WO2023233655A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023233655A1
WO2023233655A1 PCT/JP2022/022626 JP2022022626W WO2023233655A1 WO 2023233655 A1 WO2023233655 A1 WO 2023233655A1 JP 2022022626 W JP2022022626 W JP 2022022626W WO 2023233655 A1 WO2023233655 A1 WO 2023233655A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
heat exchanger
mode
communicate
refrigerant
Prior art date
Application number
PCT/JP2022/022626
Other languages
French (fr)
Japanese (ja)
Inventor
駿哉 行徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022626 priority Critical patent/WO2023233655A1/en
Publication of WO2023233655A1 publication Critical patent/WO2023233655A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • the expansion valve opening is smaller in the low load state than under standard conditions (for example, outside temperature 7°C, hot water exit 45°C). If a general linear expansion valve whose opening changes linearly with respect to the manipulated variable is used at such a low opening, the change in the amount of refrigerant circulation with respect to the unit manipulated variable corresponding to one pulse of the control signal becomes large. As a result, precise control cannot be performed using the expansion valve, and the amount of refrigerant circulation ends up hunting, making the outlet temperature unstable.
  • Patent Document 1 discloses an electronic expansion valve that can be used with air conditioners of various capacities.
  • Patent Document 1 The electronic expansion valve disclosed in Japanese Patent No. 5984747 (Patent Document 1) employs a three-stage structure in which each needle portion has a different taper.
  • this electronic expansion valve by changing the needle taper angle of the expansion valve, it is possible to reduce the change in opening degree with respect to a unit operation amount of the expansion valve in a region where the amount of refrigerant circulation is low.
  • the needle part since the needle part requires high processing precision and is expensive, it is not widely available. Therefore, most water heaters often use linear expansion valves whose opening degree changes linearly with the amount of operation of the expansion valve.
  • An object of the present disclosure is to provide a refrigeration cycle device that uses a linear expansion valve and is capable of stable operation even when the amount of refrigerant circulation is small.
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device includes a refrigerant circuit and a bypass flow path.
  • the refrigerant circuit includes a compressor, a first heat exchanger, a first expansion valve, and a second heat exchanger.
  • the refrigerant circuit is configured such that refrigerant circulates through the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and back to the compressor.
  • the bypass passage includes a second expansion valve and is configured to send the refrigerant that has passed through the first heat exchanger to the compressor through the second expansion valve.
  • the refrigeration cycle device includes a first passage and a second passage, and a third heat exchanger configured to exchange heat between the refrigerant passing through the first passage and the refrigerant passing through the second passage;
  • the apparatus further includes a switching mechanism that switches the connection of the third heat exchanger between the first mode and the second mode.
  • the third heat exchanger exchanges heat between refrigerant that passes through the first heat exchanger and heads toward the first expansion valve, and refrigerant that passes through the second expansion valve and heads toward the compressor.
  • heat is exchanged between the refrigerant discharged from the compressor and directed to the first heat exchanger, and the refrigerant before passing through the first expansion valve or after passing through the first expansion valve. It is composed of
  • the fluctuation range of the refrigerant circulation amount is suppressed during low load heating, etc., and the hot water supply temperature etc. are stabilized.
  • FIG. 1 is a diagram showing the basic configuration of a refrigerant circuit to which this embodiment is applied. It is a figure shown about Cv value characteristic of a linear expansion valve.
  • FIG. 3 is a ph diagram for explaining flow path switching according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 1 and the flow of refrigerant in normal heating mode.
  • FIG. 3 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the first embodiment. 3 is a flowchart for explaining control in a low-load heating mode of the refrigeration cycle device according to the first embodiment.
  • FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the second embodiment. It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 2.
  • FIG. 7 is a ph diagram for explaining flow path switching in Embodiment 3.
  • FIG. 7 It is a figure which shows the structure of the refrigeration cycle apparatus of Embodiment 3, and the flow of a refrigerant
  • FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the third embodiment.
  • FIG. 12 is a flowchart for explaining control in a low-load heating mode of the refrigeration cycle device according to the third embodiment. It is a figure showing the composition of the refrigeration cycle device of Embodiment 4, and the flow of a refrigerant in normal heating mode.
  • FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment. It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 4. It is a figure showing the composition of the refrigeration cycle device of Embodiment 5, and the flow of a refrigerant in normal heating mode.
  • FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fifth embodiment. It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 5.
  • FIG. 1 is a diagram showing the basic configuration of a refrigerant circuit to which this embodiment is applied.
  • the following embodiments 1 to 5 are applied to such a refrigeration cycle device.
  • a refrigeration cycle device is, for example, a water heater or a heating device that heats a heat medium in a refrigeration cycle that uses a refrigerant. Further, it may be provided with an air-conditioning mode in which the heat medium is cooled in a refrigeration cycle and used for air-conditioning.
  • This refrigeration cycle device includes a refrigerant circuit C and a bypass flow path 70.
  • the refrigerant circuit C includes a compressor 10, a heat exchanger 20, and an expansion valve 30.
  • the refrigerant circulates in order to return to the compressor 10 via the compressor 10, piping 51, heat exchanger 20, piping 52, expansion valve 30, piping 54, heat exchanger 40, and piping 55. It is configured as follows.
  • the compressor has a discharge port, a suction port, and an intermediate port.
  • the heat exchanger 20 is configured to exchange heat between a heat medium such as water or brine and a refrigerant.
  • the heat medium heated or cooled by the heat exchanger 20 serves as a heat source for generating hot water in a water heater or for heating and cooling.
  • the heat medium heated or cooled by the heat exchanger 20 returns to the heat exchanger 20 via the piping 121, the pump WP, the piping 122, the heat exchanger 123, and the piping 124.
  • the heat exchanger 123 is a user-side device such as a water heater, an air conditioning unit, or a floor heating unit.
  • the bypass flow path 70 includes an expansion valve 72.
  • the bypass passage 70 branches part of the refrigerant that has passed through the heat exchanger 20 through a pipe 71 .
  • the bypass passage 70 is configured to pass through the expansion valve 72 and the piping 73 and to be sent to the intermediate port of the compressor 10 .
  • the liquid or two-phase refrigerant is injected, so the discharge temperature of the compressor 10 can be lowered, and the temperature of the discharged refrigerant can be prevented from exceeding the allowable temperature limit of members such as the motor.
  • a linear expansion valve is generally used as the expansion valve 30.
  • the linear expansion valve is given a pulse signal as a control signal, and the manipulated variable x is indicated by the number of pulses.
  • the refrigerant circulation amount Gr and the Cv value indicating the expansion valve opening have a relationship as shown in the following equation (1).
  • ⁇ P indicates the differential pressure before and after the expansion valve
  • indicates the refrigerant density at the inlet of the expansion valve.
  • Gr 27.1Cv ⁇ ( ⁇ P)...(1)
  • the unit operation amount ⁇ x is the operation amount x of the expansion valve.
  • the rate of change in the refrigerant circulation amount per unit operation amount is expressed by the following equation (2) by substituting the above equation (1). Note that A indicates a proportionality coefficient.
  • the sensitivity to the manipulated variable is set to an appropriate state by not using the region where the opening degree of the expansion valve is small.
  • the flow path is switched to change the insertion position of the internal heat exchanger in the refrigerant circuit.
  • FIG. 3 is a ph diagram for explaining flow path switching in the first embodiment.
  • an operation is performed along the ph diagram shown in cycle C0 in FIG. 3.
  • cycle C0 heat is exchanged between the refrigerant flowing through the pipe 53 and the refrigerant flowing through the pipe 73 in FIG. 1 by the internal heat exchanger.
  • the operation in the low-load heating mode, the operation is performed along the ph diagram shown in cycle C1 in FIG. 3.
  • cycle C1 the expansion valve 72 is closed and no refrigerant flows into the bypass passage 70.
  • heat exchange of ⁇ H1 is performed between the refrigerant flowing through the pipe 51 and the refrigerant flowing through the pipe 53 in FIG. 1 by the internal heat exchanger.
  • the enthalpy difference in the heat exchanger 20 becomes smaller than in the normal heating mode. Since heating capacity is expressed as enthalpy difference x amount of refrigerant circulation, in low load heating mode, the amount of refrigerant circulation can be increased more than in normal heating mode even under low load. Therefore, low-load heating can be performed without using the region where the opening degree of the expansion valve 30 is small, where changes in the refrigerant circulation amount are sensitive to the operation amount.
  • FIG. 4 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 1 and the flow of refrigerant in normal heating mode.
  • the refrigeration cycle device 200 shown in FIG. 4 includes a compressor 10, a heat exchanger 20, an expansion valve 30, a heat exchanger 40, an expansion valve 72, a heat exchanger 80, a refrigerant circuit C, and a bypass flow 70.
  • the refrigerant circuit C is configured so that the refrigerant circulates through the compressor 10, the heat exchanger 20, the expansion valve 30, and the heat exchanger 40, and returns to the compressor 10.
  • the bypass passage 70 is configured to send the refrigerant that has passed through the heat exchanger 20 to the compressor 10 through the expansion valve 72.
  • the heat exchanger 80 includes a first passage R1 and a second passage R2, and is configured to exchange heat between the refrigerant passing through the first passage R1 and the refrigerant passing through the second passage R2.
  • the refrigeration cycle device 200 further includes a switching mechanism 60 that switches the connection of the heat exchanger 80 between the first mode and the second mode.
  • the first mode is a normal heating mode
  • the second mode is a low-load heating mode. Note that in addition to the first and second modes, a cooling mode or the like may be provided.
  • the heat exchanger 80 allows the refrigerant to pass through the heat exchanger 20 and go to the expansion valve 30, and the refrigerant to pass through the expansion valve 72 and go to the compressor 10, as shown by the arrow in FIG. It is set to exchange heat with the refrigerant headed for.
  • FIG. 5 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device of Embodiment 1.
  • the switching mechanism 60 switches the refrigerant discharged from the compressor 10 toward the heat exchanger 20 and the refrigerant before passing through the expansion valve 30 into the heat exchanger 80.
  • the connection of the heat exchanger 80 is switched to exchange heat.
  • the heat exchanger 80 exchanges heat between the refrigerant discharged from the compressor 10 and heading toward the heat exchanger 20 and the refrigerant passing through the heat exchanger 20 and heading toward the expansion valve 30. Configured to be exchanged.
  • the refrigeration cycle device 200 further includes a control device 100 that controls the switching mechanism and the expansion valve 72.
  • the control device 100 includes a CPU (Central Processing Unit) 101, a memory 102 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like.
  • the CPU 101 expands a program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is written.
  • Control device 100 executes control of each device in refrigeration cycle device 200 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
  • the switching mechanism 60 includes a first four-way valve 61 having first to fourth ports, and a second four-way valve 62 having fifth to eighth ports.
  • P1 to P8 in FIG. 4 indicate the first to eighth ports of the four-way valve, respectively.
  • the first port is connected to the discharge port of the compressor 10 by a pipe 83.
  • the second port is connected to the eighth port by piping 82.
  • the third port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
  • the first passage R1 of the heat exchanger 80 is connected by a pipe 81 between the fourth port and the sixth port.
  • the fifth port is connected to the intermediate port of the compressor 10 by a pipe 73B.
  • the seventh port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B.
  • the first four-way valve 61 has a first port and a second port communicating with each other in the first mode (normal heating mode), a third port and a fourth port communicating with each other, and a second mode (low-load heating mode).
  • the second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
  • the fifth port and the sixth port communicate with each other, and the seventh port and the eighth port communicate with each other, and in the second mode (low-load heating mode).
  • the sixth port and the seventh port communicate with each other, and the eighth port and the fifth port communicate with each other.
  • FIG. 6 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device of Embodiment 1. According to the flowchart of FIG. 6, the control device 100 closes the expansion valve 72 when the opening degree of the expansion valve 30 becomes equal to or less than the determination value in the second mode.
  • control device 100 adjusts the operating frequency of the compressor 10 based on the temperature of the heat medium that has passed through the heat exchanger 20. Control.
  • step S1 the control device 100 determines whether the opening degree of the expansion valve 30 is less than or equal to the threshold value dt. If the opening degree is less than or equal to the threshold value dt (YES in S1), the control device 100 advances the process to step S2.
  • step S2 the control device 100 determines whether the operating frequency of the compressor 10 is equal to or lower than the threshold value ft. If the operating frequency is equal to or less than the threshold value ft (YES in S2), the control device 100 advances the process to step S3.
  • step S3 When the process progresses to step S3, the load of the heating operation has become small. Therefore, the control device 100 switches the switching mechanism 60 to switch the operating cycle from the cycle C0 shown in FIG. 3 to the cycle C1. Specifically, in step S3, the control device 100 closes the expansion valve 72. In step S4, the control device 100 sets the state of the switching mechanism 60 (four-way valves 61, 62) to the low-load heating mode shown in FIG. If the normal heating mode has been in effect until then, switching is performed, but if it is in the low-load heating mode, the state of the switching mechanism 60 is maintained. Note that the four-way valves 61 and 62 may be switched in any order.
  • step S5 the control device 100 determines whether the temperature (water temperature) T1 at the heat medium outlet of the heat exchanger 20 is equal to the target water temperature T1t. If the temperature T1 is not equal to the target temperature T1t (NO in S5), in step S6, the control device 100 determines whether the temperature T1 is lower than the target temperature T1t. If the temperature T1 is lower than the target temperature T1t (YES in S6), the control device 100 increases the operating frequency of the compressor 10 in step S7. This increases the heating capacity of the heat exchanger 20.
  • the control device 100 reduces the operating frequency of the compressor 10 in step S8. This reduces the heating capacity of the heat exchanger 20.
  • step S5 if the determination is NO in steps S1 and S2 and YES in step S5, and if the processing in steps S7 and S8 is completed, the process exits from the flowchart of FIG. The processing in the flowchart of FIG. 6 is executed.
  • the injection flow path is closed during low-load heating, and the position of the heat exchanger 80, which is an internal heat exchanger that exchanges heat between refrigerants, in the refrigerant circuit is changed by the mechanism. Changed by 60. Thereby, the refrigeration cycle is switched from cycle C0 in FIG. 3 to cycle C1, and the enthalpy difference caused by the heat exchanger 20 is reduced. This makes it possible to increase the amount of refrigerant circulation even during low-load heating.
  • Increasing the amount of refrigerant circulation eliminates the need to use the low opening range of the expansion valve 30, which is a linear expansion valve where changes in the amount of refrigerant circulation are sensitive to unit operation amount. Then, the change in the refrigerant circulation amount with respect to the unit operation amount of the expansion valve 30 can be reduced. Therefore, the range of increase/decrease in the amount of refrigerant circulation during low-load heating can be kept small. This stabilizes the hot water temperature.
  • Embodiment 2 In the first embodiment, the switching mechanism is configured with two four-way valves, but in the second embodiment, an example will be described in which the switching mechanism is implemented with one six-way valve.
  • FIG. 7 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 2 and the flow of refrigerant in normal heating mode.
  • FIG. 8 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the second embodiment.
  • a refrigeration cycle device 201 according to the second embodiment includes a six-way valve 160 in place of the four-way valves 61 and 62 in the configuration of the refrigeration cycle device 200 shown in FIG. Regarding the configuration of other parts, the refrigeration cycle device 201 is the same as the refrigeration cycle device 200, so the description will not be repeated.
  • the heat exchanger 80 whose connection is switched by the six-way valve 160 serving as a switching mechanism in the second embodiment is configured to switch between the refrigerant discharged from the compressor 10 and directed toward the heat exchanger 20, and the heat exchanger 20. It is the same as the switching mechanism 60 of the first embodiment in that it is configured to exchange heat with the refrigerant passing through and heading toward the expansion valve 30.
  • the switching mechanism is a six-way valve 160 having first to sixth ports.
  • P1 to P6 in FIG. 7 indicate the first to sixth ports of the six-way valve 160, respectively.
  • the first port of the hexagonal valve 160 is connected to the discharge port of the compressor 10 by a pipe 83, and the second port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B.
  • the fourth port of the six-way valve 160 is connected to the downstream side of the expansion valve 72 by a pipe 73A, the first passage R1 of the heat exchanger 80 is connected between the third port and the sixth port by a pipe 81, and the fifth The port is connected to the intermediate port of compressor 10 by piping 73B.
  • the first port and the second port communicate with each other, the third port and the fourth port communicate with each other, and the fifth port and the sixth port communicate with each other. It is configured as follows.
  • the second port and the third port communicate with each other, the fourth port and the fifth port communicate with each other, and the sixth port and the first port communicate with each other. configured to do so.
  • FIG. 9 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the second embodiment.
  • the flowchart in FIG. 9 includes step S11 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, only step S11 will be explained here, and other explanations will not be repeated.
  • step S11 the control device 100 sets the state of the hexagonal valve 160 to the low-load heating mode shown in FIG. 8. Therefore, if the normal heating mode has been in effect until then, switching is performed, but if it is in the low-load heating mode, the state of the six-way valve 160 is maintained.
  • Embodiment 2 as in Embodiment 1, the effect of suppressing hunting in the amount of refrigerant circulation can be obtained by increasing the amount of refrigerant circulation. This stabilizes the hot water temperature. Furthermore, the number of parts can be reduced.
  • Embodiment 3 In the first and second embodiments, it has been explained that the expansion valve opening degree is increased during low-load heating to reduce the change in the refrigerant circulation amount with respect to the unit operation amount.
  • the heating capacity is expressed as the enthalpy difference of the condenser x the amount of refrigerant circulation. Therefore, in order to reduce the change in the refrigerant circulation amount with respect to the unit operation amount during low-load heating, two approaches can be considered.
  • the first approach is to reduce the enthalpy difference in the condenser by exchanging heat between the discharged refrigerant and the condenser outlet refrigerant using the heat exchanger 80, as shown in Embodiments 1 and 2.
  • the goal is to increase the amount of circulation.
  • the second approach is to reduce the enthalpy difference in the condenser by exchanging heat between the discharged refrigerant and the evaporator inlet refrigerant using the heat exchanger 80, as shown in Embodiment 3 and thereafter.
  • the goal is to increase
  • FIG. 10 is a ph diagram for explaining flow path switching in the third embodiment.
  • the third embodiment in the normal heating mode, an operation is performed along the ph diagram shown in cycle C0 in FIG. 10.
  • cycle C0 heat is exchanged between the refrigerant flowing through the pipe 53 and the refrigerant flowing through the pipe 73 in FIG. 1 by the internal heat exchanger.
  • the operation is performed along the ph diagram shown in cycle C2 in FIG. 10.
  • cycle C2 the expansion valve 72 is closed and no refrigerant flows into the bypass passage 70.
  • heat exchange of ⁇ H2 is performed between the refrigerant flowing through the pipe 51 and the refrigerant flowing through the pipe 54 in FIG. 1 by the internal heat exchanger.
  • the enthalpy difference in the heat exchanger 20 becomes smaller than in the normal heating mode. Since heating capacity is expressed as enthalpy difference x amount of refrigerant circulation, in low load heating mode, the amount of refrigerant circulation can be increased more than in normal heating mode even under low load. Therefore, low-load heating can be performed without using the region where the opening degree of the expansion valve 30 is small, where changes in the refrigerant circulation amount are sensitive to the operation amount.
  • FIG. 11 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 3 and the flow of refrigerant in normal heating mode.
  • FIG. 12 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the third embodiment.
  • a switching mechanism for switching the refrigerant circuit in the refrigeration cycle device 202 is configured by a four-way valve 261, a four-way valve 262, and a four-way valve 263.
  • the heat exchanger 80 whose connection has been switched by this switching mechanism is in the second mode in which low-load heating is performed.
  • the refrigerant is configured to exchange heat with the refrigerant.
  • the switching mechanism includes a first four-way valve 261 having first to fourth ports, a second four-way valve 262 having fifth to eighth ports, and a third four-way valve 263 having ninth to twelfth ports. . P1 to P12 in FIG. 11 correspond to the first to twelfth ports of these four-way valves, respectively.
  • the first port is connected to the discharge port of the compressor 10 through a pipe 83, a four-way valve 50, and a pipe 51A. Between the second port and the fourth port, the refrigerant flow path of the heat exchanger 20 and the first passage R1 of the heat exchanger 80 are connected in series by pipes 51B and 52A.
  • the third port is connected to the upstream side of the expansion valve 30 and the upstream side of the expansion valve 72 by a pipe 52B.
  • the fifth port is connected to the downstream side of the expansion valve 30 by a pipe 54A.
  • the sixth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B.
  • the seventh port is connected to the ninth port by piping 85.
  • a second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the tenth port.
  • the eleventh port is connected to the intermediate port of the compressor 10 by a pipe 73B.
  • the twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
  • the first four-way valve 261 has a first port and a second port communicating with each other, a third port and a fourth port communicating with each other, and a fourth port shown in FIG.
  • the second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
  • the second four-way valve 262 has a fifth port and a sixth port communicating with each other, a seventh port and an eighth port communicating with each other, and a fourth port shown in FIG.
  • the sixth port and the seventh port communicate with each other
  • the eighth port and the fifth port communicate with each other.
  • the third four-way valve 263 has a 10th port and an 11th port communicating with each other, a 12th port and a 9th port communicating with each other, and In the 2nd mode (low load heating mode), the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other.
  • FIG. 13 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the third embodiment.
  • the flowchart in FIG. 13 includes steps S21 and S22 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, steps S21 and S22 will be explained here, and other explanations will not be repeated.
  • step S21 the control device 100 sets the four-way valves 261 and 263 to the low-load heating mode shown in FIG. 12. Note that the four-way valves 261 and 263 may be switched in any order. After that, the control device 100 sets the state of the four-way valve 262 to the low-load heating mode shown in FIG. 12.
  • Embodiment 3 as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.
  • Embodiment 4 In the third embodiment, the switching mechanism is configured with three four-way valves, but in the fourth embodiment, an example will be described in which the switching mechanism is implemented with four four-way valves. Note that the ph diagram in FIG. 10 is the same in Embodiment 4, so a description thereof will be omitted.
  • FIG. 14 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 4 and the flow of refrigerant in normal heating mode.
  • FIG. 15 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment.
  • the heat exchanger 80 whose connection is switched by the switching mechanism that switches the refrigerant circuit in the refrigeration cycle device 203 is configured to connect the refrigerant discharged from the compressor 10 and directed to the heat exchanger 20 in the second mode, and expand the refrigerant. It is configured to exchange heat with the refrigerant that passes through the valve 30 and heads toward the heat exchanger 40 .
  • the switching mechanism includes a first four-way valve 261 having first to fourth ports, a second four-way valve 262 having fifth to eighth ports, a third four-way valve 263 having ninth to twelfth ports, and a third four-way valve 263 having ninth to twelfth ports. and a fourth four-way valve 264 having 13th to 16th ports.
  • P1 to P16 in FIG. 14 correspond to the first to sixteenth ports of these four-way valves, respectively.
  • the first port is connected to the discharge port of the compressor 10 through a pipe 83, a four-way valve 50, and a pipe 51A.
  • a refrigerant flow path of the heat exchanger 20 is connected between the second port and the 16th port by pipes 51B and 52A.
  • the third port is connected to the fifteenth port via piping 52B.
  • a first passage R1 of the heat exchanger 80 is connected between the fourth port and the fourteenth port by a pipe 86.
  • the fifth port is connected to the downstream side of the expansion valve 30 by a pipe 54A.
  • the sixth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B.
  • the seventh port is connected to the ninth port by piping 85.
  • a second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the tenth port.
  • the eleventh port is connected to the intermediate port of the compressor 10 by a pipe 73B.
  • the twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
  • the thirteenth port is connected to the upstream side of the expansion valve 30 and the upstream side of the expansion valve 72 via the piping 52B.
  • the first four-way valve 261 has a first port and a second port communicating with each other, a third port and a fourth port communicating with each other, and a fourth port shown in FIG.
  • the second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
  • the second four-way valve 262 has a fifth port and a sixth port communicating with each other, a seventh port and an eighth port communicating with each other, and a fourth port shown in FIG.
  • the sixth port and the seventh port communicate with each other
  • the eighth port and the fifth port communicate with each other.
  • the third four-way valve 263 has a 10th port and an 11th port communicating with each other, a 12th port and a 9th port communicating with each other, and In the 2nd mode (low load heating mode), the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other.
  • the fourth four-way valve 264 in the first mode (normal heating mode) shown in FIG. 11, the 13th port and the 14th port communicate with each other, the 15th port and the 16th port communicate with each other, and the In the 2 mode (low load heating mode), the 14th port and the 15th port communicate with each other, and the 16th port and the 13th port communicate with each other.
  • FIG. 16 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment.
  • the flowchart in FIG. 16 includes steps S31 and S32 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, steps S31 and S32 will be explained here, and other explanations will not be repeated.
  • step S31 the control device 100 sets the four-way valves 261, 263, and 264 to the low-load heating mode shown in FIG. 15. Note that the four-way valves 261, 263, and 264 may be switched in any order. After that, the control device 100 sets the state of the four-way valve 262 to the low-load heating mode shown in FIG. 15.
  • Embodiment 4 as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.
  • Embodiment 5 the switching mechanism is configured with four four-way valves, but in the fifth embodiment, an example will be described in which the switching mechanism is implemented with two six-way valves. Note that the ph diagram in FIG. 10 is the same in the fifth embodiment, so a description thereof will be omitted.
  • FIG. 17 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 5 and the flow of refrigerant in normal heating mode.
  • FIG. 18 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fifth embodiment.
  • the heat exchanger 80 In the second mode, the heat exchanger 80 whose connection has been switched by the switching mechanism of the fifth embodiment transfers the refrigerant discharged from the compressor 10 to the heat exchanger 20 and the refrigerant that passes through the expansion valve 30 to the heat exchanger 40. It is configured to exchange heat with the oncoming refrigerant.
  • the switching mechanism of the fifth embodiment includes a first six-way valve 361 having first to sixth ports and a second six-way valve 362 having seventh to twelfth ports.
  • P1 to P12 in FIG. 17 respectively indicate the first port to the twelfth port of the two hexagonal valves.
  • the first port is connected to the discharge port of the compressor 10.
  • the second port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B.
  • the expansion valve 30 is connected between the fourth port and the tenth port by pipes 53B and 54A.
  • the first passage R1 of the heat exchanger 80 is connected by a pipe 87 between the third port and the sixth port.
  • the fifth port is connected to the refrigerant outlet of the heat exchanger 20 and the upstream side of the expansion valve 72 by a pipe 53A.
  • the seventh port is connected to the intermediate port of the compressor 10 by a pipe 73B.
  • a second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the eleventh port.
  • the ninth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B.
  • the twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
  • the first port and the second port communicate with each other, the third port and the fourth port communicate with each other, and the fifth port and the sixth port communicate with each other.
  • the second port and the third port communicate, the fourth port and the fifth port communicate, and the sixth port and the first port communicate. It is composed of
  • the 7th port and the 8th port communicate with each other, the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other.
  • the 8th port and the 9th port communicate with each other, the 10th port and the 11th port communicate with each other, and the 12th port and the 7th port communicate with each other. configured.
  • FIG. 19 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device of Embodiment 5.
  • the flowchart in FIG. 19 includes step S41 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, only step S41 will be explained here, and other explanations will not be repeated.
  • step S41 the control device 100 sets the states of the hexagonal valves 361 and 362 to the low-load heating mode shown in FIG. 18. Therefore, if the normal heating mode has been in effect until then, switching is performed, but if the low-load heating mode is in effect, the states of the six-way valves 361 and 362 are maintained. Note that the hexagonal valves 361 and 362 may be switched in any order.
  • Embodiment 5 as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigeration cycle device (200) is provided with a switching mechanism (60) which switches a mode of a connection of a heat exchanger (80) between a first mode and a second mode. The switching mechanism (60) switches the connection of the heat exchanger (80) such that a refrigerant which has passed through a heat exchanger (20) and is heading to an expansion valve (30) and a refrigerant which has passed through an expansion valve (72) and is heading to a compressor (10) exchange heat in the heat exchanger (80) in a first mode and the refrigerant which has been discharged from the compressor (10) and is heading to the heat exchanger (20) and the refrigerant which has not yet passed through the expansion valve (30) or has passed through the expansion valve (30) exchange heat in the heat exchanger (80) in a second mode.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device.
 外気温が低温で(例えば外気温-20℃)で高温出湯(例えば出湯70℃)を実現する給湯機では、凝縮温度と蒸発温度の差が大きくなりやすく、冷凍サイクル中の低圧部と高圧部の差圧が大きい高差圧運転が実行される。 In water heaters that produce hot water at a low temperature (for example, outside temperature -20°C) and hot water output at a high temperature (for example, 70°C), the difference between the condensing temperature and the evaporation temperature tends to be large, and the difference between the low-pressure part and the high-pressure part during the refrigeration cycle tends to be large. A high differential pressure operation with a large differential pressure is executed.
 当該条件では、標準条件(例えば外気温7℃、出湯45℃)と比較して低負荷状態において膨張弁開度がより小さくなる。操作量に対して開度が線形変化する一般的なリニア膨張弁をこのような低開度で用いると、制御信号1パルスに相当する単位操作量に対する冷媒循環量の変化が大きくなる。その結果、膨張弁にて緻密な制御ができず、冷媒循環量がハンチングしてしまうため、出湯温度が安定しない。 Under these conditions, the expansion valve opening is smaller in the low load state than under standard conditions (for example, outside temperature 7°C, hot water exit 45°C). If a general linear expansion valve whose opening changes linearly with respect to the manipulated variable is used at such a low opening, the change in the amount of refrigerant circulation with respect to the unit manipulated variable corresponding to one pulse of the control signal becomes large. As a result, precise control cannot be performed using the expansion valve, and the amount of refrigerant circulation ends up hunting, making the outlet temperature unstable.
 このような課題に対して、特許第5984747号公報(特許文献1)では、様々な容量の空気調和機に対応することができる電子膨張弁が開示されている。 To address these issues, Japanese Patent No. 5984747 (Patent Document 1) discloses an electronic expansion valve that can be used with air conditioners of various capacities.
特許第5984747号公報Patent No. 5984747
 特許第5984747号公報(特許文献1)に開示された電子膨張弁は、ニードル部にテーパー各が異なる三段構造を採用している。この電子膨張弁では、膨張弁のニードルテーパ角を変更することで、冷媒循環量が低い領域において、膨張弁の単位操作量に対する開度変化を小さくすることができる。しかし、ニードル部に加工精度が求められるので高価であるため、あまり流通していない。したがって、ほとんどの給湯機では、膨張弁の操作量に対して開度が線形変化するリニア膨張弁が多く用いられている。 The electronic expansion valve disclosed in Japanese Patent No. 5984747 (Patent Document 1) employs a three-stage structure in which each needle portion has a different taper. In this electronic expansion valve, by changing the needle taper angle of the expansion valve, it is possible to reduce the change in opening degree with respect to a unit operation amount of the expansion valve in a region where the amount of refrigerant circulation is low. However, since the needle part requires high processing precision and is expensive, it is not widely available. Therefore, most water heaters often use linear expansion valves whose opening degree changes linearly with the amount of operation of the expansion valve.
 本開示の目的は、リニア膨張弁を用いつつ冷媒循環量が少ない場合でも安定した運転が可能となる冷凍サイクル装置を提供することである。 An object of the present disclosure is to provide a refrigeration cycle device that uses a linear expansion valve and is capable of stable operation even when the amount of refrigerant circulation is small.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、冷媒回路と、バイパス流路とを備える。冷媒回路は、圧縮機と、第1熱交換器と、第1膨張弁と、第2熱交換器とを備える。冷媒回路は、圧縮機、第1熱交換器、第1膨張弁、第2熱交換器を経由して圧縮機に戻るように冷媒が循環するように構成される。バイパス流路は、第2膨張弁を備え、第1熱交換器を通過した冷媒を、第2膨張弁を通過させて圧縮機に送るように構成される。冷凍サイクル装置は、第1通路および第2通路を含み、第1通路を通過する冷媒と第2通路を通過する冷媒との間で熱交換するように構成される第3熱交換器と、第1モードと第2モードで第3熱交換器の接続を切替える切替機構とをさらに備える。第3熱交換器は、第1モードでは、第1熱交換器を通過し第1膨張弁に向かう冷媒と、第2膨張弁を通過し圧縮機に向かう冷媒との間で熱交換するように構成され、第2モードでは、圧縮機から吐出され第1熱交換器に向かう冷媒と、第1膨張弁を通過する前または第1膨張弁を通過した後の冷媒との間で熱交換するように構成される。 The present disclosure relates to a refrigeration cycle device. The refrigeration cycle device includes a refrigerant circuit and a bypass flow path. The refrigerant circuit includes a compressor, a first heat exchanger, a first expansion valve, and a second heat exchanger. The refrigerant circuit is configured such that refrigerant circulates through the compressor, the first heat exchanger, the first expansion valve, the second heat exchanger, and back to the compressor. The bypass passage includes a second expansion valve and is configured to send the refrigerant that has passed through the first heat exchanger to the compressor through the second expansion valve. The refrigeration cycle device includes a first passage and a second passage, and a third heat exchanger configured to exchange heat between the refrigerant passing through the first passage and the refrigerant passing through the second passage; The apparatus further includes a switching mechanism that switches the connection of the third heat exchanger between the first mode and the second mode. In the first mode, the third heat exchanger exchanges heat between refrigerant that passes through the first heat exchanger and heads toward the first expansion valve, and refrigerant that passes through the second expansion valve and heads toward the compressor. In the second mode, heat is exchanged between the refrigerant discharged from the compressor and directed to the first heat exchanger, and the refrigerant before passing through the first expansion valve or after passing through the first expansion valve. It is composed of
 本開示の冷凍サイクル装置によれば、低負荷暖房時等において、冷媒循環量の変動幅が抑えられ、給湯温度等が安定する。 According to the refrigeration cycle device of the present disclosure, the fluctuation range of the refrigerant circulation amount is suppressed during low load heating, etc., and the hot water supply temperature etc. are stabilized.
本実施の形態が適用される冷媒回路の基本的構成を示す図である。1 is a diagram showing the basic configuration of a refrigerant circuit to which this embodiment is applied. リニア膨張弁のCv値特性について示した図である。It is a figure shown about Cv value characteristic of a linear expansion valve. 実施の形態1の流路切替を説明するためのp-h線図である。FIG. 3 is a ph diagram for explaining flow path switching according to the first embodiment. 実施の形態1の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。FIG. 2 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 1 and the flow of refrigerant in normal heating mode. 実施の形態1の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。FIG. 3 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the first embodiment. 実施の形態1の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。3 is a flowchart for explaining control in a low-load heating mode of the refrigeration cycle device according to the first embodiment. 実施の形態2の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。It is a figure showing the composition of the refrigeration cycle device of Embodiment 2, and the flow of a refrigerant in normal heating mode. 実施の形態2の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the second embodiment. 実施の形態2の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 2. 実施の形態3の流路切替を説明するためのp-h線図である。FIG. 7 is a ph diagram for explaining flow path switching in Embodiment 3. FIG. 実施の形態3の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。It is a figure which shows the structure of the refrigeration cycle apparatus of Embodiment 3, and the flow of a refrigerant|coolant in normal heating mode. 実施の形態3の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the third embodiment. 実施の形態3の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。12 is a flowchart for explaining control in a low-load heating mode of the refrigeration cycle device according to the third embodiment. 実施の形態4の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。It is a figure showing the composition of the refrigeration cycle device of Embodiment 4, and the flow of a refrigerant in normal heating mode. 実施の形態4の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment. 実施の形態4の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 4. 実施の形態5の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。It is a figure showing the composition of the refrigeration cycle device of Embodiment 5, and the flow of a refrigerant in normal heating mode. 実施の形態5の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。FIG. 7 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fifth embodiment. 実施の形態5の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。It is a flow chart for explaining control in low load heating mode of the refrigeration cycle device of Embodiment 5.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Although a plurality of embodiments will be described below, it has been planned from the beginning of the application to appropriately combine the configurations described in each embodiment. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated. Note that in the following figures, the size relationship of each component may differ from the actual one.
 実施の形態1.
 図1は、本実施の形態が適用される冷媒回路の基本的構成を示す図である。このような冷凍サイクル装置に以下の実施の形態1~5が適用される。冷凍サイクル装置は、たとえば、冷媒を使用する冷凍サイクルで熱媒体を加熱する給湯機または暖房装置である。また冷凍サイクルで熱媒体を冷却して冷房に使用する冷房モードを備えていてもよい。
Embodiment 1.
FIG. 1 is a diagram showing the basic configuration of a refrigerant circuit to which this embodiment is applied. The following embodiments 1 to 5 are applied to such a refrigeration cycle device. A refrigeration cycle device is, for example, a water heater or a heating device that heats a heat medium in a refrigeration cycle that uses a refrigerant. Further, it may be provided with an air-conditioning mode in which the heat medium is cooled in a refrigeration cycle and used for air-conditioning.
 この冷凍サイクル装置は、冷媒回路Cと、バイパス流路70とを備える。
 冷媒回路Cは、圧縮機10と、熱交換器20と、膨張弁30とを備える。冷媒回路Cは、圧縮機10、配管51、熱交換器20、配管52、膨張弁30、配管54、熱交換器40、配管55を順に経由して圧縮機10に戻るように冷媒が循環するように構成される。圧縮機は、吐出口と、吸入口と、中間ポートとを有する。
This refrigeration cycle device includes a refrigerant circuit C and a bypass flow path 70.
The refrigerant circuit C includes a compressor 10, a heat exchanger 20, and an expansion valve 30. In the refrigerant circuit C, the refrigerant circulates in order to return to the compressor 10 via the compressor 10, piping 51, heat exchanger 20, piping 52, expansion valve 30, piping 54, heat exchanger 40, and piping 55. It is configured as follows. The compressor has a discharge port, a suction port, and an intermediate port.
 熱交換器20は、水、ブラインなどの熱媒体と冷媒との熱交換を行なうように構成される。熱交換器20によって加熱または冷却された熱媒体は、給湯機の温水生成または冷暖房などの熱源となる。熱交換器20によって加熱または冷却された熱媒体は、配管121、ポンプWP、配管122、熱交換器123、配管124を経由して熱交換器20に戻る。熱交換器123は、給湯機、空調ユニット、床暖房ユニットなどの利用側装置である。 The heat exchanger 20 is configured to exchange heat between a heat medium such as water or brine and a refrigerant. The heat medium heated or cooled by the heat exchanger 20 serves as a heat source for generating hot water in a water heater or for heating and cooling. The heat medium heated or cooled by the heat exchanger 20 returns to the heat exchanger 20 via the piping 121, the pump WP, the piping 122, the heat exchanger 123, and the piping 124. The heat exchanger 123 is a user-side device such as a water heater, an air conditioning unit, or a floor heating unit.
 バイパス流路70は、膨張弁72を備える。バイパス流路70は、熱交換器20を通過した冷媒の一部を配管71で分岐させる。バイパス流路70は、膨張弁72、配管73を通過させて圧縮機10の中間ポートに送るように構成される。これにより、液もしくは二相冷媒が注入されるので、圧縮機10の吐出温度を下げることができ、吐出冷媒の温度がモータ等の部材の耐熱温度を超えてしまうことを防ぐことができる。 The bypass flow path 70 includes an expansion valve 72. The bypass passage 70 branches part of the refrigerant that has passed through the heat exchanger 20 through a pipe 71 . The bypass passage 70 is configured to pass through the expansion valve 72 and the piping 73 and to be sent to the intermediate port of the compressor 10 . As a result, the liquid or two-phase refrigerant is injected, so the discharge temperature of the compressor 10 can be lowered, and the temperature of the discharged refrigerant can be prevented from exceeding the allowable temperature limit of members such as the motor.
 このような基本構成の冷凍サイクル装置においては、一般に膨張弁30としてリニア膨張弁が用いられる。リニア膨張弁は、パルス信号が制御信号として与えられ、操作量xがパルス数で示される。 In a refrigeration cycle device with such a basic configuration, a linear expansion valve is generally used as the expansion valve 30. The linear expansion valve is given a pulse signal as a control signal, and the manipulated variable x is indicated by the number of pulses.
 図2は、リニア膨張弁のCv値特性について示した図である。図2に示されるように、操作量x(パルス)とし、比例係数Aとすると、膨張弁開度を示すCv値は、Cv=Axで示される。 FIG. 2 is a diagram showing the Cv value characteristics of the linear expansion valve. As shown in FIG. 2, when the manipulated variable x (pulse) is the proportional coefficient A, the Cv value indicating the expansion valve opening is expressed as Cv=Ax.
 このような特性を示すリニア膨張弁を用いる場合に、単位操作量あたりの冷媒循環量の変化割合を検討する。冷媒循環量Grと膨張弁開度を示すCv値とは、下式(1)のような関係にある。ここで、ΔPは、膨張弁前後差圧を示し、ρは、膨張弁入口の冷媒密度を示す。
Gr=27.1Cv√(ρΔP) …(1)
 ここで膨張弁の操作量xに対して単位操作量Δxとする。単位操作量あたりの冷媒循環量の変化割合は、上記(1)式を代入すると下式(2)で示される。なお、Aは比例係数を示す。
(Gr+ΔGr)/Gr
=(27.1Cv√(ρΔP)+27.1ΔCv√(ρΔP))/(27.1Cv√(ρΔP))
=(Cv+ΔCv)/Cv
=1+AΔx/Cv …(2)
 これは、膨張弁開度が小さい、すなわちCv値が小さいと、単位操作量Δxに対する冷媒循環量の変化が大きくなることを示す。したがって、膨張弁は、負荷が小さく冷媒流量が少ないと感度が敏感になりすぎてしまい、冷媒流量にハンチングを発生させてしまう。その結果給湯機などでは出湯温度が安定しないなどの問題が生じる。
When using a linear expansion valve exhibiting such characteristics, the rate of change in the amount of refrigerant circulation per unit operation amount will be examined. The refrigerant circulation amount Gr and the Cv value indicating the expansion valve opening have a relationship as shown in the following equation (1). Here, ΔP indicates the differential pressure before and after the expansion valve, and ρ indicates the refrigerant density at the inlet of the expansion valve.
Gr=27.1Cv√(ρΔP)…(1)
Here, it is assumed that the unit operation amount Δx is the operation amount x of the expansion valve. The rate of change in the refrigerant circulation amount per unit operation amount is expressed by the following equation (2) by substituting the above equation (1). Note that A indicates a proportionality coefficient.
(Gr+ΔGr)/Gr
= (27.1Cv√(ρΔP)+27.1ΔCv√(ρΔP))/(27.1Cv√(ρΔP))
=(Cv+ΔCv)/Cv
=1+AΔx/Cv…(2)
This indicates that when the expansion valve opening degree is small, that is, when the Cv value is small, the change in the refrigerant circulation amount with respect to the unit operation amount Δx becomes large. Therefore, the expansion valve becomes too sensitive when the load is small and the refrigerant flow rate is low, causing hunting in the refrigerant flow rate. As a result, problems such as unstable hot water temperature in water heaters and the like arise.
 そこで、本実施の形態では、負荷が小さい場合でも、膨張弁の開度が小さい領域を使用しないようにして、操作量に対する感度を適切な状態にする。このために冷媒回路における内部熱交換器の挿入位置を変更するように流路の切替を行なう。 Therefore, in this embodiment, even when the load is small, the sensitivity to the manipulated variable is set to an appropriate state by not using the region where the opening degree of the expansion valve is small. For this purpose, the flow path is switched to change the insertion position of the internal heat exchanger in the refrigerant circuit.
 図3は、実施の形態1の流路切替を説明するためのp-h線図である。実施の形態1では、通常暖房モードでは、図3のサイクルC0に示されるp-h線図に沿った動作が行なわれる。サイクルC0では、内部熱交換器によって、図1の配管53を流れる冷媒と配管73を流れる冷媒との間で熱交換が行なわれる。 FIG. 3 is a ph diagram for explaining flow path switching in the first embodiment. In the first embodiment, in the normal heating mode, an operation is performed along the ph diagram shown in cycle C0 in FIG. 3. In cycle C0, heat is exchanged between the refrigerant flowing through the pipe 53 and the refrigerant flowing through the pipe 73 in FIG. 1 by the internal heat exchanger.
 一方、実施の形態1では、低負荷暖房モードでは、図3のサイクルC1に示されるp-h線図に沿った動作が行なわれる。サイクルC1では、膨張弁72は閉止され、バイパス流路70には冷媒が流れない。代わりに、内部熱交換器によって、図1の配管51を流れる冷媒と配管53を流れる冷媒との間でΔH1の熱交換が行なわれる。その結果熱交換器20におけるエンタルピー差が通常暖房モードよりも小さくなる。暖房能力はエンタルピー差×冷媒循環量で表わされるので、低負荷暖房モードでは、低負荷であっても通常暖房モードよりも冷媒循環量を増やすことができる。このため、操作量に対して冷媒循環量の変化が敏感になる膨張弁30の開度が小さい領域を使用せずに低負荷暖房を実行することができる。 On the other hand, in the first embodiment, in the low-load heating mode, the operation is performed along the ph diagram shown in cycle C1 in FIG. 3. In cycle C1, the expansion valve 72 is closed and no refrigerant flows into the bypass passage 70. Instead, heat exchange of ΔH1 is performed between the refrigerant flowing through the pipe 51 and the refrigerant flowing through the pipe 53 in FIG. 1 by the internal heat exchanger. As a result, the enthalpy difference in the heat exchanger 20 becomes smaller than in the normal heating mode. Since heating capacity is expressed as enthalpy difference x amount of refrigerant circulation, in low load heating mode, the amount of refrigerant circulation can be increased more than in normal heating mode even under low load. Therefore, low-load heating can be performed without using the region where the opening degree of the expansion valve 30 is small, where changes in the refrigerant circulation amount are sensitive to the operation amount.
 言い換えると、図3のp-h線図では、サイクルC1の方がサイクルC0よりも膨張弁入口のエンタルピーが増加する。このため、膨張弁入口における冷媒密度が低下する。膨張弁入口冷媒密度の低下により、膨張弁開度が増加する。 In other words, in the ph diagram of FIG. 3, the enthalpy at the inlet of the expansion valve increases in cycle C1 more than in cycle C0. Therefore, the refrigerant density at the expansion valve inlet decreases. As the refrigerant density at the expansion valve inlet decreases, the expansion valve opening degree increases.
 図4は、実施の形態1の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。 FIG. 4 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 1 and the flow of refrigerant in normal heating mode.
 図4に示す冷凍サイクル装置200は、圧縮機10と、熱交換器20と、膨張弁30と、熱交換器40と、膨張弁72と、熱交換器80と、冷媒回路Cと、バイパス流路70とを備える。 The refrigeration cycle device 200 shown in FIG. 4 includes a compressor 10, a heat exchanger 20, an expansion valve 30, a heat exchanger 40, an expansion valve 72, a heat exchanger 80, a refrigerant circuit C, and a bypass flow 70.
 冷媒回路Cは、圧縮機10、熱交換器20、膨張弁30、熱交換器40を経由して圧縮機10に戻るように冷媒が循環するように構成される。 The refrigerant circuit C is configured so that the refrigerant circulates through the compressor 10, the heat exchanger 20, the expansion valve 30, and the heat exchanger 40, and returns to the compressor 10.
 バイパス流路70は、熱交換器20を通過した冷媒を、膨張弁72を通過させて圧縮機10に送るように構成される。 The bypass passage 70 is configured to send the refrigerant that has passed through the heat exchanger 20 to the compressor 10 through the expansion valve 72.
 熱交換器80は、第1通路R1および第2通路R2を含み、第1通路R1を通過する冷媒と第2通路R2を通過する冷媒との間で熱交換をさせるように構成される。 The heat exchanger 80 includes a first passage R1 and a second passage R2, and is configured to exchange heat between the refrigerant passing through the first passage R1 and the refrigerant passing through the second passage R2.
 冷凍サイクル装置200は、第1モードと第2モードで熱交換器80の接続を切替える切替機構60をさらに備える。第1モードは、通常暖房モードであり、第2モードは低負荷暖房モードである。なお、第1、第2モード以外に、さらに冷房モードなどを備えていても良い。 The refrigeration cycle device 200 further includes a switching mechanism 60 that switches the connection of the heat exchanger 80 between the first mode and the second mode. The first mode is a normal heating mode, and the second mode is a low-load heating mode. Note that in addition to the first and second modes, a cooling mode or the like may be provided.
 熱交換器80は、第1モード(通常暖房モード)では、図4の矢印に示されるように、熱交換器20を通過し膨張弁30に向かう冷媒と、膨張弁72を通過し圧縮機10に向かう冷媒との間で熱交換するように設定される。 In the first mode (normal heating mode), the heat exchanger 80 allows the refrigerant to pass through the heat exchanger 20 and go to the expansion valve 30, and the refrigerant to pass through the expansion valve 72 and go to the compressor 10, as shown by the arrow in FIG. It is set to exchange heat with the refrigerant headed for.
 図5は、実施の形態1の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。切替機構60は、図5の矢印に示すように、第2モードでは、圧縮機10から吐出され熱交換器20に向かう冷媒と、膨張弁30を通過する前の冷媒とが熱交換器80で熱交換するように、熱交換器80の接続を切替える。 FIG. 5 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device of Embodiment 1. As shown by the arrow in FIG. 5, in the second mode, the switching mechanism 60 switches the refrigerant discharged from the compressor 10 toward the heat exchanger 20 and the refrigerant before passing through the expansion valve 30 into the heat exchanger 80. The connection of the heat exchanger 80 is switched to exchange heat.
 熱交換器80は、第2モード(低負荷暖房モード)において、圧縮機10から吐出され熱交換器20に向かう冷媒と、熱交換器20を通過し膨張弁30に向かう冷媒との間で熱交換するように構成される。 In the second mode (low-load heating mode), the heat exchanger 80 exchanges heat between the refrigerant discharged from the compressor 10 and heading toward the heat exchanger 20 and the refrigerant passing through the heat exchanger 20 and heading toward the expansion valve 30. Configured to be exchanged.
 冷凍サイクル装置200は、切替機構および膨張弁72を制御する制御装置100をさらに備える。 The refrigeration cycle device 200 further includes a control device 100 that controls the switching mechanism and the expansion valve 72.
 制御装置100は、CPU(Central Processing Unit)101と、メモリ102(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU101は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷凍サイクル装置200における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 101, a memory 102 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like. The CPU 101 expands a program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is written. Control device 100 executes control of each device in refrigeration cycle device 200 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
 切替機構60は、第1~第4ポートを有する第1四方弁61と、第5~第8ポートを有する第2四方弁62とを含む。図4におけるP1~P8は、それぞれ、四方弁の第1ポート~第8ポートを示す。 The switching mechanism 60 includes a first four-way valve 61 having first to fourth ports, and a second four-way valve 62 having fifth to eighth ports. P1 to P8 in FIG. 4 indicate the first to eighth ports of the four-way valve, respectively.
 第1ポートは、圧縮機10の吐出口と配管83によって接続される。第2ポートは第8ポートと配管82によって接続される。第3ポートは膨張弁72の下流側に配管73Aによって接続される。第4ポートと第6ポートとの間には、熱交換器80の第1通路R1が配管81によって接続される。第5ポートは配管73Bによって圧縮機10の中間ポートに接続される。第7ポートは、配管51Bによって熱交換器20の冷媒入口に接続される。 The first port is connected to the discharge port of the compressor 10 by a pipe 83. The second port is connected to the eighth port by piping 82. The third port is connected to the downstream side of the expansion valve 72 by a pipe 73A. The first passage R1 of the heat exchanger 80 is connected by a pipe 81 between the fourth port and the sixth port. The fifth port is connected to the intermediate port of the compressor 10 by a pipe 73B. The seventh port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B.
 第1四方弁61は、第1モード(通常暖房モード)において、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通し、第2モード(低負荷暖房モード)において、第2ポートと第3ポートとが連通し、第4ポートと第1ポートとが連通するように構成される。 The first four-way valve 61 has a first port and a second port communicating with each other in the first mode (normal heating mode), a third port and a fourth port communicating with each other, and a second mode (low-load heating mode). The second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
 第2四方弁62は、第1モード(通常暖房モード)において、第5ポートと第6ポートとが連通し、第7ポートと第8ポートとが連通し、第2モード(低負荷暖房モード)において、第6ポートと第7ポートとが連通し、第8ポートと第5ポートとが連通するように構成される。 In the second four-way valve 62, in the first mode (normal heating mode), the fifth port and the sixth port communicate with each other, and the seventh port and the eighth port communicate with each other, and in the second mode (low-load heating mode). In this case, the sixth port and the seventh port communicate with each other, and the eighth port and the fifth port communicate with each other.
 図6は、実施の形態1の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。図6のフローチャートに従って、制御装置100は、第2モードで膨張弁30の開度が判定値以下となった場合に、膨張弁72を閉止する。 FIG. 6 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device of Embodiment 1. According to the flowchart of FIG. 6, the control device 100 closes the expansion valve 72 when the opening degree of the expansion valve 30 becomes equal to or less than the determination value in the second mode.
 また、制御装置100は、第2モードで膨張弁30の開度が判定値以下となった場合には、熱交換器20を通過した熱媒体の温度に基づいて、圧縮機10の運転周波数を制御する。 Further, when the opening degree of the expansion valve 30 becomes equal to or less than the determination value in the second mode, the control device 100 adjusts the operating frequency of the compressor 10 based on the temperature of the heat medium that has passed through the heat exchanger 20. Control.
 まずステップS1において、制御装置100は、膨張弁30の開度がしきい値dt以下であるか否かを判断する。開度がしきい値dt以下であった場合には(S1でYES)、制御装置100は、ステップS2に処理を進める。 First, in step S1, the control device 100 determines whether the opening degree of the expansion valve 30 is less than or equal to the threshold value dt. If the opening degree is less than or equal to the threshold value dt (YES in S1), the control device 100 advances the process to step S2.
 ステップS2において、制御装置100は、圧縮機10の運転周波数がしきい値ft以下であるか否かを判断する。運転周波数がしきい値ft以下であった場合には(S2でYES)、制御装置100は、ステップS3に処理を進める。 In step S2, the control device 100 determines whether the operating frequency of the compressor 10 is equal to or lower than the threshold value ft. If the operating frequency is equal to or less than the threshold value ft (YES in S2), the control device 100 advances the process to step S3.
 ステップS3に処理が進んだ場合には、暖房運転の負荷が小さくなっている。このため、制御装置100は、図3に示したサイクルC0からサイクルC1に運転サイクルを切替えるように切替機構60を切替える。具体的には、ステップS3において、制御装置100は、膨張弁72を閉止する。そしてステップS4では、制御装置100は、切替機構60(四方弁61,62)の状態を図5に示す低負荷暖房モードの状態に設定する。それまで通常暖房モードが実施されていた場合には切替が行なわれるが、低負荷暖房モードであった場合には切替機構60の状態は維持される。なお、四方弁61,62の切替順序はどちらが先であっても良い。 When the process progresses to step S3, the load of the heating operation has become small. Therefore, the control device 100 switches the switching mechanism 60 to switch the operating cycle from the cycle C0 shown in FIG. 3 to the cycle C1. Specifically, in step S3, the control device 100 closes the expansion valve 72. In step S4, the control device 100 sets the state of the switching mechanism 60 (four-way valves 61, 62) to the low-load heating mode shown in FIG. If the normal heating mode has been in effect until then, switching is performed, but if it is in the low-load heating mode, the state of the switching mechanism 60 is maintained. Note that the four- way valves 61 and 62 may be switched in any order.
 その後、ステップS5において、制御装置100は、熱交換器20の熱媒体出口の温度(水温)T1が目標水温T1tと等しいか否かを判断する。温度T1が目標温度T1tと等しくない場合(S5でNO)、ステップS6において、制御装置100は、温度T1が目標温度T1tよりも低いか否かを判断する。温度T1が目標温度T1tよりも低い場合(S6でYES)、ステップS7において、制御装置100は、圧縮機10の運転周波数を増加する。これによって、熱交換器20の加温能力が増加する。一方、温度T1が目標温度T1tよりも低くなかった場合、すなわち温度T1が高すぎる場合には(S6でNO)、ステップS8において、制御装置100は、圧縮機10の運転周波数を低減させる。これによって、熱交換器20の加温能力が減少する。 After that, in step S5, the control device 100 determines whether the temperature (water temperature) T1 at the heat medium outlet of the heat exchanger 20 is equal to the target water temperature T1t. If the temperature T1 is not equal to the target temperature T1t (NO in S5), in step S6, the control device 100 determines whether the temperature T1 is lower than the target temperature T1t. If the temperature T1 is lower than the target temperature T1t (YES in S6), the control device 100 increases the operating frequency of the compressor 10 in step S7. This increases the heating capacity of the heat exchanger 20. On the other hand, if the temperature T1 is not lower than the target temperature T1t, that is, if the temperature T1 is too high (NO in S6), the control device 100 reduces the operating frequency of the compressor 10 in step S8. This reduces the heating capacity of the heat exchanger 20.
 なお、ステップS1,S2でNO、ステップS5でYESと判定された場合、およびステップS7,S8の処理が終了した場合には、一旦図6のフローチャートから抜けて、一定時間経過後等に再び、図6のフローチャートの処理が実行される。 Note that if the determination is NO in steps S1 and S2 and YES in step S5, and if the processing in steps S7 and S8 is completed, the process exits from the flowchart of FIG. The processing in the flowchart of FIG. 6 is executed.
 以上説明したように、実施の形態1では、低負荷暖房時においてインジェクション流路を閉止し、冷媒同士の熱交換をさせる内部熱交換器である熱交換器80の冷媒回路中における位置を切替機構60によって変更する。これにより冷凍サイクルは、図3のサイクルC0からサイクルC1に切替わり、熱交換器20によるエンタルピー差が縮小される。これにより、低負荷暖房時においても冷媒循環量を増加させることが可能となる。 As explained above, in Embodiment 1, the injection flow path is closed during low-load heating, and the position of the heat exchanger 80, which is an internal heat exchanger that exchanges heat between refrigerants, in the refrigerant circuit is changed by the mechanism. Changed by 60. Thereby, the refrigeration cycle is switched from cycle C0 in FIG. 3 to cycle C1, and the enthalpy difference caused by the heat exchanger 20 is reduced. This makes it possible to increase the amount of refrigerant circulation even during low-load heating.
 冷媒循環量を増加させると、単位操作量に対して冷媒循環量の変化が敏感なリニア膨張弁のである膨張弁30の低開度の領域を使用しなくて良くなる。すると膨張弁30の単位操作量に対する冷媒循環量の変化を小さくすることができる。したがって、低負荷暖房時の冷媒循環量の増減幅を小さく抑えることができる。これにより、給湯温度が安定する。 Increasing the amount of refrigerant circulation eliminates the need to use the low opening range of the expansion valve 30, which is a linear expansion valve where changes in the amount of refrigerant circulation are sensitive to unit operation amount. Then, the change in the refrigerant circulation amount with respect to the unit operation amount of the expansion valve 30 can be reduced. Therefore, the range of increase/decrease in the amount of refrigerant circulation during low-load heating can be kept small. This stabilizes the hot water temperature.
 実施の形態2.
 実施の形態1では、切替機構を四方弁2つで構成したが、実施の形態2では切替機構を六方弁1つで実現する例を説明する。
Embodiment 2.
In the first embodiment, the switching mechanism is configured with two four-way valves, but in the second embodiment, an example will be described in which the switching mechanism is implemented with one six-way valve.
 図7は、実施の形態2の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。図8は、実施の形態2の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。 FIG. 7 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 2 and the flow of refrigerant in normal heating mode. FIG. 8 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the second embodiment.
 実施の形態2の冷凍サイクル装置201は、図4に示した冷凍サイクル装置200の構成において、四方弁61,62に代えて六方弁160を備える。他の部分の構成については、冷凍サイクル装置201は、冷凍サイクル装置200と同じであるので、説明は繰り返さない。 A refrigeration cycle device 201 according to the second embodiment includes a six-way valve 160 in place of the four- way valves 61 and 62 in the configuration of the refrigeration cycle device 200 shown in FIG. Regarding the configuration of other parts, the refrigeration cycle device 201 is the same as the refrigeration cycle device 200, so the description will not be repeated.
 なお、実施の形態2において切替機構として働く六方弁160によって接続が切替えられた熱交換器80は、第2モードにおいて、圧縮機10から吐出され熱交換器20に向かう冷媒と、熱交換器20を通過し膨張弁30に向かう冷媒との間で熱交換するように構成される点は、実施の形態1の切替機構60と同じである。 In addition, in the second mode, the heat exchanger 80 whose connection is switched by the six-way valve 160 serving as a switching mechanism in the second embodiment is configured to switch between the refrigerant discharged from the compressor 10 and directed toward the heat exchanger 20, and the heat exchanger 20. It is the same as the switching mechanism 60 of the first embodiment in that it is configured to exchange heat with the refrigerant passing through and heading toward the expansion valve 30.
 実施の形態2において、切替機構は、第1~第6ポートを有する六方弁160である。図7におけるP1~P6は、それぞれ、六方弁160の第1ポート~第6ポートを示す。六方弁160の第1ポートは、圧縮機10の吐出口と配管83によって接続され、第2ポートは、配管51Bによって熱交換器20の冷媒入口に接続される。六方弁160の第4ポートは配管73Aによって膨張弁72の下流側に接続され、第3ポートと第6ポートとの間に配管81によって熱交換器80の第1通路R1が接続され、第5ポートは配管73Bによって圧縮機10の中間ポートに接続される。 In the second embodiment, the switching mechanism is a six-way valve 160 having first to sixth ports. P1 to P6 in FIG. 7 indicate the first to sixth ports of the six-way valve 160, respectively. The first port of the hexagonal valve 160 is connected to the discharge port of the compressor 10 by a pipe 83, and the second port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B. The fourth port of the six-way valve 160 is connected to the downstream side of the expansion valve 72 by a pipe 73A, the first passage R1 of the heat exchanger 80 is connected between the third port and the sixth port by a pipe 81, and the fifth The port is connected to the intermediate port of compressor 10 by piping 73B.
 六方弁160は、第1モード(通常暖房モード)において、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通し、第5ポートと第6ポートとが連通するように構成される。六方弁160は、第2モード(低負荷暖房モード)において、第2ポートと第3ポートとが連通し、第4ポートと第5ポートとが連通し、第6ポートと第1ポートとが連通するように構成される。 In the six-way valve 160, in the first mode (normal heating mode), the first port and the second port communicate with each other, the third port and the fourth port communicate with each other, and the fifth port and the sixth port communicate with each other. It is configured as follows. In the six-way valve 160, in the second mode (low-load heating mode), the second port and the third port communicate with each other, the fourth port and the fifth port communicate with each other, and the sixth port and the first port communicate with each other. configured to do so.
 図9は、実施の形態2の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。図9のフローチャートは、図6のフローチャートのステップS4の代わりにステップS11を含む。他のステップについては、図6のフローチャートで説明しているので、ここではステップS11について説明し、他の説明は繰り返さない。 FIG. 9 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the second embodiment. The flowchart in FIG. 9 includes step S11 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, only step S11 will be explained here, and other explanations will not be repeated.
 ステップS11では、制御装置100は、六方弁160の状態を図8に示す低負荷暖房モードの状態に設定する。したがって、それまで通常暖房モードが実施されていた場合には切替が行なわれるが、低負荷暖房モードであった場合には六方弁160の状態は維持される。 In step S11, the control device 100 sets the state of the hexagonal valve 160 to the low-load heating mode shown in FIG. 8. Therefore, if the normal heating mode has been in effect until then, switching is performed, but if it is in the low-load heating mode, the state of the six-way valve 160 is maintained.
 実施の形態2においても、実施の形態1と同様に、冷媒循環量を増加させることにより冷媒循環量のハンチング抑制効果が得られる。これにより、給湯温度が安定する。さらに、部品点数を少なくすることができる。 In Embodiment 2, as in Embodiment 1, the effect of suppressing hunting in the amount of refrigerant circulation can be obtained by increasing the amount of refrigerant circulation. This stabilizes the hot water temperature. Furthermore, the number of parts can be reduced.
 実施の形態3.
 実施の形態1、2では、低負荷暖房時において膨張弁開度を増加させ、単位操作量に対する冷媒循環量の変化を小さくすること説明した。
Embodiment 3.
In the first and second embodiments, it has been explained that the expansion valve opening degree is increased during low-load heating to reduce the change in the refrigerant circulation amount with respect to the unit operation amount.
 ここで、暖房能力は、凝縮器のエンタルピー差×冷媒循環量で示される。したがって、低負荷暖房時において、単位操作量に対する冷媒循環量の変化を小さくするためには、2つのアプローチが考えられる。 Here, the heating capacity is expressed as the enthalpy difference of the condenser x the amount of refrigerant circulation. Therefore, in order to reduce the change in the refrigerant circulation amount with respect to the unit operation amount during low-load heating, two approaches can be considered.
 第1のアプローチは、実施の形態1,2において示したように、吐出冷媒と、凝縮器出口冷媒との熱交換を熱交換器80によって行なうことにより、凝縮器のエンタルピー差を減少させ、冷媒循環量を増加させることである。 The first approach is to reduce the enthalpy difference in the condenser by exchanging heat between the discharged refrigerant and the condenser outlet refrigerant using the heat exchanger 80, as shown in Embodiments 1 and 2. The goal is to increase the amount of circulation.
 第2のアプローチは、実施の形態3以降において示すように、吐出冷媒と、蒸発器入口冷媒との熱交換を熱交換器80によって行なうことにより、凝縮器のエンタルピー差を減少させ、冷媒循環量を増加させることである。 The second approach is to reduce the enthalpy difference in the condenser by exchanging heat between the discharged refrigerant and the evaporator inlet refrigerant using the heat exchanger 80, as shown in Embodiment 3 and thereafter. The goal is to increase
 図10は、実施の形態3の流路切替を説明するためのp-h線図である。実施の形態3では、通常暖房モードでは、図10のサイクルC0に示されるp-h線図に沿った動作が行なわれる。サイクルC0では、内部熱交換器によって、図1の配管53を流れる冷媒と配管73を流れる冷媒との間で熱交換が行なわれる。 FIG. 10 is a ph diagram for explaining flow path switching in the third embodiment. In the third embodiment, in the normal heating mode, an operation is performed along the ph diagram shown in cycle C0 in FIG. 10. In cycle C0, heat is exchanged between the refrigerant flowing through the pipe 53 and the refrigerant flowing through the pipe 73 in FIG. 1 by the internal heat exchanger.
 一方、実施の形態3では、低負荷暖房モードでは、図10のサイクルC2に示されるp-h線図に沿った動作が行なわれる。サイクルC2では、膨張弁72は閉止され、バイパス流路70には冷媒が流れない。代わりに、内部熱交換器によって、図1の配管51を流れる冷媒と配管54を流れる冷媒との間でΔH2の熱交換が行なわれる。その結果熱交換器20におけるエンタルピー差が通常暖房モードよりも小さくなる。暖房能力はエンタルピー差×冷媒循環量で表わされるので、低負荷暖房モードでは、低負荷であっても通常暖房モードよりも冷媒循環量を増やすことができる。このため、操作量に対して冷媒循環量の変化が敏感になる膨張弁30の開度が小さい領域を使用せずに低負荷暖房を実行することができる。 On the other hand, in the third embodiment, in the low-load heating mode, the operation is performed along the ph diagram shown in cycle C2 in FIG. 10. In cycle C2, the expansion valve 72 is closed and no refrigerant flows into the bypass passage 70. Instead, heat exchange of ΔH2 is performed between the refrigerant flowing through the pipe 51 and the refrigerant flowing through the pipe 54 in FIG. 1 by the internal heat exchanger. As a result, the enthalpy difference in the heat exchanger 20 becomes smaller than in the normal heating mode. Since heating capacity is expressed as enthalpy difference x amount of refrigerant circulation, in low load heating mode, the amount of refrigerant circulation can be increased more than in normal heating mode even under low load. Therefore, low-load heating can be performed without using the region where the opening degree of the expansion valve 30 is small, where changes in the refrigerant circulation amount are sensitive to the operation amount.
 図11は、実施の形態3の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。図12は、実施の形態3の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。 FIG. 11 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 3 and the flow of refrigerant in normal heating mode. FIG. 12 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the third embodiment.
 実施の形態3において、冷凍サイクル装置202における冷媒回路を切替える切替機構は、四方弁261と、四方弁262と、四方弁263とによって構成されている。この切替機構によって接続が切替えられた熱交換器80は、低負荷暖房を行なう第2モードにおいて、圧縮機10から吐出され熱交換器20に向かう冷媒と、膨張弁30を通過し熱交換器40に向かう冷媒との間で熱交換するように構成される。 In the third embodiment, a switching mechanism for switching the refrigerant circuit in the refrigeration cycle device 202 is configured by a four-way valve 261, a four-way valve 262, and a four-way valve 263. The heat exchanger 80 whose connection has been switched by this switching mechanism is in the second mode in which low-load heating is performed. The refrigerant is configured to exchange heat with the refrigerant.
 切替機構は、第1~第4ポートを有する第1四方弁261と、第5~第8ポートを有する第2四方弁262と、第9~第12ポートを有する第3四方弁263とを含む。図11におけるP1~P12は、これら四方弁の第1ポート~第12ポートにそれぞれ対応する。 The switching mechanism includes a first four-way valve 261 having first to fourth ports, a second four-way valve 262 having fifth to eighth ports, and a third four-way valve 263 having ninth to twelfth ports. . P1 to P12 in FIG. 11 correspond to the first to twelfth ports of these four-way valves, respectively.
 第1ポートは、配管83、四方弁50および配管51Aによって圧縮機10の吐出口と接続される。第2ポートと第4ポートとの間には、熱交換器20の冷媒流路と熱交換器80の第1通路R1とが配管51B,52Aによって直列接続される。第3ポートは、配管52Bによって、膨張弁30の上流側かつ膨張弁72の上流側に接続される。 The first port is connected to the discharge port of the compressor 10 through a pipe 83, a four-way valve 50, and a pipe 51A. Between the second port and the fourth port, the refrigerant flow path of the heat exchanger 20 and the first passage R1 of the heat exchanger 80 are connected in series by pipes 51B and 52A. The third port is connected to the upstream side of the expansion valve 30 and the upstream side of the expansion valve 72 by a pipe 52B.
 第5ポートは、配管54Aによって膨張弁30の下流側に接続される。第6ポートは、配管54Bによって熱交換器40の冷媒入口に接続される。第7ポートは、配管85によって第9ポートと接続される。 The fifth port is connected to the downstream side of the expansion valve 30 by a pipe 54A. The sixth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B. The seventh port is connected to the ninth port by piping 85.
 第8ポートと第10ポートとの間には、配管84によって熱交換器80の第2通路R2が接続される。第11ポートは、配管73Bによって圧縮機10の中間ポートに接続される。第12ポートは、配管73Aによって膨張弁72の下流側に接続される。 A second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the tenth port. The eleventh port is connected to the intermediate port of the compressor 10 by a pipe 73B. The twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
 第1四方弁261は、図11に示す第1モード(通常暖房モード)において、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第2ポートと第3ポートとが連通し、第4ポートと第1ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the first four-way valve 261 has a first port and a second port communicating with each other, a third port and a fourth port communicating with each other, and a fourth port shown in FIG. In the 2 mode (low load heating mode), the second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
 第2四方弁262は、図11に示す第1モード(通常暖房モード)において、第5ポートと第6ポートとが連通し、第7ポートと第8ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第6ポートと第7ポートとが連通し、第8ポートと第5ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the second four-way valve 262 has a fifth port and a sixth port communicating with each other, a seventh port and an eighth port communicating with each other, and a fourth port shown in FIG. In the 2 mode (low load heating mode), the sixth port and the seventh port communicate with each other, and the eighth port and the fifth port communicate with each other.
 第3四方弁263は、図11に示す第1モード(通常暖房モード)において、第10ポートと第11ポートとが連通し、第12ポートと第9ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第9ポートと第10ポートとが連通し、第11ポートと第12ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the third four-way valve 263 has a 10th port and an 11th port communicating with each other, a 12th port and a 9th port communicating with each other, and In the 2nd mode (low load heating mode), the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other.
 図13は、実施の形態3の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。図13のフローチャートは、図6のフローチャートのステップS4の代わりにステップS21,S22を含む。他のステップについては、図6のフローチャートで説明しているので、ここではステップS21,S22について説明し、他の説明は繰り返さない。 FIG. 13 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the third embodiment. The flowchart in FIG. 13 includes steps S21 and S22 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, steps S21 and S22 will be explained here, and other explanations will not be repeated.
 ステップS21では、制御装置100は、四方弁261,263の状態を図12に示す低負荷暖房モードの状態に設定する。なお、四方弁261,263の切替順序はどちらが先であっても良い。その後、制御装置100は、四方弁262の状態を図12に示す低負荷暖房モードの状態に設定する。 In step S21, the control device 100 sets the four- way valves 261 and 263 to the low-load heating mode shown in FIG. 12. Note that the four- way valves 261 and 263 may be switched in any order. After that, the control device 100 sets the state of the four-way valve 262 to the low-load heating mode shown in FIG. 12.
 したがって、それまで通常暖房モードが実施されていた場合にはステップS21,S22において四方弁の切替が行なわれるが、低負荷暖房モードであった場合には四方弁261,262,263の状態は維持される。 Therefore, if the normal heating mode has been in effect until then, the four-way valves are switched in steps S21 and S22, but if the low-load heating mode is in effect, the states of the four- way valves 261, 262, and 263 are maintained. be done.
 実施の形態3においても、実施の形態1と同様に、冷媒循環量を増加させることにより冷媒循環量のハンチング抑制効果が得られる。これにより、給湯温度が安定する。加えて、非共沸混合冷媒を用いる場合には、蒸発器の冷媒入口温度が増加するため、着霜抑制も可能となる。 In Embodiment 3, as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.
 実施の形態4.
 実施の形態3では、切替機構を四方弁3つで構成したが、実施の形態4では切替機構を四方弁4つで実現する例を説明する。なお、図10のp-h線図については、実施の形態4でも同様であるため、説明を省略する。
Embodiment 4.
In the third embodiment, the switching mechanism is configured with three four-way valves, but in the fourth embodiment, an example will be described in which the switching mechanism is implemented with four four-way valves. Note that the ph diagram in FIG. 10 is the same in Embodiment 4, so a description thereof will be omitted.
 図14は、実施の形態4の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。図15は、実施の形態4の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。 FIG. 14 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 4 and the flow of refrigerant in normal heating mode. FIG. 15 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment.
 実施の形態4において、冷凍サイクル装置203における冷媒回路を切替える切替機構によって接続が切替えられた熱交換器80は、第2モードにおいて、圧縮機10から吐出され熱交換器20に向かう冷媒と、膨張弁30を通過し熱交換器40に向かう冷媒との間で熱交換するように構成される。 In the fourth embodiment, the heat exchanger 80 whose connection is switched by the switching mechanism that switches the refrigerant circuit in the refrigeration cycle device 203 is configured to connect the refrigerant discharged from the compressor 10 and directed to the heat exchanger 20 in the second mode, and expand the refrigerant. It is configured to exchange heat with the refrigerant that passes through the valve 30 and heads toward the heat exchanger 40 .
 切替機構は、第1~第4ポートを有する第1四方弁261と、第5~第8ポートを有する第2四方弁262と、第9~第12ポートを有する第3四方弁263と、第13~第16ポートを有する第4四方弁264とを含む。図14におけるP1~P16は、これら四方弁の第1ポート~第16ポートにそれぞれ対応する。 The switching mechanism includes a first four-way valve 261 having first to fourth ports, a second four-way valve 262 having fifth to eighth ports, a third four-way valve 263 having ninth to twelfth ports, and a third four-way valve 263 having ninth to twelfth ports. and a fourth four-way valve 264 having 13th to 16th ports. P1 to P16 in FIG. 14 correspond to the first to sixteenth ports of these four-way valves, respectively.
 第1ポートは、配管83、四方弁50および配管51Aによって圧縮機10の吐出口と接続される。第2ポートと第16ポートとの間には、熱交換器20の冷媒流路が配管51B,52Aによって接続される。第3ポートは、配管52Bによって、第15ポートと接続される。第4ポートと第14ポートとの間に熱交換器80の第1通路R1が配管86によって接続される。 The first port is connected to the discharge port of the compressor 10 through a pipe 83, a four-way valve 50, and a pipe 51A. A refrigerant flow path of the heat exchanger 20 is connected between the second port and the 16th port by pipes 51B and 52A. The third port is connected to the fifteenth port via piping 52B. A first passage R1 of the heat exchanger 80 is connected between the fourth port and the fourteenth port by a pipe 86.
 第5ポートは、配管54Aによって膨張弁30の下流側に接続される。第6ポートは、配管54Bによって熱交換器40の冷媒入口に接続される。第7ポートは、配管85によって第9ポートと接続される。 The fifth port is connected to the downstream side of the expansion valve 30 by a pipe 54A. The sixth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B. The seventh port is connected to the ninth port by piping 85.
 第8ポートと第10ポートとの間には、配管84によって熱交換器80の第2通路R2が接続される。第11ポートは、配管73Bによって圧縮機10の中間ポートに接続される。第12ポートは、配管73Aによって膨張弁72の下流側に接続される。 A second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the tenth port. The eleventh port is connected to the intermediate port of the compressor 10 by a pipe 73B. The twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
 第13ポートは、配管52Bによって、膨張弁30の上流側かつ膨張弁72の上流側に接続される。 The thirteenth port is connected to the upstream side of the expansion valve 30 and the upstream side of the expansion valve 72 via the piping 52B.
 第1四方弁261は、図11に示す第1モード(通常暖房モード)において、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第2ポートと第3ポートとが連通し、第4ポートと第1ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the first four-way valve 261 has a first port and a second port communicating with each other, a third port and a fourth port communicating with each other, and a fourth port shown in FIG. In the 2 mode (low load heating mode), the second port and the third port communicate with each other, and the fourth port and the first port communicate with each other.
 第2四方弁262は、図11に示す第1モード(通常暖房モード)において、第5ポートと第6ポートとが連通し、第7ポートと第8ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第6ポートと第7ポートとが連通し、第8ポートと第5ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the second four-way valve 262 has a fifth port and a sixth port communicating with each other, a seventh port and an eighth port communicating with each other, and a fourth port shown in FIG. In the 2 mode (low load heating mode), the sixth port and the seventh port communicate with each other, and the eighth port and the fifth port communicate with each other.
 第3四方弁263は、図11に示す第1モード(通常暖房モード)において、第10ポートと第11ポートとが連通し、第12ポートと第9ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第9ポートと第10ポートとが連通し、第11ポートと第12ポートとが連通するように構成される。 In the first mode (normal heating mode) shown in FIG. 11, the third four-way valve 263 has a 10th port and an 11th port communicating with each other, a 12th port and a 9th port communicating with each other, and In the 2nd mode (low load heating mode), the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other.
 第4四方弁264は、図11に示す第1モード(通常暖房モード)において、第13ポートと第14ポートとが連通し、第15ポートと第16ポートとが連通し、図12に示す第2モード(低負荷暖房モード)において、第14ポートと第15ポートとが連通し、第16ポートと第13ポートとが連通するように構成される。 In the fourth four-way valve 264, in the first mode (normal heating mode) shown in FIG. 11, the 13th port and the 14th port communicate with each other, the 15th port and the 16th port communicate with each other, and the In the 2 mode (low load heating mode), the 14th port and the 15th port communicate with each other, and the 16th port and the 13th port communicate with each other.
 図16は、実施の形態4の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。図16のフローチャートは、図6のフローチャートのステップS4の代わりにステップS31,S32を含む。他のステップについては、図6のフローチャートで説明しているので、ここではステップS31,S32について説明し、他の説明は繰り返さない。 FIG. 16 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device according to the fourth embodiment. The flowchart in FIG. 16 includes steps S31 and S32 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, steps S31 and S32 will be explained here, and other explanations will not be repeated.
 ステップS31では、制御装置100は、四方弁261,263,264の状態を図15に示す低負荷暖房モードの状態に設定する。なお、四方弁261,263,264の切替順序はどのような順であっても良い。その後、制御装置100は、四方弁262の状態を図15に示す低負荷暖房モードの状態に設定する。 In step S31, the control device 100 sets the four- way valves 261, 263, and 264 to the low-load heating mode shown in FIG. 15. Note that the four- way valves 261, 263, and 264 may be switched in any order. After that, the control device 100 sets the state of the four-way valve 262 to the low-load heating mode shown in FIG. 15.
 したがって、それまで通常暖房モードが実施されていた場合にはステップS31,S32において四方弁の切替が行なわれるが、低負荷暖房モードであった場合には四方弁261~264の状態は維持される。 Therefore, if the normal heating mode had been in effect until then, the four-way valves would be switched in steps S31 and S32, but if the low-load heating mode had been in effect, the states of the four-way valves 261 to 264 would be maintained. .
 実施の形態4においても、実施の形態1と同様に、冷媒循環量を増加させることにより冷媒循環量のハンチング抑制効果が得られる。これにより、給湯温度が安定する。加えて、非共沸混合冷媒を用いる場合には、蒸発器の冷媒入口温度が増加するため、着霜抑制も可能となる。 In Embodiment 4, as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.
 実施の形態5.
 実施の形態4では、切替機構を四方弁4つで構成したが、実施の形態5では切替機構を六方弁2つで実現する例を説明する。なお、図10のp-h線図については、実施の形態5でも同様であるため、説明を省略する。
Embodiment 5.
In the fourth embodiment, the switching mechanism is configured with four four-way valves, but in the fifth embodiment, an example will be described in which the switching mechanism is implemented with two six-way valves. Note that the ph diagram in FIG. 10 is the same in the fifth embodiment, so a description thereof will be omitted.
 図17は、実施の形態5の冷凍サイクル装置の構成と、通常暖房モードにおける冷媒の流れを示す図である。図18は、実施の形態5の冷凍サイクル装置の低負荷暖房モードにおける冷媒の流れを示す図である。 FIG. 17 is a diagram showing the configuration of the refrigeration cycle device of Embodiment 5 and the flow of refrigerant in normal heating mode. FIG. 18 is a diagram showing the flow of refrigerant in the low-load heating mode of the refrigeration cycle device according to the fifth embodiment.
 実施の形態5の切替機構によって接続が切替えられた熱交換器80は、第2モードにおいて、圧縮機10から吐出され熱交換器20に向かう冷媒と、膨張弁30を通過し熱交換器40に向かう冷媒との間で熱交換するように構成される。 In the second mode, the heat exchanger 80 whose connection has been switched by the switching mechanism of the fifth embodiment transfers the refrigerant discharged from the compressor 10 to the heat exchanger 20 and the refrigerant that passes through the expansion valve 30 to the heat exchanger 40. It is configured to exchange heat with the oncoming refrigerant.
 実施の形態5の切替機構は、第1~第6ポートを有する第1六方弁361と、第7~第12ポートを有する第2六方弁362とを含む。図17におけるP1~P12は、それぞれ、六方弁2つの第1ポート~第12ポートを示す。 The switching mechanism of the fifth embodiment includes a first six-way valve 361 having first to sixth ports and a second six-way valve 362 having seventh to twelfth ports. P1 to P12 in FIG. 17 respectively indicate the first port to the twelfth port of the two hexagonal valves.
 第1ポートは、圧縮機10の吐出口と接続される。第2ポートは、配管51Bによって熱交換器20の冷媒入口に接続される。第4ポートと第10ポートとの間には配管53B,54Aによって膨張弁30が接続される。第3ポートと第6ポートとの間には熱交換器80の第1通路R1が配管87によって接続される。第5ポートは配管53Aによって熱交換器20の冷媒出口かつ膨張弁72の上流側と接続される。 The first port is connected to the discharge port of the compressor 10. The second port is connected to the refrigerant inlet of the heat exchanger 20 by a pipe 51B. The expansion valve 30 is connected between the fourth port and the tenth port by pipes 53B and 54A. The first passage R1 of the heat exchanger 80 is connected by a pipe 87 between the third port and the sixth port. The fifth port is connected to the refrigerant outlet of the heat exchanger 20 and the upstream side of the expansion valve 72 by a pipe 53A.
 第7ポートは、配管73Bによって圧縮機10の中間ポートに接続される。第8ポートと第11ポートとの間には熱交換器80の第2通路R2が配管84によって接続される。第9ポートは、配管54Bによって熱交換器40の冷媒入口に接続される。第12ポートは、配管73Aによって膨張弁72の下流側に接続される。 The seventh port is connected to the intermediate port of the compressor 10 by a pipe 73B. A second passage R2 of the heat exchanger 80 is connected by a pipe 84 between the eighth port and the eleventh port. The ninth port is connected to the refrigerant inlet of the heat exchanger 40 by a pipe 54B. The twelfth port is connected to the downstream side of the expansion valve 72 by a pipe 73A.
 第1六方弁361は、第1モード(通常暖房モード)において、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通し、第5ポートと第6ポートとが連通し、第2モード(低負荷暖房モード)において、第2ポートと第3ポートとが連通し、第4ポートと第5ポートとが連通し、第6ポートと第1ポートとが連通するように構成される。 In the first hexagonal valve 361, in the first mode (normal heating mode), the first port and the second port communicate with each other, the third port and the fourth port communicate with each other, and the fifth port and the sixth port communicate with each other. communication, and in the second mode (low-load heating mode), the second port and the third port communicate, the fourth port and the fifth port communicate, and the sixth port and the first port communicate. It is composed of
 第2六方弁362は、第1モード(通常暖房モード)において、第7ポートと第8ポートとが連通し、第9ポートと第10ポートとが連通し、第11ポートと12ポートとが連通し、第2モード(低負荷暖房モード)において、第8ポートと第9ポートとが連通し、第10ポートと第11ポートとが連通し、第12ポートと第7ポートとが連通するように構成される。 In the second six-way valve 362, in the first mode (normal heating mode), the 7th port and the 8th port communicate with each other, the 9th port and the 10th port communicate with each other, and the 11th port and the 12th port communicate with each other. However, in the second mode (low load heating mode), the 8th port and the 9th port communicate with each other, the 10th port and the 11th port communicate with each other, and the 12th port and the 7th port communicate with each other. configured.
 図19は、実施の形態5の冷凍サイクル装置の低負荷暖房モードにおける制御を説明するためのフローチャートである。図19のフローチャートは、図6のフローチャートのステップS4の代わりにステップS41を含む。他のステップについては、図6のフローチャートで説明しているので、ここではステップS41について説明し、他の説明は繰り返さない。 FIG. 19 is a flowchart for explaining control in the low-load heating mode of the refrigeration cycle device of Embodiment 5. The flowchart in FIG. 19 includes step S41 instead of step S4 in the flowchart in FIG. Since the other steps have been explained using the flowchart of FIG. 6, only step S41 will be explained here, and other explanations will not be repeated.
 ステップS41では、制御装置100は、六方弁361,362の状態を図18に示す低負荷暖房モードの状態に設定する。したがって、それまで通常暖房モードが実施されていた場合には切替が行なわれるが、低負荷暖房モードであった場合には六方弁361,362の状態は維持される。なお、六方弁361,362の切替順序はどちらが先であっても良い。 In step S41, the control device 100 sets the states of the hexagonal valves 361 and 362 to the low-load heating mode shown in FIG. 18. Therefore, if the normal heating mode has been in effect until then, switching is performed, but if the low-load heating mode is in effect, the states of the six-way valves 361 and 362 are maintained. Note that the hexagonal valves 361 and 362 may be switched in any order.
 実施の形態5においても、実施の形態1と同様に、冷媒循環量を増加させることにより冷媒循環量のハンチング抑制効果が得られる。これにより、給湯温度が安定する。加えて、非共沸混合冷媒を用いる場合には、蒸発器の冷媒入口温度が増加するため、着霜抑制も可能となる。 In Embodiment 5, as in Embodiment 1, by increasing the refrigerant circulation amount, the effect of suppressing hunting in the refrigerant circulation amount can be obtained. This stabilizes the hot water temperature. In addition, when a non-azeotropic mixed refrigerant is used, the temperature at the refrigerant inlet of the evaporator increases, which also makes it possible to suppress frost formation.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the description of the embodiments described above, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 10 圧縮機、20,40,80,123 熱交換器、30,72 膨張弁、50,61,62,261~264 四方弁、60 切替機構、70 バイパス流路、100 制御装置、101 CPU、102 メモリ、160,361,362 六方弁、200~204 冷凍サイクル装置、C 冷媒回路、R1 第1通路、R2 第2通路、WP ポンプ。 10 Compressor, 20, 40, 80, 123 Heat exchanger, 30, 72 Expansion valve, 50, 61, 62, 261-264 Four-way valve, 60 Switching mechanism, 70 Bypass flow path, 100 Control device, 101 CPU, 102 Memory, 160, 361, 362 six-way valve, 200-204 refrigeration cycle device, C refrigerant circuit, R1 first passage, R2 second passage, WP pump.

Claims (8)

  1.  冷凍サイクル装置であって、
     冷媒回路と、バイパス流路とを備え、
     前記冷媒回路は、圧縮機と、第1熱交換器と、第1膨張弁と、第2熱交換器とを備え、前記冷媒回路は、前記圧縮機、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器を経由して前記圧縮機に戻るように冷媒が循環するように構成され、
     前記バイパス流路は、第2膨張弁を備え、前記第1熱交換器を通過した冷媒を、前記第2膨張弁を通過させて前記圧縮機に送るように構成され、
     前記冷凍サイクル装置は、
     第1通路および第2通路を含み、前記第1通路を通過する冷媒と前記第2通路を通過する冷媒との間で熱交換するように構成される第3熱交換器と、
     第1モードと第2モードで前記第3熱交換器の接続を切替える切替機構とをさらに備え、
     前記第3熱交換器は、前記第1モードでは、前記第1熱交換器を通過し前記第1膨張弁に向かう冷媒と、前記第2膨張弁を通過し前記圧縮機に向かう冷媒との間で熱交換するように構成され、前記第2モードでは、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1膨張弁を通過する前または前記第1膨張弁を通過した後の冷媒との間で熱交換するように構成される、冷凍サイクル装置。
    A refrigeration cycle device,
    Equipped with a refrigerant circuit and a bypass flow path,
    The refrigerant circuit includes a compressor, a first heat exchanger, a first expansion valve, and a second heat exchanger; The refrigerant is configured to circulate back to the compressor via the expansion valve and the second heat exchanger;
    The bypass flow path includes a second expansion valve, and is configured to send the refrigerant that has passed through the first heat exchanger to the compressor through the second expansion valve,
    The refrigeration cycle device includes:
    a third heat exchanger including a first passage and a second passage and configured to exchange heat between a refrigerant passing through the first passage and a refrigerant passing through the second passage;
    further comprising a switching mechanism that switches the connection of the third heat exchanger between a first mode and a second mode,
    In the first mode, the third heat exchanger is arranged between refrigerant that passes through the first heat exchanger and heads toward the first expansion valve, and refrigerant that passes through the second expansion valve and heads toward the compressor. and in the second mode, the refrigerant discharged from the compressor and headed for the first heat exchanger and the refrigerant before passing through the first expansion valve or after passing through the first expansion valve. A refrigeration cycle device configured to exchange heat with a subsequent refrigerant.
  2.  前記切替機構および前記第2膨張弁を制御する制御装置をさらに備え、
     前記制御装置は、前記第2モードで前記第1膨張弁の開度が判定値以下となった場合に、前記第2膨張弁を閉止する、請求項1に記載の冷凍サイクル装置。
    further comprising a control device that controls the switching mechanism and the second expansion valve,
    The refrigeration cycle device according to claim 1, wherein the control device closes the second expansion valve when the opening degree of the first expansion valve becomes equal to or less than a determination value in the second mode.
  3.  前記第1熱交換器は、熱媒体と冷媒との熱交換を行なうように構成され、
     前記制御装置は、前記第2モードで前記第1膨張弁の開度が前記判定値以下となった場合には、前記第1熱交換器を通過した熱媒体の温度に基づいて、前記圧縮機の運転周波数を制御する、請求項2に記載の冷凍サイクル装置。
    The first heat exchanger is configured to exchange heat between a heat medium and a refrigerant,
    When the opening degree of the first expansion valve becomes equal to or less than the determination value in the second mode, the control device controls the compressor based on the temperature of the heat medium that has passed through the first heat exchanger. The refrigeration cycle device according to claim 2, wherein the operating frequency of the refrigeration cycle device is controlled.
  4.  前記第3熱交換器は、前記第2モードにおいて、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1熱交換器を通過し前記第1膨張弁に向かう冷媒との間で熱交換するように構成され、
     前記切替機構は、
     第1~第4ポートを有する第1四方弁と、
     第5~第8ポートを有する第2四方弁とを含み、
     前記第1ポートは、前記圧縮機の吐出口と接続され、前記第2ポートは前記第8ポートと接続され、前記第3ポートは前記第2膨張弁の下流側に接続され、前記第4ポートと前記第6ポートとの間に前記第3熱交換器の第1通路が接続され、前記第5ポートは前記圧縮機の中間ポートに接続され、前記第7ポートは、前記第1熱交換器の冷媒入口に接続され、
     前記第1四方弁は、前記第1モードにおいて、前記第1ポートと前記第2ポートとが連通し、前記第3ポートと前記第4ポートとが連通し、前記第2モードにおいて、前記第2ポートと前記第3ポートとが連通し、前記第4ポートと前記第1ポートとが連通するように構成され、
     前記第2四方弁は、前記第1モードにおいて、前記第5ポートと前記第6ポートとが連通し、前記第7ポートと前記第8ポートとが連通し、前記第2モードにおいて、前記第6ポートと前記第7ポートとが連通し、前記第8ポートと前記第5ポートとが連通するように構成される、請求項1に記載の冷凍サイクル装置。
    The third heat exchanger is configured to, in the second mode, refrigerant discharged from the compressor and directed to the first heat exchanger, and refrigerant passing through the first heat exchanger and directed to the first expansion valve. configured to exchange heat between
    The switching mechanism is
    a first four-way valve having first to fourth ports;
    a second four-way valve having fifth to eighth ports;
    The first port is connected to the discharge port of the compressor, the second port is connected to the eighth port, the third port is connected to the downstream side of the second expansion valve, and the fourth port is connected to the outlet of the compressor. A first passage of the third heat exchanger is connected between and the sixth port, the fifth port is connected to an intermediate port of the compressor, and the seventh port is connected to the first passage of the third heat exchanger. connected to the refrigerant inlet of
    In the first mode, the first four-way valve communicates with the first port and the second port, and in the second mode, the first port and the fourth port communicate with each other, and in the second mode, the second port communicates with the first port. configured such that the port and the third port communicate with each other, and the fourth port and the first port communicate with each other,
    In the second four-way valve, the fifth port and the sixth port communicate with each other in the first mode, the seventh port and the eighth port communicate with each other, and the second four-way valve communicates with the sixth port in the second mode. The refrigeration cycle device according to claim 1, wherein the port and the seventh port communicate with each other, and the eighth port and the fifth port communicate with each other.
  5.  前記第3熱交換器は、前記第2モードにおいて、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1熱交換器を通過し前記第1膨張弁に向かう冷媒との間で熱交換するように構成され、
     前記切替機構は、第1~第6ポートを有する六方弁を含み、
     前記第1ポートは、前記圧縮機の吐出口と接続され、前記第2ポートは、前記第1熱交換器の冷媒入口に接続され、前記第4ポートは前記第2膨張弁の下流側に接続され、前記第3ポートと前記第6ポートとの間に前記第3熱交換器の第1通路が接続され、前記第5ポートは前記圧縮機の中間ポートに接続され、
     前記六方弁は、前記第1モードにおいて、前記第1ポートと前記第2ポートとが連通し、前記第3ポートと前記第4ポートとが連通し、前記第5ポートと前記第6ポートとが連通し、前記第2モードにおいて、前記第2ポートと前記第3ポートとが連通し、前記第4ポートと前記第5ポートとが連通し、前記第6ポートと前記第1ポートとが連通するように構成される、請求項1に記載の冷凍サイクル装置。
    The third heat exchanger is configured to, in the second mode, refrigerant discharged from the compressor and directed to the first heat exchanger, and refrigerant passing through the first heat exchanger and directed to the first expansion valve. configured to exchange heat between
    The switching mechanism includes a six-way valve having first to sixth ports,
    The first port is connected to a discharge port of the compressor, the second port is connected to a refrigerant inlet of the first heat exchanger, and the fourth port is connected to a downstream side of the second expansion valve. a first passage of the third heat exchanger is connected between the third port and the sixth port, and the fifth port is connected to an intermediate port of the compressor;
    In the first mode, the hexagonal valve is configured such that the first port and the second port communicate with each other, the third port and the fourth port communicate with each other, and the fifth port and the sixth port communicate with each other. communication, and in the second mode, the second port and the third port communicate, the fourth port and the fifth port communicate, and the sixth port and the first port communicate. The refrigeration cycle device according to claim 1, configured as follows.
  6.  前記第3熱交換器は、前記第2モードにおいて、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1膨張弁を通過し前記第2熱交換器に向かう冷媒との間で熱交換するように構成され、
     前記切替機構は、
     第1~第4ポートを有する第1四方弁と、
     第5~第8ポートを有する第2四方弁と、
     第9~第12ポートを有する第3四方弁とを含み、
     前記第1ポートは、前記圧縮機の吐出口と接続され、
     前記第2ポートと前記第4ポートとの間に前記第1熱交換器の冷媒流路と前記第3熱交換器の第1通路とが直列接続され、
     前記第3ポートは、前記第1膨張弁の上流側かつ前記第2膨張弁の上流側に接続され、
     前記第5ポートは、前記第1膨張弁の下流側に接続され、
     前記第6ポートは、前記第2熱交換器の冷媒入口に接続され、
     前記第7ポートは、前記第9ポートと接続され、
     前記第8ポートと前記第10ポートとの間に前記第3熱交換器の第2通路が接続され、
     前記第11ポートは、前記圧縮機の中間ポートに接続され、
     前記第12ポートは、前記第2膨張弁の下流側に接続され、
     前記第1四方弁は、前記第1モードにおいて、前記第1ポートと前記第2ポートとが連通し、前記第3ポートと前記第4ポートとが連通し、前記第2モードにおいて、前記第2ポートと前記第3ポートとが連通し、前記第4ポートと前記第1ポートとが連通するように構成され、
     前記第2四方弁は、前記第1モードにおいて、前記第5ポートと前記第6ポートとが連通し、前記第7ポートと前記第8ポートとが連通し、前記第2モードにおいて、前記第6ポートと前記第7ポートとが連通し、前記第8ポートと前記第5ポートとが連通するように構成され、
     前記第3四方弁は、前記第1モードにおいて、前記第10ポートと前記第11ポートとが連通し、前記第12ポートと前記第9ポートとが連通し、前記第2モードにおいて、前記第9ポートと前記第10ポートとが連通し、前記第11ポートと前記第12ポートとが連通するように構成される、請求項1に記載の冷凍サイクル装置。
    The third heat exchanger is configured to, in the second mode, refrigerant discharged from the compressor and directed to the first heat exchanger, and refrigerant passing through the first expansion valve and directed to the second heat exchanger. configured to exchange heat between
    The switching mechanism is
    a first four-way valve having first to fourth ports;
    a second four-way valve having fifth to eighth ports;
    a third four-way valve having ninth to twelfth ports;
    the first port is connected to a discharge port of the compressor,
    A refrigerant flow path of the first heat exchanger and a first passage of the third heat exchanger are connected in series between the second port and the fourth port,
    The third port is connected to the upstream side of the first expansion valve and the upstream side of the second expansion valve,
    The fifth port is connected to the downstream side of the first expansion valve,
    the sixth port is connected to a refrigerant inlet of the second heat exchanger,
    the seventh port is connected to the ninth port,
    A second passage of the third heat exchanger is connected between the eighth port and the tenth port,
    the eleventh port is connected to an intermediate port of the compressor,
    the twelfth port is connected to the downstream side of the second expansion valve,
    In the first mode, the first four-way valve communicates with the first port and the second port, and in the second mode, the first port and the fourth port communicate with each other, and in the second mode, the second port communicates with the first port. configured such that the port and the third port communicate with each other, and the fourth port and the first port communicate with each other,
    In the second four-way valve, the fifth port and the sixth port communicate with each other in the first mode, the seventh port and the eighth port communicate with each other, and the second four-way valve communicates with the sixth port in the second mode. The port is configured to communicate with the seventh port, and the eighth port and the fifth port communicate with each other,
    In the third four-way valve, in the first mode, the tenth port and the eleventh port communicate with each other, and in the second mode, the tenth port and the ninth port communicate with each other, and in the second mode, the third four-way valve communicates with the tenth port and the eleventh port. The refrigeration cycle device according to claim 1, wherein the port and the tenth port communicate with each other, and the eleventh port and the twelfth port communicate with each other.
  7.  前記第3熱交換器は、前記第2モードにおいて、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1膨張弁を通過し前記第2熱交換器に向かう冷媒との間で熱交換するように構成され、
     前記切替機構は、
     第1~第4ポートを有する第1四方弁と、
     第5~第8ポートを有する第2四方弁と、
     第9~第12ポートを有する第3四方弁と、
     第13~第16ポートを有する第4四方弁とを含み、
     前記第1ポートは、前記圧縮機の吐出口と接続され、
     前記第2ポートと前記第16ポートとの間に前記第1熱交換器の冷媒流路が接続され、
     前記第3ポートは、前記第15ポートと接続され、
     前記第4ポートと前記第14ポートとの間に前記第3熱交換器の第1通路が接続され、
     前記第5ポートは、前記第1膨張弁の下流側に接続され、
     前記第6ポートは、前記第2熱交換器の冷媒入口に接続され、
     前記第7ポートは、前記第9ポートと接続され、
     前記第8ポートと前記第10ポートとの間に前記第3熱交換器の第2通路が接続され、
     前記第11ポートは、前記圧縮機の中間ポートに接続され、
     前記第12ポートは、前記第2膨張弁の下流側に接続され、
     前記第13ポートは、前記第1膨張弁の上流側かつ前記第2膨張弁の上流側に接続され、
     前記第1四方弁は、前記第1モードにおいて、前記第1ポートと前記第2ポートとが連通し、前記第3ポートと前記第4ポートとが連通し、前記第2モードにおいて、前記第2ポートと前記第3ポートとが連通し、前記第4ポートと前記第1ポートとが連通するように構成され、
     前記第2四方弁は、前記第1モードにおいて、前記第5ポートと前記第6ポートとが連通し、前記第7ポートと前記第8ポートとが連通し、前記第2モードにおいて、前記第6ポートと前記第7ポートとが連通し、前記第8ポートと前記第5ポートとが連通するように構成され、
     前記第3四方弁は、前記第1モードにおいて、前記第10ポートと前記第11ポートとが連通し、前記第12ポートと前記第9ポートとが連通し、前記第2モードにおいて、前記第9ポートと前記第10ポートとが連通し、前記第11ポートと前記第12ポートとが連通するように構成され、
     前記第4四方弁は、前記第1モードにおいて、前記第13ポートと前記第14ポートとが連通し、前記第15ポートと前記第16ポートとが連通し、前記第2モードにおいて、前記第14ポートと前記第15ポートとが連通し、前記第16ポートと前記第13ポートとが連通するように構成される、請求項1に記載の冷凍サイクル装置。
    The third heat exchanger is configured to, in the second mode, refrigerant discharged from the compressor and directed to the first heat exchanger, and refrigerant passing through the first expansion valve and directed to the second heat exchanger. configured to exchange heat between
    The switching mechanism is
    a first four-way valve having first to fourth ports;
    a second four-way valve having fifth to eighth ports;
    a third four-way valve having ninth to twelfth ports;
    a fourth four-way valve having 13th to 16th ports,
    the first port is connected to a discharge port of the compressor,
    A refrigerant flow path of the first heat exchanger is connected between the second port and the 16th port,
    the third port is connected to the fifteenth port,
    A first passage of the third heat exchanger is connected between the fourth port and the fourteenth port,
    The fifth port is connected to the downstream side of the first expansion valve,
    the sixth port is connected to a refrigerant inlet of the second heat exchanger,
    the seventh port is connected to the ninth port,
    A second passage of the third heat exchanger is connected between the eighth port and the tenth port,
    the eleventh port is connected to an intermediate port of the compressor,
    the twelfth port is connected to the downstream side of the second expansion valve,
    The thirteenth port is connected to the upstream side of the first expansion valve and the upstream side of the second expansion valve,
    In the first mode, the first four-way valve communicates with the first port and the second port, and in the second mode, the first port and the fourth port communicate with each other, and in the second mode, the second port communicates with the first port. configured such that the port and the third port communicate with each other, and the fourth port and the first port communicate with each other,
    In the second four-way valve, the fifth port and the sixth port communicate with each other in the first mode, the seventh port and the eighth port communicate with each other, and the second four-way valve communicates with the sixth port in the second mode. The port is configured to communicate with the seventh port, and the eighth port and the fifth port communicate with each other,
    In the third four-way valve, in the first mode, the tenth port and the eleventh port communicate with each other, and in the second mode, the tenth port and the ninth port communicate with each other, and in the second mode, the third four-way valve communicates with the tenth port and the eleventh port. configured such that the port and the tenth port communicate with each other, and the eleventh port and the twelfth port communicate with each other,
    In the fourth four-way valve, in the first mode, the thirteenth port and the fourteenth port communicate with each other, and in the second mode, the fourteenth port communicates with the thirteenth port, and the fifteenth port and the sixteenth port communicate with each other. The refrigeration cycle device according to claim 1, wherein the port and the fifteenth port communicate with each other, and the sixteenth port and the thirteenth port communicate with each other.
  8.  前記第3熱交換器は、前記第2モードにおいて、前記圧縮機から吐出され前記第1熱交換器に向かう冷媒と、前記第1膨張弁を通過し前記第2熱交換器に向かう冷媒との間で熱交換するように構成され、
     前記切替機構は、
     第1~第6ポートを有する第1六方弁と、
     第7~第12ポートを有する第2六方弁とを含み、
     前記第1ポートは、前記圧縮機の吐出口と接続され、前記第2ポートは、前記第1熱交換器の冷媒入口に接続され、前記第4ポートと前記第10ポートとの間に前記第1膨張弁が接続され、前記第3ポートと前記第6ポートとの間に前記第3熱交換器の第1通路が接続され、前記第5ポートは前記第1熱交換器の冷媒出口かつ前記第2膨張弁の上流側と接続され、
     前記第7ポートは、前記圧縮機の中間ポートに接続され、前記第8ポートと前記第11ポートとの間に前記第3熱交換器の第2通路が接続され、前記第9ポートは、前記第2熱交換器の冷媒入口に接続され、前記第12ポートは、前記第2膨張弁の下流側に接続され、
     前記第1六方弁は、前記第1モードにおいて、前記第1ポートと前記第2ポートとが連通し、前記第3ポートと前記第4ポートとが連通し、前記第5ポートと前記第6ポートとが連通し、前記第2モードにおいて、前記第2ポートと前記第3ポートとが連通し、前記第4ポートと前記第5ポートとが連通し、前記第6ポートと前記第1ポートとが連通するように構成され、
     前記第2六方弁は、前記第1モードにおいて、前記第7ポートと前記第8ポートとが連通し、前記第9ポートと前記第10ポートとが連通し、前記第11ポートと前記第12ポートとが連通し、前記第2モードにおいて、前記第8ポートと前記第9ポートとが連通し、前記第10ポートと前記第11ポートとが連通し、前記第12ポートと前記第7ポートとが連通するように構成される、請求項1に記載の冷凍サイクル装置。
    The third heat exchanger is configured to, in the second mode, refrigerant discharged from the compressor and directed to the first heat exchanger, and refrigerant passing through the first expansion valve and directed to the second heat exchanger. configured to exchange heat between
    The switching mechanism is
    a first six-way valve having first to sixth ports;
    a second six-way valve having seventh to twelfth ports;
    The first port is connected to the discharge port of the compressor, the second port is connected to the refrigerant inlet of the first heat exchanger, and the first port is connected to the refrigerant inlet of the first heat exchanger, and the 1 expansion valve is connected, a first passage of the third heat exchanger is connected between the third port and the sixth port, and the fifth port is the refrigerant outlet of the first heat exchanger and the first passage of the third heat exchanger. connected to the upstream side of the second expansion valve;
    The seventh port is connected to the intermediate port of the compressor, the second passage of the third heat exchanger is connected between the eighth port and the eleventh port, and the ninth port is connected to the intermediate port of the compressor. connected to a refrigerant inlet of a second heat exchanger, the twelfth port being connected to the downstream side of the second expansion valve,
    In the first mode, the first six-way valve communicates with the first port and the second port, communicates with the third port and communicates with the fourth port, and communicates with the fifth port and the sixth port. are in communication, and in the second mode, the second port and the third port are in communication, the fourth port and the fifth port are in communication, and the sixth port and the first port are in communication. configured to communicate,
    In the second hexagonal valve, in the first mode, the seventh port and the eighth port communicate with each other, the ninth port and the tenth port communicate with each other, and the eleventh port and the twelfth port communicate with each other. are in communication, and in the second mode, the eighth port and the ninth port are in communication, the tenth port and the eleventh port are in communication, and the twelfth port and the seventh port are in communication. The refrigeration cycle device according to claim 1, configured to communicate with each other.
PCT/JP2022/022626 2022-06-03 2022-06-03 Refrigeration cycle device WO2023233655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022626 WO2023233655A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022626 WO2023233655A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023233655A1 true WO2023233655A1 (en) 2023-12-07

Family

ID=89026190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022626 WO2023233655A1 (en) 2022-06-03 2022-06-03 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023233655A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318178A (en) * 1996-05-28 1997-12-12 Matsushita Electric Ind Co Ltd Air conditioner
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP5984747B2 (en) * 2013-06-28 2016-09-06 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318178A (en) * 1996-05-28 1997-12-12 Matsushita Electric Ind Co Ltd Air conditioner
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP5984747B2 (en) * 2013-06-28 2016-09-06 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
Wang et al. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant
JP4752765B2 (en) Air conditioner
CN101960232B (en) Refrigeration device
EP2631562B1 (en) Heat pump-type air-warming device
CN109386909B (en) Outdoor unit, oil return control method and air conditioner
CN102419024A (en) Refrigeration cycle apparatus and hot-water heating apparatus
CN111051793B (en) Air conditioning apparatus
WO2020186906A1 (en) Defrosting control method for air conditioner and air conditioner
US20200182516A1 (en) Air-conditioning apparatus
CN104185766A (en) Heat-pump-type heating device
CN109869941B (en) Heat pump system, air suction superheat degree and vapor-liquid separator accumulated liquid evaporation control method
CN101512245A (en) Refrigeration device
CN114096792A (en) Refrigeration cycle device
US20210025627A1 (en) Air-conditioning apparatus
WO2023233655A1 (en) Refrigeration cycle device
JP2989491B2 (en) Air conditioner
EP3951284A1 (en) Refrigeration cycle apparatus
US11391497B2 (en) Refrigeration apparatus and temperature control apparatus
WO2022239212A1 (en) Air conditioner and air conditioning system
JP7367222B2 (en) Refrigeration cycle equipment
JP7438363B2 (en) Cold heat source unit and refrigeration cycle equipment
CN114087747A (en) Control method and control device of air conditioning system, controller and air conditioning system
CN111928343A (en) Heat pump air conditioning system and defrosting method thereof
JP7423819B2 (en) Refrigeration cycle equipment
KR101321543B1 (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944935

Country of ref document: EP

Kind code of ref document: A1