WO2023233701A1 - Bubble generation device and bubble generation system - Google Patents

Bubble generation device and bubble generation system Download PDF

Info

Publication number
WO2023233701A1
WO2023233701A1 PCT/JP2023/002073 JP2023002073W WO2023233701A1 WO 2023233701 A1 WO2023233701 A1 WO 2023233701A1 JP 2023002073 W JP2023002073 W JP 2023002073W WO 2023233701 A1 WO2023233701 A1 WO 2023233701A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
diaphragm
bubble generator
liquid tank
bubble
Prior art date
Application number
PCT/JP2023/002073
Other languages
French (fr)
Japanese (ja)
Inventor
克己 藤本
興▲イ▼ 寧
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023233701A1 publication Critical patent/WO2023233701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction

Definitions

  • the present disclosure relates to a bubble generation device and a bubble generation system.
  • the bubble generator described in International Publication No. 2021/245995 includes a diaphragm, a cylindrical body, and a piezoelectric element, and vibrates the diaphragm with the piezoelectric element through the cylindrical body.
  • Microscopic air bubbles are generated from multiple openings formed in the diaphragm.
  • the cylindrical body is connected to the first cylindrical body, the spring part, and the second cylindrical body. It has a structure including a cylindrical body and a flange.
  • the size of the diaphragm is determined by the amount of bubbles to be generated, the diameter of the first cylindrical body is determined, and the circumference of the second cylindrical body, which has a larger diameter than the first cylindrical body, is determined. Since the structure includes a circular flange, it has been difficult to downsize. Further, since a hollow circular piezoelectric element is provided on the lower surface of the flange, it is difficult to reduce the area of the piezoelectric element and reduce manufacturing costs.
  • an object of the present disclosure is to provide a bubble generation device and a bubble generation system that can reduce the size and cost of the device.
  • a bubble generating device is a bubble generating device that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank, in which a plurality of openings are formed and a first surface is
  • the device includes a diaphragm that is in contact with the liquid in the liquid tank and whose second surface is in contact with the gas, a vibrating body that supports the diaphragm, and a piezoelectric element that is provided on the vibrating body and vibrates the diaphragm.
  • the vibrating body includes a first cylindrical body that supports a diaphragm at one end, and a second cylindrical body that supports the other end of the first cylindrical body. The diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter on the side supported by the second cylindrical body.
  • a bubble generation system includes the above-described bubble generation device and a liquid tank.
  • the diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter of the side supported by the second cylindrical body, so that the second cylindrical body vibrates.
  • the device can be made smaller and lower in cost without being restricted by the size of the plate.
  • FIG. 1 is a schematic diagram of a bubble generation system in which the bubble generation device according to Embodiment 1 is used.
  • 1 is a cross-sectional perspective view of the bubble generator according to Embodiment 1.
  • FIG. FIG. 3 is a schematic diagram for explaining displacement of the bubble generator according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining the structure and displacement of a vibrating body.
  • FIG. 3 is a diagram showing the structure of a vibrating body and numerical values of displacement.
  • FIG. 3 is a diagram showing numerical values of displacement of the bubble generator according to the first embodiment. It is a schematic diagram for explaining displacement of a head part.
  • It is a schematic diagram of a bubble generation system for explaining the attachment position of a bubble generation device.
  • FIG. 2 is a cross-sectional perspective view of a bubble generator according to a second embodiment.
  • 7 is a graph showing vibration modes of the bubble generator according to Embodiment 2.
  • FIG. It is a graph showing displacement distribution of each vibration mode. It is a schematic diagram for explaining the shape of a head part. 7 is a graph showing a displacement distribution of a lower plane position of a ring portion that is joined to a diaphragm of a vibrating body head portion. It is a figure which shows the numerical value of the displacement of a head part of different shapes. It is a graph showing impedance characteristics in water when the head section is vibrated in the first vibration mode. It is a graph which shows the impedance characteristic in water when a head part is vibrated in a 2nd vibration mode.
  • FIG. 3 is a cross-sectional perspective view of a bubble generator according to a third embodiment.
  • FIG. 3 is a schematic diagram of a bubble generation system in which a bubble generation device according to a third embodiment is used.
  • FIG. 7 is a schematic diagram for explaining displacement of the bubble generator according to Embodiment 3.
  • FIG. 7 is a schematic diagram for explaining a fastening mechanism of a bubble generator according to a third embodiment.
  • FIG. 1 is a schematic diagram of a bubble generation system 100 in which a bubble generation device 1 according to Embodiment 1 is used.
  • the bubble generator 1 shown in FIG. 1 is installed at the bottom of a liquid tank 10 that stores liquid such as water, gasoline, or light oil, and is used as a bubble generator system 100 that generates fine bubbles 200 in the liquid in the liquid tank 10. used.
  • the bubble generation system 100 can be applied to various systems such as, for example, a water purification device, a wastewater treatment device, a fish culture tank, and a fuel injection device.
  • the liquid introduced into the liquid tank 10 differs depending on the system to which it is applied, and if it is a water purification device, it will be water, but if it is a fuel injection device, it will be liquid fuel. Further, the liquid tank 10 only needs to be able to temporarily store liquid, and includes a pipe into which the liquid is introduced, in which the liquid always flows.
  • the bubble generator 1 includes a diaphragm 2, a vibrating body 3, and a piezoelectric element 4.
  • the bubble generator 1 is attached to the liquid tank 10 by joining the holding flange 5 provided in a hole made in the bottom of the liquid tank 10 and the flange 36 (see FIG. 2) provided on the outside of the cylindrical body 33 of the vibrating body 3. Fixed. Note that instead of a structure in which the holding flange 5 and the flange 36 are separated, a structure in which the holding flange 5 and the flange 36 are integrally molded and provided on the liquid tank 10 side or the vibrating body 3 side may be used.
  • a part of the vibrating body 3 provided with the vibrating plate 2 is immersed in the liquid.
  • fine bubbles 200 are generated from a plurality of pores (openings) formed in the diaphragm 2.
  • the diaphragm 2 is provided so that one surface (first surface) is in contact with the liquid in the liquid tank 10 and the other surface (second surface) is in contact with the gas.
  • the diaphragm 2 is formed of, for example, a resin plate, a metal plate, a Si or SOI (Silicon On Insulator) substrate, a porous ceramic plate, a glass plate, or the like.
  • the diameter of the diaphragm 2 is 9 mm, and the thickness of the diaphragm 2 is thinner at the center than at the periphery.For example, the thickness at the periphery is 0.15 mm, and the thickness at the center is 0.15 mm. The thickness is 0.05 mm.
  • the diaphragm 2 has 185 openings in its thinner central portion.
  • FIG. 2 is a cross-sectional perspective view of the bubble generator 1 according to the first embodiment.
  • a diaphragm 2 is vibrated by a piezoelectric element 4 via a vibrating body 3.
  • the vibrating body 3 shown in FIG. 1 includes a head portion 31, a spring portion 32, a cylindrical body 33, and a collar portion 34.
  • the vibrating body 3 may have a structure in which the head portion 31, the spring portion 32, the cylindrical body 33, and the collar portion 34 are integrally formed, or may have a structure in which they are formed separately and joined.
  • the spring portion 32 is supported by a cylindrical body 33 at a position outside the position where the head portion 31 is supported.
  • the cylindrical body 33 has a cylindrical shape.
  • the cylindrical body 33 supports the spring portion 32 at one end.
  • the end of the cylindrical body 33 on the opposite side to the spring portion 32 is supported by the collar portion 34 .
  • the flange portion 34 is a plate-shaped member that supports the bottom surface of the cylindrical body 33 and extends outward from the position where the cylindrical body 33 is supported.
  • a hollow circular piezoelectric element 4 is provided on the lower surface of the flange 34 to match the shape of the flange 34.
  • the piezoelectric element 4 is electrically connected to the controller 20 shown in FIG. 1 by wiring.
  • the piezoelectric element 4 vibrates in the penetrating direction of the cylindrical body 33 (vertical direction in the figure).
  • the piezoelectric element 4 vibrates in the penetrating direction of the cylindrical body 33, thereby causing the spring portion 32 to vibrate in the penetrating direction of the cylindrical body 33, thereby displacing the head portion 31 substantially uniformly in the vertical direction.
  • the piezoelectric element 4 may be provided on the upper surface of the collar portion 34.
  • the inside of the cylindrical body 33 and the through hole 35 provided in the head part 31 are connected, and the inside of the cylindrical body 33 and the through hole 35 serve as an introduction part for introducing gas into the diaphragm 2.
  • the head portion 31 has a disk-shaped depression 310 on the surface (second surface) that supports the diaphragm 2, and the depression 310 communicates with a through hole 35 provided on the central axis of the truncated cone. . Therefore, gas is introduced from the through hole 35 into the depression 310, and from the depression 310, the gas is introduced into the liquid through the opening of the diaphragm 2. Note that the gas may be introduced into the through hole 35 by using a compressor or the like, or by natural intake.
  • the depression 310 can be formed by joining the ring member to the solid material in the shape of a truncated cone in which the through hole 35 is formed. may be formed.
  • a flange 36 is provided on the outside of the cylindrical body 33, and the bubble generator 1 is fixed to the liquid tank 10 by joining the flange 36 and the holding flange 5.
  • the side surface of the cylindrical body 33 on which the flange 36 is formed serves as a vibration node, and is used to hold the liquid side and the gas side together with the flange 36 without transmitting the vibrations of the piezoelectric element 4 to the liquid tank 10. They can be separated by a flange 5.
  • FIG. 3 is a schematic diagram for explaining the displacement that occurs in the bubble generator 1 according to the first embodiment.
  • the X and Z directions in the figure indicate the lateral direction and height direction of the bubble generator 1, respectively.
  • the one-dot chain line shown in FIG. 3 is a portion passing through the central axis of the bubble generator 1.
  • the piezoelectric element 4 vibrates in the Z direction of the cylindrical body 33
  • the spring part 32 that supports the head part 31 is elastically deformed, and the vibration plate 2 is moved in the Z direction. It is being displaced.
  • the magnitude of displacement is indicated by the shade of hatching.
  • the head portion 31 has a truncated conical shape and has a surface supported by a spring portion 32
  • the diaphragm 2 is supported on the wider surface (second surface) than the first surface.
  • FIG. 4 is a schematic diagram for explaining the structure and displacement of the vibrating body.
  • the vibrator performance of the vibrating body 3a shown in FIG. 4 has a head portion 31z having a T-shaped cross section as a preliminary step to examining the head portion 31 having a truncated conical shape.
  • FIG. 4(a) is a diagram showing the displacement of the vibrating body 3a
  • FIG. 4(b) is a diagram explaining the structure of the vibrating body 3a.
  • the factors that determine the resonance frequency of the vibrating body 3a are the stroke of the spring portion 32 and the thickness of the spring portion 32.
  • the stroke of the spring portion 32 is determined by the holding position B1 of the head portion 31 in the spring portion 32 and the diameter Rb of the cylindrical body 33 shown in FIG. 4(b).
  • the holding position B1 of the head part 31z will be the same as the diameter Ra of the diaphragm 2, but if the head part 31z has a T-shaped cross section, the diaphragm 2
  • the holding position B1 of the head portion 31z can be changed without being restricted by the diameter Ra.
  • the holding position B1 of the head portion 31 cannot be made smaller than the through hole.
  • the diameter Rc of the through hole is set to the holding position B1 of the head section 31, if the stroke and thickness of the spring section 32 are set to achieve the same resonance frequency, then when the shape of the head section 31z is cylindrical, The diameters of the cylindrical body 33 and the flange portion 34 are smaller than those shown in FIG. That is, the inner diameter of the piezoelectric element 4 for excitation can be reduced.
  • FIG. 5 is a diagram showing the structure of the vibrating body and numerical values of displacement.
  • FIG. 5(a) shows displacements A1 to A3, resonance frequency Fr, electromechanical coupling coefficient k, and The ratio (A2/A3) between displacement A2 and displacement A3 is shown.
  • FIG. 5(b) shows displacements A1 to A3, resonance frequency Fr, electromechanical coupling coefficient k, and The ratio (A2/A3) between displacement A2 and displacement A3 is shown. Note that the ratio (A2/A3) between the displacement A2 and the displacement A3 is an index indicating that the diaphragm 2 is vibrating uniformly.
  • the results shown in FIG. 5 are based on a porous alumina diaphragm 2 with a diameter Ra of 9 mm and a thickness of 1 mm, a head portion 31z with a thickness of 0.5 mm and a height of 3 mm, and the length from the hole to the end ( This is the result of a simulation in which a spring portion 32 with a maximum stroke of 5 mm and a thickness of 2.5 mm is combined.
  • the cylindrical body 33 has an inner diameter of 12 mm and a thickness of 1.5 mm
  • the collar portion 34 has an outer diameter of 24.4 mm and a thickness of 2.5 mm.
  • the head portion 31z, the spring portion 32, the cylindrical body 33, and the collar portion 34 are made of SUS metal.
  • the piezoelectric element 4 has an outer diameter of 21 mm, an inner diameter of 11 mm, and a thickness of 1 mm.
  • ceramics such as PZT (lead zirconate titanate) and KNN ((K,Na)NbO 3 ), and piezoelectric crystals such as lithium tantalate and lithium niobate are used.
  • the thickness B2 of the portion supporting the diaphragm 2 is varied from 0.5 mm to 2.5 mm. As the thickness B2 increases from 0.5 mm to 2.5 mm, the displacement A3 of the spring portion 32 due to piston vibration increases, but the electromechanical coupling coefficient k reaches a peak when the thickness B2 is 1.5 mm, and then decreases. ing.
  • the bubble generator in order to improve the performance of the vibrating body in water, the bubble generator should adopt a head shape that has a large electromechanical coupling coefficient k and a large displacement A3 due to piston vibration of the spring part 32. It is. Therefore, in this embodiment, by adopting a truncated conical shape as the shape of the head part, the bubble generator 1 is realized which has a large electromechanical coupling coefficient k and a large displacement A3 due to piston vibration of the spring part 32. .
  • FIG. 6 is a diagram showing numerical values of displacement of the bubble generator 1 according to the first embodiment.
  • FIG. 6 the displacements A1 to A3, the resonance frequency Fr, the electromechanical coupling coefficient k, the taper angle ⁇ , and the displacements A2 and A3 when the height H of the truncated cone of the head portion 31 shown in FIG. 3 is changed are shown.
  • the ratio (A2/A3) is shown.
  • the displacement A3 of the spring portion 32 due to piston vibration exceeds 400 nm/V, as shown in FIG. 5(b). It also exceeds the peak value of the electromechanical coupling coefficient k of 20.98.
  • the electromechanical coupling coefficient k is large in the range where the taper angle ⁇ formed by the head portion 31 and the spring portion 32 is low, and the displacement A3 of the spring portion 32 due to piston vibration is also sufficiently large.
  • the electromechanical coupling coefficient k becomes small, but the displacement A3 of the spring portion 32 due to piston vibration becomes large.
  • FIG. 7 is a schematic diagram for explaining the displacement of the head section.
  • FIG. 7(a) is a schematic diagram for explaining the displacement of the head portion 31z having a T-shaped cross section
  • FIG. 7(b) is a schematic diagram for explaining the displacement of the head portion 31 having a truncated cone shape. It is a diagram.
  • the head part 31z has a large difference between the displacement A3 due to the piston vibration of the spring part 32 and the displacement A2 at the end of the diaphragm 2, so when it is vibrated underwater, Plate 2 will act as a soft spring.
  • the head portion 31z even if the displacement A1 at the center of the diaphragm 2 is large in air, it is considered that it is hardly reflected in the liquid. Note that even if the bubble generating device 1 employs the head portion 31z having a T-shaped cross section, the device can be made smaller and lower in cost.
  • the taper angle ⁇ is preferably in the range of 40 degrees to 70 degrees, and more preferably the taper angle ⁇ is in the range of 45 degrees to 65 degrees.
  • adopted the truncated cone-shaped head part 31 was demonstrated as an example in the range of 40 kHz to 50 kHz, it is not limited to this.
  • FIG. 8 is a schematic diagram of the bubble generation system for explaining the mounting position of the bubble generation device 1.
  • the same components as the bubble generation system 100 shown in FIG. 1 the same components as the bubble generation system 100 shown in FIG.
  • the bubble generation device 1 is fixed to the side surface of the liquid tank 10 so that at least a part of the vibrating body 3 supporting the diaphragm 2 is immersed in the liquid in the liquid tank 10. ing.
  • the bubble generation device 1 is installed at a position above the liquid level of the liquid tank 10, and the bubble generation device 1 has at least a part of the vibrating body 3 supporting the diaphragm 2. It is fixed toward the bottom of the liquid tank 10 so as to be immersed in the liquid in the liquid tank 10.
  • the bubble generator 1 is attached to the liquid tank 10 and generates fine bubbles in the liquid in the liquid tank 10.
  • the bubble generator 1 includes a diaphragm 2 in which a plurality of openings are formed, a first surface is in contact with liquid in a liquid tank 10, and a second surface is in contact with gas, and a diaphragm 3 that supports the diaphragm 2. , a piezoelectric element 4 provided on the vibrating body 3 and vibrating the diaphragm 2.
  • the vibrating body 3 includes a head portion 31 (first cylindrical body) that supports the diaphragm 2 at one end, and a cylindrical body 33 (second cylindrical body) that supports the other end of the head portion 31. including.
  • the diameter Ra on the side supporting the diaphragm 2 is larger than the diameter on the side supported by the cylindrical body 33 (holding position B1 of the head portion 31).
  • the diameter Ra of the head part 31 on the side supporting the diaphragm 2 is larger than the diameter of the side supported by the cylindrical body 33 (holding position B1 of the head part 31),
  • the shaped body 33 is not limited by the size of the diaphragm 2, and the device can be made smaller and lower in cost.
  • the bubble generation system 100 includes a bubble generation device 1 and a liquid tank 10. Thereby, the bubble generation system can be made smaller and lower in cost.
  • the vibrating body 3 has a structure in which the head part 31 is supported by the spring part 32, the cylindrical body 33, and the collar part 34, but the structure is not limited to this. Any structure may be used as long as it is a vibrating body that vibrates a piston that vibrates up and down.
  • a Langevin type vibrator is employed as the vibrating body.
  • FIG. 9 is a cross-sectional perspective view of the bubble generator 1A according to the second embodiment.
  • the bubble generator 1A includes a diaphragm 2, a vibrating body 3A, and a piezoelectric element 4, as shown in FIG.
  • the vibrating body 3A includes a head portion 31 that fixes the periphery of the vibrating plate 2, and a cylindrical body 33a continuous to the head portion 31.
  • the cylindrical body 33a is a so-called Langevin type vibrator.
  • the cylindrical body 33a has a structure in which two piezoelectric elements 4 are sandwiched between an upper metal ring 33a1 and a lower metal ring 33a2 and fixed with tightening bolts 34a.
  • the head portion 31 is provided at the top of the cylindrical body 33a and has a truncated cone shape.
  • the taper angle ⁇ is the angle formed by the head portion 31 and the joint surface between the head portion 31 and the cylindrical body 33a.
  • the head portion 31 may be formed separately from the cylindrical body 33a and joined together, or may be formed integrally with the cylindrical body 33a.
  • the two piezoelectric elements 4 have a structure in which a piezoelectric element 41 and a piezoelectric element 42 whose polarization direction is opposite to that of the piezoelectric element 41 are stacked on top of each other.
  • Terminals 43 and 44 for supplying power to the piezoelectric element 41 and the piezoelectric element 42 are pulled out from between the upper metal ring 33a1 and the lower metal ring 33a2 and the piezoelectric elements 41 and 42, and are connected to the controller 20 shown in FIG. electrically connected by wiring.
  • the cylindrical body 33a By supplying power from the controller 20 to the piezoelectric elements 41 and 42, the cylindrical body 33a is driven at a resonant frequency that depends on the lengthwise dimension including the head portion 31 and the cylindrical body 33a, and the vibration plate 2, a large displacement is obtained. Since a plurality of high-order vibration modes exist in the resonance of the cylindrical body 33a, it is possible to select one resonance frequency from among the plurality of resonance frequencies. Moreover, by making the shape of the head part 31 into a truncated cone shape, the diameter of the part connecting from the upper metal ring 33a1 to the head part 31 becomes smaller than other parts, and the displacement of the diaphragm 2 can be further amplified. I can do it. Furthermore, since the diameter of the cylindrical body 33a itself is reduced, the inner diameter of the piezoelectric element 4 for exciting can also be reduced.
  • a through hole 35 is provided in the center of the upper metal ring 33a1, the lower metal ring 33a2, and the tightening bolt 34a, and the through hole 35 introduces gas into the diaphragm 2.
  • Stainless steel, aluminum, or the like is used for the upper metal ring 33a1, the lower metal ring 33a2, and the tightening bolt 34a.
  • ceramics such as PZT (lead zirconate titanate) and KNN ((K,Na)NbO 3 ), piezoelectric crystals such as lithium tantalate and lithium niobate are used.
  • the cylindrical body 33a is made of SUSU304 material, the diameter of the upper metal ring 33a1 is 16 mm, the height including the head portion is 46.5 mm, and the diameter of the lower metal ring 33a2 is 16 mm, and the height is 10 mm. It is.
  • the piezoelectric elements 41 and 42 each have a diameter of 16 mm and a thickness of 2.55 mm.
  • the total length of the vibrating body 3A is approximately 63 mm.
  • the cylindrical body 33a has a structure in which the upper metal ring 33a1 and the lower metal ring 33a2 are tightened with tightening bolts 34a, a compression bias is applied to the piezoelectric elements 41 and 42. Therefore, piezoelectric ceramics having low resistance to tensile stress are used for the piezoelectric elements 41 and 42, and the structure is such that the piezoelectric elements 41 and 42 are difficult to break even when a large amount of power is supplied to the piezoelectric elements 41 and 42 to drive them. . As a result, the upper metal ring 33a1 and the lower metal ring 33a2 have the same potential, so it is necessary to sandwich the application electrode between the two piezoelectric elements 4. The application electrode and the terminal 43 are electrically connected.
  • the cylindrical body 33a does not have a structure in which the piezoelectric elements 4 are tightened with the tightening bolts 34a, and one piezoelectric element 4 is connected to the upper metal ring 33a1.
  • a structure in which it is sandwiched and bonded to the lower metal ring 33a2 may also be used.
  • the cylindrical body 33a may have a structure including only the upper metal ring 33a1, and the piezoelectric element 4 may be bonded to the bottom surface of the upper metal ring 33a1. No matter which structure is adopted for the cylindrical body 33a, manufacturing costs can be reduced.
  • FIG. 10 is a graph showing the vibration mode of the bubble generator 1A according to the second embodiment.
  • the vertical axis represents impedance ( ⁇ ), and the horizontal axis represents frequency (kHz).
  • the bubble generator 1A employs a Langevin type vibrator vibrator 3A, with a first vibration mode at 1/2 of the resonant frequency (1/2 ⁇ resonance), a second vibration mode at the resonant frequency ( ⁇ resonance), and a resonant frequency. A third vibration mode appears at 3/2 (3/2 ⁇ resonance).
  • FIG. 11 is a graph showing the displacement distribution of each vibration mode.
  • the vertical axis is displacement (m/V), and the horizontal axis is distance (mm) from one end of the diaphragm 2.
  • FIG. 11 shows the displacement of the lower plane position of the ring portion of the vibrating body head portion that connects with the diaphragm when the diaphragm 2 is vibrated in the first vibration mode (1/2 ⁇ resonance), and the second vibration mode ( ⁇ Displacement of the lower plane position of the ring part of the vibrator head that connects with the diaphragm when the diaphragm 2 is vibrated in the 3rd vibration mode (3/2 ⁇ resonance), when the diaphragm 2 is vibrated in the 3rd vibration mode (3/2 ⁇ resonance)
  • the displacement of the lower plane position of the ring part that joins with the diaphragm of the vibrating body head part is shown.
  • FIG. 12 is a schematic diagram for explaining the shape of the head section.
  • the head portion 31a shown in FIG. 12(a) has an outer diameter of 9 mm at a portion that supports the diaphragm 2, and a truncated cone height of 3 mm.
  • the head portion 31b shown in FIG. 12(b) has an outer diameter of 9 mm at a portion that supports the diaphragm 2, and a truncated cone height of 6 mm.
  • FIG. 13 is a graph showing the displacement distribution of the lower plane position of the ring portion that joins with the diaphragm of the vibrating body head portion.
  • FIG. 13(a) shows the displacement of the lower plane position of the ring portion of the vibrating body head portion that connects with the diaphragm when the diaphragm 2 is vibrated in the first vibration mode (1/2 ⁇ resonance).
  • (b) shows the displacement of the lower plane position of the ring portion of the vibrating head portion that is joined to the diaphragm when the diaphragm 2 is vibrated in the second vibration mode ( ⁇ resonance).
  • the vertical axis is the displacement (m/V)
  • the horizontal axis is the distance (mm) from one end of the diaphragm 2.
  • FIG. 14 is a diagram showing numerical values of displacement of head portions of different shapes.
  • wavelength, resonance frequency Fr, electromechanical coupling coefficient k, displacement A2, and displacement are shown for each of the head portion 31a with a low truncated cone height (3 mm) and the head portion 31b with a high truncated cone height (6 mm).
  • the ratio with A3 (A2/A3) is shown.
  • A2/A3 1.21. That is, in the head portion 31a having a low truncated cone height, the value of A2/A3 increases as the resonant frequency Fr of the vibrating body 3A increases.
  • FIG. 15 is a graph showing the impedance characteristics in water when the head section is vibrated in the first vibration mode.
  • FIG. 16 is a graph showing the impedance characteristics in water when the head section is vibrated in the second vibration mode.
  • 15(a) and 16(a) show impedance characteristics in water when the head portion 31a having a low truncated cone height is vibrated.
  • FIGS. 15(b) and 16(b) show impedance characteristics in water when the head portion 31b having a high truncated cone height is vibrated.
  • the vertical axis represents impedance ( ⁇ ), and the horizontal axis represents frequency (kHz).
  • the graphs shown in FIGS. 15 and 16 show the impedance characteristics when the head portions 31a and 31b are vibrated in the air, and when the head portions 31a and 31b are immersed in 1 mm of liquid and vibrated. The impedance characteristics when the head portion 31a and the head portion 31b are immersed in 3 mm of liquid and vibrated are shown.
  • the head portion 31a where there is a difference in the magnitude of displacement between the center and peripheral portions of the diaphragm 2, damping occurs in the vibration when vibrating underwater.
  • the value of A2/A3 when the head portion 31a is vibrated in the second vibration mode is 1.21 as shown in FIG. From this, it is preferable to vibrate the head parts 31a and 31b so that the resonance frequency Fr of the vibrating body 3A is any frequency and the value of A2/A3 is 1.2 or less.
  • the taper angle is preferably 45 degrees or more as shown in FIG. 6, taking into account damping of vibrations in water.
  • the vibrating body 3A is composed of a Langevin type vibrator. Therefore, the bubble generator 1A easily causes piston vibration that vibrates the diaphragm 2 up and down.
  • FIG. 17 is a cross-sectional view of a bubble generator 1B according to the third embodiment.
  • the same components as the bubble generation apparatus 1 shown in FIG. 2 are given the same reference numerals, and detailed description thereof will not be repeated.
  • illustration of the diaphragm 2 is omitted.
  • the diaphragm 2 is vibrated by the piezoelectric element 4 via the vibrating body 3B.
  • the vibrating body 3B shown in FIG. 17 includes a head portion 31, a spring portion 32b, a cylindrical body 33b, and a weight portion 34b.
  • the spring portion 32b is supported by the cylindrical body 33b at a position outside the position where the head portion 31 is supported.
  • the cylindrical body 33b has a cylindrical shape.
  • the cylindrical body 33b supports the spring portion 32b at one end.
  • the cylindrical body 33b has a weight portion 34b on the outside of the end opposite to the spring portion 32b.
  • the cylindrical body 33b and the weight portion 34b are provided at positions such that when the piezoelectric element 4 vibrates the spring portion 32b, the amount of displacement of the side surface of the cylindrical body 33b falls within a predetermined range.
  • a hollow circular piezoelectric element 4 is provided on the lower surface of the spring portion 32b to match the shape of the spring portion 32b.
  • the piezoelectric element 4 vibrates in the penetrating direction of the through hole 35 provided in the head portion 31 (vertical direction in the figure).
  • the piezoelectric element 4 vibrates in the direction of penetration of the through hole 35, thereby causing the spring portion 32b to vibrate in the direction of penetration of the through hole 35, thereby displacing the head portion 31 substantially uniformly in the vertical direction.
  • a flange is provided on the outside of the cylindrical body 33b, and the flange is joined to a holding flange as shown in FIG. 1 to fix the bubble generator 1B to the liquid tank 10.
  • a holding flange it is necessary to prepare a holding flange separately from the cylindrical body 33b, and it is necessary to join the cylindrical body 33b and the holding flange and fix them to the liquid tank 10.
  • FIG. 18 is a schematic diagram of a bubble generation system 100C in which a bubble generation device 1B according to the third embodiment is used.
  • the same components as the bubble generation system 100 shown in FIG. 1 are used.
  • a holding flange 50 is integrally formed on the cylindrical body 33b of the bubble generation device 1B.
  • the holding flange 50 is a plate-shaped member provided around the cylindrical body 33b, and extends outward from the side surface of the cylindrical body 33b. Further, the holding flange 50 is provided with a step at a portion to be fixed to the liquid tank 10, and a screw hole is provided at the portion. Therefore, as shown in FIG. 18, the bubble generator 1B can be fixed to the liquid tank 10 by passing the screws 51 through the screw holes provided in the holding flange 50.
  • the holding flange 50 is made thinner (for example, 0.5 mm) than other parts, but the part where the screw holes are provided is made thicker.
  • a holding flange 50 for separating the liquid side and the gas side is integrally formed on the side surface of the cylindrical body 33b, which serves as a vibration node. Therefore, no gap is created between the cylindrical body 33b and the holding flange 50, and there is no possibility of liquid leaking from the gap to the gas side. Further, the holding flange 50 is provided with a step relative to the portion fixed to the liquid tank 10 (the portion provided with the screw hole), and is connected to the side surface of the cylindrical body 33b at the lowered portion. By forming the holding flange 50 in the shape shown in FIG.
  • vibrations leaking from the cylindrical body 33b through the holding flange 50 into the liquid tank 10 can be reduced by about 90%, and the vibration caused by the piezoelectric element 4 can be reduced by about 90%.
  • the driving force of 3B can be efficiently transmitted to the diaphragm 2.
  • FIG. 19 is a schematic diagram for explaining the displacement of the bubble generator 1B according to the third embodiment.
  • the piezoelectric element 4 vibrates, the spring portion 32b supporting the head portion 31 is elastically deformed and the diaphragm 2 is displaced.
  • the holding flange 50 provided on the side surface of the cylindrical body 33b is hardly displaced.
  • the magnitude of displacement is shown by the shade of hatching, where darkly hatched areas indicate large displacement areas, and light hatched areas indicate small displacement areas.
  • FIG. 20 is a schematic diagram for explaining the fastening mechanism of the bubble generator 1B according to the third embodiment.
  • FIG. 20 is a plan view of the bubble generator 1B viewed from above the diaphragm 2.
  • screw holes 51a are provided at four locations on the holding flange 50.
  • This screw hole 51a is a fastening mechanism for fixing the bubble generator 1B to the liquid tank 10.
  • the fastening mechanism of the screw hole 51a is just one example, and any mechanism may be used as long as it is a mechanism for fixing the bubble generator 1B to the liquid tank 10.
  • the configuration of the holding flange 50 can be similarly applied to the cylindrical body 33 shown in FIG. 2 and the cylindrical body 33a shown in FIG. 9.
  • the vibrating body 3B is connected to the spring portion 32b provided between the head portion 31 and the cylindrical body 33b and the end portion of the cylindrical body 33b. It further includes a weight portion 34b provided.
  • the piezoelectric element 4 is provided on the surface of the spring portion 32b supported by the cylindrical body 33b.
  • the head portion 31 is a solid member having a truncated cone shape, and has a structure in which a cylindrical through hole 35 is formed.
  • the head portion 31 is not limited to a solid material having a truncated cone shape, but may have a structure in which a truncated cone shape is formed using a plate member.
  • the truncated cone-shaped head portion 31 is formed of a plate member, the hollow portion of the head portion 31 functions as the through hole 35 .
  • the bubble generating device of the present disclosure is a bubble generating device that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank, in which a plurality of openings are formed and a first surface faces the liquid.
  • a vibrating plate that is in contact with the liquid in the tank and whose second surface is in contact with the gas, a vibrating body that supports the vibrating plate, and a piezoelectric element that is provided on the vibrating body and vibrates the vibrating plate.
  • the diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter of the side supported by the second cylindrical body, so that the second cylindrical body serves as the diaphragm.
  • the device can be made smaller and lower in cost without being limited by the size of the device.
  • the first cylindrical body has a truncated cone shape and supports the diaphragm on the second surface side, which is wider than the first surface.
  • the first cylindrical body has a hollow and a through hole formed in a solid material having a truncated conical shape. Thereby, the cost of the bubble generator can be reduced.
  • the first cylindrical body has a truncated conical shape with a taper angle of 40 degrees or more. Thereby, the bubble generator can obtain sufficient vibrator performance in liquid.
  • the vibrating body is a spring portion provided between the first cylindrical body and the second cylindrical body; , further including a plate-shaped collar provided at the end of the second cylindrical body and extending outward from the position of the second cylindrical body, and the spring part supports the first cylindrical body at one end.
  • the piezoelectric element is supported by the second cylindrical body at the other end located outside the position supporting the first cylindrical body, and the piezoelectric element is attached to the first surface of the flange portion on the second cylindrical body side or It is provided on the second surface on the opposite side of the surface.
  • a bubble generation system of the present disclosure includes the bubble generation device according to any one of (1) to (8) and a liquid tank. Thereby, the bubble generation system can be made smaller and lower in cost.
  • the bubble generation device is installed at a position above the liquid level of the liquid tank, and at least a part of the vibrating body supporting the diaphragm is exposed to the liquid in the liquid tank. It is fixed toward the bottom of the liquid tank so that it can be submerged. Thereby, the bubble generation system can generate fine bubbles in the liquid from the top surface of the liquid tank.

Abstract

The present disclosure provides: a bubble generation device that achieves a reduction in device size and a reduction in cost; and a bubble generation system. A bubble generation device (1) according to the present disclosure is attached to a liquid tank (10) and produces fine bubbles in a liquid within the liquid tank (10). The bubble generation device (1) comprises: a vibration plate (2) which has multiple openings formed therein and in which a first surface is in contact with the liquid in the liquid tank (10) and a second surface is in contact with a gas; a vibration body (3) which supports the vibration plate (2); and a piezoelectric element (4) which is provided to the vibration body (3) and causes the vibration plate (2) to vibrate. The vibration body (3) includes: a head part (31), one end of which supports the vibration plate (2); and a cylindrical body (33) which supports the other end of the head part (31). In the head part (31), the diameter of the side for supporting the vibration plate (2) is larger than that of the side supported by the cylindrical body (33).

Description

気泡発生装置、および気泡発生システムAir bubble generator and air bubble generation system
 本開示は、気泡発生装置、および気泡発生システムに関する。 The present disclosure relates to a bubble generation device and a bubble generation system.
 近年、微細な気泡を使って水質浄化、排水処理、魚の養殖などが行なわれており、微細な気泡が様々な分野で利用されている。そのため、微細な気泡を発生する気泡発生装置が開発されている(特開2016-209825号公報(特許文献1)、国際公開第2021/245995号(特許文献2))。また、気泡発生装置は、水以外に、液体燃料、消毒液、化粧液などに対して微細な気泡を発生させる用途開発が進んでいる。例えば、燃料噴射装置に気泡発生装置を設け、ピストンに噴射する液体燃料に対して微細な気泡を含ませることで燃費の改善が報告されている。 In recent years, microscopic air bubbles have been used for water purification, wastewater treatment, fish farming, etc., and microscopic air bubbles are being used in a variety of fields. Therefore, bubble generators that generate fine bubbles have been developed (Japanese Patent Laid-Open No. 2016-209825 (Patent Document 1), International Publication No. 2021/245995 (Patent Document 2)). In addition, the use of bubble generators to generate fine bubbles in liquid fuels, disinfectants, cosmetics, etc. in addition to water is being developed. For example, it has been reported that improved fuel efficiency can be achieved by providing a fuel injection device with a bubble generator to include fine bubbles in the liquid fuel injected into the piston.
特開2016-209825号公報JP2016-209825A 国際公開第2021/245995号International Publication No. 2021/245995
 国際公開第2021/245995号(特許文献2)に記載の気泡発生装置では、振動板と、筒状体と、圧電素子とを備え、筒状体を介して圧電素子で振動板を振動させることで、振動板に形成した複数の開口部から微細な気泡を発生させている。効率よく開口部から微細な気泡を発生させるためには、振動板の全体を上下方向に振動させるピストン振動をさせる必要があるので、筒状体を、第1筒状体、バネ部、第2筒状体、およびつば部を有する構造としてある。 The bubble generator described in International Publication No. 2021/245995 (Patent Document 2) includes a diaphragm, a cylindrical body, and a piezoelectric element, and vibrates the diaphragm with the piezoelectric element through the cylindrical body. Microscopic air bubbles are generated from multiple openings formed in the diaphragm. In order to efficiently generate fine air bubbles from the opening, it is necessary to vibrate the entire diaphragm in the vertical direction to vibrate the piston, so the cylindrical body is connected to the first cylindrical body, the spring part, and the second cylindrical body. It has a structure including a cylindrical body and a flange.
 しかし、この気泡発生装置では、発生させる気泡の量により振動板の大きさが決まると、第1筒状体の径が決まり、第1筒状体よりも径が大きい第2筒状体の周囲に円形状のつば部が設けられる構造であるため小型化が困難であった。また、つば部の下面に中空円状の圧電素子を設けるため、圧電素子の面積を小さくして製造コストを低減することも困難であった。 However, in this bubble generator, when the size of the diaphragm is determined by the amount of bubbles to be generated, the diameter of the first cylindrical body is determined, and the circumference of the second cylindrical body, which has a larger diameter than the first cylindrical body, is determined. Since the structure includes a circular flange, it has been difficult to downsize. Further, since a hollow circular piezoelectric element is provided on the lower surface of the flange, it is difficult to reduce the area of the piezoelectric element and reduce manufacturing costs.
 そこで、本開示の目的は、装置の小型化、低コスト化が可能な気泡発生装置、および気泡発生システムを提供することである。 Therefore, an object of the present disclosure is to provide a bubble generation device and a bubble generation system that can reduce the size and cost of the device.
 本開示の一形態に係る気泡発生装置は、液体槽に取り付けられ、液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、複数の開口部が形成され、第1の面が液体槽の液体と接し、第2の面が気体と接する振動板と、振動板を支持する振動体と、振動体に設けられ、振動板を振動させる圧電素子と、を備える。振動体は、一方の端により振動板を支持する第1筒状体と、第1筒状体の他方の端を支持する第2筒状体と、を含む。第1筒状体は、振動板を支持する側の径が第2筒状体で支持される側の径より大きい。 A bubble generating device according to an embodiment of the present disclosure is a bubble generating device that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank, in which a plurality of openings are formed and a first surface is The device includes a diaphragm that is in contact with the liquid in the liquid tank and whose second surface is in contact with the gas, a vibrating body that supports the diaphragm, and a piezoelectric element that is provided on the vibrating body and vibrates the diaphragm. The vibrating body includes a first cylindrical body that supports a diaphragm at one end, and a second cylindrical body that supports the other end of the first cylindrical body. The diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter on the side supported by the second cylindrical body.
 本開示の別の一形態に係る気泡発生システムは、前述の気泡発生装置と、液体槽と、を備える。 A bubble generation system according to another embodiment of the present disclosure includes the above-described bubble generation device and a liquid tank.
 本開示によれば、気泡発生装置において、第1筒状体は、振動板を支持する側の径が第2筒状体で支持される側の径より大きいので、第2筒状体が振動板の大きさの制約を受けず、装置の小型化、低コスト化が可能である。 According to the present disclosure, in the bubble generator, the diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter of the side supported by the second cylindrical body, so that the second cylindrical body vibrates. The device can be made smaller and lower in cost without being restricted by the size of the plate.
実施の形態1に係る気泡発生装置が用いられる気泡発生システムの概略図である。1 is a schematic diagram of a bubble generation system in which the bubble generation device according to Embodiment 1 is used. 実施の形態1に係る気泡発生装置の断面斜視図である。1 is a cross-sectional perspective view of the bubble generator according to Embodiment 1. FIG. 実施の形態1に係る気泡発生装置の変位について説明するための概略図である。FIG. 3 is a schematic diagram for explaining displacement of the bubble generator according to the first embodiment. 振動体の構造および変位を説明するための概略図である。FIG. 3 is a schematic diagram for explaining the structure and displacement of a vibrating body. 振動体の構造および変位の数値を示す図である。FIG. 3 is a diagram showing the structure of a vibrating body and numerical values of displacement. 実施の形態1に係る気泡発生装置の変位の数値を示す図である。FIG. 3 is a diagram showing numerical values of displacement of the bubble generator according to the first embodiment. ヘッド部の変位を説明するための概略図である。It is a schematic diagram for explaining displacement of a head part. 気泡発生装置の取り付け位置を説明するための気泡発生システムの概略図である。It is a schematic diagram of a bubble generation system for explaining the attachment position of a bubble generation device. 実施の形態2に係る気泡発生装置の断面斜視図である。FIG. 2 is a cross-sectional perspective view of a bubble generator according to a second embodiment. 実施の形態2に係る気泡発生装置の振動モードを示すグラフである。7 is a graph showing vibration modes of the bubble generator according to Embodiment 2. FIG. 各振動モードの変位分布を示すグラフである。It is a graph showing displacement distribution of each vibration mode. ヘッド部の形状を説明するための概略図である。It is a schematic diagram for explaining the shape of a head part. 振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位分布を示すグラフである。7 is a graph showing a displacement distribution of a lower plane position of a ring portion that is joined to a diaphragm of a vibrating body head portion. 異なる形状のヘッド部の変位の数値を示す図である。It is a figure which shows the numerical value of the displacement of a head part of different shapes. 第1振動モードでヘッド部を振動させた場合の水中のインピーダンス特性を示すグラフである。It is a graph showing impedance characteristics in water when the head section is vibrated in the first vibration mode. 第2振動モードでヘッド部を振動させた場合の水中のインピーダンス特性を示すグラフである。It is a graph which shows the impedance characteristic in water when a head part is vibrated in a 2nd vibration mode. 実施の形態3に係る気泡発生装置の断面斜視図である。FIG. 3 is a cross-sectional perspective view of a bubble generator according to a third embodiment. 実施の形態3に係る気泡発生装置が用いられる気泡発生システムの概略図である。FIG. 3 is a schematic diagram of a bubble generation system in which a bubble generation device according to a third embodiment is used. 実施の形態3に係る気泡発生装置の変位について説明するための概略図である。FIG. 7 is a schematic diagram for explaining displacement of the bubble generator according to Embodiment 3. FIG. 実施の形態3に係る気泡発生装置の締結機構について説明するための概略図である。FIG. 7 is a schematic diagram for explaining a fastening mechanism of a bubble generator according to a third embodiment.
 以下に、実施の形態に係る気泡発生装置、および気泡発生システムについて、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。 Below, a bubble generation device and a bubble generation system according to an embodiment will be described in detail with reference to the drawings. Note that the same or corresponding parts in the figures are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施の形態1)
 まず、図1は、実施の形態1に係る気泡発生装置1が用いられる気泡発生システム100の概略図である。図1に示す気泡発生装置1は、例えば、水,ガソリン,軽油などの液体を貯留する液体槽10の下部に設けられ、液体槽10の液体に微細な気泡200を発生させる気泡発生システム100に用いられる。なお、気泡発生システム100は、例えば、水質浄化装置、排水処理装置、魚の養殖用水槽、燃料噴射装置などの様々なシステムに適用することができる。
(Embodiment 1)
First, FIG. 1 is a schematic diagram of a bubble generation system 100 in which a bubble generation device 1 according to Embodiment 1 is used. The bubble generator 1 shown in FIG. 1 is installed at the bottom of a liquid tank 10 that stores liquid such as water, gasoline, or light oil, and is used as a bubble generator system 100 that generates fine bubbles 200 in the liquid in the liquid tank 10. used. Note that the bubble generation system 100 can be applied to various systems such as, for example, a water purification device, a wastewater treatment device, a fish culture tank, and a fuel injection device.
 また、液体槽10は、適用するシステムにより導入される液体が異なり、水質浄化装置であれば水になるが、燃料噴射装置であれば液体燃料になる。さらに、液体槽10は、液体を一時的に貯留することができればよく、液体が導入される管において当該管の中を常に液体が流れるようなものも含む。 Further, the liquid introduced into the liquid tank 10 differs depending on the system to which it is applied, and if it is a water purification device, it will be water, but if it is a fuel injection device, it will be liquid fuel. Further, the liquid tank 10 only needs to be able to temporarily store liquid, and includes a pipe into which the liquid is introduced, in which the liquid always flows.
 気泡発生装置1は、振動板2と、振動体3と、圧電素子4とを備えている。液体槽10の底面に開けた孔に設けた保持フランジ5と振動体3の筒状体33の外側に設けたフランジ36(図2参照)とを接合して液体槽10に気泡発生装置1を固定している。なお、保持フランジ5とフランジ36とを分離した構造ではなく、保持フランジ5とフランジ36とを一体成形し液体槽10側または振動体3側に設けた構造でもよい。液体槽10に気泡発生装置1を固定した場合、振動板2を設けた振動体3の一部が液体に浸かっている状態となる。この状態で液体に浸かった振動板2を圧電素子4により振動させることにより、振動板2に形成した複数の細孔(開口部)から微細な気泡200を発生させている。なお、振動板2は、一方の面(第1の面)が液体槽10の液体と接し、他方の面(第2の面)が気体と接するように設けられる。 The bubble generator 1 includes a diaphragm 2, a vibrating body 3, and a piezoelectric element 4. The bubble generator 1 is attached to the liquid tank 10 by joining the holding flange 5 provided in a hole made in the bottom of the liquid tank 10 and the flange 36 (see FIG. 2) provided on the outside of the cylindrical body 33 of the vibrating body 3. Fixed. Note that instead of a structure in which the holding flange 5 and the flange 36 are separated, a structure in which the holding flange 5 and the flange 36 are integrally molded and provided on the liquid tank 10 side or the vibrating body 3 side may be used. When the bubble generator 1 is fixed to the liquid tank 10, a part of the vibrating body 3 provided with the vibrating plate 2 is immersed in the liquid. By vibrating the diaphragm 2 immersed in the liquid in this state using the piezoelectric element 4, fine bubbles 200 are generated from a plurality of pores (openings) formed in the diaphragm 2. Note that the diaphragm 2 is provided so that one surface (first surface) is in contact with the liquid in the liquid tank 10 and the other surface (second surface) is in contact with the gas.
 振動板2は、例えば、樹脂板、金属板、SiもしくはSOI(Silicon On Insulator)基板、多孔質のセラミック板、ガラス板などで形成されている。具体的に、振動板2の径は9mmで、振動板2は、周辺部の厚みに比べて中央部の厚みが薄いものを使用し、例えば周辺部の厚みが0.15mmで、中央部の厚みが0.05mmである。振動板2は、厚みが薄くなっている中央部に185個の開口部設けられている。 The diaphragm 2 is formed of, for example, a resin plate, a metal plate, a Si or SOI (Silicon On Insulator) substrate, a porous ceramic plate, a glass plate, or the like. Specifically, the diameter of the diaphragm 2 is 9 mm, and the thickness of the diaphragm 2 is thinner at the center than at the periphery.For example, the thickness at the periphery is 0.15 mm, and the thickness at the center is 0.15 mm. The thickness is 0.05 mm. The diaphragm 2 has 185 openings in its thinner central portion.
 図2は、実施の形態1に係る気泡発生装置1の断面斜視図である。なお、図2に示す気泡発生装置1では、振動板2の図示を省略している。気泡発生装置1では、振動体3を介して圧電素子4で振動板2を振動させている。図1に示す振動体3は、ヘッド部31、バネ部32、筒状体33、つば部34を含んでいる。振動体3は、ヘッド部31、バネ部32、筒状体33、およびつば部34が一体で形成される構造でも、別々に形成されて接合される構造でもよい。 FIG. 2 is a cross-sectional perspective view of the bubble generator 1 according to the first embodiment. In addition, in the bubble generator 1 shown in FIG. 2, illustration of the diaphragm 2 is omitted. In the bubble generator 1, a diaphragm 2 is vibrated by a piezoelectric element 4 via a vibrating body 3. The vibrating body 3 shown in FIG. 1 includes a head portion 31, a spring portion 32, a cylindrical body 33, and a collar portion 34. The vibrating body 3 may have a structure in which the head portion 31, the spring portion 32, the cylindrical body 33, and the collar portion 34 are integrally formed, or may have a structure in which they are formed separately and joined.
 バネ部32は、ヘッド部31を支持する位置の外側にある位置において筒状体33により支持されている。筒状体33は、円筒状の形状である。筒状体33は、一方の端によりバネ部32を支持する。筒状体33は、バネ部32側とは反対側の端部がつば部34に支持されている。つば部34は、板状の部材であり、円筒状の筒状体33の底面を支持し、筒状体33を支持した位置から外側に向かって延伸している。 The spring portion 32 is supported by a cylindrical body 33 at a position outside the position where the head portion 31 is supported. The cylindrical body 33 has a cylindrical shape. The cylindrical body 33 supports the spring portion 32 at one end. The end of the cylindrical body 33 on the opposite side to the spring portion 32 is supported by the collar portion 34 . The flange portion 34 is a plate-shaped member that supports the bottom surface of the cylindrical body 33 and extends outward from the position where the cylindrical body 33 is supported.
 つば部34の下面には、つば部34の形状に合わせて中空円状の圧電素子4が設けられている。圧電素子4は、図1に示すコントローラ20と配線で電気的に接続されている。コントローラ20から圧電素子4に電力を供給することで、圧電素子4は、筒状体33の貫通方向(図中、上下方向)に振動する。圧電素子4が筒状体33の貫通方向に振動することにより、バネ部32を筒状体33の貫通方向に振動させてヘッド部31が略均一に上下方向に変位させている。なお、圧電素子4は、つば部34の上面に設けてもよい。 A hollow circular piezoelectric element 4 is provided on the lower surface of the flange 34 to match the shape of the flange 34. The piezoelectric element 4 is electrically connected to the controller 20 shown in FIG. 1 by wiring. By supplying electric power from the controller 20 to the piezoelectric element 4, the piezoelectric element 4 vibrates in the penetrating direction of the cylindrical body 33 (vertical direction in the figure). The piezoelectric element 4 vibrates in the penetrating direction of the cylindrical body 33, thereby causing the spring portion 32 to vibrate in the penetrating direction of the cylindrical body 33, thereby displacing the head portion 31 substantially uniformly in the vertical direction. Note that the piezoelectric element 4 may be provided on the upper surface of the collar portion 34.
 筒状体33の内側とヘッド部31に設けた貫通孔35とは繋がっており、筒状体33の内側および貫通孔35が振動板2へ気体を導入する導入部となっている。ヘッド部31は、振動板2を支持する面(第2面)に円板形状の窪み310を有し、円錐台形状の中心軸に設けた貫通孔35と当該窪み310とが連通している。そのため、貫通孔35から窪み310に気体が導入され、窪み310から振動板2の開口部を通って液体に気体が導入される。なお、貫通孔35への気体の導入は、コンプレッサなどで気体を送っても、自然吸気で気体を送ってもよい。また、ヘッド部31は、円錐台形状の中実材に窪み310および貫通孔35を形成しても、貫通孔35を形成した円錐台形状の中実材にリング部材を接合することで窪み310を形成してもよい。 The inside of the cylindrical body 33 and the through hole 35 provided in the head part 31 are connected, and the inside of the cylindrical body 33 and the through hole 35 serve as an introduction part for introducing gas into the diaphragm 2. The head portion 31 has a disk-shaped depression 310 on the surface (second surface) that supports the diaphragm 2, and the depression 310 communicates with a through hole 35 provided on the central axis of the truncated cone. . Therefore, gas is introduced from the through hole 35 into the depression 310, and from the depression 310, the gas is introduced into the liquid through the opening of the diaphragm 2. Note that the gas may be introduced into the through hole 35 by using a compressor or the like, or by natural intake. Further, even if the head portion 31 is formed with the depression 310 and the through hole 35 in a solid material in the shape of a truncated cone, the depression 310 can be formed by joining the ring member to the solid material in the shape of a truncated cone in which the through hole 35 is formed. may be formed.
 筒状体33の外側には、フランジ36が設けられており、当該フランジ36と保持フランジ5とを接合することで気泡発生装置1が液体槽10に固定されている。当該フランジ36が形成された筒状体33の側面は振動のノードとなっており、圧電素子4の振動を液体槽10に伝えることなく、液体側と気体側とを当該フランジ36と接合する保持フランジ5で分離することができる。 A flange 36 is provided on the outside of the cylindrical body 33, and the bubble generator 1 is fixed to the liquid tank 10 by joining the flange 36 and the holding flange 5. The side surface of the cylindrical body 33 on which the flange 36 is formed serves as a vibration node, and is used to hold the liquid side and the gas side together with the flange 36 without transmitting the vibrations of the piezoelectric element 4 to the liquid tank 10. They can be separated by a flange 5.
 図3は、実施の形態1に係る気泡発生装置1に生じる変位を説明するための概略図である。なお、図中のX,Z方向は、それぞれ、気泡発生装置1の横方向、高さ方向を示す。図3に示す一点鎖線は、気泡発生装置1の中心軸を通る部分である。振動体3は、図3から分かるように、圧電素子4が筒状体33のZ方向に振動することにより、ヘッド部31を支持するバネ部32が弾性変形して振動板2をZ方向に変位させている。なお、図3では、ハッチングの濃淡で変位の大きさを示している。 FIG. 3 is a schematic diagram for explaining the displacement that occurs in the bubble generator 1 according to the first embodiment. Note that the X and Z directions in the figure indicate the lateral direction and height direction of the bubble generator 1, respectively. The one-dot chain line shown in FIG. 3 is a portion passing through the central axis of the bubble generator 1. As can be seen from FIG. 3, in the vibrating body 3, when the piezoelectric element 4 vibrates in the Z direction of the cylindrical body 33, the spring part 32 that supports the head part 31 is elastically deformed, and the vibration plate 2 is moved in the Z direction. It is being displaced. In addition, in FIG. 3, the magnitude of displacement is indicated by the shade of hatching.
 振動板2の大きさに制約を受けずに気泡発生装置1の小型化、低コスト化を実現するために、ヘッド部31は、円錐台形状で、バネ部32で支持されている面(第1面)より広い面(第2面)側で振動板2を支持している。ヘッド部31の形状を円錐台形状とすることで、筒状体33およびつば部34を小型化でき、つば部34に設ける圧電素子4も小型化して製造コストを低減することができる。さらに、ヘッド部31の形状を円錐台形状とすることで、電気機械結合係数を高め液中での振動子性能のダンピングを抑えることができる。特に、ヘッド部31とバネ部32との成す角θ(テーパ角)を最適化することで振動子性能を改善することができる。 In order to realize miniaturization and cost reduction of the bubble generator 1 without being restricted by the size of the diaphragm 2, the head portion 31 has a truncated conical shape and has a surface supported by a spring portion 32 The diaphragm 2 is supported on the wider surface (second surface) than the first surface. By making the shape of the head portion 31 into a truncated conical shape, the cylindrical body 33 and the flange portion 34 can be made smaller, and the piezoelectric element 4 provided on the flange portion 34 can also be made smaller, thereby reducing manufacturing costs. Further, by forming the head portion 31 into a truncated conical shape, it is possible to increase the electromechanical coupling coefficient and suppress damping of the vibrator performance in the liquid. In particular, the vibrator performance can be improved by optimizing the angle θ (taper angle) formed between the head portion 31 and the spring portion 32.
 そこで、ヘッド部31の形状を円錐台形状とすることによる振動体3の振動子性能の改善についてさらに詳しく説明する。図4は、振動体の構造および変位を説明するための概略図である。図4に示す振動体3aは、円錐台形状のヘッド部31を検討する前段階として、断面形状がT字形状のヘッド部31zを有する振動体3aの振動子性能について検討する。図4(a)は、振動体3aの変位を示す図であり、図4(b)は、振動体3aの構造を説明する図である。 Therefore, the improvement of the vibrator performance of the vibrating body 3 by making the shape of the head portion 31 into a truncated cone shape will be explained in more detail. FIG. 4 is a schematic diagram for explaining the structure and displacement of the vibrating body. The vibrator performance of the vibrating body 3a shown in FIG. 4 has a head portion 31z having a T-shaped cross section as a preliminary step to examining the head portion 31 having a truncated conical shape. FIG. 4(a) is a diagram showing the displacement of the vibrating body 3a, and FIG. 4(b) is a diagram explaining the structure of the vibrating body 3a.
 振動体3aの共振周波数を決める要素は、バネ部32のストロークとバネ部32の厚みである。なお、バネ部32のストロークは、図4(b)に示すバネ部32でのヘッド部31の保持位置B1と、筒状体33の径Rbで決まる。ここで、ヘッド部31zの形状が円筒形状であれば、ヘッド部31zの保持位置B1は振動板2の径Raと同じになるが、断面形状がT字形状のヘッド部31zでは、振動板2の径Raに制約されず、ヘッド部31zの保持位置B1を変更することができる。 The factors that determine the resonance frequency of the vibrating body 3a are the stroke of the spring portion 32 and the thickness of the spring portion 32. Note that the stroke of the spring portion 32 is determined by the holding position B1 of the head portion 31 in the spring portion 32 and the diameter Rb of the cylindrical body 33 shown in FIG. 4(b). Here, if the head part 31z has a cylindrical shape, the holding position B1 of the head part 31z will be the same as the diameter Ra of the diaphragm 2, but if the head part 31z has a T-shaped cross section, the diaphragm 2 The holding position B1 of the head portion 31z can be changed without being restricted by the diameter Ra.
 ただし、ヘッド部31zは、気体を振動板2に導入するための貫通孔を設ける必要があるため、貫通孔よりもヘッド部31の保持位置B1を小さくできない。例えば、貫通孔の径Rc=ヘッド部31の保持位置B1とした場合、同じ共振周波数を実現できるバネ部32のストロークおよびバネ部32の厚みにすれば、ヘッド部31zの形状が円筒形状の場合に比べ、筒状体33およびつば部34の径が小さくなる。すなわち、励振するための圧電素子4の内径が小さくできる。 However, since the head portion 31z needs to have a through hole for introducing gas into the diaphragm 2, the holding position B1 of the head portion 31 cannot be made smaller than the through hole. For example, when the diameter Rc of the through hole is set to the holding position B1 of the head section 31, if the stroke and thickness of the spring section 32 are set to achieve the same resonance frequency, then when the shape of the head section 31z is cylindrical, The diameters of the cylindrical body 33 and the flange portion 34 are smaller than those shown in FIG. That is, the inner diameter of the piezoelectric element 4 for excitation can be reduced.
 断面形状がT字形状のヘッド部31zを振動させた場合、図4(a)に示すように、振動板2の中央部での変位A1、振動板2の端部での変位A2、バネ部32のピストン振動による変位A3が生じる。これらの変位A1~A3とヘッド部31の保持位置B1、振動板2を支持する部分の厚みB2との関係について説明する。 When the head portion 31z having a T-shaped cross section is vibrated, as shown in FIG. A displacement A3 due to piston vibration of 32 occurs. The relationship between these displacements A1 to A3, the holding position B1 of the head portion 31, and the thickness B2 of the portion supporting the diaphragm 2 will be explained.
 図5は、振動体の構造および変位の数値を示す図である。図5(a)は、振動板2を支持する部分の厚みB2を1mmとして、ヘッド部31の保持位置B1を変化させた場合の変位A1~A3、共振周波数Fr、電気機械結合係数k、および変位A2と変位A3との比(A2/A3)を示す。図5(b)は、ヘッド部31の保持位置B1を2mmとして、振動板2を支持する部分の厚みB2を変化させた場合の変位A1~A3、共振周波数Fr、電気機械結合係数k、および変位A2と変位A3との比(A2/A3)を示す。なお、変位A2と変位A3との比(A2/A3)は、振動板2が均一に振動していることを示す指標である。 FIG. 5 is a diagram showing the structure of the vibrating body and numerical values of displacement. FIG. 5(a) shows displacements A1 to A3, resonance frequency Fr, electromechanical coupling coefficient k, and The ratio (A2/A3) between displacement A2 and displacement A3 is shown. FIG. 5(b) shows displacements A1 to A3, resonance frequency Fr, electromechanical coupling coefficient k, and The ratio (A2/A3) between displacement A2 and displacement A3 is shown. Note that the ratio (A2/A3) between the displacement A2 and the displacement A3 is an index indicating that the diaphragm 2 is vibrating uniformly.
 なお、図5に示す結果は、径Ra=9mm、厚み1mmとする多孔質アルミナの振動板2と、厚み0.5mm、高さ3mmのヘッド部31zと、孔から端部までの長さ(最大ストローク)5mm、厚み2.5mmのバネ部32とを結合させてシミュレーションした結果である。ただし、筒状体33は、内径12mm、厚み1.5mm、つば部34は、外径24.4mm、厚み2.5mmである。ヘッド部31z、バネ部32、筒状体33、およびつば部34は、SUS金属で形成されている。 The results shown in FIG. 5 are based on a porous alumina diaphragm 2 with a diameter Ra of 9 mm and a thickness of 1 mm, a head portion 31z with a thickness of 0.5 mm and a height of 3 mm, and the length from the hole to the end ( This is the result of a simulation in which a spring portion 32 with a maximum stroke of 5 mm and a thickness of 2.5 mm is combined. However, the cylindrical body 33 has an inner diameter of 12 mm and a thickness of 1.5 mm, and the collar portion 34 has an outer diameter of 24.4 mm and a thickness of 2.5 mm. The head portion 31z, the spring portion 32, the cylindrical body 33, and the collar portion 34 are made of SUS metal.
 圧電素子4は、外径21mm、内径11mm、厚み1mmである。圧電素子4の材質は、PZT(チタン酸ジルコン酸鉛)やKNN((K,Na)NbO)などのセラミック,タンタル酸リチウムおよびニオブ酸リチウムなどの圧電結晶が用いられる。 The piezoelectric element 4 has an outer diameter of 21 mm, an inner diameter of 11 mm, and a thickness of 1 mm. As the material of the piezoelectric element 4, ceramics such as PZT (lead zirconate titanate) and KNN ((K,Na)NbO 3 ), and piezoelectric crystals such as lithium tantalate and lithium niobate are used.
 図5(a)に示すように、ヘッド部31の保持位置B1を2mmから5mmまで変化させると、保持位置B1=2mmの場合(ヘッド部31の保持位置がバネ部32に設けた孔側(先端側)にある場合)に変位A1~A3が最大となっている。振動板2の端部での変位A2がバネ部32のピストン振動による変位A3に同期して大きくなることで、結果として振動板2の中央部での変位A1が最大となっている。つまり、気中での振動体3aの振動子性能は、ヘッド部31の保持位置B1が小さくなるに従い高くなることが分かる。 As shown in FIG. 5(a), when the holding position B1 of the head part 31 is changed from 2 mm to 5 mm, when the holding position B1=2 mm (the holding position of the head part 31 is on the side of the hole provided in the spring part 32) Displacements A1 to A3 are maximum at the tip end). The displacement A2 at the end of the diaphragm 2 increases in synchronization with the displacement A3 caused by the piston vibration of the spring portion 32, and as a result, the displacement A1 at the center of the diaphragm 2 becomes maximum. In other words, it can be seen that the vibrator performance of the vibrating body 3a in air becomes higher as the holding position B1 of the head portion 31 becomes smaller.
 図5(b)では、振動板2を支持する部分の厚みB2を0.5mmから2.5mmまで変化させている。厚みB2を0.5mmから2.5mmへと大きくしていくと、バネ部32のピストン振動による変位A3が大きくなるものの、厚みB2が1.5mmで電気機械結合係数kがピークとなり、その後下がっている。 In FIG. 5(b), the thickness B2 of the portion supporting the diaphragm 2 is varied from 0.5 mm to 2.5 mm. As the thickness B2 increases from 0.5 mm to 2.5 mm, the displacement A3 of the spring portion 32 due to piston vibration increases, but the electromechanical coupling coefficient k reaches a peak when the thickness B2 is 1.5 mm, and then decreases. ing.
 図1に示すような水中で振動体3aの変位を測定すると、電気機械結合係数kが同程度であればバネ部32のピストン振動による変位A3により振動体性能の優劣が決まる。また、図5(b)の結果が示すように、厚みB2が1.5mmより厚くしても電気機械結合係数kが下がるので水中で十分な振動体性能が得られないことが分かる。 When the displacement of the vibrating body 3a is measured in water as shown in FIG. 1, if the electromechanical coupling coefficient k is approximately the same, the quality of the vibrating body performance is determined by the displacement A3 due to the piston vibration of the spring portion 32. Further, as shown in the results in FIG. 5(b), it is understood that even if the thickness B2 is greater than 1.5 mm, the electromechanical coupling coefficient k decreases, and therefore sufficient vibrating body performance cannot be obtained underwater.
 以上の結果から、気泡発生装置は、水中での振動体性能を高めるには、電気機械結合係数kが大きくて、バネ部32のピストン振動による変位A3が大きくなるヘッド部の形状を採用すべきである。そこで、本実施の形態では、ヘッド部の形状に円錐台形状を採用することで、電気機械結合係数kが大きく、バネ部32のピストン振動による変位A3が大きい気泡発生装置1を実現している。図6は、実施の形態1に係る気泡発生装置1の変位の数値を示す図である。 From the above results, in order to improve the performance of the vibrating body in water, the bubble generator should adopt a head shape that has a large electromechanical coupling coefficient k and a large displacement A3 due to piston vibration of the spring part 32. It is. Therefore, in this embodiment, by adopting a truncated conical shape as the shape of the head part, the bubble generator 1 is realized which has a large electromechanical coupling coefficient k and a large displacement A3 due to piston vibration of the spring part 32. . FIG. 6 is a diagram showing numerical values of displacement of the bubble generator 1 according to the first embodiment.
 図6では、図3に示すヘッド部31の円錐台高さHを変化させた場合の変位A1~A3、共振周波数Fr、電気機械結合係数k、テーパ角θ、および変位A2と変位A3との比(A2/A3)を示す。図6に示す結果から分かるように、円錐台高さHが2.5mmから5mmの範囲であれば、バネ部32のピストン振動による変位A3が400nm/Vを超え、図5(b)で示した電気機械結合係数kのピーク値である20.98も超えている。 In FIG. 6, the displacements A1 to A3, the resonance frequency Fr, the electromechanical coupling coefficient k, the taper angle θ, and the displacements A2 and A3 when the height H of the truncated cone of the head portion 31 shown in FIG. 3 is changed are shown. The ratio (A2/A3) is shown. As can be seen from the results shown in FIG. 6, when the truncated cone height H is in the range of 2.5 mm to 5 mm, the displacement A3 of the spring portion 32 due to piston vibration exceeds 400 nm/V, as shown in FIG. 5(b). It also exceeds the peak value of the electromechanical coupling coefficient k of 20.98.
 図6では、ヘッド部31とバネ部32との成すテーパ角θが低角度の範囲において電気機械結合係数kが大きく、バネ部32のピストン振動による変位A3も十分大きい。一方、ヘッド部31とバネ部32との成すテーパ角θが高角度の範囲において電気機械結合係数kは小さくなるが、バネ部32のピストン振動による変位A3は大きくなっている。 In FIG. 6, the electromechanical coupling coefficient k is large in the range where the taper angle θ formed by the head portion 31 and the spring portion 32 is low, and the displacement A3 of the spring portion 32 due to piston vibration is also sufficiently large. On the other hand, in a range where the taper angle θ formed by the head portion 31 and the spring portion 32 is high, the electromechanical coupling coefficient k becomes small, but the displacement A3 of the spring portion 32 due to piston vibration becomes large.
 図7は、ヘッド部の変位を説明するための概略図である。図7(a)は、断面形状がT字形状のヘッド部31zの変位を説明するための概略図で、図7(b)は、円錐台形状のヘッド部31の変位を説明するための概略図である。ヘッド部31zは、図7(a)に示すように、バネ部32のピストン振動による変位A3と振動板2の端部での変位A2との差が大きいので、水中で振動させた場合、振動板2が柔らかなばねとして働くことになる。そのため、ヘッド部31zでは、気中で振動板2の中央部での変位A1が大きくても液中ではほとんど反映されないと考えられる。なお、断面形状がT字形状のヘッド部31zを採用した気泡発生装置1であっても、装置の小型化、低コスト化は可能である。 FIG. 7 is a schematic diagram for explaining the displacement of the head section. FIG. 7(a) is a schematic diagram for explaining the displacement of the head portion 31z having a T-shaped cross section, and FIG. 7(b) is a schematic diagram for explaining the displacement of the head portion 31 having a truncated cone shape. It is a diagram. As shown in FIG. 7(a), the head part 31z has a large difference between the displacement A3 due to the piston vibration of the spring part 32 and the displacement A2 at the end of the diaphragm 2, so when it is vibrated underwater, Plate 2 will act as a soft spring. Therefore, in the head portion 31z, even if the displacement A1 at the center of the diaphragm 2 is large in air, it is considered that it is hardly reflected in the liquid. Note that even if the bubble generating device 1 employs the head portion 31z having a T-shaped cross section, the device can be made smaller and lower in cost.
 一方、円錐台形状のヘッド部31では、テーパ角θが40度以上であれば、図7(b)に示すように、バネ部32のピストン振動による変位A3と振動板2の端部での変位A2との差が小さいので、振動板2が均一に振動し、液中でも気中と同じように振動板2の中央部での変位A1が大きいと考えられる。ヘッド部31では、テーパ角θが40度から70度の範囲にあることが好ましく、さらにテーパ角θが45度から65度の範囲にあることが好ましい。なお、円錐台形状のヘッド部31を採用した気泡発生装置1の共振周波数は、40kHzから50kHzの範囲である場合を一例として説明したが、これに限定されない。 On the other hand, in the truncated conical head part 31, if the taper angle θ is 40 degrees or more, the displacement A3 due to the piston vibration of the spring part 32 and the end part of the diaphragm 2 will change as shown in FIG. 7(b). Since the difference from the displacement A2 is small, the diaphragm 2 vibrates uniformly, and it is considered that the displacement A1 at the center of the diaphragm 2 is large in liquid as well as in air. In the head portion 31, the taper angle θ is preferably in the range of 40 degrees to 70 degrees, and more preferably the taper angle θ is in the range of 45 degrees to 65 degrees. In addition, although the resonant frequency of the bubble generator 1 which employ|adopted the truncated cone-shaped head part 31 was demonstrated as an example in the range of 40 kHz to 50 kHz, it is not limited to this.
 次に、液体槽10における気泡発生装置1の取り付け位置について説明する。図1に示した気泡発生システム100では、液体槽10の底面に開けた孔に保持フランジ5で気泡発生装置1を固定すると説明した。液体槽10における気泡発生装置1の取り付け位置はこれに限られない。図8は、気泡発生装置1の取り付け位置を説明するための気泡発生システムの概略図である。なお、図8に示す気泡発生システムのうち、図1に示す気泡発生システム100と同じ構成については同じ符号を付して詳しい説明は繰り返さない。 Next, the mounting position of the bubble generator 1 in the liquid tank 10 will be explained. In the bubble generation system 100 shown in FIG. 1, it has been explained that the bubble generation device 1 is fixed to a hole formed in the bottom surface of the liquid tank 10 with the holding flange 5. The mounting position of the bubble generator 1 in the liquid tank 10 is not limited to this. FIG. 8 is a schematic diagram of the bubble generation system for explaining the mounting position of the bubble generation device 1. In addition, among the bubble generation systems shown in FIG. 8, the same components as the bubble generation system 100 shown in FIG.
 図8(a)に示す気泡発生システム100Aは、気泡発生装置1が、少なくとも振動板2を支持する振動体3の一部が液体槽10の液体に浸かるように液体槽10の側面に固定されている。 In the bubble generation system 100A shown in FIG. 8(a), the bubble generation device 1 is fixed to the side surface of the liquid tank 10 so that at least a part of the vibrating body 3 supporting the diaphragm 2 is immersed in the liquid in the liquid tank 10. ing.
 図8(b)に示す気泡発生システム100Bは、気泡発生装置1の取り付け位置が液体槽10の液面より上側で、気泡発生装置1が少なくとも振動板2を支持する振動体3の一部が液体槽10の液体に浸かるように液体槽10の底面に向かって固定されている。 In the bubble generation system 100B shown in FIG. 8(b), the bubble generation device 1 is installed at a position above the liquid level of the liquid tank 10, and the bubble generation device 1 has at least a part of the vibrating body 3 supporting the diaphragm 2. It is fixed toward the bottom of the liquid tank 10 so as to be immersed in the liquid in the liquid tank 10.
 液体槽10に対する気泡発生装置1の取り付け位置について、図1および図8で説明したが、他の気泡発生装置についても液体槽10に対して同様の位置に取り付けることができる。 Although the mounting position of the bubble generator 1 with respect to the liquid tank 10 has been described with reference to FIGS. 1 and 8, other bubble generators can also be mounted in the same position with respect to the liquid tank 10.
 以上のように、実施の形態1に係る気泡発生装置1は、液体槽10に取り付けられ、液体槽10の液体中に微細な気泡を発生させる。気泡発生装置1は、複数の開口部が形成され、第1の面が液体槽10の液体と接し、第2の面が気体と接する振動板2と、振動板2を支持する振動体3と、振動体3に設けられ、振動板2を振動させる圧電素子4と、を備える。振動体3は、一方の端により振動板2を支持するヘッド部31(第1筒状体)と、ヘッド部31の他方の端を支持する筒状体33(第2筒状体)と、を含む。ヘッド部31は、振動板2を支持する側の径Raが筒状体33で支持される側の径(ヘッド部31の保持位置B1)より大きい。 As described above, the bubble generator 1 according to the first embodiment is attached to the liquid tank 10 and generates fine bubbles in the liquid in the liquid tank 10. The bubble generator 1 includes a diaphragm 2 in which a plurality of openings are formed, a first surface is in contact with liquid in a liquid tank 10, and a second surface is in contact with gas, and a diaphragm 3 that supports the diaphragm 2. , a piezoelectric element 4 provided on the vibrating body 3 and vibrating the diaphragm 2. The vibrating body 3 includes a head portion 31 (first cylindrical body) that supports the diaphragm 2 at one end, and a cylindrical body 33 (second cylindrical body) that supports the other end of the head portion 31. including. In the head portion 31, the diameter Ra on the side supporting the diaphragm 2 is larger than the diameter on the side supported by the cylindrical body 33 (holding position B1 of the head portion 31).
 これにより、気泡発生装置1では、ヘッド部31が、振動板2を支持する側の径Raが筒状体33で支持される側の径(ヘッド部31の保持位置B1)より大きいので、筒状体33が振動板2の大きさの制約を受けず、装置の小型化、低コスト化が可能である。 As a result, in the bubble generator 1, the diameter Ra of the head part 31 on the side supporting the diaphragm 2 is larger than the diameter of the side supported by the cylindrical body 33 (holding position B1 of the head part 31), The shaped body 33 is not limited by the size of the diaphragm 2, and the device can be made smaller and lower in cost.
 気泡発生システム100は、気泡発生装置1と、液体槽10と、を備える。これにより、気泡発生システムの小型化、低コスト化が可能である。 The bubble generation system 100 includes a bubble generation device 1 and a liquid tank 10. Thereby, the bubble generation system can be made smaller and lower in cost.
 (実施の形態2)
 図2に示す気泡発生装置1では、振動体3がヘッド部31をバネ部32、筒状体33、およびつば部34で支持する構造であると説明したが、これに限られず振動板2を上下に振動させるピストン振動する振動体であれば、何れの構造であってもよい。実施の形態2では、振動体にランジュバン型振動子を採用する場合について説明する。
(Embodiment 2)
In the bubble generator 1 shown in FIG. 2, it has been explained that the vibrating body 3 has a structure in which the head part 31 is supported by the spring part 32, the cylindrical body 33, and the collar part 34, but the structure is not limited to this. Any structure may be used as long as it is a vibrating body that vibrates a piston that vibrates up and down. In Embodiment 2, a case will be described in which a Langevin type vibrator is employed as the vibrating body.
 図9は、実施の形態2に係る気泡発生装置1Aの断面斜視図である。なお、図9に示す気泡発生装置1Aのうち、図2に示す気泡発生装置1と同じ構成については同じ符号を付して詳しい説明は繰り返さない。気泡発生装置1Aは、図9に示すように、振動板2と、振動体3Aと、圧電素子4とを含む。振動体3Aは、振動板2の周辺部を固定するヘッド部31と、ヘッド部31に連なる筒状体33aとで構成されている。筒状体33aは、いわゆるランジュバン型振動子である。筒状体33aは、上側金属リング33a1と下側金属リング33a2とで2枚の圧電素子4を挟んで締め付け用ボルト34aで固定した構造である。 FIG. 9 is a cross-sectional perspective view of the bubble generator 1A according to the second embodiment. In addition, among the bubble generators 1A shown in FIG. 9, the same components as those of the bubble generator 1 shown in FIG. 2 are given the same reference numerals, and detailed description thereof will not be repeated. The bubble generator 1A includes a diaphragm 2, a vibrating body 3A, and a piezoelectric element 4, as shown in FIG. The vibrating body 3A includes a head portion 31 that fixes the periphery of the vibrating plate 2, and a cylindrical body 33a continuous to the head portion 31. The cylindrical body 33a is a so-called Langevin type vibrator. The cylindrical body 33a has a structure in which two piezoelectric elements 4 are sandwiched between an upper metal ring 33a1 and a lower metal ring 33a2 and fixed with tightening bolts 34a.
 ヘッド部31は、筒状体33aの上部に設けられ、円錐台形状をしている。振動体3Aにおいて、テーパ角θは、ヘッド部31と筒状体33aとの接合面と、ヘッド部31との成す角である。なお、ヘッド部31は、筒状体33aと別に形成して接合しても、一体で形成してもよい。 The head portion 31 is provided at the top of the cylindrical body 33a and has a truncated cone shape. In the vibrating body 3A, the taper angle θ is the angle formed by the head portion 31 and the joint surface between the head portion 31 and the cylindrical body 33a. Note that the head portion 31 may be formed separately from the cylindrical body 33a and joined together, or may be formed integrally with the cylindrical body 33a.
 2枚の圧電素子4は、圧電素子41と、圧電素子41に対して分極方向を反対にした圧電素子42とを重ねた構成になっている。圧電素子41および圧電素子42に対して電力を供給する端子43,44が、上側金属リング33a1,下側金属リング33a2と圧電素子41,42との間から引き出され、図1に示すコントローラ20と配線で電気的に接続されている。 The two piezoelectric elements 4 have a structure in which a piezoelectric element 41 and a piezoelectric element 42 whose polarization direction is opposite to that of the piezoelectric element 41 are stacked on top of each other. Terminals 43 and 44 for supplying power to the piezoelectric element 41 and the piezoelectric element 42 are pulled out from between the upper metal ring 33a1 and the lower metal ring 33a2 and the piezoelectric elements 41 and 42, and are connected to the controller 20 shown in FIG. electrically connected by wiring.
 コントローラ20から圧電素子41,42に電力を供給することで、ヘッド部31および筒状体33aを含めた長さ方向の寸法に依存する共振周波数で筒状体33aを駆動することにより、振動板2において大きな変位が得られる。筒状体33aの共振には、複数の高次の振動モードが存在するため複数の共振周波数の中から1つの共振周波数を選択することが可能である。また、ヘッド部31の形状を円錐台形状とすることで、上側金属リング33a1からヘッド部31に繋がる部分の径を他の部分より小さく絞り込んだ形状となり、振動板2の変位をさらに増幅することができる。さらに、筒状体33aの径自体を小さくなるので、励振するための圧電素子4の内径も小さくできる。 By supplying power from the controller 20 to the piezoelectric elements 41 and 42, the cylindrical body 33a is driven at a resonant frequency that depends on the lengthwise dimension including the head portion 31 and the cylindrical body 33a, and the vibration plate 2, a large displacement is obtained. Since a plurality of high-order vibration modes exist in the resonance of the cylindrical body 33a, it is possible to select one resonance frequency from among the plurality of resonance frequencies. Moreover, by making the shape of the head part 31 into a truncated cone shape, the diameter of the part connecting from the upper metal ring 33a1 to the head part 31 becomes smaller than other parts, and the displacement of the diaphragm 2 can be further amplified. I can do it. Furthermore, since the diameter of the cylindrical body 33a itself is reduced, the inner diameter of the piezoelectric element 4 for exciting can also be reduced.
 なお、上側金属リング33a1,下側金属リング33a2、および締め付け用ボルト34aの中心部には、図9に示すように貫通孔35が設けてあり、当該貫通孔35が振動板2へ気体を導入する導入部となっている。上側金属リング33a1,下側金属リング33a2、および締め付け用ボルト34aには、ステンレスやアルミなどが用いられる。圧電素子41,42には、PZT(チタン酸ジルコン酸鉛)やKNN((K,Na)NbO)などのセラミック,タンタル酸リチウムおよびニオブ酸リチウムなどの圧電結晶が用いられる。 As shown in FIG. 9, a through hole 35 is provided in the center of the upper metal ring 33a1, the lower metal ring 33a2, and the tightening bolt 34a, and the through hole 35 introduces gas into the diaphragm 2. This is an introductory part. Stainless steel, aluminum, or the like is used for the upper metal ring 33a1, the lower metal ring 33a2, and the tightening bolt 34a. For the piezoelectric elements 41 and 42, ceramics such as PZT (lead zirconate titanate) and KNN ((K,Na)NbO 3 ), piezoelectric crystals such as lithium tantalate and lithium niobate are used.
 具体的に、筒状体33aは、SUSU304材で形成し、上側金属リング33a1の径が16mm、ヘッド部を含む高さが46.5mm、下側金属リング33a2の径が16mm、高さが10mmである。圧電素子41,42は、それぞれ径が16mm、厚みが2.55mmである。振動体3Aの全長は、63mm程度になる。 Specifically, the cylindrical body 33a is made of SUSU304 material, the diameter of the upper metal ring 33a1 is 16 mm, the height including the head portion is 46.5 mm, and the diameter of the lower metal ring 33a2 is 16 mm, and the height is 10 mm. It is. The piezoelectric elements 41 and 42 each have a diameter of 16 mm and a thickness of 2.55 mm. The total length of the vibrating body 3A is approximately 63 mm.
 筒状体33aは、上側金属リング33a1と下側金属リング33a2とを締め付け用ボルト34aで締め付ける構造となっているため、圧電素子41,42に圧縮力のバイアスが加わっている。そのため、引っ張り応力に対する耐性が小さい圧電セラミックスを圧電素子41,42に採用し、圧電素子41,42に大電力を供給して駆動した場合でも圧電素子41,42が破壊し難い構造となっている。その結果、上側金属リング33a1と下側金属リング33a2とが同電位となるため、2枚の圧電素子4の中間に印加電極を挟む必要がある。当該印加電極と端子43とが電気的に接続されている。 Since the cylindrical body 33a has a structure in which the upper metal ring 33a1 and the lower metal ring 33a2 are tightened with tightening bolts 34a, a compression bias is applied to the piezoelectric elements 41 and 42. Therefore, piezoelectric ceramics having low resistance to tensile stress are used for the piezoelectric elements 41 and 42, and the structure is such that the piezoelectric elements 41 and 42 are difficult to break even when a large amount of power is supplied to the piezoelectric elements 41 and 42 to drive them. . As a result, the upper metal ring 33a1 and the lower metal ring 33a2 have the same potential, so it is necessary to sandwich the application electrode between the two piezoelectric elements 4. The application electrode and the terminal 43 are electrically connected.
 なお、筒状体33aは、圧電素子41,42に大電力を供給して駆動する必要がなければ、締め付け用ボルト34aで締め付ける構造とせずに、1枚の圧電素子4を上側金属リング33a1と下側金属リング33a2とで挟んで接着する構造でもよい。また、筒状体33aは、上側金属リング33a1のみの構造とし、当該上側金属リング33a1の底面に圧電素子4を接着する構造でもよい。筒状体33aにいずれの構造を採用しても、製造コストを下げることができる。 Note that, unless it is necessary to drive the piezoelectric elements 41 and 42 by supplying a large amount of power, the cylindrical body 33a does not have a structure in which the piezoelectric elements 4 are tightened with the tightening bolts 34a, and one piezoelectric element 4 is connected to the upper metal ring 33a1. A structure in which it is sandwiched and bonded to the lower metal ring 33a2 may also be used. Further, the cylindrical body 33a may have a structure including only the upper metal ring 33a1, and the piezoelectric element 4 may be bonded to the bottom surface of the upper metal ring 33a1. No matter which structure is adopted for the cylindrical body 33a, manufacturing costs can be reduced.
 図10は、実施の形態2に係る気泡発生装置1Aの振動モードを示すグラフである。図10に示すグラフでは、縦軸をインピーダンス(Ω)、横軸を周波数(kHz)としている。気泡発生装置1Aでは、ランジュバン型振動子の振動体3Aを採用し、共振周波数の1/2(1/2λ共振)に第1振動モード、共振周波数(λ共振)に第2振動モード、共振周波数の3/2(3/2λ共振)に第3振動モードが現れている。 FIG. 10 is a graph showing the vibration mode of the bubble generator 1A according to the second embodiment. In the graph shown in FIG. 10, the vertical axis represents impedance (Ω), and the horizontal axis represents frequency (kHz). The bubble generator 1A employs a Langevin type vibrator vibrator 3A, with a first vibration mode at 1/2 of the resonant frequency (1/2λ resonance), a second vibration mode at the resonant frequency (λ resonance), and a resonant frequency. A third vibration mode appears at 3/2 (3/2λ resonance).
 ランジュバン型振動子の振動体3Aの全長が63mmの場合、図10に示すように45kHz近傍に第1振動モード(1/2λ共振)があり、実施の形態1で説明した振動体3の共振周波数に近いものになる。図10では、63kHz近傍に第2振動モード(λ共振)があり、95kHz近傍に第3振動モード(3/2λ共振)がある。 When the total length of the vibrating body 3A of the Langevin type vibrator is 63 mm, there is a first vibration mode (1/2λ resonance) near 45 kHz as shown in FIG. It will be close to. In FIG. 10, there is a second vibration mode (λ resonance) near 63 kHz, and a third vibration mode (3/2λ resonance) near 95 kHz.
 図11は、各振動モードの変位分布を示すグラフである。図11に示すグラフでは、縦軸を変位(m/V)、横軸を振動板2の一方の端からの距離(mm)としている。図11には、第1振動モード(1/2λ共振)で振動板2を振動させたときの振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位、第2振動モード(λ共振)で振動板2を振動させたときの振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位、第3振動モード(3/2λ共振)で振動板2を振動させたときの振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位が示されている。なお、第3振動モード(3/2λ共振)で振動板2を振動させた場合、他の振動モードに比べて振動体ヘッド部の振動板と接合するリング部の下部平面位置を均一に振動することができていない。 FIG. 11 is a graph showing the displacement distribution of each vibration mode. In the graph shown in FIG. 11, the vertical axis is displacement (m/V), and the horizontal axis is distance (mm) from one end of the diaphragm 2. FIG. 11 shows the displacement of the lower plane position of the ring portion of the vibrating body head portion that connects with the diaphragm when the diaphragm 2 is vibrated in the first vibration mode (1/2λ resonance), and the second vibration mode (λ Displacement of the lower plane position of the ring part of the vibrator head that connects with the diaphragm when the diaphragm 2 is vibrated in the 3rd vibration mode (3/2λ resonance), when the diaphragm 2 is vibrated in the 3rd vibration mode (3/2λ resonance) The displacement of the lower plane position of the ring part that joins with the diaphragm of the vibrating body head part is shown. Note that when the diaphragm 2 is vibrated in the third vibration mode (3/2λ resonance), the lower plane position of the ring part that connects with the diaphragm of the vibrating body head part vibrates more uniformly than in other vibration modes. I haven't been able to do that.
 次に、ヘッド部31の円錐台高さを変化させた場合の振動板2の振動を比較する。図12は、ヘッド部の形状を説明するための概略図である。図12(a)に示すヘッド部31aは、振動板2を支持する部分の外径が9mmで、円錐台高さが3mmである。図12(b)に示すヘッド部31bは、振動板2を支持する部分の外径が9mmで、円錐台高さが6mmである。 Next, the vibration of the diaphragm 2 when the height of the truncated cone of the head portion 31 is changed will be compared. FIG. 12 is a schematic diagram for explaining the shape of the head section. The head portion 31a shown in FIG. 12(a) has an outer diameter of 9 mm at a portion that supports the diaphragm 2, and a truncated cone height of 3 mm. The head portion 31b shown in FIG. 12(b) has an outer diameter of 9 mm at a portion that supports the diaphragm 2, and a truncated cone height of 6 mm.
 ヘッド部31aで振動させた振動板2の変位、およびヘッド部31bで振動させた振動板2の変位を比較する。図13は、振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位分布を示すグラフである。図13(a)は、第1振動モード(1/2λ共振)で振動板2を振動させたときの振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位を示し、図13(b)は、第2振動モード(λ共振)で振動板2を振動させたときの振動体ヘッド部の振動板と接合するリング部の下部平面位置の変位を示している。図13(a)および図13(b)に示すグラフでは、縦軸を変位(m/V)、横軸を振動板2の一方の端からの距離(mm)としている。 The displacement of the diaphragm 2 vibrated by the head portion 31a and the displacement of the diaphragm 2 vibrated by the head portion 31b are compared. FIG. 13 is a graph showing the displacement distribution of the lower plane position of the ring portion that joins with the diaphragm of the vibrating body head portion. FIG. 13(a) shows the displacement of the lower plane position of the ring portion of the vibrating body head portion that connects with the diaphragm when the diaphragm 2 is vibrated in the first vibration mode (1/2λ resonance). (b) shows the displacement of the lower plane position of the ring portion of the vibrating head portion that is joined to the diaphragm when the diaphragm 2 is vibrated in the second vibration mode (λ resonance). In the graphs shown in FIGS. 13(a) and 13(b), the vertical axis is the displacement (m/V), and the horizontal axis is the distance (mm) from one end of the diaphragm 2.
 第1振動モード(1/2λ共振)では、図13(a)に示すように、円錐台高さが低いヘッド部31aであっても、円錐台高さが高いヘッド部31bであっても、共に振動板2の中心部と周辺部とで変位の大きさに違いはない。しかし、第2振動モード(λ共振)では、図13(b)に示すように、円錐台高さが低いヘッド部31aでは、振動板2の中心部と周辺部とで変位の大きさに差が生じている。 In the first vibration mode (1/2λ resonance), as shown in FIG. 13(a), even if the head portion 31a has a low truncated cone height or the head portion 31b has a high truncated cone height, In both cases, there is no difference in the magnitude of displacement between the center and the periphery of the diaphragm 2. However, in the second vibration mode (λ resonance), as shown in FIG. 13(b), in the head portion 31a where the height of the truncated cone is low, there is a difference in the magnitude of displacement between the center part and the peripheral part of the diaphragm 2. is occurring.
 振動板2の中心部と周辺部とで変位の差は、図6で説明した変位A2と変位A3との比(A2/A3)と対応している。図14は、異なる形状のヘッド部の変位の数値を示す図である。図14では、円錐台高さが低い(3mm)ヘッド部31aと円錐台高さが高い(6mm)ヘッド部31bのそれぞれについて、波長、共振周波数Fr、電気機械結合係数k、および変位A2と変位A3との比(A2/A3)を示す。 The difference in displacement between the central part and the peripheral part of the diaphragm 2 corresponds to the ratio (A2/A3) between the displacement A2 and the displacement A3 explained in FIG. 6. FIG. 14 is a diagram showing numerical values of displacement of head portions of different shapes. In FIG. 14, wavelength, resonance frequency Fr, electromechanical coupling coefficient k, displacement A2, and displacement are shown for each of the head portion 31a with a low truncated cone height (3 mm) and the head portion 31b with a high truncated cone height (6 mm). The ratio with A3 (A2/A3) is shown.
 円錐台高さが低いヘッド部31aでは、図14に示すように、第1振動モード(1/2λ共振)でA2/A3=1.01程度であるが、第2振動モード(λ共振)でA2/A3=1.21となっている。つまり、円錐台高さが低いヘッド部31aでは、振動体3Aの共振周波数Frが高くなるほどA2/A3の値が大きくなっている。 In the head portion 31a with a low truncated cone height, as shown in FIG. 14, A2/A3=1.01 in the first vibration mode (1/2λ resonance), but A2/A3=1.01 in the second vibration mode (λ resonance). A2/A3=1.21. That is, in the head portion 31a having a low truncated cone height, the value of A2/A3 increases as the resonant frequency Fr of the vibrating body 3A increases.
 ヘッド部31aおよびヘッド部31bを水中で振動させた場合のインピーダンス特性を示す。図15は、第1振動モードでヘッド部を振動させた場合の水中のインピーダンス特性を示すグラフである。図16は、第2振動モードでヘッド部を振動させた場合の水中のインピーダンス特性を示すグラフである。図15(a)および図16(a)は、円錐台高さが低いヘッド部31aを振動させた場合の水中のインピーダンス特性を示す。図15(b)および図16(b)は、円錐台高さが高いヘッド部31bを振動させた場合の水中のインピーダンス特性を示す。 The impedance characteristics when the head portion 31a and the head portion 31b are vibrated in water are shown. FIG. 15 is a graph showing the impedance characteristics in water when the head section is vibrated in the first vibration mode. FIG. 16 is a graph showing the impedance characteristics in water when the head section is vibrated in the second vibration mode. 15(a) and 16(a) show impedance characteristics in water when the head portion 31a having a low truncated cone height is vibrated. FIGS. 15(b) and 16(b) show impedance characteristics in water when the head portion 31b having a high truncated cone height is vibrated.
 図15および図16に示すグラフでは、縦軸をインピーダンス(Ω)、横軸を周波数(kHz)としている。また、図15および図16に示すグラフでは、ヘッド部31aおよびヘッド部31bを気中で振動させた場合のインピーダンス特性、ヘッド部31aおよびヘッド部31bを1mm液体に浸からせて振動させた場合のインピーダンス特性、ヘッド部31aおよびヘッド部31bを3mm液体に浸からせて振動させた場合のインピーダンス特性が示されている。 In the graphs shown in FIGS. 15 and 16, the vertical axis represents impedance (Ω), and the horizontal axis represents frequency (kHz). In addition, the graphs shown in FIGS. 15 and 16 show the impedance characteristics when the head portions 31a and 31b are vibrated in the air, and when the head portions 31a and 31b are immersed in 1 mm of liquid and vibrated. The impedance characteristics when the head portion 31a and the head portion 31b are immersed in 3 mm of liquid and vibrated are shown.
 図15(a)および図15(b)のグラフから分かるように、第1振動モードでヘッド部31a,31bを振動させた場合、インピーダンス特性に殆ど変化が見られないことから、水中でヘッド部31a,31bを第1振動モードで振動させても振動にダンピングが殆ど起こらない。しかし、図16(a)のグラフから分かるように、第2振動モードでヘッド部31aを振動させた場合、インピーダンス特性が大きく変化していることから、水中でヘッド部31aを第2振動モードで振動させると振動にダンピングが生じる。 As can be seen from the graphs in FIGS. 15(a) and 15(b), when the head parts 31a and 31b are vibrated in the first vibration mode, there is almost no change in the impedance characteristics. Even when 31a and 31b are vibrated in the first vibration mode, almost no damping occurs in the vibrations. However, as can be seen from the graph in FIG. 16(a), when the head section 31a is vibrated in the second vibration mode, the impedance characteristics change significantly. When it vibrates, damping occurs in the vibration.
 つまり、図13(b)で示したように、振動板2の中心部と周辺部とで変位の大きさに差が生じているヘッド部31aでは、水中で振動させると振動にダンピングが生じる。ヘッド部31aを第2振動モードで振動させた場合のA2/A3の値が、図14で示したように1.21である。このことから、振動体3Aの共振周波数Frがいずれの周波数であって、A2/A3の値が1.2以下となるようにヘッド部31a,31bを振動させることが好ましい。つまり、気泡発生装置において円錐台形状のヘッド部を採用した場合、水中での振動のダンピングを考慮すると、図6で示したようにテーパ角が45度以上であることが好ましい。 In other words, as shown in FIG. 13(b), in the head portion 31a where there is a difference in the magnitude of displacement between the center and peripheral portions of the diaphragm 2, damping occurs in the vibration when vibrating underwater. The value of A2/A3 when the head portion 31a is vibrated in the second vibration mode is 1.21 as shown in FIG. From this, it is preferable to vibrate the head parts 31a and 31b so that the resonance frequency Fr of the vibrating body 3A is any frequency and the value of A2/A3 is 1.2 or less. In other words, when a truncated cone-shaped head part is employed in the bubble generator, the taper angle is preferably 45 degrees or more as shown in FIG. 6, taking into account damping of vibrations in water.
 以上のように、実施の形態2に係る気泡発生装置1Aは、振動体3Aが、ランジュバン型振動子で構成されている。これにより、気泡発生装置1Aは、振動板2を上下に振動させるピストン振動をさせやすい。 As described above, in the bubble generator 1A according to the second embodiment, the vibrating body 3A is composed of a Langevin type vibrator. Thereby, the bubble generator 1A easily causes piston vibration that vibrates the diaphragm 2 up and down.
 (実施の形態3)
 図2に示す気泡発生装置1では、振動体3がヘッド部31をバネ部32、筒状体33、およびつば部34で支持する構造であると説明した。実施の形態3では、振動体が、ヘッド部、バネ部、筒状体、錘部を含む構造である。図17は、実施の形態3に係る気泡発生装置1Bの断面図である。なお、図17に示す気泡発生装置1Bのうち、図2に示す気泡発生装置1と同じ構成については同じ符号を付して詳しい説明は繰り返さない。また、図17に示す気泡発生装置1Bでは、振動板2の図示を省略している。
(Embodiment 3)
The bubble generator 1 shown in FIG. 2 has been described as having a structure in which the vibrating body 3 supports the head portion 31 with the spring portion 32, the cylindrical body 33, and the collar portion 34. In Embodiment 3, the vibrating body has a structure including a head portion, a spring portion, a cylindrical body, and a weight portion. FIG. 17 is a cross-sectional view of a bubble generator 1B according to the third embodiment. In addition, among the bubble generation apparatus 1B shown in FIG. 17, the same components as the bubble generation apparatus 1 shown in FIG. 2 are given the same reference numerals, and detailed description thereof will not be repeated. Moreover, in the bubble generator 1B shown in FIG. 17, illustration of the diaphragm 2 is omitted.
 気泡発生装置1Bでは、振動体3Bを介して圧電素子4で振動板2を振動させている。図17に示す振動体3Bは、ヘッド部31、バネ部32b、筒状体33b、錘部34bを含んでいる。 In the bubble generator 1B, the diaphragm 2 is vibrated by the piezoelectric element 4 via the vibrating body 3B. The vibrating body 3B shown in FIG. 17 includes a head portion 31, a spring portion 32b, a cylindrical body 33b, and a weight portion 34b.
 バネ部32bは、ヘッド部31を支持する位置の外側にある位置において筒状体33bにより支持されている。筒状体33bは、円筒状の形状である。筒状体33bは、一方の端によりバネ部32bを支持する。筒状体33bは、バネ部32b側とは反対側の端部の外側に錘部34bを有している。なお、筒状体33bおよび錘部34bは、圧電素子4によりバネ部32bを振動させた場合に筒状体33bの側面の変位量が所定の範囲内となる位置に設けてある。 The spring portion 32b is supported by the cylindrical body 33b at a position outside the position where the head portion 31 is supported. The cylindrical body 33b has a cylindrical shape. The cylindrical body 33b supports the spring portion 32b at one end. The cylindrical body 33b has a weight portion 34b on the outside of the end opposite to the spring portion 32b. The cylindrical body 33b and the weight portion 34b are provided at positions such that when the piezoelectric element 4 vibrates the spring portion 32b, the amount of displacement of the side surface of the cylindrical body 33b falls within a predetermined range.
 バネ部32bの下面には、バネ部32bの形状に合わせて中空円状の圧電素子4が設けられている。圧電素子4は、ヘッド部31に設けた貫通孔35の貫通方向(図中、上下方向)に振動する。圧電素子4が貫通孔35の貫通方向に振動することにより、バネ部32bを貫通孔35の貫通方向に振動させてヘッド部31を略均一に上下方向に変位させている。 A hollow circular piezoelectric element 4 is provided on the lower surface of the spring portion 32b to match the shape of the spring portion 32b. The piezoelectric element 4 vibrates in the penetrating direction of the through hole 35 provided in the head portion 31 (vertical direction in the figure). The piezoelectric element 4 vibrates in the direction of penetration of the through hole 35, thereby causing the spring portion 32b to vibrate in the direction of penetration of the through hole 35, thereby displacing the head portion 31 substantially uniformly in the vertical direction.
 筒状体33bの内側と圧電素子4に設けた孔とヘッド部31に設けた貫通孔35とは繋がっており、筒状体33bの内側から貫通孔35を経て振動板2へ気体を導入する導入部となっている。 The inside of the cylindrical body 33b, the hole provided in the piezoelectric element 4, and the through hole 35 provided in the head portion 31 are connected, and gas is introduced into the diaphragm 2 from the inside of the cylindrical body 33b through the through hole 35. This is the introductory part.
 気泡発生装置1Bを液体槽10に取り付ける場合、筒状体33bの外側にフランジを設け、当該フランジと図1で示したような保持フランジとを接合して気泡発生装置1Bを液体槽10に固定する場合が考えられる。しかし、筒状体33bとは別体として保持フランジを用意する必要があり、筒状体33bと保持フランジとを接合して液体槽10に固定する作業が必要となる。 When attaching the bubble generator 1B to the liquid tank 10, a flange is provided on the outside of the cylindrical body 33b, and the flange is joined to a holding flange as shown in FIG. 1 to fix the bubble generator 1B to the liquid tank 10. There may be cases where this is the case. However, it is necessary to prepare a holding flange separately from the cylindrical body 33b, and it is necessary to join the cylindrical body 33b and the holding flange and fix them to the liquid tank 10.
 そこで、気泡発生装置1Bは、筒状体33bと保持フランジとが一体となった構造を採用している。図18は、実施の形態3に係る気泡発生装置1Bが用いられる気泡発生システム100Cの概略図である。なお、図18に示す気泡発生システム100Cのうち、図1に示す気泡発生システム100と同じ構成については同じ符号を付して詳しい説明は繰り返さない。 Therefore, the bubble generator 1B adopts a structure in which the cylindrical body 33b and the holding flange are integrated. FIG. 18 is a schematic diagram of a bubble generation system 100C in which a bubble generation device 1B according to the third embodiment is used. In addition, among the bubble generation system 100C shown in FIG. 18, the same components as the bubble generation system 100 shown in FIG.
 気泡発生システム100Cでは、気泡発生装置1Bの筒状体33bに保持フランジ50が一体として形成されている。保持フランジ50は、筒状体33bの周囲に設けられた板状の部材であり、筒状体33bの側面から外側に向かって延伸している。さらに、保持フランジ50は、液体槽10に固定する部分に段差が設けてあり、当該部分にネジ穴が設けてある。そのため、図18に示すように、保持フランジ50に設けたネジ穴にネジ51を通して気泡発生装置1Bを液体槽10に固定することができる。なお、保持フランジ50は、他の部分よりも板厚を薄く(例えば0.5mm)してあるが、ネジ穴を設ける部分は板厚を厚くしている。 In the bubble generation system 100C, a holding flange 50 is integrally formed on the cylindrical body 33b of the bubble generation device 1B. The holding flange 50 is a plate-shaped member provided around the cylindrical body 33b, and extends outward from the side surface of the cylindrical body 33b. Further, the holding flange 50 is provided with a step at a portion to be fixed to the liquid tank 10, and a screw hole is provided at the portion. Therefore, as shown in FIG. 18, the bubble generator 1B can be fixed to the liquid tank 10 by passing the screws 51 through the screw holes provided in the holding flange 50. The holding flange 50 is made thinner (for example, 0.5 mm) than other parts, but the part where the screw holes are provided is made thicker.
 気泡発生装置1Bでは、振動のノードとなる筒状体33bの側面に、液体側と気体側とを分離するための保持フランジ50を一体として形成してある。そのため、筒状体33bと保持フランジ50との間に隙間が生じず、隙間から液体が気体側に漏れる可能性がない。また、保持フランジ50は、液体槽10に固定する部分(ネジ穴を設ける部分)に対して段差を設け、一段低くなった部分で筒状体33bの側面と繋がっている。保持フランジ50を図18に示すような形状とすることで、筒状体33bから保持フランジ50を伝わって液体槽10に漏れる振動を約90%程度低減することができ、圧電素子4による振動体3Bの駆動力を効率良く振動板2に伝えることができる。 In the bubble generator 1B, a holding flange 50 for separating the liquid side and the gas side is integrally formed on the side surface of the cylindrical body 33b, which serves as a vibration node. Therefore, no gap is created between the cylindrical body 33b and the holding flange 50, and there is no possibility of liquid leaking from the gap to the gas side. Further, the holding flange 50 is provided with a step relative to the portion fixed to the liquid tank 10 (the portion provided with the screw hole), and is connected to the side surface of the cylindrical body 33b at the lowered portion. By forming the holding flange 50 in the shape shown in FIG. 18, vibrations leaking from the cylindrical body 33b through the holding flange 50 into the liquid tank 10 can be reduced by about 90%, and the vibration caused by the piezoelectric element 4 can be reduced by about 90%. The driving force of 3B can be efficiently transmitted to the diaphragm 2.
 図19は、実施の形態3に係る気泡発生装置1Bの変位について説明するための概略図である。図19から分かるように、圧電素子4が振動することにより、ヘッド部31を支持するバネ部32bが弾性変形して振動板2を変位させている。しかし、筒状体33bの側面に設けられた保持フランジ50は殆ど変位していない。なお、図19では、ハッチングの濃淡で変位の大きさを示しており、ハッチングが濃い部分が変位の大きい部分を示し、淡い部分が変位の小さい部分を示している。 FIG. 19 is a schematic diagram for explaining the displacement of the bubble generator 1B according to the third embodiment. As can be seen from FIG. 19, when the piezoelectric element 4 vibrates, the spring portion 32b supporting the head portion 31 is elastically deformed and the diaphragm 2 is displaced. However, the holding flange 50 provided on the side surface of the cylindrical body 33b is hardly displaced. In addition, in FIG. 19, the magnitude of displacement is shown by the shade of hatching, where darkly hatched areas indicate large displacement areas, and light hatched areas indicate small displacement areas.
 次に、図20は、実施の形態3に係る気泡発生装置1Bの締結機構について説明するための概略図である。図20では、気泡発生装置1Bを振動板2の上部から見た平面図である。図20に示すように、保持フランジ50の4カ所にネジ穴51aが設けられている。このネジ穴51aが、気泡発生装置1Bを液体槽10に固定するための締結機構である。なお、ネジ穴51aの締結機構は、一例であって、気泡発生装置1Bを液体槽10に固定するための機構であれば何れの機構であってもよい。また、保持フランジ50の構成は、図2に示した筒状体33、図9に示した筒状体33aに対しても同様に適用することができる。 Next, FIG. 20 is a schematic diagram for explaining the fastening mechanism of the bubble generator 1B according to the third embodiment. FIG. 20 is a plan view of the bubble generator 1B viewed from above the diaphragm 2. In FIG. As shown in FIG. 20, screw holes 51a are provided at four locations on the holding flange 50. This screw hole 51a is a fastening mechanism for fixing the bubble generator 1B to the liquid tank 10. Note that the fastening mechanism of the screw hole 51a is just one example, and any mechanism may be used as long as it is a mechanism for fixing the bubble generator 1B to the liquid tank 10. Further, the configuration of the holding flange 50 can be similarly applied to the cylindrical body 33 shown in FIG. 2 and the cylindrical body 33a shown in FIG. 9.
 以上のように、実施の形態2に係る気泡発生装置1Bは、振動体3Bが、ヘッド部31と筒状体33bとの間に設けられたバネ部32bと、筒状体33bの端部に設けられる錘部34bと、をさらに含む。圧電素子4は、筒状体33bにより支持されるバネ部32bの面に設けられている。これにより、気泡発生装置1Bは、振動板2を上下に振動させるピストン振動をさせやすい。 As described above, in the bubble generator 1B according to the second embodiment, the vibrating body 3B is connected to the spring portion 32b provided between the head portion 31 and the cylindrical body 33b and the end portion of the cylindrical body 33b. It further includes a weight portion 34b provided. The piezoelectric element 4 is provided on the surface of the spring portion 32b supported by the cylindrical body 33b. Thereby, the bubble generator 1B easily causes piston vibration that vibrates the diaphragm 2 up and down.
 (その他の変形例)
 前述の実施の形態では、ヘッド部31は、円錐台形状の中実材で、円筒の貫通孔35を形成した構造であると説明した。しかし、ヘッド部31は、円錐台形状の中実材に限定されず、板部材で円錐台形状を形成した構造でもよい。板部材で円錐台形状のヘッド部31を形成した場合、ヘッド部31の中空部分が貫通孔35として機能する。
(Other variations)
In the above-described embodiment, the head portion 31 is a solid member having a truncated cone shape, and has a structure in which a cylindrical through hole 35 is formed. However, the head portion 31 is not limited to a solid material having a truncated cone shape, but may have a structure in which a truncated cone shape is formed using a plate member. When the truncated cone-shaped head portion 31 is formed of a plate member, the hollow portion of the head portion 31 functions as the through hole 35 .
 (態様)
 (1)本開示の気泡発生装置は、液体槽に取り付けられ、液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、複数の開口部が形成され、第1の面が液体槽の液体と接し、第2の面が気体と接する振動板と、振動板を支持する振動体と、振動体に設けられ、振動板を振動させる圧電素子と、を備え、振動体は、一方の端により振動板を支持する第1筒状体と、第1筒状体の他方の端を支持する第2筒状体と、を含み、第1筒状体は、振動板を支持する側の径が第2筒状体で支持される側の径より大きい。
(mode)
(1) The bubble generating device of the present disclosure is a bubble generating device that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank, in which a plurality of openings are formed and a first surface faces the liquid. A vibrating plate that is in contact with the liquid in the tank and whose second surface is in contact with the gas, a vibrating body that supports the vibrating plate, and a piezoelectric element that is provided on the vibrating body and vibrates the vibrating plate. a first cylindrical body supporting the diaphragm by one end thereof, and a second cylindrical body supporting the other end of the first cylindrical body, the first cylindrical body having a side supporting the diaphragm. is larger than the diameter of the side supported by the second cylindrical body.
 本開示の気泡発生装置によれば、第1筒状体は、振動板を支持する側の径が第2筒状体で支持される側の径より大きいので、第2筒状体が振動板の大きさの制約を受けず、装置の小型化、低コスト化が可能である。 According to the bubble generator of the present disclosure, the diameter of the first cylindrical body on the side supporting the diaphragm is larger than the diameter of the side supported by the second cylindrical body, so that the second cylindrical body serves as the diaphragm. The device can be made smaller and lower in cost without being limited by the size of the device.
 (2)(1)に記載の気泡発生装置であって、第1筒状体は、円錐台形状で、第1面より広い第2面側で振動板を支持する。これにより、気泡発生装置は、装置の小型化、低コスト化が可能である。 (2) In the bubble generator described in (1), the first cylindrical body has a truncated cone shape and supports the diaphragm on the second surface side, which is wider than the first surface. Thereby, the bubble generator can be made smaller and lower in cost.
 (3)(2)に記載の気泡発生装置であって、第1筒状体は、振動板を支持する第2面に円板形状の窪みを有し、円錐台形状の中心軸に設けた貫通孔と当該窪みとが連通する。これにより、気泡発生装置は、貫通孔を介して気体を振動板に導入することができる。 (3) The bubble generator according to (2), wherein the first cylindrical body has a disc-shaped depression on the second surface supporting the diaphragm, and is provided on the central axis of the truncated cone. The through hole and the depression communicate with each other. Thereby, the bubble generator can introduce gas into the diaphragm through the through hole.
 (4)(3)に記載の気泡発生装置であって、第1筒状体は、円錐台形状の中実材に窪みおよび貫通孔を形成してある。これにより、気泡発生装置は、低コスト化が可能である。 (4) In the bubble generating device described in (3), the first cylindrical body has a hollow and a through hole formed in a solid material having a truncated conical shape. Thereby, the cost of the bubble generator can be reduced.
 (5)(2)~(4)のいずれか1項に記載の気泡発生装置であって、第1筒状体は、円錐台形状のテーパ角が40度以上である。これにより、気泡発生装置は、液中での十分な振動子性能を得ることができる。 (5) In the bubble generator according to any one of (2) to (4), the first cylindrical body has a truncated conical shape with a taper angle of 40 degrees or more. Thereby, the bubble generator can obtain sufficient vibrator performance in liquid.
 (6)(1)~(5)のいずれか1項に記載の気泡発生装置であって、振動体は、ランジュバン型振動子で構成されている。これにより、気泡発生装置は、振動板を上下に振動させるピストン振動をさせやすい。 (6) The bubble generator according to any one of (1) to (5), in which the vibrating body is composed of a Langevin type vibrator. Thereby, the bubble generator easily causes piston vibration that vibrates the diaphragm up and down.
 (7)(1)~(5)のいずれか1項に記載の気泡発生装置であって、振動体は、第1筒状体と第2筒状体との間に設けられたバネ部と、第2筒状体の端部に設けられ、第2筒状体の位置より外側に伸びる板状のつば部と、をさらに含み、バネ部は、一方の端で第1筒状体を支持し、第1筒状体を支持する位置より外側にある位置にある他方の端で第2筒状体に支持され、圧電素子は、つば部の第2筒状体側の第1面または第1面の反対側の第2面に設けられている。これにより、気泡発生装置は、振動板を上下に振動させるピストン振動をさせやすい。 (7) The bubble generator according to any one of (1) to (5), wherein the vibrating body is a spring portion provided between the first cylindrical body and the second cylindrical body; , further including a plate-shaped collar provided at the end of the second cylindrical body and extending outward from the position of the second cylindrical body, and the spring part supports the first cylindrical body at one end. The piezoelectric element is supported by the second cylindrical body at the other end located outside the position supporting the first cylindrical body, and the piezoelectric element is attached to the first surface of the flange portion on the second cylindrical body side or It is provided on the second surface on the opposite side of the surface. Thereby, the bubble generator easily causes piston vibration that vibrates the diaphragm up and down.
 (8)(1)~(5)のいずれか1項に記載の気泡発生装置であって、振動体は、第1筒状体と第2筒状体との間に設けられたバネ部と、第2筒状体の端部に設けられる錘部と、をさらに含み、圧電素子は、第2筒状体により支持されるバネ部の面に設けられている。これにより、気泡発生装置は、振動板を上下に振動させるピストン振動をさせやすい。 (8) The bubble generator according to any one of (1) to (5), wherein the vibrating body is a spring portion provided between the first cylindrical body and the second cylindrical body. , a weight part provided at the end of the second cylindrical body, and the piezoelectric element is provided on the surface of the spring part supported by the second cylindrical body. Thereby, the bubble generator easily causes piston vibration that vibrates the diaphragm up and down.
 (9)本開示の気泡発生システムは、(1)~(8)のいずれか1項に記載の気泡発生装置と、液体槽と、を備える。これにより、気泡発生システムは、装置の小型化、低コスト化が可能である。 (9) A bubble generation system of the present disclosure includes the bubble generation device according to any one of (1) to (8) and a liquid tank. Thereby, the bubble generation system can be made smaller and lower in cost.
 (10)(9)に記載の気泡発生システムであって、気泡発生装置は、少なくとも振動板を支持する振動体の一部が液体槽の液体に浸かるように液体槽の底面または側面に固定されている。これにより、気泡発生システムは、液体槽の底面または側面から液体中に微細な気泡を発生させることができる。 (10) The bubble generation system according to (9), wherein the bubble generator is fixed to the bottom or side surface of the liquid tank so that at least a part of the vibrating body supporting the diaphragm is immersed in the liquid in the liquid tank. ing. Thereby, the bubble generation system can generate fine bubbles in the liquid from the bottom or side of the liquid tank.
 (11)(9)に記載の気泡発生システムであって、気泡発生装置は、取り付け位置が液体槽の液面より上側で、少なくとも振動板を支持する振動体の一部が液体槽の液体に浸かるように液体槽の底面に向かって固定されている。これにより、気泡発生システムは、液体槽の上面から液体中に微細な気泡を発生させることができる。 (11) In the bubble generation system according to (9), the bubble generation device is installed at a position above the liquid level of the liquid tank, and at least a part of the vibrating body supporting the diaphragm is exposed to the liquid in the liquid tank. It is fixed toward the bottom of the liquid tank so that it can be submerged. Thereby, the bubble generation system can generate fine bubbles in the liquid from the top surface of the liquid tank.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1,1A,1B 気泡発生装置、2 振動板、3,3A,3B,3a 振動体、4,41,42 圧電素子、5,50 保持フランジ、10 液体槽、20 コントローラ、31,31a,31b ヘッド部、32,32b バネ部、33,33a,33b 筒状体、33a1 上側金属リング、33b1 下側金属リング、34 つば部、34a 締め付け用ボルト、34b 錘部、35 貫通孔、36 フランジ、43,44 端子、51 ネジ、51a ネジ穴、100,100A~100C 気泡発生システム、200 気泡。 1, 1A, 1B bubble generator, 2 diaphragm, 3, 3A, 3B, 3a vibrator, 4, 41, 42 piezoelectric element, 5, 50 holding flange, 10 liquid tank, 20 controller, 31, 31a, 31b head part, 32, 32b spring part, 33, 33a, 33b cylindrical body, 33a1 upper metal ring, 33b1 lower metal ring, 34 collar part, 34a tightening bolt, 34b weight part, 35 through hole, 36 flange, 43, 44 terminal, 51 screw, 51a screw hole, 100, 100A to 100C bubble generation system, 200 bubble.

Claims (11)

  1.  液体槽に取り付けられ、前記液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、
     複数の開口部が形成され、第1の面が前記液体槽の液体と接し、第2の面が気体と接する振動板と、
     前記振動板を支持する振動体と、
     前記振動体に設けられ、前記振動板を振動させる圧電素子と、を備え、
     前記振動体は、
      一方の端により前記振動板を支持する第1筒状体と、
      前記第1筒状体の他方の端を支持する第2筒状体と、を含み、
     前記第1筒状体は、前記振動板を支持する側の径が前記第2筒状体で支持される側の径より大きい、気泡発生装置。
    A bubble generator that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank,
    a diaphragm having a plurality of openings formed therein, a first surface in contact with the liquid in the liquid tank, and a second surface in contact with the gas;
    a vibrating body that supports the diaphragm;
    a piezoelectric element provided on the vibrating body and vibrating the vibrating plate,
    The vibrating body is
    a first cylindrical body supporting the diaphragm with one end;
    a second cylindrical body supporting the other end of the first cylindrical body,
    The first cylindrical body is a bubble generating device in which a diameter on a side supporting the diaphragm is larger than a diameter on a side supported by the second cylindrical body.
  2.  前記第1筒状体は、円錐台形状で、第1面より広い第2面側で前記振動板を支持する、請求項1に記載の気泡発生装置。 The bubble generator according to claim 1, wherein the first cylindrical body has a truncated cone shape and supports the diaphragm on a second surface side that is wider than the first surface.
  3.  前記第1筒状体は、前記振動板を支持する前記第2面に円板形状の窪みを有し、円錐台形状の中心軸に設けた貫通孔と当該窪みとが連通する、請求項2に記載の気泡発生装置。 2. The first cylindrical body has a disk-shaped depression on the second surface that supports the diaphragm, and the depression communicates with a through hole provided in a central axis of a truncated cone. The bubble generator described in .
  4.  前記第1筒状体は、円錐台形状の中実材に前記窪みおよび前記貫通孔を形成してある、請求項3に記載の気泡発生装置。 The bubble generating device according to claim 3, wherein the first cylindrical body has the depression and the through hole formed in a solid material having a truncated cone shape.
  5.  前記第1筒状体は、円錐台形状のテーパ角が40度以上である、請求項2~請求項4のいずれか1項に記載の気泡発生装置。 The bubble generator according to any one of claims 2 to 4, wherein the first cylindrical body has a truncated cone shape with a taper angle of 40 degrees or more.
  6.  前記振動体は、ランジュバン型振動子で構成されている、請求項1~請求項5のいずれか1項に記載の気泡発生装置。 The bubble generating device according to any one of claims 1 to 5, wherein the vibrating body is composed of a Langevin type vibrator.
  7.  前記振動体は、
      前記第1筒状体と前記第2筒状体との間に設けられたバネ部と、
      前記第2筒状体の端部に設けられ、前記第2筒状体の位置より外側に伸びる板状のつば部と、をさらに含み、
      前記バネ部は、一方の端で前記第1筒状体を支持し、前記第1筒状体を支持する位置より外側にある位置にある他方の端で前記第2筒状体に支持され、
     前記圧電素子は、前記つば部の前記第2筒状体側の第1面または前記第1面の反対側の第2面に設けられている、請求項1~請求項5のいずれか1項に記載の気泡発生装置。
    The vibrating body is
    a spring portion provided between the first cylindrical body and the second cylindrical body;
    further comprising a plate-shaped collar provided at an end of the second cylindrical body and extending outward from the position of the second cylindrical body,
    The spring portion supports the first cylindrical body at one end, and is supported by the second cylindrical body at the other end located at a position outside the position supporting the first cylindrical body,
    According to any one of claims 1 to 5, the piezoelectric element is provided on a first surface of the collar portion on the second cylindrical body side or a second surface on the opposite side of the first surface. The bubble generator described.
  8.  前記振動体は、
      前記第1筒状体と前記第2筒状体との間に設けられたバネ部と、
      前記第2筒状体の端部に設けられる錘部と、をさらに含み、
     前記圧電素子は、前記第2筒状体により支持される前記バネ部の面に設けられている、請求項1~請求項5のいずれか1項に記載の気泡発生装置。
    The vibrating body is
    a spring portion provided between the first cylindrical body and the second cylindrical body;
    further comprising a weight provided at an end of the second cylindrical body,
    The bubble generating device according to any one of claims 1 to 5, wherein the piezoelectric element is provided on a surface of the spring portion supported by the second cylindrical body.
  9.  請求項1~請求項8のいずれか1項に記載の前記気泡発生装置と、
     前記液体槽と、を備える、気泡発生システム。
    The bubble generator according to any one of claims 1 to 8;
    A bubble generation system comprising: the liquid tank.
  10.  前記気泡発生装置は、少なくとも前記振動板を支持する前記振動体の一部が前記液体槽の液体に浸かるように前記液体槽の底面または側面に固定されている、請求項9に記載の気泡発生システム。 The bubble generator according to claim 9, wherein the bubble generator is fixed to the bottom or side surface of the liquid tank so that at least a part of the vibrating body that supports the diaphragm is immersed in the liquid in the liquid tank. system.
  11.  前記気泡発生装置は、取り付け位置が前記液体槽の液面より上側で、少なくとも前記振動板を支持する前記振動体の一部が前記液体槽の液体に浸かるように前記液体槽の底面に向かって固定されている、請求項9に記載の気泡発生システム。 The bubble generator is installed above the liquid level of the liquid tank, and is mounted toward the bottom of the liquid tank so that at least a part of the vibrating body that supports the diaphragm is immersed in the liquid in the liquid tank. 10. The bubble generation system of claim 9, which is fixed.
PCT/JP2023/002073 2022-05-30 2023-01-24 Bubble generation device and bubble generation system WO2023233701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087724 2022-05-30
JP2022087724 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023233701A1 true WO2023233701A1 (en) 2023-12-07

Family

ID=89025980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002073 WO2023233701A1 (en) 2022-05-30 2023-01-24 Bubble generation device and bubble generation system

Country Status (1)

Country Link
WO (1) WO2023233701A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936872U (en) * 1982-08-28 1984-03-08 ティーディーケイ株式会社 acoustic transducer
JP2014076443A (en) * 2012-09-18 2014-05-01 Nihon Univ Fine bubble generator, minute discharge hole nozzle, and method for manufacturing the minute discharge hole nozzle
WO2018207395A1 (en) * 2017-05-12 2018-11-15 株式会社村田製作所 Vibration device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2021245995A1 (en) * 2020-06-03 2021-12-09 株式会社村田製作所 Bubble generation device and bubble generation system
WO2021245996A1 (en) * 2020-06-03 2021-12-09 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190571A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936872U (en) * 1982-08-28 1984-03-08 ティーディーケイ株式会社 acoustic transducer
JP2014076443A (en) * 2012-09-18 2014-05-01 Nihon Univ Fine bubble generator, minute discharge hole nozzle, and method for manufacturing the minute discharge hole nozzle
WO2018207395A1 (en) * 2017-05-12 2018-11-15 株式会社村田製作所 Vibration device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2021245995A1 (en) * 2020-06-03 2021-12-09 株式会社村田製作所 Bubble generation device and bubble generation system
WO2021245996A1 (en) * 2020-06-03 2021-12-09 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190571A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system

Similar Documents

Publication Publication Date Title
US4823041A (en) Non-directional ultrasonic transducer
EP0758455A1 (en) Flextensional acoustic source for offshore seismic exploration
CN101964185A (en) Ultra-wideband underwater acoustic transducer
KR101181188B1 (en) Sound reproducing apparatus
WO2021245995A1 (en) Bubble generation device and bubble generation system
CN110560351B (en) Frequency-adjustable sound wave receiving device based on Helmholtz resonant cavity
WO2023233701A1 (en) Bubble generation device and bubble generation system
US10097112B2 (en) Piezoelectric energy harvester system with composite shim
EP1060798A1 (en) Unidirectional single piston ultrasonic transducer
US5070486A (en) Process to increase the power of the low frequency electro acoustic transducers and corresponding transducers
US7679266B2 (en) Longitudinally driven slotted cylinder transducer
WO2023233700A1 (en) Bubble generator and bubble generation system
JP2985509B2 (en) Low frequency underwater transmitter
JPH02123900A (en) Variable tension transducer
US5229980A (en) Broadband electroacoustic transducer
KR100413730B1 (en) Ultra sonic transducer of piezoelectric ceramic
JP7468777B2 (en) Air bubble generating device and air bubble generating system
JP2546488B2 (en) Low frequency underwater transmitter
KR20210013694A (en) Ultrasonic vibration imparting device, traveling wave generator and ultrasonic processing device
JP2019533970A (en) Acoustic transducer
JP3006509B2 (en) Water column resonance type transducer
US20180287585A1 (en) Ultrasonic device having large radiating area
JPS644463Y2 (en)
SU873183A1 (en) Acoustic converter
CN116897074A (en) Bubble generating device and bubble generating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815465

Country of ref document: EP

Kind code of ref document: A1