is less than 10 ⁇ m, it becomes difficult to secure a space for storing the bubbles B.
  • the height of the second upper wall surface portion 722 is the same as the height of each individual flow path 31, 34.
  • the height of the second upper wall surface portion 722 is the same height as the lowest portion of each individual flow path 31, 34.
  • the connection flow path 7 is made using the thin film member 70 that constitutes the flow path plate 30. This is because it is preferable to configure.
  • steps 72, 73, 75, and 76 may be formed so as to increase the number of consecutively descending steps or the number of ascending steps.
  • steps 72, 73, 75, and 76 may be formed so as to repeat going up and down.
  • connection channel 7 showing still another modification of the connection channel 7, all the parts in the connection channel 7 that allow ink to flow in the horizontal direction (XY plane direction) have the same length.
  • the steps 72, 73, 75, and 76 may be formed to prevent this from occurring.
  • the shapes of other parts of the connection flow path 7 may be freely determined depending on dimensional constraints and the like.
  • connection flow path 7 may be formed to extend straight in the Y-axis direction, for example, or may be formed to include both a portion that moves straight in the Y-axis direction and a portion that moves straight in the X-axis direction.
  • FIG. 6A is a plan view showing an overview of the upstream common flow path and the connection flow path.
  • FIG. 6B is a longitudinal cross-sectional view taken along line VI-VI in FIG. 6A, and shows an outline of the connection channel. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
  • one end of a connecting channel 7A having a smaller cross-sectional area than the upstream common channel 61 is connected to the upstream end of the upstream common channel 61.
  • An ink supply path 11 is connected to the other end of the connection flow path 7A.
  • One end of a connecting channel 7B having a smaller cross-sectional area than the upstream common channel 61 is connected to the downstream end of the upstream common channel 61.
  • An ink discharge path 13 is connected to the other end of the connection flow path 7B.
  • each of the connecting channels 7A and 7B is configured to include at least one step. That is, the upper wall surfaces 71A and 71B forming the upper side of each of the connection channels 7A and 7B are configured to include two upper downward steps 72 and two upper upward steps 73, respectively. . Further, the lower wall surfaces 74A and 74B forming the lower side of the connecting channel 7A are each configured to include two lower downward steps 75 and two lower upward steps 76 each. .
  • connection flow path 7A when ink flows through the connection flow path 7A, the upstream common flow path 61, and the connection flow path 7B, air bubbles flow through the corners 723, 733, 753, and It is stored in a predetermined range of area near 763.
  • the upstream common flow path 61 is not connected to both ends of the connection flow path 7A and the connection flow path 7B and the upstream common flow path 61 is directly connected to the ink supply path 11 and the ink discharge path 13, the upstream In the side common flow path 61, there is no place where air bubbles can be stored. For this reason, fluid crosstalk cannot be suppressed by utilizing the damper effect of air bubbles.
  • the connection flow path 7A and the connection flow path 7B by connecting the connection flow path 7A and the connection flow path 7B to both ends of the upstream common flow path 61, a fluid cross is formed near both ends of the upstream common flow path 61. Bubbles can be placed to suppress talk. Therefore, the influence of fluid crosstalk can be made uniform between the plurality of nozzles 41 arranged along the Y-axis direction.
  • connection flow path 7A and the connection flow path 7B are connected to both ends of the upstream common flow path 61, it is possible to prevent air bubbles from being stored in the upstream common flow path 61. Therefore, the air bubbles are stored upstream of the upstream common flow path 61, and it is possible to suppress variations in the ink ejection state caused by fluctuations in the amount of the stored air bubbles over time.
  • FIG. 7A is a plan view showing an overview of the upstream common flow path, the downstream common flow path, and the connection flow path.
  • FIG. 7B is a longitudinal cross-sectional view taken along line VII-VII in FIG. 7A, and shows an outline of the connection channel. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
  • one end of a connecting channel 7C having a smaller cross-sectional area than the upstream common channel 61 is connected to the upstream end of the upstream common channel 61.
  • the upstream end of the downstream common flow path 62 is connected to the other end of the connection flow path 7C.
  • the ink supply path 11 is connected to the upstream side of the upstream common flow path 61 .
  • the ink discharge path 13 is connected to the downstream side of the downstream common flow path 62 .
  • the remainder of the ink supplied from the ink supply path 11 flows into the ink discharge path 13 via the connection flow path 7C and the downstream common flow path 62.
  • the ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
  • connection channel 7C is configured to include at least one step. That is, the upper wall surface 71C constituting the upper side of the connection channel 7C is configured to include three upper downward steps 72 and three upper upward steps 73. Further, the lower wall surface 74C forming the lower side of the connection flow path 7C is configured to include three lower downward steps 75 and three lower upward steps 76.
  • connection channel 7C when ink flows through the connection channel 7C, air bubbles are stored in a predetermined area near each corner 723, 733, 753, 763 of each step 72, 73, 75, 76.
  • the connecting flow path 7C is not connected to the upstream end of the downstream common flow path 62, the upstream side of the downstream common flow path 62 becomes a water stop area, and the amount of bubbles accumulated there cannot be controlled. For this reason, the fluid crosstalk suppressing effect using the damper effect of air bubbles changes over time, and although the fluid crosstalk suppressing effect can be obtained, it is not possible to improve the reproducibility of ink landing.
  • the connection flow path 7C by connecting the connection flow path 7C to the upstream end of the downstream common flow path 62, the water stop area can be eliminated from the upstream end of the downstream common flow path 62. At the same time, a certain amount of air bubbles can be stored in the connecting channel 7C. Therefore, it is possible to obtain a fluid crosstalk suppressing effect using the damper effect of air bubbles. Further, it is possible to suppress a change over time in the fluid crosstalk suppressing effect, and it is possible to improve the reproducibility of ink landing.
  • the upstream end portions of the upstream common flow path 61 and the downstream common flow path 62 are Air bubbles can be placed near the side edges to suppress fluid crosstalk. Therefore, there is no need to connect separate connection channels to the upstream sides of the upstream common channel 61 and the downstream common channel 62, and processing costs or channel formation space can be reduced. That is, even under the constraints of miniaturization and cost reduction, fluid crosstalk can be suppressed by storing air bubbles near the ends of each common flow path 61, 62.
  • damper components due to air bubbles in each of the upstream common flow path 61 and the downstream common flow path 62 can be The effects of can be made equal. Therefore, when ink is ejected, characteristics such as flow path resistance on the upstream side and the downstream side can be made constant, and ink ejection performance can be improved.
  • FIG. 8A is a plan view showing an outline of the upstream common flow path, the downstream common flow path, and the connection flow path.
  • connection flow path 7D is provided, so the description will focus on this difference.
  • the same configurations as those in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
  • one end of a connecting channel 7D having a smaller cross-sectional area than the upstream common channel 61 is connected to the downstream end of the upstream common channel 61.
  • the downstream end of the downstream common flow path 62 is connected to the other end of the connection flow path 7D.
  • connection channel 7D is configured to include at least one step. That is, the upper wall surface 71D of the connection channel 7D is configured to include three upper downward steps 72 and three upper upward steps 73. Further, the lower wall surface 74D forming the lower side of the connection channel 7D is configured to include three lower downward steps 75 and three lower upward steps 76.
  • connection channels 7C and 7D when ink flows through the connection channels 7C and 7D, air bubbles are stored in a predetermined area near each corner 723, 733, 753, 763 of each step 72, 73, 75, 76. Ru.
  • the fluid crosstalk suppression effect using the damper effect of air bubbles changes over time.
  • the connecting flow path 7D is not connected to the downstream end of the upstream common flow path 61, the downstream side of the upstream common flow path 61 becomes a water stop area, and the amount of bubbles accumulated there cannot be controlled. .
  • the fluid crosstalk suppressing effect using the damper effect of air bubbles changes over time, and although the fluid crosstalk suppressing effect can be obtained, it is not possible to improve the reproducibility of ink landing.
  • connection flow path 7C is connected to the upstream end of the downstream common flow path 62
  • connection flow path 7D is connected to the downstream end of the upstream common flow path 61.
  • the number of the steps 72, 73, 75, 76 of the connection channel 7D is the same as the number of steps 72, 73, 75, 76 of the connection channel 7C, so that the upstream common channel 61 and the downstream common channel
  • variations in the ink ejection state between the nozzles 41 can be suppressed by the fluid crosstalk suppressing effect using the damper effect of the air bubbles. I can do it.
  • the upstream side common flow path 61 and the downstream common flow path 62 are connected with each other through the connection flow path 7D.
  • Bubbles that suppress fluid crosstalk can be arranged near both ends of the flow path 61 and the downstream common flow path 62. Therefore, there is no need to connect separate connection channels to the upstream and downstream ends of the upstream common channel 61 and the downstream common channel 62, reducing processing costs or channel formation space. can do. That is, even under the constraints of miniaturization and cost reduction, fluid crosstalk can be suppressed by storing air bubbles near the ends of each common flow path 61, 62.
  • damper components due to air bubbles in each of the upstream common flow path 61 and the downstream common flow path 62 can be The effects of can be made equal. Therefore, when ink is ejected, characteristics such as flow path resistance on the upstream side and the downstream side can be made constant, and ink ejection performance can be improved.
  • bubbles can be placed near both ends of the upstream common flow path 61 and the downstream common flow path 62 to suppress fluid crosstalk. Therefore, the influence of fluid crosstalk can be made uniform between the plurality of nozzles 41 arranged along the Y-axis direction.
  • connection flow path 7C and the connection flow path 7D are connected to both ends of the upstream common flow path 61 and the downstream common flow path 62, the inside of the upstream common flow path 61 and the downstream common flow path 62 can be It is possible to prevent air bubbles from being accumulated in the air. For this reason, air bubbles are stored at the respective ends of the upstream common flow path 61 and the downstream common flow path 62, and variations in the ink ejection state occur due to changes in the amount of stored air bubbles over time. can be suppressed.
  • FIG. 9A is a plan view showing an outline of an inkjet head according to a modification of the fourth embodiment.
  • FIG. 9B is a plan view schematically showing an inkjet head according to another modification of the fourth embodiment.
  • the upstream common flow path 61 is formed to extend in the Y-axis direction in plan view.
  • the downstream common flow path 62 includes a first portion 62A formed to extend in the Y-axis direction on the +X direction side of the upstream common flow path 61 and a ⁇ X direction side of the upstream common flow path 61 in a plan view.
  • the second portion 62B is formed to extend in the Y-axis direction, and the third portion 62C connects the ends of the first portion 62A and the second portion 62B on the -Y direction side.
  • the ink supply path 11 is connected to the +Y direction end of the upstream common flow path 61 .
  • the ink discharge path 13 is connected to the longitudinal center of the third portion 62C of the downstream common flow path 62.
  • the first portions 62A of the upstream common flow path 61 and the downstream common flow path 62 are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively.
  • the upstream common channel 61 and the second portion 62B of the downstream common channel 62 are connected via a plurality of upstream individual channels 31, pressure chambers 33, and downstream individual channels 34, respectively.
  • connection flow path 7E and one end of the connection flow path 7F are connected to the +Y direction side end of the upstream common flow path 61.
  • the other end of the connection flow path 7E is connected to the +Y direction side end of the first portion 62A of the downstream common flow path 62.
  • the other end of the connection flow path 7F is connected to the +Y direction side end of the second portion 62B of the downstream common flow path 62.
  • One end of the connection flow path 7G is connected to the -Y direction side end of the upstream common flow path 61.
  • the other end of the connection flow path 7G is connected to the third portion 62C of the downstream common flow path 62 near the connection portion with the ink discharge path 13.
  • Each of the connecting channels 7E, 7F, and 7G is formed such that its cross-sectional area is smaller than the cross-sectional area of the upstream common channel 61.
  • a part of the ink supplied from the ink supply path 11 flows in the -Y direction through the upstream common flow path 61, and flows through the upstream individual flow path 31, the pressure chamber 33, and the downstream individual flow path. 34 to the first section 62A or second section 62B of the downstream common channel 62, or to the ink discharge channel 13 via the connecting channel 7G and the third section 62C. Further, the remaining ink supplied from the ink supply path 11 is passed through the connection channel 7E, the first section 62A, and the third section 62C, or through the connection channel 7F, the second section 62B, and the third section 62C. The ink flows into the ink discharge path 13 via the ink discharge path 13 . The ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
  • connection channels 7E, 7F, and 7G is configured to include at least one step. That is, each of the connection channels 7E, 7F, and 7G includes an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step 76, although not shown in FIG. 9A. It is configured.
  • each level difference in each of the connection channels 7E, 7F, and 7G corresponds to the bubble storage section of the present disclosure.
  • the inkjet head may be configured as shown in FIG. 9B.
  • the inkjet head includes an upstream common channel 61, a first downstream common channel 62D, and a second downstream common channel 62E.
  • the upstream common flow path 61, the first downstream common flow path 62D, and the second downstream common flow path 62E are formed to extend in the Y-axis direction in plan view.
  • the upstream common flow path 61 and the first downstream common flow path 62D are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively.
  • the upstream common flow path 61 and the second downstream common flow path 62E are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively.
  • connection flow path 7H is connected to the +Y direction side end of the upstream common flow path 61.
  • the ink supply path 11 is connected to the other end of the connection flow path 7H.
  • the ink supply path 11 is connected to one end of the connection channel 7I and one end of the connection channel 7J.
  • the other end of the connection channel 7I is connected to the +Y direction side end of the first downstream common channel 62D.
  • the other end of the connection channel 7J is connected to the +Y direction side end of the second downstream common channel 62E.
  • One end of the connection flow path 7K is connected to the -Y direction side end of the upstream common flow path 61.
  • An ink discharge path 13 is connected to the other end of the connection flow path 7K.
  • connection channel 7L The ink discharge path 13 is connected to one end of the connection channel 7L and one end of the connection channel 7M.
  • the other end of the connection channel 7L is connected to the -Y direction side end of the first downstream common channel 62D.
  • connection channel 7M is connected to the -Y direction side end of the second downstream common channel 62E.
  • Each connection channel 7H, 7I, 7J, 7K, 7L, 7M is formed such that its cross-sectional area is smaller than the cross-sectional area of the upstream common channel 61.
  • a part of the ink supplied from the ink supply path 11 flows to the upstream common flow path 61 via the connection flow path 7H.
  • the ink flowing into the upstream common flow path 61 passes through the upstream individual flow path 31, the pressure chamber 33, and the downstream individual flow path 34 to the first downstream common flow path 62D or the second downstream common flow path 62E. or flows to the ink discharge path 13 via the connection flow path 7K.
  • the remainder of the ink supplied from the ink supply channel 11 flows into the first downstream common channel 62D via the connecting channel 7I or flows into the second downstream common channel 62E via the connecting channel 7J.
  • the ink that has flowed into the first downstream common flow path 62D flows into the ink discharge path 13 via the connection flow path 7L.
  • the ink that has flowed into the second downstream common flow path 62E flows into the ink discharge path 13 via the connection flow path 7M.
  • the ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
  • connection channels 7H, 7I, 7J, 7K, 7L, and 7M is configured to include at least one step. That is, each of the connection channels 7H, 7I, 7J, 7K, 7L, and 7M has an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step, respectively, although they are not shown in FIG. 9B. It is configured to include a step 76.
  • the arrangement of the nozzle rows, the upstream common flow path 61, the downstream common flow path 62, the first downstream common flow path 62D, and the second downstream common flow path 62E, both ends of the upstream common flow path 61, the downstream common flow path 62, the first downstream common flow path 62D, and the second downstream common flow path 62E are connected to a connecting flow having a step.
  • FIG. 10 is an explanatory diagram of a method for forming a connecting channel.
  • connection channels having the steps shown in the first to fourth embodiments can be formed by machining, it is difficult to easily form the steps by machining, and the processing cost increases. For this reason, it is preferable to form a connection channel having a step in the channel plate 30 by taking advantage of the characteristics of the inkjet head in which the channel plate 30 (see FIG. 2) is formed in a layered structure. By forming through holes in each layer constituting the flow path plate 30 and stacking the layers so that the through holes of each layer partially overlap, a connecting flow path having a step can be formed.
  • the channel plate 30 is constructed using the first to fifth layers 81 to 85 shown in FIG. 10.
  • the first layer 81, the second layer 82, the third layer 83, the fourth layer 84, and the fifth layer 85 are laminated in this order from the bottom.
  • a first connection channel through hole 851 forming the connection channel 7C and a second connection channel through hole 852 forming the connection channel 7D are formed.
  • the first connection flow path through hole 851 is formed so as to at least partially overlap the second upstream common flow path portion 12 of the housing portion 10 (see FIG. 2).
  • the second connection channel through hole 852 is formed so as to at least partially overlap the second downstream common channel section 14 of the housing section 10 .
  • the fifth layer 85 also includes a pressure chamber through hole 853 that constitutes the pressure chamber 33 and a first common flow path through hole 854 that constitutes the first upstream common flow path section 32 (see FIG. 2). , and a second common flow path through hole 855 constituting the first downstream common flow path portion 35 (see FIG. 2).
  • the second upstream common flow path section 12 is formed so that its length in the X-axis direction and the Y-axis direction is longer than the length of the first common flow path through hole 854 in the X-axis direction and the Y-axis direction. has been done.
  • the second downstream common flow path portion 14 is formed so that its length in the X-axis direction and the Y-axis direction is longer than the length of the second common flow path through hole 855 in the X-axis direction and the Y-axis direction. has been done. Therefore, the first and second connection channel through holes 851 and 852 are not connected to the first and second common channel through holes 854 and 855, but the second upstream common channel section 12 or the second upstream common channel section 12 or It is connected to the first and second common flow path through holes 854 and 855 via the two downstream common flow path portions 14 .
  • the fourth layer 84 is formed with a first connection channel through-hole 841 that constitutes the connection channel 7C and a second connection channel through-hole 842 that constitutes the connection channel 7D.
  • the first connection flow path through hole 841 is formed so as to partially overlap the first connection flow path through hole 851 of the fifth layer.
  • the second connection flow path through hole 842 is formed so as to partially overlap the second connection flow path through hole 852 in the fifth layer.
  • the fourth layer 84 is formed with a pressure chamber through hole 843 that constitutes the pressure chamber 33 and each of the individual channels 31 and 34 (see FIG. 2).
  • the pressure chamber through hole 843 is formed so as to partially overlap the pressure chamber through hole 853 and the first and second common flow path through holes 854 and 855 of the fifth layer 85 .
  • a first connection channel through hole 831 forming the connection flow path 7C and a second connection flow path through hole 832 forming the connection flow path 7D are formed.
  • the first connection flow path through hole 831 is formed so as to partially overlap the first connection flow path through hole 841 of the fourth layer.
  • the second connection flow path through hole 832 is formed so as to partially overlap the second connection flow path through hole 842 in the fourth layer.
  • the third layer 83 includes a pressure chamber through hole 833 forming the pressure chamber 33, a first common flow path through hole 834 forming the first upstream common flow path section 32, and a first downstream side through hole 834 forming the first upstream common flow path section 32.
  • a second common flow path through hole 835 constituting the common flow path portion 35 is formed.
  • Each of the through holes 833, 834, and 835 is formed so that a portion thereof overlaps with the pressure chamber through hole 843 of the fourth layer 84.
  • a first connection channel through hole 821 forming the connection channel 7C is formed in the second layer 82.
  • the first connection flow path through hole 821 is formed so as to partially overlap the first connection flow path through hole 831 of the third layer.
  • the second layer 82 also includes a silo part through hole 823 that constitutes the silo part 36 (see FIG. 2), and a first common flow passage through hole 824 that constitutes the first upstream common flow passage part 32. , and a second common flow path through hole 825 constituting the first downstream common flow path portion 35.
  • the silo portion through hole 823 is formed so as to overlap the pressure chamber through hole 833 of the third layer 83 .
  • the first and second common flow path through holes 824 and 825 are formed to overlap the first and second common flow path through holes 834 and 835 of the third layer 83, respectively.
  • a silo part through hole 813 that constitutes the silo part 36 is formed in the first layer 81.
  • the silo part through hole 813 is formed so as to overlap the silo part through hole 823 of the second layer 82 .
  • connection channel through hole 821, 831, 832, 841, 842, 851, 852 corresponds to the first through hole of the present disclosure
  • each pressure chamber through hole 833, 843, 853 corresponds to the first through hole of the present disclosure.
  • This corresponds to 2 through holes.
  • the first layer 81 does not have through holes for the first and second connection channels that constitute the connection channels 7C and 7D; By forming flow path through holes, the difference in level between the connecting flow paths 7C and 7D may be made deeper. In this case, in order to prevent ink from leaking from the first layer 81, a groove having a bottom may be formed instead of a through hole.
  • connection channel through hole 851, 852, 841, 842, 831, 832, 821 it is preferable to form each connection channel through hole 851, 852, 841, 842, 831, 832, 821 by etching. .
  • connection channel 7C , 7D or the flow path resistance of the connection channels 7C and 7D are merely examples, and the connection channel 7C , 7D or the flow path resistance of the connection channels 7C and 7D.
  • connection flow paths 7C, 7E, 7F, 7I, and 7J are connected by connection flow paths 7C, 7E, 7F, 7I, and 7J.
  • the ratio of the amount of ink flowing into the connection channels 7C, 7E, 7F, 7I, and 7J is determined by the channel resistance of the connection channels 7C, 7E, 7F, 7I, and 7J, and the individual channels 31 and 34 for each nozzle 41. is determined depending on the ratio of the flow path resistance (for example, the sum of the flow path resistance of the upstream individual flow path 31 and the flow path resistance of the downstream individual flow path 34). This is because at least a portion of the connection channels 7C, 7E, 7F, 7I, and 7J, the upstream individual channel 31, and the downstream individual channel 34 are arranged in parallel.
  • the ink flow rate of one connecting channel 7C is larger than the ink flow rate of each individual channel 31, 34 (one individual channel 31 or one individual channel 34), the individual channel 31 , 34 decreases, the drying prevention function of the nozzle 41 decreases.
  • the ink flow rate of one connecting flow path 7C is lower than the ink flow rate of each individual flow path 31, 34, the force for discharging air bubbles accumulated in areas other than the corners 723, 733, 753, 763 will be weakened. , it may not be possible to store air bubbles. That is, there is a problem in that the power of the connecting flow path 7C to discharge air bubbles is weakened, and the variation in the amount of air bubbles increases over time. For this reason, it is preferable that the ink flow rate of one connecting flow path 7C be approximately the same as the ink flow rate of each individual flow path 31, 34 communicating with each nozzle 41.
  • the flow path resistance of each individual flow path 31, 34 for each nozzle 41 is set as R1, and 1
  • the flow path resistance of the connection flow path 7C is R2
  • the connecting channel 7C is formed using a layer for forming the upstream individual channel 31 and the downstream individual channel 34. It is preferable that The reason is explained below.
  • the thickness of the layer forming the individual channels 31, 34 is made thinner than the other layers. It is preferable.
  • the length of the connecting channel 7C in the ink flow direction must be adjusted. Since it is necessary to have a suitable length, it becomes difficult to miniaturize the inkjet head.
  • the connecting channels 7C, 7E, 7F, 7I, and 7J are preferably formed using the layers that form the individual channels 31 and 34.
  • the configuration is such that the above formula (1) is satisfied. It is preferable.
  • FIG. 11A is a cross-sectional view in the YZ plane near the upstream common flow path.
  • FIG. 11B is a cross-sectional view in the YZ plane near the downstream common flow path. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
  • the air bubbles introduced from the ink supply path 11 or the nozzle 41 are stored at the corners of the step of the connection flow path, but the air bubbles in excess of the allowable storage amount at the corners are stored in the ink supply.
  • the ink is quickly discharged to the outside of the inkjet head via the ink discharge channel 11 or the ink discharge channel 13.
  • the upstream common flow path 61 or the downstream common flow path 62 this becomes a factor that causes variations in the ink ejection state.
  • air bubbles enter the upstream common flow path 61 or the downstream common flow path 62 this becomes a factor that further worsens the variation in the ink ejection state. Therefore, it is necessary for the upstream side common flow path 61 or the downstream side common flow path 62 to quickly discharge the bubbles to the outside without accumulating them.
  • the upper surface 611 of the upstream common flow path 61 be formed by an inclined surface that continuously descends as it moves away from the connection site with the ink supply path 11.
  • a connection flow path 7N is connected to the upstream end of the upstream common flow path 61.
  • a connecting flow path 7P is connected to the downstream end of the upstream common flow path 61.
  • the upper surface 621 of the downstream common flow path 62 is formed by an inclined surface that rises continuously as it approaches the connection site with the ink discharge path 13.
  • a connecting flow path 7Q is connected to the upstream end of the downstream common flow path 62.
  • a connecting flow path 7R is connected to the downstream end of the downstream common flow path 62.
  • the inclination angle of the upper surface 611 of the upstream common channel 61 and the upper surface 621 of the downstream common channel 62 is too small, the force to discharge air bubbles by buoyancy will be weakened, and if it is too large, the size of the inkjet head will increase. , for example, it is preferable to form it so that it is about 1 degree or more and 5 degrees or less.
  • machining may be performed using a ball end mill while continuously changing the cutting depth. An example of how to do this can be given.
  • connection flow path includes an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step 76 is illustrated, one, two, or , may include only three steps.
  • connection flow path 7S may be arranged as shown in FIG. 12A.
  • a side wall surface constituting a side surface of the connection channel 7S on the +X direction side includes two steps 77.
  • a side wall surface constituting a side surface of the connection flow path 7S on the -X direction side is configured to include two steps 78.
  • the main flow line of the ink in the connecting channel 7S can be made to flow so as to avoid the corners 773, 783 of the steps 77, 78, as shown by the arrow D1.
  • air bubbles can be stored in a predetermined area near the corners 773, 783 of the steps 77, 78.
  • a protrusion 79 may be formed in the connection channel 7T.
  • the connection channel 7T is configured to form a first wall portion 71T that guides ink in the ⁇ Y direction (first direction) and a recessed corner portion 793 at the downstream end of the first wall portion 71T.
  • a second wall surface portion 791 of the protrusion 79 is connected and guides the ink in the -Z direction (second direction).
  • the corner portion 793 corresponds to the bubble storage portion of the present disclosure.
  • the first wall part 71T corresponds to the first part of the present disclosure
  • the second wall part 791 corresponds to the second part of the present disclosure.
  • the main flow line of the ink in the connecting channel 7T can be made to flow so as to avoid the corner 793, and the air bubbles can be caused to flow around the corner 793.
  • the present disclosure can be widely used in inkjet heads and printing equipment equipped with inkjet heads.

Abstract

This inkjet head comprises: a plurality of pressure chambers communicating with a nozzle for jetting an ink; a first common flow passage communicating with the plurality of pressure chambers; and a connection flow passage connected to the first common flow passage, wherein the connection flow passage has an air bubble storage part for storing air bubbles.

Description

インクジェットヘッドinkjet head
 本開示は、インクジェットヘッドに関する。 The present disclosure relates to an inkjet head.
 近年、インクジェット印刷装置を用いてデバイスを製造する方法が注目されている。インクジェット印刷装置は、インクジェットに含まれる複数のノズルと印刷対象物との位置関係を制御しながら、ノズルから液滴を吐出することで、印刷対象物に液滴を塗布する。この種のインクジェット印刷装置では、印刷対象物に対して、必要なタイミングで必要な量の液滴を、高精度に吐出するドロップオンデマンド型のインクジェットヘッドが求められる。 In recent years, methods of manufacturing devices using inkjet printing equipment have attracted attention. An inkjet printing device applies droplets to an object to be printed by ejecting droplets from the nozzles while controlling the positional relationship between a plurality of nozzles included in the inkjet and the object to be printed. This type of inkjet printing apparatus requires a drop-on-demand type inkjet head that can eject the required amount of droplets at the required timing onto the printing target with high precision.
 ドロップオンデマンド型のインクジェットヘッドでは、流体クロストークと呼ばれる現象が発生しやすい。流体クロストークとは、圧力の変動が、流路を介して互いに隣接するノズルに影響を与える現象のことである。流体クロストークの対策として、流路内にダンパを設けて、互いに隣接するノズルに圧力が伝わり難くする構造が広く採用されている。しかしながら、インクジェットヘッドにおけるノズルの高密度化等の影響で、ダンパの表面積を十分に確保し難くなっている。また、所望の印刷精度も高まっていることから、流体クロストークの影響を無視できるレベルに抑制することが困難となっている。このような問題に対して、特許文献1には、気泡を用いて流体クロストークを抑制する方法が開示されている。具体的には、特許文献1には、排出側共通流路の端部(止水域)に気泡を溜める貯留部を有し、この貯留部をダンパとして使用する方法が開示されている。 In drop-on-demand type inkjet heads, a phenomenon called fluid crosstalk is likely to occur. Fluid crosstalk is a phenomenon in which pressure fluctuations affect adjacent nozzles through a flow path. As a countermeasure against fluid crosstalk, a structure in which a damper is provided in a flow path to make it difficult for pressure to be transmitted to adjacent nozzles is widely adopted. However, due to the increasing density of nozzles in inkjet heads, it has become difficult to ensure a sufficient surface area of the damper. Furthermore, as the desired printing accuracy has increased, it has become difficult to suppress the influence of fluid crosstalk to a negligible level. To address such problems, Patent Document 1 discloses a method of suppressing fluid crosstalk using bubbles. Specifically, Patent Document 1 discloses a method in which a storage section for storing air bubbles is provided at an end (stop area) of a common flow path on the discharge side, and this storage section is used as a damper.
特許第5475389号公報Patent No. 5475389
 本開示の一態様に係るインクジェットヘッドは、インクを吐出するノズルに連通する複数の圧力室と、前記複数の圧力室に連通された第1共通流路と、前記第1共通流路に接続された接続流路と、を備え、前記接続流路は、気泡を貯留させる気泡貯留部を有する。 An inkjet head according to an aspect of the present disclosure includes a plurality of pressure chambers communicating with a nozzle that discharges ink, a first common channel communicating with the plurality of pressure chambers, and a first common channel connected to the first common channel. and a connection flow path, the connection flow path having a bubble storage section for storing air bubbles.
各実施形態に係るインクジェットヘッドの基本構成を示す分解斜視図An exploded perspective view showing the basic configuration of an inkjet head according to each embodiment 各実施形態に係るインクジェットヘッドのノズル近傍におけるXZ平面での断面図Cross-sectional view in the XZ plane near the nozzle of the inkjet head according to each embodiment 第1実施形態に係る上流側共通流路及び接続流路の概要を示す平面図A plan view showing an overview of the upstream common flow path and the connection flow path according to the first embodiment 図3AのIII-III線に沿う縦断面図であって接続流路の概要を示すFIG. 3A is a vertical cross-sectional view taken along the line III-III of FIG. 3A, showing an outline of the connecting channel. 図3AのIII-III線に沿う縦断面図であって接続流路の作用の説明図FIG. 3A is a longitudinal cross-sectional view taken along the line III-III in FIG. 3A, and is an explanatory diagram of the action of the connecting channel. 第1実施形態に係る接続流路の上側下り段差を含む部位の概要を示す縦断面図A vertical cross-sectional view showing an overview of a portion including an upper downward step of the connection channel according to the first embodiment 第1実施形態に係る上側下り段差の形成に用いられる板状部材の一例を示す縦断面図A vertical cross-sectional view showing an example of a plate-like member used for forming the upper downward step according to the first embodiment. 第1実施形態に係る上側下り段差の形成に用いられる板状部材の他の例を示す縦断面図A vertical cross-sectional view showing another example of the plate member used for forming the upper downward step according to the first embodiment. 第1実施形態の変形例を表す縦断面図A vertical cross-sectional view showing a modification of the first embodiment 第1実施形態の他の変形例を表す縦断面図A vertical cross-sectional view showing another modification of the first embodiment 第1実施形態のさらに他の変形例を表す縦断面図A vertical cross-sectional view showing still another modification of the first embodiment 第2実施形態に係る上流側共通流路及び接続流路の概要を示す平面図A plan view showing an outline of the upstream common flow path and the connection flow path according to the second embodiment 図6AのVI-VI線に沿う縦断面図であって接続流路の概要を示すFIG. 6A is a vertical cross-sectional view taken along line VI-VI in FIG. 6A, showing an outline of the connection channel. 第3実施形態に係る上流側共通流路、下流側共通流路及び接続流路の概要を示す平面図A plan view showing an overview of the upstream common flow path, the downstream common flow path, and the connection flow path according to the third embodiment 図7AのVII-VII線に沿う縦断面図であって接続流路の概要を示すFIG. 7A is a longitudinal cross-sectional view taken along the line VII-VII of FIG. 7A, showing an outline of the connecting channel. 第4実施形態に係る上流側共通流路、下流側共通流路及び接続流路の概要を示す平面図A plan view showing an overview of the upstream common flow path, the downstream common flow path, and the connection flow path according to the fourth embodiment 図8AのVIII-VIII線に沿う縦断面図であって接続流路の概要を示すFIG. 8A is a vertical cross-sectional view taken along the line VIII-VIII of FIG. 8A, showing an outline of the connecting channel. 第4実施形態の変形例に係るインクジェットヘッドの概要を示す平面図A plan view showing an outline of an inkjet head according to a modification of the fourth embodiment 第4実施形態の他の変形例に係るインクジェットヘッドの概要を示す平面図A plan view showing an outline of an inkjet head according to another modification of the fourth embodiment 第5実施形態に係る接続流路の形成方法の説明図An explanatory diagram of a method for forming a connection flow path according to the fifth embodiment 第7実施形態に係る上流側共通流路近傍におけるYZ平面での断面図A cross-sectional view in the YZ plane near the upstream common flow path according to the seventh embodiment 第7実施形態に係る下流側共通流路近傍におけるYZ平面での断面図A cross-sectional view in the YZ plane near the downstream common flow path according to the seventh embodiment 変形例に係る接続流路の概要を示す平面図A plan view showing an outline of a connection flow path according to a modified example 他の変形例に係る接続流路の概要を示す縦断面図A vertical cross-sectional view showing an outline of a connection channel according to another modification
 特許文献1に記載のように、止水域に気泡を貯留させる方法では、一定量を超えた気泡がインクの流れによって排出される力が働かないため、貯留される気泡の量を一定に保つことが困難となる。気泡の貯留量が一定に保たれずに経時的にばらつくと、ダンパとしての効果がばらつくため、吐出速度や吐出体積のばらつきが生じて吐出精度が悪化する。 As described in Patent Document 1, in the method of storing air bubbles in a still area, the amount of air bubbles stored cannot be kept constant because the force that discharges air bubbles exceeding a certain amount by the flow of ink does not work. becomes difficult. If the amount of bubbles stored is not kept constant and varies over time, the effectiveness as a damper will vary, resulting in variations in discharge speed and volume, resulting in poor discharge accuracy.
 特許文献1には、この問題に対して、気泡を発生させる気泡発生手段と、流路内の気泡を検知する気泡検知手段と設け、検知した気泡量に応じて気泡を発生させる方法が記載されている。しかしながら、特許文献1に記載のような構成では、小型化や製作コストとのトレードオフが生じるため、気泡発生手段と気泡検知手段を搭載するための障壁は高い。また、一般的に用いられる気泡検知手段の検知精度、又は、気泡発生手段における気泡の発生制御の精度では、気泡の経時的なばらつきを抑制して、吐出速度や吐出体積のばらつきを抑制することが困難となる。 In order to solve this problem, Patent Document 1 describes a method in which a bubble generating means for generating bubbles and a bubble detecting means for detecting bubbles in a flow path are provided, and the bubbles are generated according to the detected amount of bubbles. ing. However, in the configuration described in Patent Document 1, there is a trade-off between miniaturization and manufacturing cost, so there are high barriers to mounting the bubble generating means and the bubble detecting means. In addition, in the detection accuracy of commonly used bubble detection means or the accuracy of bubble generation control in bubble generation means, it is necessary to suppress variations in bubbles over time and to suppress variations in discharge speed and volume. becomes difficult.
 本開示は、インクの吐出状態のばらつきを抑制することができるインクジェットヘッドを提供することを目的とする。 An object of the present disclosure is to provide an inkjet head that can suppress variations in the state of ink ejection.
 以下、本開示の実施形態におけるインクジェットヘッドについて、図面を参照しながら説明する。なお、以下の説明及び各図において、インクジェットヘッドからのインクの吐出方向に平行な方向をZ軸方向、インクジェットヘッドにおけるノズルが並ぶ方向をY軸方向、Z軸方向及びY軸方向に直交する方向をX軸方向と規定する。また、インクの吐出方向を-Z方向と規定する。 Hereinafter, an inkjet head in an embodiment of the present disclosure will be described with reference to the drawings. In the following explanation and each figure, the direction parallel to the direction of ink ejection from the inkjet head is the Z-axis direction, the direction in which the nozzles in the inkjet head are lined up is the Y-axis direction, and the direction perpendicular to the Z-axis direction and the Y-axis direction. is defined as the X-axis direction. Further, the ink ejection direction is defined as the −Z direction.
 [インクジェットヘッドの基本構成]
 まず、実施形態に係るインクジェットヘッドの基本構成について説明する。図1は、インクジェットヘッドの基本構成を示す分解斜視図である。
[Basic configuration of inkjet head]
First, the basic configuration of the inkjet head according to the embodiment will be described. FIG. 1 is an exploded perspective view showing the basic configuration of an inkjet head.
 図1に示されるように、インクジェットヘッド1は、ハウジング部10と、振動プレート20と、流路プレート30と、ノズルプレート40と、圧力変動部50と、を備える。ノズルプレート40と流路プレート30、流路プレート30と振動プレート20、振動プレート20とハウジング部10、振動プレート20と圧力変動部50は、それぞれ接着剤を介して固定されている。接着剤としては、例えば、熱硬化特性を有するエポキシ系接着剤を用いることができる。なお、それぞれの部材を接合する接着剤は、同一の接着剤を用いても良いし、それぞれ異なる接着剤を用いても良い。例えば、所定の部材の接合にゴム系の接着剤を用いて、別の部材の接合にエポキシ系の接着剤を用いても良い。 As shown in FIG. 1, the inkjet head 1 includes a housing section 10, a vibration plate 20, a channel plate 30, a nozzle plate 40, and a pressure variation section 50. The nozzle plate 40 and the flow path plate 30, the flow path plate 30 and the vibration plate 20, the vibration plate 20 and the housing part 10, and the vibration plate 20 and the pressure variation part 50 are each fixed via an adhesive. As the adhesive, for example, an epoxy adhesive having thermosetting properties can be used. Note that the same adhesive or different adhesives may be used for bonding the respective members. For example, a rubber adhesive may be used to bond certain members, and an epoxy adhesive may be used to bond other members.
 インクジェットヘッド1は、インクを液滴化して、ノズルプレート40に穿設されたノズル41から吐出する。ノズル41は、Y軸方向に1列に穿設されても良いし、図1に示されるようにY軸方向に複数列に穿設されても良い。 The inkjet head 1 turns ink into droplets and discharges them from nozzles 41 formed in a nozzle plate 40. The nozzles 41 may be provided in one row in the Y-axis direction, or may be provided in multiple rows in the Y-axis direction as shown in FIG.
 次に、インクジェットヘッドの内部構成について説明する。図2は、インクジェットヘッドのノズル近傍におけるXZ平面での断面図である。 Next, the internal structure of the inkjet head will be explained. FIG. 2 is a cross-sectional view in the XZ plane near the nozzles of the inkjet head.
 ノズルプレート40は、流路プレート30の底面に、厚さ方向の一方の面がZ軸に直交するように配置されている。ノズルプレート40は、例えば厚み100μmのステンレス板部材を、エッチング又はプレス加工により成型することによって形成される。ノズルプレート40には、Y軸方向に並ぶ複数のノズル41が穿設されている。ノズル41は、インクを外部に吐出する。ノズル41は、ノズルプレート40を貫通するように形成されている。ノズル41の直径は、例えば3μm以上100μm以下である。 The nozzle plate 40 is arranged on the bottom surface of the channel plate 30 so that one surface in the thickness direction is perpendicular to the Z-axis. The nozzle plate 40 is formed, for example, by molding a stainless steel plate member with a thickness of 100 μm by etching or press working. The nozzle plate 40 has a plurality of nozzles 41 arranged in the Y-axis direction. The nozzle 41 discharges ink to the outside. Nozzle 41 is formed to penetrate nozzle plate 40. The diameter of the nozzle 41 is, for example, 3 μm or more and 100 μm or less.
 流路プレート30は、直方体状に形成され、振動プレート20とノズルプレート40との間に、厚さ方向の一方の面がZ軸に直交するように配置されている。流路プレート30は、例えばエッチング又はプレス加工によって成型された、例えば厚み10μm以上100μm以下のステンレスの板状部材を、積層することにより形成されている。ステンレス板状部材の積層数は、例えば3層以上10層以下である。 The flow path plate 30 is formed in the shape of a rectangular parallelepiped, and is arranged between the vibration plate 20 and the nozzle plate 40 so that one surface in the thickness direction is perpendicular to the Z-axis. The flow path plate 30 is formed by laminating stainless steel plate-shaped members having a thickness of, for example, 10 μm or more and 100 μm or less, which are formed by, for example, etching or press processing. The number of layers of the stainless steel plate member is, for example, 3 or more and 10 or less.
 流路プレート30には、複数のノズル41にそれぞれ1対1で連通される複数の圧力室33と、圧力室33とノズル41を連通するサイロ部36と、が形成されている。圧力室33は、直方体状に形成され、上面(+Z方向側の面)を形成する上壁が振動プレート20によって構成されている。なお、圧力室33は、直方体ではなく、圧力室33を区画する少なくとも1つ面に複数の段差が形成されていても良い。サイロ部36は、圧力室33とノズル41とを連通し、インクを貯留する。なお、サイロ部36は、円柱形状でも良いし、四角柱形状でも良い。 The flow path plate 30 is formed with a plurality of pressure chambers 33 that communicate with the plurality of nozzles 41 on a one-to-one basis, and a silo portion 36 that communicates the pressure chambers 33 and the nozzles 41. The pressure chamber 33 is formed in the shape of a rectangular parallelepiped, and an upper wall forming an upper surface (+Z direction side surface) is constituted by the vibration plate 20. Note that the pressure chamber 33 is not a rectangular parallelepiped, and may have a plurality of steps formed on at least one surface that partitions the pressure chamber 33. The silo section 36 communicates the pressure chamber 33 and the nozzle 41 and stores ink. Note that the silo portion 36 may have a cylindrical shape or a quadrangular prism shape.
 また、流路プレート30には、複数の上流側個別流路31と、第1上流側共通流路部32と、複数の下流側個別流路34と、第1下流側共通流路部35と、が形成されている。複数の上流側個別流路31は、各圧力室33に対するインクの流動方向(以下、「インク流動方向」と言う場合がある)の上流側(+X方向側)で、圧力室33に1対1で連通されている。第1上流側共通流路部32は、複数の上流側個別流路31の上流側端部に連通されている。複数の下流側個別流路34は、各圧力室33に対するインク流動方向の下流側(-X方向側)で、圧力室33に個々に1対1で連通されている。第1下流側共通流路部35は、複数の下流側個別流路34の下流側端部に連通されている。 The channel plate 30 also includes a plurality of upstream individual channels 31, a first upstream common channel section 32, a plurality of downstream individual channels 34, and a first downstream common channel section 35. , is formed. The plurality of upstream individual flow paths 31 are arranged one-to-one for each pressure chamber 33 on the upstream side (+X direction side) of the ink flow direction (hereinafter sometimes referred to as "ink flow direction") with respect to each pressure chamber 33. It is communicated with. The first upstream common flow path portion 32 is communicated with the upstream end portions of the plurality of upstream individual flow paths 31 . The plurality of downstream individual channels 34 communicate with the pressure chambers 33 on a one-to-one basis on the downstream side (-X direction side) of each pressure chamber 33 in the ink flow direction. The first downstream common flow path section 35 communicates with the downstream ends of the plurality of downstream individual flow paths 34 .
 振動プレート20は、ハウジング部10と流路プレート30との間に、厚さ方向の一方の面がZ軸に直交するように配置されている。振動プレート20は、例えば厚み5μm以上50μm以下の薄膜であって、例えばポリイミドにより形成されている。 The vibration plate 20 is arranged between the housing part 10 and the flow path plate 30 so that one surface in the thickness direction is perpendicular to the Z-axis. The vibrating plate 20 is a thin film having a thickness of, for example, 5 μm or more and 50 μm or less, and is made of, for example, polyimide.
 振動プレート20には、第1上流側共通流路部32の直上(+Z方向側)に配置される上流側開口部21が形成されている。また、振動プレート20には、第1下流側共通流路部35の直上に配置される下流側開口部22が形成されている。上流側開口部21及び下流側開口部22の全面を開口させず、上流側開口部21及び下流側開口部22を、例えば直径10μmの複数の貫通孔により構成してフィルタ機能を持たせるようにしても良い。 The vibration plate 20 is formed with an upstream opening 21 located directly above the first upstream common flow path section 32 (on the +Z direction side). Further, the vibrating plate 20 is formed with a downstream opening 22 disposed directly above the first downstream common flow path section 35 . Instead of opening the entire surface of the upstream opening 21 and the downstream opening 22, the upstream opening 21 and the downstream opening 22 are configured with a plurality of through holes each having a diameter of 10 μm, for example, to provide a filter function. It's okay.
 ハウジング部10は、ステンレス鋼等の合金鋼を切削加工することにより、例えばZ軸方向の厚みが1cmの直方体状に形成されている。ハウジング部10には、上流側開口部21の直上に配置される第2上流側共通流路部12と、下流側開口部22の直上に配置される第2下流側共通流路部14と、が形成されている。第2上流側共通流路部12は、第1上流側共通流路部32と、上流側開口部21と共に、上流側共通流路61を構成する。また、第2下流側共通流路部14は、第1下流側共通流路部35と、下流側開口部22と共に、下流側共通流路62を構成する。 The housing portion 10 is formed into a rectangular parallelepiped shape with a thickness of 1 cm in the Z-axis direction, for example, by cutting alloy steel such as stainless steel. The housing part 10 includes a second upstream common channel section 12 disposed directly above the upstream opening 21 , a second downstream common channel section 14 disposed immediately above the downstream opening 22 , is formed. The second upstream common flow path section 12 constitutes an upstream common flow path 61 together with the first upstream common flow path section 32 and the upstream opening 21 . Further, the second downstream common flow path section 14 forms a downstream common flow path 62 together with the first downstream common flow path section 35 and the downstream opening 22 .
 また、ハウジング部10には、インクを外部から供給する不図示のインク供給路と、インクを外部に排出する不図示のインク排出路と、が形成されている。インク供給路は、不図示の第1インクタンクに貯留されたインクを、上流側共通流路61に供給する流路である。インク供給路は、ハウジング部10において、例えばZ軸方向に沿って形成されている。インク排出路は、下流側共通流路62のインクを不図示の第2インクタンクに排出するための流路である。インク排出路は、ハウジング部10において、例えばZ軸方向に沿って形成されている。インク供給路から供給されたインクは、上流側共通流路61、上流側個別流路31、圧力室33、下流側個別流路34、下流側共通流路62を経由してインク排出路から排出される。つまり、各個別流路31,34(上流側個別流路31及び下流側個別流路34)におけるインク流動方向は、-X方向に設定されている。なお、所定の個別流路31,34におけるインク流動方向を+X方向に設定する一方で、残りの個別流路31,34におけるインク流動方向を-X方向に設定しても良い。 Further, the housing portion 10 is formed with an ink supply path (not shown) that supplies ink from the outside, and an ink discharge path (not shown) that discharges ink to the outside. The ink supply path is a flow path that supplies ink stored in a first ink tank (not shown) to the upstream common flow path 61. The ink supply path is formed in the housing portion 10, for example, along the Z-axis direction. The ink discharge path is a flow path for discharging ink from the downstream common flow path 62 to a second ink tank (not shown). The ink discharge path is formed in the housing portion 10, for example, along the Z-axis direction. The ink supplied from the ink supply path is discharged from the ink discharge path via the upstream common flow path 61, the upstream individual flow path 31, the pressure chamber 33, the downstream individual flow path 34, and the downstream common flow path 62. be done. That is, the ink flow direction in each of the individual channels 31 and 34 (the upstream individual channel 31 and the downstream individual channel 34) is set to the −X direction. Note that while the ink flow direction in a predetermined individual flow path 31, 34 is set in the +X direction, the ink flow direction in the remaining individual flow paths 31, 34 may be set in the -X direction.
 なお、インクを循環させるために、インク供給路に接続された第1インクタンクの圧力が、インク排出路に接続された第2インクタンクの圧力よりも高くなるように、第1,第2インクタンクの圧力を設定し、第2インクタンクから第1インクタンクに不図示のポンプでインクを流す構成とすることもできる。第1インクタンクの圧力を第2インクタンクの圧力よりも高くするために、圧力室33に対するZ軸方向の高さが異なるようにそれぞれのインクタンクを配置しても良いし、それぞれのインクタンクの内圧をレギュレータで個別に制御しても良い。また、インクを循環させるために、ポンプの推力によってインクを循環させても良い。このように、圧力室33にインクを滞留させずに循環させることで、ノズル41の乾燥防止機能を働かせることができる。そのため、インクが圧力室33又はノズル41に滞留して、ノズル詰まりが起こることを防止することができる。 Note that in order to circulate the ink, the first and second ink tanks are connected so that the pressure in the first ink tank connected to the ink supply path is higher than the pressure in the second ink tank connected to the ink discharge path. It is also possible to set the pressure of the tank and to flow ink from the second ink tank to the first ink tank using a pump (not shown). In order to make the pressure of the first ink tank higher than the pressure of the second ink tank, each ink tank may be arranged so that the height in the Z-axis direction with respect to the pressure chamber 33 is different, or each ink tank may be The internal pressure of each may be individually controlled by a regulator. Further, in order to circulate the ink, the ink may be circulated by the thrust of a pump. In this way, by circulating the ink in the pressure chamber 33 without allowing it to remain, the drying prevention function of the nozzle 41 can be activated. Therefore, it is possible to prevent ink from remaining in the pressure chamber 33 or the nozzle 41 and clogging the nozzle.
 圧力変動部50は、ハウジング部10の内側に配置され、圧力室33内のインクの圧力変動を発生させるものである。この圧力変動がノズル41に向けて伝播して、ノズル41からインクが吐出される。なお、振動プレート20には、圧力変動部50の変動を受けるため、+Z方向に突出すると共にX軸方向に沿って延びる複数の凸部24が、Y軸方向に複数並ぶように形成されている。圧力変動部50は、ベース部51と、圧電素子52と、基板53と、不図示の制御部と、を備える。 The pressure fluctuation section 50 is arranged inside the housing section 10 and generates pressure fluctuations in the ink within the pressure chamber 33. This pressure fluctuation propagates toward the nozzle 41, and ink is ejected from the nozzle 41. In addition, in order to receive the fluctuations of the pressure fluctuation part 50, the vibration plate 20 is formed with a plurality of convex parts 24 that protrude in the +Z direction and extend along the X-axis direction so as to be lined up in the Y-axis direction. . The pressure variation section 50 includes a base section 51, a piezoelectric element 52, a substrate 53, and a control section (not shown).
 ベース部51は、Y軸方向に延びる直方体状に形成され、圧電素子52及び基板53を保持する。圧電素子52は、ベース部51の底面側に複数配置されている。複数の圧電素子52は、圧力室33の上壁(+Z方向側の壁)を構成する振動プレート20の凸部24に、それぞれ接触するように配置されている。圧電素子52は、電圧が印加されることによりZ軸方向に沿って伸縮するように変形する。圧電素子52は、具体的には、D33モードの積層型ピエゾアクチュエータである。基板53は、圧電素子52に電圧を印加する。基板53は、例えばフレキシブルプリント基板である。制御部は、圧電素子52への電圧の印加を制御する。 The base portion 51 is formed in a rectangular parallelepiped shape extending in the Y-axis direction, and holds the piezoelectric element 52 and the substrate 53. A plurality of piezoelectric elements 52 are arranged on the bottom surface side of the base portion 51. The plurality of piezoelectric elements 52 are arranged so as to be in contact with the convex portions 24 of the vibrating plate 20 that constitute the upper wall (+Z direction side wall) of the pressure chamber 33, respectively. The piezoelectric element 52 deforms to expand and contract along the Z-axis direction by applying a voltage. Specifically, the piezoelectric element 52 is a D33 mode stacked piezo actuator. The substrate 53 applies a voltage to the piezoelectric element 52. The board 53 is, for example, a flexible printed circuit board. The control unit controls application of voltage to the piezoelectric element 52.
 基板53によって電圧が印加された圧電素子52は、Z軸方向に沿って伸びるように変形し、凸部24を下方(-Z方向)に押し込む。これにより、圧力室33の上壁(+Z方向側の壁)が変形し、圧力室33内のインクの圧力変動が生じる。この圧力変動がサイロ部36を介してノズル41に向けて伝播することにより、ノズル41からインクが外部に吐出される。このように、制御部は、圧電素子52の印加を制御することで、インクの吐出を制御する。 The piezoelectric element 52 to which a voltage is applied by the substrate 53 is deformed so as to extend along the Z-axis direction, and pushes the convex portion 24 downward (in the -Z direction). As a result, the upper wall of the pressure chamber 33 (the wall on the +Z direction side) is deformed, and the pressure of the ink within the pressure chamber 33 changes. As this pressure fluctuation propagates toward the nozzle 41 via the silo section 36, ink is ejected from the nozzle 41 to the outside. In this manner, the control unit controls the ejection of ink by controlling the application of voltage to the piezoelectric element 52.
 [第1実施形態]
 本開示の第1実施形態について説明する。第1実施形態では、インクを循環させないタイプのインクジェットヘッド1において、上流側共通流路61よりもインク流動方向Dの上流側(以下、「インク流動方向Dの上流側」を、「上流側」と言う場合がある)において気泡を貯留することで、流体クロストークを抑制する構成について説明する。第1実施形態の上流側共通流路61は、本開示の第1共通流路に該当する。なお、以下の各実施形態において、+Z方向側をインクジェットヘッド1の上側と規定する。図3Aは、上流側共通流路及び接続流路の概要を示す平面図である。図3Bは、図3AのIII-III線に沿う縦断面図であって接続流路の概要を示す。図3Cは、図3AのIII-III線に沿う縦断面図であって接続流路の作用の説明図である。
[First embodiment]
A first embodiment of the present disclosure will be described. In the first embodiment, in an inkjet head 1 of a type that does not circulate ink, the upstream side in the ink flow direction D (hereinafter, "upstream side in the ink flow direction D") is referred to as "upstream side" than the upstream common flow path 61. A configuration will be described in which fluid crosstalk is suppressed by storing air bubbles in (sometimes referred to as). The upstream common flow path 61 of the first embodiment corresponds to the first common flow path of the present disclosure. Note that in each of the following embodiments, the +Z direction side is defined as the upper side of the inkjet head 1. FIG. 3A is a plan view showing an outline of the upstream common channel and the connecting channel. FIG. 3B is a longitudinal cross-sectional view taken along line III-III in FIG. 3A, and shows an outline of the connection channel. FIG. 3C is a longitudinal cross-sectional view taken along line III-III in FIG. 3A, and is an explanatory diagram of the function of the connecting channel.
 図3Aに示されるように、上流側共通流路61における上流側端部には、接続流路7の一端が接続されている。接続流路7は、上流側共通流路61よりも断面積が小さい形状に形成されている。接続流路7の他端には、例えばインク供給路11が接続されている。なお、接続流路7は、流路プレート30の内部に形成される場合、平面図に実線で表されないが、概念を示すために、図3Aに示すハッチング模様で示しており、以降の図で接続流路を図示する場合も同様のハッチング模様で示す場合がある。 As shown in FIG. 3A, one end of the connection channel 7 is connected to the upstream end of the upstream common channel 61. The connection flow path 7 is formed to have a smaller cross-sectional area than the upstream common flow path 61. For example, an ink supply channel 11 is connected to the other end of the connection channel 7. In addition, when the connection flow path 7 is formed inside the flow path plate 30, it is not represented by a solid line in the plan view, but in order to show the concept, it is shown by a hatching pattern shown in FIG. 3A, and in the subsequent figures. A similar hatching pattern may also be used to illustrate the connection channel.
 図3Bに示されるように、接続流路7は、少なくとも1つの段差を含むように構成されている。すなわち、接続流路7の上側を構成する上壁面71は、下流に向かうにしたがって、段階的に高さが低くなるように形成された2つの上側下り段差72と、段階的に高さが高くなるように形成された2つの上側上り段差73とを含むように構成されている。また、接続流路7の下側を構成する下壁面74は、下流に向かうにしたがって、段階的に高さが低くなるように形成された2つの下側下り段差75と、段階的に高さが高くなるように形成された2つの下側上り段差76とを含むように構成されている。なお、上側下り段差72、上側上り段差73、下側下り段差75及び下側上り段差76は、少なくとも1以上設けられていれば良い。 As shown in FIG. 3B, the connection channel 7 is configured to include at least one step. That is, the upper wall surface 71 constituting the upper side of the connecting channel 7 has two upper downward steps 72 formed so that the height becomes gradually lower as it goes downstream, and the upper wall surface 71 that is formed so that the height becomes gradually higher. It is configured to include two upper upward steps 73 formed so as to be. In addition, the lower wall surface 74 constituting the lower side of the connecting channel 7 has two lower downward steps 75 formed so that the height decreases in stages as it goes downstream. It is configured to include two lower upward steps 76 formed such that the height is higher than the lower side. Note that at least one of the upper downward step 72, the upper upward step 73, the lower downward step 75, and the lower upward step 76 may be provided.
 上側下り段差72は、-Y方向(第1方向)にインクを案内する一対の第1上壁面部721と、当該一対の第1上壁面部721同士を接続し、-Z方向(第2方向)にインクを案内する第2上壁面部722と、により構成されている。上側上り段差73は、一対の第1上壁面部731と、当該一対の第1上壁面部731同士を接続し、+Z方向(第2方向)にインクを案内する第2上壁面部732と、により構成されている。下側下り段差75は、-Y方向にインクを案内する一対の第1下壁面部751と、当該一対の第1下壁面部751同士を接続し、-Z方向にインクを案内する第2下壁面部752と、により構成されている。下側上り段差76は、一対の第1下壁面部761と、当該一対の第1下壁面部761同士を接続し、+Z方向にインクを案内する第2下壁面部762と、により構成されている。第1上壁面部721,731及び第1下壁面部751,761は、本開示の第1部に該当し、第2上壁面部722,732及び第2下壁面部752,762は、本開示の第2部に該当する。 The upper downward step 72 connects a pair of first upper wall surface parts 721 that guide ink in the -Y direction (first direction) and the pair of first upper wall surface parts 721, and guides ink in the -Z direction (second direction). ), and a second upper wall surface portion 722 that guides ink. The upper ascending step 73 includes a pair of first upper wall portions 731, a second upper wall portion 732 that connects the pair of first upper wall portions 731, and guides ink in the +Z direction (second direction); It is made up of. The lower downward step 75 includes a pair of first lower wall sections 751 that guide ink in the -Y direction, and a second lower wall section that connects the pair of first lower wall sections 751 and guides ink in the -Z direction. A wall portion 752. The lower ascending step 76 is composed of a pair of first lower wall surfaces 761 and a second lower wall surface section 762 that connects the pair of first lower wall surfaces 761 and guides ink in the +Z direction. There is. The first upper wall surface parts 721, 731 and the first lower wall surface parts 751, 761 correspond to the first part of the present disclosure, and the second upper wall surface parts 722, 732 and the second lower wall surface parts 752, 762 correspond to the first part of the present disclosure. This falls under Part 2 of
 上側下り段差72を構成する上流側の第1上壁面部721と第2上壁面部722は、凹んだ角部723を形成するように接続されている。上側上り段差73を構成する第2上壁面部732と下流側の第1上壁面部731は、凹んだ角部733を形成するように接続されている。下側下り段差75を構成する第2下壁面部752と下流側の第1下壁面部751とは、凹んだ角部753を形成するように接続されている。下側上り段差76を構成する上流側の第1下壁面部761と第2下壁面部762は、凹んだ角部763を形成するように接続されている。各角部723,733,753,763を構成する各壁面部721,731,751,761と各壁面部722,732,752,762とがなす角度は、90°以下であることが好ましい。 The first upper wall surface portion 721 and the second upper wall surface portion 722 on the upstream side forming the upper downward step 72 are connected to form a recessed corner portion 723. The second upper wall surface portion 732 constituting the upper ascending step 73 and the first upper wall surface portion 731 on the downstream side are connected to form a recessed corner portion 733. The second lower wall surface portion 752 constituting the lower downward step 75 and the first lower wall surface portion 751 on the downstream side are connected to form a recessed corner portion 753. The first lower wall surface portion 761 and the second lower wall surface portion 762 on the upstream side forming the lower ascending step 76 are connected to form a recessed corner portion 763 . It is preferable that the angle formed by each wall surface portion 721, 731, 751, 761 constituting each corner portion 723, 733, 753, 763 and each wall surface portion 722, 732, 752, 762 is 90° or less.
 なお、上流側共通流路61の最大幅(図3AにおけるX軸方向の長さ)を1mm以上10mm以下、高さを0.3mm以上3.0mm以下程度として、接続流路7の幅を約50μm以上500μm以下、インク流動方向Dの長さを1mm以上10mm以下、各段差72,73,75,76の高さを約10μm以上200μm以下とすることが好ましい。また、上流側共通流路61及び接続流路7のインク流動方向Dの長さは、インクジェットヘッド1の流路構成に応じて決めれば良い。 Note that the maximum width (length in the X-axis direction in FIG. 3A) of the upstream common flow path 61 is approximately 1 mm or more and 10 mm or less, and the height is approximately 0.3 mm or more and 3.0 mm or less, and the width of the connecting flow path 7 is approximately It is preferable that the length in the ink flow direction D is 1 mm or more and 10 mm or less, and the height of each step 72, 73, 75, 76 is about 10 μm or more and 200 μm or less. Further, the lengths of the upstream common flow path 61 and the connection flow path 7 in the ink flow direction D may be determined depending on the flow path configuration of the inkjet head 1.
 次に、接続流路7に各段差72,73,75,76を形成することによる作用及び効果について、図3Cを用いて説明する。 Next, the functions and effects of forming the respective steps 72, 73, 75, and 76 in the connection channel 7 will be explained using FIG. 3C.
 まず、接続流路7、インク供給路11及び上流側共通流路61を流れるインクの流量は、接続流路7の流路抵抗により、接続流路7が設けられていない場合より大幅に低下する。さらに、各段差72,73,75,76の各角部723,733,753,763においては、インクの流れが局所的に弱まる。このため、接続流路7内のインクの主な流線は、図3Cに矢印D1で示されるように、各角部723,733,753,763を回避するような流れとなる。 First, the flow rate of ink flowing through the connecting channel 7, the ink supply channel 11, and the upstream common channel 61 is significantly lower than in the case where the connecting channel 7 is not provided due to the channel resistance of the connecting channel 7. . Further, at each corner 723, 733, 753, 763 of each step 72, 73, 75, 76, the ink flow is locally weakened. Therefore, the main flow lines of the ink in the connection channel 7 flow to avoid the corners 723, 733, 753, and 763, as shown by the arrow D1 in FIG. 3C.
 各角部723,733では、接続流路7に導入された気泡Bに作用する浮力を上壁面71で規制している状態になっており、インクの流れによる気泡Bを押し出す力が弱いため、一定量の気泡Bが各角部723,733にとどまる状態になる。また、各角部753,763では、気泡Bに作用する浮力をインクの流れで規制している状態になるため、一定量の気泡Bが各角部753,763にとどまる状態になる。このため、気泡Bが接続流路7の各角部723,733,753,763近傍の所定範囲の領域に貯留される。各段差72,73,75,76は、本開示の気泡貯留部に該当する。 At each corner 723, 733, the upper wall surface 71 regulates the buoyant force acting on the bubbles B introduced into the connecting channel 7, and the force to push out the bubbles B due to the flow of ink is weak. A certain amount of bubbles B stays at each corner 723, 733. Further, at each corner 753, 763, the buoyant force acting on the bubble B is regulated by the flow of ink, so that a certain amount of the bubble B remains at each corner 753, 763. Therefore, the bubbles B are stored in a predetermined area near each corner 723, 733, 753, 763 of the connecting flow path 7. Each of the steps 72, 73, 75, and 76 corresponds to the bubble storage section of the present disclosure.
 なお、接続流路7への気泡Bの導入方法は、インク供給路11から気泡Bを含んだインクを導入しても良いし、ノズル41から気泡Bを吸い込んで接続流路7に導入しても良い。 Note that the method for introducing the bubbles B into the connection channel 7 may be to introduce ink containing the bubbles B from the ink supply channel 11, or by sucking the bubbles B from the nozzle 41 and introducing them into the connection channel 7. Also good.
 また、接続流路7に導入される気泡Bの大きさは、各角部723,733,753,763に貯留させる大きさであっても良いし、当該貯留させる大きさよりも大きくても良い。各角部723,733,753,763に貯留させる大きさよりも大きい気泡Bを導入しても、気泡Bは、断面積が小さい接続流路7を通過する過程において小さく分割され、各角部723,733,753,763に収まる大きさで貯留されるためである。 Furthermore, the size of the bubbles B introduced into the connection channel 7 may be the size that is stored in each corner 723, 733, 753, 763, or may be larger than the size that is stored. Even if bubbles B larger than the size to be stored in each corner 723, 733, 753, 763 are introduced, the bubbles B are divided into small pieces in the process of passing through the connecting channel 7 having a small cross-sectional area. , 733, 753, and 763.
 また、気泡Bの導入量は、各角部723,733,753,763に気泡Bを貯留させる量以上であれば良く、厳密に制御する必要はない。各角部723,733,753,763に貯留されなかった気泡Bは、インクの流れにより流されて、インク供給路に接続された第1インクタンク、又は、インク排出路に接続された第2インクタンク等で回収されるためである。このため、精密な気泡検出を用いずに、各段差72,73,75,76の高さ以下の大きさの気泡Bを、接続流路7に貯留することができる。 Further, the amount of bubbles B introduced need not be strictly controlled as long as it is equal to or greater than the amount that causes bubbles B to be stored in each corner 723, 733, 753, 763. The air bubbles B that are not stored in the corners 723, 733, 753, 763 are washed away by the ink flow and are transferred to the first ink tank connected to the ink supply path or the second ink tank connected to the ink discharge path. This is because the ink is collected in an ink tank or the like. Therefore, bubbles B having a size equal to or less than the height of each of the steps 72, 73, 75, and 76 can be stored in the connecting channel 7 without using precise bubble detection.
 第1実施形態によれば、各角部723,733,753,763に貯留される気泡Bの量は、各角部723,733,753,763の加工ばらつき又はインクの粘度等により変動するが、止水域に貯留される場合とは異なり、経時的変化が生じ難い。気泡Bの貯留量の経時的変化が生じ難い理由は、各角部723,733,753,763に貯留可能な量を超えた気泡Bがインクの流れによって流されることにより、各角部723,733,753,763に貯留される気泡Bの量が一定に保たれるからである。各角部723,733,753,763に貯留される気泡Bの容積は上流側共通流路61の容積と比較して小さいが、空気の弾性はインクと比較して大きいため、各角部723,733,753,763に貯留される気泡Bが微小量であっても、流体クロストークを抑制する効果が大きい。このため、接続流路7内に気泡Bを貯留して流体クロストークの影響を抑制し、且つ、貯留される気泡Bの量の経時的ばらつきを小さくできるため、インクの吐出状態(吐出速度及び吐出量のうち少なくとも一方)のばらつきを抑制することができる。 According to the first embodiment, the amount of bubbles B stored in each corner 723, 733, 753, 763 varies depending on processing variations of each corner 723, 733, 753, 763, ink viscosity, etc. Unlike when stored in still water, changes over time are less likely to occur. The reason why the amount of bubbles B stored is difficult to change over time is that the amount of bubbles B that exceeds the amount that can be stored in each corner 723, 733, 753, 763 is washed away by the flow of ink. This is because the amount of bubbles B stored in 733, 753, and 763 is kept constant. Although the volume of air bubbles B stored in each corner 723, 733, 753, 763 is small compared to the volume of the upstream common flow path 61, since the elasticity of air is greater than that of ink, each corner 723 , 733, 753, and 763, even if the amount of bubbles B is minute, the effect of suppressing fluid crosstalk is large. Therefore, it is possible to store the air bubbles B in the connection flow path 7 to suppress the influence of fluid crosstalk, and to reduce variations in the amount of the stored air bubbles B over time, so that the ink ejection state (ejection speed and Variations in at least one of the discharge amounts can be suppressed.
 また、接続流路7が存在せずに、上流側共通流路61とインク供給路11が直接接続される場合、上流側共通流路61の上流側(インク供給路11側)において、気泡を溜められる箇所が存在しない。このため、気泡によるダンパ効果を利用して流体クロストークを抑制することができない。また、上流側共通流路61の下流側(インク供給路11の反対側)は止水域となるため気泡が溜まりやすく、気泡によるダンパ効果を利用した流体クロストーク抑制効果が見込めるが、上流側に配置されたノズル41と下流側に配置されたノズル41に対する流体クロストーク抑制効果のばらつきが生じる。これに対し、本第1実施形態では、上流側共通流路61の上流側にも気泡Bを溜めることができる接続流路7が存在することで、上流側共通流路61の上流側及び下流側に気泡Bを存在させることができる。したがって、気泡Bによるダンパ効果を利用した流体クロストーク抑制効果により、ノズル41間のインクの吐出状態のばらつきを抑制することができる。 In addition, when the upstream common channel 61 and the ink supply channel 11 are directly connected without the connection channel 7, air bubbles can be removed on the upstream side of the upstream common channel 61 (on the ink supply channel 11 side). There is no place to store it. For this reason, fluid crosstalk cannot be suppressed by utilizing the damper effect of air bubbles. In addition, the downstream side of the upstream common flow path 61 (opposite side of the ink supply path 11) serves as a water stop area, so air bubbles tend to accumulate there. Variation occurs in the fluid crosstalk suppression effect between the arranged nozzles 41 and the nozzles 41 arranged on the downstream side. On the other hand, in the first embodiment, since the connection channel 7 that can store the bubbles B is also present on the upstream side of the upstream common channel 61, the upstream and downstream sides of the upstream common channel 61 are Air bubbles B can be present on the side. Therefore, due to the fluid crosstalk suppressing effect using the damper effect of the bubbles B, variations in the ink ejection state between the nozzles 41 can be suppressed.
 次に、接続流路7の形成方法の一例について説明する。図4Aは、接続流路の上側下り段差を含む部位の概要を示す縦断面図である。図4Bは、上側下り段差の形成に用いられる板状部材の一例を示す縦断面図である。図4Cは、上側下り段差の形成に用いられる板状部材の他の例を示す縦断面図である。なお、以下において、接続流路の上側下り段差72を含む部位の形成方法を例示するが、上側上り段差73、下側下り段差75及び下側上り段差76も同様に形成することができる。 Next, an example of a method for forming the connection channel 7 will be described. FIG. 4A is a vertical cross-sectional view schematically showing a portion including an upper downward step of the connecting channel. FIG. 4B is a longitudinal cross-sectional view showing an example of a plate-like member used to form the upper downward step. FIG. 4C is a longitudinal cross-sectional view showing another example of a plate-like member used to form the upper downward step. Note that although a method for forming a portion of the connecting channel including the upper downward step 72 will be exemplified below, the upper upward step 73, the lower downward step 75, and the lower upward step 76 can also be formed in the same manner.
 図4Aに示されるように、上側下り段差72は、一対の第1上壁面部721と、当該一対の第1上壁面部721同士を接続する第2上壁面部722と、により構成されている。上流側の第1上壁面部721と第2上壁面部722により形成される角部723の角度は、90°以下に設定されている。角部723の角度は、気泡Bを貯留させる効果を高めるために、90°未満であることがより好ましい。 As shown in FIG. 4A, the upper downward step 72 includes a pair of first upper wall portions 721 and a second upper wall portion 722 that connects the pair of first upper wall portions 721. . The angle of the corner 723 formed by the first upper wall surface section 721 and the second upper wall surface section 722 on the upstream side is set to 90 degrees or less. The angle of the corner 723 is more preferably less than 90° in order to enhance the effect of storing the bubbles B.
 このような形状の上側下り段差72を含む接続流路7を形成するために、図4Bに示される、流路用貫通孔701を有する薄膜部材(板状部材)70を重ね合わせる方法を用いることが望ましい。一つの部材を機械加工することにより上側下り段差72を形成する方法では、加工精度のばらつきが生じやすく、加工コストも高くなるからである。 In order to form the connection flow path 7 including the upper downward step 72 having such a shape, a method of overlapping thin film members (plate-like members) 70 having flow path through holes 701 as shown in FIG. 4B may be used. is desirable. This is because the method of forming the upper downward step 72 by machining one member tends to cause variations in machining accuracy and increases the machining cost.
 薄膜部材70を重ね合わせて接続流路7を構成する場合、流路用貫通孔701の形成方法に留意することで、90°未満の角部723を有する上側下り段差72を形成することができる。例えば、フォトエッチング法(片面エッチング法)を用いて流路用貫通孔701を形成する場合、矢印E1に示されるように、エッチング液を薄膜部材70の上面702側から噴霧することにより、上面702から下面703に向かうにしたがって細くなる流路用貫通孔701を形成することができる。つまり、縦断面視で、流路用貫通孔701の上面と内周面とのなす角度が90°未満になるような流路用貫通孔701を形成することができる。このような薄膜部材70を、流路用貫通孔701が幅方向にずれるように重ね合わせることで、90°未満の角部723を有する上側下り段差72を形成することができる。なお、図4Cに示されるように、矢印E1,E2に示されるように、薄膜部材70の両面側からエッチングを行う両面エッチング法を用いると、流路用貫通孔701の上面と内周面とのなす角度、及び、流路用貫通孔701の下面と内周面とのなす角度が、それぞれ90°未満になるような流路用貫通孔701を形成することができる。このような薄膜部材70を、流路用貫通孔701が幅方向にずれるように重ね合わせることで、90°未満の角部723を有する上側下り段差72を形成することができる。 When forming the connection channel 7 by overlapping the thin film members 70, by paying attention to the method of forming the channel through hole 701, it is possible to form the upper downward step 72 having a corner 723 of less than 90°. . For example, when forming the channel through hole 701 using a photo-etching method (single-sided etching method), as shown by arrow E1, by spraying an etching solution from the upper surface 702 side of the thin film member 70, the upper surface 702 A channel through hole 701 that becomes narrower toward the lower surface 703 can be formed. In other words, the flow path through hole 701 can be formed such that the angle between the upper surface of the flow path through hole 701 and the inner peripheral surface is less than 90° when viewed in longitudinal section. By overlapping such thin film members 70 such that the passage through holes 701 are shifted in the width direction, the upper downward step 72 having the corner portion 723 of less than 90° can be formed. Note that, as shown in FIG. 4C, if a double-sided etching method is used in which the thin film member 70 is etched from both sides as indicated by arrows E1 and E2, the upper surface and inner circumferential surface of the flow path through hole 701 are etched. The flow path through hole 701 can be formed such that the angle formed by the flow path through hole 701 and the angle formed between the lower surface and the inner circumferential surface of the flow path through hole 701 are each less than 90°. By overlapping such thin film members 70 such that the passage through holes 701 are shifted in the width direction, the upper downward step 72 having the corner portion 723 of less than 90° can be formed.
 なお、第2上壁面部722の高さは、10μm以上200μm以下であることが好ましい。第2上壁面部722の高さが200μmを超えると、インクの流動量が増えるため、角部723に気泡Bが貯留されない場合が生じる。一方、第2上壁面部722の高さが10μm未満になると、気泡Bを貯留する空間の確保が困難となる。 Note that the height of the second upper wall surface portion 722 is preferably 10 μm or more and 200 μm or less. When the height of the second upper wall surface portion 722 exceeds 200 μm, the flow amount of ink increases, so that the bubbles B may not be stored in the corner portion 723 . On the other hand, if the height of the second upper wall surface portion 722 is less than 10 μm, it becomes difficult to secure a space for storing the bubbles B.
 また、第2上壁面部722の高さは、各個別流路31,34の高さと同じ高さであることが好ましい。各個別流路31,34の高さが一定でない場合には、第2上壁面部722の高さは、各個別流路31,34における最も低い部位と同じ高さであることが好ましい。接続流路7の流路抵抗を各ノズル41の各個別流路31,34の流路抵抗と同等とするために、流路プレート30を構成する薄膜部材70を活用して接続流路7を構成することが好ましいためである。 Furthermore, it is preferable that the height of the second upper wall surface portion 722 is the same as the height of each individual flow path 31, 34. When the height of each individual flow path 31, 34 is not constant, it is preferable that the height of the second upper wall surface portion 722 is the same height as the lowest portion of each individual flow path 31, 34. In order to make the flow path resistance of the connection flow path 7 equal to the flow path resistance of each individual flow path 31 and 34 of each nozzle 41, the connection flow path 7 is made using the thin film member 70 that constitutes the flow path plate 30. This is because it is preferable to configure.
 また、各段差72,73,75,76は、接続流路7にそれぞれ複数存在していることが好ましい。各角部723,733,753,763に貯留される気泡Bの量が増えることにより、より高いダンピング効果を得ることができるためである。例えば、接続流路7の変形例を表す図5Aに示されるように、連続して下る段数又は上る段数を増やすように、各段差72,73,75,76を形成しても良いし、接続流路7の他の変形例を表す図5Bに示されるように、下り上りを繰り返すように、各段差72,73,75,76を形成しても良い。さらに、接続流路7のさらに他の変形例を表す図5Cに示されるように、接続流路7におけるインクを水平方向(XY平面方向)に流動させる全ての部位の長さが同じ長さにならないように、各段差72,73,75,76を形成しても良い。接続流路7におけるその他の部位の形状は、寸法制約等により自由に定めれば良い。 Furthermore, it is preferable that a plurality of each of the steps 72, 73, 75, and 76 exist in the connection channel 7. This is because a higher damping effect can be obtained by increasing the amount of bubbles B stored in each corner 723, 733, 753, 763. For example, as shown in FIG. 5A showing a modification of the connection channel 7, steps 72, 73, 75, and 76 may be formed so as to increase the number of consecutively descending steps or the number of ascending steps. As shown in FIG. 5B showing another modification of the flow path 7, the steps 72, 73, 75, and 76 may be formed so as to repeat going up and down. Furthermore, as shown in FIG. 5C showing still another modification of the connection channel 7, all the parts in the connection channel 7 that allow ink to flow in the horizontal direction (XY plane direction) have the same length. The steps 72, 73, 75, and 76 may be formed to prevent this from occurring. The shapes of other parts of the connection flow path 7 may be freely determined depending on dimensional constraints and the like.
 また、接続流路7は、例えばY軸方向に直進的に形成されても良いし、Y軸方向に直進する部位とX軸方向に直進する部位の両方を含んで形成されても良い。 Further, the connection flow path 7 may be formed to extend straight in the Y-axis direction, for example, or may be formed to include both a portion that moves straight in the Y-axis direction and a portion that moves straight in the X-axis direction.
 [第2実施形態]
 次に、本開示の第2実施形態について説明する。第2実施形態では、上流側共通流路61を流れるインクを循環させる一方で、各個別流路31,34を流れるインクを循環させないタイプのインクジェットヘッドにおいて、上流側共通流路61よりも上流側及び下流側において気泡を貯留することで、流体クロストークを抑制する構成について説明する。第2実施形態の上流側共通流路61は、本開示の第1共通流路に該当する。図6Aは、上流側共通流路及び接続流路の概要を示す平面図である。図6Bは、図6AのVI-VI線に沿う縦断面図であって接続流路の概要を示す。なお、第1実施形態と同じ構成については、同一名称及び同一符号を付し、説明を簡略にするか、省略する場合がある。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described. In the second embodiment, in an inkjet head of a type that circulates ink flowing through the upstream common flow path 61 but does not circulate ink flowing through the individual flow paths 31 and 34, the side upstream of the upstream common flow path 61 is A configuration will be described in which fluid crosstalk is suppressed by storing air bubbles on the downstream side. The upstream common flow path 61 of the second embodiment corresponds to the first common flow path of the present disclosure. FIG. 6A is a plan view showing an overview of the upstream common flow path and the connection flow path. FIG. 6B is a longitudinal cross-sectional view taken along line VI-VI in FIG. 6A, and shows an outline of the connection channel. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
 図6Aに示されるように、上流側共通流路61における上流側端部には、上流側共通流路61よりも断面積が小さい接続流路7Aの一端が接続されている。接続流路7Aの他端には、インク供給路11が接続されている。上流側共通流路61における下流側端部には、上流側共通流路61よりも断面積が小さい接続流路7Bの一端が接続されている。接続流路7Bの他端には、インク排出路13が接続されている。このような構成により、上流側共通流路61を流れたインクは、インク排出路13、それぞれ不図示の第2インクタンク、ポンプ、第1インクタンク、及び、インク供給路11を介して、上流側共通流路61に戻される。 As shown in FIG. 6A, one end of a connecting channel 7A having a smaller cross-sectional area than the upstream common channel 61 is connected to the upstream end of the upstream common channel 61. An ink supply path 11 is connected to the other end of the connection flow path 7A. One end of a connecting channel 7B having a smaller cross-sectional area than the upstream common channel 61 is connected to the downstream end of the upstream common channel 61. An ink discharge path 13 is connected to the other end of the connection flow path 7B. With such a configuration, the ink flowing through the upstream common flow path 61 is transferred to the upstream side via the ink discharge path 13, the second ink tank, the pump, the first ink tank, and the ink supply path 11 (not shown). It is returned to the side common flow path 61.
 図6Bに示されるように、各接続流路7A,7Bは、それぞれ少なくとも1つの段差を含むように構成されている。すなわち、各接続流路7A,7Bの上側を構成する上壁面71A,71Bは、それぞれ2つずつの上側下り段差72と、それぞれ2つずつ上側上り段差73と、を含むように構成されている。また、接続流路7Aの下側を構成する下壁面74A,74Bは、それぞれ2つずつの下側下り段差75と、それぞれ2つずつ下側上り段差76と、を含むように構成されている。 As shown in FIG. 6B, each of the connecting channels 7A and 7B is configured to include at least one step. That is, the upper wall surfaces 71A and 71B forming the upper side of each of the connection channels 7A and 7B are configured to include two upper downward steps 72 and two upper upward steps 73, respectively. . Further, the lower wall surfaces 74A and 74B forming the lower side of the connecting channel 7A are each configured to include two lower downward steps 75 and two lower upward steps 76 each. .
 以上のような構成により、インクが接続流路7A、上流側共通流路61及び接続流路7Bを流れると、気泡が各段差72,73,75,76の各角部723,733,753,763近傍の所定範囲の領域に貯留される。 With the above configuration, when ink flows through the connection flow path 7A, the upstream common flow path 61, and the connection flow path 7B, air bubbles flow through the corners 723, 733, 753, and It is stored in a predetermined range of area near 763.
 上流側共通流路61の両端に接続流路7A及び接続流路7Bが接続されておらず、上流側共通流路61とインク供給路11及びインク排出路13がそれぞれ直接接続される場合、上流側共通流路61において、気泡を溜められる箇所が存在しない。このため、気泡によるダンパ効果を利用して流体クロストークを抑制することができない。これに対し、本第2実施形態では、上流側共通流路61の両端に、接続流路7A及び接続流路7Bをそれぞれ接続することにより、上流側共通流路61の両端部近傍に流体クロストークを抑制する気泡を配置することできる。このため、Y軸方向に沿って配置された複数のノズル41間において、流体クロストークの影響を均一にすることができる。 If the upstream common flow path 61 is not connected to both ends of the connection flow path 7A and the connection flow path 7B and the upstream common flow path 61 is directly connected to the ink supply path 11 and the ink discharge path 13, the upstream In the side common flow path 61, there is no place where air bubbles can be stored. For this reason, fluid crosstalk cannot be suppressed by utilizing the damper effect of air bubbles. On the other hand, in the second embodiment, by connecting the connection flow path 7A and the connection flow path 7B to both ends of the upstream common flow path 61, a fluid cross is formed near both ends of the upstream common flow path 61. Bubbles can be placed to suppress talk. Therefore, the influence of fluid crosstalk can be made uniform between the plurality of nozzles 41 arranged along the Y-axis direction.
 また、上流側共通流路61の両端に、接続流路7A及び接続流路7Bをそれぞれ接続することにより、上流側共通流路61内に気泡が貯留されることを防止することができる。このため、上流側共通流路61よりも上流側に気泡が貯留され、貯留された気泡の量が経時的に変動することに伴うインクの吐出状態のばらつきが生じることを抑制することができる。 Furthermore, by connecting the connection flow path 7A and the connection flow path 7B to both ends of the upstream common flow path 61, it is possible to prevent air bubbles from being stored in the upstream common flow path 61. Therefore, the air bubbles are stored upstream of the upstream common flow path 61, and it is possible to suppress variations in the ink ejection state caused by fluctuations in the amount of the stored air bubbles over time.
 [第3実施形態]
 次に、本開示の第3実施形態について説明する。第3実施形態では、各共通流路61,62及び各個別流路31,34を流れるインクを循環させるタイプのインクジェットヘッドにおいて、各共通流路61,62よりも上流側において気泡を貯留することで、流体クロストークを抑制する構成について説明する。第3実施形態の上流側共通流路61は、本開示の第1共通流路に該当し、下流側共通流路62は、本開示の第2共通流路に該当する。図7Aは、上流側共通流路、下流側共通流路及び接続流路の概要を示す平面図である。図7Bは、図7AのVII-VII線に沿う縦断面図であって接続流路の概要を示す。なお、第1実施形態と同じ構成については、同一名称及び同一符号を付し、説明を簡略にするか、省略する場合がある。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described. In the third embodiment, in an inkjet head of a type that circulates ink flowing through each common channel 61, 62 and each individual channel 31, 34, air bubbles are stored upstream of each common channel 61, 62. Now, a configuration for suppressing fluid crosstalk will be explained. The upstream common flow path 61 of the third embodiment corresponds to the first common flow path of the present disclosure, and the downstream common flow path 62 corresponds to the second common flow path of the present disclosure. FIG. 7A is a plan view showing an overview of the upstream common flow path, the downstream common flow path, and the connection flow path. FIG. 7B is a longitudinal cross-sectional view taken along line VII-VII in FIG. 7A, and shows an outline of the connection channel. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
 図7Aに示されるように、上流側共通流路61における上流側端部には、上流側共通流路61よりも断面積が小さい接続流路7Cの一端が接続されている。接続流路7Cの他端には、下流側共通流路62における上流側端部が接続されている。上流側共通流路61における上流側には、インク供給路11が接続されている。下流側共通流路62における下流側には、インク排出路13が接続されている。このような構成により、上流側共通流路61を流れたインクの一部は、各個別流路31,34及び下流側共通流路62を介して、インク排出路13に流れる。また、インク供給路11から供給されたインクの残りは、接続流路7C及び下流側共通流路62を介して、インク排出路13に流れる。インク排出路13に流れたインクは、それぞれ不図示の第2インクタンク、ポンプ、第1インクタンク、及び、インク供給路11を介して、上流側共通流路61に戻される。 As shown in FIG. 7A, one end of a connecting channel 7C having a smaller cross-sectional area than the upstream common channel 61 is connected to the upstream end of the upstream common channel 61. The upstream end of the downstream common flow path 62 is connected to the other end of the connection flow path 7C. The ink supply path 11 is connected to the upstream side of the upstream common flow path 61 . The ink discharge path 13 is connected to the downstream side of the downstream common flow path 62 . With this configuration, a portion of the ink that has flowed through the upstream common flow path 61 flows into the ink discharge path 13 via each of the individual flow paths 31 and 34 and the downstream common flow path 62. Further, the remainder of the ink supplied from the ink supply path 11 flows into the ink discharge path 13 via the connection flow path 7C and the downstream common flow path 62. The ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
 図7Bに示されるように、接続流路7Cは、少なくとも1つの段差を含むように構成されている。すなわち、接続流路7Cの上側を構成する上壁面71Cは、3つの上側下り段差72と、3つの上側上り段差73と、を含むように構成されている。また、接続流路7Cの下側を構成する下壁面74Cは、3つの下側下り段差75と、3つの下側上り段差76と、を含むように構成されている。 As shown in FIG. 7B, the connection channel 7C is configured to include at least one step. That is, the upper wall surface 71C constituting the upper side of the connection channel 7C is configured to include three upper downward steps 72 and three upper upward steps 73. Further, the lower wall surface 74C forming the lower side of the connection flow path 7C is configured to include three lower downward steps 75 and three lower upward steps 76.
 以上のような構成により、インクが接続流路7Cを流れると、気泡が各段差72,73,75,76の各角部723,733,753,763近傍の所定範囲の領域に貯留される。 With the above configuration, when ink flows through the connection channel 7C, air bubbles are stored in a predetermined area near each corner 723, 733, 753, 763 of each step 72, 73, 75, 76.
 下流側共通流路62の上流側端部に接続流路7Cが接続されていない場合、下流側共通流路62の上流側が止水域となり、そこに溜まる気泡の量を制御することができない。このため、気泡によるダンパ効果を利用した流体クロストーク抑制効果が経時的に変化し、流体クロストーク抑制効果は得られるものの、インクの着弾の再現性を高くすることができない。これに対し、本第3実施形態では、下流側共通流路62の上流側端部に接続流路7Cを接続することにより、下流側共通流路62の上流側端部から止水域を無くすことができる一方で、接続流路7Cに一定量の気泡を溜めることができる。このため、気泡によるダンパ効果を利用した流体クロストーク抑制効果を得ることができる。また、前記流体クロストーク抑制効果の経時的変化を抑制することができ、インクの着弾の再現性を高くすることができる。 If the connecting flow path 7C is not connected to the upstream end of the downstream common flow path 62, the upstream side of the downstream common flow path 62 becomes a water stop area, and the amount of bubbles accumulated there cannot be controlled. For this reason, the fluid crosstalk suppressing effect using the damper effect of air bubbles changes over time, and although the fluid crosstalk suppressing effect can be obtained, it is not possible to improve the reproducibility of ink landing. On the other hand, in the present third embodiment, by connecting the connection flow path 7C to the upstream end of the downstream common flow path 62, the water stop area can be eliminated from the upstream end of the downstream common flow path 62. At the same time, a certain amount of air bubbles can be stored in the connecting channel 7C. Therefore, it is possible to obtain a fluid crosstalk suppressing effect using the damper effect of air bubbles. Further, it is possible to suppress a change over time in the fluid crosstalk suppressing effect, and it is possible to improve the reproducibility of ink landing.
 また、上流側共通流路61と下流側共通流路62の上流側端部を1つの接続流路7Cを介して接続することにより、上流側共通流路61及び下流側共通流路62の上流側端部近傍に、流体クロストークを抑制する気泡を配置することできる。このため、上流側共通流路61及び下流側共通流路62のそれぞれの上流側に別々の接続流路を接続する必要がなくなり、加工コスト又は流路形成スペースを削減することができる。すなわち、小型化や低コスト化の制約がある中でも、各共通流路61,62の端部近傍に気泡を貯留させることにより、流体クロストークを抑制することができる。 In addition, by connecting the upstream end portions of the upstream common flow path 61 and the downstream common flow path 62 via one connection flow path 7C, the upstream end portions of the upstream common flow path 61 and the downstream common flow path 62 are Air bubbles can be placed near the side edges to suppress fluid crosstalk. Therefore, there is no need to connect separate connection channels to the upstream sides of the upstream common channel 61 and the downstream common channel 62, and processing costs or channel formation space can be reduced. That is, even under the constraints of miniaturization and cost reduction, fluid crosstalk can be suppressed by storing air bubbles near the ends of each common flow path 61, 62.
 また、上流側共通流路61と下流側共通流路62を1つの接続流路7Cを介して接続することにより、上流側共通流路61及び下流側共通流路62のそれぞれにおける気泡によるダンパ成分の影響を、同等にすることができる。このため、インクの吐出時に、上流側と下流側の流路抵抗等の特性を一定にすることができ、インクの吐出性能を高めることができる。 In addition, by connecting the upstream common flow path 61 and the downstream common flow path 62 via one connection flow path 7C, damper components due to air bubbles in each of the upstream common flow path 61 and the downstream common flow path 62 can be The effects of can be made equal. Therefore, when ink is ejected, characteristics such as flow path resistance on the upstream side and the downstream side can be made constant, and ink ejection performance can be improved.
 [第4実施形態]
 次に、本開示の第4実施形態について説明する。第4実施形態では、各共通流路61,62及び各個別流路31,34を流れるインクを循環させるタイプのインクジェットヘッドにおいて、各共通流路61,62よりも上流側及び下流側において気泡を貯留することで、流体クロストークを抑制する構成について説明する。第4実施形態の上流側共通流路61は、本開示の第1共通流路に該当し、下流側共通流路62は、本開示の第2共通流路に該当する。図8Aは、上流側共通流路、下流側共通流路及び接続流路の概要を示す平面図である。図8Bは、図8AのVIII-VIII線に沿う縦断面図であって接続流路の概要を示す。なお、第4実施形態と第3実施形態との相違点は、接続流路7Dを設けたことなので、当該相違点を中心にして説明する。また、第1実施形態と同じ構成については、同一名称及び同一符号を付し、説明を簡略にするか、省略する場合がある。
[Fourth embodiment]
Next, a fourth embodiment of the present disclosure will be described. In the fourth embodiment, in an inkjet head of a type that circulates ink flowing through each common channel 61, 62 and each individual channel 31, 34, air bubbles are removed on the upstream and downstream sides of each common channel 61, 62. A configuration for suppressing fluid crosstalk by storing fluid will be described. The upstream common flow path 61 of the fourth embodiment corresponds to the first common flow path of the present disclosure, and the downstream common flow path 62 corresponds to the second common flow path of the present disclosure. FIG. 8A is a plan view showing an outline of the upstream common flow path, the downstream common flow path, and the connection flow path. FIG. 8B is a longitudinal cross-sectional view taken along the line VIII-VIII of FIG. 8A, and shows an outline of the connection channel. Note that the difference between the fourth embodiment and the third embodiment is that the connection flow path 7D is provided, so the description will focus on this difference. Further, the same configurations as those in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
 図8Aに示されるように、上流側共通流路61における下流側端部には、上流側共通流路61よりも断面積が小さい接続流路7Dの一端が接続されている。接続流路7Dの他端には、下流側共通流路62における下流側端部が接続されている。このような構成により、上流側共通流路61を流れたインクの一部は、各個別流路31,34及び下流側共通流路62を介して、又は、接続流路7Dを介して、インク排出路13に流れる。また、インク供給路11から供給されたインクの残りは、接続流路7C及び下流側共通流路62を介して、インク排出路13に流れる。インク排出路13に流れたインクは、それぞれ不図示の第2インクタンク、ポンプ、第1インクタンク、及び、インク供給路11を介して、上流側共通流路61に戻される。 As shown in FIG. 8A, one end of a connecting channel 7D having a smaller cross-sectional area than the upstream common channel 61 is connected to the downstream end of the upstream common channel 61. The downstream end of the downstream common flow path 62 is connected to the other end of the connection flow path 7D. With such a configuration, a part of the ink that has flowed through the upstream common channel 61 is transferred to the ink via the individual channels 31 and 34 and the downstream common channel 62, or via the connecting channel 7D. It flows into the discharge path 13. Further, the remainder of the ink supplied from the ink supply path 11 flows into the ink discharge path 13 via the connection flow path 7C and the downstream common flow path 62. The ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
 図8Bに示されるように、接続流路7Dは、少なくとも1つの段差を含むように構成されている。すなわち、接続流路7Dの上壁面71Dは、3つの上側下り段差72と、3つの上側上り段差73と、を含むように構成されている。また、接続流路7Dの下側を構成する下壁面74Dは、3つの下側下り段差75と、3つの下側上り段差76と、を含むように構成されている。 As shown in FIG. 8B, the connection channel 7D is configured to include at least one step. That is, the upper wall surface 71D of the connection channel 7D is configured to include three upper downward steps 72 and three upper upward steps 73. Further, the lower wall surface 74D forming the lower side of the connection channel 7D is configured to include three lower downward steps 75 and three lower upward steps 76.
 以上のような構成により、インクが接続流路7C,7Dを流れると、気泡が各段差72,73,75,76の各角部723,733,753,763近傍の所定範囲の領域に貯留される。 With the above configuration, when ink flows through the connection channels 7C and 7D, air bubbles are stored in a predetermined area near each corner 723, 733, 753, 763 of each step 72, 73, 75, 76. Ru.
 下流側共通流路62の上流側端部に接続流路7Cが接続されていない場合、第3実施形態で説明したように、気泡によるダンパ効果を利用した流体クロストーク抑制効果が経時的に変化し、流体クロストーク抑制効果は得られるものの、インクの着弾精度の再現性を得ることができない。また、上流側共通流路61の下流側端部に接続流路7Dが接続されていない場合、上流側共通流路61の下流側が止水域となり、そこに溜まる気泡の量を制御することができない。このため、気泡によるダンパ効果を利用した流体クロストーク抑制効果が経時的に変化し、流体クロストーク抑制効果は得られるものの、インクの着弾の再現性を高くすることができない。これに対し、本第4実施形態では、下流側共通流路62の上流側端部に接続流路7Cを接続すると共に、上流側共通流路61の下流側端部に接続流路7Dを接続することにより、下流側共通流路62の上流側端部及び上流側共通流路61の下流側端部から止水域を無くすことができる一方で、各接続流路7C,7Dに一定量の気泡を溜めることができる。このため、気泡によるダンパ効果を利用した流体クロストーク抑制効果を得ることができる。また、前記流体クロストーク抑制効果の経時的変化を抑制することができ、インクの着弾の再現性を高くすることができる。 When the connecting flow path 7C is not connected to the upstream end of the downstream common flow path 62, as explained in the third embodiment, the fluid crosstalk suppression effect using the damper effect of air bubbles changes over time. However, although the effect of suppressing fluid crosstalk can be obtained, the reproducibility of ink landing accuracy cannot be obtained. Furthermore, if the connecting flow path 7D is not connected to the downstream end of the upstream common flow path 61, the downstream side of the upstream common flow path 61 becomes a water stop area, and the amount of bubbles accumulated there cannot be controlled. . For this reason, the fluid crosstalk suppressing effect using the damper effect of air bubbles changes over time, and although the fluid crosstalk suppressing effect can be obtained, it is not possible to improve the reproducibility of ink landing. In contrast, in the fourth embodiment, the connection flow path 7C is connected to the upstream end of the downstream common flow path 62, and the connection flow path 7D is connected to the downstream end of the upstream common flow path 61. By doing so, it is possible to eliminate the cut-off area from the upstream end of the downstream common flow path 62 and the downstream end of the upstream common flow path 61, and at the same time, it is possible to eliminate a certain amount of air bubbles in each of the connecting flow paths 7C and 7D. can be accumulated. Therefore, it is possible to obtain a fluid crosstalk suppressing effect using the damper effect of air bubbles. Further, it is possible to suppress a change over time in the fluid crosstalk suppressing effect, and it is possible to improve the reproducibility of ink landing.
 また、接続流路7Dの各段差72,73,75,76の個数を接続流路7Cの各段差72,73,75,76と同じ個数にして、上流側共通流路61及び下流側共通流路62のそれぞれにおける上流側及び下流側に同様の量の気泡を存在させることにより、気泡によるダンパ効果を利用した流体クロストーク抑制効果により、ノズル41間におけるインクの吐出状態のばらつきを抑制することができる。 In addition, the number of the steps 72, 73, 75, 76 of the connection channel 7D is the same as the number of steps 72, 73, 75, 76 of the connection channel 7C, so that the upstream common channel 61 and the downstream common channel By providing the same amount of air bubbles on the upstream and downstream sides of each of the channels 62, variations in the ink ejection state between the nozzles 41 can be suppressed by the fluid crosstalk suppressing effect using the damper effect of the air bubbles. I can do it.
 また、上流側共通流路61及び下流側共通流路62の上流側端部同士を接続流路7Cにより接続すると共に、下流側端部同士を接続流路7Dにより接続することにより、上流側共通流路61及び下流側共通流路62の両端部近傍に、流体クロストークを抑制する気泡を配置することできる。このため、上流側共通流路61及び下流側共通流路62のそれぞれの上流側端部及び下流側端部に別々の接続流路を接続する必要がなくなり、加工コスト又は流路形成スペースを削減することができる。すなわち、小型化や低コスト化の制約がある中でも、各共通流路61,62の端部近傍に気泡を貯留させることにより、流体クロストークを抑制することができる。 Moreover, by connecting the upstream ends of the upstream common flow path 61 and the downstream common flow path 62 with each other through the connection flow path 7C, and by connecting the downstream ends with each other through the connection flow path 7D, the upstream side common flow path 61 and the downstream common flow path 62 are connected with each other through the connection flow path 7D. Bubbles that suppress fluid crosstalk can be arranged near both ends of the flow path 61 and the downstream common flow path 62. Therefore, there is no need to connect separate connection channels to the upstream and downstream ends of the upstream common channel 61 and the downstream common channel 62, reducing processing costs or channel formation space. can do. That is, even under the constraints of miniaturization and cost reduction, fluid crosstalk can be suppressed by storing air bubbles near the ends of each common flow path 61, 62.
 また、上流側共通流路61と下流側共通流路62を接続流路7C,7Dを介して接続することにより、上流側共通流路61及び下流側共通流路62のそれぞれにおける気泡によるダンパ成分の影響を、同等にすることができる。このため、インクの吐出時に、上流側と下流側の流路抵抗等の特性を一定にすることができ、インクの吐出性能を高めることができる。 In addition, by connecting the upstream common flow path 61 and the downstream common flow path 62 via the connection flow paths 7C and 7D, damper components due to air bubbles in each of the upstream common flow path 61 and the downstream common flow path 62 can be The effects of can be made equal. Therefore, when ink is ejected, characteristics such as flow path resistance on the upstream side and the downstream side can be made constant, and ink ejection performance can be improved.
 また、上流側共通流路61及び下流側共通流路62の両端部近傍に流体クロストークを抑制する気泡を配置することできる。このため、Y軸方向に沿って配置された複数のノズル41間において、流体クロストークの影響を均一にすることができる。 Furthermore, bubbles can be placed near both ends of the upstream common flow path 61 and the downstream common flow path 62 to suppress fluid crosstalk. Therefore, the influence of fluid crosstalk can be made uniform between the plurality of nozzles 41 arranged along the Y-axis direction.
 また、上流側共通流路61及び下流側共通流路62の両端に、接続流路7C及び接続流路7Dをそれぞれ接続することにより、上流側共通流路61内及び下流側共通流路62内に気泡が貯留されることを防止することができる。このため、上流側共通流路61及び下流側共通流路62のそれぞれ端部に気泡が貯留され、貯留された気泡の量が経時的に変動することに伴うインクの吐出状態のばらつきが生じることを抑制することができる。 In addition, by connecting the connection flow path 7C and the connection flow path 7D to both ends of the upstream common flow path 61 and the downstream common flow path 62, the inside of the upstream common flow path 61 and the downstream common flow path 62 can be It is possible to prevent air bubbles from being accumulated in the air. For this reason, air bubbles are stored at the respective ends of the upstream common flow path 61 and the downstream common flow path 62, and variations in the ink ejection state occur due to changes in the amount of stored air bubbles over time. can be suppressed.
 なお、インクジェットヘッドの小型化を図るために、上流側共通流路61又は下流側共通流路62を、複数のノズル列に対して共通して使用するようにしても良い。図9Aは、第4実施形態の変形例に係るインクジェットヘッドの概要を示す平面図である。図9Bは、第4実施形態の他の変形例に係るインクジェットヘッドの概要を示す平面図である。 Note that in order to reduce the size of the inkjet head, the upstream common channel 61 or the downstream common channel 62 may be used in common for a plurality of nozzle rows. FIG. 9A is a plan view showing an outline of an inkjet head according to a modification of the fourth embodiment. FIG. 9B is a plan view schematically showing an inkjet head according to another modification of the fourth embodiment.
 図9Aに示されるように、上流側共通流路61は、平面視において、Y軸方向に延びるように形成されている。下流側共通流路62は、平面視において、上流側共通流路61の+X方向側においてY軸方向に延びるように形成された第1部位62Aと、上流側共通流路61の-X方向側においてY軸方向に延びるように形成された第2部位62Bと、第1部位62Aと第2部位62Bの-Y方向側の端部同士を接続する第3部位62Cとにより構成されている。上流側共通流路61における+Y方向側端部には、インク供給路11が接続されている。下流側共通流路62の第3部位62Cにおける長手方向の中央には、インク排出路13が接続されている。上流側共通流路61と下流側共通流路62の第1部位62Aは、それぞれ複数ずつの上流側個別流路31、圧力室33及び下流側個別流路34を介して接続されている。上流側共通流路61と下流側共通流路62の第2部位62Bは、それぞれ複数ずつの上流側個別流路31、圧力室33及び下流側個別流路34を介して接続されている。 As shown in FIG. 9A, the upstream common flow path 61 is formed to extend in the Y-axis direction in plan view. The downstream common flow path 62 includes a first portion 62A formed to extend in the Y-axis direction on the +X direction side of the upstream common flow path 61 and a −X direction side of the upstream common flow path 61 in a plan view. The second portion 62B is formed to extend in the Y-axis direction, and the third portion 62C connects the ends of the first portion 62A and the second portion 62B on the -Y direction side. The ink supply path 11 is connected to the +Y direction end of the upstream common flow path 61 . The ink discharge path 13 is connected to the longitudinal center of the third portion 62C of the downstream common flow path 62. The first portions 62A of the upstream common flow path 61 and the downstream common flow path 62 are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively. The upstream common channel 61 and the second portion 62B of the downstream common channel 62 are connected via a plurality of upstream individual channels 31, pressure chambers 33, and downstream individual channels 34, respectively.
 また、上流側共通流路61における+Y方向側端部には、接続流路7Eの一端と、接続流路7Fの一端とが接続されている。接続流路7Eの他端は、下流側共通流路62の第1部位62Aの+Y方向側端部に接続されている。接続流路7Fの他端は、下流側共通流路62の第2部位62Bの+Y方向側端部に接続されている。上流側共通流路61における-Y方向側端部には、接続流路7Gの一端が接続されている。接続流路7Gの他端は、下流側共通流路62の第3部位62Cにおけるインク排出路13との接続部位の近傍に接続されている。各接続流路7E,7F,7Gは、それらの断面積が上流側共通流路61の断面積よりも小さくなるように形成されている。 Moreover, one end of the connection flow path 7E and one end of the connection flow path 7F are connected to the +Y direction side end of the upstream common flow path 61. The other end of the connection flow path 7E is connected to the +Y direction side end of the first portion 62A of the downstream common flow path 62. The other end of the connection flow path 7F is connected to the +Y direction side end of the second portion 62B of the downstream common flow path 62. One end of the connection flow path 7G is connected to the -Y direction side end of the upstream common flow path 61. The other end of the connection flow path 7G is connected to the third portion 62C of the downstream common flow path 62 near the connection portion with the ink discharge path 13. Each of the connecting channels 7E, 7F, and 7G is formed such that its cross-sectional area is smaller than the cross-sectional area of the upstream common channel 61.
 以上のような構成により、インク供給路11から供給されたインクの一部は、上流側共通流路61を-Y方向に流れ、上流側個別流路31、圧力室33及び下流側個別流路34を介して、下流側共通流路62の第1部位62A又は第2部位62Bに流れるか、接続流路7G及び第3部位62Cを介して、インク排出路13に流れる。また、インク供給路11から供給されたインクの残りは、接続流路7E、第1部位62A及び第3部位62Cを介して、又は、接続流路7F、第2部位62B及び第3部位62Cを介して、インク排出路13に流れる。インク排出路13に流れたインクは、それぞれ不図示の第2インクタンク、ポンプ、第1インクタンク、及び、インク供給路11を介して、上流側共通流路61に戻される。 With the above configuration, a part of the ink supplied from the ink supply path 11 flows in the -Y direction through the upstream common flow path 61, and flows through the upstream individual flow path 31, the pressure chamber 33, and the downstream individual flow path. 34 to the first section 62A or second section 62B of the downstream common channel 62, or to the ink discharge channel 13 via the connecting channel 7G and the third section 62C. Further, the remaining ink supplied from the ink supply path 11 is passed through the connection channel 7E, the first section 62A, and the third section 62C, or through the connection channel 7F, the second section 62B, and the third section 62C. The ink flows into the ink discharge path 13 via the ink discharge path 13 . The ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
 各接続流路7E,7F,7Gは、それぞれ少なくとも1つの段差を含むように構成されている。すなわち、各接続流路7E,7F,7Gは、図9Aでは図示されていないが、それぞれ上側下り段差72、上側上り段差73、下側下り段差75、及び、下側上り段差76を含むように構成されている。 Each of the connection channels 7E, 7F, and 7G is configured to include at least one step. That is, each of the connection channels 7E, 7F, and 7G includes an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step 76, although not shown in FIG. 9A. It is configured.
 以上のような構成により、インクが各接続流路7E,7F,7Gを流れると、気泡が各段差72,73,75,76の各角部723,733,753,763近傍の所定範囲の領域に貯留される。つまり、各接続流路7E,7F,7Gの各段差は、本開示の気泡貯留部に該当する。 With the above configuration, when ink flows through each of the connecting flow paths 7E, 7F, and 7G, air bubbles flow into a predetermined area near each corner 723, 733, 753, and 763 of each step 72, 73, 75, and 76. is stored in In other words, each level difference in each of the connection channels 7E, 7F, and 7G corresponds to the bubble storage section of the present disclosure.
 接続流路を長くして段差を多く配置するために、図9Bに示されるように、インクジェットヘッドを構成しても良い。インクジェットヘッドは、上流側共通流路61と、第1下流側共通流路62Dと、第2下流側共通流路62Eと、を備える。上流側共通流路61、第1下流側共通流路62D、及び、第2下流側共通流路62Eは、平面視において、Y軸方向に延びるように形成されている。上流側共通流路61と第1下流側共通流路62Dは、それぞれ複数ずつの上流側個別流路31、圧力室33及び下流側個別流路34を介して接続されている。上流側共通流路61と第2下流側共通流路62Eは、それぞれ複数ずつの上流側個別流路31、圧力室33及び下流側個別流路34を介して接続されている。 In order to lengthen the connection flow path and arrange many steps, the inkjet head may be configured as shown in FIG. 9B. The inkjet head includes an upstream common channel 61, a first downstream common channel 62D, and a second downstream common channel 62E. The upstream common flow path 61, the first downstream common flow path 62D, and the second downstream common flow path 62E are formed to extend in the Y-axis direction in plan view. The upstream common flow path 61 and the first downstream common flow path 62D are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively. The upstream common flow path 61 and the second downstream common flow path 62E are connected via a plurality of upstream individual flow paths 31, pressure chambers 33, and downstream individual flow paths 34, respectively.
 また、上流側共通流路61における+Y方向側端部には、接続流路7Hの一端が接続されている。接続流路7Hの他端には、インク供給路11が接続されている。インク供給路11には、接続流路7Iの一端と、接続流路7Jの一端と、が接続されている。接続流路7Iの他端は、第1下流側共通流路62Dの+Y方向側端部に接続されている。接続流路7Jの他端は、第2下流側共通流路62Eの+Y方向側端部に接続されている。上流側共通流路61における-Y方向側端部には、接続流路7Kの一端が接続されている。接続流路7Kの他端には、インク排出路13が接続されている。インク排出路13には、接続流路7Lの一端と、接続流路7Mの一端と、が接続されている。接続流路7Lの他端は、第1下流側共通流路62Dの-Y方向側端部に接続されている。接続流路7Mの他端は、第2下流側共通流路62Eの-Y方向側端部に接続されている。各接続流路7H,7I,7J,7K,7L,7Mは、それらの断面積が上流側共通流路61の断面積よりも小さくなるように形成されている。 Furthermore, one end of the connection flow path 7H is connected to the +Y direction side end of the upstream common flow path 61. The ink supply path 11 is connected to the other end of the connection flow path 7H. The ink supply path 11 is connected to one end of the connection channel 7I and one end of the connection channel 7J. The other end of the connection channel 7I is connected to the +Y direction side end of the first downstream common channel 62D. The other end of the connection channel 7J is connected to the +Y direction side end of the second downstream common channel 62E. One end of the connection flow path 7K is connected to the -Y direction side end of the upstream common flow path 61. An ink discharge path 13 is connected to the other end of the connection flow path 7K. The ink discharge path 13 is connected to one end of the connection channel 7L and one end of the connection channel 7M. The other end of the connection channel 7L is connected to the -Y direction side end of the first downstream common channel 62D. The other end of the connection channel 7M is connected to the -Y direction side end of the second downstream common channel 62E. Each connection channel 7H, 7I, 7J, 7K, 7L, 7M is formed such that its cross-sectional area is smaller than the cross-sectional area of the upstream common channel 61.
 以上のような構成により、インク供給路11から供給されたインクの一部は、接続流路7Hを介して、上流側共通流路61に流れる。上流側共通流路61に流れたインクは、上流側個別流路31、圧力室33及び下流側個別流路34を介して、第1下流側共通流路62D又は第2下流側共通流路62Eに流れるか、接続流路7Kを介して、インク排出路13に流れる。インク供給路11から供給されたインクの残りは、接続流路7Iを介して第1下流側共通流路62Dに流れるか、接続流路7Jを介して第2下流側共通流路62Eに流れる。第1下流側共通流路62Dに流れたインクは、接続流路7Lを介して、インク排出路13に流れる。第2下流側共通流路62Eに流れたインクは、接続流路7Mを介して、インク排出路13に流れる。インク排出路13に流れたインクは、それぞれ不図示の第2インクタンク、ポンプ、第1インクタンク、及び、インク供給路11を介して、上流側共通流路61に戻される。 With the above configuration, a part of the ink supplied from the ink supply path 11 flows to the upstream common flow path 61 via the connection flow path 7H. The ink flowing into the upstream common flow path 61 passes through the upstream individual flow path 31, the pressure chamber 33, and the downstream individual flow path 34 to the first downstream common flow path 62D or the second downstream common flow path 62E. or flows to the ink discharge path 13 via the connection flow path 7K. The remainder of the ink supplied from the ink supply channel 11 flows into the first downstream common channel 62D via the connecting channel 7I or flows into the second downstream common channel 62E via the connecting channel 7J. The ink that has flowed into the first downstream common flow path 62D flows into the ink discharge path 13 via the connection flow path 7L. The ink that has flowed into the second downstream common flow path 62E flows into the ink discharge path 13 via the connection flow path 7M. The ink that has flowed into the ink discharge path 13 is returned to the upstream common flow path 61 via a second ink tank, a pump, a first ink tank, and the ink supply path 11 (not shown), respectively.
 各接続流路7H,7I,7J,7K,7L,7Mは、それぞれ少なくとも1つの段差を含むように構成されている。すなわち、各接続流路7H,7I,7J,7K,7L,7Mは、図9Bでは図示されていないが、それぞれ上側下り段差72、上側上り段差73、下側下り段差75、及び、下側上り段差76を含むように構成されている。 Each of the connection channels 7H, 7I, 7J, 7K, 7L, and 7M is configured to include at least one step. That is, each of the connection channels 7H, 7I, 7J, 7K, 7L, and 7M has an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step, respectively, although they are not shown in FIG. 9B. It is configured to include a step 76.
 以上のような構成により、インクが各接続流路7H,7I,7J,7K,7L,7Mを流れると、気泡が各段差72,73,75,76の各角部723,733,753,763近傍の所定範囲の領域に貯留される。 With the above configuration, when ink flows through each of the connecting channels 7H, 7I, 7J, 7K, 7L, and 7M, air bubbles flow through each corner 723, 733, 753, 763 of each step 72, 73, 75, 76. It is stored in a predetermined area nearby.
 図9A又は図9Bに示されるように、ノズル列の配置、又は、上流側共通流路61、下流側共通流路62、第1下流側共通流路62D、及び、第2下流側共通流路62Eの構成に関係なく、上流側共通流路61、下流側共通流路62、第1下流側共通流路62D、及び、第2下流側共通流路62Eの両端部を、段差を有する接続流路でそれぞれ接続することにより、インクジェットヘッドの小型化を図れると共に、生産コスト及び流体クロストークを抑制することができる。 As shown in FIG. 9A or 9B, the arrangement of the nozzle rows, the upstream common flow path 61, the downstream common flow path 62, the first downstream common flow path 62D, and the second downstream common flow path 62E, both ends of the upstream common flow path 61, the downstream common flow path 62, the first downstream common flow path 62D, and the second downstream common flow path 62E are connected to a connecting flow having a step. By connecting the inkjet heads through channels, it is possible to reduce the size of the inkjet head, and also to suppress production costs and fluid crosstalk.
 [第5実施形態]
 次に、本開示の第5実施形態について説明する。第5実施形態では、接続流路を形成する方法について説明する。図10は、接続流路の形成方法の説明図である。
[Fifth embodiment]
Next, a fifth embodiment of the present disclosure will be described. In the fifth embodiment, a method for forming a connecting channel will be described. FIG. 10 is an explanatory diagram of a method for forming a connecting channel.
 第1~第4実施形態に示された段差を有する接続流路を機械加工により形成することもできるが、機械加工により容易に段差を形成することは難しく、加工コストが高くなる。このため、流路プレート30(図2参照)を積層構造で形成するインクジェットヘッドの特徴を活かして、流路プレート30に段差を有する接続流路を形成することが好ましい。流路プレート30を構成する各層に貫通孔を形成し、各層の貫通孔の一部が重なる各層を積層することにより、段差を有する接続流路を形成することができる。 Although the connecting channels having the steps shown in the first to fourth embodiments can be formed by machining, it is difficult to easily form the steps by machining, and the processing cost increases. For this reason, it is preferable to form a connection channel having a step in the channel plate 30 by taking advantage of the characteristics of the inkjet head in which the channel plate 30 (see FIG. 2) is formed in a layered structure. By forming through holes in each layer constituting the flow path plate 30 and stacking the layers so that the through holes of each layer partially overlap, a connecting flow path having a step can be formed.
 例えば、図8Aに示される第4実施形態の接続流路7C,7Dを形成するために、図10に示される第1層81~第5層85を用いて、流路プレート30を構成する。流路プレート30を形成する場合、下から、第1層81、第2層82、第3層83、第4層84、第5層85の順に積層する。 For example, in order to form the connection channels 7C and 7D of the fourth embodiment shown in FIG. 8A, the channel plate 30 is constructed using the first to fifth layers 81 to 85 shown in FIG. 10. When forming the channel plate 30, the first layer 81, the second layer 82, the third layer 83, the fourth layer 84, and the fifth layer 85 are laminated in this order from the bottom.
 第5層85には、接続流路7Cを構成する第1接続流路用貫通孔851と、接続流路7Dを構成する第2接続流路用貫通孔852と、が形成されている。第1接続流路用貫通孔851は、ハウジング部10(図2参照)の第2上流側共通流路部12と少なくとも一部が重なるように形成される。第2接続流路用貫通孔852は、ハウジング部10の第2下流側共通流路部14と少なくとも一部が重なるように形成される。 In the fifth layer 85, a first connection channel through hole 851 forming the connection channel 7C and a second connection channel through hole 852 forming the connection channel 7D are formed. The first connection flow path through hole 851 is formed so as to at least partially overlap the second upstream common flow path portion 12 of the housing portion 10 (see FIG. 2). The second connection channel through hole 852 is formed so as to at least partially overlap the second downstream common channel section 14 of the housing section 10 .
 また、第5層85には、圧力室33を構成する圧力室用貫通孔853と、第1上流側共通流路部32(図2参照)を構成する第1共通流路用貫通孔854と、第1下流側共通流路部35(図2参照)を構成する第2共通流路用貫通孔855と、が形成されている。第2上流側共通流路部12は、そのX軸方向及びY軸方向の長さが、第1共通流路用貫通孔854のX軸方向及びY軸方向の長さよりも長くなるように形成されている。第2下流側共通流路部14は、そのX軸方向及びY軸方向の長さが、第2共通流路用貫通孔855のX軸方向及びY軸方向の長さよりも長くなるように形成されている。このため、第1,第2接続流路用貫通孔851,852は、第1,第2共通流路用貫通孔854,855に繋がっていないが、第2上流側共通流路部12又は第2下流側共通流路部14を介して、第1,第2共通流路用貫通孔854,855に繋がる。 The fifth layer 85 also includes a pressure chamber through hole 853 that constitutes the pressure chamber 33 and a first common flow path through hole 854 that constitutes the first upstream common flow path section 32 (see FIG. 2). , and a second common flow path through hole 855 constituting the first downstream common flow path portion 35 (see FIG. 2). The second upstream common flow path section 12 is formed so that its length in the X-axis direction and the Y-axis direction is longer than the length of the first common flow path through hole 854 in the X-axis direction and the Y-axis direction. has been done. The second downstream common flow path portion 14 is formed so that its length in the X-axis direction and the Y-axis direction is longer than the length of the second common flow path through hole 855 in the X-axis direction and the Y-axis direction. has been done. Therefore, the first and second connection channel through holes 851 and 852 are not connected to the first and second common channel through holes 854 and 855, but the second upstream common channel section 12 or the second upstream common channel section 12 or It is connected to the first and second common flow path through holes 854 and 855 via the two downstream common flow path portions 14 .
 第4層84には、接続流路7Cを構成する第1接続流路用貫通孔841と、接続流路7Dを構成する第2接続流路用貫通孔842と、が形成されている。第1接続流路用貫通孔841は、一部が第5層の第1接続流路用貫通孔851に重なるように形成されている。第2接続流路用貫通孔842は、一部が第5層の第2接続流路用貫通孔852に重なるように形成されている。また、第4層84には、圧力室33及び各個別流路31,34(図2参照)を構成する圧力室用貫通孔843が形成されている。圧力室用貫通孔843は、その一部が第5層85の圧力室用貫通孔853及び第1,第2共通流路用貫通孔854,855に重なるように形成されている。 The fourth layer 84 is formed with a first connection channel through-hole 841 that constitutes the connection channel 7C and a second connection channel through-hole 842 that constitutes the connection channel 7D. The first connection flow path through hole 841 is formed so as to partially overlap the first connection flow path through hole 851 of the fifth layer. The second connection flow path through hole 842 is formed so as to partially overlap the second connection flow path through hole 852 in the fifth layer. Further, the fourth layer 84 is formed with a pressure chamber through hole 843 that constitutes the pressure chamber 33 and each of the individual channels 31 and 34 (see FIG. 2). The pressure chamber through hole 843 is formed so as to partially overlap the pressure chamber through hole 853 and the first and second common flow path through holes 854 and 855 of the fifth layer 85 .
 第3層83には、接続流路7Cを構成する第1接続流路用貫通孔831と、接続流路7Dを構成する第2接続流路用貫通孔832と、が形成されている。第1接続流路用貫通孔831は、一部が第4層の第1接続流路用貫通孔841に重なるように形成されている。第2接続流路用貫通孔832は、一部が第4層の第2接続流路用貫通孔842に重なるように形成されている。また、第3層83には、圧力室33を構成する圧力室用貫通孔833と、第1上流側共通流路部32を構成する第1共通流路用貫通孔834と、第1下流側共通流路部35を構成する第2共通流路用貫通孔835と、が形成されている。各貫通孔833,834,835は、それぞれの一部が第4層84の圧力室用貫通孔843に重なるように形成されている。 In the third layer 83, a first connection channel through hole 831 forming the connection flow path 7C and a second connection flow path through hole 832 forming the connection flow path 7D are formed. The first connection flow path through hole 831 is formed so as to partially overlap the first connection flow path through hole 841 of the fourth layer. The second connection flow path through hole 832 is formed so as to partially overlap the second connection flow path through hole 842 in the fourth layer. Further, the third layer 83 includes a pressure chamber through hole 833 forming the pressure chamber 33, a first common flow path through hole 834 forming the first upstream common flow path section 32, and a first downstream side through hole 834 forming the first upstream common flow path section 32. A second common flow path through hole 835 constituting the common flow path portion 35 is formed. Each of the through holes 833, 834, and 835 is formed so that a portion thereof overlaps with the pressure chamber through hole 843 of the fourth layer 84.
 第2層82には、接続流路7Cを構成する第1接続流路用貫通孔821が形成されている。第1接続流路用貫通孔821は、一部が第3層の第1接続流路用貫通孔831に重なるように形成されている。また、第2層82には、サイロ部36(図2参照)を構成するサイロ部用貫通孔823と、第1上流側共通流路部32を構成する第1共通流路用貫通孔824と、第1下流側共通流路部35を構成する第2共通流路用貫通孔825と、が形成されている。サイロ部用貫通孔823は、第3層83の圧力室用貫通孔833に重なるように形成されている。第1,第2共通流路用貫通孔824,825は、それぞれ第3層83の第1,第2共通流路用貫通孔834,835に重なるように形成されている。 In the second layer 82, a first connection channel through hole 821 forming the connection channel 7C is formed. The first connection flow path through hole 821 is formed so as to partially overlap the first connection flow path through hole 831 of the third layer. The second layer 82 also includes a silo part through hole 823 that constitutes the silo part 36 (see FIG. 2), and a first common flow passage through hole 824 that constitutes the first upstream common flow passage part 32. , and a second common flow path through hole 825 constituting the first downstream common flow path portion 35. The silo portion through hole 823 is formed so as to overlap the pressure chamber through hole 833 of the third layer 83 . The first and second common flow path through holes 824 and 825 are formed to overlap the first and second common flow path through holes 834 and 835 of the third layer 83, respectively.
 第1層81には、サイロ部36を構成するサイロ部用貫通孔813が形成されている。サイロ部用貫通孔813は、第2層82のサイロ部用貫通孔823に重なるように形成されている。 In the first layer 81, a silo part through hole 813 that constitutes the silo part 36 is formed. The silo part through hole 813 is formed so as to overlap the silo part through hole 823 of the second layer 82 .
 各接続流路用貫通孔821,831,832,841,842,851,852は、本開示の第1貫通孔に該当し、各圧力室用貫通孔833,843,853は、本開示の第2貫通孔に該当する。なお、図10においては、第1層81に接続流路7C,7Dを構成する第1,第2接続流路用貫通孔を形成していないが、第1層81に第1,第2接続流路用貫通孔を形成することにより、接続流路7C,7Dの段差をより深くしても良い。この場合、第1層81からインクが漏れないように、貫通孔ではなく底部を有する溝を形成しても良い。また、第1層81に限らず、接続流路7Cの流路抵抗を高めるために、例えば第2層82の第1接続流路用貫通孔821の代わりに、底部を有する溝を形成しても良い。また、各段差の凹んだ角部の角度を90°以下にするために、各接続流路用貫通孔851,852,841,842,831,832,821を、エッチング加工により形成することが好ましい。また、第1層81~第5層85の各接続流路用貫通孔851,852,841,842,831,832,821の大きさ、形状、又は、個数は一例であり、接続流路7C,7Dの長さ又は接続流路7C,7Dの流路抵抗等により決めることができる。 Each connection channel through hole 821, 831, 832, 841, 842, 851, 852 corresponds to the first through hole of the present disclosure, and each pressure chamber through hole 833, 843, 853 corresponds to the first through hole of the present disclosure. This corresponds to 2 through holes. Note that in FIG. 10, the first layer 81 does not have through holes for the first and second connection channels that constitute the connection channels 7C and 7D; By forming flow path through holes, the difference in level between the connecting flow paths 7C and 7D may be made deeper. In this case, in order to prevent ink from leaking from the first layer 81, a groove having a bottom may be formed instead of a through hole. Further, in order to increase the flow resistance of not only the first layer 81 but also the connection flow path 7C, for example, a groove having a bottom may be formed in place of the first connection flow path through hole 821 of the second layer 82. Also good. Further, in order to make the angle of the concave corner of each step 90 degrees or less, it is preferable to form each connection channel through hole 851, 852, 841, 842, 831, 832, 821 by etching. . In addition, the size, shape, or number of the through holes 851, 852, 841, 842, 831, 832, and 821 for each connection channel in the first layer 81 to the fifth layer 85 are merely examples, and the connection channel 7C , 7D or the flow path resistance of the connection channels 7C and 7D.
 [第6実施形態]
 次に、本開示の第6実施形態について説明する。第6実施形態では、接続流路及び個別流路の好ましい形態について説明する。
[Sixth embodiment]
Next, a sixth embodiment of the present disclosure will be described. In the sixth embodiment, preferred forms of the connection flow path and the individual flow paths will be described.
 図7A、図8A、図9A、図9Bに示されるように、上流側共通流路61と下流側共通流路62とが接続流路7C,7E,7F,7I,7Jにより接続されている構成において、接続流路7C,7E,7F,7I,7Jに流れるインク量の割合は、接続流路7C,7E,7F,7I,7Jの流路抵抗と、ノズル41毎の個別流路31,34の流路抵抗(例えば、上流側個別流路31の流路抵抗と下流側個別流路34の流路抵抗の合計値)との比率に依存して決まる。接続流路7C,7E,7F,7I,7Jの少なくとも一部と、上流側個別流路31及び下流側個別流路34とが、並列に配置されるためである。 As shown in FIGS. 7A, 8A, 9A, and 9B, the upstream common flow path 61 and the downstream common flow path 62 are connected by connection flow paths 7C, 7E, 7F, 7I, and 7J. In this case, the ratio of the amount of ink flowing into the connection channels 7C, 7E, 7F, 7I, and 7J is determined by the channel resistance of the connection channels 7C, 7E, 7F, 7I, and 7J, and the individual channels 31 and 34 for each nozzle 41. is determined depending on the ratio of the flow path resistance (for example, the sum of the flow path resistance of the upstream individual flow path 31 and the flow path resistance of the downstream individual flow path 34). This is because at least a portion of the connection channels 7C, 7E, 7F, 7I, and 7J, the upstream individual channel 31, and the downstream individual channel 34 are arranged in parallel.
 例えば、1本の接続流路7Cのインク流量が、各個別流路31,34(1本の個別流路31又は1本の個別流路34)のインク流量よりも多いと、個別流路31,34のインク流量が低下するため、ノズル41の乾燥防止機能が低下する。一方で、1本の接続流路7Cのインク流量が各個別流路31,34のインク流量よりも少ないと、角部723,733,753,763以外に貯留した気泡を排出する力が弱まるため、気泡を貯留することができない場合がある。すなわち、接続流路7Cの気泡を排出する力が弱まり、気泡の量が経時的なばらつきが増加するという問題がある。このため、1本の接続流路7Cのインク流量は、各ノズル41に連通する各個別流路31,34のインク流量と同等程度にすることが好ましい。 For example, if the ink flow rate of one connecting channel 7C is larger than the ink flow rate of each individual channel 31, 34 (one individual channel 31 or one individual channel 34), the individual channel 31 , 34 decreases, the drying prevention function of the nozzle 41 decreases. On the other hand, if the ink flow rate of one connecting flow path 7C is lower than the ink flow rate of each individual flow path 31, 34, the force for discharging air bubbles accumulated in areas other than the corners 723, 733, 753, 763 will be weakened. , it may not be possible to store air bubbles. That is, there is a problem in that the power of the connecting flow path 7C to discharge air bubbles is weakened, and the variation in the amount of air bubbles increases over time. For this reason, it is preferable that the ink flow rate of one connecting flow path 7C be approximately the same as the ink flow rate of each individual flow path 31, 34 communicating with each nozzle 41.
 1本の接続流路7Cのインク流量と各個別流路31,34のインク流量とを同等程度にするために、ノズル41毎の各個別流路31,34の流路抵抗をR1とし、1本の接続流路7Cの流路抵抗をR2とした場合、以下の式(1)を満たすように、接続流路7C及び各個別流路31,34が形成されることが好ましい。以下の式(1)を満たさないと、上述の問題が無視できないレベルで顕在化してくるためである。 In order to make the ink flow rate of one connecting flow path 7C and the ink flow rate of each individual flow path 31, 34 about the same level, the flow path resistance of each individual flow path 31, 34 for each nozzle 41 is set as R1, and 1 When the flow path resistance of the connection flow path 7C is R2, it is preferable that the connection flow path 7C and each of the individual flow paths 31 and 34 are formed so as to satisfy the following equation (1). This is because if the following formula (1) is not satisfied, the above-mentioned problem will become apparent to a level that cannot be ignored.
  (R2/5)<R1<(R2×5)…(1)
 上記式(1)を満たすようにするために、図10に示されるように、接続流路7Cは、上流側個別流路31及び下流側個別流路34を形成するための層を用いて形成されることが好ましい。以下にその理由を述べる。
(R2/5)<R1<(R2×5)…(1)
In order to satisfy the above formula (1), as shown in FIG. 10, the connecting channel 7C is formed using a layer for forming the upstream individual channel 31 and the downstream individual channel 34. It is preferable that The reason is explained below.
 個別流路31,34の流路抵抗を高くするために、個別流路31,34を形成する層(図10に示される例では第4層84)の厚みは、他の層よりも薄くすることが好ましい。この場合、第4層84よりも厚い層を用いて、接続流路7Cの流路抵抗を個別流路31,34と同等とするためには、接続流路7Cのインク流動方向の長さを相応の長さにする必要があるために、インクジェットヘッドの小型化が困難となる。個別流路31,34の流路抵抗を高くするために、個別流路31,34を形成する層(図10に示される例では第4層84)の厚みが他の層よりも薄い場合、第4層84のX軸方向の長さを個別流路31,34と同等となるようにすることで、接続流路7C流路抵抗を個別流路31,34の流路抵抗と同等にしやすくなり、小型化の要求を満たしながらも上記式(1)を満たすことが容易となる。 In order to increase the flow resistance of the individual channels 31, 34, the thickness of the layer forming the individual channels 31, 34 (the fourth layer 84 in the example shown in FIG. 10) is made thinner than the other layers. It is preferable. In this case, in order to make the flow path resistance of the connecting channel 7C equal to that of the individual channels 31 and 34 by using a layer thicker than the fourth layer 84, the length of the connecting channel 7C in the ink flow direction must be adjusted. Since it is necessary to have a suitable length, it becomes difficult to miniaturize the inkjet head. In order to increase the flow resistance of the individual channels 31, 34, when the thickness of the layer forming the individual channels 31, 34 (the fourth layer 84 in the example shown in FIG. 10) is thinner than the other layers, By making the length of the fourth layer 84 in the X-axis direction equal to that of the individual channels 31 and 34, it is easy to make the channel resistance of the connecting channel 7C equal to that of the individual channels 31 and 34. Therefore, it becomes easy to satisfy the above formula (1) while satisfying the demand for miniaturization.
 以上の理由により、接続流路7C,7E,7F,7I,7Jは、個別流路31,34を形成する層を用いて形成されることが良い。なお、何らかの設計上の理由から、個別流路31,34を形成する層を用いずに接続流路7C,7E,7F,7I,7Jを形成する場合、上記式(1)を満たす構成とすることが好ましい。 For the above reasons, the connecting channels 7C, 7E, 7F, 7I, and 7J are preferably formed using the layers that form the individual channels 31 and 34. In addition, when forming the connecting channels 7C, 7E, 7F, 7I, and 7J without using the layer forming the individual channels 31 and 34 for some design reason, the configuration is such that the above formula (1) is satisfied. It is preferable.
 [第7実施形態]
 次に、本開示の第7実施形態について説明する。第7実施形態では、上流側共通流路61及び下流側共通流路62の好ましい形態について説明する。図11Aは、上流側共通流路近傍におけるYZ平面での断面図である。図11Bは、下流側共通流路近傍におけるYZ平面での断面図である。なお、第1実施形態と同じ構成については、同一名称及び同一符号を付し、説明を簡略にするか、省略する場合がある。
[Seventh embodiment]
Next, a seventh embodiment of the present disclosure will be described. In the seventh embodiment, preferred forms of the upstream common flow path 61 and the downstream common flow path 62 will be described. FIG. 11A is a cross-sectional view in the YZ plane near the upstream common flow path. FIG. 11B is a cross-sectional view in the YZ plane near the downstream common flow path. Note that the same components as in the first embodiment are given the same names and symbols, and the explanation may be simplified or omitted.
 インク供給路11又はノズル41から導入された気泡は、上述されたように、接続流路の段差の角部に貯留されるが、角部の許容貯留量を超えた分の気泡は、インク供給路11又はインク排出路13を介して、インクジェットヘッドの外部に素早く排出されることが好ましい。その際に、気泡が上流側共通流路61又は下流側共通流路62に貯留すると、インクの吐出状態がばらつく要因になる。また、上流側共通流路61又は下流側共通流路62の内部に気泡が侵入すると、更にインクの吐出状態のばらつきが悪化する要因になる。そこで、上流側共通流路61又は下流側共通流路62には、気泡を貯留させずに外部に素早く排出することが必要とされる。 As described above, the air bubbles introduced from the ink supply path 11 or the nozzle 41 are stored at the corners of the step of the connection flow path, but the air bubbles in excess of the allowable storage amount at the corners are stored in the ink supply. Preferably, the ink is quickly discharged to the outside of the inkjet head via the ink discharge channel 11 or the ink discharge channel 13. At this time, if air bubbles accumulate in the upstream common flow path 61 or the downstream common flow path 62, this becomes a factor that causes variations in the ink ejection state. Further, if air bubbles enter the upstream common flow path 61 or the downstream common flow path 62, this becomes a factor that further worsens the variation in the ink ejection state. Therefore, it is necessary for the upstream side common flow path 61 or the downstream side common flow path 62 to quickly discharge the bubbles to the outside without accumulating them.
 そこで、図11Aに示されるように、上流側共通流路61の上面611は、インク供給路11との接続部位から離れるにしたがって、連続的に下がる傾斜面により構成されることが好ましい。上流側共通流路61の上流側端部には、接続流路7Nが接続されている。上流側共通流路61の下流側端部には、接続流路7Pが接続されている。このような構成により、例えばインク供給路11から投入された気泡が、接続流路7P又は接続流路7Nから排出されずに上流側共通流路61に留まる場合に、上面611付近に位置する気泡を浮力によってインク供給路11を介して排出することができる。 Therefore, as shown in FIG. 11A, it is preferable that the upper surface 611 of the upstream common flow path 61 be formed by an inclined surface that continuously descends as it moves away from the connection site with the ink supply path 11. A connection flow path 7N is connected to the upstream end of the upstream common flow path 61. A connecting flow path 7P is connected to the downstream end of the upstream common flow path 61. With such a configuration, for example, when air bubbles injected from the ink supply path 11 remain in the upstream common flow path 61 without being discharged from the connection flow path 7P or the connection flow path 7N, the air bubbles located near the upper surface 611 can be discharged through the ink supply path 11 by buoyancy.
 また、図11Bに示されるように、下流側共通流路62の上面621は、インク排出路13との接続部位に近づくにしたがって、連続的に上がる傾斜面により構成されることが好ましい。下流側共通流路62の上流側端部には、接続流路7Qが接続されている。下流側共通流路62の下流側端部には、接続流路7Rが接続されている。このような構成により、例えばインク供給路11から投入された気泡が、接続流路7Q又は接続流路7Rから排出されずに下流側共通流路62に留まる場合に、上面621付近に位置する気泡を浮力によってインク排出路13を介して排出することができる。 Further, as shown in FIG. 11B, it is preferable that the upper surface 621 of the downstream common flow path 62 is formed by an inclined surface that rises continuously as it approaches the connection site with the ink discharge path 13. A connecting flow path 7Q is connected to the upstream end of the downstream common flow path 62. A connecting flow path 7R is connected to the downstream end of the downstream common flow path 62. With such a configuration, for example, when air bubbles injected from the ink supply path 11 remain in the downstream common flow path 62 without being discharged from the connection flow path 7Q or the connection flow path 7R, the air bubbles located near the upper surface 621 can be discharged through the ink discharge path 13 by buoyancy.
 なお、上流側共通流路61の上面611及び下流側共通流路62の上面621の傾斜角度は、小さすぎると気泡を浮力により排出する力が弱まり、大きすぎるとインクジェットヘッドのサイズが大きくなるため、例えば1deg以上5deg以下程度となるように形成されることが好ましい。上流側共通流路61の上面611及び下流側共通流路62の上面621に傾斜をつける加工方法は特に問わないが、例えばボールエンドミルを用いて削り深さを連続的に変化させながら機械加工を行う方法を例示することができる。 Note that if the inclination angle of the upper surface 611 of the upstream common channel 61 and the upper surface 621 of the downstream common channel 62 is too small, the force to discharge air bubbles by buoyancy will be weakened, and if it is too large, the size of the inkjet head will increase. , for example, it is preferable to form it so that it is about 1 degree or more and 5 degrees or less. There is no particular limitation on the method of machining the top surface 611 of the upstream common flow path 61 and the top surface 621 of the downstream common flow path 62, but for example, machining may be performed using a ball end mill while continuously changing the cutting depth. An example of how to do this can be given.
 [変形例]
 なお、本開示は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
[Modified example]
Note that the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
 例えば、接続流路に、上側下り段差72、上側上り段差73、下側下り段差75、及び、下側上り段差76を含む構成を例示したが、これらの段差のうち1つ、2つ、又は、3つの段差のみを含むようにしても良い。 For example, although a configuration in which the connection flow path includes an upper downward step 72, an upper upward step 73, a lower downward step 75, and a lower upward step 76 is illustrated, one, two, or , may include only three steps.
 例えば、図3Aに示される構成の変形例として、接続流路7の代わりに、図12Aに示されるように、接続流路7Sを配置しても良い。接続流路7Sの+X方向側の側面を構成する側壁面は、2つの段差77を含んで構成されている。接続流路7Sの-X方向側の側面を構成する側壁面は、2つの段差78を含んで構成されている。このような構成においても、矢印D1で示されるように、接続流路7S内のインクの主な流線を、段差77,78の角部773,783を回避するような流れにすることができ、気泡を段差77,78の角部773,783近傍の所定範囲の領域に貯留することができる。 For example, as a modification of the configuration shown in FIG. 3A, instead of the connection flow path 7, a connection flow path 7S may be arranged as shown in FIG. 12A. A side wall surface constituting a side surface of the connection channel 7S on the +X direction side includes two steps 77. A side wall surface constituting a side surface of the connection flow path 7S on the -X direction side is configured to include two steps 78. Even in such a configuration, the main flow line of the ink in the connecting channel 7S can be made to flow so as to avoid the corners 773, 783 of the steps 77, 78, as shown by the arrow D1. , air bubbles can be stored in a predetermined area near the corners 773, 783 of the steps 77, 78.
 例えば、図12Bに示されるように、接続流路7Tに突部79を形成しても良い。この場合、接続流路7Tは、-Y方向(第1方向)にインクを案内する第1壁面部71Tと、第1壁面部71Tの下流側端部に凹んだ角部793を形成するように接続され、インクを-Z方向(第2方向)に案内する突部79の第2壁面部791と、を備える。角部793は、本開示の気泡貯留部に該当する。第1壁面部71Tは、本開示の第1部に該当し、第2壁面部791は、本開示の第2部に該当する。このような構成においても、矢印D1で示されるように、接続流路7T内のインクの主な流線を、角部793を回避するような流れにすることができ、気泡を角部793近傍の所定範囲の領域に貯留することができる。 For example, as shown in FIG. 12B, a protrusion 79 may be formed in the connection channel 7T. In this case, the connection channel 7T is configured to form a first wall portion 71T that guides ink in the −Y direction (first direction) and a recessed corner portion 793 at the downstream end of the first wall portion 71T. A second wall surface portion 791 of the protrusion 79 is connected and guides the ink in the -Z direction (second direction). The corner portion 793 corresponds to the bubble storage portion of the present disclosure. The first wall part 71T corresponds to the first part of the present disclosure, and the second wall part 791 corresponds to the second part of the present disclosure. Even in such a configuration, as shown by the arrow D1, the main flow line of the ink in the connecting channel 7T can be made to flow so as to avoid the corner 793, and the air bubbles can be caused to flow around the corner 793. can be stored in a predetermined range of areas.
 本開示のインクジェットヘッドによれば、インクの吐出状態のばらつきを抑制することができる。 According to the inkjet head of the present disclosure, variations in the state of ink ejection can be suppressed.
 本開示は、インクジェットヘッド及びインクジェットヘッドを搭載した印刷設備に広く利用可能である。 The present disclosure can be widely used in inkjet heads and printing equipment equipped with inkjet heads.
 1 インクジェットヘッド
 7,7A,7B,7C,7D,7E,7F,7G,7H,7I,7J,7K,7L,7M,7N,7P,7Q,7R,7S,7T 接続流路
 10 ハウジング部
 11 インク供給路
 12 第2上流側共通流路部
 13 インク排出路
 14 第2下流側共通流路部
 20 振動プレート
 21 上流側開口部
 22 下流側開口部
 24 凸部
 30 流路プレート
 31 上流側個別流路
 32 第1上流側共通流路部
 33 圧力室
 34 下流側個別流路
 35 第1下流側共通流路部
 36 サイロ部
 40 ノズルプレート
 41 ノズル
 50 圧力変動部
 51 ベース部
 52 圧電素子
 53 基板
 61 上流側共通流路
 62 下流側共通流路
 62A 第1部位
 62B 第2部位
 62C 第3部位
 62D 第1下流側共通流路
 62E 第2下流側共通流路
 70 薄膜部材
 71,71A,71B,71C,71D 上壁面
 71T 第1壁面部
 72,73,75,76,77,78 段差
 74,74A,74B,74C,74D 下壁面
 79 突部
 81 第1層
 82 第2層
 83 第3層
 84 第4層
 85 第5層
 611,621 上面
 701 流路用貫通孔
 702 上面
 703 下面
 721,731 第1上壁面部
 722,732 第2上壁面部
 723,733,753,763,773,783 角部
 751,761 第1下壁面部
 752,762 第2下壁面部
 791 第2壁面部
 793 角部
 813 サイロ部用貫通孔
 823 サイロ部用貫通孔
 821,831,841,851 第1接続流路用貫通孔
 824,834,854 第1共通流路用貫通孔
 825,835,855 第2共通流路用貫通孔
 832,842,852 第2接続流路用貫通孔
 833,843,853 圧力室用貫通孔
 B 気泡
1 Inkjet head 7, 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, 7L, 7M, 7N, 7P, 7Q, 7R, 7S, 7T Connection channel 10 Housing part 11 Ink Supply path 12 Second upstream common flow path 13 Ink discharge path 14 Second downstream common flow path 20 Vibration plate 21 Upstream opening 22 Downstream opening 24 Convex portion 30 Channel plate 31 Upstream individual flow path 32 First upstream common flow path section 33 Pressure chamber 34 Downstream individual flow path 35 First downstream common flow path section 36 Silo section 40 Nozzle plate 41 Nozzle 50 Pressure variation section 51 Base section 52 Piezoelectric element 53 Substrate 61 Upstream side Common channel 62 Downstream common channel 62A First section 62B Second section 62C Third section 62D First downstream common channel 62E Second downstream common channel 70 Thin film member 71, 71A, 71B, 71C, 71D Top Wall surface 71T First wall portion 72, 73, 75, 76, 77, 78 Step 74, 74A, 74B, 74C, 74D Lower wall surface 79 Projection 81 First layer 82 Second layer 83 Third layer 84 Fourth layer 85 5 layers 611, 621 Upper surface 701 Through hole for channel 702 Upper surface 703 Lower surface 721, 731 First upper wall section 722, 732 Second upper wall section 723, 733, 753, 763, 773, 783 Corner section 751, 761 1st Lower wall part 752, 762 Second lower wall part 791 Second wall part 793 Corner part 813 Through hole for silo part 823 Through hole for silo part 821, 831, 841, 851 Through hole for first connection channel 824, 834, 854 Through hole for first common flow path 825,835,855 Through hole for second common flow path 832,842,852 Through hole for second connection flow path 833,843,853 Through hole for pressure chamber B Air bubble

Claims (14)

  1.  インクを吐出するノズルに連通する複数の圧力室と、
     前記複数の圧力室に連通された第1共通流路と、
     前記第1共通流路に接続された接続流路と、を備え、
     前記接続流路は、気泡を貯留させる気泡貯留部を有する、
     インクジェットヘッド。
    a plurality of pressure chambers communicating with nozzles that eject ink;
    a first common flow path communicating with the plurality of pressure chambers;
    a connecting flow path connected to the first common flow path,
    The connection channel has a bubble storage section that stores bubbles.
    inkjet head.
  2.  前記接続流路は、
     第1方向に前記インクを案内する第1部と、
     前記第1部と接続し、前記インクを前記第1方向に対して交差する第2方向に案内する第2部と、を備え、
     前記気泡貯留部は、前記第1部と前記第2部とが接続する角部である、
     請求項1に記載のインクジェットヘッド。
    The connection flow path is
    a first part that guides the ink in a first direction;
    a second part connected to the first part and guiding the ink in a second direction intersecting the first direction;
    The bubble storage part is a corner part where the first part and the second part are connected.
    The inkjet head according to claim 1.
  3.  前記気泡貯留部は、前記接続流路に形成された段差である、
     請求項1に記載のインクジェットヘッド。
    The bubble storage section is a step formed in the connection channel,
    The inkjet head according to claim 1.
  4.  前記接続流路は、第1貫通孔を有する複数の板状部材を積層することにより形成されている、
     請求項2に記載のインクジェットヘッド。
    The connection channel is formed by stacking a plurality of plate-like members each having a first through hole.
    The inkjet head according to claim 2.
  5.  前記複数の板状部材のうち少なくともいずれか1つの板状部材は、前記複数の圧力室を形成する第2貫通孔を有する、
     請求項4に記載のインクジェットヘッド。
    At least one of the plurality of plate-like members has a second through hole that forms the plurality of pressure chambers.
    The inkjet head according to claim 4.
  6.  前記接続流路は、前記第1共通流路に前記インクを供給するインク供給路と、前記第1共通流路との間に位置する、
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    The connection flow path is located between an ink supply path that supplies the ink to the first common flow path and the first common flow path.
    The inkjet head according to any one of claims 1 to 5.
  7.  前記接続流路は、前記インクを排出するインク排出路と、前記第1共通流路との間に位置する、
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    The connecting flow path is located between an ink discharge path that discharges the ink and the first common flow path.
    The inkjet head according to any one of claims 1 to 5.
  8.  前記複数の圧力室に連通された第2共通流路を更に備え、
     前記接続流路の一方の端部は、前記第1共通流路に接続し、前記接続流路の他方の端部は、前記第2共通流路に接続する、
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    further comprising a second common flow path communicating with the plurality of pressure chambers,
    One end of the connection flow path is connected to the first common flow path, and the other end of the connection flow path is connected to the second common flow path.
    The inkjet head according to any one of claims 1 to 5.
  9.  前記接続流路は、前記第1共通流路から前記複数の圧力室を介して、前記第2共通流路に流れる前記インクの流路とは異なる流路である、
     請求項8に記載のインクジェットヘッド。
    The connecting flow path is a flow path different from the flow path of the ink flowing from the first common flow path to the second common flow path via the plurality of pressure chambers.
    The inkjet head according to claim 8.
  10.  前記複数の圧力室がそれぞれ個別に前記第1共通流路と連通する複数の個別流路をさらに備え、
     各個別流路及び前記接続流路は、以下の式(1)を満たすように形成されている、
      (R2/5)<R1<(R2×5)…(1)
        R1:前記個別流路における流路抵抗
        R2:前記接続流路における流路抵抗
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    Each of the plurality of pressure chambers further includes a plurality of individual channels that individually communicate with the first common channel,
    Each individual flow path and the connection flow path are formed to satisfy the following formula (1),
    (R2/5)<R1<(R2×5)…(1)
    R1: Channel resistance in the individual channel R2: Channel resistance in the connecting channel The inkjet head according to any one of claims 1 to 5.
  11.  前記複数の圧力室に連通された第2共通流路を更に備え、
     前記接続流路は、前記第1共通流路に前記インクを供給するインク供給路と、前記第2共通流路との間に位置し、かつ、前記第2共通流路に接続されている、
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    further comprising a second common flow path communicating with the plurality of pressure chambers,
    The connection flow path is located between an ink supply path that supplies the ink to the first common flow path and the second common flow path, and is connected to the second common flow path.
    The inkjet head according to any one of claims 1 to 5.
  12.  前記複数の圧力室に連通された第2共通流路を更に備え、
     前記接続流路は、前記インクを排出するインク排出路と、前記第2共通流路との間に位置し、かつ、前記第2共通流路に接続されている、
     請求項1から5のいずれか一項に記載のインクジェットヘッド。
    further comprising a second common flow path communicating with the plurality of pressure chambers,
    The connection flow path is located between the ink discharge path that discharges the ink and the second common flow path, and is connected to the second common flow path.
    The inkjet head according to any one of claims 1 to 5.
  13.  前記第1共通流路の上面は、インクの流動方向の下流より上流が高い、
     請求項1に記載のインクジェットヘッド。
    The upper surface of the first common flow path is higher upstream than downstream in the ink flow direction.
    The inkjet head according to claim 1.
  14.  前記複数の圧力室に連通された第2共通流路を更に備え、
     前記第2共通流路の上面は、インクの流動方向の上流より下流が高い、
     請求項1に記載のインクジェットヘッド。
    further comprising a second common flow path communicating with the plurality of pressure chambers,
    The upper surface of the second common flow path is higher downstream than upstream in the ink flow direction.
    The inkjet head according to claim 1.
PCT/JP2023/016050 2022-06-01 2023-04-24 Inkjet head WO2023233862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089594 2022-06-01
JP2022089594 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023233862A1 true WO2023233862A1 (en) 2023-12-07

Family

ID=89026232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016050 WO2023233862A1 (en) 2022-06-01 2023-04-24 Inkjet head

Country Status (1)

Country Link
WO (1) WO2023233862A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049672A (en) * 2006-08-28 2008-03-06 Fujifilm Corp Liquid ejection device and gas treating method
JP2008194982A (en) * 2007-02-14 2008-08-28 Ricoh Co Ltd Liquid supply member for liquid ejection head, liquid ejector and image forming apparatus
US20080204533A1 (en) * 2005-08-02 2008-08-28 Hewlett-Packard Development Company, L.P. A Method of Ink Supply to Inkjet Print Head Array
US20130233418A1 (en) * 2012-03-12 2013-09-12 Charles Stanley Aldrich Air removal and ink supply system for an inkjet printhead
JP2016083793A (en) * 2014-10-23 2016-05-19 株式会社リコー Liquid discharge head and image forming device
JP2017193132A (en) * 2016-04-21 2017-10-26 セイコーエプソン株式会社 Liquid injection head unit and liquid injection device
JP2018506457A (en) * 2015-03-26 2018-03-08 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus
JP2019217756A (en) * 2018-06-18 2019-12-26 セイコーエプソン株式会社 Liquid jet head and liquid jet device
JP2020196232A (en) * 2019-06-05 2020-12-10 ブラザー工業株式会社 Liquid discharge head

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204533A1 (en) * 2005-08-02 2008-08-28 Hewlett-Packard Development Company, L.P. A Method of Ink Supply to Inkjet Print Head Array
JP2008049672A (en) * 2006-08-28 2008-03-06 Fujifilm Corp Liquid ejection device and gas treating method
JP2008194982A (en) * 2007-02-14 2008-08-28 Ricoh Co Ltd Liquid supply member for liquid ejection head, liquid ejector and image forming apparatus
US20130233418A1 (en) * 2012-03-12 2013-09-12 Charles Stanley Aldrich Air removal and ink supply system for an inkjet printhead
JP2016083793A (en) * 2014-10-23 2016-05-19 株式会社リコー Liquid discharge head and image forming device
JP2018506457A (en) * 2015-03-26 2018-03-08 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus
JP2017193132A (en) * 2016-04-21 2017-10-26 セイコーエプソン株式会社 Liquid injection head unit and liquid injection device
JP2019217756A (en) * 2018-06-18 2019-12-26 セイコーエプソン株式会社 Liquid jet head and liquid jet device
JP2020196232A (en) * 2019-06-05 2020-12-10 ブラザー工業株式会社 Liquid discharge head

Similar Documents

Publication Publication Date Title
JP2023181472A (en) Liquid discharge unit and liquid discharge device
WO2017047533A1 (en) Ink jet head and ink jet recording apparatus
CN110293758B (en) Liquid ejection head
JP5040263B2 (en) Droplet ejector
CN112297624B (en) Liquid ejecting head and liquid ejecting apparatus
CN112895711B (en) Liquid ejecting head and liquid ejecting system
CN112172344B (en) Liquid ejecting head and liquid ejecting system
CN107618264B (en) Liquid ejecting method, liquid ejecting apparatus, and liquid ejecting head
WO2023233862A1 (en) Inkjet head
CN112895712B (en) Liquid ejecting head and liquid ejecting system
JP7417831B2 (en) inkjet head
JP6582725B2 (en) Liquid ejection device
EP4155080A1 (en) Liquid ejection head
CN111347783B (en) Liquid discharge head and liquid discharge apparatus
CN111347784B (en) Liquid discharge head and liquid discharge apparatus
EP4253055A1 (en) Liquid ejection head
US11845280B2 (en) Liquid ejecting head and liquid ejecting device
US11260661B2 (en) Liquid ejecting head and liquid ejecting apparatus
CN112895710B (en) Liquid ejecting head and liquid ejecting system
JP2023109057A (en) Liquid discharge head and manufacturing method of the same
US10647116B2 (en) Liquid ejection head and recording apparatus
JP2007076303A (en) Inkjet head
JP2023032310A (en) Liquid discharge head and method for manufacturing liquid discharge head
JP2023032319A (en) Liquid discharge head and method for manufacturing liquid discharge head
JP2023046015A (en) liquid ejection head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815623

Country of ref document: EP

Kind code of ref document: A1