WO2023233703A1 - Cleaning machine and sound output method - Google Patents

Cleaning machine and sound output method Download PDF

Info

Publication number
WO2023233703A1
WO2023233703A1 PCT/JP2023/002426 JP2023002426W WO2023233703A1 WO 2023233703 A1 WO2023233703 A1 WO 2023233703A1 JP 2023002426 W JP2023002426 W JP 2023002426W WO 2023233703 A1 WO2023233703 A1 WO 2023233703A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum cleaner
frequency
speaker
audio signal
audio
Prior art date
Application number
PCT/JP2023/002426
Other languages
French (fr)
Japanese (ja)
Inventor
哲次 佐土島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023233703A1 publication Critical patent/WO2023233703A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices

Definitions

  • the present disclosure relates to a vacuum cleaner equipped with a speaker and a sound output method.
  • Patent Document 1 discloses that in order to reduce noise generated from a vacuum cleaner, noise at an integral multiple of the rotational speed of an electric blower included in the vacuum cleaner is monitored with a microphone, and the phase of the amplifier is adjusted so that this value is minimized. and a vacuum cleaner that adjusts the level.
  • the present disclosure provides a vacuum cleaner that can effectively notify the user that suction force is being generated.
  • a vacuum cleaner in the present disclosure is a vacuum cleaner, and includes a speaker, an electric blower that rotates to generate a suction force of the vacuum cleaner, and an audio signal that generates an audio signal with a frequency lower than the rotational frequency of the electric blower, and A controller that causes a speaker to output audio based on the audio signal.
  • the sound output method in the present disclosure is a sound output method using a vacuum cleaner, in which a sound signal having a frequency lower than the rotational frequency of an electric blower that generates suction force of the vacuum cleaner by rotating is generated, and A speaker provided in the machine outputs audio based on the audio signal.
  • the vacuum cleaner according to the present disclosure can effectively notify the user that suction force is being generated.
  • FIG. 1 is a diagram showing an example of the appearance of a vacuum cleaner according to an embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the vacuum cleaner according to the embodiment.
  • FIG. 3 is a diagram showing an example of a circuit configuration in the embodiment.
  • FIG. 4 is a diagram showing the first audio signal.
  • FIG. 5 is a diagram showing the spectrum of the square wave of the first audio signal.
  • FIG. 6 is a flowchart illustrating an example of the operation of the vacuum cleaner circuit according to the embodiment.
  • FIG. 7 is a diagram showing a typical spectrogram of sound generated from a vacuum cleaner.
  • FIG. 8 is a diagram illustrating an example of the appearance of a vacuum cleaner according to modification 1.
  • FIG. 9 is a diagram illustrating an example of the appearance of a vacuum cleaner according to modification 2.
  • Patent Document 1 attempts to reduce the noise generated by a vacuum cleaner by outputting a sound that is out of phase with the operating sound generated by the vacuum cleaner, but it is difficult to reduce the noise generated by the vacuum cleaner. No consideration is given to notifying the user.
  • the present inventor has discovered a vacuum cleaner that can effectively notify the user that suction force is being generated.
  • FIG. 1 is a diagram showing an example of the appearance of a vacuum cleaner according to an embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the vacuum cleaner according to the embodiment.
  • the vacuum cleaner 100 includes a housing 10, an operating section 20, a circuit 30, an electric blower 40, a dust sensor 50, a container 60, a suction pipe 70, a speaker 80, and a head 90.
  • the vacuum cleaner 100 is, for example, a stick-type vacuum cleaner. Further, the vacuum cleaner 100 is, for example, a cyclone type vacuum cleaner.
  • the vacuum cleaner 100 may include a rechargeable battery (not shown), and may operate using electric power stored in the rechargeable battery. Further, the vacuum cleaner 100 does not need to have a rechargeable battery, and may operate using power supplied from an external commercial power source.
  • the housing 10 houses a circuit 30, an electric blower 40, and a dust sensor 50.
  • a container 60 is connected to the housing 10. Furthermore, the housing 10 is provided with an operation section 20 that accepts operations from a user.
  • the operation unit 20 is a button switch that accepts operations from the user.
  • the operation unit 20 receives, for example, an operation to turn on the power of the vacuum cleaner 100. Further, the operation unit 20 may receive an operation for switching the operation mode between a first mode in which the suction force is weak and a second mode in which the suction force is stronger than the first mode. Further, the operation unit 20 may receive an operation for switching on/off the output of the audio from the speaker 80, for example.
  • the operation unit 20 is not limited to a button switch, and may have any configuration as long as it is an input interface that accepts operations from a user, such as a slide switch, a touch panel, etc.
  • the circuit 30 controls the operation of the vacuum cleaner 100 according to the operation accepted by the operation unit 20, the detection result of the dust sensor 50, and the like.
  • Circuit 30 is an example of a controller. Details of the configuration and function of the circuit 30 will be described later.
  • the electric blower 40 generates the suction force of the vacuum cleaner 100 by rotating.
  • the electric blower 40 includes a fan 41 and a motor 42.
  • the fan 41 generates the suction force of the vacuum cleaner 100 by rotating to generate an airflow from the suction port 92 of the head 90 of the vacuum cleaner 100 to the exhaust port (not shown).
  • the motor 42 When the motor 42 is supplied with current, it rotates the fan 41 at a rotation frequency that corresponds to the supplied current.
  • the motor 42 is, for example, a three-phase motor.
  • the dust sensor 50 is a sensor that detects the amount of dust flowing into the container 60 along with the airflow.
  • the container 60 has a space for storing dust sucked in from the head 90.
  • the container 60 is detachably connected to the housing 10.
  • the suction tube 70 is a tubular member whose one end is connected to the housing 10 and the other end is connected to the head 90.
  • the suction pipe 70 is a member that guides air containing dust sucked in from the head 90 to the container 60 connected to the housing 10 .
  • the speaker 80 outputs audio based on the audio signal output from the circuit 30.
  • the speaker 80 is arranged in the suction tube 70, for example.
  • the head 90 has a suction port 92 that sucks dust using the suction force generated by the rotation of the electric blower 40.
  • the suction port 92 is formed to face the floor when the head 90 is placed on the floor.
  • the head 90 may further include a rotating brush 91 that guides dust on the floor to the suction port 92 by rotating.
  • the rotating brush 91 is rotated by a motor (not shown) when a suction force is generated in the vacuum cleaner 100, that is, when the vacuum cleaner 100 is powered on.
  • the rotating brush 91 does not need to be constantly rotated when the power of the vacuum cleaner 100 is on, and when the power of the vacuum cleaner 100 is on and the head 90 is placed on the floor. It may be rotated by a motor (not shown). That is, even if the power of the vacuum cleaner 100 is on, the rotating brush 91 does not need to be rotated when the head 90 is not placed on the floor.
  • the head 90 does not need to include the rotating brush 91.
  • FIG. 3 is a diagram showing an example of a circuit configuration in the embodiment.
  • the circuit 30 includes a CPU (Central Processing Unit) 31, a memory 32, a motor driver 33, an isolator 34, a frequency divider 35, a filter 36, and an amplifier circuit 37.
  • CPU Central Processing Unit
  • the CPU 31 executes a process of transmitting a control signal to the motor driver 32 by executing a program stored in the memory 32.
  • the CPU 31 transmits a control signal to the motor driver 33 in response to the operation accepted by the operation unit 20. For example, when the operation unit 20 accepts a power-on operation, the CPU 31 transmits a control signal for operating in the first mode to the motor driver 33. Further, for example, when the operation unit 20 receives an operation indicating an operation instruction in the second mode, the CPU 31 transmits a control signal for operating in the second mode to the motor driver 33. Further, when the amount of dust detected by the dust sensor 50 exceeds a predetermined threshold, the CPU 31 transmits a control signal to the motor driver 33 to operate in the third mode.
  • the CPU 31 may execute a process of switching the audio on and off by executing a program stored in the memory 32. Specifically, the CPU 31 switches the output of the audio signal to the speaker 80 on and off in response to the operation of switching the output of the audio on and off using the operation unit 20 . That is, when the audio output is turned off, the CPU 31 may turn off the operations of the isolator 34, frequency divider 35, filter 36, and amplifier circuit 37. Conversely, when the audio output is turned on, the CPU 31 may turn on the operations of the isolator 34, frequency divider 35, filter 36, and amplifier circuit 37. Since the CPU 31 is one of the components of the circuit 30, it is an example of a controller.
  • the memory 32 stores programs executed by the CPU 31.
  • the program is a program for the CPU 31 to execute a process of transmitting a control signal to the motor driver 32 and a process of switching audio on/off.
  • the motor driver 33 drives the motor 42 at a rotation frequency according to the control signal received from the CPU 31.
  • the motor driver 33 receives a control signal for operating in the first mode, it controls the motor 42 so that the motor 42 is driven at the first rotation frequency.
  • the motor driver 33 receives a control signal for operating in the second mode, it drives the motor 42 so that the motor 42 is driven at the second rotation frequency.
  • the second rotation frequency is a higher rotation frequency than the first rotation frequency.
  • the motor driver 33 receives a control signal for operating in the third mode
  • the motor driver 33 drives the motor 42 so that the motor 42 is driven at the third rotation frequency.
  • the third rotation frequency is a rotation frequency lower than the second rotation frequency.
  • the third rotation frequency is a rotation frequency lower than the first rotation frequency. Note that the third rotational frequency does not have to be a rotational frequency lower than the first rotational frequency, and may be the same rotational frequency as the first rotational frequency, or may be a rotational frequency higher than the first rotational frequency. good.
  • a rotation signal from the motor driver 33 to the motor 42 is input to the isolator 34 .
  • any one of the three-phase (that is, U-phase, V-phase, and W-phase) signals of the motor 42 is input to the isolator 34 as a rotation signal.
  • the isolator 34 isolates the circuits of the motor driver 33 and motor 42 from the circuits of the isolator 34, frequency divider 35, filter 36, amplifier circuit 37, and speaker 80 in terms of direct current.
  • Isolator 34 inputs the rotation signal to frequency divider 35 . Since the rotation signal is based on any one of the three-phase signals of the motor 42, which is a three-phase motor, the rotation signal is a signal with a duty ratio of 1/3.
  • the frequency divider 35 generates a first audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 from the input rotation signal. Specifically, the frequency divider 35 divides the rotation signal with a duty ratio of 1/3 obtained by the isolator 34 into 1/4, so that the frequency of the rotation signal becomes 1 as shown in FIG. A first audio signal converted to /4 is generated.
  • FIG. 4 is a diagram showing the first audio signal.
  • FIG. 5 is a diagram showing the spectrum of the square wave of the first audio signal. Note that the broken line in FIG. 5 indicates an envelope connecting each frequency component.
  • the first audio signal is a square wave with an amplitude of A and a duty ratio ⁇ /T of 1/3.
  • indicates the duration time during which the waveform of the first audio signal is on (high)
  • T indicates the period of the first audio signal.
  • the period T is the reciprocal of 1/4 of the rotation frequency f.
  • This first audio signal has a duty ratio of 1/3 and a rotational frequency divided by 1/4, so that the spectrum of the first audio signal has a rotational frequency of the motor 42 as shown in FIG. It includes a frequency component f/4 that is 1/4 times the frequency of f, a frequency component f/2 that is 1/2 times the rotation frequency of f, and does not include a frequency component 3f/4 that is 3/4 times the rotational frequency of the motor 42.
  • the frequency divider 35 does not include a frequency component that is 3/4 times the rotational frequency of the motor 42, but contains a frequency component that is 1/4 times the rotational frequency of the motor 42, and a frequency component that is 1/2 times the rotational frequency of the motor 42. It is possible to generate a first audio signal including a large number of audio signals.
  • the filter 36 is a low-pass filter that cuts a frequency band higher than a frequency component that is 3/4 times the rotational frequency of the motor 42.
  • the filter 36 cuts the above-mentioned frequency band with respect to the first audio signal, thereby producing a second audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42.
  • a signal can be generated.
  • the amplifier circuit 37 amplifies the amplitude of the second audio signal generated by the filter 36 and outputs the amplified third audio signal to the speaker 80 as an audio signal.
  • the third audio signal includes a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. That is, the audio signal output to the speaker 80 includes a frequency component that is 1 times the rotational frequency of the motor 42 to the nth power of 2 (n is a natural number).
  • the CPU 31 only executes the processes of the CPU 31 described above (that is, the process of transmitting a control signal to the motor driver 32 and the process of switching on/off the audio) by executing the program stored in the memory 32. Instead, processing for the operation of the entire vacuum cleaner 100 may be executed.
  • the circuit 30 may execute the functions realized by each component of the circuit 30 described above by the CPU executing a program stored in the memory.
  • FIG. 6 is a flowchart illustrating an example of the operation of the vacuum cleaner circuit according to the embodiment.
  • a rotation signal from the motor driver 33 to the motor 42 is input to the isolator 34 of the circuit 30.
  • the isolator 34 inputs the input rotation signal to the frequency divider 35 .
  • the frequency divider 35, filter 36, and amplifier circuit 37 of the circuit 30 generate an audio signal containing a frequency component lower than the rotational frequency of the motor 42 (S11). Specifically, as explained using FIGS. 3 to 5, the third audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 is rotated. It is generated as an audio signal containing frequency components lower than the frequency.
  • the circuit 30 outputs audio based on the generated audio signal (that is, the third audio signal) from the speaker 80 (S12).
  • the isolator 34, frequency divider 35, filter 36, and amplifier circuit 37 of the circuit 30 repeat steps S11 to S13 while the power of the vacuum cleaner 100 is on.
  • the vacuum cleaner 100 can output sound based on the sound signal containing a frequency component lower than the rotational frequency of the electric blower 40 from the speaker 80.
  • FIG. 7 is a diagram showing a typical spectrogram of sound generated from a vacuum cleaner.
  • FIG. 7 is a graph in which only sound components whose sound pressure is higher than a predetermined sound pressure are extracted, and in reality, sounds with frequency components other than those shown in the graph are also generated from the vacuum cleaner 100.
  • the rotation frequency of the motor 42 is controlled so that the electric blower 40 has a constant speed at the rotation frequency f1.
  • the operating sound of the vacuum cleaner 100 includes more sounds with frequency components equal to the rotational frequency of the motor 42. Therefore, the frequency of the operation sound of the vacuum cleaner 100 increases until it reaches the frequency f1 immediately after time t0, and reaches a steady state at the frequency f1.
  • the circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, audio including a 1/4 harmonic that rises to a frequency f1/4 immediately after time t0 and a 1/2 harmonic that rises to a frequency f1/2 immediately after time t0 is output.
  • the rotation frequency of the motor 42 is controlled so that the electric blower 40 is constant at a rotation frequency f2 higher than the rotation frequency f1. Therefore, the frequency of the operation sound of the vacuum cleaner 100 increases from frequency f1 to frequency f2 during the period after time t1, and reaches a steady state at frequency f2.
  • the circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, in the period after time t1, there is a 1/4 overtone whose frequency increases from frequency f1/4 to frequency f2/4, and a 1/4 overtone whose frequency increases from frequency f1/2 to frequency f2/2. Audio including the second overtone is output.
  • the rotation frequency of the electric blower 40 is controlled to be zero. Therefore, the frequency of the operation sound of the vacuum cleaner 100 decreases from frequency f2 to 0 in the period after time t2.
  • the circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, in the period after time t2, the sound includes a 1/4 overtone whose frequency decreases from frequency f2/4 to 0, and a 1/2 overtone whose frequency decreases from frequency f2/2 to 0. is output.
  • circuit 30 does not need to generate the audio signal. That is, when motor 42 of vacuum cleaner 100 is turned off, circuit 30 may also be turned off. In this case, the operation of turning on the motor 42 and the operation of turning on the power of the vacuum cleaner 100 are the same, and the operation of turning off the motor 42 and the operation of turning off the power of the vacuum cleaner 100 are the same. It is.
  • the circuit 30 generates an audio signal that includes a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency while the motor 42 is on.
  • the circuit 30 causes the speaker 80 to output audio based on the audio signal during a period including a period in which the rotational frequency of the electric blower 40 is changing.
  • the circuit 30 operates during a period in which the motor 42 is on, that is, a period in which the rotational frequency of the electric blower 40 is changing, and a period in which the rotational frequency is not changing (a period in which the rotational frequency is in a steady state). In both cases, an audio signal containing a frequency component 1/4 times the rotation frequency and a frequency component 1/2 times the rotation frequency is generated.
  • the circuit 30 includes a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency only during the period when the rotation frequency of the electric blower 40 is changing while the motor 42 is on.
  • An audio signal may be generated and audio based on the generated audio signal may be output from the speaker 80.
  • the audio signal can be generated and the audio can be output during other periods when the user is less likely to notice the added audio. There can be no. Therefore, it is possible to reduce power consumption while suppressing a reduction in the effect of adding audio.
  • the vacuum cleaner 100 includes a speaker 80, an electric blower 40, and a circuit 30.
  • the electric blower 40 generates the suction force of the vacuum cleaner 100 by rotating.
  • the circuit 30 acquires the rotational frequency of the electric blower 40, generates an audio signal containing a frequency component lower than the rotational frequency, and causes the speaker 80 to output audio based on the audio signal.
  • the vacuum cleaner 100 outputs sound from the speaker 80 based on the sound signal of a frequency lower than the rotation frequency. In this way, by outputting the sound having a frequency lower than the rotation frequency, it is possible to effectively notify the user that the vacuum cleaner 100 is generating suction force without giving the user a sense of discomfort.
  • the operation sound of the vacuum cleaner 100 includes the sound generated by the operation of the electric blower 40 and the sound generated by sucking air.
  • the sound generated by operating the electric blower 40 is lower than the sound generated by sucking air. Since the vacuum cleaner 100 according to the present embodiment outputs sound at a frequency lower than the rotational frequency from the speaker 80, the sound generated by the operation of the electric blower 40 is more effective than the sound generated by sucking air. Can be emphasized effectively.
  • the speaker 80 can output audio to further emphasize the operating state of the electric blower 40 so as not to make the user feel uncomfortable.
  • the purpose of the vacuum cleaner 100 is not to reduce the noise being generated, there is no need to output audio that is in the opposite phase of the noise. Therefore, there is no need to capture the noise with a microphone, and there is no need to adjust the audio signal so that the audio is in the opposite phase of the noise.
  • the audio signal includes a frequency component that is 1 times the rotational frequency of the audio to the nth power of 2 (n is a natural number).
  • the speaker 80 can output a sound containing one harmonic of 2 to the nth power with respect to the operating sound. , the operation sound can be made into an overtone of the voice. Thereby, it is possible to more effectively notify the user that suction force is being generated in the vacuum cleaner 100 using a sound that reduces the discomfort that the user feels.
  • the vacuum cleaner 100 further includes a housing 10, a head 90, and a suction tube 70.
  • the housing 10 accommodates an electric blower 40.
  • the head 90 has a suction port 92 that sucks dust using suction force.
  • the suction tube 70 connects the housing 10 and the head 90.
  • Speaker 80 is placed in suction tube 70 .
  • the speaker 80 since the speaker 80 is arranged in the suction tube 70, the voice from the speaker 80 can be resonated with the suction tube 70, and the voice can be amplified. Therefore, it is possible to more effectively notify the user that suction force is being generated in the vacuum cleaner 100 without giving the user a sense of discomfort.
  • the vacuum cleaner 100 further includes an operation unit 20 that receives an operation from the user to turn on/off the output of the sound.
  • the CPU 31 of the circuit 30 switches output of the audio signal to the speaker 80 on and off in accordance with the operation accepted by the operation unit 20.
  • the user can turn on and off the audio output according to the user's needs by operating the operation unit 20, so the audio output can be turned on and off according to the user's preference.
  • Modified example (Modification 1)
  • the speaker 80 is arranged in the suction pipe 70, but the present invention is not limited thereto, and the speaker 80 may be arranged in the housing 10.
  • FIG. 8 is a diagram showing an example of the appearance of a vacuum cleaner according to Modification 1.
  • the vacuum cleaner 101 differs from the vacuum cleaner 100 of the embodiment only in the position where the speaker 80 is arranged, and the other configurations are the same as the vacuum cleaner 100. As shown in FIG. 8, in the vacuum cleaner 101, a speaker 80 is arranged in the housing 10.
  • the speaker 80 is arranged in the housing 10 that houses the electric blower 40 that is the source of the operating sound, the sound can be output from a position close to the source of the operating sound. Therefore, it is possible to effectively notify the user that suction force is being generated in the vacuum cleaner 101 so as not to make the user feel uncomfortable.
  • the speaker 80 is arranged in the suction pipe 70, but the speaker 80 is not limited thereto, and may be arranged in the head 90.
  • FIG. 9 is a diagram showing an example of the appearance of a vacuum cleaner according to Modification 2.
  • the vacuum cleaner 102 differs from the vacuum cleaner 100 of the embodiment only in the position where the speaker 80 is placed, and the other configurations are the same as the vacuum cleaner 100. As shown in FIG. 9, in the vacuum cleaner 102, a speaker 80 is arranged on a head 90.
  • the rotating brush 91 since the rotating brush 91 is arranged on the head 90, noise is generated from the head 90 when the rotating brush 91 hits the floor surface.
  • the speaker 80 is arranged in the head 90, so that the noise generated by the rotating brush 91 can be effectively masked by outputting sound from the head 90. Therefore, it is possible to effectively notify the user that suction force is being generated in the vacuum cleaner 102 so as not to make the user feel uncomfortable.
  • the vacuum cleaners 100, 101, and 102 are stick-type vacuum cleaners, the casing is not limited to this, and the casing moves on the floor. It may also be a canister type vacuum cleaner in which the body and the suction pipe are connected through a flexible pipe. Alternatively, it may be a portable (handy type) vacuum cleaner in which the casing and the head are directly connected.
  • the vacuum cleaners 100, 101, and 102 are cyclone type vacuum cleaners, the present invention is not limited to this, and instead of the container 60, a paper pack for storing dust may be used. It may also be a paper bag type vacuum cleaner.
  • the vacuum cleaners 100, 101, and 102 generate audio signals using a hardware circuit including an isolator 34, a frequency divider 35, a filter 36, and an amplifier circuit 37.
  • the present invention is not limited to this, and the audio signal may be generated by digital processing using software using the CPU 31.
  • the CPU 31 obtains a rotation signal from the motor driver 33 to the motor 42 .
  • the CPU 31 generates a first audio signal including a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 from the input rotation signal.
  • the CPU 31 generates a first audio signal in which the frequency of the rotation signal is converted to 1/4 by frequency-dividing the rotation signal with a duty ratio of 1/3 to 1/4. Then, the CPU 31 cuts a frequency band higher than a frequency component that is 3/4 times the rotational frequency of the motor 42. The CPU 31 cuts the above-mentioned frequency band from the first audio signal to generate a second audio signal including a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. generate. The CPU 31 amplifies the amplitude of the second audio signal and outputs the amplified third audio signal to the speaker 80 as an audio signal.
  • the CPU 31 acquires the rotational frequency of the motor 42, generates by digital processing a third audio signal including a frequency component 1/4 times the acquired rotational frequency and a frequency component 1/2 times the acquired rotational frequency, and generates a third audio signal containing a frequency component 1/4 times the acquired rotational frequency.
  • the speaker 80 may output audio including 1/4 overtones and 1/2 overtones.
  • the circuit 30 includes a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42.
  • an audio signal is generated, the present invention is not limited to this, and an audio signal that includes a frequency component lower than the rotational frequency of the motor 42 may be generated.
  • the circuit 30 may generate an audio signal containing at least one of a frequency component 1/4 times the rotation frequency and a frequency component 1/2 times the rotation frequency as an audio signal for causing the speaker 80 to output sound.
  • the circuit 30 transmits an audio signal to the speaker 80 that includes a frequency component other than the frequency component that is 1/4 times the rotation frequency and the frequency component that is 1/2 times the rotation frequency, and that is lower than the rotation frequency of the motor 42. It may also be generated as an audio signal for outputting audio.
  • the vacuum cleaners 100, 101, and 102 according to the embodiments and modifications 1 and 2 have a frequency component that is 3/4 times the rotational frequency of the motor 42 for the first audio signal generated by the frequency divider 35. Although filter processing is performed to cut higher frequency bands, it is not necessary to perform filter processing.
  • each component may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each component may be a circuit (or integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Further, each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • general or specific aspects of the present disclosure may be implemented in a system, apparatus, method, integrated circuit, computer program, or non-transitory storage medium such as a computer-readable CD-ROM. Additionally, the present invention may be implemented in any combination of systems, devices, methods, integrated circuits, computer programs, and computer-readable non-transitory storage media.
  • the present disclosure may be realized as an audio output method executed by a controller (computer or DSP), or may be realized as a program for causing a computer or DSP to execute the audio output method.
  • a controller computer or DSP
  • the present disclosure may be realized as a program for causing a computer or DSP to execute the audio output method.
  • the present disclosure is useful as a vacuum cleaner or the like that can effectively notify the user that suction force is being generated.

Abstract

This cleaning machine (100) comprises: a speaker (80); an electric blower (40) which rotates to generate suction force for the cleaning machine (100); and a controller which generates a sound signal of a frequency lower than the rotation frequency of the electric blower (40) and causes the speaker (80) to output a sound based on the sound signal.

Description

掃除機及び音声出力方法Vacuum cleaner and audio output method
 本開示は、スピーカを備える掃除機及び音声出力方法に関する。 The present disclosure relates to a vacuum cleaner equipped with a speaker and a sound output method.
 特許文献1は、電気掃除機から発生する騒音を低減するために、電気掃除機が備える電動送風機の回転数の整数倍の騒音をマイクでモニタし、この値が最小となるように増幅器の位相とレベルを調整する電気掃除機を開示している。 Patent Document 1 discloses that in order to reduce noise generated from a vacuum cleaner, noise at an integral multiple of the rotational speed of an electric blower included in the vacuum cleaner is monitored with a microphone, and the phase of the amplifier is adjusted so that this value is minimized. and a vacuum cleaner that adjusts the level.
特開平4-187131号公報Japanese Unexamined Patent Publication No. 4-187131
 本開示は、吸引力が発生していることを効果的にユーザに知らせることができる掃除機を提供する。 The present disclosure provides a vacuum cleaner that can effectively notify the user that suction force is being generated.
 本開示における掃除機は、掃除機であって、スピーカと、回転することで前記掃除機の吸引力を発生する電動送風機と、前記電動送風機の回転周波数より低い周波数の音声信号を生成し、前記スピーカから前記音声信号に基づく音声を出力させるコントローラと、を備える。 A vacuum cleaner in the present disclosure is a vacuum cleaner, and includes a speaker, an electric blower that rotates to generate a suction force of the vacuum cleaner, and an audio signal that generates an audio signal with a frequency lower than the rotational frequency of the electric blower, and A controller that causes a speaker to output audio based on the audio signal.
 また、本開示における音声出力方法は、掃除機による音声出力方法であって、回転することで前記掃除機の吸引力を発生する電動送風機の回転周波数より低い周波数の音声信号を生成し、前記掃除機が備えるスピーカから前記音声信号に基づく音声を出力させる。 Further, the sound output method in the present disclosure is a sound output method using a vacuum cleaner, in which a sound signal having a frequency lower than the rotational frequency of an electric blower that generates suction force of the vacuum cleaner by rotating is generated, and A speaker provided in the machine outputs audio based on the audio signal.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび非一時的な記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized in a system, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer-readable CD-ROM. It may be implemented in any combination of circuits, computer programs, and non-transitory storage media.
 本開示における掃除機は、吸引力が発生していることを効果的にユーザに知らせることができる。 The vacuum cleaner according to the present disclosure can effectively notify the user that suction force is being generated.
図1は、実施の形態における掃除機の外観の一例を示す図である。FIG. 1 is a diagram showing an example of the appearance of a vacuum cleaner according to an embodiment. 図2は、実施の形態における掃除機の構成の概略を示す図である。FIG. 2 is a diagram schematically showing the configuration of the vacuum cleaner according to the embodiment. 図3は、実施の形態における回路の構成の一例を示す図である。FIG. 3 is a diagram showing an example of a circuit configuration in the embodiment. 図4は、第1音声信号を示す図である。FIG. 4 is a diagram showing the first audio signal. 図5は、第1音声信号の方形波のスペクトラムを示す図である。FIG. 5 is a diagram showing the spectrum of the square wave of the first audio signal. 図6は、実施の形態における掃除機の回路の動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of the operation of the vacuum cleaner circuit according to the embodiment. 図7は、掃除機から発生する音の代表的なスペクトログラムを示す図である。FIG. 7 is a diagram showing a typical spectrogram of sound generated from a vacuum cleaner. 図8は、変形例1に係る掃除機の外観の一例を示す図である。FIG. 8 is a diagram illustrating an example of the appearance of a vacuum cleaner according to modification 1. 図9は、変形例2に係る掃除機の外観の一例を示す図である。FIG. 9 is a diagram illustrating an example of the appearance of a vacuum cleaner according to modification 2.
 (本開示の基礎となった知見)
 近年、掃除機の小型化により掃除機の動作音の音量が低減されたり、小型モータの高回転化により当該動作音が高音域にシフトしたりしている。これにより、ユーザは、掃除機から発生する動作音から掃除機による吸引力を感じにくくなっている。
(Findings that formed the basis of this disclosure)
In recent years, as vacuum cleaners have become smaller, the volume of the operating sound of the vacuum cleaner has been reduced, and as small motors have increased in speed, the operating sound has shifted to a higher frequency range. This makes it difficult for the user to feel the suction force of the vacuum cleaner from the operating noise generated by the vacuum cleaner.
 特許文献1では、電気掃除機から発生する動作音とは位相が逆相の音声を出力することで電気掃除機から発生する騒音の低減を図っているが、吸引力が発生していることをユーザに知らせることについては考慮されていない。 Patent Document 1 attempts to reduce the noise generated by a vacuum cleaner by outputting a sound that is out of phase with the operating sound generated by the vacuum cleaner, but it is difficult to reduce the noise generated by the vacuum cleaner. No consideration is given to notifying the user.
 そこで、本発明者は、吸引力が発生していることを効果的にユーザに知らせることができる掃除機を見出すに至った。 Therefore, the present inventor has discovered a vacuum cleaner that can effectively notify the user that suction force is being generated.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 (実施の形態)
 以下、図1~図9を用いて、実施の形態を説明する。
(Embodiment)
Embodiments will be described below using FIGS. 1 to 9.
 [1.構成]
 図1は、実施の形態における掃除機の外観の一例を示す図である。図2は、実施の形態における掃除機の構成の概略を示す図である。
[1. composition]
FIG. 1 is a diagram showing an example of the appearance of a vacuum cleaner according to an embodiment. FIG. 2 is a diagram schematically showing the configuration of the vacuum cleaner according to the embodiment.
 掃除機100は、筐体10と、操作部20と、回路30と、電動送風機40と、塵埃センサ50と、容器60と、吸引管70と、スピーカ80と、ヘッド90とを備える。掃除機100は、例えば、スティック型の掃除機である。また、掃除機100は、例えば、サイクロン方式の掃除機である。 The vacuum cleaner 100 includes a housing 10, an operating section 20, a circuit 30, an electric blower 40, a dust sensor 50, a container 60, a suction pipe 70, a speaker 80, and a head 90. The vacuum cleaner 100 is, for example, a stick-type vacuum cleaner. Further, the vacuum cleaner 100 is, for example, a cyclone type vacuum cleaner.
 なお、掃除機100は、図示しない充電池を有してもよく、充電池に蓄電された電力により動作してもよい。また、掃除機100は、充電池を有していなくてもよく、外部の商用電源から供給される電力により動作してもよい。 Note that the vacuum cleaner 100 may include a rechargeable battery (not shown), and may operate using electric power stored in the rechargeable battery. Further, the vacuum cleaner 100 does not need to have a rechargeable battery, and may operate using power supplied from an external commercial power source.
 筐体10は、回路30、電動送風機40、塵埃センサ50を収容する。筐体10には、容器60が接続されている。また、筐体10には、ユーザからの操作を受け付ける操作部20が設けられている。 The housing 10 houses a circuit 30, an electric blower 40, and a dust sensor 50. A container 60 is connected to the housing 10. Furthermore, the housing 10 is provided with an operation section 20 that accepts operations from a user.
 操作部20は、ユーザからの操作を受け付けるボタンスイッチである。操作部20は、例えば、掃除機100の電源オンの操作を受け付ける。また、操作部20は、例えば、動作モードを吸引力が弱い第1モードと、第1モードよりも吸引力が強い第2モードとを切り替える操作を受け付けてもよい。また、操作部20は、例えば、スピーカ80からの音声の出力のオンオフを切り替える操作を受け付けてもよい。操作部20は、ボタンスイッチに限らずに、ユーザからの操作を受け付ける入力インタフェースであればどのような構成であってもよく、例えば、スライドスイッチ、タッチパネルなどであってもよい。 The operation unit 20 is a button switch that accepts operations from the user. The operation unit 20 receives, for example, an operation to turn on the power of the vacuum cleaner 100. Further, the operation unit 20 may receive an operation for switching the operation mode between a first mode in which the suction force is weak and a second mode in which the suction force is stronger than the first mode. Further, the operation unit 20 may receive an operation for switching on/off the output of the audio from the speaker 80, for example. The operation unit 20 is not limited to a button switch, and may have any configuration as long as it is an input interface that accepts operations from a user, such as a slide switch, a touch panel, etc.
 回路30は、操作部20により受け付けられた操作、塵埃センサ50の検出結果などに応じて、掃除機100の動作を制御する。回路30は、コントローラの一例である。回路30の構成及び機能の詳細は後述する。 The circuit 30 controls the operation of the vacuum cleaner 100 according to the operation accepted by the operation unit 20, the detection result of the dust sensor 50, and the like. Circuit 30 is an example of a controller. Details of the configuration and function of the circuit 30 will be described later.
 電動送風機40は、回転することで掃除機100の吸引力を発生する。電動送風機40は、ファン41と、モータ42とを備える。 The electric blower 40 generates the suction force of the vacuum cleaner 100 by rotating. The electric blower 40 includes a fan 41 and a motor 42.
 ファン41は、回転することで掃除機100のヘッド90の吸引口92から図示しない排気口への気流を発生させることで、掃除機100の吸引力を発生する。 The fan 41 generates the suction force of the vacuum cleaner 100 by rotating to generate an airflow from the suction port 92 of the head 90 of the vacuum cleaner 100 to the exhaust port (not shown).
 モータ42は、電流を供給されることで、供給された電流に応じた回転周波数でファン41を回転させる。モータ42は、例えば、三相モータである。 When the motor 42 is supplied with current, it rotates the fan 41 at a rotation frequency that corresponds to the supplied current. The motor 42 is, for example, a three-phase motor.
 塵埃センサ50は、容器60へ気流と共に流入する塵埃の量を検出するセンサである。 The dust sensor 50 is a sensor that detects the amount of dust flowing into the container 60 along with the airflow.
 容器60は、ヘッド90から吸い込まれた塵埃を貯める空間を有する。容器60は、筐体10と着脱可能に接続されている。 The container 60 has a space for storing dust sucked in from the head 90. The container 60 is detachably connected to the housing 10.
 吸引管70は、一端が筐体10に接続され、他端がヘッド90に接続される管状の部材である。吸引管70は、ヘッド90から吸い込まれた塵埃を含む空気を筐体10に接続されている容器60へ導く部材である。 The suction tube 70 is a tubular member whose one end is connected to the housing 10 and the other end is connected to the head 90. The suction pipe 70 is a member that guides air containing dust sucked in from the head 90 to the container 60 connected to the housing 10 .
 スピーカ80は、回路30から出力された音声信号に基づく音声を出力する。スピーカ80は、例えば、吸引管70に配置されている。 The speaker 80 outputs audio based on the audio signal output from the circuit 30. The speaker 80 is arranged in the suction tube 70, for example.
 ヘッド90は、電動送風機40が回転することにより発生した吸引力により塵埃を吸引する吸引口92を有する。吸引口92は、ヘッド90が床面に載置された状態で、床面に対向するように形成されている。また、ヘッド90は、さらに、回転することで、床面の塵埃を吸引口92へ案内する回転ブラシ91を有していてもよい。回転ブラシ91は、掃除機100に吸引力が発生しているとき、つまり、掃除機100の電源がオンの状態で、図示しないモータにより回転される。なお、回転ブラシ91は、掃除機100の電源がオンの状態において常時回転されていなくてもよく、掃除機100の電源がオンの状態、かつ、ヘッド90が床面に載置されている状態において図示しないモータにより回転されてもよい。つまり、回転ブラシ91は、掃除機100の電源がオンの状態であっても、ヘッド90が床面に載置されていない状態においては回転されなくてもよい。なお、ヘッド90は、回転ブラシ91を有していなくてもよい。 The head 90 has a suction port 92 that sucks dust using the suction force generated by the rotation of the electric blower 40. The suction port 92 is formed to face the floor when the head 90 is placed on the floor. Further, the head 90 may further include a rotating brush 91 that guides dust on the floor to the suction port 92 by rotating. The rotating brush 91 is rotated by a motor (not shown) when a suction force is generated in the vacuum cleaner 100, that is, when the vacuum cleaner 100 is powered on. Note that the rotating brush 91 does not need to be constantly rotated when the power of the vacuum cleaner 100 is on, and when the power of the vacuum cleaner 100 is on and the head 90 is placed on the floor. It may be rotated by a motor (not shown). That is, even if the power of the vacuum cleaner 100 is on, the rotating brush 91 does not need to be rotated when the head 90 is not placed on the floor. Note that the head 90 does not need to include the rotating brush 91.
 図3は、実施の形態における回路の構成の一例を示す図である。 FIG. 3 is a diagram showing an example of a circuit configuration in the embodiment.
 回路30は、CPU(Central Processing Unit)31と、メモリ32と、モータドライバ33と、アイソレータ34と、分周器35と、フィルタ36と、増幅回路37とを有する。 The circuit 30 includes a CPU (Central Processing Unit) 31, a memory 32, a motor driver 33, an isolator 34, a frequency divider 35, a filter 36, and an amplifier circuit 37.
 CPU31は、メモリ32に格納されているプログラムを実行することで、モータドライバ32へ制御信号を送信する処理を実行する。CPU31は、操作部20により受け付けられた操作に応じて、モータドライバ33に制御信号を送信する。CPU31は、例えば、操作部20により電源オンの操作が受け付けられた場合、第1モードで動作するための制御信号をモータドライバ33へ送信する。また、CPU31は、例えば、操作部20により第2モードの動作指示を示す操作が受け付けられた場合、第2モードで動作するための制御信号をモータドライバ33へ送信する。また、CPU31は、塵埃センサ50により検出された塵埃の量が所定の閾値を超えた場合、第3モードで動作するための制御信号をモータドライバ33へ送信する。 The CPU 31 executes a process of transmitting a control signal to the motor driver 32 by executing a program stored in the memory 32. The CPU 31 transmits a control signal to the motor driver 33 in response to the operation accepted by the operation unit 20. For example, when the operation unit 20 accepts a power-on operation, the CPU 31 transmits a control signal for operating in the first mode to the motor driver 33. Further, for example, when the operation unit 20 receives an operation indicating an operation instruction in the second mode, the CPU 31 transmits a control signal for operating in the second mode to the motor driver 33. Further, when the amount of dust detected by the dust sensor 50 exceeds a predetermined threshold, the CPU 31 transmits a control signal to the motor driver 33 to operate in the third mode.
 また、CPU31は、メモリ32に格納されているプログラムを実行することで、音声のオンオフを切り替える処理を実行してもよい。具体的には、CPU31は、操作部20により音声の出力のオンオフを切り替える操作に応じて、音声信号のスピーカ80への出力のオンオフを切り替える。つまり、CPU31は、音声の出力がオフにされた場合には、アイソレータ34、分周器35、フィルタ36、及び、増幅回路37による動作をオフにしてもよい。反対に、CPU31は、音声の出力がオンにされた場合には、アイソレータ34、分周器35、フィルタ36、及び、増幅回路37による動作をオンにしてもよい。CPU31は、回路30の構成要素の1つであるため、コントローラの一例である。 Furthermore, the CPU 31 may execute a process of switching the audio on and off by executing a program stored in the memory 32. Specifically, the CPU 31 switches the output of the audio signal to the speaker 80 on and off in response to the operation of switching the output of the audio on and off using the operation unit 20 . That is, when the audio output is turned off, the CPU 31 may turn off the operations of the isolator 34, frequency divider 35, filter 36, and amplifier circuit 37. Conversely, when the audio output is turned on, the CPU 31 may turn on the operations of the isolator 34, frequency divider 35, filter 36, and amplifier circuit 37. Since the CPU 31 is one of the components of the circuit 30, it is an example of a controller.
 メモリ32は、CPU31により実行されるプログラムを格納している。プログラムは、CPU31がモータドライバ32へ制御信号を送信する処理、及び、音声のオンオフを切り替える処理を実行するためのプログラムである。 The memory 32 stores programs executed by the CPU 31. The program is a program for the CPU 31 to execute a process of transmitting a control signal to the motor driver 32 and a process of switching audio on/off.
 モータドライバ33は、CPU31から受信した制御信号に応じた回転周波数でモータ42を駆動する。モータドライバ33は、第1モードで動作するための制御信号を受信した場合、第1回転周波数でモータ42が駆動されるようにモータ42を制御する。また、モータドライバ33は、第2モードで動作するための制御信号を受信した場合、第2回転周波数でモータ42が駆動されるようにモータ42を駆動する。第2回転周波数は、第1回転周波数よりも高い回転周波数である。また、モータドライバ33は、第3モードで動作するための制御信号を受信した場合、第3回転周波数でモータ42が駆動されるようにモータ42を駆動する。第3回転周波数は、第2回転周波数よりも低い回転周波数である。また、第3回転周波数は、第1回転周波数よりも低い回転周波数である。なお、第3回転周波数は、第1回転周波数よりも低い回転周波数でなくてもよく、第1回転周波数と同じ回転周波数であってもよいし、第1回転周波数より高い回転周波数であってもよい。 The motor driver 33 drives the motor 42 at a rotation frequency according to the control signal received from the CPU 31. When the motor driver 33 receives a control signal for operating in the first mode, it controls the motor 42 so that the motor 42 is driven at the first rotation frequency. Moreover, when the motor driver 33 receives a control signal for operating in the second mode, it drives the motor 42 so that the motor 42 is driven at the second rotation frequency. The second rotation frequency is a higher rotation frequency than the first rotation frequency. Further, when the motor driver 33 receives a control signal for operating in the third mode, the motor driver 33 drives the motor 42 so that the motor 42 is driven at the third rotation frequency. The third rotation frequency is a rotation frequency lower than the second rotation frequency. Moreover, the third rotation frequency is a rotation frequency lower than the first rotation frequency. Note that the third rotational frequency does not have to be a rotational frequency lower than the first rotational frequency, and may be the same rotational frequency as the first rotational frequency, or may be a rotational frequency higher than the first rotational frequency. good.
 アイソレータ34には、モータドライバ33からモータ42への回転信号が入力される。アイソレータ34には、例えば、モータ42の三相(つまり、U相、V相及びW相)の信号のうちのいずれか1つが回転信号として入力される。アイソレータ34は、モータドライバ33及びモータ42の回路と、アイソレータ34、分周器35、フィルタ36、増幅回路37及びスピーカ80の回路とを直流的に分離する。アイソレータ34は、回転信号を分周器35に入力する。回転信号は、三相モータであるモータ42の三相の信号のうちのいずれか1つに基づくため、デューティ比が1/3の信号である。 A rotation signal from the motor driver 33 to the motor 42 is input to the isolator 34 . For example, any one of the three-phase (that is, U-phase, V-phase, and W-phase) signals of the motor 42 is input to the isolator 34 as a rotation signal. The isolator 34 isolates the circuits of the motor driver 33 and motor 42 from the circuits of the isolator 34, frequency divider 35, filter 36, amplifier circuit 37, and speaker 80 in terms of direct current. Isolator 34 inputs the rotation signal to frequency divider 35 . Since the rotation signal is based on any one of the three-phase signals of the motor 42, which is a three-phase motor, the rotation signal is a signal with a duty ratio of 1/3.
 分周器35は、入力された回転信号から、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む第1音声信号を生成する。具体的には、分周器35は、アイソレータ34により取得されたデューティ比が1/3の回転信号を1/4分周することで、図4に示されるような、回転信号の周波数が1/4に変換された第1音声信号を生成する。 The frequency divider 35 generates a first audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 from the input rotation signal. Specifically, the frequency divider 35 divides the rotation signal with a duty ratio of 1/3 obtained by the isolator 34 into 1/4, so that the frequency of the rotation signal becomes 1 as shown in FIG. A first audio signal converted to /4 is generated.
 図4は、第1音声信号を示す図である。図5は、第1音声信号の方形波のスペクトラムを示す図である。なお、図5の破線は、各周波数成分を繋ぐ包絡線を示す。 FIG. 4 is a diagram showing the first audio signal. FIG. 5 is a diagram showing the spectrum of the square wave of the first audio signal. Note that the broken line in FIG. 5 indicates an envelope connecting each frequency component.
 第1音声信号は、例えば、図4に示されるように、振幅がAであり、デューティ比τ/Tが1/3の方形波である。なお、τは、第1音声信号の波形がオン(high)となる継続時間を示し、Tは、第1音声信号の周期を示す。周期Tは、回転周波数fの1/4の逆数である。 For example, as shown in FIG. 4, the first audio signal is a square wave with an amplitude of A and a duty ratio τ/T of 1/3. Note that τ indicates the duration time during which the waveform of the first audio signal is on (high), and T indicates the period of the first audio signal. The period T is the reciprocal of 1/4 of the rotation frequency f.
 この第1音声信号は、デューティ比が1/3であり、回転周波数が1/4分周されているため、第1音声信号のスペクトラムは、図5に示されるように、モータ42の回転周波数fの1/4倍の周波数成分f/4、1/2倍の周波数成分f/2を含み、かつ、モータ42の回転周波数の3/4倍の周波数成分3f/4を含まない。つまり、分周器35は、モータ42の回転周波数の3/4倍の周波数成分を含まず、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分をより多く含む第1音声信号を生成することができる。 This first audio signal has a duty ratio of 1/3 and a rotational frequency divided by 1/4, so that the spectrum of the first audio signal has a rotational frequency of the motor 42 as shown in FIG. It includes a frequency component f/4 that is 1/4 times the frequency of f, a frequency component f/2 that is 1/2 times the rotation frequency of f, and does not include a frequency component 3f/4 that is 3/4 times the rotational frequency of the motor 42. In other words, the frequency divider 35 does not include a frequency component that is 3/4 times the rotational frequency of the motor 42, but contains a frequency component that is 1/4 times the rotational frequency of the motor 42, and a frequency component that is 1/2 times the rotational frequency of the motor 42. It is possible to generate a first audio signal including a large number of audio signals.
 フィルタ36は、モータ42の回転周波数の3/4倍の周波数成分より高い周波数帯域をカットするローパスフィルタである。フィルタ36は、第1音声信号に対して、上記の周波数帯域をカットすることで、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む第2音声信号を生成することができる。 The filter 36 is a low-pass filter that cuts a frequency band higher than a frequency component that is 3/4 times the rotational frequency of the motor 42. The filter 36 cuts the above-mentioned frequency band with respect to the first audio signal, thereby producing a second audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. A signal can be generated.
 増幅回路37は、フィルタ36により生成された第2音声信号の振幅を増幅させ、増幅後の第3音声信号を、音声信号としてスピーカ80に出力する。 The amplifier circuit 37 amplifies the amplitude of the second audio signal generated by the filter 36 and outputs the amplified third audio signal to the speaker 80 as an audio signal.
 第3音声信号は、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む。つまり、スピーカ80に出力される音声信号は、モータ42の回転周波数の2のn乗分の1倍(nは自然数)の周波数成分を含む。 The third audio signal includes a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. That is, the audio signal output to the speaker 80 includes a frequency component that is 1 times the rotational frequency of the motor 42 to the nth power of 2 (n is a natural number).
 なお、CPU31は、メモリ32に格納されたプログラムを実行することで、上述したCPU31の処理(つまり、モータドライバ32へ制御信号を送信する処理、及び、音声のオンオフを切り替える処理)を実行するだけでなく、掃除機100全体の動作のための処理を実行してもよい。つまり、回路30は、CPUがメモリに格納されたプログラムを実行することで、上述した回路30の各構成要素が実現する機能を実行してもよい。 Note that the CPU 31 only executes the processes of the CPU 31 described above (that is, the process of transmitting a control signal to the motor driver 32 and the process of switching on/off the audio) by executing the program stored in the memory 32. Instead, processing for the operation of the entire vacuum cleaner 100 may be executed. In other words, the circuit 30 may execute the functions realized by each component of the circuit 30 described above by the CPU executing a program stored in the memory.
 [2.動作]
 図6は、実施の形態における掃除機の回路の動作の一例を示すフローチャートである。
[2. motion]
FIG. 6 is a flowchart illustrating an example of the operation of the vacuum cleaner circuit according to the embodiment.
 回路30のアイソレータ34には、モータドライバ33からモータ42への回転信号が入力される。アイソレータ34は、入力された回転信号を分周器35に入力する。 A rotation signal from the motor driver 33 to the motor 42 is input to the isolator 34 of the circuit 30. The isolator 34 inputs the input rotation signal to the frequency divider 35 .
 回路30の分周器35、フィルタ36及び増幅回路37は、モータ42の回転周波数より低い周波数成分を含む音声信号を生成する(S11)。具体的には、図3~図5を用いて説明したように、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む第3音声信号を、回転周波数より低い周波数成分を含む音声信号として生成する。 The frequency divider 35, filter 36, and amplifier circuit 37 of the circuit 30 generate an audio signal containing a frequency component lower than the rotational frequency of the motor 42 (S11). Specifically, as explained using FIGS. 3 to 5, the third audio signal containing a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 is rotated. It is generated as an audio signal containing frequency components lower than the frequency.
 次に、回路30は、生成した音声信号(つまり、第3音声信号)に基づく音声をスピーカ80から出力する(S12)。 Next, the circuit 30 outputs audio based on the generated audio signal (that is, the third audio signal) from the speaker 80 (S12).
 回路30のアイソレータ34、分周器35、フィルタ36及び増幅回路37は、掃除機100の電源がオンである間、ステップS11~S13を繰り返す。 The isolator 34, frequency divider 35, filter 36, and amplifier circuit 37 of the circuit 30 repeat steps S11 to S13 while the power of the vacuum cleaner 100 is on.
 これにより、掃除機100は、電源がオンである間、電動送風機40の回転周波数より低い周波数成分を含む音声信号に基づく音声をスピーカ80から出力することができる。 Thereby, while the power is on, the vacuum cleaner 100 can output sound based on the sound signal containing a frequency component lower than the rotational frequency of the electric blower 40 from the speaker 80.
 図7は、掃除機から発生する音の代表的なスペクトログラムを示す図である。図7では、音圧が所定の音圧より大きい音の成分のみ抽出したグラフであり、実際にはグラフで示している周波数以外の周波数成分の音も掃除機100から発生している。 FIG. 7 is a diagram showing a typical spectrogram of sound generated from a vacuum cleaner. FIG. 7 is a graph in which only sound components whose sound pressure is higher than a predetermined sound pressure are extracted, and in reality, sounds with frequency components other than those shown in the graph are also generated from the vacuum cleaner 100.
 図7に示すように、時刻t0において掃除機100のモータ42がオンにされると、電動送風機40は、回転周波数f1で定速になるようにモータ42の回転周波数が制御される。掃除機100の動作音は、モータ42の回転周波数と等しい周波数成分の音をより多く含む。このため、掃除機100の動作音の周波数は、時刻t0の直後から周波数f1になるまで上昇し、周波数f1で定常状態となる。回路30は、この回転周波数に合わせて、当該回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成し、当該音声信号に基づく音声をスピーカ80から出力する。このため、時刻t0の直後から周波数f1/4になるまで上昇する1/4倍音と、時刻t0の直後から周波数f1/2になるまで上昇する1/2倍音とを含む音声が出力される。 As shown in FIG. 7, when the motor 42 of the vacuum cleaner 100 is turned on at time t0, the rotation frequency of the motor 42 is controlled so that the electric blower 40 has a constant speed at the rotation frequency f1. The operating sound of the vacuum cleaner 100 includes more sounds with frequency components equal to the rotational frequency of the motor 42. Therefore, the frequency of the operation sound of the vacuum cleaner 100 increases until it reaches the frequency f1 immediately after time t0, and reaches a steady state at the frequency f1. The circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, audio including a 1/4 harmonic that rises to a frequency f1/4 immediately after time t0 and a 1/2 harmonic that rises to a frequency f1/2 immediately after time t0 is output.
 そして、時刻t1において掃除機100の第2モードがオンにされると、電動送風機40は、回転周波数f1よりも高い回転周波数f2で定速になるようにモータ42の回転周波数が制御される。このため、掃除機100の動作音の周波数は、時刻t1以降の期間において、周波数f1から周波数f2になるまで上昇し、周波数f2で定常状態となる。回路30は、この回転周波数に合わせて、当該回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成し、当該音声信号に基づく音声をスピーカ80から出力する。このため、時刻t1以降の期間において、周波数f1/4から周波数f2/4になるまで周波数が上昇する1/4倍音と、周波数f1/2から周波数f2/2になるまで周波数が上昇する1/2倍音とを含む音声が出力される。 Then, when the second mode of the vacuum cleaner 100 is turned on at time t1, the rotation frequency of the motor 42 is controlled so that the electric blower 40 is constant at a rotation frequency f2 higher than the rotation frequency f1. Therefore, the frequency of the operation sound of the vacuum cleaner 100 increases from frequency f1 to frequency f2 during the period after time t1, and reaches a steady state at frequency f2. The circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, in the period after time t1, there is a 1/4 overtone whose frequency increases from frequency f1/4 to frequency f2/4, and a 1/4 overtone whose frequency increases from frequency f1/2 to frequency f2/2. Audio including the second overtone is output.
 そして、時刻t2において掃除機100のモータ42がオフにされると、電動送風機40の回転周波数は0になるように制御される。このため、掃除機100の動作音の周波数は、時刻t2以降の期間において、周波数f2から0になるまで下降する。回路30は、この回転周波数に合わせて、当該回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成し、当該音声信号に基づく音声をスピーカ80から出力する。このため、時刻t2以降の期間において、周波数f2/4から0になるまで周波数が下降する1/4倍音と、周波数f2/2から0になるまで周波数が下降する1/2倍音とを含む音声が出力される。 Then, when the motor 42 of the vacuum cleaner 100 is turned off at time t2, the rotation frequency of the electric blower 40 is controlled to be zero. Therefore, the frequency of the operation sound of the vacuum cleaner 100 decreases from frequency f2 to 0 in the period after time t2. The circuit 30 generates an audio signal including a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency in accordance with this rotation frequency, and outputs audio based on the audio signal from the speaker 80. . Therefore, in the period after time t2, the sound includes a 1/4 overtone whose frequency decreases from frequency f2/4 to 0, and a 1/2 overtone whose frequency decreases from frequency f2/2 to 0. is output.
 なお、掃除機100のモータ42がオフにされると回路30は、音声信号を生成しなくてもよい。つまり、掃除機100のモータ42がオフにされると回路30もオフになってもよい。この場合、モータ42をオンにする操作と、掃除機100の電源をオンにする操作とは同じであり、モータ42をオフにする操作と、掃除機100の電源をオフにする操作とは同じである。 Note that when the motor 42 of the vacuum cleaner 100 is turned off, the circuit 30 does not need to generate the audio signal. That is, when motor 42 of vacuum cleaner 100 is turned off, circuit 30 may also be turned off. In this case, the operation of turning on the motor 42 and the operation of turning on the power of the vacuum cleaner 100 are the same, and the operation of turning off the motor 42 and the operation of turning off the power of the vacuum cleaner 100 are the same. It is.
 なお、回路30は、モータ42がオンである期間に、回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成する。つまり、回路30は、電動送風機40の回転周波数が変化している期間を含む期間において、スピーカ80から当該音声信号に基づく音声を出力させる。この場合、回路30は、モータ42がオンである期間、つまり、電動送風機40の回転周波数が変化している期間と、当該回転周波数が変化していない期間(回転周波数が定常状態である期間)との両方において、回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成する。 Note that the circuit 30 generates an audio signal that includes a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency while the motor 42 is on. In other words, the circuit 30 causes the speaker 80 to output audio based on the audio signal during a period including a period in which the rotational frequency of the electric blower 40 is changing. In this case, the circuit 30 operates during a period in which the motor 42 is on, that is, a period in which the rotational frequency of the electric blower 40 is changing, and a period in which the rotational frequency is not changing (a period in which the rotational frequency is in a steady state). In both cases, an audio signal containing a frequency component 1/4 times the rotation frequency and a frequency component 1/2 times the rotation frequency is generated.
 このように、電動送風機40の回転周波数が変化している期間において、変化している回転周波数に応じて周波数が変化する音声を付加されると、ユーザは、付加された音声に気づきやすい。このため、回転周波数が変化している期間を含む期間において、音声を出力することで、掃除機100に吸引力が発生していることをより効果的にユーザに知らせることができる。 In this way, when a sound whose frequency changes according to the changing rotational frequency is added during a period when the rotational frequency of the electric blower 40 is changing, the user is likely to notice the added sound. Therefore, by outputting the sound during a period including a period in which the rotational frequency is changing, it is possible to more effectively notify the user that suction force is being generated in the vacuum cleaner 100.
 よって、回路30は、モータ42がオンである期間のうち電動送風機40の回転周波数が変化している期間のみにおいて、回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む音声信号を生成し、生成した音声信号に基づく音声をスピーカ80から出力させるようにしてもよい。このように、付加された音声にユーザが気づきやすい期間のみに音声信号に基づく音声を出力することで、付加された音声にユーザが気づきにくい他の期間で音声信号の生成及び音声の出力を行わないことができる。よって、音声を付加する効果が低減することを抑制しつつ、消費電力を低減することができる。 Therefore, the circuit 30 includes a frequency component that is 1/4 times the rotation frequency and a frequency component that is 1/2 times the rotation frequency only during the period when the rotation frequency of the electric blower 40 is changing while the motor 42 is on. An audio signal may be generated and audio based on the generated audio signal may be output from the speaker 80. In this way, by outputting the audio based on the audio signal only during the period when the user is likely to notice the added audio, the audio signal can be generated and the audio can be output during other periods when the user is less likely to notice the added audio. There can be no. Therefore, it is possible to reduce power consumption while suppressing a reduction in the effect of adding audio.
 [3.効果など]
 本実施の形態に係る掃除機100によれば、スピーカ80と、電動送風機40と、回路30とを備える。電動送風機40は、回転することで掃除機100の吸引力を発生する。回路30は、電動送風機40の回転周波数を取得し、回転周波数より低い周波数成分を含む音声信号を生成し、スピーカ80から音声信号に基づく音声を出力させる。
[3. Effects, etc.]
The vacuum cleaner 100 according to the present embodiment includes a speaker 80, an electric blower 40, and a circuit 30. The electric blower 40 generates the suction force of the vacuum cleaner 100 by rotating. The circuit 30 acquires the rotational frequency of the electric blower 40, generates an audio signal containing a frequency component lower than the rotational frequency, and causes the speaker 80 to output audio based on the audio signal.
 これによれば、掃除機100は、回転周波数より低い周波数の音声信号に基づく音声をスピーカ80から出力する。このように、回転周波数より低い周波数の音声を出力することで、ユーザに違和感を与えないように、掃除機100に吸引力が発生していることをユーザに効果的に知らせることができる。 According to this, the vacuum cleaner 100 outputs sound from the speaker 80 based on the sound signal of a frequency lower than the rotation frequency. In this way, by outputting the sound having a frequency lower than the rotation frequency, it is possible to effectively notify the user that the vacuum cleaner 100 is generating suction force without giving the user a sense of discomfort.
 ここで、掃除機100の動作音は、電動送風機40が動作することにより発生する音と、空気を吸い込むことにより発生する音とを含む。電動送風機40が動作することにより発生する音は、空気を吸い込むことにより発生する音よりも低い音である。本実施の形態に係る掃除機100は、回転周波数より低い周波数の音声をスピーカ80から出力するため、空気を吸い込むことにより発生する音よりも、電動送風機40が動作することにより発生する音をより効果的に強調することができる。つまり、ユーザに違和感を与えないように、電動送風機40の動作状態をより強調するための音声をスピーカ80から出力することができる。 Here, the operation sound of the vacuum cleaner 100 includes the sound generated by the operation of the electric blower 40 and the sound generated by sucking air. The sound generated by operating the electric blower 40 is lower than the sound generated by sucking air. Since the vacuum cleaner 100 according to the present embodiment outputs sound at a frequency lower than the rotational frequency from the speaker 80, the sound generated by the operation of the electric blower 40 is more effective than the sound generated by sucking air. Can be emphasized effectively. In other words, the speaker 80 can output audio to further emphasize the operating state of the electric blower 40 so as not to make the user feel uncomfortable.
 また、掃除機100では、発生している騒音の低減が目的ではないため、騒音の逆相の音声を出力する必要がない。このため、騒音をマイクで取得する必要がなく、騒音の逆相の音声になるように音声信号を調整する必要がない。 Furthermore, since the purpose of the vacuum cleaner 100 is not to reduce the noise being generated, there is no need to output audio that is in the opposite phase of the noise. Therefore, there is no need to capture the noise with a microphone, and there is no need to adjust the audio signal so that the audio is in the opposite phase of the noise.
 また、本実施の形態に係る掃除機100において、音声信号は、回転周波数の音声の2のn乗分の1倍(nは自然数)の周波数成分を含む。 Furthermore, in the vacuum cleaner 100 according to the present embodiment, the audio signal includes a frequency component that is 1 times the rotational frequency of the audio to the nth power of 2 (n is a natural number).
 これによれば、電動送風機40から発生する動作音は、電動送風機40の回転周波数の周波数成分を含むため、動作音に対する2のn乗分の1倍音を含む音声をスピーカ80から出力することで、動作音を音声の倍音とすることができる。これにより、より効果的にユーザに与える違和感を低減された音声で、掃除機100に吸引力が発生していることをユーザに知らせることができる。 According to this, since the operating sound generated from the electric blower 40 includes a frequency component of the rotation frequency of the electric blower 40, the speaker 80 can output a sound containing one harmonic of 2 to the nth power with respect to the operating sound. , the operation sound can be made into an overtone of the voice. Thereby, it is possible to more effectively notify the user that suction force is being generated in the vacuum cleaner 100 using a sound that reduces the discomfort that the user feels.
 また、本実施の形態に係る掃除機100は、さらに、筐体10と、ヘッド90と、吸引管70とを備える。筐体10は、電動送風機40を収容する。ヘッド90は、吸引力により塵埃を吸引する吸引口92を有する。吸引管70は、筐体10とヘッド90とを接続する。スピーカ80は、吸引管70に配置されている。 Additionally, the vacuum cleaner 100 according to the present embodiment further includes a housing 10, a head 90, and a suction tube 70. The housing 10 accommodates an electric blower 40. The head 90 has a suction port 92 that sucks dust using suction force. The suction tube 70 connects the housing 10 and the head 90. Speaker 80 is placed in suction tube 70 .
 これによれば、吸引管70にスピーカ80を配置するため、吸引管70でスピーカ80からの音声を共鳴させて、音声を増幅させることができる。よって、ユーザに違和感を与えないように、掃除機100に吸引力が発生していることをより効果的にユーザに知らせることができる。 According to this, since the speaker 80 is arranged in the suction tube 70, the voice from the speaker 80 can be resonated with the suction tube 70, and the voice can be amplified. Therefore, it is possible to more effectively notify the user that suction force is being generated in the vacuum cleaner 100 without giving the user a sense of discomfort.
 また、本実施の形態に係る掃除機100は、さらに、ユーザからの音声の出力のオンオフを切り替える操作を受け付ける操作部20を備える。回路30のCPU31は、操作部20により受け付けられた操作に応じて、音声信号のスピーカ80への出力のオンオフを切り替える。 Further, the vacuum cleaner 100 according to the present embodiment further includes an operation unit 20 that receives an operation from the user to turn on/off the output of the sound. The CPU 31 of the circuit 30 switches output of the audio signal to the speaker 80 on and off in accordance with the operation accepted by the operation unit 20.
 これによれば、ユーザは、操作部20を操作することで、ユーザの必要に応じて音声の出力をオンオフできるため、ユーザの嗜好に合わせて音声の出力をオンオフできる。 According to this, the user can turn on and off the audio output according to the user's needs by operating the operation unit 20, so the audio output can be turned on and off according to the user's preference.
 [4.変形例]
 (変形例1)
 上記実施の形態に係る掃除機100では、スピーカ80は、吸引管70に配置されるとしたが、これに限らずに、筐体10に配置されてもよい。
[4. Modified example]
(Modification 1)
In the vacuum cleaner 100 according to the embodiment described above, the speaker 80 is arranged in the suction pipe 70, but the present invention is not limited thereto, and the speaker 80 may be arranged in the housing 10.
 図8は、変形例1に係る掃除機の外観の一例を示す図である。 FIG. 8 is a diagram showing an example of the appearance of a vacuum cleaner according to Modification 1.
 掃除機101は、実施の形態の掃除機100と比較してスピーカ80が配置される位置が異なるだけであり、他の構成は掃除機100と同様である。図8に示すように、掃除機101は、スピーカ80が筐体10に配置されている。 The vacuum cleaner 101 differs from the vacuum cleaner 100 of the embodiment only in the position where the speaker 80 is arranged, and the other configurations are the same as the vacuum cleaner 100. As shown in FIG. 8, in the vacuum cleaner 101, a speaker 80 is arranged in the housing 10.
 これによれば、動作音の音源となる電動送風機40が収容されている筐体10にスピーカ80が配置されるため、動作音の音源の位置に近い位置から音声を出力することができる。よって、ユーザにより違和感を与えないように、掃除機101に吸引力が発生していることをユーザに効果的に知らせることができる。 According to this, since the speaker 80 is arranged in the housing 10 that houses the electric blower 40 that is the source of the operating sound, the sound can be output from a position close to the source of the operating sound. Therefore, it is possible to effectively notify the user that suction force is being generated in the vacuum cleaner 101 so as not to make the user feel uncomfortable.
 (変形例2)
 上記実施の形態に係る掃除機100では、スピーカ80は、吸引管70に配置されるとしたが、これに限らずに、ヘッド90に配置されてもよい。
(Modification 2)
In the vacuum cleaner 100 according to the embodiment described above, the speaker 80 is arranged in the suction pipe 70, but the speaker 80 is not limited thereto, and may be arranged in the head 90.
 図9は、変形例2に係る掃除機の外観の一例を示す図である。 FIG. 9 is a diagram showing an example of the appearance of a vacuum cleaner according to Modification 2.
 掃除機102は、実施の形態の掃除機100と比較してスピーカ80が配置される位置が異なるだけであり、他の構成は掃除機100と同様である。図9に示すように、掃除機102は、スピーカ80がヘッド90に配置されている。 The vacuum cleaner 102 differs from the vacuum cleaner 100 of the embodiment only in the position where the speaker 80 is placed, and the other configurations are the same as the vacuum cleaner 100. As shown in FIG. 9, in the vacuum cleaner 102, a speaker 80 is arranged on a head 90.
 これによれば、ヘッド90には回転ブラシ91が配置されているため、回転ブラシ91が床面に当たることでヘッド90から騒音が発生する。本態様における掃除機102は、ヘッド90にスピーカ80が配置されるため、ヘッド90から音声を出力することで、回転ブラシ91により生じる騒音を効果的にマスクすることができる。よって、ユーザにより違和感を与えないように、掃除機102に吸引力が発生していることをユーザに効果的に知らせることができる。 According to this, since the rotating brush 91 is arranged on the head 90, noise is generated from the head 90 when the rotating brush 91 hits the floor surface. In the vacuum cleaner 102 in this embodiment, the speaker 80 is arranged in the head 90, so that the noise generated by the rotating brush 91 can be effectively masked by outputting sound from the head 90. Therefore, it is possible to effectively notify the user that suction force is being generated in the vacuum cleaner 102 so as not to make the user feel uncomfortable.
 (変形例3)
 上記実施の形態及び変形例1、2に係る掃除機100、101、102は、スティック型の掃除機であるとしたが、これに限らずに、筐体が床面を移動し、かつ、筐体と吸引管とが可撓管で接続されているキャニスター型の掃除機であってもよい。また、筐体とヘッドが直接接続されている可搬型(ハンディ型)の掃除機であってもよい。
(Modification 3)
Although the vacuum cleaners 100, 101, and 102 according to the above-described embodiments and modifications 1 and 2 are stick-type vacuum cleaners, the casing is not limited to this, and the casing moves on the floor. It may also be a canister type vacuum cleaner in which the body and the suction pipe are connected through a flexible pipe. Alternatively, it may be a portable (handy type) vacuum cleaner in which the casing and the head are directly connected.
 (変形例4)
 上記実施の形態及び変形例1、2に係る掃除機100、101、102は、サイクロン方式の掃除機であるとしたが、これに限らずに、容器60の代わりに塵埃を貯める紙パックが利用される紙パック式の掃除機であってもよい。
(Modification 4)
Although the vacuum cleaners 100, 101, and 102 according to the above embodiments and modifications 1 and 2 are cyclone type vacuum cleaners, the present invention is not limited to this, and instead of the container 60, a paper pack for storing dust may be used. It may also be a paper bag type vacuum cleaner.
 (変形例5)
 上記実施の形態及び変形例1、2に係る掃除機100、101、102は、アイソレータ34、分周器35、フィルタ36、及び、増幅回路37を含むハードウェア回路により音声信号を生成するとしたがこれに限らずに、CPU31を用いてソフトウェアによるデジタル処理により音声信号を生成してもよい。具体的には、CPU31は、モータドライバ33からモータ42への回転信号を取得する。CPU31は、入力された回転信号から、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む第1音声信号を生成する。具体的には、CPU31は、デューティ比が1/3の回転信号を1/4分周することで、回転信号の周波数が1/4に変換された第1音声信号を生成する。そして、CPU31は、モータ42の回転周波数の3/4倍の周波数成分より高い周波数帯域をカットする。CPU31は、第1音声信号に対して、上記の周波数帯域をカットすることで、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む第2音声信号を生成する。CPU31は、第2音声信号の振幅を増幅させ、増幅後の第3音声信号を、音声信号としてスピーカ80に出力する。
(Modification 5)
It is assumed that the vacuum cleaners 100, 101, and 102 according to the above-described embodiments and modifications 1 and 2 generate audio signals using a hardware circuit including an isolator 34, a frequency divider 35, a filter 36, and an amplifier circuit 37. The present invention is not limited to this, and the audio signal may be generated by digital processing using software using the CPU 31. Specifically, the CPU 31 obtains a rotation signal from the motor driver 33 to the motor 42 . The CPU 31 generates a first audio signal including a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42 from the input rotation signal. Specifically, the CPU 31 generates a first audio signal in which the frequency of the rotation signal is converted to 1/4 by frequency-dividing the rotation signal with a duty ratio of 1/3 to 1/4. Then, the CPU 31 cuts a frequency band higher than a frequency component that is 3/4 times the rotational frequency of the motor 42. The CPU 31 cuts the above-mentioned frequency band from the first audio signal to generate a second audio signal including a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. generate. The CPU 31 amplifies the amplitude of the second audio signal and outputs the amplified third audio signal to the speaker 80 as an audio signal.
 また、CPU31は、モータ42の回転周波数を取得し、取得した回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分を含む第3音声信号をデジタル処理により生成し、回転周波数の1/4倍音及び1/2倍音を含む音声をスピーカ80から出力させてもよい。 Further, the CPU 31 acquires the rotational frequency of the motor 42, generates by digital processing a third audio signal including a frequency component 1/4 times the acquired rotational frequency and a frequency component 1/2 times the acquired rotational frequency, and generates a third audio signal containing a frequency component 1/4 times the acquired rotational frequency. The speaker 80 may output audio including 1/4 overtones and 1/2 overtones.
 (変形例6)
 上記実施の形態及び変形例1、2に係る掃除機100、101、102では、回路30が、モータ42の回転周波数の1/4倍の周波数成分、及び、1/2倍の周波数成分を含む音声信号を生成するとしたが、これに限らずに、モータ42の回転周波数より低い周波数成分を含む音声信号を生成すればよい。回路30は、回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分の少なくとも1つを含む音声信号を、スピーカ80に音声を出力させるための音声信号として生成してもよい。また、回路30は、回転周波数の1/4倍の周波数成分及び1/2倍の周波数成分、以外の周波数成分であって、モータ42の回転周波数より低い周波数成分を含む音声信号を、スピーカ80に音声を出力させるための音声信号として生成してもよい。
(Modification 6)
In the vacuum cleaners 100, 101, and 102 according to the above-described embodiments and modifications 1 and 2, the circuit 30 includes a frequency component that is 1/4 times the rotation frequency of the motor 42 and a frequency component that is 1/2 times the rotation frequency of the motor 42. Although it is assumed that an audio signal is generated, the present invention is not limited to this, and an audio signal that includes a frequency component lower than the rotational frequency of the motor 42 may be generated. The circuit 30 may generate an audio signal containing at least one of a frequency component 1/4 times the rotation frequency and a frequency component 1/2 times the rotation frequency as an audio signal for causing the speaker 80 to output sound. Further, the circuit 30 transmits an audio signal to the speaker 80 that includes a frequency component other than the frequency component that is 1/4 times the rotation frequency and the frequency component that is 1/2 times the rotation frequency, and that is lower than the rotation frequency of the motor 42. It may also be generated as an audio signal for outputting audio.
 (変形例7)
 上記実施の形態及び変形例1、2に係る掃除機100、101、102は、分周器35により生成された第1音声信号に対して、モータ42の回転周波数の3/4倍の周波数成分より高い周波数帯域をカットするフィルタ処理を行うとしたが、フィルタ処理を行わなくてもよい。
(Modification 7)
The vacuum cleaners 100, 101, and 102 according to the embodiments and modifications 1 and 2 have a frequency component that is 3/4 times the rotational frequency of the motor 42 for the first audio signal generated by the frequency divider 35. Although filter processing is performed to cut higher frequency bands, it is not necessary to perform filter processing.
 また、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Furthermore, in the above embodiments, each component may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、各構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Additionally, each component may be a circuit (or integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Further, each of these circuits may be a general-purpose circuit or a dedicated circuit.
 また、本開示の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及びコンピュータ読み取り可能な非一時的な記録媒体の任意な組み合わせで実現されてもよい。 Further, general or specific aspects of the present disclosure may be implemented in a system, apparatus, method, integrated circuit, computer program, or non-transitory storage medium such as a computer-readable CD-ROM. Additionally, the present invention may be implemented in any combination of systems, devices, methods, integrated circuits, computer programs, and computer-readable non-transitory storage media.
 例えば、本開示は、コントローラ(コンピュータまたはDSP)が実行する音声出力方法として実現されてもよいし、上記音声出力方法をコンピュータまたはDSPに実行させるためのプログラムとして実現されてもよい。 For example, the present disclosure may be realized as an audio output method executed by a controller (computer or DSP), or may be realized as a program for causing a computer or DSP to execute the audio output method.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 Other embodiments may be obtained by making various modifications to each embodiment that a person skilled in the art would think of, or may be realized by arbitrarily combining the components and functions of each embodiment without departing from the spirit of the present disclosure. These forms are also included in the present disclosure.
 本開示は、吸引力が発生していることを効果的にユーザに知らせることができる掃除機などとして有用である。 The present disclosure is useful as a vacuum cleaner or the like that can effectively notify the user that suction force is being generated.
 10  筐体
 20  操作部
 30  回路
 31  CPU
 33  モータドライバ
 34  アイソレータ
 35  分周器
 36  フィルタ
 37  増幅回路
 40  電動送風機
 41  ファン
 42  モータ
 50  塵埃センサ
 60  容器
 70  吸引管
 80  スピーカ
 90  ヘッド
 91  回転ブラシ
 92  吸引口
100、101、102  掃除機
10 housing 20 operation unit 30 circuit 31 CPU
33 Motor driver 34 Isolator 35 Frequency divider 36 Filter 37 Amplifier circuit 40 Electric blower 41 Fan 42 Motor 50 Dust sensor 60 Container 70 Suction pipe 80 Speaker 90 Head 91 Rotating brush 92 Suction port 100, 101, 102 Vacuum cleaner

Claims (9)

  1.  掃除機であって、
     スピーカと、
     回転することで前記掃除機の吸引力を発生する電動送風機と、
     前記電動送風機の回転周波数より低い周波数の音声信号を生成し、前記スピーカから前記音声信号に基づく音声を出力させるコントローラと、を備える
     掃除機。
    A vacuum cleaner,
    speaker and
    an electric blower that generates suction power for the vacuum cleaner by rotating;
    A vacuum cleaner, comprising: a controller that generates an audio signal with a frequency lower than the rotational frequency of the electric blower, and causes the speaker to output audio based on the audio signal.
  2.  前記音声信号は、前記回転周波数の2のn乗分の1倍(nは自然数)の周波数成分を含む
     請求項1に記載の掃除機。
    The vacuum cleaner according to claim 1, wherein the audio signal includes a frequency component that is 1 times the nth power of 2 (n is a natural number) of the rotation frequency.
  3.  前記コントローラは、前記回転周波数が変化している期間を含む期間において、前記スピーカから前記音声を出力する
     請求項1に記載の掃除機。
    The vacuum cleaner according to claim 1, wherein the controller outputs the sound from the speaker during a period including a period in which the rotation frequency is changing.
  4.  前記コントローラは、前記回転周波数が変化している期間を含む期間において、前記音声を出力する
     請求項2に記載の掃除機。
    The vacuum cleaner according to claim 2, wherein the controller outputs the sound during a period including a period in which the rotation frequency is changing.
  5.  さらに、
     前記電動送風機を収容する筐体を備え、
     前記スピーカは、前記筐体に配置されている
     請求項1から4のいずれか1項に記載の掃除機。
    moreover,
    comprising a casing that accommodates the electric blower,
    The vacuum cleaner according to any one of claims 1 to 4, wherein the speaker is arranged in the housing.
  6.  さらに、
     前記電動送風機を収容する筐体と、
     塵埃を吸引する吸引口と、塵埃を前記吸引口へ案内する回転ブラシとを有するヘッドと、を備え、
     前記スピーカは、前記ヘッドに配置されている
     請求項1から4のいずれか1項に記載の掃除機。
    moreover,
    A casing that houses the electric blower;
    A head having a suction port that sucks dust and a rotating brush that guides the dust to the suction port,
    The vacuum cleaner according to any one of claims 1 to 4, wherein the speaker is arranged on the head.
  7.  さらに、
     前記電動送風機を収容する筐体と、
     塵埃を吸引する吸引口を有するヘッドと、
     前記筐体と前記ヘッドとを接続する吸引管と、を備え、
     前記スピーカは、前記吸引管に配置されている
     請求項1から4のいずれか1項に記載の掃除機。
    moreover,
    A casing that houses the electric blower;
    A head with a suction port that sucks out dust;
    a suction tube connecting the casing and the head,
    The vacuum cleaner according to any one of claims 1 to 4, wherein the speaker is arranged in the suction tube.
  8.  さらに、
     ユーザからの前記音声の出力のオンオフを切り替える操作を受け付ける入力インタフェースを備え、
     前記コントローラは、前記入力インタフェースにより受け付けられた前記操作に応じて、前記音声信号の前記スピーカへの出力のオンオフを切り替える
     請求項1から4のいずれか1項に記載の掃除機。
    moreover,
    comprising an input interface that accepts an operation from a user to switch on/off the output of the audio,
    The vacuum cleaner according to any one of claims 1 to 4, wherein the controller switches output of the audio signal to the speaker on and off in response to the operation accepted by the input interface.
  9.  掃除機による音声出力方法であって、
     回転することで前記掃除機の吸引力を発生する電動送風機の回転周波数より低い周波数の音声信号を生成し、
     前記掃除機が備えるスピーカから前記音声信号に基づく音声を出力させる
     音声出力方法。
    A voice output method using a vacuum cleaner,
    Generating an audio signal with a frequency lower than the rotational frequency of an electric blower that generates the suction force of the vacuum cleaner by rotating;
    An audio output method comprising: outputting audio based on the audio signal from a speaker included in the vacuum cleaner.
PCT/JP2023/002426 2022-05-31 2023-01-26 Cleaning machine and sound output method WO2023233703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088317 2022-05-31
JP2022-088317 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023233703A1 true WO2023233703A1 (en) 2023-12-07

Family

ID=89025982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002426 WO2023233703A1 (en) 2022-05-31 2023-01-26 Cleaning machine and sound output method

Country Status (1)

Country Link
WO (1) WO2023233703A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197324A (en) * 1990-11-29 1992-07-16 Sanyo Electric Co Ltd Vacuum cleaner which can conduct voice expression by means of speaker
JPH09193506A (en) * 1996-01-22 1997-07-29 Fuji Xerox Co Ltd Apparatus and method for masking noise in image forming apparatus
JP2007195791A (en) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd Vacuum cleaner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197324A (en) * 1990-11-29 1992-07-16 Sanyo Electric Co Ltd Vacuum cleaner which can conduct voice expression by means of speaker
JPH09193506A (en) * 1996-01-22 1997-07-29 Fuji Xerox Co Ltd Apparatus and method for masking noise in image forming apparatus
JP2007195791A (en) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd Vacuum cleaner

Similar Documents

Publication Publication Date Title
US20100202626A1 (en) Control device, control method and control program
JP3525658B2 (en) Operation controller for air purifier
JP2685917B2 (en) Silencer
CN101822071A (en) Noise cancel headphone
JPH1069369A (en) Notebook computer speaker
CN101246684A (en) Electric system for actively eliminating noise
JPH0484921A (en) Vacuum cleaner
WO2023233703A1 (en) Cleaning machine and sound output method
JPH0630860A (en) Vacuum cleaner
JP2844987B2 (en) Electric vacuum cleaner
JPH06209818A (en) Quiet sound drier
JP2000166832A (en) Vacuum cleaner
JP2741951B2 (en) Electric vacuum cleaner
JPH05253148A (en) Vacuum cleaner
JPH0458929A (en) Cleaner
JP2000300485A (en) Vacuum cleaner
JP2005223385A (en) Electroacoustic reproducing device
JP2013025721A (en) Electronic equipment and device for driving cooling fan
JP3096899U (en) Ultrasonic fan
JP3244199B2 (en) Electric vacuum cleaner
JP2000201864A (en) Vacuum cleaner
JPH04215733A (en) Cleaner
JPH0568458U (en) Vacuum cleaner
JP2007185413A (en) Vacuum cleaner
JPH057536A (en) Standing type vacuum cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815467

Country of ref document: EP

Kind code of ref document: A1