WO2023233777A1 - Refrigerator control system and refrigerator control method - Google Patents

Refrigerator control system and refrigerator control method Download PDF

Info

Publication number
WO2023233777A1
WO2023233777A1 PCT/JP2023/012137 JP2023012137W WO2023233777A1 WO 2023233777 A1 WO2023233777 A1 WO 2023233777A1 JP 2023012137 W JP2023012137 W JP 2023012137W WO 2023233777 A1 WO2023233777 A1 WO 2023233777A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
defrosting
time
defrosting operation
estimated
Prior art date
Application number
PCT/JP2023/012137
Other languages
French (fr)
Japanese (ja)
Inventor
雅至 中川
好正 堀尾
勇治 野村
拓哉 林
智裕 中村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023233777A1 publication Critical patent/WO2023233777A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present disclosure relates to a refrigerator control system and a refrigerator control method that control a refrigerator that performs a defrosting operation.
  • Patent Document 1 discloses a defrosting device for a refrigerator that determines whether to extend the defrosting start timing when the cumulative operating time of a compressor reaches a certain time. If the door is not open and forced operation is not being performed, and the estimated outside temperature is within the predetermined temperature range, the defrosting device determines that defrosting is not necessary and starts defrosting. To postpone the timing by a certain amount of time. In addition, if the door is not opened and forced operation is not being executed at the defrost start timing at the end of the extended operation, the defrost device further postpones the defrost start timing by a certain period of time for a predetermined number of times. Execute only.
  • Patent Document 2 discloses a refrigerator in which the start of defrosting operation is delayed so that defrosting operation is not performed at peak power load times.
  • Patent Document 3 discloses a refrigerator in which the start of defrosting operation is determined based on whether the heat load is equal to or higher than a heat load threshold so that defrosting operation is not performed when priority should be given to cooling.
  • Patent Document 4 discloses a refrigerator in which defrosting is not performed when specific cooling control (low-temperature cooling control) is executed, and the refrigerator is switched to a power saving mode in response to a user's operation.
  • the present disclosure provides a refrigerator control system that suppresses execution of specific functions of the refrigerator from being hindered by execution of defrosting operation.
  • the refrigerator control system acquires operating status data indicating the operating status of the refrigerator, which is detected by a detection unit provided in the refrigerator at a predetermined sampling period, and stores the operating status data in a first storage unit. and when a defrosting operation is executed in which the heating section of the refrigerator is activated to remove frost attached to the cooler of the refrigerator, the current defrosting operation starts from the time when the previous defrosting operation was completed. Until the operation is executed, learning data including a predetermined feature quantity and the time required for the current defrosting operation is generated based on the driving status data indicating the driving status detected by the detection unit.
  • the estimated defrosting time is calculated by using an estimation model that outputs the estimated required time of the defrosting operation as the estimated defrosting time assuming that the defrosting operation is executed.
  • a calculation unit, a defrosting operation control unit that executes the defrosting operation when the estimated defrosting time is equal to or greater than a threshold value at the time of determining whether or not a predetermined defrosting is necessary, and a specific function of the refrigerator may be used.
  • a non-use time period recognition unit that recognizes a non-use time period that is a time period in which the defrosting operation is estimated to be low; and a threshold value setting unit that sets a plurality of the threshold values related to the necessity of determining whether or not to execute the defrosting operation. Be prepared.
  • a refrigerator control method is a refrigerator control method executed by a computer, and includes, at a predetermined sampling period, operating status data indicating the operating status of the refrigerator detected by the detection unit provided in the refrigerator.
  • the step of acquiring operating status data to be stored in the first storage unit and the defrosting operation of activating the heating unit to remove frost attached to the cooler are executed, the previous defrosting operation is completed.
  • a predetermined feature amount based on the driving status data indicating the driving status detected by the detection unit between the time and the time when the current defrosting operation is executed, and the amount of time required for the current defrosting operation.
  • a non-use time period recognition step for recognizing a non-use time period which is a time period in which it is estimated that there is a low possibility that the defrosting operation will be used; a configuration step.
  • an estimated defrosting time is calculated according to the actual operating status of each refrigerator using an estimation model generated based on learning data that has learned the operating status of each refrigerator.
  • the defrosting operation is executed when the estimated defrosting time is equal to or greater than the threshold value.
  • a plurality of threshold values are set to determine whether or not to perform a defrosting operation so that the defrosting operation is more likely to be performed during a non-use period when a specific function of the refrigerator is less likely to be used.
  • FIG. 1 is an explanatory diagram of a mode of control by a refrigerator control system in an embodiment.
  • FIG. 2 is a sectional view for explaining the configuration of the refrigerator in the embodiment.
  • FIG. 3 is a configuration diagram of the refrigerator control system in the embodiment.
  • FIG. 4 is an explanatory diagram of learning data generation processing in the embodiment.
  • FIG. 5 is an explanatory diagram of the estimation formula generation process in the embodiment.
  • FIG. 6 is an explanatory diagram of the non-use time zone recognition process in the embodiment.
  • FIG. 7 is a first flowchart related to processing on the refrigerator side in the embodiment.
  • FIG. 8 is a second flowchart related to processing on the refrigerator side in the embodiment.
  • FIG. 9 is a flowchart related to processing on the server device side in the embodiment.
  • FIG. 10 is a timing chart of defrosting operation in the embodiment.
  • FIG. 11 is a timing chart of threshold switching in the embodiment.
  • the present disclosure provides a refrigerator control system that can suppress the defrosting operation from being performed more frequently than necessary and prevent the use of specific functions of the refrigerator from being hindered by the execution of the defrosting operation. I will provide a.
  • FIG. 1 is an explanatory diagram of a mode of control by a refrigerator control system 1 in an embodiment of the present disclosure.
  • the refrigerator control system 1 includes a refrigerator 10 to be controlled and a server device 100.
  • the refrigerator 10 is installed in a house H, for example, and is configured to communicate with the server device 100 via the gateway 5 and the communication network 200.
  • FIG. 1 only one refrigerator 10 is shown for convenience of explanation, but the server device 100 may be configured to be able to communicate with a plurality of refrigerators. .
  • a refrigerator control system 1 is configured by the server device 100 and each of the plurality of refrigerators.
  • FIG. 2 is a cross-sectional view for explaining the configuration of the refrigerator 10 in the refrigerator control system 1 according to the embodiment of the present disclosure.
  • the refrigerator 10 of the refrigerator control system 1 of this embodiment includes a refrigerator compartment 11, a switching compartment 14, an ice making compartment 16, a freezing compartment 18, and a vegetable compartment 20.
  • a rotary right door 12 and a left door 13 are provided at the front opening of the refrigerator compartment 11.
  • drawers 15, 17, 19, and 21 are provided in the switching compartment 14, the ice making compartment 16, the freezing compartment 18, and the vegetable compartment 20, respectively.
  • a control unit 60 included in the refrigerator 10 controls the operation of the refrigerator 10.
  • the control unit 60 also has a function as a detection unit that detects the operating status DRS of the refrigerator 10 at a predetermined sampling period (for example, 5 minutes). Further, the control unit 60 transmits driving status data indicating the detected driving status DRS to the server device 100. Further, the control unit 60 also has a function as a defrosting operation control section that executes a defrosting operation to remove frost attached to the cooler 51, which will be described later. Further, the control unit 60 transmits actual defrosting time data indicating the time required to execute the defrosting operation (actual defrosting time RDFT) to the server device 100.
  • FIG. 3 is a configuration diagram of the refrigerator control system 1 according to the embodiment of the present disclosure.
  • the server device 100 calculates the estimated time required for the defrosting operation based on the learning data generated from the operating status data and the actual defrosting time data, assuming that the defrosting operation is executed.
  • An estimation formula for calculating (estimated defrosting time EDFT) is generated.
  • the server device 100 or the control unit 60 of the refrigerator 10 calculates the estimated defrosting time EDFT (tm) at the predetermined defrosting necessity determination time tm using an estimation formula.
  • FIG. 1 a case is illustrated in which the server device 100 calculates the estimated defrosting time EDFT (tm) and transmits it to the refrigerator 10.
  • the estimation formula is customized for the refrigerator 10 by learning operating status data that reflects the usage status of the refrigerator 10 in the house H.
  • the control unit 60 of the refrigerator 10 executes the defrosting operation when it is determined that the estimated defrosting time EDFT (tm) is equal to or greater than the threshold value.
  • the estimated defrosting time EDFT (tm) is calculated by an estimation formula based on driving status data that reflects the actual usage status of the refrigerator 10. Therefore, depending on the usage status of each refrigerator 10, the estimated defrosting time EDFT (tm), which is estimated to indicate that the amount of frost adhering to the cooler has exceeded the amount required for defrosting, is greater than or equal to the threshold value. Defrosting operation can be performed at the appropriate timing.
  • FIG. 2 is a sectional view of the refrigerator 10 seen from the right side when the refrigerator 10 is viewed from the front.
  • the refrigerator 10 includes the above-mentioned control unit 60, a compressor 50 which is an auxiliary machine that constitutes a refrigeration cycle, a cooler 51, a condenser 52, and a cooling fan 53.
  • the refrigerator 10 also includes a defrost heater 55 that heats the cooler 51 and a cooler temperature sensor 43 that detects the temperature of the cooler 51, which are provided near the cooler 51.
  • the defrosting heater 55 corresponds to the heating section of the present disclosure.
  • the refrigerator compartment 11 is provided with a refrigerator compartment temperature sensor 40 that detects the temperature inside the refrigerator compartment 11, an opening/closing sensor 30 that detects opening/closing of the right door 12, and an opening/closing sensor 31 that detects opening/closing of the left door 13.
  • the right door 12 includes an outside temperature sensor 42 that detects the temperature outside the refrigerator 10 (temperature of the room where the refrigerator 10 is placed, etc.), and an outside temperature sensor 42 that detects the outside temperature of the refrigerator 10 (temperature of the room where the refrigerator 10 is placed, etc.) and the illuminance outside the refrigerator (the illuminance of the room where the refrigerator 10 is placed, etc.).
  • an outside illuminance sensor 44 that detects the
  • the switching chamber 14 is provided with an opening/closing sensor 32 that detects whether the drawer 15 is opened or closed, and the ice making compartment 16 is provided with an opening/closing sensor 33 that detects whether the drawer 17 is opened or closed.
  • the freezer compartment 18 is provided with an open/close sensor 34 that detects whether the drawer 19 is opened or closed, and the vegetable compartment 20 is provided with an open/close sensor 35 that detects whether the drawer 21 is opened or closed.
  • the refrigerator compartment 11, the switching compartment 14, the ice making compartment 16, the freezing compartment 18, and the vegetable compartment 20 correspond to the storage compartment of the present disclosure.
  • the opening/closing sensors 30 to 35 correspond to opening/closing sensors that detect opening/closing of the opening of the storage chamber of the refrigerator 10 of the present disclosure.
  • the outside illuminance sensor 44 detects the illuminance around the refrigerator 10 (the illuminance of the room where the refrigerator 10 is placed, etc.).
  • FIG. 4 is an explanatory diagram of learning data generation processing in the embodiment of the present disclosure.
  • FIG. 5 is an explanatory diagram of estimation formula generation processing in the embodiment of the present disclosure.
  • FIG. 6 is a diagram for explaining non-use time zone recognition processing in the embodiment of the present disclosure.
  • the control unit 60 of the refrigerator 10 includes a refrigerator processor 70 and a refrigerator memory 80. Control unit 60 communicates with server device 100 by wireless communication using refrigerator communication section 90 .
  • the control unit 60 is connected to the opening/closing sensors 30 to 35, the refrigerator temperature sensor 40, the vegetable compartment temperature sensor 41, the outside temperature sensor 42, the cooler temperature sensor 43, and the outside illuminance sensor 44, and the detection by these sensors A signal is input to control unit 60. Further, the control unit 60 is connected to the refrigeration cycle auxiliary machines 50 to 53 and the defrost heater 55, and controls the operation of the refrigeration cycle auxiliary machines 50 to 53 and the defrost heater 55 by control signals output from the control unit 60. do. Refrigerator memory 80 corresponds to the first storage unit of the present disclosure.
  • the refrigerator processor 70 reads and executes the refrigerator program 81 stored in the refrigerator memory 80, thereby controlling the operation status data acquisition section 71, the defrosting operation control section 72, and the threshold value setting. It functions as a section 73, an estimated defrosting time calculation section 74, and a non-use time zone recognition section 75.
  • the driving status data acquisition section 71, the defrosting operation control section 72, the threshold value setting section 73, the estimated defrosting time calculation section 74, and the non-use time zone recognition section 75 are independent processors, respectively, apart from the refrigerator processor 70. It may be realized by a memory, a program, etc.
  • the operating status data acquisition unit 71 detects the operating status of the refrigerator 10 every time a predetermined sampling period (for example, 5 minutes) elapses.
  • the operating status data acquisition unit 71 collects the refrigerator compartment temperature PcT detected by the refrigerator compartment temperature sensor 40, the exterior temperature AtT detected by the exterior temperature sensor 42, and the vegetable compartment temperature sensor 41.
  • the temperature VcT of the vegetable compartment, the right door 12, the left door 13, the drawer 15 of the switching compartment 14, the drawer 17 of the ice making compartment 16, the drawer 19 of the freezing compartment 18, and the drawer 19 of the freezing compartment 20 detected by the opening/closing sensors 30 to 35.
  • the time DrO (total time in each sampling period) during which any of the drawers 21 was opened and the rotation speed CpR (total rotation speed in each sampling period) of the compressor 50 are detected as the operating status DRS.
  • the driving situation data acquisition unit 71 stores the driving situation data indicating these driving situations DRS in the refrigerator memory 80.
  • the driving status data stored in the refrigerator memory 80 is shown as driving status data 82.
  • the driving situation data acquisition unit 71 transmits the driving situation data to the server device 100.
  • the rotation speed of the compressor 50 may be detected by a rotation speed sensor (not shown) that detects the rotation speed of the compressor 50. It may also be used as a detected value of the rotation speed.
  • the configuration that detects the refrigerator compartment temperature sensor 40, the vegetable compartment temperature sensor 41, the outside temperature sensor 42, the opening/closing sensors 30 to 35, and the rotation speed of the compressor 50 corresponds to the detection unit of the present disclosure.
  • the defrosting operation control unit 72 operates the defrosting heater 55 to remove the frost attached to the cooler 51 when it is determined that the estimated defrosting time at the time of determining the necessity of defrosting is greater than or equal to the threshold value. Execute defrosting operation to remove.
  • the defrosting operation control unit 72 completes the defrosting operation when the temperature detected by the cooler temperature sensor 43 becomes equal to or higher than the defrosting end temperature.
  • the defrosting end temperature is set to, for example, 10° C. or higher, assuming the temperature at which the frost attached to the cooler 51 is completely melted.
  • the defrosting operation control unit 72 transmits actual defrosting time data indicating the time required for the defrosting operation (actual defrosting time RDFT) to the server device 100.
  • the time to determine whether or not defrosting is necessary is when a first predetermined time (e.g., 24 hours) has elapsed from the completion of the previous defrosting operation, or a second predetermined time (e.g., 2 hours) from the completion of the previous defrosting operation. is set at a time point every time a third predetermined time (for example, one minute) has elapsed.
  • the estimated defrosting time is the time required for the defrosting operation assuming that the defrosting operation is executed, and is calculated by the estimated defrosting time calculation unit 74.
  • the estimated defrosting time calculation unit 74 calculates the estimated defrosting time EDFT (t m ) at the defrosting necessity determination time point t m using estimation formula (1) described later. Details of estimation formula (1) will be described later.
  • the non-use time recognition unit 75 recognizes a time when the quick freezing function (corresponding to the specific function of the present disclosure) provided in the refrigerator 10 is unlikely to be used as a non-use time.
  • the specific function may be any function that is prevented from being implemented by executing the defrosting operation, and is not limited to the quick freezing function.
  • the quick freezing function is a function that increases the cooling capacity more than during normal operation, and specifically, processes such as increasing the rotational speed of the compressor 50 than during normal operation are executed.
  • FIG. 6 the non-use time slot recognition process by the non-use time slot recognition unit 75 will be described.
  • the non-use time zone recognition unit 75 detects the opening/closing status of the right door 12, left door 13, and drawers 15, 17, 19, and 21 at a predetermined sampling period using the opening/closing sensors 30 to 35.
  • the non-use time zone recognition unit 75 detects the right door 12 in hourly time zones (for example, 0:00 to 1:00, 1:00 to 2:00, ..., 23:00 to 24:00, etc.). , the left door 13, and the drawers 15, 17, 19, and 21 are measured, and the number of openings and closings for each hour is totaled for each week.
  • the non-use time zone recognition unit 75 refers to measurement data of the number of openings and closings detected by the opening and closing sensors 30 to 35 for the past three weeks for each day of the week.
  • FIG. 6 shows measurement data of the number of openings and closings detected by the opening/closing sensors 30 to 35 for the past three weeks on a certain day of the week, and the time period in which the number of openings and closings is equal to or greater than a predetermined value (for example, 2 times) is shaded with diagonal lines. It shows.
  • the non-use time zone recognition unit 75 identifies continuous time zones in which the number of openings and closings is less than a predetermined value (for example, from 1:00 to 7:00 in the example shown in FIG.
  • the non-use time zone recognition unit 75 may recognize a plurality of consecutive time slots in which the number of times of opening and closing is less than a predetermined value, and may prioritize the plurality of non-use time slots. For example, in the example shown in FIG. 6, 1:00 to 7:00, which is the time period with the least number of openings and closings, is set as the first priority for non-use time, and 0:00 to 7:00 is the first priority.
  • a second threshold Lv2 is set by the threshold setting unit 73 (to be described later) so that the defrosting operation is more likely to be performed during the non-use time slot with a high priority among the plurality of non-use time slots recognized by the non-use time slot recognition unit 75. may be set.
  • the non-use time zone recognition unit 75 detects the opening/closing status of the right door 12, left door 13, and drawers 15, 17, 19, and 21 by the opening/closing sensors 30 to 35, or in addition to the opening/closing status of these.
  • the non-use period may be recognized based on the illuminance around the refrigerator 10 detected by the outside illuminance sensor 44.
  • the non-use time recognition unit 75 detects a situation in which the illuminance detected by the external illuminance sensor 44 is below a predetermined illuminance (for example, it is nighttime and the lights in the room where the refrigerator 10 is placed are turned off).
  • a time period in which a situation in which the device is in use) continues for a predetermined period of time or more is recognized as a non-use time period.
  • the threshold value setting unit 73 sets the threshold value in a time period other than the non-use time period to the first threshold value Lv1, and sets the threshold value in the non-use time period to a second threshold value Lv2 ( ⁇ Lv1) indicating a time shorter than the first threshold value Lv1. ).
  • the first threshold Lv1 is based on the data on the required time (actual defrost time) and the interval of the defrosting operation executed in the past so that the interval at which the defrosting operation is executed is a predetermined time (for example, 24 hours).
  • the threshold setting unit 73 sets the first threshold Lv1 according to the size of the cooler 51, the capacity of the defrosting heater 55, the temperature detected by the outside temperature sensor 42, the electricity rate system of the house H, and the like.
  • the first threshold Lv1 is set to, for example, 40 minutes.
  • the threshold value setting unit 73 sets the priority order so that the defrosting operation is likely to be executed during the non-use time slot with a high priority among the plurality of non-use time slots recognized by the non-use time slot recognition unit 75.
  • the second threshold Lv2 for a high non-use time period may be set lower (shorter time (for example, 35 minutes)) than the second threshold Lv2 for a non-use time period with a lower priority.
  • the threshold value setting unit 73 may set the second threshold value Lv2 by learning past driving status data (execution date and time of defrosting operation, actual defrosting time RDFT, etc.). For example, when the second threshold Lv2 is set to 38 minutes, the defrosting operation is not performed during the non-use time, and the specific function of the refrigerator 10 is likely to be used outside the non-use time. When the defrosting operation is being executed and the second threshold Lv2 is set to 35 minutes, the threshold value setting unit 73 determines that the defrosting operation is being executed during the non-use period based on the past driving situation. The second threshold value Lv2 may be set to 35 minutes by learning from the data so that the defrosting operation is more likely to be performed during non-use periods.
  • the threshold value setting unit 73 may update the second threshold value Lv2 at a predetermined update timing (for example, every three months) based on the temperature detected by the outside temperature sensor 42, etc.
  • the threshold value setting section 73 sets , the second threshold Lv2 may be set to a shorter time.
  • the server device 100 is a computer system including a server processor 110, a server memory 120, a server communication unit 130, and the like, and the server communication unit 130 communicates with the refrigerator 10 via the communication network 200.
  • the server processor 110 functions as the learning data acquisition section 111 and the estimated model generation section 112 by reading and executing the server program 121 stored in the server memory 120.
  • the learning data acquisition unit 111 and the estimated model generation unit 112 may be realized by independent processors, memories, programs, etc., separately from the server processor 110.
  • Server memory 120 corresponds to a first storage section and a second storage section of the present disclosure.
  • the learning data acquisition unit 111 sequentially stores the driving status data and actual defrosting time data transmitted from the refrigerator 10 in the server memory 120 (in FIG. 3, the driving status data transmitted from the refrigerator 10 is stored in the driving status data 122). , the actual defrosting time data is shown as actual defrosting time data 123).
  • the learning data acquisition unit 111 obtains the learning data TRD based on the driving situation data indicating the driving situation DRS and the actual defrosting time data stored in the server memory 120, as shown in FIG. It is generated and stored in the server memory 120.
  • learning data stored in the server memory 120 is shown as learning data 124.
  • the learning data TRD is generated every time a defrosting operation is performed, and includes the execution date and time of the defrosting operation, a feature amount, and an actual defrosting time RDFT.
  • the feature values include an average refrigerator temperature value PCC, an average outside temperature value ATC, an average vegetable compartment temperature value VCC, an integrated door opening time value DOOR, and an integrated compressor rotation speed value CMP. .
  • the refrigerator compartment temperature average value PCC is the average of the refrigerator compartment temperatures PcT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value.
  • the average outside temperature ATC is the average outside temperature AtT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value.
  • the vegetable compartment temperature average value VCC is the average of the vegetable compartment temperatures VcT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value.
  • the door opening time integrated value DOOR is the right door 12 and left door acquired by the operating status data acquisition unit 71 at each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. 13. It is the integrated value of the time DrO during which any of the drawer 15 of the switching compartment 14, the drawer 17 of the ice making compartment 16, the drawer 19 of the freezing compartment 18, and the drawer 21 of the vegetable compartment 20 was opened.
  • the compressor rotational speed integrated value CMP is the rotational speed of the compressor 50 acquired by the operating status data acquisition unit 71 at each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is an integrated value of several CpR.
  • the estimated model generation unit 112 generates each model based on the learning data 124 (a plurality of learning data TRD1, TRD2, ...) generated by the learning data acquisition unit 111 and stored in the server memory 120.
  • An estimation formula (estimation model) is generated that outputs the estimated defrosting time EDFT in response to the input data FQD related to the feature amount.
  • the estimation model generation unit 112 updates the estimation formula when the update timing is reached (for example, once a month).
  • VCC Average value of vegetable compartment temperature corresponding to the period from the completion of the previous defrosting operation to t
  • DOOR (t) Completion of the previous defrosting operation COMP(t), an integrated value of the door open time corresponding to the period from time to t: an integrated value of the rotation speed of the compressor corresponding to the period from the completion of the previous defrosting operation to t
  • F Adjusted value.
  • the estimation model generation unit 112 transmits estimation equation data including the values of the parameters of the generated estimation equation (in estimation equation (1), coefficients A to E and adjustment value F) to the refrigerator 10.
  • the estimated defrosting time calculation unit 74 of the refrigerator 10 receives the estimation formula data transmitted from the server device 100 and stores it in the refrigerator memory 80. In FIG. 3, the estimated formula data stored in the refrigerator memory 80 is shown as estimated formula data 83.
  • the estimated defrosting time calculation unit 74 of the refrigerator 10 described above calculates each feature value (PCC, ATC, VCC, DOOR) corresponding to the period from the completion of the previous defrosting operation to the current defrosting necessity judgment time tm . , COMP) is substituted into the estimation formula (1) to calculate the estimated defrosting time EDFT(t m ).
  • FIG. 7 is a first flowchart related to processing on the refrigerator 10 side in the embodiment of the present disclosure.
  • FIG. 8 is a second flowchart related to processing on the refrigerator 10 side in the embodiment of the present disclosure.
  • the control unit 60 of the refrigerator 10 repeatedly executes the processes illustrated in the flowcharts of FIGS. 7 and 8 while the refrigerator 10 is in operation.
  • step S1 the driving status data acquisition unit 71 determines whether a predetermined sampling period (for example, 5 minutes) has elapsed, and when it is determined that the predetermined sampling period has elapsed (YES in step S1). Then, the process proceeds to step S2. On the other hand, when it is determined in step S1 that the predetermined sampling period has not elapsed (NO in step S1), the driving status data acquisition unit 71 continues step S1 until it is determined that the predetermined sampling period has elapsed. repeat. In step S2, the driving status data acquisition unit 71 stores driving status data indicating the driving status detected in the current sampling period in the refrigerator memory 80, and transmits it to the server device 100.
  • a predetermined sampling period for example, 5 minutes
  • step S10 the defrosting operation control unit 72 determines whether or not the defrosting necessity determination time point t m has arrived, and when it is determined that the defrosting necessity determination time point t m has been reached (step S10 (YES), the process advances to step S11. On the other hand, if it is not determined that the defrosting necessity determination time point tm has been reached (NO in step S10), the defrosting operation control unit 72 determines that the defrosting necessity determination time point tm has been reached. Step S10 is repeated until the The defrosting necessity determination time t m is set, for example, to the time when a predetermined time (for example, 24 hours) has elapsed from the completion of the previous defrosting operation.
  • a predetermined time for example, 24 hours
  • the predetermined time related to the defrosting necessity determination time point tm may be set based on the operating status data of the refrigerator 10, the execution status of the defrosting operation of the refrigerator 10, and the like. Note that step S10 may be executed after step S12.
  • the estimated defrosting time calculation unit 74 calculates the estimated defrosting time from the driving status data corresponding to the driving status detected between the completion of the previous defrosting operation and the current defrosting necessity determination time tm .
  • Input data FQD(t m ) related to each feature quantity at the current defrosting necessity determination time point t m is calculated.
  • the estimated defrosting time calculation unit 74 calculates the estimated defrosting time EDFT by substituting the input data FQD(t m ) related to each feature amount into estimation formula (1).
  • the defrosting operation control unit 72 determines whether the estimated defrosting time EDFT(t m ) is equal to or greater than a threshold value at a predetermined defrosting necessity determination time point t m .
  • the threshold value that is referred to when the predetermined defrosting necessity determination time point t m is within a time zone other than the non-use time zone is the first threshold Lv1
  • the predetermined defrosting necessity determination time point t m is within a time zone other than the non-use time zone.
  • the threshold value referred to when it is within the non-use time zone is the second threshold value Lv2.
  • step S13 the defrosting operation control unit 72 determines that the estimated defrosting time EDFT( tm ) is equal to or greater than the threshold at the predetermined defrosting necessity determination time point tm (YES in step S13). ), the process advances to step S30. On the other hand, when it is not determined that the estimated defrosting time EDFT (t m ) is less than the threshold value at the predetermined defrosting necessity determination time point t m (NO in step S13), the process proceeds to step S14 (see FIG. 8). Proceed with the process. In step S30, the defrosting operation control unit 72 executes a defrosting operation. In step S31, the defrosting operation control unit 72 transmits actual defrosting time data indicating the time required for the defrosting operation (actual defrosting time RDFT) to the server device 100, and the process proceeds to step S3.
  • step S30 the defrosting operation control unit 72 transmits actual defrosting time data indicating the time required for the defrosting operation (actual de
  • step S14 the defrosting operation control unit 72 determines whether a predetermined holding time (for example, 1 minute) for holding the execution of the defrosting operation has elapsed, and sets the predetermined holding time When it is determined that the period has elapsed (YES in step S14), the process advances to step S15. As a result, execution of the defrosting operation is suspended until the predetermined suspension time elapses. On the other hand, when it is determined that the predetermined holding time has not elapsed (NO in step S14), the defrosting operation control unit 72 repeats step S14 until it is determined that the predetermined holding time has elapsed.
  • a predetermined holding time for example, 1 minute
  • step S15 the estimated defrosting time calculation unit 74 generates driving status data according to the driving status detected from the completion of the previous defrosting operation to the next predetermined defrosting necessity determination time tm +1. From this, input data FQD(t m+ 1 ) relating to each feature amount at the next predetermined defrosting necessity determination time point t m+1 is calculated.
  • step S16 the estimated defrosting time calculation unit 74 substitutes the input data FQD(t m+1 ) related to each feature quantity into the estimation formula (1), and calculates the time at the next predetermined defrosting necessity judgment time point t m+1.
  • Estimated defrosting time EDFT(t m+1 ) is calculated.
  • step S17 the defrosting operation control unit 72 determines whether the estimated defrosting time EDFT(t m+1 ) is equal to or greater than a threshold value at the next predetermined defrosting necessity determination time point t m+1 .
  • the defrosting operation control unit 72 determines that the estimated defrosting time EDFT (t m+1 ) is equal to or greater than the threshold value at the next predetermined defrosting necessity determination time point t m+1 (YES in step S17). , the process proceeds to step S18.
  • the defrosting operation control unit 72 executes a defrosting operation.
  • the defrosting operation control unit 72 transmits actual defrosting time data indicating the actual defrosting time RDFT to the server device 100, and advances the process to step S3 (see FIG. 7).
  • step S17 when it is determined that the estimated defrosting time EDFT (t m+1 ) is less than the threshold value (NO in step S17), the defrosting operation control unit 72 Then, the process returns to step S14 (see FIG. 8). In this case, execution of the defrosting operation is further suspended until the next predetermined suspension time elapses.
  • step S20 of FIG. 7 the estimated defrosting time calculation unit 74 determines whether or not the estimation formula data transmitted from the server device 100 has been received, and it is determined that the estimation formula data has been received from the server device 100. (YES in step S20), the estimation formula data is stored in the refrigerator memory 80 and the process proceeds to step S3. Using the estimation equation data received from the server device 100, the estimation equation (1) used to calculate the estimated defrosting time EDFT is updated. In FIG. 3, the estimated formula data stored in the refrigerator memory 80 is shown as estimated formula data 83.
  • Step S20 when it is determined that the estimation formula data has not been received from the server device 100 (NO in step S20), the estimated defrosting time calculation unit 74 continues until it is determined that the estimation formula data has been received from the server device 100. Step S20 is repeated.
  • step S40 of FIG. 7 the non-use time zone recognition unit 75 determines whether or not the non-use time zone recognition timing has arrived, and when it is determined that the non-use time zone recognition timing has arrived (step S40 (YES), the process advances to step S41.
  • the recognition timing of the non-use time zone is set, for example, once every three weeks.
  • the non-use time slot recognition unit 75 continues to Step S40 is repeated.
  • step S41 as described above with reference to FIG.
  • the non-use time zone data indicating the non-use time zone is stored in the refrigerator memory 80, and the process proceeds to step S3.
  • the non-use time zone data stored in the refrigerator memory 80 is shown as non-use time zone data 84.
  • step S50 of FIG. 7 the threshold value setting unit 73 determines whether the update timing of the threshold values (first threshold value Lv1, second threshold value Lv2) has arrived, and when it is determined that the update timing of the threshold values has been reached ( If YES in step S50), the process proceeds to step S51.
  • the update timing of the threshold value is set, for example, once every three weeks.
  • the threshold value setting unit 73 repeats step S50 until it is determined that the threshold value update timing has been reached.
  • step S51 the threshold value setting unit 73 sets the first threshold value Lv1 and the second threshold value Lv2 based on the most recent past driving situation data, as described above.
  • the threshold setting unit 73 may update only one of the first threshold Lv1 and the second threshold Lv2.
  • the threshold setting unit 73 stores threshold data indicating the updated threshold in the refrigerator memory 80.
  • the threshold data stored in the refrigerator memory 80 is shown as threshold data 85.
  • FIG. 9 is a flowchart related to processing on the server device 100 side in the embodiment of the present disclosure.
  • Server device 100 communicates with refrigerator 10 and repeatedly executes the process illustrated in the flowchart of FIG. 9 .
  • step S100 the learning data acquisition unit 111 determines whether or not the operating status data and actual defrosting time data transmitted from the refrigerator 10 have been received, and determines whether the operating status data and actual defrosting time data have been received.
  • the process advances to step S101.
  • the learning data acquisition unit 111 stores the driving status data and the actual defrosting time data in the server memory 120 in step S101.
  • the driving status data and actual defrosting time data stored in the server memory 120 are shown as driving status data 122 and actual defrosting time data 123, respectively.
  • the learning data acquisition unit 111 receives the driving status data transmitted from the refrigerator 10. Step S100 is repeated until it is determined that.
  • step S100 the learning data acquisition unit 111 determines whether or not the operating status data and actual defrosting time data transmitted from the refrigerator 10 have been received, and When it is determined that frost time data has been received (YES in step S100), the process advances to step S111.
  • the learning data acquisition unit 111 generates learning data from the driving situation data and the actual defrosting time data in step S111, stores the generated learning data in the server memory 120, and advances the process to step S112.
  • learning data stored in the server memory 120 is shown as learning data 124.
  • step S112 the estimated model generation unit 112 determines whether it is the timing to update the estimation formula (1), and when it is determined that the timing to update the estimation formula (1) has arrived (YES in step S112). , the estimated model generation unit 112 advances the process to step S113, and updates estimation formula (1) in step S113.
  • the update timing of estimation formula (1) is set, for example, once a month.
  • the estimated model generation unit 112 updates the estimated formula (1) by the process described above with reference to FIG. 5 based on the learning data for the past three months from the time when the update timing has arrived.
  • step S114 the estimated model generation unit 112 transmits the updated data of estimation formula (1) to the refrigerator 10, and advances the process to step S102.
  • step S112 the estimation model generation unit 112 continues in step S112 until it is determined that the timing to update the estimation formula (1) has come. repeat.
  • FIG. 10 is a timing chart of defrosting operation in the embodiment of the present disclosure.
  • FIG. 10 shows the execution timing of the defrosting operation using a common time axis t, the defrosting necessity determination time t m , and the value of the estimated defrosting time EDFT (t m ) at the defrosting necessity determination time t m This is shown together with
  • estimated defrosting times EDFT ( t 11 ) and EDFT ( t 12 ), EDFT(t 13 ), EDFT(t 14 ), and EDFT(t 15 ) are respectively illustrated. Further, in FIG. 10, a predetermined time Tw from the completion of the defrosting operation to the next predetermined determination of the necessity of defrosting, and a predetermined holding time Th for suspending the defrosting operation are illustrated.
  • the estimated defrosting time EDFT( t11 ) is equal to or greater than the threshold value, so the defrosting operation is being performed.
  • the estimated defrosting time EDFT( t12 ) is less than the threshold value, so the execution of the defrosting operation is performed at the next predetermined defrosting necessity determination after the suspension time Th has elapsed.
  • the defrosting necessity determination time t m+1 is suspended until t 13 .
  • the estimated defrosting time EDFT (t 13 ) is less than the threshold even at the time t 13 when determining the necessity of defrosting, so the execution of the defrosting operation is continued until the predetermined hold time Th has elapsed.
  • the defrosting process is further suspended until the defrosting necessity determination time t14 , which is the next predetermined defrosting necessity determination time point.
  • the estimated defrosting time EDFT( t14 ) is equal to or greater than the threshold value, so the defrosting operation is being performed.
  • the interval between defrosting operations is extended from Tw to Tw+Th ⁇ 2. In this way, by extending the interval between defrosting operations, the frequency of defrosting operations can be reduced. As described above, according to the present embodiment, it is possible to suppress an increase in the power consumption of the refrigerator 10 and a rise in the temperature inside the refrigerator 10 due to frequent execution of the defrosting operation.
  • FIG. 11 is a timing chart of threshold switching in the embodiment of the present disclosure.
  • FIG. 11 shows the switching timing of the threshold value along with the defrosting necessity determination time tm, the execution time of the defrosting operation, and the non-use time period on a common time axis t.
  • the defrosting necessity judgment time points t 21 , t 22 , t 23 , t 24 , t 25 , t 26 as an example of the defrosting necessity judgment time point tm are the estimated defrosting time EDFT(t 21 ), EDFT (t 22 ), EDFT (t 23 ), EDFT (t 24 ), EDFT (t 25 ), and EDFT (t 26 ) are each illustrated.
  • the non-use time zone is set from 1:00 to 7:00, and in the time zone other than the non-use time zone from 7:00 to 1:00 the next day, the threshold value is set to the first threshold. It is set to Lv1.
  • the threshold value in the non-use time zone is set to a second threshold value Lv2 ( ⁇ first threshold value Lv1) that is shorter than the first threshold value Lv1.
  • the estimated defrosting time EDFT (t 21 ) at t 21 within the non-use time zone is equal to or greater than the second threshold Lv2, so the defrosting operation is being performed.
  • the estimated defrosting times EDFT(t 22 ) and EDFT(t 23 ) are lower than the second threshold Lv2. Since it is less than the first threshold value Lv1 set for a long time, the defrosting operation is not performed.
  • the next predetermined defrosting necessity determination time point t 24 which is the defrosting necessity determination time point t m+1 , is within the non-use time zone, and in the example shown in FIG. 11, the estimated defrosting time EDFT (t 24 ) is the 2 threshold value Lv2 or more, the defrosting operation is being executed.
  • the estimated defrosting times EDFT(t 25 ) and EDFT(t 26 ) have become less than the first threshold Lv1. Defrosting operation is not being performed.
  • the defrosting operation is performed during non-use.
  • a specific function of the refrigerator for example, quick freezing function
  • the specified function will be specified by executing the defrosting operation. It is possible to prevent the use of the function from being hindered.
  • the estimated defrosting time calculation unit 74 is provided in the refrigerator 10, but the estimated defrosting time calculation unit 74 may also be provided in the server device 100.
  • data on the estimated defrosting time calculated by server device 100 is transmitted from server device 100 to refrigerator 10 .
  • the non-use time zone recognition unit 75 may be provided in the server device 100. In this case, the data of the non-use time zone recognized by the server device 100 is transmitted from the server device 100 to the refrigerator 10.
  • the defrosting operation control unit 72 on the refrigerator 10 side sets the defrosting necessity determination time t m to the time when a predetermined time (for example, 24 hours) has elapsed from the completion of the previous defrosting operation. In this case, when the next defrosting necessity determination time comes, the defrosting operation is executed without determining whether the estimated defrosting time EDFT is greater than or equal to the threshold value.
  • the server device 100 includes the learning data acquisition section 111 and the estimated model generation section 112. Good too.
  • the feature values for calculating the estimated defrosting time EDFT include the refrigerator compartment temperature average value PCC, the outside temperature average value ATC, the vegetable compartment temperature average value VCC, the cumulative door opening time value DOOR, and the compression
  • the machine rotational speed integrated value CMP is shown as an example, the feature quantity for calculating the estimated defrosting time EDFT may be any feature quantity that is highly related to the time required for defrosting operation, and any feature quantity other than the above five features may be used. Feature quantities may also be used. Further, the feature quantity to be adopted may be selected depending on the usage status of each refrigerator.
  • the estimation model generation unit 112 generated estimation formula (1) by multiple regression analysis.
  • the estimation model generation unit 112 performs machine learning using AI (Artificial Intelligence) using learning data TRD as teacher data to generate an estimation model for estimating the estimated defrosting time EDFT (t m ). You may.
  • AI Artificial Intelligence
  • the process executed by the driving status data acquisition unit 71 corresponds to the driving status data acquisition step in the refrigerator control method of the present disclosure
  • the process executed by the estimation model generation unit 112 corresponds to the process executed by the refrigerator control method of the present disclosure.
  • the process executed by the estimated defrost time calculation unit 74 corresponds to the estimated defrost time calculation step in the refrigerator control method of the present disclosure
  • the process executed by the defrost operation control unit 72 corresponds to the step of calculating the estimated defrost time in the refrigerator control method of the present disclosure. This corresponds to the defrosting operation control step in .
  • the process executed by the non-use time zone recognition unit 75 corresponds to the non-use time zone recognition step in the refrigerator control method of the present disclosure
  • the process executed by the threshold value setting unit 73 corresponds to the step of recognizing a non-use time zone in the refrigerator control method of the present disclosure. Corresponds to the configuration step.
  • the controller (the control unit 60 of the refrigerator 10, the server processor 110 of the server device 100) constituting the refrigerator control system 1 of the present disclosure may be any controller as long as it can control the operation of the refrigerator control system 1 of the present disclosure.
  • the term "control means”, "control unit”, or words similar thereto may be used to control the operation of the refrigerator control system of the present disclosure.
  • the controller can be implemented in various ways. For example, a processor may be used as the controller. If a processor is used as a controller, various processes can be executed by having the processor read a program from a storage medium storing the program and executing the program by the processor.
  • the degree of freedom in changing the control content can be increased.
  • the processor include a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit).
  • Examples of storage media include hard disks, flash memories, and optical disks.
  • wired logic whose program cannot be rewritten may be used as the controller. Using wired logic as a controller is effective in improving processing speed. Examples of wired logic include ASIC (Application Specific Integrated Circuit). Further, the controller may be realized by combining a processor and wired logic. If a controller is realized by combining a processor and wired logic, it is possible to increase the degree of freedom in software design and improve processing speed.
  • the controller and a circuit having a function different from that of the controller may be composed of one semiconductor element.
  • Examples of circuits having other functions include an A/D/D/A conversion circuit.
  • the controller may be composed of one semiconductor element or may be composed of a plurality of semiconductor elements. When the controller is composed of a plurality of semiconductor elements, each control described in the claims may be realized using different semiconductor elements.
  • the controller may be configured to include a semiconductor element and passive components such as a resistor or a capacitor.
  • the communicator (refrigerator communication unit 90, server communication unit 130) provided in the refrigerator control system 1 of the present disclosure may be any communicator as long as it enables communication between the refrigerator control system 1 of the present disclosure and external devices.
  • communication means or a communication unit may be used as a device that enables communication between external devices and components such as the server device 100 that constitute the refrigerator control system 1 of the present disclosure.
  • it may be expressed as a transmitting/receiving means, a transmitting/receiving unit, or similar wording.
  • the communicator can be implemented in various ways.
  • Examples of the communicator include a wireless connection with an external device via a base station or the like, or a direct wireless connection with an external device.
  • Wireless connections with external devices via base stations etc. include, for example, IEEE802.11 compatible wireless LAN that wirelessly communicates with WiFi (registered trademark) routers, 3rd generation mobile communication systems (commonly known as 3G), and 4th generation mobile communication systems.
  • WiFi registered trademark
  • 3G 3rd generation mobile communication systems
  • 4th generation mobile communication systems There are mobile communication systems (commonly known as 4G), WiMax (registered trademark) compatible with IEEE 802.16, and LPWA (Low Power Wide Area).
  • Using a communicator that directly wirelessly connects components such as the server device 100 constituting the refrigerator control system 1 of the present disclosure with an external device is effective in improving communication security, and is also effective in improving communication security.
  • components such as the server device 100 that constitute the refrigerator control system 1 of the present disclosure can communicate with external devices.
  • a communicator that directly wirelessly connects components such as the server device 100 constituting the refrigerator control system 1 of the present disclosure with an external device for example, communication using Bluetooth (registered trademark), NFC (Near Field) via a loop antenna, etc. communication, infrared communication, etc.
  • the present disclosure provides a refrigerator control system that suppresses an increase in power consumption of the refrigerator and a rise in temperature inside the refrigerator due to defrosting operation of the refrigerator being performed when it is not necessary. Therefore, in addition to refrigerators installed in homes and commercial refrigerators, the present invention is applicable to various types of cooling equipment that perform defrosting operations.
  • Refrigerator control system 5 Gateway 10 Refrigerator 11 Refrigerator compartment 12 Right door of the refrigerator compartment 13 Left door of the refrigerator compartment 14 Switching compartment 15 Drawer of the switching compartment 16 Ice making compartment 17 Drawer of the ice making compartment 18 Freezer compartment 19 Drawer of the freezing compartment 20 Vegetable compartment 21 Vegetable compartment drawer 30 Right door opening/closing sensor 31 Left door opening/closing sensor 32 Switching compartment opening/closing sensor 33 Ice making compartment opening/closing sensor 34 Freezer compartment opening/closing sensor 35 Vegetable compartment opening/closing sensor 40 Refrigerator compartment temperature sensor 41 Vegetable compartment temperature Sensor 42 Outside temperature sensor 43 Cooler temperature sensor 44 Outside illuminance sensor 50 Compressor 51 Cooler 52 Condenser 53 Cooling fan 55 Defrost heater 60 Control unit 70 Refrigerator processor 71 Operating status data acquisition section 72 Defrost operation control section 73 Threshold value setting section 74 Estimated defrosting time calculation section 75 Non-use time period recognition section 80 Refrigerator memory 81 Refrigerator program 82 Operating status data 83 Estimation formula data

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

The present disclosure provides a refrigerator control system that suppresses a situation in which implementation of a particular function of a refrigerator is impeded by execution of defrosting operation. A refrigerator control system includes an estimated defrosting time calculating unit that calculates an estimated defrosting time at a point in time of judging necessity/non-necessity of defrosting, by an estimation model, a defrosting operation control unit that executes defrosting operation when the estimated defrosting time at the point in time of judging necessity/non-necessity of defrosting is a threshold value or higher, a non-use time slot recognizing unit that recognizing a non-use time slot that is a time slot regarding which estimation is made that the likelihood of a particular function of a refrigerator being used is low, and a threshold value setting unit that sets a plurality of the threshold value relating to judging whether or not to execute the defrosting operation.

Description

冷蔵庫制御システム、及び冷蔵庫制御方法Refrigerator control system and refrigerator control method
 本開示は、除霜運転を実行する冷蔵庫を制御対象とする冷蔵庫制御システム、及び冷蔵庫制御方法に関する。 The present disclosure relates to a refrigerator control system and a refrigerator control method that control a refrigerator that performs a defrosting operation.
 特許文献1は、コンプレッサの積算運転時間が一定時間になったときに、除霜開始タイミングを延長するか否かを判定するようにした冷蔵庫の除霜装置を開示する。除霜装置は、扉が開放されていないと共に強制運転が実行されておらず、さらに推定外気温度が所定温度範囲内であったときは、除霜運転の必要がないと判断して除霜開始タイミングを一定時間だけ先送りする。また、除霜装置は、延長動作終了時の除霜開始タイミングにおいて扉が開放されていないと共に強制運転が実行されていないときは、さらに除霜開始タイミングを一定時間だけ先送りする動作を、既定回数だけ実行する。
 特許文献2は、電力負荷ピーク時に除霜運転が行われないように、除霜運転開始を遅らせるようにした冷蔵庫を開示する。
 特許文献3は、冷却を優先すべき時に除霜運転が行われないように、熱負荷が熱負荷閾値以上か否かにより除霜運転の開始を判断するようにした冷蔵庫を開示する。
 特許文献4は、特定の冷却制御(低温冷却制御)を実行する際は、除霜を行わないようにし、また、利用者の操作に応じて節電モードに切り替わるようにした冷蔵庫を開示する。
Patent Document 1 discloses a defrosting device for a refrigerator that determines whether to extend the defrosting start timing when the cumulative operating time of a compressor reaches a certain time. If the door is not open and forced operation is not being performed, and the estimated outside temperature is within the predetermined temperature range, the defrosting device determines that defrosting is not necessary and starts defrosting. To postpone the timing by a certain amount of time. In addition, if the door is not opened and forced operation is not being executed at the defrost start timing at the end of the extended operation, the defrost device further postpones the defrost start timing by a certain period of time for a predetermined number of times. Execute only.
Patent Document 2 discloses a refrigerator in which the start of defrosting operation is delayed so that defrosting operation is not performed at peak power load times.
Patent Document 3 discloses a refrigerator in which the start of defrosting operation is determined based on whether the heat load is equal to or higher than a heat load threshold so that defrosting operation is not performed when priority should be given to cooling.
Patent Document 4 discloses a refrigerator in which defrosting is not performed when specific cooling control (low-temperature cooling control) is executed, and the refrigerator is switched to a power saving mode in response to a user's operation.
特開平7-239168号公報Japanese Patent Application Publication No. 7-239168 欧州特許第2335125号明細書European Patent No. 2335125 特開2021-060158号公報JP 2021-060158 Publication 特開2020-094712号公報JP2020-094712A
 本開示は、冷蔵庫の特定機能の実施が、除霜運転の実行によって妨げられることを抑制する冷蔵庫制御システムを提供する。 The present disclosure provides a refrigerator control system that suppresses execution of specific functions of the refrigerator from being hindered by execution of defrosting operation.
 この明細書には、2022年5月31日に出願された日本国特許出願・特願2022-089292の全ての内容が含まれる。
 本開示における冷蔵庫制御システムは、所定のサンプリング周期で冷蔵庫に設けられた検出部により検出された、前記冷蔵庫の運転状況を示す運転状況データを取得し、第1記憶部に保存する運転状況データ取得部と、前記冷蔵庫の加熱部を作動させて前記冷蔵庫の冷却器に付着した霜を除去する除霜運転が実行されたときに、前回の前記除霜運転が完了した時点から今回の前記除霜運転が実行されるまでの間に、前記検出部により検出された運転状況を示す前記運転状況データに基づく、所定の特徴量と、今回の前記除霜運転に要した時間とを含む学習データを取得し、第2記憶部に保存する学習データ取得部と、前記学習データに基づいて、前記検出部により検出された運転状況を示す前記運転状況データに基づく前記特徴量に係る入力データの入力に対して、前記除霜運転を実行したと想定した場合の前記除霜運転の推定所要時間を、推定除霜時間として出力する推定モデルを用いて、前記推定除霜時間を算出する推定除霜時間算出部と、所定の除霜要否判断時点における前記推定除霜時間が閾値以上であるときに、前記除霜運転を実行する除霜運転制御部と、前記冷蔵庫の特定機能が使用される可能性が低いと推定される時間帯である不使用時間帯を認識する不使用時間帯認識部と、前記除霜運転の実行の判断要否に係る前記閾値を複数設定する閾値設定部と、を備える。
This specification includes all contents of Japanese patent application/Japanese Patent Application No. 2022-089292 filed on May 31, 2022.
The refrigerator control system according to the present disclosure acquires operating status data indicating the operating status of the refrigerator, which is detected by a detection unit provided in the refrigerator at a predetermined sampling period, and stores the operating status data in a first storage unit. and when a defrosting operation is executed in which the heating section of the refrigerator is activated to remove frost attached to the cooler of the refrigerator, the current defrosting operation starts from the time when the previous defrosting operation was completed. Until the operation is executed, learning data including a predetermined feature quantity and the time required for the current defrosting operation is generated based on the driving status data indicating the driving status detected by the detection unit. a learning data acquisition unit that acquires and stores the learning data in a second storage unit; and input data relating to the feature amount based on the driving situation data indicating the driving situation detected by the detection unit based on the learning data. On the other hand, the estimated defrosting time is calculated by using an estimation model that outputs the estimated required time of the defrosting operation as the estimated defrosting time assuming that the defrosting operation is executed. A calculation unit, a defrosting operation control unit that executes the defrosting operation when the estimated defrosting time is equal to or greater than a threshold value at the time of determining whether or not a predetermined defrosting is necessary, and a specific function of the refrigerator may be used. a non-use time period recognition unit that recognizes a non-use time period that is a time period in which the defrosting operation is estimated to be low; and a threshold value setting unit that sets a plurality of the threshold values related to the necessity of determining whether or not to execute the defrosting operation. Be prepared.
 本開示における冷蔵庫制御方法は、コンピュータにより実行される冷蔵庫制御方法であって、所定のサンプリング周期で、冷蔵庫に設けられた前記検出部により検出された前記冷蔵庫の運転状況を示す運転状況データを、第1記憶部に保存する運転状況データ取得ステップと、前記加熱部を作動させて前記冷却器に付着した霜を除去する除霜運転が実行されたときに、前回の前記除霜運転が完了した時点から今回の前記除霜運転が実行されるまでの間に、前記検出部により検出された運転状況を示す前記運転状況データに基づく、所定の特徴量と、今回の前記除霜運転に要した時間とを含む学習データを、第2記憶部に保存する学習データ取得ステップと、前記学習データに基づいて、前記検出部により検出された運転状況を示す前記運転状況データに基づく前記特徴量に係る入力データの入力に対して、前記除霜運転を実行したと想定した場合の前記除霜運転の推定所要時間を、推定除霜時間として出力する推定モデルを用いて、前記推定除霜時間を算出する推定除霜時間算出ステップと、所定の除霜要否判断時点における前記推定除霜時間が閾値以上であるときに、前記除霜運転を実行する除霜運転制御ステップと、前記冷蔵庫の特定機能が使用される可能性が低いと推定される時間帯である不使用時間帯を認識する不使用時間帯認識ステップと、前記除霜運転の実行の判断要否に係る前記閾値を複数設定する閾値設定ステップと、を含む。 A refrigerator control method according to the present disclosure is a refrigerator control method executed by a computer, and includes, at a predetermined sampling period, operating status data indicating the operating status of the refrigerator detected by the detection unit provided in the refrigerator. When the step of acquiring operating status data to be stored in the first storage unit and the defrosting operation of activating the heating unit to remove frost attached to the cooler are executed, the previous defrosting operation is completed. A predetermined feature amount based on the driving status data indicating the driving status detected by the detection unit between the time and the time when the current defrosting operation is executed, and the amount of time required for the current defrosting operation. a learning data acquisition step of storing learning data including time in a second storage unit; and the feature amount based on the driving situation data indicating the driving situation detected by the detecting unit based on the learning data. Calculating the estimated defrosting time using an estimation model that outputs the estimated time required for the defrosting operation, assuming that the defrosting operation is executed in response to the input data. a defrosting operation control step of executing the defrosting operation when the estimated defrosting time is equal to or greater than a threshold at a predetermined time of determining whether or not defrosting is necessary; and a specific function of the refrigerator. a non-use time period recognition step for recognizing a non-use time period which is a time period in which it is estimated that there is a low possibility that the defrosting operation will be used; a configuration step.
 本開示の冷蔵庫制御システムによれば、個々の冷蔵庫の運転状況を学習した学習データに基づいて生成された推定モデルを用いて、個々の冷蔵庫の実際の運転状況に応じた推定除霜時間が算出され、推定除霜時間が閾値以上であるときに除霜運転が実行される。また、冷蔵庫の特定機能が利用される可能性の低い不使用時間帯に除霜運転が実行され易くなるよう、除霜運転の実行の判断要否に係る閾値が複数設定される。これにより、利用者が冷蔵庫の特定機能を利用したいときに、特定機能の実施が除霜運転により妨げられることを抑制することができる。 According to the refrigerator control system of the present disclosure, an estimated defrosting time is calculated according to the actual operating status of each refrigerator using an estimation model generated based on learning data that has learned the operating status of each refrigerator. The defrosting operation is executed when the estimated defrosting time is equal to or greater than the threshold value. Further, a plurality of threshold values are set to determine whether or not to perform a defrosting operation so that the defrosting operation is more likely to be performed during a non-use period when a specific function of the refrigerator is less likely to be used. Thereby, when the user wants to use a specific function of the refrigerator, it is possible to prevent the implementation of the specific function from being hindered by the defrosting operation.
図1は、実施の形態における冷蔵庫制御システムによる制御の態様の説明図FIG. 1 is an explanatory diagram of a mode of control by a refrigerator control system in an embodiment. 図2は、実施の形態における冷蔵庫の構成を説明するための断面図FIG. 2 is a sectional view for explaining the configuration of the refrigerator in the embodiment. 図3は、実施の形態における冷蔵庫制御システムの構成図FIG. 3 is a configuration diagram of the refrigerator control system in the embodiment. 図4は、実施の形態における学習データの生成処理の説明図FIG. 4 is an explanatory diagram of learning data generation processing in the embodiment. 図5は、実施の形態における推定式の生成処理の説明図FIG. 5 is an explanatory diagram of the estimation formula generation process in the embodiment. 図6は、実施の形態における不使用時間帯の認識処理の説明図FIG. 6 is an explanatory diagram of the non-use time zone recognition process in the embodiment. 図7は、実施の形態における冷蔵庫側の処理に係る第1フローチャートFIG. 7 is a first flowchart related to processing on the refrigerator side in the embodiment. 図8は、実施の形態における冷蔵庫側の処理に係る第2フローチャートFIG. 8 is a second flowchart related to processing on the refrigerator side in the embodiment. 図9は、実施の形態におけるサーバー装置側の処理に係るフローチャートFIG. 9 is a flowchart related to processing on the server device side in the embodiment. 図10は、実施の形態における除霜運転のタイミングチャートFIG. 10 is a timing chart of defrosting operation in the embodiment. 図11は、実施の形態における閾値の切換のタイミングチャートFIG. 11 is a timing chart of threshold switching in the embodiment.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、冷蔵庫における除霜は、各冷蔵庫に共通の同じ推定式により、コンプレッサの積算運転時間またはドアの開閉時間に応じて決定された実行タイミングで、実行されていた。
(Findings, etc. that formed the basis of this disclosure)
At the time when the inventors came up with the present disclosure, defrosting in a refrigerator was performed at an execution timing determined according to the cumulative operating time of the compressor or the opening/closing time of the door using the same estimation formula common to each refrigerator. It was being executed.
 しかしながら、各冷蔵庫に共通の同じ推定式を用いた場合には、冷蔵庫が使用される状況(例えば、単身、DEWKs(Double Employed With Kids)、DINKS(Double Income No Kids)、又は大家族等により使用される冷蔵庫に収納される食品の種類及び量、並びに、ドアの開閉時間など)、及び、冷蔵庫の周囲環境の影響が考慮されることなく、除霜が実行される。そのため、必要以上に頻繁に除霜が行われて、冷蔵庫の消費電力が増加すると共に、庫内の温度変動による食品への影響が大きくなる場合がある。また、冷蔵庫に、冷凍庫の冷却能力を通常運転時よりも高める特定機能(例えば、急速冷凍機能)が備えられている場合、除霜運転が実行されている間は、利用者が特定機能を利用したくても、特定機能の利用が妨げられるという問題を発明者らは発見し、その問題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、必要以上に頻繁に除霜運転が実行されることを抑制しつつ、除霜運転の実行により、冷蔵庫の特定機能の利用が妨げられることを抑制することができる冷蔵庫制御システムを提供する。
However, if the same estimation formula is used for each refrigerator, it will be difficult to estimate whether the refrigerator is used by a single person, DEWKs (Double Employed With Kids), DINKS (Double Income No Kids), or a large family. Defrosting is performed without taking into consideration the type and amount of food stored in the refrigerator, the opening/closing time of the door, etc., and the influence of the surrounding environment of the refrigerator. Therefore, defrosting is performed more frequently than necessary, which increases the power consumption of the refrigerator and may increase the effect of temperature fluctuations on the food inside the refrigerator. Additionally, if the refrigerator is equipped with a specific function (for example, a quick freezing function) that increases the cooling capacity of the freezer compared to normal operation, the user may not use the specific function while defrosting operation is being performed. The inventors discovered a problem in which the use of a specific function is prevented even if the user wants to do so, and in order to solve this problem, the subject of the present disclosure was constructed.
Therefore, the present disclosure provides a refrigerator control system that can suppress the defrosting operation from being performed more frequently than necessary and prevent the use of specific functions of the refrigerator from being hindered by the execution of the defrosting operation. I will provide a.
 以下、図面を参照しながら、本開示の実施の形態の例を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, examples of embodiments of the present disclosure will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art.
Note that the drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 (実施の形態)
 以下、図1~図11を参照して、本開示の実施の形態の例を説明する。
 [1.制御の態様]
 まず、図1を参照して、本開示の実施の形態の冷蔵庫制御システム1における冷蔵庫10の制御の態様について説明する。図1は、本開示の実施の形態における冷蔵庫制御システム1による制御の態様の説明図である。冷蔵庫制御システム1は、制御対象である冷蔵庫10と、サーバー装置100とを備える。冷蔵庫10は、例えば、家屋Hに設置され、ゲートウェイ5及び通信ネットワーク200を介して、サーバー装置100との間で相互に通信を行うよう構成されている。
(Embodiment)
Examples of embodiments of the present disclosure will be described below with reference to FIGS. 1 to 11.
[1. Mode of control]
First, with reference to FIG. 1, a mode of controlling the refrigerator 10 in the refrigerator control system 1 according to the embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram of a mode of control by a refrigerator control system 1 in an embodiment of the present disclosure. The refrigerator control system 1 includes a refrigerator 10 to be controlled and a server device 100. The refrigerator 10 is installed in a house H, for example, and is configured to communicate with the server device 100 via the gateway 5 and the communication network 200.
 ここで、図1では、説明の便宜のため、1台の冷蔵庫10のみを示しているが、サーバー装置100は、複数の冷蔵庫との間で通信を行うことができるよう構成されていてもよい。この場合、サーバー装置100と複数の冷蔵庫のそれぞれとにより冷蔵庫制御システム1が構成される。 Here, in FIG. 1, only one refrigerator 10 is shown for convenience of explanation, but the server device 100 may be configured to be able to communicate with a plurality of refrigerators. . In this case, a refrigerator control system 1 is configured by the server device 100 and each of the plurality of refrigerators.
 図2は、本開示の実施の形態の本実施の形態の冷蔵庫制御システム1における冷蔵庫10の構成を説明するための断面図である。図2に示すように、本実施の形態の冷蔵庫制御システム1の冷蔵庫10は、冷蔵室11、切換室14、製氷室16、冷凍室18、及び野菜室20を備えている。冷蔵室11の前面の開口部には、回転式の右ドア12及び左ドア13が設けられている。また、切換室14、製氷室16、冷凍室18、及び野菜室20には、それぞれ引き出し15,17,19,21が設けられている。 FIG. 2 is a cross-sectional view for explaining the configuration of the refrigerator 10 in the refrigerator control system 1 according to the embodiment of the present disclosure. As shown in FIG. 2, the refrigerator 10 of the refrigerator control system 1 of this embodiment includes a refrigerator compartment 11, a switching compartment 14, an ice making compartment 16, a freezing compartment 18, and a vegetable compartment 20. A rotary right door 12 and a left door 13 are provided at the front opening of the refrigerator compartment 11. Moreover, drawers 15, 17, 19, and 21 are provided in the switching compartment 14, the ice making compartment 16, the freezing compartment 18, and the vegetable compartment 20, respectively.
 冷蔵庫10が備える制御ユニット60は、冷蔵庫10の作動を制御する。制御ユニット60は、冷蔵庫10の運転状況DRSを所定のサンプリング周期(例えば5分)で検出する検出部としての機能も有する。また、制御ユニット60は、検出した運転状況DRSを示す運転状況データをサーバー装置100に送信する。また、制御ユニット60は、後述する冷却器51に付着した霜を除去する除霜運転を実行する除霜運転制御部としての機能も有する。また、制御ユニット60は、除霜運転を実行した際の所要時間(実除霜時間RDFT)を示す実除霜時間データを、サーバー装置100に送信する。 A control unit 60 included in the refrigerator 10 controls the operation of the refrigerator 10. The control unit 60 also has a function as a detection unit that detects the operating status DRS of the refrigerator 10 at a predetermined sampling period (for example, 5 minutes). Further, the control unit 60 transmits driving status data indicating the detected driving status DRS to the server device 100. Further, the control unit 60 also has a function as a defrosting operation control section that executes a defrosting operation to remove frost attached to the cooler 51, which will be described later. Further, the control unit 60 transmits actual defrosting time data indicating the time required to execute the defrosting operation (actual defrosting time RDFT) to the server device 100.
 図3は、本開示の実施の形態の冷蔵庫制御システム1の構成図である。図3に示すように、サーバー装置100は、運転状況データと実除霜時間データとにより生成された学習データに基づいて、除霜運転を実行したと想定した場合の除霜運転の推定所要時間(推定除霜時間EDFT)を算出する推定式を生成する。そして、サーバー装置100、又は冷蔵庫10の制御ユニット60は、所定の除霜要否判断時点tmにおける推定除霜時間EDFT(tm)を、推定式により算出する。図1では、サーバー装置100が推定除霜時間EDFT(tm)を算出して、冷蔵庫10に送信する場合を例示している。 FIG. 3 is a configuration diagram of the refrigerator control system 1 according to the embodiment of the present disclosure. As shown in FIG. 3, the server device 100 calculates the estimated time required for the defrosting operation based on the learning data generated from the operating status data and the actual defrosting time data, assuming that the defrosting operation is executed. An estimation formula for calculating (estimated defrosting time EDFT) is generated. Then, the server device 100 or the control unit 60 of the refrigerator 10 calculates the estimated defrosting time EDFT (tm) at the predetermined defrosting necessity determination time tm using an estimation formula. In FIG. 1, a case is illustrated in which the server device 100 calculates the estimated defrosting time EDFT (tm) and transmits it to the refrigerator 10.
 推定式は、家屋Hにおける冷蔵庫10の使用状況が反映される運転状況データを学習して、冷蔵庫10用にカスタマイズされる。冷蔵庫10の制御ユニット60は、推定除霜時間EDFT(tm)が閾値以上であると判断されたときに除霜運転を実行する。この場合、推定除霜時間EDFT(tm)は、冷蔵庫10の実際の使用状況が反映される運転状況データに基づいて、推定式による算出される。そのため、個々の冷蔵庫10の使用状況に応じて、冷却器に付着している霜の量が、除霜が必要な量以上になったと推定される、推定除霜時間EDFT(tm)が閾値以上になった適切なタイミングで、除霜運転を実行することができる。 The estimation formula is customized for the refrigerator 10 by learning operating status data that reflects the usage status of the refrigerator 10 in the house H. The control unit 60 of the refrigerator 10 executes the defrosting operation when it is determined that the estimated defrosting time EDFT (tm) is equal to or greater than the threshold value. In this case, the estimated defrosting time EDFT (tm) is calculated by an estimation formula based on driving status data that reflects the actual usage status of the refrigerator 10. Therefore, depending on the usage status of each refrigerator 10, the estimated defrosting time EDFT (tm), which is estimated to indicate that the amount of frost adhering to the cooler has exceeded the amount required for defrosting, is greater than or equal to the threshold value. Defrosting operation can be performed at the appropriate timing.
 [2.冷蔵庫の構成]
 図2を参照して、本実施の形態の冷蔵庫制御システム1の冷蔵庫10の構成について説明する。図2は、冷蔵庫10を前から見たときの冷蔵庫10の右側から見た断面図である。冷蔵庫10は、上述した制御ユニット60、冷凍サイクルを構成する補機である圧縮機50、冷却器51、凝縮器52、及び冷却ファン53を備える。また、冷蔵庫10は、冷却器51の付近に設けられた、冷却器51を加熱する除霜ヒータ55及び冷却器51の温度を検出する冷却器温度センサ43を備える。除霜ヒータ55は、本開示の加熱部に相当する。
[2. Refrigerator configuration]
With reference to FIG. 2, the configuration of the refrigerator 10 of the refrigerator control system 1 of this embodiment will be described. FIG. 2 is a sectional view of the refrigerator 10 seen from the right side when the refrigerator 10 is viewed from the front. The refrigerator 10 includes the above-mentioned control unit 60, a compressor 50 which is an auxiliary machine that constitutes a refrigeration cycle, a cooler 51, a condenser 52, and a cooling fan 53. The refrigerator 10 also includes a defrost heater 55 that heats the cooler 51 and a cooler temperature sensor 43 that detects the temperature of the cooler 51, which are provided near the cooler 51. The defrosting heater 55 corresponds to the heating section of the present disclosure.
 冷蔵室11には、冷蔵室11内の温度を検出する冷蔵室温度センサ40、右ドア12に開閉を検出する開閉センサ30、及び左ドア13の開閉を検出する開閉センサ31が設けられている。右ドア12には、冷蔵庫10の庫外の温度(冷蔵庫10が置かれた部屋等の温度)を検出する庫外温度センサ42と、庫外の照度(冷蔵庫10が置かれた部屋等の照度)を検出する庫外照度センサ44が設けられている。 The refrigerator compartment 11 is provided with a refrigerator compartment temperature sensor 40 that detects the temperature inside the refrigerator compartment 11, an opening/closing sensor 30 that detects opening/closing of the right door 12, and an opening/closing sensor 31 that detects opening/closing of the left door 13. . The right door 12 includes an outside temperature sensor 42 that detects the temperature outside the refrigerator 10 (temperature of the room where the refrigerator 10 is placed, etc.), and an outside temperature sensor 42 that detects the outside temperature of the refrigerator 10 (temperature of the room where the refrigerator 10 is placed, etc.) and the illuminance outside the refrigerator (the illuminance of the room where the refrigerator 10 is placed, etc.). ) is provided with an outside illuminance sensor 44 that detects the
 切換室14には、引き出し15の開閉を検出する開閉センサ32が設けられ、製氷室16には、引き出し17の開閉を検出する開閉センサ33が設けられている。冷凍室18には、引き出し19の開閉を検出する開閉センサ34が設けられ、野菜室20には、引き出し21の開閉を検出する開閉センサ35が設けられている。 The switching chamber 14 is provided with an opening/closing sensor 32 that detects whether the drawer 15 is opened or closed, and the ice making compartment 16 is provided with an opening/closing sensor 33 that detects whether the drawer 17 is opened or closed. The freezer compartment 18 is provided with an open/close sensor 34 that detects whether the drawer 19 is opened or closed, and the vegetable compartment 20 is provided with an open/close sensor 35 that detects whether the drawer 21 is opened or closed.
 冷蔵室11、切換室14、製氷室16、冷凍室18、及び野菜室20は、本開示の収容室に相当する。開閉センサ30~35は、本開示の冷蔵庫10の収容室の開口部の開閉を検出する開閉センサに相当する。庫外照度センサ44は、冷蔵庫10の周辺の照度(冷蔵庫10が置かれている部屋等の照度)を検出する。 The refrigerator compartment 11, the switching compartment 14, the ice making compartment 16, the freezing compartment 18, and the vegetable compartment 20 correspond to the storage compartment of the present disclosure. The opening/closing sensors 30 to 35 correspond to opening/closing sensors that detect opening/closing of the opening of the storage chamber of the refrigerator 10 of the present disclosure. The outside illuminance sensor 44 detects the illuminance around the refrigerator 10 (the illuminance of the room where the refrigerator 10 is placed, etc.).
 [3.冷蔵庫制御システムの構成]
 図3~図6を参照して、本開示の実施の形態の冷蔵庫制御システム1の構成について説明する。図4は、本開示の実施の形態における学習データの生成処理の説明図である。図5は、本開示の実施の形態における推定式の生成処理の説明図である。図6は、本開示の実施の形態における不使用時間帯の認識処理を説明するための図である。冷蔵庫10の制御ユニット60は、冷蔵庫プロセッサ70及び冷蔵庫メモリ80を有する。制御ユニット60は、冷蔵庫通信部90により、無線通信によってサーバー装置100との間で通信を行う。制御ユニット60は、開閉センサ30~35、冷蔵室温度センサ40、野菜室温度センサ41、庫外温度センサ42、冷却器温度センサ43、及び庫外照度センサ44と接続され、これらのセンサによる検出信号が制御ユニット60に入力される。また、制御ユニット60は、冷凍サイクル補機50~53及び除霜ヒータ55に接続され、制御ユニット60から出力される制御信号によって、冷凍サイクル補機50~53及び除霜ヒータ55の作動を制御する。冷蔵庫メモリ80は、本開示の第1記憶部に相当する。
[3. Refrigerator control system configuration]
The configuration of the refrigerator control system 1 according to the embodiment of the present disclosure will be described with reference to FIGS. 3 to 6. FIG. 4 is an explanatory diagram of learning data generation processing in the embodiment of the present disclosure. FIG. 5 is an explanatory diagram of estimation formula generation processing in the embodiment of the present disclosure. FIG. 6 is a diagram for explaining non-use time zone recognition processing in the embodiment of the present disclosure. The control unit 60 of the refrigerator 10 includes a refrigerator processor 70 and a refrigerator memory 80. Control unit 60 communicates with server device 100 by wireless communication using refrigerator communication section 90 . The control unit 60 is connected to the opening/closing sensors 30 to 35, the refrigerator temperature sensor 40, the vegetable compartment temperature sensor 41, the outside temperature sensor 42, the cooler temperature sensor 43, and the outside illuminance sensor 44, and the detection by these sensors A signal is input to control unit 60. Further, the control unit 60 is connected to the refrigeration cycle auxiliary machines 50 to 53 and the defrost heater 55, and controls the operation of the refrigeration cycle auxiliary machines 50 to 53 and the defrost heater 55 by control signals output from the control unit 60. do. Refrigerator memory 80 corresponds to the first storage unit of the present disclosure.
 本実施の形態の冷蔵庫制御システム1では、冷蔵庫プロセッサ70が、冷蔵庫メモリ80に保存された冷蔵庫プログラム81を読み込んで実行することにより、運転状況データ取得部71、除霜運転制御部72、閾値設定部73、推定除霜時間算出部74、及び不使用時間帯認識部75として機能する。運転状況データ取得部71、除霜運転制御部72、閾値設定部73、推定除霜時間算出部74、及び不使用時間帯認識部75は、冷蔵庫プロセッサ70とは別に、それぞれ互いに独立したプロセッサ、メモリ、及びプログラム等により実現されていてもよい。運転状況データ取得部71は、所定のサンプリング周期(例えば5分)が経過するごとに、冷蔵庫10の運転状況を検出する。 In the refrigerator control system 1 of the present embodiment, the refrigerator processor 70 reads and executes the refrigerator program 81 stored in the refrigerator memory 80, thereby controlling the operation status data acquisition section 71, the defrosting operation control section 72, and the threshold value setting. It functions as a section 73, an estimated defrosting time calculation section 74, and a non-use time zone recognition section 75. The driving status data acquisition section 71, the defrosting operation control section 72, the threshold value setting section 73, the estimated defrosting time calculation section 74, and the non-use time zone recognition section 75 are independent processors, respectively, apart from the refrigerator processor 70. It may be realized by a memory, a program, etc. The operating status data acquisition unit 71 detects the operating status of the refrigerator 10 every time a predetermined sampling period (for example, 5 minutes) elapses.
 運転状況データ取得部71は、図4に示すように、冷蔵室温度センサ40により検出される冷蔵室温度PcT、庫外温度センサ42により検出される庫外温度AtT、野菜室温度センサ41により検出される野菜室温度VcT、開閉センサ30~35により検出される右ドア12、左ドア13、切換室14の引き出し15、製氷室16の引き出し17、冷凍室18の引き出し19、及び野菜室20の引き出し21のいずれかが開けられていた時間DrO(各サンプリング周期におけるトータルの時間)、及び圧縮機50の回転数CpR(各サンプリング周期におけるトータルの回転数)を、運転状況DRSとして検出する。 As shown in FIG. 4, the operating status data acquisition unit 71 collects the refrigerator compartment temperature PcT detected by the refrigerator compartment temperature sensor 40, the exterior temperature AtT detected by the exterior temperature sensor 42, and the vegetable compartment temperature sensor 41. the temperature VcT of the vegetable compartment, the right door 12, the left door 13, the drawer 15 of the switching compartment 14, the drawer 17 of the ice making compartment 16, the drawer 19 of the freezing compartment 18, and the drawer 19 of the freezing compartment 20 detected by the opening/closing sensors 30 to 35. The time DrO (total time in each sampling period) during which any of the drawers 21 was opened and the rotation speed CpR (total rotation speed in each sampling period) of the compressor 50 are detected as the operating status DRS.
 そして、運転状況データ取得部71は、これらの運転状況DRSを示す運転状況データを、冷蔵庫メモリ80に保存する。図3では、冷蔵庫メモリ80に保存されている運転状況データを、運転状況データ82として示している。また、運転状況データ取得部71は、運転状況データをサーバー装置100に送信する。圧縮機50の回転数は、圧縮機50の回転数を検出する回転数センサ(図示しない)により検出してもよく、圧縮機50の回転数を制御するための制御回転数を、圧縮機50の回転数の検出値として用いてもよい。ここで、冷蔵室温度センサ40、野菜室温度センサ41、庫外温度センサ42、開閉センサ30~35、及び圧縮機50の回転数を検出する構成は、本開示の検出部に相当する。 Then, the driving situation data acquisition unit 71 stores the driving situation data indicating these driving situations DRS in the refrigerator memory 80. In FIG. 3, the driving status data stored in the refrigerator memory 80 is shown as driving status data 82. Further, the driving situation data acquisition unit 71 transmits the driving situation data to the server device 100. The rotation speed of the compressor 50 may be detected by a rotation speed sensor (not shown) that detects the rotation speed of the compressor 50. It may also be used as a detected value of the rotation speed. Here, the configuration that detects the refrigerator compartment temperature sensor 40, the vegetable compartment temperature sensor 41, the outside temperature sensor 42, the opening/closing sensors 30 to 35, and the rotation speed of the compressor 50 corresponds to the detection unit of the present disclosure.
 除霜運転制御部72は、所定の除霜要否判断時点における推定除霜時間が、閾値以上であると判断されたときに、除霜ヒータ55を作動させて冷却器51に付着した霜を除去する除霜運転を実行する。除霜運転制御部72は、冷却器温度センサ43の検出温度が除霜終了温度以上になった時に、除霜運転を完了する。除霜終了温度は、冷却器51に付着した霜が解け切る温度を想定して、例えば10℃以上に設定される。除霜運転制御部72は、除霜運転に要した時間(実除霜時間RDFT)を示す実除霜時間データを、サーバー装置100に送信する。 The defrosting operation control unit 72 operates the defrosting heater 55 to remove the frost attached to the cooler 51 when it is determined that the estimated defrosting time at the time of determining the necessity of defrosting is greater than or equal to the threshold value. Execute defrosting operation to remove. The defrosting operation control unit 72 completes the defrosting operation when the temperature detected by the cooler temperature sensor 43 becomes equal to or higher than the defrosting end temperature. The defrosting end temperature is set to, for example, 10° C. or higher, assuming the temperature at which the frost attached to the cooler 51 is completely melted. The defrosting operation control unit 72 transmits actual defrosting time data indicating the time required for the defrosting operation (actual defrosting time RDFT) to the server device 100.
 除霜要否判断時点は、前回の除霜運転の完了時点から第1所定時間(例えば24時間)が経過した時点、或いは前回の除霜運転の完了時点から第2所定時間(例えば2時間)が経過した後、第3所定時間(例えば1分)が経過するごとの時点等に設定される。推定除霜時間は、除霜運転を実行したと想定した場合の除霜運転の所要時間であり、推定除霜時間算出部74により算出される。推定除霜時間算出部74は、除霜要否判断時点tにおける推定除霜時間EDFT(t)を、後述する推定式(1)により算出する。推定式(1)の詳細については後述する。 The time to determine whether or not defrosting is necessary is when a first predetermined time (e.g., 24 hours) has elapsed from the completion of the previous defrosting operation, or a second predetermined time (e.g., 2 hours) from the completion of the previous defrosting operation. is set at a time point every time a third predetermined time (for example, one minute) has elapsed. The estimated defrosting time is the time required for the defrosting operation assuming that the defrosting operation is executed, and is calculated by the estimated defrosting time calculation unit 74. The estimated defrosting time calculation unit 74 calculates the estimated defrosting time EDFT (t m ) at the defrosting necessity determination time point t m using estimation formula (1) described later. Details of estimation formula (1) will be described later.
 不使用時間帯認識部75は、冷蔵庫10に備えられた急速冷凍機能(本開示の特定機能に相当する)が使用される可能性が低いと想定される時間を、不使用時間帯として認識する。特定機能は、除霜運転の実行によって、実施が妨げられる機能であればよく、急速冷凍機能に限られない。急速冷凍機能は、通常運転時よりも冷却能力を高める機能であり、具体的には圧縮機50の回転速度を通常運転時よりも高くする等の処理が実行される。ここで、図6を参照して、不使用時間帯認識部75による不使用時間帯の認識処理について説明する。 The non-use time recognition unit 75 recognizes a time when the quick freezing function (corresponding to the specific function of the present disclosure) provided in the refrigerator 10 is unlikely to be used as a non-use time. . The specific function may be any function that is prevented from being implemented by executing the defrosting operation, and is not limited to the quick freezing function. The quick freezing function is a function that increases the cooling capacity more than during normal operation, and specifically, processes such as increasing the rotational speed of the compressor 50 than during normal operation are executed. Here, with reference to FIG. 6, the non-use time slot recognition process by the non-use time slot recognition unit 75 will be described.
 不使用時間帯認識部75は、開閉センサ30~35により、右ドア12、左ドア13、及び、引き出し15,17,19,21の開閉状況を、所定のサンプリング周期で検出する。不使用時間帯認識部75は、1時間単位の時間帯(例えば、0:00~1:00,1:00~2:00,…,23:00~24:00など)で、右ドア12、左ドア13、及び、引き出し15,17,19,21の開閉回数を測定し、1週間単位で、各時間単位での開閉回数を合計する。 The non-use time zone recognition unit 75 detects the opening/closing status of the right door 12, left door 13, and drawers 15, 17, 19, and 21 at a predetermined sampling period using the opening/closing sensors 30 to 35. The non-use time zone recognition unit 75 detects the right door 12 in hourly time zones (for example, 0:00 to 1:00, 1:00 to 2:00, ..., 23:00 to 24:00, etc.). , the left door 13, and the drawers 15, 17, 19, and 21 are measured, and the number of openings and closings for each hour is totaled for each week.
 不使用時間帯認識部75は、本実施の形態では、一週間の曜日ごとの過去3週間分の開閉センサ30~35により検出された開閉回数の測定データを参照する。図6では、ある曜日の過去3週間分の開閉センサ30~35により検出された開閉回数の測定データを示しており、開閉回数が所定値(例えば2回)以上である時間帯を斜線で塗りつぶして示している。不使用時間帯認識部75は、過去3週間分の測定データから、開閉回数が所定値未満である時間帯が連続する時間帯(例えば、図6に示す例では、1:00~7:00)を、不使用時間帯として認識する。なお、不使用時間帯認識部75が参照する測定データは、過去3週間分の測定データに限られず、過去1ヵ月分または3か月分などの測定データでもよい。また、不使用時間帯認識部75は、開閉回数が所定値未満である時間帯が連続する時間帯を複数、認識し、複数の不使用時間帯に優先順位をつけてもよい。例えば、図6に示す例においては、開閉回数が最も少ない時間帯である1:00~7:00を不使用時間帯の優先順位第1位とし、0:00~7:00を優先順位第2位とし、23:00~7:00を優先順位第3位とする。不使用時間帯認識部75により認識された複数の不使用時間帯のうち、優先順位の高い不使用時間帯に除霜運転が実行されやすいように、後述する閾値設定部73により第2閾値Lv2が設定されてもよい。 In the present embodiment, the non-use time zone recognition unit 75 refers to measurement data of the number of openings and closings detected by the opening and closing sensors 30 to 35 for the past three weeks for each day of the week. FIG. 6 shows measurement data of the number of openings and closings detected by the opening/closing sensors 30 to 35 for the past three weeks on a certain day of the week, and the time period in which the number of openings and closings is equal to or greater than a predetermined value (for example, 2 times) is shaded with diagonal lines. It shows. The non-use time zone recognition unit 75 identifies continuous time zones in which the number of openings and closings is less than a predetermined value (for example, from 1:00 to 7:00 in the example shown in FIG. 6) from the measurement data for the past three weeks. ) is recognized as a non-use time period. Note that the measurement data referred to by the non-use time zone recognition unit 75 is not limited to the past three weeks' worth of measured data, but may be the past one month's worth, three months' worth, or the like. Further, the non-use time slot recognition unit 75 may recognize a plurality of consecutive time slots in which the number of times of opening and closing is less than a predetermined value, and may prioritize the plurality of non-use time slots. For example, in the example shown in FIG. 6, 1:00 to 7:00, which is the time period with the least number of openings and closings, is set as the first priority for non-use time, and 0:00 to 7:00 is the first priority. The period from 23:00 to 7:00 is placed as the 3rd priority. A second threshold Lv2 is set by the threshold setting unit 73 (to be described later) so that the defrosting operation is more likely to be performed during the non-use time slot with a high priority among the plurality of non-use time slots recognized by the non-use time slot recognition unit 75. may be set.
 なお、不使用時間帯認識部75は、開閉センサ30~35による右ドア12、左ドア13、及び、引き出し15,17,19,21の開閉状況に代えて、或いはこれらの開閉状況に加えて、庫外照度センサ44により検出される冷蔵庫10の周辺の照度に基づいて、不使用時間帯を認識してもよい。この場合、不使用時間帯認識部75は、庫外照度センサ44による検出照度が所定の照度以下である状況(例えば、夜間であって、冷蔵庫10が置かれた部屋等の照明が消されている状況)が所定の時間以上継続する時間帯を、不使用時間帯として認識する。 Note that the non-use time zone recognition unit 75 detects the opening/closing status of the right door 12, left door 13, and drawers 15, 17, 19, and 21 by the opening/closing sensors 30 to 35, or in addition to the opening/closing status of these. The non-use period may be recognized based on the illuminance around the refrigerator 10 detected by the outside illuminance sensor 44. In this case, the non-use time recognition unit 75 detects a situation in which the illuminance detected by the external illuminance sensor 44 is below a predetermined illuminance (for example, it is nighttime and the lights in the room where the refrigerator 10 is placed are turned off). A time period in which a situation in which the device is in use) continues for a predetermined period of time or more is recognized as a non-use time period.
 閾値設定部73は、不使用時間帯以外の時間帯における閾値を第1閾値Lv1に設定し、不使用時間帯における閾値を、第1閾値Lv1よりも短い時間を示す第2閾値Lv2(<Lv1)に設定する。第1閾値Lv1は、除霜運転が実行される間隔が所定時間(例えば、24時間)となるように、過去に実行された除霜運転の所要時間(実除霜時間)と間隔のデータに基づいて設定される。閾値設定部73は、第1閾値Lv1を、冷却器51の大きさ、除霜ヒータ55の容量、庫外温度センサ42の検出温度、及び、家屋Hの電気料金体系等に応じて設定する。第1閾値Lv1は、例えば40分に設定される。また、閾値設定部73は、不使用時間帯認識部75により認識された複数の不使用時間帯のうち、優先順位の高い不使用時間帯に除霜運転が実行されやすいように、優先順位の高い不使用時間帯の第2閾値Lv2を、優先順位の低い不使用時間帯の第2閾値Lv2よりも低く(時間を短く(例えば35分))設定してもよい。 The threshold value setting unit 73 sets the threshold value in a time period other than the non-use time period to the first threshold value Lv1, and sets the threshold value in the non-use time period to a second threshold value Lv2 (<Lv1) indicating a time shorter than the first threshold value Lv1. ). The first threshold Lv1 is based on the data on the required time (actual defrost time) and the interval of the defrosting operation executed in the past so that the interval at which the defrosting operation is executed is a predetermined time (for example, 24 hours). Set based on The threshold setting unit 73 sets the first threshold Lv1 according to the size of the cooler 51, the capacity of the defrosting heater 55, the temperature detected by the outside temperature sensor 42, the electricity rate system of the house H, and the like. The first threshold Lv1 is set to, for example, 40 minutes. Further, the threshold value setting unit 73 sets the priority order so that the defrosting operation is likely to be executed during the non-use time slot with a high priority among the plurality of non-use time slots recognized by the non-use time slot recognition unit 75. The second threshold Lv2 for a high non-use time period may be set lower (shorter time (for example, 35 minutes)) than the second threshold Lv2 for a non-use time period with a lower priority.
 閾値設定部73は、過去の運転状況データ(除霜運転の実行日時及び実除霜時間RDFT等)を学習して、第2閾値Lv2を設定してもよい。例えば、第2閾値Lv2が38分に設定されていたとき、不使用時間帯に除霜運転が実行されておらず、冷蔵庫10の特定機能が利用される可能性の高い不使用時間帯外に除霜運転が実行されている一方、第2閾値Lv2が35分に設定されていたとき、不使用時間帯に除霜運転が実行されていることを、閾値設定部73は、過去の運転状況データから学習し、不使用時間帯に除霜運転が実行され易くなるよう、第2閾値Lv2を35分に設定してもよい。 The threshold value setting unit 73 may set the second threshold value Lv2 by learning past driving status data (execution date and time of defrosting operation, actual defrosting time RDFT, etc.). For example, when the second threshold Lv2 is set to 38 minutes, the defrosting operation is not performed during the non-use time, and the specific function of the refrigerator 10 is likely to be used outside the non-use time. When the defrosting operation is being executed and the second threshold Lv2 is set to 35 minutes, the threshold value setting unit 73 determines that the defrosting operation is being executed during the non-use period based on the past driving situation. The second threshold value Lv2 may be set to 35 minutes by learning from the data so that the defrosting operation is more likely to be performed during non-use periods.
 また、閾値設定部73は、所定の更新タイミングで(例えば、3か月ごとに)、庫外温度センサ42による検出温度等に基づいて、第2閾値Lv2を更新してもよい。 Additionally, the threshold value setting unit 73 may update the second threshold value Lv2 at a predetermined update timing (for example, every three months) based on the temperature detected by the outside temperature sensor 42, etc.
 また、不使用時間帯以外の時間帯で、除霜運転制御部72により除霜運転が実行された場合に、閾値設定部73は、不使用時間帯で除霜運転が実行され易くするために、第2閾値Lv2をさらに短い時間に設定する等の処理を行ってもよい。 Further, when the defrosting operation control section 72 executes the defrosting operation in a time zone other than the non-use time zone, the threshold value setting section 73 sets , the second threshold Lv2 may be set to a shorter time.
 サーバー装置100は、サーバープロセッサ110、サーバーメモリ120、サーバー通信部130等を備えるコンピュータシステムであり、サーバー通信部130により、通信ネットワーク200を介して、冷蔵庫10との間で相互に通信を行う。本実施の形態の冷蔵庫制御システム1では、サーバープロセッサ110が、サーバーメモリ120に保存されたサーバープログラム121を読み込んで実行することにより、学習データ取得部111、及び推定モデル生成部112として機能する。学習データ取得部111、及び推定モデル生成部112は、サーバープロセッサ110とは別に、それぞれ互いに独立したプロセッサ、メモリ、プログラム等により実現されていてもよい。サーバーメモリ120は、本開示の第1記憶部及び第2記憶部に相当する。 The server device 100 is a computer system including a server processor 110, a server memory 120, a server communication unit 130, and the like, and the server communication unit 130 communicates with the refrigerator 10 via the communication network 200. In the refrigerator control system 1 of this embodiment, the server processor 110 functions as the learning data acquisition section 111 and the estimated model generation section 112 by reading and executing the server program 121 stored in the server memory 120. The learning data acquisition unit 111 and the estimated model generation unit 112 may be realized by independent processors, memories, programs, etc., separately from the server processor 110. Server memory 120 corresponds to a first storage section and a second storage section of the present disclosure.
 学習データ取得部111は、冷蔵庫10から送信される運転状況データと実除霜時間データを順次サーバーメモリ120に保存する(図3では、冷蔵庫10から送信される、運転状況データを運転状況データ122として、実除霜時間データを実除霜時間データ123として、それぞれ示している)。そして、学習データ取得部111は、本実施の形態では、図4に示すように、サーバーメモリ120に保存された運転状況DRSを示す運転状況データと実除霜時間データとにより、学習データTRDを生成してサーバーメモリ120に保存する。図3では、サーバーメモリ120に保存されている学習データを、学習データ124として示している。 The learning data acquisition unit 111 sequentially stores the driving status data and actual defrosting time data transmitted from the refrigerator 10 in the server memory 120 (in FIG. 3, the driving status data transmitted from the refrigerator 10 is stored in the driving status data 122). , the actual defrosting time data is shown as actual defrosting time data 123). In this embodiment, the learning data acquisition unit 111 obtains the learning data TRD based on the driving situation data indicating the driving situation DRS and the actual defrosting time data stored in the server memory 120, as shown in FIG. It is generated and stored in the server memory 120. In FIG. 3, learning data stored in the server memory 120 is shown as learning data 124.
 図4に示すように、学習データTRDは、除霜運転が実行されるごとに生成され、除霜運転の実行日時、特徴量、及び実除霜時間RDFTを含んでいる。特徴量は、本実施の形態では、冷蔵室温度平均値PCC、庫外温度平均値ATC、野菜室温度平均値VCC、ドア開時間積算値DOOR、及び圧縮機回転数積算値CMPを含んでいる。 As shown in FIG. 4, the learning data TRD is generated every time a defrosting operation is performed, and includes the execution date and time of the defrosting operation, a feature amount, and an actual defrosting time RDFT. In this embodiment, the feature values include an average refrigerator temperature value PCC, an average outside temperature value ATC, an average vegetable compartment temperature value VCC, an integrated door opening time value DOOR, and an integrated compressor rotation speed value CMP. .
 冷蔵室温度平均値PCCは、前回の除霜運転の完了時点から今回の除霜運転の開始時点までの間の各サンプリング周期で、運転状況データ取得部71により取得された冷蔵室温度PcTの平均値である。庫外温度平均値ATCは、前回の除霜運転の完了時点から今回の除霜運転の開始時点までの間の各サンプリング周期で、運転状況データ取得部71により取得された庫外温度AtTの平均値である。野菜室温度平均値VCCは、前回の除霜運転の完了時点から今回の除霜運転の開始時点までの間の各サンプリング周期で、運転状況データ取得部71により取得された野菜室温度VcTの平均値である。 The refrigerator compartment temperature average value PCC is the average of the refrigerator compartment temperatures PcT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value. The average outside temperature ATC is the average outside temperature AtT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value. The vegetable compartment temperature average value VCC is the average of the vegetable compartment temperatures VcT acquired by the operating status data acquisition unit 71 in each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is a value.
 ドア開時間積算値DOORは、前回の除霜運転の完了時点から今回の除霜運転の開始時点までの間の各サンプリング周期で、運転状況データ取得部71により取得された右ドア12、左ドア13、切換室14の引き出し15、製氷室16の引き出し17、冷凍室18の引き出し19、及び野菜室20の引き出し21のいずれかが開けられていた時間DrOの積算値である。圧縮機回転数積算値CMPは、前回の除霜運転の完了時点から今回の除霜運転の開始時点までの間の各サンプリング周期で、運転状況データ取得部71により取得された圧縮機50の回転数CpRの積算値である。 The door opening time integrated value DOOR is the right door 12 and left door acquired by the operating status data acquisition unit 71 at each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. 13. It is the integrated value of the time DrO during which any of the drawer 15 of the switching compartment 14, the drawer 17 of the ice making compartment 16, the drawer 19 of the freezing compartment 18, and the drawer 21 of the vegetable compartment 20 was opened. The compressor rotational speed integrated value CMP is the rotational speed of the compressor 50 acquired by the operating status data acquisition unit 71 at each sampling period from the completion of the previous defrosting operation to the start of the current defrosting operation. It is an integrated value of several CpR.
 推定モデル生成部112は、図5に示すように、学習データ取得部111により生成されて、サーバーメモリ120に保存された学習データ124(複数の学習データTRD1,TRD2,…)に基づいて、各特徴量に係る入力データFQDの入力に対して推定除霜時間EDFTを出力する推定式(推定モデル)を生成する。また、推定モデル生成部112は、更新タイミング(例えば、月に一回)になったときに推定式を更新する。 As shown in FIG. 5, the estimated model generation unit 112 generates each model based on the learning data 124 (a plurality of learning data TRD1, TRD2, ...) generated by the learning data acquisition unit 111 and stored in the server memory 120. An estimation formula (estimation model) is generated that outputs the estimated defrosting time EDFT in response to the input data FQD related to the feature amount. Furthermore, the estimation model generation unit 112 updates the estimation formula when the update timing is reached (for example, once a month).
 推定モデル生成部112は、本実施の形態では、複数の学習データTRDに対する重回帰分析により、実除霜時間RDFTと各特徴量(PCC,ATC,VCC,DOOR,COMP,RDFT)間の係数(傾き)A,B,C,D,Eを算出することによって、以下の推定式(1)を生成する。なお、係数A~E間で重み付けを行ってもよい。
 EDFT(t)=A×PCC(t)+B×ATC(t)+C×VCC(t)+D×DOOR(t)+E×COMP(t)+F ・・・・・(1)
 但し、t:推定時点、PCC(t):前回の除霜運転の完了時点からtまでの期間に対応した冷蔵室温度平均値、ATC(t):前回の除霜運転の完了時点からtまでの期間に対応した庫外温度平均値、VCC(t):前回の除霜運転の完了時点からtまでの期間に対応した野菜室温度平均値、DOOR(t):前回の除霜運転の完了時点からtまでの期間に対応したドア開時間の積算値、COMP(t):前回の除霜運転の完了時点からtまでの期間に対応した圧縮機の回転数の積算値、及び、F:調整値。
In this embodiment, the estimation model generation unit 112 calculates the coefficients ( By calculating A, B, C, D, and E (inclination), the following estimation formula (1) is generated. Note that weighting may be performed between the coefficients A to E.
EDFT(t)=A×PCC(t)+B×ATC(t)+C×VCC(t)+D×DOOR(t)+E×COMP(t)+F ・・・・・・(1)
However, t: estimated time, PCC (t): average temperature of the refrigerator compartment corresponding to the period from the completion of the previous defrosting operation to t, ATC (t): from the completion of the previous defrosting operation to t. Average value of outside temperature corresponding to the period of , VCC (t): Average value of vegetable compartment temperature corresponding to the period from the completion of the previous defrosting operation to t, DOOR (t): Completion of the previous defrosting operation COMP(t), an integrated value of the door open time corresponding to the period from time to t: an integrated value of the rotation speed of the compressor corresponding to the period from the completion of the previous defrosting operation to t, and F: Adjusted value.
 推定モデル生成部112は、生成した推定式のパラメータ(推定式(1)では、係数A~E及び調整値F)の値を含む推定式データを、冷蔵庫10に送信する。冷蔵庫10の推定除霜時間算出部74は、サーバー装置100から送信される推定式データを受信して、冷蔵庫メモリ80に保存する。図3では、冷蔵庫メモリ80に保存されている推定式データを、推定式データ83として示している。 The estimation model generation unit 112 transmits estimation equation data including the values of the parameters of the generated estimation equation (in estimation equation (1), coefficients A to E and adjustment value F) to the refrigerator 10. The estimated defrosting time calculation unit 74 of the refrigerator 10 receives the estimation formula data transmitted from the server device 100 and stores it in the refrigerator memory 80. In FIG. 3, the estimated formula data stored in the refrigerator memory 80 is shown as estimated formula data 83.
 上述した冷蔵庫10の推定除霜時間算出部74は、前回の除霜運転の完了時点から今回の除霜要否判断時点tまでの期間に対応した各特徴量(PCC,ATC,VCC,DOOR,COMP)に係る入力データFQDを、推定式(1)に代入して、推定除霜時間EDFT(t)を算出する。 The estimated defrosting time calculation unit 74 of the refrigerator 10 described above calculates each feature value (PCC, ATC, VCC, DOOR) corresponding to the period from the completion of the previous defrosting operation to the current defrosting necessity judgment time tm . , COMP) is substituted into the estimation formula (1) to calculate the estimated defrosting time EDFT(t m ).
 [4.冷蔵庫側の処理]
 図7~図8に示すフローチャートを参照して、本開示の実施の形態の冷蔵庫制御システム1の冷蔵庫10側の処理について説明する。図7は、本開示の実施の形態における冷蔵庫10側の処理に係る第1フローチャートである。図8は、本開示の実施の形態における冷蔵庫10側の処理に係る第2フローチャートである。冷蔵庫10の制御ユニット60は、冷蔵庫10の運転中に、図7~図8のフローチャートに例示される処理を繰り返し実行する。
[4. Processing on the refrigerator side]
Processing on the refrigerator 10 side of the refrigerator control system 1 according to the embodiment of the present disclosure will be described with reference to the flowcharts shown in FIGS. 7 and 8. FIG. 7 is a first flowchart related to processing on the refrigerator 10 side in the embodiment of the present disclosure. FIG. 8 is a second flowchart related to processing on the refrigerator 10 side in the embodiment of the present disclosure. The control unit 60 of the refrigerator 10 repeatedly executes the processes illustrated in the flowcharts of FIGS. 7 and 8 while the refrigerator 10 is in operation.
 運転状況データ取得部71は、ステップS1で、所定のサンプリング周期(例えば、5分)が経過したか否かを判断し、所定のサンプリング周期が経過したと判断されたとき(ステップS1でYES)に、ステップS2に処理を進める。一方、ステップS1で、所定のサンプリング周期が経過したと判断されなかったとき(ステップS1でNO)は、運転状況データ取得部71は、所定のサンプリング周期が経過したと判断されるまでステップS1を繰り返す。ステップS2において、運転状況データ取得部71は、今回のサンプリング周期で検出された運転状況を示す運転状況データを、冷蔵庫メモリ80に保存し、サーバー装置100に送信する。 In step S1, the driving status data acquisition unit 71 determines whether a predetermined sampling period (for example, 5 minutes) has elapsed, and when it is determined that the predetermined sampling period has elapsed (YES in step S1). Then, the process proceeds to step S2. On the other hand, when it is determined in step S1 that the predetermined sampling period has not elapsed (NO in step S1), the driving status data acquisition unit 71 continues step S1 until it is determined that the predetermined sampling period has elapsed. repeat. In step S2, the driving status data acquisition unit 71 stores driving status data indicating the driving status detected in the current sampling period in the refrigerator memory 80, and transmits it to the server device 100.
 また、除霜運転制御部72は、ステップS10で、除霜要否判断時点tになったか否かを判断し、除霜要否判断時点tに到達したと判断されたとき(ステップS10でYES)に、ステップS11に処理を進める。一方、除霜要否判断時点tに到達していると判断されなかったとき(ステップS10でNO)は、除霜運転制御部72は、除霜要否判断時点tに到達したと判断されるまで、ステップS10を繰り返す。除霜要否判断時点tは、例えば、前回の除霜運転の完了時点から所定時間(例えば、24時間)が経過した時点に設定される。除霜要否判断時点tに係る所定時間は、冷蔵庫10の運転状況データ及び冷蔵庫10の除霜運転の実行状況等に基づき、設定されてもよい。なお、ステップS10は、ステップS12の後に実行されてもよい。推定除霜時間算出部74は、ステップS11で、前回の除霜運転の完了時点から、今回の除霜要否判断時点tまでの間に検出された運転状況に応じた運転状況データから、今回の除霜要否判断時点tにおける各特徴量に係る入力データFQD(t)を算出する。 Further, in step S10, the defrosting operation control unit 72 determines whether or not the defrosting necessity determination time point t m has arrived, and when it is determined that the defrosting necessity determination time point t m has been reached (step S10 (YES), the process advances to step S11. On the other hand, if it is not determined that the defrosting necessity determination time point tm has been reached (NO in step S10), the defrosting operation control unit 72 determines that the defrosting necessity determination time point tm has been reached. Step S10 is repeated until the The defrosting necessity determination time t m is set, for example, to the time when a predetermined time (for example, 24 hours) has elapsed from the completion of the previous defrosting operation. The predetermined time related to the defrosting necessity determination time point tm may be set based on the operating status data of the refrigerator 10, the execution status of the defrosting operation of the refrigerator 10, and the like. Note that step S10 may be executed after step S12. In step S11, the estimated defrosting time calculation unit 74 calculates the estimated defrosting time from the driving status data corresponding to the driving status detected between the completion of the previous defrosting operation and the current defrosting necessity determination time tm . Input data FQD(t m ) related to each feature quantity at the current defrosting necessity determination time point t m is calculated.
 ステップS12で、推定除霜時間算出部74は、各特徴量に係る入力データFQD(t)を、推定式(1)に代入して、推定除霜時間EDFTを算出する。ステップS13で、除霜運転制御部72は、所定の除霜要否判断時点tにおいて、推定除霜時間EDFT(t)が閾値以上であるか否かを判断する。ここで、所定の除霜要否判断時点tが不使用時間帯以外の時間帯内であるときに参照される閾値は第1閾値Lv1であり、所定の除霜要否判断時点tが不使用時間帯内であるときに参照される閾値は第2閾値Lv2である。 In step S12, the estimated defrosting time calculation unit 74 calculates the estimated defrosting time EDFT by substituting the input data FQD(t m ) related to each feature amount into estimation formula (1). In step S13, the defrosting operation control unit 72 determines whether the estimated defrosting time EDFT(t m ) is equal to or greater than a threshold value at a predetermined defrosting necessity determination time point t m . Here, the threshold value that is referred to when the predetermined defrosting necessity determination time point t m is within a time zone other than the non-use time zone is the first threshold Lv1, and the predetermined defrosting necessity determination time point t m is within a time zone other than the non-use time zone. The threshold value referred to when it is within the non-use time zone is the second threshold value Lv2.
 そして、除霜運転制御部72は、ステップS13で、所定の除霜要否判断時点tにおいて、推定除霜時間EDFT(t)が閾値以上であると判断されたとき(ステップS13でYES)は、ステップS30に処理を進める。一方、所定の除霜要否判断時点tにおいて、推定除霜時間EDFT(t)が閾値未満であると判断されなかったとき(ステップS13でNO)は、ステップS14(図8参照)に処理を進める。ステップS30で、除霜運転制御部72は、除霜運転を実行する。ステップS31で、除霜運転制御部72は、除霜運転に要した時間(実除霜時間RDFT)を示す実除霜時間データをサーバー装置100に送信して、ステップS3に処理を進める。 Then, in step S13, the defrosting operation control unit 72 determines that the estimated defrosting time EDFT( tm ) is equal to or greater than the threshold at the predetermined defrosting necessity determination time point tm (YES in step S13). ), the process advances to step S30. On the other hand, when it is not determined that the estimated defrosting time EDFT (t m ) is less than the threshold value at the predetermined defrosting necessity determination time point t m (NO in step S13), the process proceeds to step S14 (see FIG. 8). Proceed with the process. In step S30, the defrosting operation control unit 72 executes a defrosting operation. In step S31, the defrosting operation control unit 72 transmits actual defrosting time data indicating the time required for the defrosting operation (actual defrosting time RDFT) to the server device 100, and the process proceeds to step S3.
 図8に示すように、ステップS14で、除霜運転制御部72は、除霜運転の実行を保留する所定の保留時間(例えば1分)が経過したか否かを判断し、所定の保留時間が経過したと判断されたとき(ステップS14でYES)、ステップS15に処理を進める。これにより、除霜運転の実行が、所定の保留時間が経過するまで保留される。一方、所定の保留時間が経過したと判断されなかったとき(ステップS14でNO)は、除霜運転制御部72は、所定の保留時間が経過したと判断されるまでステップS14を繰り返す。ステップS15で、推定除霜時間算出部74は、前回の除霜運転の完了時点から、次の所定の除霜要否判断時点tm+1までの間に検出された運転状況に応じた運転状況データから、次の所定の除霜要否判断時点tm+1における各特徴量に係る入力データFQD(tm+1)を算出する。 As shown in FIG. 8, in step S14, the defrosting operation control unit 72 determines whether a predetermined holding time (for example, 1 minute) for holding the execution of the defrosting operation has elapsed, and sets the predetermined holding time When it is determined that the period has elapsed (YES in step S14), the process advances to step S15. As a result, execution of the defrosting operation is suspended until the predetermined suspension time elapses. On the other hand, when it is determined that the predetermined holding time has not elapsed (NO in step S14), the defrosting operation control unit 72 repeats step S14 until it is determined that the predetermined holding time has elapsed. In step S15, the estimated defrosting time calculation unit 74 generates driving status data according to the driving status detected from the completion of the previous defrosting operation to the next predetermined defrosting necessity determination time tm +1. From this, input data FQD(t m+ 1 ) relating to each feature amount at the next predetermined defrosting necessity determination time point t m+1 is calculated.
 ステップS16で、推定除霜時間算出部74は、各特徴量に係る入力データFQD(tm+1)を、推定式(1)に代入して、次の所定の除霜要否判断時点tm+1における推定除霜時間EDFT(tm+1)を算出する。ステップS17で、除霜運転制御部72は、次の所定の除霜要否判断時点tm+1において、推定除霜時間EDFT(tm+1)が、閾値以上であるか否かを判断する。 In step S16, the estimated defrosting time calculation unit 74 substitutes the input data FQD(t m+1 ) related to each feature quantity into the estimation formula (1), and calculates the time at the next predetermined defrosting necessity judgment time point t m+1. Estimated defrosting time EDFT(t m+1 ) is calculated. In step S17, the defrosting operation control unit 72 determines whether the estimated defrosting time EDFT(t m+1 ) is equal to or greater than a threshold value at the next predetermined defrosting necessity determination time point t m+1 .
 そして、除霜運転制御部72は、次の所定の除霜要否判断時点tm+1において、推定除霜時間EDFT(tm+1)が閾値以上であると判断されたとき(ステップS17でYES)は、ステップS18に処理を進める。ステップS18で、除霜運転制御部72は、除霜運転を実行する。ステップS19で、除霜運転制御部72は、実除霜時間RDFTを示す実除霜時間データをサーバー装置100に送信して、ステップS3(図7参照)に処理を進める。 Then, the defrosting operation control unit 72 determines that the estimated defrosting time EDFT (t m+1 ) is equal to or greater than the threshold value at the next predetermined defrosting necessity determination time point t m+1 (YES in step S17). , the process proceeds to step S18. In step S18, the defrosting operation control unit 72 executes a defrosting operation. In step S19, the defrosting operation control unit 72 transmits actual defrosting time data indicating the actual defrosting time RDFT to the server device 100, and advances the process to step S3 (see FIG. 7).
 一方、次の所定の除霜要否判断時点tm+1において、推定除霜時間EDFT(tm+1)が閾値未満であると判断されたとき(ステップS17でNO)には、除霜運転制御部72は、ステップS14(図8参照)に戻る。この場合は、除霜運転の実行が、次の所定の保留時間が経過するまでさらに保留される。 On the other hand, at the next predetermined defrosting necessity determination time point t m+1 , when it is determined that the estimated defrosting time EDFT (t m+1 ) is less than the threshold value (NO in step S17), the defrosting operation control unit 72 Then, the process returns to step S14 (see FIG. 8). In this case, execution of the defrosting operation is further suspended until the next predetermined suspension time elapses.
 図7のステップS20で、推定除霜時間算出部74は、サーバー装置100から送信される推定式データを受信したか否かを判断し、サーバー装置100から推定式データを受信したと判断されたとき(ステップS20でYES)に、冷蔵庫メモリ80に推定式データを保存してステップS3に処理を進める。サーバー装置100から受信した推定式データにより、推定除霜時間EDFTの算出に用いられる推定式(1)が更新される。図3では、冷蔵庫メモリ80に保存されている推定式データを、推定式データ83として示している。一方、サーバー装置100から推定式データを受信したと判断されなかったとき(ステップS20でNO)は、推定除霜時間算出部74は、サーバー装置100から推定式データを受信したと判断されるまでステップS20を繰り返す。 In step S20 of FIG. 7, the estimated defrosting time calculation unit 74 determines whether or not the estimation formula data transmitted from the server device 100 has been received, and it is determined that the estimation formula data has been received from the server device 100. (YES in step S20), the estimation formula data is stored in the refrigerator memory 80 and the process proceeds to step S3. Using the estimation equation data received from the server device 100, the estimation equation (1) used to calculate the estimated defrosting time EDFT is updated. In FIG. 3, the estimated formula data stored in the refrigerator memory 80 is shown as estimated formula data 83. On the other hand, when it is determined that the estimation formula data has not been received from the server device 100 (NO in step S20), the estimated defrosting time calculation unit 74 continues until it is determined that the estimation formula data has been received from the server device 100. Step S20 is repeated.
 図7のステップS40で、不使用時間帯認識部75は、不使用時間帯の認識タイミングになったか否かを判断し、不使用時間帯の認識タイミングに到達したと判断されたとき(ステップS40でYES)に、ステップS41に処理を進める。不使用時間帯の認識タイミングは、例えば、3週間に1回に設定される。一方、不使用時間帯の認識タイミングに到達したと判断されなかったとき(ステップS40でNO)、不使用時間帯認識部75は、不使用時間帯の認識タイミングに到達したと判断されるまで、ステップS40を繰り返す。ステップS41で、不使用時間帯認識部75は、図6を参照して上述したように、直近の過去3週間分の扉開閉回数の測定データに基づいて、不使用時間帯を認識し、認識した不使用時間帯を示す不使用時間帯データを冷蔵庫メモリ80に保存して、ステップS3に処理を進める。図3では、冷蔵庫メモリ80に保存されている不使用時間帯データを、不使用時間帯データ84として示している。 In step S40 of FIG. 7, the non-use time zone recognition unit 75 determines whether or not the non-use time zone recognition timing has arrived, and when it is determined that the non-use time zone recognition timing has arrived (step S40 (YES), the process advances to step S41. The recognition timing of the non-use time zone is set, for example, once every three weeks. On the other hand, when it is not determined that the non-use time slot recognition timing has been reached (NO in step S40), the non-use time slot recognition unit 75 continues to Step S40 is repeated. In step S41, as described above with reference to FIG. The non-use time zone data indicating the non-use time zone is stored in the refrigerator memory 80, and the process proceeds to step S3. In FIG. 3, the non-use time zone data stored in the refrigerator memory 80 is shown as non-use time zone data 84.
 図7のステップS50で、閾値設定部73は、閾値(第1閾値Lv1, 第2閾値Lv2)の更新タイミングになったか否かを判断し、閾値の更新タイミングに到達したと判断されたとき(ステップS50でYES)に、ステップS51に処理を進める。閾値の更新タイミングは、例えば3週間に1回に設定される。一方、閾値の更新タイミングに到達したと判断されなかったとき(ステップS50でNO)、閾値設定部73は、閾値の更新タイミングに到達したと判断されるまで、ステップS50を繰り返す。ステップS51で、閾値設定部73は、上述しように、直近の過去の運転状況データに基づいて第1閾値Lv1及び第2閾値Lv2を設定する。なお、閾値設定部73は、第1閾値Lv1及び第2閾値Lv2のうちのいずれか一方のみを更新してもよい。閾値設定部73は、更新した閾値を示す閾値データを冷蔵庫メモリ80に保存する。図3では、冷蔵庫メモリ80に保存されている閾値データを、閾値データ85として示している。 In step S50 of FIG. 7, the threshold value setting unit 73 determines whether the update timing of the threshold values (first threshold value Lv1, second threshold value Lv2) has arrived, and when it is determined that the update timing of the threshold values has been reached ( If YES in step S50), the process proceeds to step S51. The update timing of the threshold value is set, for example, once every three weeks. On the other hand, when it is determined that the threshold value update timing has not been reached (NO in step S50), the threshold value setting unit 73 repeats step S50 until it is determined that the threshold value update timing has been reached. In step S51, the threshold value setting unit 73 sets the first threshold value Lv1 and the second threshold value Lv2 based on the most recent past driving situation data, as described above. Note that the threshold setting unit 73 may update only one of the first threshold Lv1 and the second threshold Lv2. The threshold setting unit 73 stores threshold data indicating the updated threshold in the refrigerator memory 80. In FIG. 3, the threshold data stored in the refrigerator memory 80 is shown as threshold data 85.
 [5.サーバー装置側の処理]
 図9に示すフローチャートを参照して、本開示の実施の形態の冷蔵庫制御システム1のサーバー装置100側の処理について説明する。図9は、本開示の実施の形態におけるサーバー装置100側の処理に係るフローチャートである。サーバー装置100は、冷蔵庫10との間で通信を行って、図9のフローチャートに例示される処理を繰り返し実行する。
[5. Processing on the server device side]
Processing on the server device 100 side of the refrigerator control system 1 according to the embodiment of the present disclosure will be described with reference to the flowchart shown in FIG. 9. FIG. 9 is a flowchart related to processing on the server device 100 side in the embodiment of the present disclosure. Server device 100 communicates with refrigerator 10 and repeatedly executes the process illustrated in the flowchart of FIG. 9 .
 学習データ取得部111は、ステップS100で、冷蔵庫10から送信される運転状況データおよび実除霜時間データを受信したか否かを判断し、運転状況データデータおよび実除霜時間データを受信したと判断されたとき(ステップS100でYES)に、ステップS101に処理を進める。学習データ取得部111は、ステップS101で運転状況データおよび実除霜時間データをサーバーメモリ120に保存する。図3では、サーバーメモリ120に保存されている運転状況データおよび実除霜時間データを、運転状況データ122および実除霜時間データ123として、それぞれ示している。一方、ステップS100で、冷蔵庫10から送信される運転状況データを受信したと判断されなかったとき(ステップS100でNO)、学習データ取得部111は、冷蔵庫10から送信される運転状況データを受信したと判断されるまで、ステップS100を繰り返す。 In step S100, the learning data acquisition unit 111 determines whether or not the operating status data and actual defrosting time data transmitted from the refrigerator 10 have been received, and determines whether the operating status data and actual defrosting time data have been received. When it is determined (YES in step S100), the process advances to step S101. The learning data acquisition unit 111 stores the driving status data and the actual defrosting time data in the server memory 120 in step S101. In FIG. 3, the driving status data and actual defrosting time data stored in the server memory 120 are shown as driving status data 122 and actual defrosting time data 123, respectively. On the other hand, when it is determined in step S100 that the driving status data transmitted from the refrigerator 10 has not been received (NO in step S100), the learning data acquisition unit 111 receives the driving status data transmitted from the refrigerator 10. Step S100 is repeated until it is determined that.
 また、学習データ取得部111は、ステップS100で、冷蔵庫10から送信される運転状況データデータおよび実除霜時間データを受信したかを判断し、冷蔵庫10から送信される運転状況データデータおよび実除霜時間データを受信したと判断されたとき(ステップS100でYES)に、ステップS111に処理を進める。学習データ取得部111は、ステップS111で運転状況データ及び実除霜時間データにより学習データを生成し、生成した学習データをサーバーメモリ120に保存して、ステップS112に処理を進める。図3では、サーバーメモリ120に保存されている学習データを、学習データ124として示している。 Further, in step S100, the learning data acquisition unit 111 determines whether or not the operating status data and actual defrosting time data transmitted from the refrigerator 10 have been received, and When it is determined that frost time data has been received (YES in step S100), the process advances to step S111. The learning data acquisition unit 111 generates learning data from the driving situation data and the actual defrosting time data in step S111, stores the generated learning data in the server memory 120, and advances the process to step S112. In FIG. 3, learning data stored in the server memory 120 is shown as learning data 124.
 ステップS112で、推定モデル生成部112は、推定式(1)の更新タイミングになったか否かを判断し、推定式(1)の更新タイミングになったと判断されたとき(ステップS112でYES)に、推定モデル生成部112は、ステップS113に処理を進めて、ステップS113で推定式(1)を更新する。推定式(1)の更新タイミングは、例えば、月に1回に設定される。推定モデル生成部112は、更新タイミングになった時点から過去3か月分の学習データに基づいて、図5を参照して上述した処理により、推定式(1)を更新する。 In step S112, the estimated model generation unit 112 determines whether it is the timing to update the estimation formula (1), and when it is determined that the timing to update the estimation formula (1) has arrived (YES in step S112). , the estimated model generation unit 112 advances the process to step S113, and updates estimation formula (1) in step S113. The update timing of estimation formula (1) is set, for example, once a month. The estimated model generation unit 112 updates the estimated formula (1) by the process described above with reference to FIG. 5 based on the learning data for the past three months from the time when the update timing has arrived.
 ステップS114で、推定モデル生成部112は、更新した推定式(1)のデータを冷蔵庫10に送信して、ステップS102に処理を進める。一方、推定式(1)の更新タイミングになったと判断されなかったとき(ステップS112でNO)、推定モデル生成部112は、推定式(1)の更新タイミングになったと判断されるまで、ステップS112を繰り返す。 In step S114, the estimated model generation unit 112 transmits the updated data of estimation formula (1) to the refrigerator 10, and advances the process to step S102. On the other hand, when it is not determined that it is the timing to update the estimation formula (1) (NO in step S112), the estimation model generation unit 112 continues in step S112 until it is determined that the timing to update the estimation formula (1) has come. repeat.
 [6.除霜運転の実行タイミング]
 図10を参照して、除霜運転の実行タイミングの一例について説明する。図10は、本開示の実施の形態における除霜運転のタイミングチャートである。図10は、共通の時間軸tにより、除霜運転実行の実行タイミングを、除霜要否判断時点t、及び除霜要否判断時点tにおける推定除霜時間EDFT(t)の値と共に示したものである。
[6. Execution timing of defrosting operation]
An example of the execution timing of the defrosting operation will be described with reference to FIG. 10 . FIG. 10 is a timing chart of defrosting operation in the embodiment of the present disclosure. FIG. 10 shows the execution timing of the defrosting operation using a common time axis t, the defrosting necessity determination time t m , and the value of the estimated defrosting time EDFT (t m ) at the defrosting necessity determination time t m This is shown together with
 図10において、除霜要否判断時点tmの例としての除霜要否判断時点t11,t12,t13,t14,t15における推定除霜時間EDFT(t11),EDFT(t12),EDFT(t13),EDFT(t14),EDFT(t15)がそれぞれ例示されている。また、図10において、除霜運転の完了時点から次の所定の除霜要否判断時点までの所定時間Tw、及び、除霜運転を保留する所定の保留時間Thが例示されている。 In FIG. 10 , estimated defrosting times EDFT ( t 11 ) and EDFT ( t 12 ), EDFT(t 13 ), EDFT(t 14 ), and EDFT(t 15 ) are respectively illustrated. Further, in FIG. 10, a predetermined time Tw from the completion of the defrosting operation to the next predetermined determination of the necessity of defrosting, and a predetermined holding time Th for suspending the defrosting operation are illustrated.
 図10に示す例では、除霜要否判断時点t11では、推定除霜時間EDFT(t11)が閾値以上となっているので、除霜運転が実行されている。一方、除霜要否判断時点t12では、推定除霜時間EDFT(t12)が閾値未満であるので、除霜運転の実行が、保留時間Thが経過した次の所定の除霜要否判断時点である除霜要否判断時点tm+1であるt13まで保留されている。そして、図10に示す例では、除霜要否判断時点t13でも、推定除霜時間EDFT(t13)が閾値未満であるので、除霜運転の実行が、さらに所定の保留時間Thが経過した次の所定の除霜要否判断時点である除霜要否判断時点t14までさらに保留されている。 In the example shown in FIG. 10, at the defrosting necessity determination time point t11 , the estimated defrosting time EDFT( t11 ) is equal to or greater than the threshold value, so the defrosting operation is being performed. On the other hand, at the defrosting necessity determination time point t12 , the estimated defrosting time EDFT( t12 ) is less than the threshold value, so the execution of the defrosting operation is performed at the next predetermined defrosting necessity determination after the suspension time Th has elapsed. The defrosting necessity determination time t m+1 is suspended until t 13 . In the example shown in FIG. 10, the estimated defrosting time EDFT (t 13 ) is less than the threshold even at the time t 13 when determining the necessity of defrosting, so the execution of the defrosting operation is continued until the predetermined hold time Th has elapsed. The defrosting process is further suspended until the defrosting necessity determination time t14 , which is the next predetermined defrosting necessity determination time point.
 除霜要否判断時点t14では、推定除霜時間EDFT(t14)が閾値以上となっているため、除霜運転が実行されている。図10に示す例の場合、除霜運転の間隔が、TwからTw+Th×2に延長されている。このように、除霜運転の間隔が延長されることにより、除霜運転の頻度を減らすことができる。このように、本実施の形態によれば、除霜運転が頻繁に実行されることによる、冷蔵庫10の消費電力の増加、及び、冷蔵庫10の庫内の温度上昇を抑制することができる。 At the time t14 when determining the necessity of defrosting, the estimated defrosting time EDFT( t14 ) is equal to or greater than the threshold value, so the defrosting operation is being performed. In the case of the example shown in FIG. 10, the interval between defrosting operations is extended from Tw to Tw+Th×2. In this way, by extending the interval between defrosting operations, the frequency of defrosting operations can be reduced. As described above, according to the present embodiment, it is possible to suppress an increase in the power consumption of the refrigerator 10 and a rise in the temperature inside the refrigerator 10 due to frequent execution of the defrosting operation.
 [7.閾値の切換タイミング]
 図11を参照して、第1閾値Lv1及び第2閾値Lv2の切換タイミングについて説明する。図11は、本開示の実施の形態における閾値の切換のタイミングチャートである。図11は、共通の時間軸tにより、閾値の切換タイミングを、除霜要否判断時点tm、除霜運転の実行時点、及び不使用時間帯と共に示したものである。
[7. Threshold switching timing]
With reference to FIG. 11, the switching timing of the first threshold value Lv1 and the second threshold value Lv2 will be described. FIG. 11 is a timing chart of threshold switching in the embodiment of the present disclosure. FIG. 11 shows the switching timing of the threshold value along with the defrosting necessity determination time tm, the execution time of the defrosting operation, and the non-use time period on a common time axis t.
 図11において、除霜要否判断時点tmの例としての除霜要否判断時点t21,t22,t23,t24,t25、t26が、推定除霜時間EDFT(t21),EDFT(t22),EDFT(t23),EDFT(t24),EDFT(t25)、EDFT(t26)がそれぞれ例示されている。図11に示す例では、不使用時間帯は、1:00~7:00に設定されており、不使用時間帯以外の7:00~翌日1:00の時間帯では、閾値が第1閾値Lv1に設定されている。不使用時間帯における閾値は、第1閾値Lv1よりも短い第2閾値Lv2(<第1閾値Lv1)に設定されている。 In FIG. 11, the defrosting necessity judgment time points t 21 , t 22 , t 23 , t 24 , t 25 , t 26 as an example of the defrosting necessity judgment time point tm are the estimated defrosting time EDFT(t 21 ), EDFT (t 22 ), EDFT (t 23 ), EDFT (t 24 ), EDFT (t 25 ), and EDFT (t 26 ) are each illustrated. In the example shown in FIG. 11, the non-use time zone is set from 1:00 to 7:00, and in the time zone other than the non-use time zone from 7:00 to 1:00 the next day, the threshold value is set to the first threshold. It is set to Lv1. The threshold value in the non-use time zone is set to a second threshold value Lv2 (<first threshold value Lv1) that is shorter than the first threshold value Lv1.
 図11に示す例では、不使用時間帯内のt21における推定除霜時間EDFT(t21)が第2閾値Lv2以上になっているため、除霜運転が実行されている。一方、その後の不使用時間帯以外の時間帯内の除霜要否判断時点t22,t23では、推定除霜時間EDFT(t22),EDFT(t23)が、第2閾値Lv2よりも長い時間に設定された第1閾値Lv1未満になっているため、除霜運転は実行されない。 In the example shown in FIG. 11, the estimated defrosting time EDFT (t 21 ) at t 21 within the non-use time zone is equal to or greater than the second threshold Lv2, so the defrosting operation is being performed. On the other hand, at the defrosting necessity judgment time points t 22 and t 23 within the time period other than the non-use period, the estimated defrosting times EDFT(t 22 ) and EDFT(t 23 ) are lower than the second threshold Lv2. Since it is less than the first threshold value Lv1 set for a long time, the defrosting operation is not performed.
 次の所定の除霜要否判断時点tm+1である除霜要否判断時点t24は、不使用時間帯内であり、図11に示す例では、推定除霜時間EDFT(t24)が第2閾値Lv2以上になっているため、除霜運転が実行されている。その後の不使用時間帯以外の時間帯内の除霜要否判断時点t25,t26では、推定除霜時間EDFT(t25),EDFT(t26)が、第1閾値Lv1未満になっているため、除霜運転は実行されていない。 The next predetermined defrosting necessity determination time point t 24 , which is the defrosting necessity determination time point t m+1 , is within the non-use time zone, and in the example shown in FIG. 11, the estimated defrosting time EDFT (t 24 ) is the 2 threshold value Lv2 or more, the defrosting operation is being executed. At the subsequent defrosting necessity judgment time points t 25 and t 26 within the time period other than the non-use period, the estimated defrosting times EDFT(t 25 ) and EDFT(t 26 ) have become less than the first threshold Lv1. Defrosting operation is not being performed.
 このように、不使用時間帯における閾値(第2閾値Lv2)を、不使用時間帯以外の時間帯における閾値(第1閾値Lv1)よりも短い時間に設定することにより、除霜運転が不使用時間帯内で実行され易くなり、不使用時間帯以外の時間帯で除霜運転が実行されることを回避することができる。これにより、不使用時間帯以外の時間帯で冷蔵庫の特定機能(例えば、急速冷凍機能)の実行が求められた場合に、除霜運転の実行タイミングと競合して、除霜運転の実行により特定機能の利用が妨げられることを抑制することができる。 In this way, by setting the threshold value (second threshold Lv2) in the non-use time period to a shorter time than the threshold value (first threshold value Lv1) in the time period other than the non-use time period, the defrosting operation is performed during non-use. This makes it easier to execute the defrosting operation within the time slot, and it is possible to avoid executing the defrosting operation during a time slot other than the non-use time slot. As a result, if a specific function of the refrigerator (for example, quick freezing function) is requested to be executed at a time other than the non-use period, it will conflict with the execution timing of the defrosting operation, and the specified function will be specified by executing the defrosting operation. It is possible to prevent the use of the function from being hindered.
 (他の実施の形態)
 以上のように、本出願において開示する技術思想の例示として、実施の形態を説明した。しかしながら、本開示における技術思想はこれに限定されず、変更、置き換え、付加、及び省略などが行われた実施の形態にも適用できる。そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, the embodiments have been described as examples of the technical idea disclosed in this application. However, the technical idea in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, substitutions, additions, omissions, etc. are made. Therefore, other embodiments will be illustrated below.
 上記実施の形態において、推定除霜時間算出部74は、冷蔵庫10に設けられる例を説明したが、推定除霜時間算出部74は、サーバー装置100に設けられていてもよい。この場合は、サーバー装置100により算出された推定除霜時間のデータが、サーバー装置100から冷蔵庫10に送信される。また、不使用時間帯認識部75は、サーバー装置100に設けられていてもよい。この場合は、サーバー装置100により認識された不使用時間帯のデータが、サーバー装置100から冷蔵庫10に送信される。 In the above embodiment, an example has been described in which the estimated defrosting time calculation unit 74 is provided in the refrigerator 10, but the estimated defrosting time calculation unit 74 may also be provided in the server device 100. In this case, data on the estimated defrosting time calculated by server device 100 is transmitted from server device 100 to refrigerator 10 . Further, the non-use time zone recognition unit 75 may be provided in the server device 100. In this case, the data of the non-use time zone recognized by the server device 100 is transmitted from the server device 100 to the refrigerator 10.
 推定除霜時間算出部74がサーバー装置100に設けられる場合、冷蔵庫10とサーバー装置100との間の通信不良が生じると、冷蔵庫10側で推定除霜時間を認識することができない状況となる。この場合、冷蔵庫10側の除霜運転制御部72は、除霜要否判断時点tが、前回の除霜運転の完了時点から所定時間(例えば24時間)が経過した時点に設定されているときは、次の除霜要否判断時点になった時に、推定除霜時間EDFTが閾値以上であるか否かを判断することなく、除霜運転を実行する。 When the estimated defrosting time calculation unit 74 is provided in the server device 100, if a communication failure occurs between the refrigerator 10 and the server device 100, the estimated defrosting time cannot be recognized on the refrigerator 10 side. In this case, the defrosting operation control unit 72 on the refrigerator 10 side sets the defrosting necessity determination time t m to the time when a predetermined time (for example, 24 hours) has elapsed from the completion of the previous defrosting operation. In this case, when the next defrosting necessity determination time comes, the defrosting operation is executed without determining whether the estimated defrosting time EDFT is greater than or equal to the threshold value.
 また、上記実施形態では、学習データ取得部111及び推定モデル生成部112を、サーバー装置100が備える例を説明したが、学習データ取得部111及び推定モデル生成部112を、冷蔵庫10が備えていてもよい。 Furthermore, in the embodiment described above, an example has been described in which the server device 100 includes the learning data acquisition section 111 and the estimated model generation section 112. Good too.
 上記実施の形態において、推定除霜時間EDFTを算出するための特徴量として、冷蔵室温度平均値PCC、庫外温度平均値ATC、野菜室温度平均値VCC、ドア開時間積算値DOOR、及び圧縮機回転数積算値CMPを例示したが、推定除霜時間EDFTを算出するための特徴量は、除霜運転の所要時間との関連性が高いものであればよく、上記五つの特徴量以外の特徴量を採用してもよい。また、各冷蔵庫の使用状況に応じて、採用する特徴量を選定してもよい。 In the embodiment described above, the feature values for calculating the estimated defrosting time EDFT include the refrigerator compartment temperature average value PCC, the outside temperature average value ATC, the vegetable compartment temperature average value VCC, the cumulative door opening time value DOOR, and the compression Although the machine rotational speed integrated value CMP is shown as an example, the feature quantity for calculating the estimated defrosting time EDFT may be any feature quantity that is highly related to the time required for defrosting operation, and any feature quantity other than the above five features may be used. Feature quantities may also be used. Further, the feature quantity to be adopted may be selected depending on the usage status of each refrigerator.
 上記実施の形態において、推定モデル生成部112は、重回帰分析により推定式(1)を生成した。他の実施形態として、推定モデル生成部112は、AI(Artificial Intelligence)により、学習データTRDを教師データとする機械学習を行って、推定除霜時間EDFT(t)を推定する推定モデルを生成してもよい。 In the embodiment described above, the estimation model generation unit 112 generated estimation formula (1) by multiple regression analysis. As another embodiment, the estimation model generation unit 112 performs machine learning using AI (Artificial Intelligence) using learning data TRD as teacher data to generate an estimation model for estimating the estimated defrosting time EDFT (t m ). You may.
 上記実施形態において、運転状況データ取得部71により実行される処理は、本開示の冷蔵庫制御方法における運転状況データ取得ステップに相当し、推定モデル生成部112により実行される処理は、本開示の冷蔵庫制御方法における推定モデル生成ステップに相当する。推定除霜時間算出部74により実行される処理は、本開示の冷蔵庫制御方法における推定除霜時間算出ステップに相当し、除霜運転制御部72により実行される処理は、本開示の冷蔵庫制御方法における除霜運転制御ステップに相当する。不使用時間帯認識部75により実行される処理は、本開示の冷蔵庫制御方法における不使用時間帯認識ステップに相当し、閾値設定部73により実行される処理は、本開示の冷蔵庫制御方法における閾値設定ステップに相当する。 In the above embodiment, the process executed by the driving status data acquisition unit 71 corresponds to the driving status data acquisition step in the refrigerator control method of the present disclosure, and the process executed by the estimation model generation unit 112 corresponds to the process executed by the refrigerator control method of the present disclosure. This corresponds to the estimation model generation step in the control method. The process executed by the estimated defrost time calculation unit 74 corresponds to the estimated defrost time calculation step in the refrigerator control method of the present disclosure, and the process executed by the defrost operation control unit 72 corresponds to the step of calculating the estimated defrost time in the refrigerator control method of the present disclosure. This corresponds to the defrosting operation control step in . The process executed by the non-use time zone recognition unit 75 corresponds to the non-use time zone recognition step in the refrigerator control method of the present disclosure, and the process executed by the threshold value setting unit 73 corresponds to the step of recognizing a non-use time zone in the refrigerator control method of the present disclosure. Corresponds to the configuration step.
 本開示における冷蔵庫制御システム1を構成するコントローラ(冷蔵庫10の制御ユニット60、サーバー装置100のサーバープロセッサ110)は、本開示の冷蔵庫制御システム1の動作を制御できるものであればよい。発明の主題を表現する際に、本開示の冷蔵庫制御システムの動作を制御するものとして、コントローラの他にも制御手段または制御部またはそれらに類似する文言で表記する場合がある。コントローラは様々な態様で実現可能である。例えば、コントローラとしてプロセッサを用いてもよい。コントローラとしてプロセッサを用いれば、プログラムを格納している記憶媒体からプログラムをプロセッサに読み込ませ、プロセッサによりプログラムを実行することで、各種処理を実行することが可能となる。このため、記憶媒体に格納されたプログラムを変更することで処理内容を変更できるので、制御内容の変更の自由度を高めることができる。プロセッサとしては、例えば、CPU(Central Processing Unit)、及び、MPU(Micro-Processing Unit)などがある。記憶媒体としては、例えば、ハードディスク、フラッシュメモリ、及び、光ディスクなどがある。また、コントローラとしてプログラムの書き換えが不可能なワイヤードロジックを用いてもよい。コントローラとしてワイヤードロジックを用いれば、処理速度の向上に有効である。ワイヤードロジックとしては、例えば、ASIC(Application Specific Integrated Circuit)などがある。また、コントローラとして、プロセッサとワイヤードロジックとを組み合わせて実現してもよい。コントローラを、プロセッサとワイヤードロジックとを組み合わせて実現すれば、ソフトウェア設計の自由度を高めつつ、処理速度を向上することができる。また、コントローラと、コントローラと別の機能を有する回路とが、1つの半導体素子で構成されていてもよい。別の機能を有する回路としては、例えば、A/D・D/A変換回路などがある。また、コントローラは、1つの半導体素子で構成されていてもよいし、複数の半導体素子で構成されていてもよい。コントローラが複数の半導体素子で構成される場合、特許請求の範囲に記載の各制御を、互いに異なる半導体素子で実現してもよい。さらに、半導体素子と抵抗またはコンデンサなどの受動部品とを含む構成によってコントローラが構成されていてもよい。 The controller (the control unit 60 of the refrigerator 10, the server processor 110 of the server device 100) constituting the refrigerator control system 1 of the present disclosure may be any controller as long as it can control the operation of the refrigerator control system 1 of the present disclosure. When expressing the subject matter of the invention, in addition to the controller, the term "control means", "control unit", or words similar thereto may be used to control the operation of the refrigerator control system of the present disclosure. The controller can be implemented in various ways. For example, a processor may be used as the controller. If a processor is used as a controller, various processes can be executed by having the processor read a program from a storage medium storing the program and executing the program by the processor. Therefore, since the processing content can be changed by changing the program stored in the storage medium, the degree of freedom in changing the control content can be increased. Examples of the processor include a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit). Examples of storage media include hard disks, flash memories, and optical disks. Further, wired logic whose program cannot be rewritten may be used as the controller. Using wired logic as a controller is effective in improving processing speed. Examples of wired logic include ASIC (Application Specific Integrated Circuit). Further, the controller may be realized by combining a processor and wired logic. If a controller is realized by combining a processor and wired logic, it is possible to increase the degree of freedom in software design and improve processing speed. Further, the controller and a circuit having a function different from that of the controller may be composed of one semiconductor element. Examples of circuits having other functions include an A/D/D/A conversion circuit. Further, the controller may be composed of one semiconductor element or may be composed of a plurality of semiconductor elements. When the controller is composed of a plurality of semiconductor elements, each control described in the claims may be realized using different semiconductor elements. Furthermore, the controller may be configured to include a semiconductor element and passive components such as a resistor or a capacitor.
 本開示における冷蔵庫制御システム1に備えられるコミュニケータ(冷蔵庫通信部90、サーバー通信部130)は、本開示の冷蔵庫制御システム1と外部機器との通信を可能にするものであればよい。発明の主題を表現する際に、本開示の冷蔵庫制御システム1を構成するサーバー装置100などの構成要素と外部機器との通信を可能にするものとして、コミュニケータの他にも通信手段または通信部または送受信手段または送受信部またはそれらに類似する文言で表記する場合がある。コミュニケータは様々な態様で実現可能である。コミュニケータとしては、基地局等を介しての外部機器との無線接続、または、外部機器との直接無線接続などがある。基地局等を介しての外部機器との無線接続としては、例えば、WiFi(登録商標)ルーターと無線通信するIEEE802.11対応の無線LAN、第3世代移動通信システム(通称3G)、第4世代移動通信システム(通称4G)、IEEE 802.16対応のWiMax(ワイマックス:登録商標)、または、LPWA(Low Power Wide Area)などがある。本開示の冷蔵庫制御システム1を構成するサーバー装置100などの構成要素と外部機器とを直接無線接続するコミュニケータを用いれば、通信のセキュリティ性の向上に有効であるとともに、WiFi(ワイファイ:登録商標)ルーターなどの中継機器が存在しない場所でも、本開示の冷蔵庫制御システム1を構成するサーバー装置100などの構成要素は外部機器と通信できる。本開示の冷蔵庫制御システム1を構成するサーバー装置100などの構成要素と外部機器とを直接無線接続するコミュニケータとしては、例えば、Bluetooth(登録商標)による通信、ループアンテナを介したNFC(Near Field Communication)による通信、または、赤外線通信などがある。 The communicator (refrigerator communication unit 90, server communication unit 130) provided in the refrigerator control system 1 of the present disclosure may be any communicator as long as it enables communication between the refrigerator control system 1 of the present disclosure and external devices. When expressing the subject matter of the invention, in addition to a communicator, communication means or a communication unit may be used as a device that enables communication between external devices and components such as the server device 100 that constitute the refrigerator control system 1 of the present disclosure. Alternatively, it may be expressed as a transmitting/receiving means, a transmitting/receiving unit, or similar wording. The communicator can be implemented in various ways. Examples of the communicator include a wireless connection with an external device via a base station or the like, or a direct wireless connection with an external device. Wireless connections with external devices via base stations etc. include, for example, IEEE802.11 compatible wireless LAN that wirelessly communicates with WiFi (registered trademark) routers, 3rd generation mobile communication systems (commonly known as 3G), and 4th generation mobile communication systems. There are mobile communication systems (commonly known as 4G), WiMax (registered trademark) compatible with IEEE 802.16, and LPWA (Low Power Wide Area). Using a communicator that directly wirelessly connects components such as the server device 100 constituting the refrigerator control system 1 of the present disclosure with an external device is effective in improving communication security, and is also effective in improving communication security. ) Even in a place where there is no relay device such as a router, components such as the server device 100 that constitute the refrigerator control system 1 of the present disclosure can communicate with external devices. As a communicator that directly wirelessly connects components such as the server device 100 constituting the refrigerator control system 1 of the present disclosure with an external device, for example, communication using Bluetooth (registered trademark), NFC (Near Field) via a loop antenna, etc. communication, infrared communication, etc.
 なお、上述の実施の形態は、本開示における技術思想を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、及び省略などを行うことができる。 Note that the above-described embodiments are for illustrating the technical idea of the present disclosure, and therefore various changes, substitutions, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof. .
 本開示は、冷蔵庫の除霜運転が必要のないときに実行されることによる、冷蔵庫の消費電力の増加、及び、冷蔵庫内の温度上昇を抑制する冷蔵庫制御システムを提供する。よって、家庭などに設置される冷蔵庫および業務用の冷蔵庫の他、除霜運転が行われる各種冷却機器に適用可能である。 The present disclosure provides a refrigerator control system that suppresses an increase in power consumption of the refrigerator and a rise in temperature inside the refrigerator due to defrosting operation of the refrigerator being performed when it is not necessary. Therefore, in addition to refrigerators installed in homes and commercial refrigerators, the present invention is applicable to various types of cooling equipment that perform defrosting operations.
 1 冷蔵庫制御システム
 5 ゲートウェイ
 10 冷蔵庫
 11 冷蔵室
 12 冷蔵室の右ドア
 13 冷蔵室の左ドア
 14 切換室
 15 切換室の引き出し
 16 製氷室
 17 製氷室の引き出し
 18 冷凍室
 19 冷凍室の引き出し
 20 野菜室
 21 野菜室の引き出し
 30 右ドアの開閉センサ
 31 左ドアの開閉センサ
 32 切換室の開閉センサ
 33 製氷室の開閉センサ
 34 冷凍室の開閉センサ
 35 野菜室の開閉センサ
 40 冷蔵室温度センサ
 41 野菜室温度センサ
 42 庫外温度センサ
 43 冷却器温度センサ
 44 庫外照度センサ
 50 圧縮機
 51 冷却器
 52 凝縮器
 53 冷却ファン
 55 除霜ヒータ
 60 制御ユニット
 70 冷蔵庫プロセッサ
 71 運転状況データ取得部
 72 除霜運転制御部
 73 閾値設定部
 74 推定除霜時間算出部
 75 不使用時間帯認識部
 80 冷蔵庫メモリ
 81 冷蔵庫プログラム
 82 運転状況データ
 83 推定式データ
 84 不使用時間帯データ
 85 閾値データ
 100 サーバー装置
 110 サーバープロセッサ
 111 学習データ取得部
 112 推定モデル生成部
 120 サーバーメモリ
 121 サーバープログラム
 122 運転状況データ
 123 実除霜時間データ
 124 学習データ
 200 通信ネットワーク
 W 家屋 
 
1 Refrigerator control system 5 Gateway 10 Refrigerator 11 Refrigerator compartment 12 Right door of the refrigerator compartment 13 Left door of the refrigerator compartment 14 Switching compartment 15 Drawer of the switching compartment 16 Ice making compartment 17 Drawer of the ice making compartment 18 Freezer compartment 19 Drawer of the freezing compartment 20 Vegetable compartment 21 Vegetable compartment drawer 30 Right door opening/closing sensor 31 Left door opening/closing sensor 32 Switching compartment opening/closing sensor 33 Ice making compartment opening/closing sensor 34 Freezer compartment opening/closing sensor 35 Vegetable compartment opening/closing sensor 40 Refrigerator compartment temperature sensor 41 Vegetable compartment temperature Sensor 42 Outside temperature sensor 43 Cooler temperature sensor 44 Outside illuminance sensor 50 Compressor 51 Cooler 52 Condenser 53 Cooling fan 55 Defrost heater 60 Control unit 70 Refrigerator processor 71 Operating status data acquisition section 72 Defrost operation control section 73 Threshold value setting section 74 Estimated defrosting time calculation section 75 Non-use time period recognition section 80 Refrigerator memory 81 Refrigerator program 82 Operating status data 83 Estimation formula data 84 Non-use time period data 85 Threshold data 100 Server device 110 Server processor 111 Learning data Acquisition unit 112 Estimated model generation unit 120 Server memory 121 Server program 122 Operating status data 123 Actual defrosting time data 124 Learning data 200 Communication network W House

Claims (5)

  1.  所定のサンプリング周期で冷蔵庫に設けられた検出部により検出した運転状況を示す運転状況データを取得し、第1記憶部に保存する運転状況データ取得部と、
     前記冷蔵庫の加熱部を作動させて前記冷蔵庫の冷却器に付着した霜を除去する除霜運転が実行されたときに、前回の前記除霜運転が完了した時点から今回の前記除霜運転が実行されるまでの間に、前記検出部により検出された運転状況を示す前記運転状況データに基づく、所定の特徴量と、今回の前記除霜運転に要した時間とを含む学習データを、第2記憶部に保存する学習データ取得部と、
     前記学習データに基づいて、前記検出部により検出された運転状況を示す前記運転状況データに基づく前記特徴量に係る入力データの入力に対して、前記除霜運転を実行したと想定した場合の前記除霜運転の推定所要時間を、推定除霜時間として出力する推定モデルを用いて、前記推定除霜時間を算出する推定除霜時間算出部と、
     所定の除霜要否判断時点における前記推定除霜時間が閾値以上であるときに、前記除霜運転を実行する除霜運転制御部と、
     前記冷蔵庫の特定機能が使用される可能性が低いと推定される時間帯である不使用時間帯を認識する不使用時間帯認識部と、
     前記除霜運転の実行の判断要否に係る前記閾値を複数設定する閾値設定部と、
     を備える冷蔵庫制御システム。
    a driving status data acquisition unit that acquires driving status data indicating the driving status detected by a detection unit provided in the refrigerator at a predetermined sampling period, and stores the acquired driving status data in a first storage unit;
    When a defrosting operation is performed in which a heating section of the refrigerator is operated to remove frost attached to a cooler of the refrigerator, the current defrosting operation is executed from the time when the previous defrosting operation is completed. The learning data including a predetermined feature amount and the time required for the current defrosting operation based on the driving situation data indicating the driving situation detected by the detection unit is a learning data acquisition unit that stores the data in the storage unit;
    Based on the learning data, the defrosting operation is assumed to have been performed in response to input data related to the feature amount based on the driving situation data indicating the driving situation detected by the detection unit. an estimated defrost time calculation unit that calculates the estimated defrost time using an estimation model that outputs the estimated time required for defrosting operation as the estimated defrost time;
    a defrosting operation control unit that executes the defrosting operation when the estimated defrosting time at a predetermined time of determining the necessity of defrosting is equal to or greater than a threshold;
    a non-use time period recognition unit that recognizes a non-use time period that is a time period in which it is estimated that a specific function of the refrigerator is unlikely to be used;
    a threshold value setting unit that sets a plurality of threshold values related to the necessity of determining whether to execute the defrosting operation;
    Refrigerator control system with.
  2.  前記複数の閾値は、第1閾値及び第2閾値を含み、
     前記閾値設定部は、前記不使用時間帯以外の時間帯における前記閾値を前記第1閾値に設定し、前記不使用時間帯における前記閾値を前記第2閾値に設定し、
     前記閾値設定部は、前記第2閾値を、前記第1閾値よりも短い時間を示す値に設定する
     請求項1に記載の冷蔵庫制御システム。
    The plurality of threshold values include a first threshold value and a second threshold value,
    The threshold value setting unit sets the threshold value in a time period other than the non-use time period to the first threshold value, and sets the threshold value in the non-use time period to the second threshold value,
    The refrigerator control system according to claim 1, wherein the threshold setting unit sets the second threshold to a value indicating a shorter time than the first threshold.
  3.  前記閾値設定部は、前記除霜運転制御部により前記除霜運転が実行された前記所定の除霜要否判断時点が、前記不使用時間帯内でなかったときに、次の前記除霜運転が、前記不使用時間帯内で前記除霜運転制御部により実行されるように、前記第2閾値を変更する
     請求項2に記載の冷蔵庫制御システム。
    The threshold value setting unit is configured to perform the next defrosting operation when the predetermined defrosting necessity judgment time point at which the defrosting operation was executed by the defrosting operation control unit was not within the non-use time zone. The refrigerator control system according to claim 2, wherein the second threshold value is changed so that the defrosting operation control unit executes the defrosting operation within the non-use time period.
  4.  前記不使用時間帯認識部は、前記冷蔵庫に設けられて前記冷蔵庫の収容室の開口部の開閉を検出する開閉センサによる前記開口部の開閉状況、又は前記冷蔵庫に設けられて前記冷蔵庫の周辺の照度を検出する庫外照度センサによる前記冷蔵庫の周辺の照度に基づいて、前記不使用時間帯を認識する
     請求項1又は請求項2に記載の冷蔵庫制御システム。
    The non-use time zone recognition unit is configured to detect the opening/closing status of the opening by an opening/closing sensor provided in the refrigerator and detecting opening/closing of the opening of the accommodation chamber of the refrigerator, or to detect the opening/closing status of the opening of the storage chamber of the refrigerator. The refrigerator control system according to claim 1 or 2, wherein the non-use time period is recognized based on the illuminance around the refrigerator measured by an outside illuminance sensor that detects illuminance.
  5.  所定のサンプリング周期で冷蔵庫に設けられた検出部により検出された、前記冷蔵庫の運転状況を示す運転状況データを取得し、第1記憶部に保存する運転状況データ取得ステップと、
     前記冷蔵庫の加熱部を作動させて前記冷蔵庫の冷却器に付着した霜を除去する除霜運転が実行されたときに、前回の前記除霜運転が完了した時点から今回の前記除霜運転が実行されるまでの間に、前記検出部により検出された運転状況を示す前記運転状況データに基づく、所定の特徴量と、今回の前記除霜運転に要した時間とを含む学習データを取得し、第2記憶部に保存する学習データ取得ステップと、
     前記学習データに基づいて、前記検出部により検出された運転状況を示す前記運転状況データに基づく前記特徴量に係る入力データの入力に対して、前記除霜運転を実行したと想定した場合の前記除霜運転の推定所要時間を、推定除霜時間として出力する推定モデルを用いて、前記推定除霜時間を算出する推定除霜時間算出ステップと、
     所定の除霜要否判断時点における前記推定除霜時間が閾値以上であるときに、前記除霜運転を実行する除霜運転制御ステップと、
     前記冷蔵庫の特定機能が使用される可能性が低いと推定される時間帯である不使用時間帯を認識する不使用時間帯認識ステップと、
     前記除霜運転の実行の判断要否に係る前記閾値を複数設定する閾値設定ステップと、
     を含む冷蔵庫制御方法。 
     
    an operating status data acquisition step of acquiring operating status data indicating the operating status of the refrigerator, which is detected by a detection unit provided in the refrigerator at a predetermined sampling period, and storing it in a first storage unit;
    When a defrosting operation is performed in which a heating section of the refrigerator is operated to remove frost attached to a cooler of the refrigerator, the current defrosting operation is executed from the time when the previous defrosting operation is completed. obtaining learning data including a predetermined feature amount and the time required for the current defrosting operation based on the driving situation data indicating the driving situation detected by the detection unit, a step of acquiring learning data to be stored in a second storage unit;
    Based on the learning data, the defrosting operation is assumed to have been performed in response to input data related to the feature amount based on the driving situation data indicating the driving situation detected by the detection unit. an estimated defrosting time calculation step of calculating the estimated defrosting time using an estimation model that outputs the estimated time required for defrosting operation as the estimated defrosting time;
    a defrosting operation control step of executing the defrosting operation when the estimated defrosting time at a predetermined time of determining whether or not defrosting is necessary;
    a step of recognizing a non-use time period, which is a time period in which it is estimated that a specific function of the refrigerator is unlikely to be used;
    a threshold value setting step of setting a plurality of threshold values related to the necessity of determining whether to execute the defrosting operation;
    Refrigerator control method including.
PCT/JP2023/012137 2022-05-31 2023-03-27 Refrigerator control system and refrigerator control method WO2023233777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089292 2022-05-31
JP2022089292A JP2023176807A (en) 2022-05-31 2022-05-31 Refrigerator control system and refrigerator control method

Publications (1)

Publication Number Publication Date
WO2023233777A1 true WO2023233777A1 (en) 2023-12-07

Family

ID=89026108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012137 WO2023233777A1 (en) 2022-05-31 2023-03-27 Refrigerator control system and refrigerator control method

Country Status (2)

Country Link
JP (1) JP2023176807A (en)
WO (1) WO2023233777A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069231A (en) * 2002-08-08 2004-03-04 Sharp Corp Refrigerator control system and refrigerator
US20070295015A1 (en) * 2006-06-26 2007-12-27 Heatcraft Refrigeration Products Llc Method and apparatus for affecting defrost operations for a refrigeration system
JP2009210161A (en) * 2008-02-29 2009-09-17 Sanyo Electric Co Ltd Equipment control system, control device, and control program
JP2012057886A (en) * 2010-09-10 2012-03-22 Hitachi Appliances Inc Refrigerator
JP2013108744A (en) * 2011-05-09 2013-06-06 Panasonic Corp Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069231A (en) * 2002-08-08 2004-03-04 Sharp Corp Refrigerator control system and refrigerator
US20070295015A1 (en) * 2006-06-26 2007-12-27 Heatcraft Refrigeration Products Llc Method and apparatus for affecting defrost operations for a refrigeration system
JP2009210161A (en) * 2008-02-29 2009-09-17 Sanyo Electric Co Ltd Equipment control system, control device, and control program
JP2012057886A (en) * 2010-09-10 2012-03-22 Hitachi Appliances Inc Refrigerator
JP2013108744A (en) * 2011-05-09 2013-06-06 Panasonic Corp Refrigerator

Also Published As

Publication number Publication date
JP2023176807A (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP4342473B2 (en) Equipment control system
US20110088415A1 (en) Adaptive defrost controller for a refrigeration device
US20140343698A1 (en) Device control apparatus, device control method, and device control system
US11353232B2 (en) Control method, control apparatus, and non-transitory computer-readable storage medium for storing program
CN112460761A (en) Air conditioner control method and device, storage medium and air conditioner
CN116888420A (en) Method for controlling operation of refrigerator and refrigerator
WO2023233777A1 (en) Refrigerator control system and refrigerator control method
CN113227685B (en) Refrigerator with a door
US9046094B2 (en) Refrigerator with energy consumption optimization using adaptive fan delay
WO2023233776A1 (en) Refrigerator control system and refrigerator control method
CN112050438B (en) Control method of air conditioner under refrigeration working condition
JP2009275954A (en) Refrigerator
JP7196355B1 (en) REMOTE CONTROL DEVICE, REMOTE CONTROL PROGRAM, AND REMOTE CONTROL METHOD
WO2022255344A1 (en) Refrigerator, refrigerator control method, and program
TWI605234B (en) Energy-saving control method and system for refrigerator
JP2022140721A (en) Refrigerator, refrigerator control method, and refrigerator control program
KR102526627B1 (en) Artificial Intelligence Refrigerator system and Control method of the same
CN109751830B (en) Refrigeration equipment and method and device for detecting state of refrigeration equipment
EP1730457A1 (en) A cooling device and its control method
CN112050393B (en) Control method of air conditioner under refrigeration working condition
WO2015186181A1 (en) Control device for refrigerating and air conditioning devices
JP7565789B2 (en) Refrigerator, defrosting method and program
KR102013452B1 (en) Method for controlling refrigerator
JP7389096B2 (en) refrigerator
US11946662B2 (en) Apparatus and method for predicting amount of temperature change of target zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815539

Country of ref document: EP

Kind code of ref document: A1