WO2023233094A1 - Protéine de fusion et utilisation pour la bioconversion de molécules - Google Patents

Protéine de fusion et utilisation pour la bioconversion de molécules Download PDF

Info

Publication number
WO2023233094A1
WO2023233094A1 PCT/FR2023/050742 FR2023050742W WO2023233094A1 WO 2023233094 A1 WO2023233094 A1 WO 2023233094A1 FR 2023050742 W FR2023050742 W FR 2023050742W WO 2023233094 A1 WO2023233094 A1 WO 2023233094A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
fusion protein
sequence
plasmid
Prior art date
Application number
PCT/FR2023/050742
Other languages
English (en)
Inventor
Xie WANG
Alain Hehn
Mathieu ETIENNE
Original Assignee
Universite De Lorraine
Centre National De La Recherche Scientifique
Institut National De Recherche Pour L'agriculture L'alimentation Et L'environnement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Lorraine, Centre National De La Recherche Scientifique, Institut National De Recherche Pour L'agriculture L'alimentation Et L'environnement filed Critical Universite De Lorraine
Publication of WO2023233094A1 publication Critical patent/WO2023233094A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0079Steroid 11 beta monooxygenase (P-450 protein)(1.14.15.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, (ii) at least one polypeptide corresponding to the hydrophilic domain of a plant cytochrome P450, (iii) at least one linker polypeptide, and (iv) at least one polypeptide corresponding to the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase.
  • the present invention also relates to the nucleic acid encoding the fusion protein, to the vector comprising said nucleic acid, the host cell comprising said nucleic acid and/or vector and to the method for producing said fusion protein.
  • the present invention also relates to a process for bioconversion of a substrate comprising the use of a fusion protein.
  • the present invention finds application, in particular in the field of the production of proteins and/or polypeptides, the synthesis of molecules, for example bioconversion, and in the biological and/or medical field.
  • references in square brackets ([ ]) refer to the list of references presented at the end of the text.
  • P450s Cytochromes P450s
  • Cytochromes P450s are therefore enzymes involved in numerous processes linked to the adaptation of plants to their environment. They are at the origin of part of the great diversity of molecules having remarkable physicochemical properties in a physiological context but also for applications in humans in various fields including in particular the medical, cosmetic, pharmaceutical and even in the field of agronomy. Molecular data regarding P450s has increased through the use of high-throughput sequencing methods.
  • cytochromes P450 are 1) membrane and intracellular proteins, 2) relatively fragile proteins, 3) proteins which require to function in tandem with a supplier NADPH P450 reductase to be active. of electrons necessary for oxidation reactions.
  • cytochromes P450s work with NADPH-P450 reductases, these two enzymes must be in close interaction in order to allow a transfer of electrons from the reductase to the P450 in order to allow the reaction to take place, namely an oxidation reaction.
  • both enzymes are anchored in the endoplasmic reticulum membrane and are therefore intracellular.
  • a known method for the functional characterization of P450s notably comprises heterologous production of said P450 in yeast. From this production, a bioconversion approach was considered. To do this, a potential P450 substrate is added to the culture medium, said substrate penetrates the yeast and the product obtained can be stored in the yeast. Furthermore, when the product obtained is stored in yeast, additional yeast lysis and purification steps for product recovery are necessary.
  • Another known method for functional characterization of P450s or conversion of molecules/substrates by P450s further comprises the removal of the cell wall and the production of membrane extracts, namely microsomes. Said microsomes are incubated in the presence of NADPH and potential substrates.
  • This process includes complex steps for extracting proteins, particularly P450s.
  • this process involves, due to the numerous steps of cell wall elimination and/or protein extraction, in particular a degradation of the P450s thus preventing multiple uses of the P450s.
  • the present invention aims precisely to meet these needs by providing a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, (ii) at least one polypeptide comprising the hydrophilic domain of a plant cytochrome P450, (iii) at least one binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids and (iv) at least one polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase.
  • the inventors have demonstrated in a surprising and unexpected manner that the fusion protein according to the invention can advantageously be addressed to the plasma membrane of bacteria and/or to the outer membrane of bacteria, advantageously via its addressing sequence, for example in the form of beta barrel. Furthermore, the inventors have surprisingly demonstrated that the fusion protein according to the invention is addressed to the surface of said membranes, and advantageously the hydrophilic part is on the external surface of said membrane.
  • the inventors have demonstrated that once at the bacterial membrane, the portion of the fusion protein comprising a polypeptide comprising the hydrophilic domain of a plant cytochrome P450, a binding polypeptide and a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase is located outside the bacterial cell or bacteria and faces the external environment of the bacteria.
  • the inventors have also surprisingly demonstrated that the fusion protein according to the invention, advantageously when it is present on the external surface of the cell membrane, can be used in substrate bioconversion processes.
  • the inventors have also surprisingly demonstrated that when the fusion protein according to the invention is used in a bioconversion process, it advantageously allows bioconversion of the substrate directly in the medium, advantageously outside the bacteria, advantageously allowing a bioconversion of substrate, advantageously by avoiding membrane protein extraction steps, advantageously making it possible to limit the risks of protein degradation during the protein purification steps and to produce molecules of interest directly in the medium of culture thus reducing the purification steps.
  • membrane is meant a bacterial membrane. This could be, for example, any membrane on the surface of the bacteria. It may be, for example, the outer membrane of gram-negative bacteria or the plasma membrane of gram-positive bacteria.
  • the bacterial membrane is the outer membrane of gram-negative bacteria.
  • polypeptide for addressing and anchoring to the bacterial membrane any polypeptide known to those skilled in the art suitable for addressing and anchoring of said polypeptide to the bacterial membrane. It may for example be a polypeptide for targeting and anchoring to the plasma membrane of gram-positive bacteria. It may for example be a polypeptide for targeting and anchoring to the outer membrane of gram-negative bacteria. It may for example be a polypeptide described in the document Jarmander, J., Gustavsson, M., Do, TH. et al. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 11, 118 (2012).
  • polypeptide may for example be a polypeptide whose quaternary structure forms a beta barrel. It may for example be a polypeptide having a percentage identity of at least 90%, for example 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99%, 100% with the sequence polypeptide
  • the polypeptide for addressing and anchoring to the membrane is a polypeptide of sequence MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAWSTIGNAFAVDHHH HHHLEALFQGPGTQKQRTELENLYFQGEQKLISEEDLSRVNNNGSIVINNSIIN GNITNDADLSFGTAKLLSATVNGSLVNNKNIILNPTKESAAAIGNTLTVSNYTGT PGSVISLGGV LEGDNSLTDRLWKGNTSGQSDIVYVNEDGSGGQTRDGINIISV EGNSDAEFSLKNRWAGAYDYTLQKGNESGTDNKGWYLTSHLPTSDTRQYR PENGSYATNMALANSLFLMDLNERKQFRAMSDNTQPESASVWMKITGGISSG KLNDGQNKTTTNQFINQLGGDIYKFHAEQLGDFTLGIMGGYANAKGKTINYTS NKAARN TLDGYSVGVYGTWYQNGENATGL
  • the inventors have demonstrated that the membrane addressing and anchoring peptide effectively makes it possible to address and anchor the fusion protein to the outer membrane of the bacteria and also advantageously allows transport of the fusion protein. from the cytosolic space to the external space of the bacterial cell.
  • the peptide for addressing and anchoring to the membrane advantageously allows passage of the membrane by the fusion protein advantageously allowing that the part of the fusion protein comprising a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 , a linker polypeptide and a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase is located outside the bacterial cell or bacteria and faces the external environment of the bacteria.
  • cytochrome P450 means proteins with mono-oxygenase activity capable of oxidizing substrates using molecular oxygen dissolved in the cytoplasm or in the medium, as well as reducing equivalents provided by NADPH-cytochrome P450 -reductase.
  • NADPH-cytochrome P450 -reductase reducing equivalents provided by NADPH-cytochrome P450 -reductase.
  • It may for example be any plant cytochrome P450 known to those skilled in the art. These may for example be plant cytochromes P450 as described in Xu Jun et al.
  • cytochrome P450 superfamily Key players in plant development and defense
  • These may for example be plant cytochromes P450 belonging to the CYP51, CYP71 families , CYP72, CYP74, CYP85, CYP86, CYP97, CYP710, CYP711 and CYP727.
  • hydrophilic domain of a plant cytochrome P450 means the polypeptide sequence of cytochrome P450 comprising the enzymatic domain and the biological activity, advantageously the enzymatic activity, of cytochrome P450.
  • polypeptide having a percentage identity of at least 25%, for example 28%, 30%, 40%, 50%, 60%, 70%, 80%, 90% , 99% with a polypeptide chosen from the group comprising HRNLTDLAKRFGEILLLRMGQRNLWVSSPELAKEVLHTQGVEFGSRTRNVVF DIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKVVQQYRYGWEAEAAAW DDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRFESEDDPLFLKLKALNG ERSRLAQSFEYNYGDFIPILRPFLRNYLKLCKEVKDKRIQLFKDYFVDERKKIGS TKKMDNNQLKCAIDHILEAKEKGEINEDNVLYIVENINVAAIETTLWSIEWGIAEL VNHPEIQAKLRHELDTKLGPGVQITEPDVQNLPYLQAWKETLRLRMAIPLLVP HMNLHDAKLGGFDIPAESKILVNAWWLANNPDQWKK
  • KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF G RIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQ (SEQ ID NO 5), KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTVVISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLP
  • polypeptide may be a polypeptide isolated from a plant cytochrome P450 comprising the hydrophilic domain of said plant cytochrome P450 free of transmembrane domain. It may for example be a polypeptide having a percentage identity of at least 25%, for example 28%, 30%, 40%, 50%, 60%, 70%, 80%, 90% , 99% with a polypeptide chosen from the group comprising IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLVWSSPELAKEVL HTQGVEFGSRTRNWFDIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKW QQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRF ESEDDPLFLKLKALNGERSRLAQSFEYNY EEFRPERFLEEEAKVEANGNDFRYLP FFGVGRRSCPGIILALPILGITIGRLVQNF ELLPPPGQSKIDTDEKGGQFSLHILKHSTIVAK
  • binding polypeptide any suitable binding peptide known to those skilled in the art. It may for example be a binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids. It may for example be a polypeptide of sequence PGGSGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGSGGSP (SEQ ID NO 6).
  • NADPH P450 reductase of plant cytochrome P450 we mean proteins with oxidoreductase activity which catalyzes the reaction
  • NADPH + H + + n oxidized hemoprotein NADP + + n reduced hemoprotein may for example be any plant cytochrome P450 NADPH P450 reductase known to those skilled in the art. It may be, for example, NADPH P450 reductase of plant cytochrome P450 described in Kenneth Jensen et al., “Plant NADPH-cytochrome P450 oxidoreductases”, Phytochemistry 2010, Volume 71, 2-3, Pages 132-141 [3] ,
  • hydrophilic domain of NADPH P450 reductase of plant cytochrome P450 means the polypeptide sequence of NADPH P450 reductase of plant cytochrome P450 comprising the reductase domain and the biological activity, advantageously the reducing activity, of the NADPH P450 reductase of plant cytochrome P450.
  • reductase domain refers to an amino acid sequence that functions as an electron donor. In particular, it serves as an electron donor for the oxygenase portion of a cytochrome P450.
  • cytochrome P450 NADPH P450 reductase a plant cytochrome P450 NADPH P450 reductase. It may for example be a polypeptide isolated from a plant cytochrome P450 NADPH P450 reductase.
  • polypeptide having a percentage identity of at least 90%, for example 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99%, 100% with a polypeptide chosen from the group comprising TRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAADDDQYEEKLK KETLAF FCVATYG DG E PTD N AARF YKWFTE ENE RD I KLQQ LAYG VF ALG N RQ YEHFNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKESLWSELDKLL KDEDDKSVATPYTAVIPEYRWTHDPRFTTQKS MESNVANGNTTIDIHHPCRV DVAVQKELHTHESDRSCIHLEFDISRTGITYETGDHVGVYAENHVEIVEEAGKL LGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCTLGTGLARYADLLNPPRKSAL V
  • it may be a polypeptide isolated from a cytochrome P450 NADPH P450 reductase comprising the hydrophilic domain of said cytochrome P450 NADPH P450 reductase free of transmembrane domain.
  • polypeptide having a percentage identity of at least 90%, for example 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99%, 100% with the polypeptide of sequence TRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAADDDQYEEKLK KETLAF FCVATYG DG E PTD N AARF YKWFTE ENE RD I KLQQ LAYG VF ALG N RQ YEHFNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKESLWSELDKLL KDEDDKSVATPYTAVIPEYRWTHDPRFTTQKSMESNVANGNTTIDIHHPCRV DVAVQKELHTHESDRSCIHLEFDISRTGITYETGDHVGVYAENHVEIVEEAGKL LGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCTLGTGLARYADLLNPPRKSAL VALA AYATEPSEA
  • the binding polypeptide makes it possible to obtain a fusion protein with a quaternary structure allowing functional enzymatic activity of the hydrophilic domain of a plant cytochrome P450 and of the hydrophilic domain of a cytochrome NADPH P450 reductase Plant P450 advantageously allowing the effective bioconversion of substrates of different structures and sizes.
  • the fusion protein may comprise one or more unnatural amino acids, for example, one or more D-amino acids and/or chemically modified amino acids.
  • Unnatural amino acids may be levorotatory (L-), dextrorotatory (D-), or mixtures thereof.
  • Unnatural amino acids are those amino acids that are generally not synthesized in the normal metabolic processes of living organisms and are not naturally present in proteins. Furthermore, unnatural amino acids are also not recognized by common proteases.
  • the unnatural amino acid can be present at any position in the fusion protein. For example, the unnatural amino acid may be found at the N-terminus, the C-terminus, or any position between the N-terminus and the C-terminus.
  • Unnatural amino acids may, for example, be chemically modified amino acids and may, for example, include groups alkyl, aryl or alkylaryl which is not found in natural amino acids.
  • Some examples of unnatural alkylated amino acids include ⁇ -aminobutyric acid, p-aminobutyric acid, ⁇ -aminobutyric acid, 8-aminovaleric acid, and ⁇ -aminocaproic acid.
  • Some examples of unnatural aryl amino acids include ortho-, meta-, and para-aminobenzoic acid.
  • Some examples of unnatural alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and y-phenyl-p-aminobutyric acid.
  • Unnatural amino acids include derivatives of natural amino acids.
  • Natural amino acid derivatives may, for example, include the addition of one or more chemical groups to the natural amino acid.
  • one or more chemical groups may be added to one or more of the 2', 3', 4', 5' or 6' positions of the aromatic ring of a phenylalanine or tyrosine residue, or to the 4' position. , 5', 6' or 7' of the benzo ring of a tryptophan residue.
  • the group can be any chemical group that can be added to an aromatic ring.
  • Some examples of such groups include branched or unbranched C1-C4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl or t-butyl, alkyloxy C1 -C4 (i.e. alkoxy), amino, C1 -C4 alkylamino and C1 -C4 dialkylamino (e.g. methylamino, dimethylamino), nitro, hydroxyl, halo (c i.e. fluoro, chloro, bromo or iodo).
  • Some specific examples of unnatural derivatives of natural amino acids include norvaline (Nva) and norleucine (Nie).
  • the fusion protein according to the invention can be produced and/or synthesized by any suitable method known to those skilled in the art.
  • polypeptide As used herein, the terms “polypeptide”, “peptide” and their grammatical equivalents refer to a polymer of amino acid residues.
  • a "functional protein” is a protein that is biologically active.
  • percent sequence identity can be determined by any method known to those skilled in the art. It can be determined for example through the use of BLASTP and BLASTN, for example using default settings.
  • percentage identity means the percentage determined by direct comparison of two sequences (nucleic or protein), by determining the number of nucleotides or amino acid residues common to the two sequences, then by dividing by the number of nucleotides or amino acid residues in the longer of the two sequences and multiplying the result by 100.
  • the term “consisting of” or “consisting” means including, and limited to, what follows the expression “consisting of” or “consisting”.
  • the expression “consisting of” or “constituted” indicates that the listed elements are required or obligatory, and that no other elements may be present.
  • Another object of the invention relates to a polynucleotide or nucleic acid encoding a fusion protein according to the invention.
  • It may for example be a polynucleotide or nucleic acid coding for a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, (ii) at least one polypeptide comprising the hydrophilic domain of a plant cytochrome P450, (iii) at least one binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids, and (iv) at least one polypeptide comprising the hydrophilic domain of a NADPH P450 plant cytochrome P450 reductase.
  • polynucleotide or nucleic acid coding for a fusion protein in which the polynucleotide or nucleic acid sequence coding for a polypeptide for addressing and anchoring to the bacterial membrane, advantageously at the outer membrane of bacteria gram negative, is chosen from the group comprising the nucleic acid of sequence: accatgggcaataaggcctacagtatcatttggagccactccagacaggcctggattgtggcctcagagttag ccagaggacatggttttgtccttgcaaaaaatacactgctggtattggcggttgttccacaatcggaaatgcatttt gcagcagtcgaccaccatcaccatc accatctggaagcgctgtccagggtccgggtaccgctacagtgaatggta gtta gttagt
  • polynucleotide or nucleic acid coding for a fusion protein in which the polynucleotide or nucleic acid sequence coding for a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 is chosen from the group comprising the nucleic acid of sequence: cctggcccaatcccggttccaattttcggcaactggctacaagttggcgatgatttgaaccaccggaacttaacc gatctggctaagaggtttggtgagatcttgctgctacgcatggggcagaggaatctggtagttgtgtcttcgcctg agcttgctaaagaggtgttgcatacacaaggag tggagtttggttcgagaacaaggaatgttttcgagaacaaggaatgttttcgtt actg
  • polynucleotide or nucleic acid coding for a fusion protein in which the polynucleotide or nucleic acid sequence coding for a binding polypeptide is chosen from the group comprising the nucleic acid of sequence : ccgggcggttctggtggcggtagcggcggtggcggttctggcggtggcggtagcggcggtggcggtggcggtagcggcggtggcggtggcggtggcggcggcggtggcggcggcggtggcggtagcggcggtggtggtggtggtggtggtggcggtagcggcggtggtggtggtggcggtagcggcg gttctcccg (SEQ ID NO 15).
  • polynucleotide or nucleic acid encoding a fusion protein in which the polynucleotide or nucleic acid sequence encoding a polypeptide comprising the hydrophilic domain of a NADPH P450 reductase of cytochrome P450 of plant is chosen from the group comprising the nucleic acid of sequence: atgacttctgctttgtatgcttccgatttgttttaagcagctcaagtcaattatggggacagattcgttatccgacgatg tacttgtgattgcaacgacgtctttggcactagctggatttgtggtgttgtatggaagaaaacgacggcg gatcggag cggcg gatcggagcggag cggag cggag cggag ctgaagcctttgatgatcc
  • polynucleotide(s) refers to a polymeric form of nucleotides or nucleic acids of any length, whether ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double and single stranded DNA, triplex DNA, as well as double and single stranded RNA. It also includes modified forms, for example by methylation and/or capping, and unmodified forms of the polynucleotide.
  • nucleic acid sequences and vectors disclosed or contemplated herein may be introduced into a cell by, for example, transfection, transformation or transduction.
  • nucleic acid or polynucleotide can be produced and/or obtained by any suitable method known to those skilled in the art.
  • Another subject of the invention relates to a vector comprising a nucleic acid encoding a fusion protein according to the invention.
  • It may for example be a vector comprising a polynucleotide or nucleic acid coding for a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, (ii) at least one polypeptide comprising the hydrophilic domain of a plant cytochrome P450, (iii) at least one linker polypeptide comprising at least 47 acids amino acids, preferably comprising 51 amino acids, and (iv) at least one polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase.
  • the vector can be any vector known to those skilled in the art suitable for the expression of a nucleic acid. It may for example be any vector replicated at low copy number in bacteria known to those skilled in the art and/or available commercially. It may be, for example, the vector described in the document Rosano GL and Ceccarelli EA “Recombinant protein expression in Escherichia coli: advances and challenges. " Forehead. Microbiol. 2014, 5:172. doi: 10.3389/fmicb.2014.00172 [15], for example replicated in around ten copies by bacteria.
  • the vector can be any suitable plasmid known to those skilled in the art and/or commercially available. It may for example be a plasmid chosen from the group comprising pACYC, pSC101, SuperCos, pWE15, pGEX, pColEI, pR-K, pAIDAI, preferably pAIDAI.
  • It may for example be a modified plasmid, for example the pAIDAI plasmid, comprising a tetracycline resistance gene and a cloning cassette comprising the T7 RNA polymerase promoter and the T7 RNA polymerase terminator.
  • pAIDAI plasmid comprising a tetracycline resistance gene and a cloning cassette comprising the T7 RNA polymerase promoter and the T7 RNA polymerase terminator.
  • the vector can be any suitable artificial yeast chromosome known to those skilled in the art. It may be, for example, an Artificial Yeast Chromosome chosen from the group comprising pYAC-RC, pYAC3(+).
  • the vector can be any suitable bacterial artificial chromosome known to those skilled in the art. It may for example be a bacterial artificial chromosome chosen from the group comprising pUvBBAC, pCCI BAC, pBAC 108L.
  • the expression vector of a fusion protein according to the invention may comprise the following elements functionally linked: a) a promoter b) a sequence coding for a fusion protein according to the invention c) termination signals of the transcription.
  • promoter is meant a cis-acting DNA sequence located 5' of the transcription initiation site of the sequence coding for a polypeptide to which a DNA sequence of an RNA polymerase can bind and initiate correct transcription, and possibly including activators. It may for example be any suitable promoter known to those skilled in the art. This may be, for example, a constituent promoter, a viral promoter, of a bacterial promoter. It may for example be the T7 promoter, the bacteriophage T7 promoter, preferably the T7 promoter.
  • transcription termination signals is meant a DNA sequence adapted for termination of transcription. This may be any transcription termination signal known to those skilled in the art. It may for example be the T7 terminator of sequence tagcataaccccttggggcctctaaacgggtcttgaggggttttttg (SEQ ID NO 20).
  • the vector can be chosen depending on the selected host cell. Those skilled in the art, taking into account their technical knowledge, will adapt the vector according to the host cell.
  • the host cell may be any cell suitable for the expression of a nucleic acid or a vector according to the invention. It may be, for example, bacteria, for example gram negative bacteria or gram positive bacteria. These may be, for example, Escherichia coli, Pischia pastoris, Saccharomyces cerevisiae. Preferably, the host cell is Escherichia coli, even more preferably, the host cell can be the bacterial strain Escherichia coli BL21 (DE3) pLysE.
  • the inventors have demonstrated that the expression of the fusion protein in host cells, for example bacterial cells, advantageously allows production of the fusion protein and localization on the surface of the membrane of the host cell.
  • host cells for example bacterial cells
  • expression of the fusion protein advantageously allows production of the fusion protein and localization to the surface of the outer membrane of the bacteria.
  • the inventors have demonstrated that the expression of the fusion protein in host cells advantageously allows production of the fusion protein, localization on the surface of the host cell and advantageously anchoring of the fusion protein. fusion with the host cell via its membrane.
  • the present invention also relates to a host cell comprising a nucleic acid according to the invention and/or a vector according to the invention.
  • the host cell may be as defined above.
  • the host cell is a bacterial cell, for example a gram negative bacteria or a gram positive bacteria, preferably Escherichia coli, even more preferably, the host cell can be the bacterial strain Escherichia coli (BL21 (DE3) pLysE) .
  • the present invention also relates to a process for producing a fusion protein according to the invention comprising the cultivation of a host cell according to the invention under conditions suitable for the expression of the fusion protein.
  • the culture of the host cell according to the invention can be carried out in any suitable culture medium known to those skilled in the art. It may, for example, be any medium rich in suitable culture known to those skilled in the art. A person skilled in the art, using this general knowledge, will adapt and/or choose the culture medium according to the host cell.
  • the culture medium can be a SOC medium, a lysogenic broth medium (in English LB “lysogeny broth”), preferably a SOC medium.
  • the culture of the host cell according to the invention can be carried out at any temperature suitable for the host cell known to those skilled in the art.
  • the culture can be carried out at a temperature of 20 to 30°C, for example at a temperature of 26°C.
  • the culture time can be adapted at any time to the host cell known to those skilled in the art.
  • the culture time of the host cell according to the invention can be between 24 and 72 hours, for example 53 hours.
  • the inventors have demonstrated that the fusion protein according to the invention is present on the surface of the host cell in which it is expressed and is a functional protein.
  • the inventors have surprisingly demonstrated that the fusion protein exhibited biological activity, particularly plant cytochrome P450 enzymatic activity and plant cytochrome P450 NADPH P450 reductase activity.
  • the fusion protein advantageously simultaneously possesses the biological activity of plant cytochrome P450 and plant cytochrome P450 NADPH P450 reductase.
  • the fusion protein according to the invention being a functional protein and having the biological activity of plant cytochrome P450 and a reductase activity of NADPH P450 reductase of plant cytochrome P450 allows a bioconversion of substrates present in the culture medium.
  • the present invention also relates to a process for bioconversion of a substrate by a fusion protein according to the invention comprising the steps:
  • the culture medium is as defined above.
  • the host cell is as defined above.
  • the substrate may be any suitable substrate known to those skilled in the art. It may for example be a compound or substrate, for example natural or obtained by chemical synthesis or semi-synthesis. It may be, for example known, any compound or substrate, for example natural or obtained by chemical synthesis or semi-synthesis, known to those skilled in the art. This may be, for example, cinnamic acid or desmethylsuberosine. It may also be any new compound which we seek to demonstrate is a substrate of a plant cytochrome P450. In the present, the concentration of the substrate in the culture medium comprising a host cell can be comprised from 100 pM to 250 pM, for example equal to 200 pM.
  • the bioconversion process may further comprise and prior to the incubation step, a step of introducing nicotinamide adenine dinucleotide phosphate (NADPH) into the culture medium.
  • NADPH nicotinamide adenine dinucleotide phosphate
  • the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in the culture medium comprising a host cell can be comprised from 200 pM to 450 pM, for example equal to 400 pM.
  • the host cell incubation step according to the invention can be carried out at any temperature suitable for the host cell known to those skilled in the art.
  • incubation can be carried out at a temperature of 15 to 30°C, for example at a temperature of 20°C.
  • the incubation time can be any time adapted to the host cell known to those skilled in the art.
  • the incubation time of the host cell according to the invention can be between 30 minutes and 72 hours, for example 1 hour.
  • the recovery of the metabolites can be carried out by any suitable method known to those skilled in the art. It may for example be a technique chosen from ultrafiltration, membrane or gel filtration, ion exchange, elution on hydroxyapatite, separation by hydrophobic interactions, by chromatography, for example by liquid chromatography. or any other known means.
  • the metabolites obtained may be any plant metabolite. These may, for example, be metabolites belonging to the family of polyphenols, alkaloids and/or terpenes. They may advantageously be metabolites belonging to the polyphenol family.
  • the metabolites obtained can provide access to new products which can be food, cosmetic, pharmaceutical and parapharmaceutical active ingredients usable in the agri-food, cosmetic, pharmaceutical and parapharmaceutical fields. These new products can also be active or non-active products but presenting a neutrality and/or stability which is very interesting for use in each of these areas.
  • Figure 1 represents a diagram of the fusion protein successively comprising a polypeptide for addressing and anchoring to the outer membrane (C), a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 (B), a polypeptide of bond comprising at least 47 amino acids (L) and a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase (A), M corresponds to the bacterial membrane.
  • Figure 2 represents a schematic representation of the pAIDAI - TetR-lacIQ plasmid.
  • Figure 3 represents a schematic representation of the pAIDA1-T7 plasmid.
  • Figure 4 represents a schematic representation of the pAIDA1-T7 plasmid.
  • Figure 5 represents a schematic representation of the pAIDA1-T7-CYP73A1-ATR1 plasmid.
  • Figure 6 represents a diagram of different elements of an example of fusion protein according to the invention.
  • AIDAI -tonneau-beta AIDAI - 01 and AIDAI linker respectively represent a polypeptide for addressing and anchoring to the external membrane, a linking polypeptide, P450 73A1 a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 (P450 CYP73A1), flexible linker: a linker polypeptide and ATR1:P450 Reductase a polypeptide comprising the hydrophilic domain of a plant cytochrome P450 NADPH P450 reductase.
  • Figure 7 represents chromatograms corresponding to the analysis carried out by high performance liquid chromatography (HPLC) of culture medium resulting from a bioconversion experiment in the presence of cinnamic acid.
  • HPLC high performance liquid chromatography
  • the abscissa corresponds to the elution time in minutes and the ordinate corresponds to arbitrary units and allows you to see the efficiency of metabolism.
  • Figure 7A represents a diagram concerning the metabolism of cinnamic acid by bioconversion, in this figure Figure 7A represents the chromatograms obtained after cultivation of the E. Coli BL21 (DE3) pLysE strain transformed with the plasmid pAIDA1 -T7-CYP73A1 -ATR1 and
  • Figure 7B represents the diagram after cultivation of the E.
  • Figure 7A we see the appearance of para-coumaric acid which is the product of cinnamic acid metabolism.
  • Figure 7B cinnamic acid is not metabolized.
  • Figure 8 represents an alignment of peptide sequences carried out with the Basic Local Alignment Search Tool (BLAST). The sequences correspond to cytochromes P450 CYP76F112 and P450 CYP73A1
  • Figure 9 represents the chemical reaction corresponding to the transformation of cinnamic acid into para-coumaric acid by cytochrome P450 CYP73A1 (CYP73A1) and the chemical reaction corresponding to the transformation of desmethylsuberosine into Marmesine by cytochrome P450 CYP76F112 (CYP76F112).
  • Example 1 process for preparing a fusion protein and biotransformation process using said protein
  • the basis of the expression plasmid constructed is based on a commercial plasmid pAIDAI (https://www.addgene.org/79180/ [11]) which is a low copy number plasmid.
  • the pAIDAI plasmid was first modified by replacing the gene conferring resistance to chloramphenicol with a gene conferring resistance to Tetracycline cloned from the plasmid pBR322 marketed by the company Fisher Scientific (https://www.fishersci.fr/ shop/products/fermentas-pbr322-dna/10191220 [11]).
  • the pAIDAI plasmid was the matrix which was amplified by polymerase chain reaction (PCR) using the PrimeSTAR Max polymerase enzyme sold by the company Takara Bio Inc, according to the method Protocol 1: PrimeSTAR Max polymerase Protocol such as described in (https://www.takarabio.com/documents/User%20Manual/R045A_e.v2102Da.pdf [6]).
  • the amplification was carried out using the primers LAEWXpr17-laclQ (tggcgacaccatcgaatggtgc (SEQ ID NO: 21) and LAEWXprO2: Reverse: tttagcttccttagctcctg (SEQ ID NO: 22).
  • LAEWXpr17-laclQ tggcgacaccatcgaatggtgc
  • LAEWXprO2 Reverse: tttagcttccttagctcctg (SEQ ID NO: 22).
  • the amplification was done this time from the plasmid pBR322 using the primers LAEWXprO3 (gctaaggaagctaaaatgaaatctaacaatgcgct (SEQ ID NO 41)) and LAEWXprO4 (tcgatggtgtcgccacgctgcccgagatgc (SEQ ID NO 42)).
  • the two PCR products obtained namely the pAIDAI plasmid without the chloramphenicol resistance gene and the coding sequence of the chloramphenicol resistance gene tetracycline were fused using the In-Fusion kit marketed by the company Takara Bio Inc according to the method Protocol 2: In-Fusion Protocol described in the document https://www.takarabio.com/documents/User%20Manual/ln /ln-Fusion%20Snap%20Assembly%20User%20Manual_071320.pdf [16].
  • the recombinant plasmid obtained was introduced into chemocompetent Escherichia coli TQP10 bacteria sold by the company Life Technologies Corporation according to the TQP10 transformation protocol described in https://assets.thermofisher.com/TFS-
  • the recombinant plasmid pAIDA1 -TetR-lacl Q represented in Figure 2, thus constructed was used for the construction of the other plasmids.
  • the plasmid is also designated pAIDAI.
  • This plasmid was amplified and purified from a positive colony according to the method Protocol 3: the plasmid purification protocol described in the document https://www.mn-net.com/media/pdf/45/51/02/ lnstruction-NucleoSpin-Plasmid.pdf [18].
  • the promoter and the terminator of the AIDA cassette of the pAIDAI plasmid were replaced by two cloning cassettes containing the promoter and the terminator of the T7 RNA Polymerase. To carry out this step, different clonings were carried out
  • pAIDAI was amplified by PCR using the primers LAEWXpr30 (tcatcatcatcatgcctaatgagtgagaattcc (SEQ ID NO 23)) and LAEWXpr31 (ttggtgcgcaaactattaactgg (SEQ ID NO 24)).
  • This amplification step is included by the DNA fragment contained between the pAIDAI promoter and the pAIDAI terminator. The amplification product therefore corresponded to the plasmid without promoter and terminator
  • the T7 terminator was amplified by PCR from the plasmid pET28b-2 using the primers LAEWXpr32-1-fr (ctcattaggcatgatgatgaaaggaagggaagaaagcgaaagg (SEQ ID NO)
  • the T7 promoter was amplified by PCR from the plasmid pET28b-2 using the primers LAEWXpr33-1 -rv (gttaatagtttgcgcaccaaatcggtgatgtcggcgatatagg (SEQ ID NO 27)) and LAEWXpr33-2-fr (ggtaccactagtcctaggagtactatggctgctgcccatggtata (SEQ ID NO 28)) according to Protocol 1 as mentioned above, (iii) The three fragments were merged using the In-Fusion kit according to Protocol 2 as mentioned above. This ligation product made it possible to generate the plasmid pAIDA1-T7 represented in Figure 3. b) Insertion of the AIDAI cassette
  • the AIDA sequence of the original pAIDAI plasmid was amplified by PCR using primers LAEWXpr36-AIDA-fr
  • the pAIDA1-T7 plasmid was digested with the restriction enzymes A/col and Kpn ⁇ according to the method Protocol 4: digestion protocol as described in http://assets.thermofisher.com/TFS-Assets/BID /Reference-Materials/fastdigest-restriction-enzymes-labaid.pdf [19].
  • the linearized pAIDA1-T7-Nco ⁇ -Kpn ⁇ plasmid and the AIDAI amplicon were fused by In-Fusion according to Protocol 2 mentioned above.
  • the generic recombinant plasmid pAIDAI-T7 complete with AIDAI was amplified by transformation of bacteria.
  • the complete generic pAIDA1-T7 plasmid with AIDAI obtained is shown in Figure 4.
  • the linker (rich in GC pairs) was amplified from a synthetic sequence using the PrimeSTAR GXL DNA Polymerase enzyme sold by the company Takara Bio Inc using the primers LAEWX15-FlexL -fr (ccgggcggttctggtggcgg (SEQ ID NO 33)) and LAEWX16-FlexL-rvs (cggagaaccgccgctaccgc (SEQ ID NO 34)) according to the Protocol 5 method described in PrimeSTAR GXL DNA Polymerase Manual, https://www.takara.co.kr /file/manual/pdf/R050A_e.v1906Da.pdf [21]).
  • the fusion protein obtained contains from the N-terminus to the C-terminus:
  • AIDAI a polypeptide for addressing and anchoring the external membrane: the beta Barel anchor sequence of AIDAI, namely the sequence SEQ ID NO 1
  • cytochrome P450 CYP73A1 (cinnamate hydroxylase from Helianthus tuberosus, NCBI ID: Sequence ID: Q04468.1, UniProtKB/Swiss-Prot: Q04468.1) in which the membrane anchor has been removed from the coding sequence, namely the sequence SEQ ID NO 3),
  • Figure 6 is a schematic representation of the fusion protein obtained.
  • the pAIDAI plasmid and the recombinant plasmids containing the genes encoding the fusion protein were introduced into E. coli BL21 (DE3) plysE bacteria (Novagen's® pET Systems).
  • BL21 (DE3) pLysE bacteria are adapted for the production of proteins placed under the control of the T7 promoter.
  • BL21(DE3) pLysE bacteria carry the lambda DE3 lysogen and contain the pLysE plasmid, which constitutively expresses T7 lysozyme.
  • T7 lysozyme reduces basal expression of target genes by inhibiting T7 RNA polymerase.
  • the BL21 (DE3) pLysE strain therefore allows stricter control of T7 RNA polymerase.
  • b) Preparation of an example of fusion protein The fusion protein was expressed from the plasmid whose construction was described previously. After the transformation of the bacteria by the ligation product, there is no selection step on solid medium.
  • the transformed bacteria were immediately cultured in 50 ml of SOC medium (Dextrose, 3.603 g/L, KCl, 0.186 g/L, MgSO4, 4.8 g/L, Tryptone, 20 g/L, yeast extract (in English “Yeast extract”) 5 g/L) comprising Tetracycline (20 pg/ml) and Chloramphenicol (20 pg/ml), in a sterile 250 mL Erlenmeyer flask.
  • SOC medium Dextrose, 3.603 g/L, KCl, 0.186 g/L, MgSO4, 4.8 g/L, Tryptone, 20 g/L, yeast extract (in English “Yeast extract”) 5 g/L) comprising Tetracycline (20 pg/ml) and Chloramphenicol (20 pg/ml), in a sterile 250 mL Erlenmeyer flask.
  • the culture was carried out for 53 h at 26°C with
  • the volume of the culture medium was measured and the antibiotics were re-added to be at a final concentration of 20 pg/ml Tetracycline and 20 pg/ml Chloramphenicol.
  • the production of the fusion protein was induced by adding isopropyl O-D-1-thiogalactopyranoside (IPTG) at a final concentration of 20 pM for 24 hours at 7°C, with stirring at 180 rpm. After 24 hours, the optical density was adjusted to 0.3 by dilution in SOC medium (4°C).
  • the bacteria present in 1.5 mL were harvested by two successive low-speed centrifugations (4°C, 20 min, 1000 xg and 4°C, 10 min, 4000 xg).
  • KPi buffer 88 mM with additives of 1 mM KCl, 4 mM MgSO4, 5% v/v glycerol, 5% w/v glucose, at 4°C (products ordered from Sigma Aldrich) ).
  • Figure 1 is a schematic representation of the fusion protein obtained, said fusion protein being anchored in the bacterial membrane.
  • Figure 9 represents the corresponding bioconversion reaction.
  • cinnamic acid 200 pM
  • NADPH nicotinamide adenine dinucleotide phosphate
  • the bioconversion process was carried out at 20°C for 1 h and with stirring at 180 rpm.
  • the reaction was stopped by extraction with 1 volume of Ethyl Acetate.
  • the media were mixed by vortexing for 1 minute followed by centrifugation at 10 OOOxg to separate the organic and aqueous phases.
  • the upper organic phase was recovered and evaporated by Vivaspin.
  • the powder obtained was suspended in 150 ⁇ L of methanol.
  • the extract thus obtained was analyzed by ultra-high performance liquid chromatography coupled with a mass spectrum (UHPLC/MS/MS)
  • Figure 7A represents a chromatogram obtained at 300 nm and showing 2 peaks.
  • the majority peak corresponds to the substrate, that is to say cinnamate.
  • the minority peak corresponds to p-coumarate or p-couramic acid formed by bioconversion in the culture medium.
  • This chromatogram was obtained from the culture medium in which the recombinant bacteria transformed with the pAIDA1 -T7-CYP73A1 -ATR1 plasmids were cultivated according to point 4 above.
  • the chromatogram in Figure 7B corresponds to an analysis of the culture medium in which recombinant bacteria were transformed with the plasmid pAIDA1 -T7 in Figure 4. This plasmid cannot produce fusion protein and represents a negative control. Analysis of the chromatogram indicates the presence of cinnamate which was added to the culture medium. No metabolization of p-coumarate could be demonstrated.
  • a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, advantageously to the outer membrane, (ii) at least one polypeptide comprising the domain hydrophilicity of a plant cytochrome P450, (iii) at least one binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids, and (iv) at least one polypeptide comprising the hydrophilic domain of a NADPH P450 reductase of plant cytochrome P450 allows the bioconversion of substrate.
  • This example of fusion protein according to the invention can be expressed on the cell surface, in particular of bacterial cell, and can advantageously be used in a substrate bioconversion process.
  • a fusion protein according to the invention can be expressed on the surface of a cell, in particular a bacterial cell, and can advantageously allow bioconversion of substrates in the culture medium of said cell.
  • Example 2 fusion protein and bioconversion
  • cytochrome P450 is cytochrome CYP76F112 (marmesin synthase, Ficus carica cytochrome P450 CYP76F112 mRNA, complete cds Sequence ID: MW348922.1, GenBank: MW348922.1).
  • sequence coding for cytochrome P450 CYP73A1 is replaced by the sequence coding for cytochrome P450 CYP76F112 of sequence caagtcacgacggttgtcatttcctccaccaccatggctaaagaagtcctccaggcaaacagccaagtcgtct ccagccggacaatcaccgacgcaagccgcgcccacagacacacacagcgattt tagcatggttatgttgcccgtat ccctctgtggcgaaaccttcggaaaatagcaactcacacttgctttcctccaaggctcttgatggcaacatgg agctgagaaacaaaaaaggtgcaagagctcctaaatgatgtccacaaaagcgtccaggcgg tggaggaggaggagg t
  • the bioconversion is carried out according to the process described in Example 1 above in which the substrate used is desmethylsuberosine
  • a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, (ii) at least one polypeptide comprising the hydrophilic domain of a cytochrome P450 of plant, (iii) at least one binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids, and (iv) at least one polypeptide comprising the hydrophilic domain of a NADPH P450 reductase of plant cytochrome P450 allows the substrate bioconversion.
  • a fusion protein according to the invention can be expressed on the surface of a cell, in particular a bacterial cell, and can advantageously be used in a substrate bioconversion process.
  • a fusion protein according to the invention can be expressed on the surface of a cell, in particular a bacterial cell, and can advantageously allow bioconversion of substrates in the culture medium of said cell.
  • Example 3 process for preparing a fusion protein and biotransformation process using said protein
  • cytochrome P450 is cytochrome CYP76F112 (marmesin synthase, Ficus carica cytochrome P450 CYP76F112 mRNA, complete cds Sequence ID: MW348922.1, GenBank: MW348922.1) whose sequence is aaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccaca ggtccttggccaggctttccg agtctttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaa agaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacag acacagcgatttttt
  • the basis of the expression plasmid constructed is based on a commercial plasmid pAIDAI (https://www.addgene.org/79180/ [11]) which is a low copy number plasmid.
  • the pAIDAI plasmid was first modified by replacing the gene conferring resistance to chloramphenicol with a gene conferring resistance to Tetracycline cloned from the plasmid pBR322 marketed by the company Fisher Scientific (https://www.fishersci.fr/ shop/products/fermentas-pbr322- dna/10191220 [11]) as described in Example 1 above.
  • the pAIDAI plasmid was the matrix which was amplified by reaction of chain polymerization (PCR) using the PrimeSTAR Max polymerase enzyme sold by the company Takara Bio Inc, according to the method Protocol 1: PrimeSTAR Max polymerase Protocol as described in (https://www.takarabio.com/documents/User %20Manual/R045A_e.v2102Da.pdf [6]).
  • the amplification was carried out using the primers LAEWXpr17-laclQ (tggcgacaccatcgaatggtgc (SEQ ID NO: 21) and LAEWXprO2: Reverse: tttagcttccttagctcctg (SEQ ID NO: 22).
  • LAEWXpr17-laclQ tggcgacaccatcgaatggtgc
  • LAEWXprO2 Reverse: tttagcttccttagctcctg (SEQ ID NO: 22).
  • the amplification was done this time from the plasmid pBR322 using the primers LAEWXprO3 (gctaaggaagctaaaatgaaatctaacaatgcgct (SEQ ID NO 41)) and LAEWXprO4 (tcgatggtgtcgccacgctgcccgagatgc (SEQ ID NO 42)).
  • the two PCR products obtained namely the pAIDAI plasmid without the chloramphenicol resistance gene and the coding sequence of the chloramphenicol resistance gene tetracycline were fused using the In-Fusion kit marketed by the company Takara Bio Inc according to the method Protocol 2: In-Fusion Protocol described in the document https://www.takarabio.com/documents/User%20Manual/ln /ln-Fusion%20Snap%20Assembly%20User%20Manual_071320.pdf [16].
  • the recombinant plasmid obtained was introduced into chemocompetent Escherichia coli TQP10 bacteria sold by the company Life Technologies Corporation according to the TQP10 transformation protocol described in https://assets.thermofisher.com/TFS-
  • the recombinant plasmid pAIDA1 -TetR-lacl Q represented in Figure 2, thus constructed was used for the construction of the other plasmids.
  • the plasmid is also designated pAIDAI.
  • This Plasmid was amplified and purified from a positive colony according to the method Protocol 3: the plasmid purification protocol described in the document https://www.mn-net.com/media/pdf/45/51/02/lnstruction -NucleoSpin-Plasmid.pdf [18].
  • the promoter and the terminator of the AIDA cassette of the pAIDAI plasmid were replaced by two cloning cassettes having the promoter and the terminator of the T7 RNA Polymerase as described in Example 1 above. To carry out this step, different clonings were carried out
  • pAIDAI was amplified by PCR using the primers LAEWXpr30 (tcatcatcatcatgcctaatgagtgagaattcc (SEQ ID NO 23)) and LAEWXpr31 (ttggtgcgcaaactattaactgg (SEQ ID NO 24)).
  • This amplification step is included by the DNA fragment contained between the pAIDAI promoter and the pAIDAI terminator. The amplification product therefore corresponded to the plasmid without promoter and terminator
  • the T7 terminator was amplified by PCR from the plasmid pET28b-2 using the primers LAEWXpr32-1 -fr (ctcattaggcatgatgatgaaaggaagggaagaaagcgaaagg (SEQ ID NO 25)) and LAEWXpr32-2-rv (agtactcctaggactagtggtaccagatccggctgctaacaaagc (SEQ ID NO. 26)).
  • the T7 promoter was amplified by PCR from the plasmid pET28b-2 using the primers LAEWXpr33-1 -rv (gttaatagtttgcgcaccaaatcggtgatgtcggcgatatagg (SEQ ID NO 27)) and LAEWXpr33-2-fr (ggtaccactagtcctaggagtactatggctgctgcccatggtata (SEQ ID NO 28)) according to Protocol 1 as mentioned above.
  • the pAIDA1-T7 plasmid was digested with the restriction enzymes A/col and Kpn ⁇ according to the method Protocol 4: digestion protocol as described in http://assets.thermofisher.com/TFS-Assets/BID /Reference-Materials/fastdigest-restriction-enzymes-labaid.pdf [19].
  • the linearized pAIDAI-T7-Nco ⁇ -Kpn ⁇ plasmid and the AIDAI amplicon were fused by In-Fusion according to Protocol 2 mentioned above.
  • the generic recombinant plasmid pAIDA1-T7 complete with AIDAI was amplified by transformation of bacteria.
  • the complete generic pAIDA1-T7 plasmid with AIDAI obtained is shown in Figure 4.
  • the sequence of the linearized plasmid obtained corresponds to the sequence agactctagtggtacccggaccctggaacagcgcttccagatggtgatggtgatggtggtcgactgcaaa tgcatttccgattgtggaaacaaccgccaataccagcagtgtattttttgcaaggacaaaccatgtcctctg gctaactctgaggccacaatccaggcctgtctgg agtggctccaaatgatactgtaggccttattgcccatg gtatatctccttttaaagttaacaaaattatttctagaggggaattgttatccgctcacaattcccctatagtg agtcgtattaatttcgcgggatcgagatctctctacgccccctatag
  • the coding sequence e The 3 DNA fragments from the sequences SEQ ID NO 71, SEQ ID NO 15, SEQ ID NO 17 were fused by PCR fusion.
  • PCR fusion consists of using as a template for a PCR reaction the 3 DNA fragments at equimolar concentration to hybridize the 3 sequences into one via their homologous parts allowing amplification by PCR reaction, according to Protocol 4 mentioned above , a sequence corresponding to the sequence tccgggtaccactagagtctctatcttcttcggtacgcagactggaacagctgagggatttgctaaggcatt atccgaagaaatcaaagcgagatatgaaaagcagcagtcaaagtcattgacttggatgctgc c cgatgatgaccagtatgaagagaaattgaagaaggaaactttggcatttttct gtg
  • the ATR1 -FL-76F112 DNA fragment (SEQ ID NO 57) obtained by PCR fusion and the linearized plasmid pAIDA1-T7 (SEQ ID NO 50) were then fused by Infusion according to protocol 2.
  • the ligation product was introduced into E. co//HST08 bacteria (Takara).
  • the transformed bacteria were spread on solid LB culture medium (lysogenic broth) (10 g peptone, 5 g yeast extract, 5 g NaCl, 16 g Agar) containing tetracycline (50 ⁇ g/mL) at 37°C.
  • the fusion protein obtained contains from the N-terminus to the C-terminus:
  • AIDAI a polypeptide for addressing and anchoring the external membrane: the beta Barel anchor sequence of AIDAI, namely the sequence SEQ ID NO 1
  • cytochrome P450 CYP76F112 (marmesin synthase from Ficus carica, NCBI ID: GenBank Sequence ID: MW348922.1) in which the membrane anchor has been removed from the coding sequence, namely the sequence SEQ ID NO 70,
  • coding nucleic sequences corresponding to the different elements of the fusion protein described above were used and assembled successively from 5' to 3'. In particular, these were:
  • the pAIDAI plasmid and the recombinant plasmids containing the genes encoding the fusion protein are introduced into E. coli BL21 (DE3) plysE bacteria (Novagen's® pET Systems).
  • BL21 (DE3) pLysE bacteria are adapted for the production of proteins placed under the control of the T7 promoter.
  • BL21(DE3) pLysE bacteria carry the lambda DE3 lysogen and contain the pLysE plasmid, which constitutively expresses T7 lysozyme.
  • T7 lysozyme reduces basal expression of target genes by inhibiting T7 RNA polymerase.
  • the BL21 (DE3) pLysE strain therefore allows stricter control of T7 RNA polymerase.
  • the fusion protein is expressed from the plasmid whose construction was described in point 3 above.
  • the introduction of the plasmid into the BL21 plysE bacteria is carried out according to the protocol recommended by the supplier (https://tools.thermofisher.com/content/sfs/manuals/oneshotbl21_man.pdf [23])
  • the presence of the constituent elements of the plasmid is verified by PCR using primers 27F (GCTAGAGTAAGTAGTTCGCCAGT (SEQ ID NO 72), 51 F (CCTGAATACCGGGTGGTGAC (SEQ ID NO 58)), 52R
  • a glycerol stock of the BL21 plysE bacteria containing the plasmid pAIDA1 -T7-CYP76F112-ATR1 is then used to inoculate according to the supplier's recommendations (in-vitrogen) a preculture overnight, that is to say for 12-14 hours, LB medium (lysogenic broth) (10g peptone, 5g yeast extract, 5g NaCl) containing tetracycline (50pg/mL) and chloramphenicol (20pg/mL) at 37°C.
  • LB medium lysogenic broth
  • 10g peptone, 5g yeast extract, 5g NaCl containing tetracycline (50pg/mL) and chloramphenicol (20pg/mL) at 37°C.
  • LB medium lysogenic broth
  • 50pg/mL tetracycline
  • chloramphenicol 20pg/mL
  • the volume of the culture medium is measured and the antibiotics are re-added to reach a final concentration of 50 pg/ml of Tetracycline and 20 pg/ml of Chloramphenicol.
  • the production of the fusion protein is induced by adding isopropyl 0-D-1 - thiogalactopyranoside (IPTG) at a final concentration of 20 pM for 24 hours at 7°C, with stirring at 180 revolutions per minute. After 24 hours, the optical density is adjusted to 0.4 by dilution in LB medium (4°C).
  • the bacteria are harvested by two successive low-speed centrifugations (4°C, 20 min, 1000 xg and 4°C, 10 min, 4000 xg). The bacteria are then suspended in buffer (88 mM with additives of 1 mM KCl, 44 mM MgSO, 5% v/v glycerol, at 4°C (products ordered from Sigma Aldrich)).
  • Figure 1 is a schematic representation of the fusion protein obtained, said fusion protein being anchored in the bacterial membrane.
  • FIG. 9 represents the corresponding bioconversion reaction.
  • demethyl suberosine 100 pM
  • NADPH nicotinamide adenine dinucleotide phosphate
  • the bioconversion process is carried out at 20°C for 1 hour and with stirring at 180 revolutions per minute.
  • the reaction is stopped by extraction with 1 volume of Ethyl Acetate.
  • the media are mixed by vortexing for 5 minutes followed by centrifugation at 4400xg to separate the organic and aqueous phases.
  • the upper organic phase is recovered and evaporated by Vivaspin.
  • the powder obtained is suspended in 100 ⁇ L of methanol.
  • the extract thus obtained is analyzed by ultra-high performance liquid chromatography coupled with a mass spectrum (UHPLC/MS/MS).
  • a fusion protein successively comprising (i) at least one polypeptide for addressing and anchoring to the bacterial membrane, advantageously to the outer membrane, (ii) at least one polypeptide comprising the domain hydrophilicity of a plant cytochrome P450, (iii) at least one binding polypeptide comprising at least 47 amino acids, preferably comprising 51 amino acids, and (iv) at least one polypeptide comprising the hydrophilic domain of a NADPH P450 reductase of plant cytochrome P450 allows the bioconversion of substrate.
  • fusion protein according to the invention can be expressed on the cell surface, in particular bacterial cell, and can advantageously be used in a substrate bioconversion process.
  • a fusion protein according to the invention can be expressed on the surface of a cell, in particular a bacterial cell, and can advantageously allow bioconversion of substrates in the culture medium of said cell.
  • Zincarelli 2008 “Analysis of AAV Serotypes 1 -9 Mediated Gene Expression and Tropism in Mice After Systemic Injection” Mol Ther. 2008 Jun;16(6):1073-80. doi: 10.1038/mt.2008.76. Epub 2008 Apr 15

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention se rapporte à une protéine de fusion, à un acide nucléique codant ladite protéine, à un vecteur comprenant ledit vecteur, à une cellule hôte comprenant ledit acide nucléique et/ou vecteur, un procédé de fabrication d'une protéine de fusion et un procédé de bioconversion d'un substrat. La protéine de fusion de la présente invention comprend, successivement (i) au moins un polypeptide d'adressage et d'ancrage à la membrane bactérienne, (ii) au moins un polypeptide correspondant au domaine hydrophile d'un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés et (iv) au moins un polypeptide correspondant au domaine hydrophile d'une NADPH P450 réductase de cytochrome P450 de plante.

Description

Protéine de fusion et utilisation pour la bioconversion de molécules
Domaine technique de l’invention
La présente invention se rapporte à une protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide correspondant au domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison, et (iv) au moins un polypeptide correspondant au domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
La présente invention se rapporte également à l’acide nucléique codant la protéine de fusion, au vecteur comprenant ledit acide nucléique, la cellule hôte comprenant ledit acide nucléique et/ou vecteur et au procédé de production de ladite protéine de fusion.
La présente invention se rapporte également à un procédé de bioconversion d’un substrat comprenant l’utilisation d’une protéine de fusion.
La présente invention trouve une application, notamment dans le domaine de la production de protéines et/ou polypeptides, de la synthèse de molécules, par exemple de bioconversion, et dans le domaine biologique et/ou médical.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentées à la fin du texte.
Art antérieur
Le métabolisme spécialisé des plantes est un métabolisme d’adaptation des plantes à des conditions environnementales changeantes. Chaque plante a développé au cours de son évolution un arsenal de molécules lui permettant de répondre à des conditions de vie qui lui sont spécifiques. La diversité de molécules ainsi produites est quasi inépuisable. Ces molécules, qui peuvent être très complexes ont été largement utilisées par l’homme pour notamment des utilisations dans le domaine de la santé.
La synthèse de ces molécules se fait grâce à des voies de biosynthèses complexes faisant intervenir de nombreuses étapes catalysées par des enzymes spécifiques. Les cytochromes P450s (P450s) font partie de ces enzymes et peuvent être considérées comme des outils de très grande précision pour produire des molécules à haute valeur ajoutée.
Les cytochromes P450s sont donc des enzymes impliquées dans de nombreux processus liés à l’adaptation des plantes à leur environnement. Ils sont à l’origine d’une partie de la grande diversité de molécules ayant des propriétés physico-chimiques remarquables dans un contexte physiologique mais également pour des applications chez l’Homme dans divers domaines dont notamment les domaines médical, cosmétique, pharmaceutique ou encore dans le domaine de l’agronomie. Les données moléculaires concernant les P450s ont augmenté de par l’utilisation de méthodes de séquençage à haut débit.
Les données mises à disposition pour de nombreuses plantes notamment réputées comme plantes médicinales, ouvrent des perspectives de production ciblée de molécules déjà identifiées ou non identifiées / caractérisées.
L’étude fonctionnelle des cytochromes P450 est cependant complexe dans la mesure où ce sont 1 ) des protéines membranaires et intracellulaires, 2) des protéines relativement fragiles, 3) des protéines qui nécessitent pour être actives de fonctionner en tandem avec une NADPH P450 réductase pourvoyeuse d’électrons nécessaires aux réactions d’oxydations.
Pour réaliser une caractérisation fonctionnelle de ces enzymes, des outils/procédés ont donc été mis au point. Les cytochromes P450s fonctionnant avec des NADPH-P450 réductases, ces deux enzymes doivent être en interaction proches afin de permettre un transfert d’électrons de la réductase vers le P450 afin de permettre la réalisation de la réaction, à savoir une réaction d’oxydation. Chez les plantes, les deux enzymes sont ancrées dans la membrane du réticulum endoplasmique et sont donc intracellulaires. Un procédé connu pour la caractérisation fonctionnelle des P450 comprend notamment une production hétérologue dudit P450 dans une levure. A partir de cette production, une approche de bioconversion a été envisagée. Pour ce faire, un substrat potentiel du P450 est ajouté dans le milieu de culture, ledit substrat pénètre dans la levure et le produit obtenu peut être stocké dans la levure. Par ailleurs, lorsque le produit obtenu est stocké dans la levure, des étapes additionnelles de lyse de la levure et de purification pour la récupération du produit sont nécessaires.
Toutefois, la mise en œuvre de ce procédé n’est pas possible notamment lorsque le substrat est hydrophobe. En effet, lorsqu’il est hydrophobe, le substrat ne peut entrer dans la levure (passer la membrane) utilisée.
Il existe donc un réel besoin de trouver un moyen et/ou procédé permettant une production et/ou caractérisation fonctionnelle des cytochromes P450 et/ou permettant une bioconversion de molécule ou substrat hydrophobe par des cytochromes P450.
Un autre procédé connu pour une caractérisation fonctionnelle des P450 ou la conversion de molécules/substrats par des P450 comprend en outre l’élimination de la paroi cellulaire et la production d’extraits membranaires, à savoir des microsomes. Lesdits microsomes sont incubés en présence de NADPH et de substrats potentiels. Ce procédé comprend notamment des étapes complexes d’extraction des protéines, notamment des P450. En outre, ce procédé implique, de par les nombreuses étapes d’élimination de la paroi cellulaire et/ou d’extraction des protéines, notamment une dégradation des P450s empêchant ainsi des utilisations multiples des P450s.
Il existe donc un réel besoin de trouver un moyen et/ou procédé permettant une production et/ou caractérisation fonctionnelle des cytochromes P450 tout en permettant une conservation des cytochromes P450 actifs. Il existe également un réel besoin de trouver un moyen et/ou procédé de bioconversion réutilisable et/ou ne comprenant pas d’étape d’extraction de protéines.
Exposé de l’invention
La présente invention a précisément pour but de répondre à ces besoins en fournissant une protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
Les inventeurs ont démontré de manière surprenante et inattendue que la protéine de fusion selon l’invention peut être avantageusement adressée à la membrane plasmique de bactérie et/ou à la membrane externe de bactéries, avantageusement via sa séquence d’adressage, par exemple sous forme de tonneau bêta. En outre, les inventeurs ont démontré de manière surprenante que la protéine de fusion selon l’invention est adressée à la surface desdites membranes, et avantageusement la partie hydrophile est à la surface externe de ladite membrane.
Avantageusement, les inventeurs ont démontré qu’une fois au niveau de la membrane bactérienne, la portion de la protéine de fusion comprenant un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, un polypeptide de liaison et un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante est située à l’extérieur de la cellule bactérienne ou de la bactérie et fait face à l’environnement externe de la bactérie.
Les inventeurs ont également démontré de manière surprenante que la protéine de fusion selon l’invention, avantageusement lorsqu’elle est présente à la surface externe de la membrane de cellules peut être utilisée dans des procédés de bioconversion de substrats.
Les inventeurs ont également démontré de manière surprenante que lorsque la protéine de fusion selon l’invention est utilisée dans un procédé de bioconversion, elle permet avantageusement une bioconversion du substrat directement dans le milieu, avantageusement à l’extérieur de la bactérie, permettant avantageusement une bioconversion de substrat, avantageusement en s’affranchissant d’étapes d’extraction de protéines membranaires, permettant avantageusement de limiter les risques de dégradation des protéines lors des étapes de purification des protéines et de réaliser la production de molécules d’intérêt directement dans le milieu de culture réduisant ainsi les étapes de purification. Dans la présente, par membrane on entend une membrane bactérienne. Il peut s’agir par exemple de toute membrane à la surface de la bactérie. Il peut s’agir par exemple de la membrane externe de bactérie gram négative, de la membrane plasmique de bactérie gram positive. Avantageusement la membrane bactérienne est la membrane externe de bactéries gram négative.
Dans la présente, par polypeptide d’adressage et d’ancrage à la membrane bactérienne on entend tout polypeptide connu de l’homme du métier adapté permettant un adressage et un ancrage dudit polypeptide à la membrane bactérienne. Il peut s’agir par exemple d’un polypeptide d’adressage et d’ancrage à la membrane plasmique de bactéries gram positive. Il peut s’agir par exemple d’un polypeptide d’adressage et d’ancrage à la membrane externe de bactérien gram négative. Il peut s’agir par exemple d’un polypeptide décrit dans le document Jarmander, J., Gustavsson, M., Do, TH. et al. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 11 , 118 (2012). https://doi.org/10.1186/1475-2859-11-118 [14], Il peut s’agir par exemple d’un polypeptide dont la structure quaternaire forme un tonneau bêta. Il peut s’agir par exemple d’un polypeptide ayant un pourcentage d’identité d’au moins 90%, par exemple de 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% avec le polypeptide de séquence
MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAWSTIGNAFAVDHHH HHHLEALFQGPGTQKQRTELENLYFQGEQKLISEEDLSRVNNNGSIVINNSIIN GNITNDADLSFGTAKLLSATVNGSLVNNKNIILNPTKESAAAIGNTLTVSNYTGT PGSVISLGGVLEGDNSLTDRLWKGNTSGQSDIVYVNEDGSGGQTRDGINIISV EGNSDAEFSLKNRWAGAYDYTLQKGNESGTDNKGWYLTSHLPTSDTRQYR PENGSYATNMALANSLFLMDLNERKQFRAMSDNTQPESASVWMKITGGISSG KLNDGQNKTTTNQFINQLGGDIYKFHAEQLGDFTLGIMGGYANAKGKTINYTS NKAARNTLDGYSVGVYGTWYQNGENATGLFAETWMQYNWFNASVKGDGLE EEKYNLNGLTASAGGGYNLNVHTWTSPEGITGEFWLQPHLQAVWMGVTPDT HQEDNGTWQGAGKNNIQTKAGIRASWKVKSTLDKDTGRRFRPYIEANWIHN THEFGVKMSDDSQLLSGSRNQGEIKTGIEGVITQNLSVNGGVAYQAGGHGSN AISGALGIKYSF (SEQ ID NO 1 ). Avantageusement, le polypeptide d’adressage et d’ancrage à la membrane est un polypeptide de séquence MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAWSTIGNAFAVDHHH HHHLEALFQGPGTQKQRTELENLYFQGEQKLISEEDLSRVNNNGSIVINNSIIN GNITNDADLSFGTAKLLSATVNGSLVNNKNIILNPTKESAAAIGNTLTVSNYTGT PGSVISLGGVLEGDNSLTDRLWKGNTSGQSDIVYVNEDGSGGQTRDGINIISV EGNSDAEFSLKNRWAGAYDYTLQKGNESGTDNKGWYLTSHLPTSDTRQYR PENGSYATNMALANSLFLMDLNERKQFRAMSDNTQPESASVWMKITGGISSG KLNDGQNKTTTNQFINQLGGDIYKFHAEQLGDFTLGIMGGYANAKGKTINYTS NKAARNTLDGYSVGVYGTWYQNGENATGLFAETWMQYNWFNASVKGDGLE EEKYNLNGLTASAGGGYNLNVHTWTSPEGITGEFWLQPHLQAVWMGVTPDT HQEDNGTWQGAGKNNIQTKAGIRASWKVKSTLDKDTGRRFRPYIEANWIHN THEFGVKMSDDSQLLSGSRNQGEIKTGIEGVITQNLSVNGGVAYQAGGHGSN AISGALGIKYSF (SEQ ID NO 1 ). Avantageusement, les inventeurs ont démontré que le peptide d’adressage et d’ancrage à la membrane permet effectivement d’adresser et d’ancrer la protéine de fusion à la membrane externe de la bactérie et permet également avantageusement un transport de la protéine de fusion de l’espace cytosolique à l’espace externe de la cellule bactérienne. En outre le peptide d’adressage et d’ancrage à la membrane permet avantageusement un passage de la membrane par la protéine de fusion permettant avantageusement que la partie de la protéine de fusion comprenant un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, un polypeptide de liaison et un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante soit située à l’extérieur de la cellule bactérienne ou de la bactérie et fait face à l’environnement externe de la bactérie. Dans la présente par cytochrome P450 on entend des protéines à activité mono-oxygénase capables d'oxyder des substrats en se servant de l'oxygène moléculaire dissous dans le cytoplasme ou dans le milieu, ainsi que des équivalents réducteurs fournis par la NADPH-cytochrome P450-réductase. (Guengerich et Macdonald, « Mechanisms of cytochrome P450 catalysis », FASEB J. 1990, 4, pp 2453-2459 [1]). Il peut s’agir par exemple de tout cytochrome P450 de plantes connus de l’homme du métier. Il peut s’agir par exemple de cytochromes P450 de plantes tels que décrit dans Xu Jun et al. « The cytochrome P450 superfamily: Key players in plant development and defense » Journal of Integrative Agriculture 2015, 14(9): 1673-1686 [2], Il peut s’agir par exemple de cytochromes P450 de plantes appartenant aux familles CYP51 , CYP71 , CYP72, CYP74, CYP85, CYP86, CYP97, CYP710, CYP711 et CYP727. Il peut s’agir par exemple de cytochrome P450 de plante appartenant à la famille CYP51 , CYP71 , CYP73, CYP75, CYP76, CYP77, CYP78, CYP79, CYP80, CYP81 , CYP82, CYP83, CYP84, CYP89, CYP92, CYP93, CYP98, CYP99, CYP701 , CYP703, CYP705, CYP706, CYP712, CYP719, CYP723, CYP726, CYP736, CYP72, CYP709, CYP714, CYP715, CYP721 , CYP734, CYP735, CYP749, CYP74, CYP85, CYP87, CYP88, CYP90, CYP702, CYP707, CYP708, CYP716, CYP718, CYP720, CYP724, CYP725, CYP728, CYP729, CYP733, CYP86, CYP94, CYP96, CYP704, CYP730, CYP731 , CYP732, CYP97, CYP710, CYP711 ou CYP727. Il peut s’agir par exemple d’un cytochrome P450 appartenant à la famille CYP76 ou CYP73. Il peut s’agir par exemple du cytochrome P450 CYP76F112 ou CYP73A1 .
Dans la présente par domaine hydrophile d’un cytochrome P450 de plante on entend la séquence polypeptidique du cytochrome P450 comprenant le domaine enzymatique et l’activité biologique, avantageusement l’activité enzymatique, du cytochrome P450. L’homme du métier, par ces connaissances générales sait identifier le domaine enzymatique du cytochrome P450. Il peut s’agir par exemple d’un polypeptide isolé à partir d’un cytochrome P450. Il peut s’agir par exemple d’un polypeptide ayant un pourcentage d’identité d’au moins 25%, par exemple de 28%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99% avec un polypeptide choisi dans le groupe comprenant HRNLTDLAKRFGEILLLRMGQRNLWVSSPELAKEVLHTQGVEFGSRTRNVVF DIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKVVQQYRYGWEAEAAAW DDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRFESEDDPLFLKLKALNG ERSRLAQSFEYNYGDFIPILRPFLRNYLKLCKEVKDKRIQLFKDYFVDERKKIGS TKKMDNNQLKCAIDHILEAKEKGEINEDNVLYIVENINVAAIETTLWSIEWGIAEL VNHPEIQAKLRHELDTKLGPGVQITEPDVQNLPYLQAWKETLRLRMAIPLLVP HMNLHDAKLGGFDIPAESKILVNAWWLANNPDQWKKPEEFRPERFLEEEAKV EANGNDFRYLPFGVGRRSCPGIILALPILGITIGRLVQNFELLPPPGQSKIDTDE KGGQFSLHILKH (SEQ ID NO 2),
IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLVWSSPELAKEVL HTQGVEFGSRTRNWFDIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKW QQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRF ESEDDPLFLKLKALNGERSRLAQSFEYNYGDFIPILRPFLRNYLKLCKEVKDKRI QLFKDYFVDERKKIGSTKKMDNNQLKCAIDHILEAKEKGEINEDNVLYIVENINV AAIETTLWSIEWGIAELVNHPEIQAKLRHELDTKLGPGVQITEPDVQNLPYLQAV VKETLRLRMAIPLLVPHMNLHDAKLGGFDIPAESKILVNAWWLANNPDQWKKP EEFRPERFLEEEAKVEANGNDFRYLPFGVGRRSCPGIILALPILGITIGRLVQNF ELLPPPGQSKIDTDEKGGQFSLHILKHSTIVAKPRSF (SEQ ID NO 3), MDIFTSLLYLALILFFSLQVFRSFAFPKHKRLPPGPKPRPIIGSLLELGDQPHRSL ARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQANSQVVSSRTITDASRAHR HSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDGNMELRNKKVQELLNDVHK SVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDTNSVTLKELKEAMSHMMEE LGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLFGRIIDQRLKVREASGSLKD DDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFSAGTETTSTTLEWAMAELVK APEIMSKARAELDQVIGKGNQVKESDVSRLPYLQAIVKETFRMHPTAPLLIPRK ADSDIEISDYIIPKDAQ (SEQ ID NO 4),
KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF GRIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQ (SEQ ID NO 5), KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTVVISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF GRIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQVIVNVWAIGRDSSTWENPD KFIPERFLDIDIDVGGRDFKLIPFGAGRRICPGFPLAMRMLHLMLGSLLHSFDW KLEDGVRPDALNMDEKFGLTLQMAQPLRAIPVPTKH (SEQ ID NO 70).
Avantageusement, il peut s’agir d’un polypeptide isolé à partir d’un cytochrome P450 de plante comprenant le domaine hydrophile dudit cytochrome P450 de plante exempte de domaine transmembranaire. Il peut s’agir par exemple d’un polypeptide ayant un pourcentage d’identité d’au moins 25%, par exemple de 28%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99% avec un polypeptide choisi dans le groupe comprenant IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLVWSSPELAKEVL HTQGVEFGSRTRNWFDIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKW QQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRF ESEDDPLFLKLKALNGERSRLAQSFEYNYGDFIPILRPFLRNYLKLCKEVKDKRI QLFKDYFVDERKKIGSTKKMDNNQLKCAIDHILEAKEKGEINEDNVLYIVENINV AAIETTLWSIEWGIAELVNHPEIQAKLRHELDTKLGPGVQITEPDVQNLPYLQAV VKETLRLRMAIPLLVPHMNLHDAKLGGFDIPAESKILVNAWWLANNPDQWKKP EEFRPERFLEEEAKVEANGNDFRYLPFGVGRRSCPGIILALPILGITIGRLVQNF ELLPPPGQSKIDTDEKGGQFSLHILKHSTIVAKPRSF (SEQ ID NO 3), KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF GRIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQ (SEQ ID NO 5), et KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF GRIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQVIVNVWAIGRDSSTWENPD KFIPERFLDIDIDVGGRDFKLIPFGAGRRICPGFPLAMRMLHLMLGSLLHSFDW KLEDGVRPDALNMDEKFGLTLQMAQPLRAIPVPTKH (SEQ ID NO 70). il peut s’agir d’un polypeptide isolé à partir d’un cytochrome P450 de plante comprenant le domaine hydrophile dudit cytochrome P450 de plante choisi dans le groupe comprenant le polypeptide
IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLVWSSPELAKEVL HTQGVEFGSRTRNVVFDIFTGKGQDMVFTVYGEHWRKMRRIMTVPFFTNKW QQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYNNMFRIMFDRRF ESEDDPLFLKLKALNGERSRLAQSFEYNYGDFIPILRPFLRNYLKLCKEVKDKRI QLFKDYFVDERKKIGSTKKMDNNQLKCAIDHILEAKEKGEINEDNVLYIVENINV AAIETTLWSIEWGIAELVNHPEIQAKLRHELDTKLGPGVQITEPDVQNLPYLQAV VKETLRLRMAIPLLVPHMNLHDAKLGGFDIPAESKILVNAWWLANNPDQWKKP EEFRPERFLEEEAKVEANGNDFRYLPFGVGRRSCPGIILALPILGITIGRLVQNF ELLPPPGQSKIDTDEKGGQFSLHILKHSTIVAKPRSF (SEQ ID NO 3) et KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKEVLQ ANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLSSKALDG NMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTFFSMDMADDT NSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIRRRNTVTFRKLINLF GRIIDQRLKVREASGSLKDDDILDTLINMMWDQEKKEDQLDKTIIEHFLLDLFS AGTETTSTTLEWAMAELVKAPEIMSKARAELDQVIGKGNQVKESDVSRLPYLQ AIVKETFRMHPTAPLLIPRKADSDIEISDYIIPKDAQVIVNVWAIGRDSSTWENPD KFIPERFLDIDIDVGGRDFKLIPFGAGRRICPGFPLAMRMLHLMLGSLLHSFDW KLEDGVRPDALNMDEKFGLTLQMAQPLRAIPVPTKH (SEQ ID NO 70). Dans la présente par un polypeptide de liaison on entend tout peptide de liaison adapté connu de l’homme du métier. Il peut s’agir par exemple d’un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés. Il peut s’agir par exemple d’un polypeptide de séquence PGGSGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGS GGSP (SEQ ID NO 6).
Dans la présente par NADPH P450 réductase de cytochrome P450 de plante on entend des protéines à activité oxydoréductase qui catalyse la réaction
NADPH + H+ + n hémoprotéine oxydée NADP+ + n hémoprotéine réduite. Il peut s’agir par exemple de toute NADPH P450 réductase de cytochrome P450 de plante connue de l’homme du métier. Il peut s’agir par exemple de NADPH P450 réductase de cytochrome P450 de plante décrite dans Kenneth Jensen et al., « Plant NADPH-cytochrome P450 oxidoreductases », Phytochemistry 2010, Volume 71 , 2-3, Pages 132-141 [3],
Dans la présente par domaine hydrophile de NADPH P450 réductase de cytochrome P450 de plante on entend la séquence polypeptidique de NADPH P450 réductase de cytochrome P450 de plante comprenant le domaine réductase et l’activité biologique, avantageusement l’activité réductrice, de la NADPH P450 réductase de cytochrome P450 de plante. L’expression "domaine réductase", tel qu'il est utilisé ici, fait référence à une séquence d'acides aminés qui fonctionne comme un donneur d'électrons. En particulier, il sert de donneur d'électrons pour la partie oxygénase d’un cytochrome P450. L’homme du métier, par ces connaissances générales sait identifier le domaine catalytique, en particulier le domaine réductase, d’une NADPH P450 réductase de cytochrome P450 de plante. Il peut s’agir par exemple d’un polypeptide isolé à partir d’une de NADPH P450 réductase de cytochrome P450 de plante. Il peut s’agir par exemple d’un polypeptide ayant un pourcentage d’identité d’au moins 90%, par exemple de 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% avec un polypeptide choisi dans le groupe comprenant TRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAADDDQYEEKLK KETLAF FCVATYG DG E PTD N AARF YKWFTE E N E RD I KLQQ LAYG VF ALG N RQ YEHFNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKESLWSELDKLL KDEDDKSVATPYTAVIPEYRWTHDPRFTTQKSMESNVANGNTTIDIHHPCRV DVAVQKELHTHESDRSCIHLEFDISRTGITYETGDHVGVYAENHVEIVEEAGKL LGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCTLGTGLARYADLLNPPRKSAL VALAAYATEPSEAEKLKHLTSPDGKDEYSQWIVASQRSLLEVMAAFPSAKPPL GVFFAAIAPRLQPRYYSISSSPRLAPSRVHVTSALVYGPTPTGRIHKGVCSTW MKNAVPAEKSHECSGAPIFIRASNFKLPSNPSTPIVMVGPGTGLAPFRGFLQE RMALKEDGEELGSSLLFFGCRNRQMDFIYEDELNNFVDQGVISELIMAFSREG AQKEYVQHKMMEKAAQVWDLIKEEGYLYVCGDAKGMARDVHRTLHTIVQEQ EGVSSSEAEAIVKKLQTEGRYLRDVW (SEQ ID NO 7), YEKAAVKVIDLDDYAADDDQYEEKLKKETLAFFCVATYGDGEPTDNAARFYKW FTEENERDIKLQQLAYGVFALGNRQYEHFNKIGIVLDEELCKKGAKRLIEVGLG DDDQSIEDDFNAWKESLWSELDKLLKDEDDKSVATPYTAVIPEYRWTHDPRF TTQKSMESNVANGNTTIDIHHPCRVDVAVQKELHTHESDRSCIHLEFDISRTGI TYETGDHVGVYAENHVEIVEEAGKLLGHSLDLVFSIHADKEDGSPLESAVPPPF PGPCTLGTGLARYADLLNPPRKSALVALAAYATEPSEAEKLKHLTSPDGKDEY SQWIVASQRSLLEVMAAFPSAKPPLGVFFAAIAPRLQPRYYSISSSPRLAPSRV HVTSALVYGPTPTGRIHKGVCSTWMKNAVPAEKSHECSGAPIFIRASNFKLPS NPSTPIVMVGPGTGLAPFRGFLQERMALKEDGEELGSSLLFFGCRNRQMDFIY EDELNNFVDQGVISELIMAFSREGAQKEYVQHKMMEKAAQVWDLIKEEGYLY VCGDAKGMARDVHRTLHTIVQEQEGVSSSE (SEQ ID NO 8).
Avantageusement, il peut s’agir d’un polypeptide isolé à partir d’une de NADPH P450 réductase de cytochrome P450 comprenant le domaine hydrophile de ladite NADPH P450 réductase de cytochrome P450 exempte de domaine transmembranaire. Il peut s’agir par exemple d’un polypeptide ayant un pourcentage d’identité d’au moins 90%, par exemple de 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% avec le polypeptide de séquence TRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAADDDQYEEKLK KETLAF FCVATYG DG E PTD N AARF YKWFTE E N E RD I KLQQ LAYG VF ALG N RQ YEHFNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKESLWSELDKLL KDEDDKSVATPYTAVIPEYRWTHDPRFTTQKSMESNVANGNTTIDIHHPCRV DVAVQKELHTHESDRSCIHLEFDISRTGITYETGDHVGVYAENHVEIVEEAGKL LGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCTLGTGLARYADLLNPPRKSAL VALAAYATEPSEAEKLKHLTSPDGKDEYSQWIVASQRSLLEVMAAFPSAKPPL G VF FAAI AP RLQ P RYYS ISSSPRLAPS RVH VTS ALVYG PTPTG R I H KG VCSTW MKNAVPAEKSHECSGAPIFIRASNFKLPSNPSTPIVMVGPGTGLAPFRGFLQE RMALKEDGEELGSSLLFFGCRNRQMDFIYEDELNNFVDQGVISELIMAFSREG AQKEYVQHKMMEKAAQVWDLIKEEGYLYVCGDAKGMARDVHRTLHTIVQEQ EGVSSSEAEAIVKKLQTEGRYLRDVW (SEQ ID NO 7).
Avantageusement, les inventeurs ont démontré que le polypeptide de liaison permet d’obtenir une protéine de fusion avec une structure quaternaire permettant une activité enzymatique fonctionnelle du domaine hydrophile d’un cytochrome P450 de plante et du domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante permettant avantageusement la bioconversion effective de substrats de différentes structures et tailles.
Dans la présente, la protéine de fusion peut comprendre un ou plusieurs acides aminés non naturels, par exemple, un ou plusieurs acides aminés D et/ou des acides aminés modifiés chimiquement.
Les acides aminés non naturels peuvent être lévogyres (L-), dextrogyres (D-), ou des mélanges de ceux-ci. Les acides aminés non naturels sont les acides aminés qui ne sont généralement pas synthétisés dans les processus métaboliques normaux des organismes vivants et qui ne sont pas naturellement présents dans les protéines. En outre, les acides aminés non naturels ne sont pas non plus reconnus par les protéases communes. L'acide aminé non naturel peut être présent à n'importe quelle position dans la protéine de fusion. Par exemple, l'acide aminé non naturel peut se trouver à l'extrémité N-terminale, à l'extrémité C-terminale ou à toute position entre l'extrémité N-terminale et l'extrémité C-terminale.
Les acides aminés non naturels peuvent, par exemple, être des acides aminés chimiquement modifiés et peuvent par exemple comprendre des groupes alkyle, aryle ou alkylaryle que l'on ne trouve pas dans les acides aminés naturels. Certains exemples d'acides aminés alkylés non naturels comprennent l'acide a- aminobutyrique, l'acide p-aminobutyrique, l'acide y-aminobutyrique, l'acide 8- aminovalérique et l'acide £-aminocaproïque. Certains exemples d'acides aminés aryliques non naturels comprennent l'acide ortho-, méta- et para- aminobenzoïque. Certains exemples d'acides aminés alkylaryles non naturels comprennent l'acide ortho-, méta- et para-aminophénylacétique, et l'acide y- phényl-p-aminobutyrique. Les acides aminés non naturels comprennent les dérivés d'acides aminés naturels. Les dérivés d'acides aminés naturels peuvent, par exemple, inclure l'ajout d'un ou plusieurs groupes chimiques à l'acide aminé naturel. Par exemple, un ou plusieurs groupes chimiques peuvent être ajoutés à une ou plusieurs des positions 2', 3', 4', 5' ou 6' du cycle aromatique d'un résidu de phénylalanine ou de tyrosine, ou à la position 4', 5', 6' ou 7' du cycle benzo d'un résidu de tryptophane. Le groupe peut être n'importe quel groupe chimique qui peut être ajouté à un cycle aromatique. Certains exemples de tels groupes comprennent un alkyle en C1-C4 ramifié ou non ramifié, tel que le méthyle, l'éthyle, le n-propyle, l'isopropyle, le butyle, l'isobutyle ou le t-butyle, un alkyloxy en C1 -C4 (c'est-à-dire un alcoxy), un amino, un alkylamino en C1 -C4 et un dialkylamino en C1 -C4 (par exemple, méthylamino, diméthylamino), un nitro, un hydroxyle, un halo (c'est-à-dire un fluoro, un chloro, un bromo ou un iodo). Certains exemples spécifiques de dérivés non naturels d'acides aminés naturels comprennent la norvaline (Nva) et la norleucine (Nie).
La protéine de fusion selon l’invention peut être produite et/ou synthétisée par tout procédé adapté connu de l’homme du métier.
Dans la présente, les termes "polypeptide", "peptide" et leurs équivalents grammaticaux font référence à un polymère de résidus d'acides aminés.
Dans la présente, une "protéine fonctionnelle" est une protéine qui est biologiquement active.
Dans la présente, le pourcentage d'identité de séquence peut être déterminé par toute méthode connue de l'homme de l'art. Il peut être déterminé par exemple par l'utilisation de BLASTP et BLASTN, par exemple en utilisant des paramètres par défaut.
Dans la présente, l'expression « pourcentage d'identité » signifie le pourcentage déterminé par comparaison directe de deux séquences (nucléiques ou protéiques), en déterminant le nombre de nucléotides ou de résidus d'acides aminés communs aux deux séquences, puis en le divisant par le nombre de nucléotides ou de résidus d'acides aminés de la plus longue des deux séquences et en multipliant le résultat par 100.
Dans la présente, le mot « comprend » et ses variations, telles que « comprend » et « comprenant », doivent être interprétés dans un sens ouvert et inclusif, c'est-à-dire comme "incluant, mais non limité à".
Dans la présente par « consistant en » ou « constitué », on entend incluant, et limité à, ce qui suit l'expression « consistant en » ou « constitué ». Ainsi, l'expression « consistant en » ou « constitué », indique que les éléments énumérés sont requis ou obligatoires, et qu'aucun autre élément ne peut être présent.
Un autre objet de l'invention concerne un polynucléotide ou acide nucléique codant pour une protéine de fusion selon l'invention.
Il peut s’agir par exemple d’un polynucléotide ou acide nucléique codant pour une protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
Il peut s’agir par exemple d’un polynucléotide ou acide nucléique codant pour une protéine de fusion selon l’invention dans lequel la séquence polynucléotidique ou acide nucléique codant pour un polypeptide d’adressage et d’ancrage à la membrane bactérienne, avantageusement à la membrane externe de bactéries gram négatives, est choisi dans le groupe comprenant l’acide nucléique de séquence : accatgggcaataaggcctacagtatcatttggagccactccagacaggcctggattgtggcctcagagttag ccagaggacatggttttgtccttgcaaaaaatacactgctggtattggcggttgtttccacaatcggaaatgcattt gcagtcgaccaccatcaccatcaccatctggaagcgctgttccagggtccgggtaccgctacagtgaatggta gtcttgttaataacaaaaatatcattcttaatcctacaaaagaaagtgcggccgctataggtaatactcttaccgt gtcaaattatactgggacaccgggaagtgttatttctcttggtggtgtgcttgaaggagataattcacttacggacc gtctggtggtgaaaggtaatacctctggtcaaagtgacatcgtttatgtcaatgaagatggcagtggtggtcaga cgagagatggtattaatattatttctgtagagggaaattctgatgcagaattctctctgaagaaccgcgtagttgcc ggagcttatgattacacactgcagaaaggaaacgagagtgggacagataataagggatggtatttaaccagt catcttcccacatctgatacccggcaatacagaccggagaacggaagttatgctaccaatatggcactggcta actcactgttcctcatggatttgaatgagcgtaagcaattcagggccatgagtgataatacacagcctgagtctg catccgtgtggatgaagatcactggaggaataagctctggtaagctgaatgacgggcaaaataaaacaaca accaatcagtttatcaatcagctcgggggggatatttataaattccatgctgaacaactgggtgattttaccttagg gattatgggaggatacgcgaatgcaaaaggtaaaacgataaattacacgagcaacaaagctgccagaaac acactggatggttattctgtcggggtatacggtacgtggtatcagaatggggaaaatgcaacagggctctttgct gaaacttggatgcaatataactggtttaatgcatcagtgaaaggtgacggactggaagaagaaaaatataatc tgaatggtttaaccgcttctgcaggtgggggatataacctgaatgtgcacacatggacatcacctgaaggaata acaggtgaattctggttacagcctcatttgcaggctgtctggatgggggttacaccggatacacatcaggagga taacggaacggtggtgcagggagcagggaaaaataatattcagacaaaagcaggtattcgtgcatcctgga aggtgaaaagcaccctggataaggataccgggcggaggttccgtccgtatatagaggcaaactggatccat aacactcatgaatttggtgttaaaatgagtgatgacagccagttgttgtcaggtagccgaaatcagggagagat aaagacaggtattgaaggggtgattactcaaaacttgtcagtgaatggcggagtcgcatatcaggcaggagg tcacgggagcaatgccatctccggagcactggggataaaatacagcttctgataatga (SEQ ID NO 9), atgaataaggcctacagtatcatttggagccactccagacaggcctggattgtggcctcagagttagccagag gacatggttttgtccttgcaaaaaatacactgctggtattggcggttgtttccacaatcggaaatgcatttgcagtc gaccaccatcaccatcaccatctggaagcgctgttccagggtccgggtacccagaaacagcgtaccgagctc gaaaacctgtacttccagggtgaacagaaactgattagcgaagaagatctgtctagagtgaataacaatgga agcattgtcattaataacagcattataaacgggaatattacgaatgatgctgacttaagttttggtacagcaaagc tgctctctgctacagtgaatggtagtcttgttaataacaaaaatatcattcttaatcctacaaaagaaagtgcggc cgctataggtaatactcttaccgtgtcaaattatactgggacaccgggaagtgttatttctcttggtggtgtgcttga aggagataattcacttacggaccgtctggtggtgaaaggtaatacctctggtcaaagtgacatcgtttatgtcaat gaagatggcagtggtggtcagacgagagatggtattaatattatttctgtagagggaaattctgatgcagaattct ctctgaagaaccgcgtagttgccggagcttatgattacacactgcagaaaggaaacgagagtgggacagat aataagggatggtatttaaccagtcatcttcccacatctgatacccggcaatacagaccggagaacggaagtt atgctaccaatatggcactggctaactcactgttcctcatggatttgaatgagcgtaagcaattcagggccatga gtgataatacacagcctgagtctgcatccgtgtggatgaagatcactggaggaataagctctggtaagctgaat gacgggcaaaataaaacaacaaccaatcagtttatcaatcagctcgggggggatatttataaattccatgctg aacaactgggtgattttaccttagggattatgggaggatacgcgaatgcaaaaggtaaaacgataaattacac gagcaacaaagctgccagaaacacactggatggttattctgtcggggtatacggtacgtggtatcagaatggg gaaaatgcaacagggctctttgctgaaacttggatgcaatataactggtttaatgcatcagtgaaaggtgacgg actggaagaagaaaaatataatctgaatggtttaaccgcttctgcaggtgggggatataacctgaatgtgcaca catggacatcacctgaaggaataacaggtgaattctggttacagcctcatttgcaggctgtctggatgggggtta caccggatacacatcaggaggataacggaacggtggtgcagggagcagggaaaaataatattcagacaa aagcaggtattcgtgcatcctggaaggtgaaaagcaccctggataaggataccgggcggaggttccgtccgt atatagaggcaaactggatccataacactcatgaatttggtgttaaaatgagtgatgacagccagttgttgtcag gtagccgaaatcagggagagataaagacaggtattgaaggggtgattactcaaaacttgtcagtgaatggcg gagtcgcatatcaggcaggaggtcacgggagcaatgccatctccggagcactggggataaaatacagcttct gataatga (SEQ ID NO 10).
Il peut s’agir par exemple d’un polynucléotide ou acide nucléique codant pour une protéine de fusion selon l’invention dans lequel la séquence polynucléotidique ou acide nucléique codant pour un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante est choisi dans le groupe comprenant l’acide nucléique de séquence : cctggcccaatcccggttccaattttcggcaactggctacaagttggcgatgatttgaaccaccggaacttaacc gatctggctaagaggtttggtgagatcttgctgctacgcatggggcagaggaatctggtagttgtgtcttcgcctg agcttgctaaagaggtgttgcatacacaaggagtggagtttggttcgagaacaaggaatgttgtgttcgatattttt actgggaagggtcaggatatggtgtttacggtttatggtgagcattggaggaagatgaggaggatcatgaccgt accctttttcaccaacaaagttgttcagcaatacaggtatgggtgggaggctgaggccgcggcggttgtggacg atgtgaagaagaatccggctgcagcaactgaaggaatcgtgatccgaagacggttacaactcatgatgtata acaacatgttcagaatcatgttcgacagacgattcgaaagtgaagatgatcccttgtttttgaaactcaaggcgtt gaacggtgagaggagtcgattggcgcagagctttgagtacaactatggcgatttcatccctattttgcggccgttt ttgagaaattatttgaagttgtgcaaggaagttaaagataaaaggattcagctcttcaaggattacttcgttgacg aaaggaagaagattggaagcactaagaaaatggacaacaatcagttgaaatgtgccattgatcacattcttg aagctaaagagaagggtgagatcaatgaagacaatgttctttacattgttgaaaacatcaatgttgcagcaatc gagacaactctatggtcgatcgaatggggaattgcggagctagttaaccatcccgagatccaagccaaactc aggcacgagctcgacaccaagctcgggcccggtgtccagatcaccgagcccgacgtccaaaacctccctta cctccaagccgtggtcaaggaaaccctccgtctccgtatggcgatcccgcttctagtcccacacatgaacctcc atgacgctaagctcggcgggtttgacatcccggccgaaagcaagatcttggtcaacgcgtggtggttagcaaa caaccccgaccaatggaagaaacccgaggagtttaggccagagaggtttttggaagaggaagcgaaggtt gaggctaacgggaatgattttaggtacttgccgtttggagtcgggagaaggagttgccccgggattattcttgcat tgccgatacttggtattacaatcgggcgtttggtgcagaatttcgagctgttgcctccaccgggacagtctaagat cgataccgatgagaagggtgggcagtttagtttgcatatcttgaagcactctactatcgtagctaaacctaggtc attt (SEQ ID NO 11 ), atggacctcctcctcatagaaaaaaccctcgtcgccttattcgccgccattatcggcgcaatactaatctccaaa ctccgcggtaaaaaattcaagctcccacctggcccaatcccggttccaattttcggcaactggctacaagttgg cgatgatttgaaccaccggaacttaaccgatctggctaagaggtttggtgagatcttgctgctacgcatggggca gaggaatctggtagttgtgtcttcgcctgagcttgctaaagaggtgttgcatacacaaggagtggagtttggttcg agaacaaggaatgttgtgttcgatatttttactgggaagggtcaggatatggtgtttacggtttatggtgagcattgg aggaagatgaggaggatcatgaccgtaccctttttcaccaacaaagttgttcagcaatacaggtatgggtggg aggctgaggccgcggcggttgtggacgatgtgaagaagaatccggctgcagcaactgaaggaatcgtgatc cgaagacggttacaactcatgatgtataacaacatgttcagaatcatgttcgacagacgattcgaaagtgaag atgatcccttgtttttgaaactcaaggcgttgaacggtgagaggagtcgattggcgcagagctttgagtacaact atggcgatttcatccctattttgcggccgtttttgagaaattatttgaagttgtgcaaggaagttaaagataaaagg attcagctcttcaaggattacttcgttgacgaaaggaagaagattggaagcactaagaaaatggacaacaatc agttgaaatgtgccattgatcacattcttgaagctaaagagaagggtgagatcaatgaagacaatgttctttaca ttgttgaaaacatcaatgttgcagcaatcgagacaactctatggtcgatcgaatggggaattgcggagctagtta accatcccgagatccaagccaaactcaggcacgagctcgacaccaagctcgggcccggtgtccagatcac cgagcccgacgtccaaaacctcccttacctccaagccgtggtcaaggaaaccctccgtctccgtatggcgatc ccgcttctagtcccacacatgaacctccatgacgctaagctcggcgggtttgacatcccggccgaaagcaag atcttggtcaacgcgtggtggttagcaaacaaccccgaccaatggaagaaacccgaggagtttaggccaga gaggtttttggaagaggaagcgaaggttgaggctaacgggaatgattttaggtacttgccgtttggagtcggga gaaggagttgccccgggattattcttgcattgccgatacttggtattacaatcgggcgtttggtgcagaatttcgag ctgttgcctccaccgggacagtctaagatcgataccgatgagaagggtgggcagtttagtttgcatatcttgaag cactctactatcgtagctaaacctaggtcattttaa (SEQ ID NO 12), atggatattttcacctccttactgtatcttgctctcattcttttcttttctcttcaagtcttccgttcctttgcgtttcctaaaca caaaaggcttccacctggtccaaaacctcgtcccatcatcggaagcctcttggagctcggcgaccaacccca caggtccttggccaggctttccgagtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtc atttcctccaccaccatggctaaagaagtcctccaggcaaacagccaagtcgtctccagccggacaatcacc gacgcaagccgcgcccacagacacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaacct tcggaaaataagcaactcacacttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaag gtgcaagagctcctaaatgatgtccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttct ttcagagctactctgaatctcttgtccaccacatttttctccatggacatggcggatgacacaaattccgtcactcta aaagagctcaaggaggctatgtcgcacatgatggaagagttggggaagcctaacttggccgattatttcccgtt tctacaaaagattgacccccaaggcattaggcggcgcaacacggttactttccggaaactgatcaacttgtttg ggcgtatcatcgaccaaagattgaaagtgagagaagcgagtggttctttgaaagatgatgatattttagacact cttatcaacatgatggtggtggatcaggagaagaaagaggatcagcttgacaaaaccataattgaacatttttt actggatttattttcagcggggactgaaacgacttcaaccacgttggagtgggcaatggctgagctagtaaaag cgccagagattatgtcaaaagcccgagcagagctagatcaagttataggcaaaggaaaccaagtgaagga atcggacgtatctcgactcccttacttacaagccattgttaaagaaaccttccgcatgcaccctacagctccatta ttgattcctcgcaaagccgacagtgacatcgaaatctccgactatatcatcccgaaggatgctcaggtgattgtc aatgtatgggccattggtagagactcaagcacatgggaaaatcccgacaagtttataccggagaggtttttgga catcgatatagatgtcggaggccgggattttaagctcattccgttcggtgctggtcggagaatatgtcccggattc ccattggcgatgcgaatgttgcacttgatgttggggtctttgcttcactcgtttgattggaagttggaagatggggtta gacctgatgctctaaacatggatgaaaagtttggcctcaccttgcaaatggctcagcctttgcgagctatccccgt gccgacaaagcattag (SEQ ID NO 13), atcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggctttccgagtcttacggccc gtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaaagaagtcctccag gcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacagacacagcgatttta gcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaaataagcaactcacacttgctttcctccaa ggctcttgatggcaacatggagctgagaaacaaaaaggtgcaagagctcctaaatgatgtccacaaaagcg tccaggccggggaggcggtggagatcgcgagcctttctttcagagctactctgaatctcttgtccaccacatttttc tccatggacatggcggatgacacaaattccgtcactctaaaagagctcaaggaggctatgtcgcacatgatgg aagagttggggaagcctaacttggccgattatttcccgtttctacaaaagattgacccccaaggcattaggcgg cgcaacacggttactttccggaaactgatcaacttgtttgggcgtatcatcgaccaaagattgaaagtgagaga agcgagtggttctttgaaagatgatgatattttagacactcttatcaacatgatggtggtggatcaggagaagaa agaggatcagcttgacaaaaccataattgaacattttttactggatttattttcagcggggactgaaacgacttca accacgttggagtgggcaatggctgagctagtaaaagcgccagagattatgtcaaaagcccgagcagagct agatcaagttataggcaaaggaaaccaagtgaaggaatcggacgtatctcgactcccttacttacaagccatt gttaaagaaaccttccgcatgcaccctacagctccattattgattcctcgcaaagccgacagtgacatcgaaat ctccgactatatcatcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagagactcaagcacatg ggaaaatcccgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggccgggattttaagct cattccgttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgcacttgatgttggggt ctttgcttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggatgaaaagtttggc ctcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcattag (SEQ ID NO 14), caagtcacgacggttgtcatttcctccaccaccatggctaaagaagtcctccaggcaaacagccaagtcgtct ccagccggacaatcaccgacgcaagccgcgcccacagacacagcgattttagcatggttatgttgcccgtat cccctctgtggcgaaaccttcggaaaataagcaactcacacttgctttcctccaaggctcttgatggcaacatgg agctgagaaacaaaaaggtgcaagagctcctaaatgatgtccacaaaagcgtccaggccggggaggcgg tggagatcgcgagcctttctttcagagctactctgaatctcttgtccaccacatttttctccatggacatggcggatg acacaaattccgtcactctaaaagagctcaaggaggctatgtcgcacatgatggaagagttggggaagccta acttggccgattatttcccgtttctacaaaagattgacccccaaggcattaggcggcgcaacacggttactttccg gaaactgatcaacttgtttgggcgtatcatcgaccaaagattgaaagtgagagaagcgagtggttctttgaaag atgatgatattttagacactcttatcaacatgatggtggtggatcaggagaagaaagaggatcagcttgacaaa accataattgaacattttttactggatttattttcagcggggactgaaacgacttcaaccacgttggagtgggcaat ggctgagctagtaaaagcgccagagattatgtcaaaagcccgagcagagctagatcaagttataggcaaag gaaaccaagtgaaggaatcggacgtatctcgactcccttacttacaagccattgttaaagaaaccttccgcatg caccctacagctccattattgattcctcgcaaagccgacagtgacatcgaaatctccgactatatcatcccgaa ggatgctcag (SEQ ID NO 45), aaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggctttccg agtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaa agaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacag acacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaaataagcaactcaca cttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaaggtgcaagagctcctaaatgatg tccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttctttcagagctactctgaatctcttg tccaccacatttttctccatggacatggcggatgacacaaattccgtcactctaaaagagctcaaggaggctat gtcgcacatgatggaagagttggggaagcctaacttggccgattatttcccgtttctacaaaagattgaccccca aggcattaggcggcgcaacacggttactttccggaaactgatcaacttgtttgggcgtatcatcgaccaaagatt gaaagtgagagaagcgagtggttctttgaaagatgatgatattttagacactcttatcaacatgatggtggtggat caggagaagaaagaggatcagcttgacaaaaccataattgaacattttttactggatttattttcagcggggact gaaacgacttcaaccacgttggagtgggcaatggctgagctagtaaaagcgccagagattatgtcaaaagc ccgagcagagctagatcaagttataggcaaaggaaaccaagtgaaggaatcggacgtatctcgactccctta cttacaagccattgttaaagaaaccttccgcatgcaccctacagctccattattgattcctcgcaaagccgacag tgacatcgaaatctccgactatatcatcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagaga ctcaagcacatgggaaaatcccgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggc cgggattttaagctcattccgttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgca cttgatgttggggtctttgcttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggat gaaaagtttggcctcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcat (SEQ ID NO 69), et aaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggctttccg agtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaa agaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacag acacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaaataagcaactcaca cttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaaggtgcaagagctcctaaatgatg tccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttctttcagagctactctgaatctcttg tccaccacatttttctccatggacatggcggatgacacaaattccgtcactctaaaagagctcaaggaggctat gtcgcacatgatggaagagttggggaagcctaacttggccgattatttcccgtttctacaaaagattgaccccca aggcattaggcggcgcaacacggttactttccggaaactgatcaacttgtttgggcgtatcatcgaccaaagatt gaaagtgagagaagcgagtggttctttgaaagatgatgatattttagacactcttatcaacatgatggtggtggat caggagaagaaagaggatcagcttgacaaaaccataattgaacattttttactggatttattttcagcggggact gaaacgacttcaaccacgttggagtgggcaatggctgagctagtaaaagcgccagagattatgtcaaaagc ccgagcagagctagatcaagttataggcaaaggaaaccaagtgaaggaatcggacgtatctcgactccctta cttacaagccattgttaaagaaaccttccgcatgcaccctacagctccattattgattcctcgcaaagccgacag tgacatcgaaatctccgactatatcatcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagaga ctcaagcacatgggaaaatcccgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggc cgggattttaagctcattccgttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgca cttgatgttggggtctttgcttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggat gaaaagtttggcctcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcat (SEQ ID 71 ) de préférence de séquence SEQ ID NO 11 ou SEQ ID NO 71
Il peut s’agir par exemple d’un polynucléotide ou acide nucléique codant pour une protéine de fusion selon l’invention dans lequel la séquence polynucléotidique ou acide nucléique codant pour un polypeptide de liaison est choisi dans le groupe comprenant l’acide nucléique de séquence : ccgggcggttctggtggcggtagcggcggtggcggttctggcggtggcggtagcggcggtggcggttctggcg gtggcggtagcggcggtggcggttctggcggtggcggtagcggcggtggcggttctggtggcggtagcggcg gttctccg (SEQ ID NO 15).
Il peut s’agir par exemple d’un polynucléotide ou acide nucléique codant pour une protéine de fusion selon l’invention dans lequel la séquence polynucléotidique ou acide nucléique codant pour un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante est choisi dans le groupe comprenant l’acide nucléique de séquence : atgacttctgctttgtatgcttccgatttgtttaagcagctcaagtcaattatggggacagattcgttatccgacgatg ttgtacttgtgattgcaacgacgtctttggcactagtagctggatttgtggtgttgttatggaagaaaacgacggcg gatcggagcggggagctgaagcctttgatgatccctaagtctcttatggctaaggacgaggatgatgatttggat ttgggatccgggaagactagagtctctatcttcttcggtacgcagactggaacagctgagggatttgctaaggc attatccgaagaaatcaaagcgagatatgaaaaagcagcagtcaaagtcattgacttggatgactatgctgcc gatgatgaccagtatgaagagaaattgaagaaggaaactttggcatttttctgtgttgctacttatggagatggag agcctactgacaatgctgccagattttacaaatggtttacggaggaaaatgaacgggatataaagcttcaaca actagcatatggtgtgtttgctcttggtaatcgccaatatgaacattttaataagatcgggatagttcttgatgaaga gttatgtaagaaaggtgcaaagcgtcttattgaagtcggtctaggagatgatgatcagagcattgaggatgatttt aatgcctggaaagaatcactatggtctgagctagacaagctcctcaaagacgaggatgataaaagtgtggca actccttatacagctgttattcctgaataccgggtggtgactcatgatcctcggtttacaactcaaaaatcaatgga atcaaatgtggccaatggaaatactactattgacattcatcatccctgcagagttgatgttgctgtgcagaagga gcttcacacacatgaatctgatcggtcttgcattcatctcgagttcgacatatccaggacgggtattacatatgaa acaggtgaccatgtaggtgtatatgctgaaaatcatgttgaaatagttgaagaagctggaaaattgcttggcca ctctttagatttagtattttccatacatgctgacaaggaagatggctccccattggaaagcgcagtgccgcctcctt tccctggtccatgcacacttgggactggtttggcaagatacgcagaccttttgaaccctcctcgaaagtctgcgtt agttgccttggcggcctatgccactgaaccaagtgaagccgagaaacttaagcacctgacatcacctgatgg aaaggatgagtactcacaatggattgttgcaagtcagagaagtcttttagaggtgatggctgcttttccatctgca aaacccccactaggtgtattttttgctgcaatagctcctcgtctacaacctcgttactactccatctcatcctcgcca agattggcgccaagtagagttcatgttacatccgcactagtatatggtccaactcctactggtagaatccacaag ggtgtgtgttctacgtggatgaagaatgcagttcctgcggagaaaagtcatgaatgtagtggagccccaatcttt attcgagcatctaatttcaagttaccatccaacccttcaactccaatcgttatggtgggacctgggactgggctgg caccttttagaggttttctgcaggaaaggatggcactaaaagaagatggagaagaactaggttcatctttgctctt ctttgggtgtagaaatcgacagatggactttatatacgaggatgagctcaataattttgttgatcaaggcgtaatat ctgagctcatcatggcattctcccgtgaaggagctcagaaggagtatgttcaacataagatgatggagaaggc agcacaagtttgggatctaataaaggaagaaggatatctctatgtatgcggtgatgctaagggcatggcgagg gacgtccaccgaactctacacaccattgttcaggagcaggaaggtgtgagttcgtcagaggcagaggctata gttaagaaacttcaaaccgaaggaagatacctcagagatgtctggtga (SEQ ID NO 16), actagagtctctatcttcttcggtacgcagactggaacagctgagggatttgctaaggcattatccgaagaaatc aaagcgagatatgaaaaagcagcagtcaaagtcattgacttggatgactatgctgccgatgatgaccagtatg aagagaaattgaagaaggaaactttggcatttttctgtgttgctacttatggagatggagagcctactgacaatg ctgccagattttacaaatggtttacggaggaaaatgaacgggatataaagcttcaacaactagcatatggtgtgt ttgctcttggtaatcgccaatatgaacattttaataagatcgggatagttcttgatgaagagttatgtaagaaaggt gcaaagcgtcttattgaagtcggtctaggagatgatgatcagagcattgaggatgattttaatgcctggaaaga atcactatggtctgagctagacaagctcctcaaagacgaggatgataaaagtgtggcaactccttatacagctg ttattcctgaataccgggtggtgactcatgatcctcggtttacaactcaaaaatcaatggaatcaaatgtggccaa tggaaatactactattgacattcatcatccctgcagagttgatgttgctgtgcagaaggagcttcacacacatgaa tctgatcggtcttgcattcatctcgagttcgacatatccaggacgggtattacatatgaaacaggtgaccatgtag gtgtatatgctgaaaatcatgttgaaatagttgaagaagctggaaaattgcttggccactctttagatttagtattttc catacatgctgacaaggaagatggctccccattggaaagcgcagtgccgcctcctttccctggtccatgcaca cttgggactggtttggcaagatacgcagaccttttgaaccctcctcgaaagtctgcgttagttgccttggcggcct atgccactgaaccaagtgaagccgagaaacttaagcacctgacatcacctgatggaaaggatgagtactca caatggattgttgcaagtcagagaagtcttttagaggtgatggctgcttttccatctgcaaaacccccactaggtgt attttttgctgcaatagctcctcgtctacaacctcgttactactccatctcatcctcgccaagattggcgccaagtag agttcatgttacatccgcactagtatatggtccaactcctactggtagaatccacaagggtgtgtgttctacgtgga tgaagaatgcagttcctgcggagaaaagtcatgaatgtagtggagccccaatctttattcgagcatctaatttca agttaccatccaacccttcaactccaatcgttatggtgggacctgggactgggctggcaccttttagaggttttctg caggaaaggatggcactaaaagaagatggagaagaactaggttcatctttgctcttctttgggtgtagaaatcg acagatggactttatatacgaggatgagctcaataattttgttgatcaaggcgtaatatctgagctcatcatggcat tctcccgtgaaggagctcagaaggagtatgttcaacataagatgatggagaaggcagcacaagtttgggatct aataaaggaagaaggatatctctatgtatgcggtgatgctaagggcatggcgagggacgtccaccgaactct acacaccattgttcaggagcaggaaggtgtgagttcgtcagaggcagaggctatagttaagaaacttcaaac cgaaggaagatacctcagagatgtctgg (SEQ ID NO 17), de préférence de séquence SEQ ID NO 17.
Dans le présent document, les termes "polynucléotide(s)", "oligonucléotide(s)", "acide(s) nucléique(s)", "acide(s) polynucléique(s)", ou tout équivalent grammatical tel qu'utilisé dans le présent document, font référence à une forme polymère de nucléotides ou d'acides nucléiques de toute longueur, qu'il s'agisse de ribonucléotides ou de désoxyribonucléotides. Ce terme se réfère uniquement à la structure primaire de la molécule. Ainsi, ce terme inclut l'ADN double et simple brin, l'ADN triplex, ainsi que l'ARN double et simple brin. Il inclut également les formes modifiées, par exemple par méthylation et/ou par coiffage, et non modifiées du polynucléotide. Le terme englobe également les molécules qui comprennent des nucléotides non naturels ou synthétiques ainsi que des analogues de nucléotides. Les séquences d'acide nucléique et les vecteurs divulgués ou envisagés ici peuvent être introduits dans une cellule par, par exemple, transfection, transformation ou transduction.
Dans la présente, l'acide nucléique ou polynucléotide peut être produit et/ou obtenu par toute méthode adaptée connue de l'homme de l'art.
Un autre objet de l'invention concerne un vecteur comprenant un acide nucléique codant pour une protéine de fusion selon l’invention. Il peut s’agir par exemple d’un vecteur comprenant un polynucléotide ou acide nucléique codant pour une protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acide aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
Dans la présente, le vecteur peut être tout vecteur connu de l'homme du métier adapté à l'expression d'un acide nucléique. Il peut s’agir par exemple de tout vecteur répliqué en faible nombre de copie dans les bactéries connu de l’homme du métier et/ou disponible dans le commerce. Il peut s’agir par exemple du vecteur décrit dans le document Rosano GL and Ceccarelli EA « Recombinant protein expression in Escherichia coli: advances and challenges. » Front. Microbiol. 2014, 5:172. doi: 10.3389/fmicb.2014.00172 [15], par exemple répliqués en une dizaine de copie par bactéries. Il peut s'agir par exemple de tout vecteur choisi parmi les vecteurs listés dans le catalogue https://blog.addgene.org/plasmid-101 -origin-of-replication [4] ou https://www.qiagen.com/cn/resources/faq?id=1f42840e-fbd7-4734-b0cd- e17372a9e5a4&lang=en [5]. Il peut s'agir par exemple du vecteur d'expression décrit dans le document WO 83/004261 [7],
Le vecteur peut être tout plasmide adapté connu de l'homme du métier et/ou disponible dans le commerce. Il peut s'agir par exemple d'un plasmide choisi dans le groupe comprenant pACYC, pSC101 , SuperCos, pWE15, pGEX, pColEI , pR-K, pAIDAI , de préférence pAIDAI .
Il peut d’agir par exemple d’un plasmide modifié, par exemple du plasmide pAIDAI , comprenant un gène de résistance à la tétracycline et une cassette de clonage comprenant le promoteur T7 RNA polymérase et le terminateur T7 RNA polymérase. Il peut s’agir par exemple du plasmide pAIDAI dans lequel le gène cmIA est remplacé par le gène de résistance à la tétracycline de séquence ttctcatgtttgacagcttatcatcgataagctttaatgcggtagtttatcacagttaaattgctaacgcagtcaggc accgtgtatgaaatctaacaatgcgctcatcgtcatcctcggcaccgtcaccctggatgctgtaggcataggctt ggttatgccggtactgccgggcctcttgcgggatatcgtccattccgacagcatcgccagtcactatggcgtgct gctagcgctatatgcgttgatgcaatttctatgcgcacccgttctcggagcactgtccgaccgctttggccgccgc ccagtcctgctcgcttcgctacttggagccactatcgactacgcgatcatggcgaccacacccgtcctgtggatc ctctacgccggacgcatcgtggccggcatcaccggcgccacaggtgcggttgctggcgcctatatcgccgac atcaccgatggggaagatcgggctcgccacttcgggctcatgagcgcttgtttcggcgtgggtatggtggcagg ccccgtggccgggggactgttgggcgccatctccttgcatgcaccattccttgcggcggcggtgctcaacggcc tcaacctactactgggctgcttcctaatgcaggagtcgcataagggagagcgtcgaccgatgcccttgagagc cttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatca tgcaactcgtaggacaggtgccggcagcgctctgggtcattttcggcgaggaccgctttcgctggagcgcgac gatgatcggcctgtcgcttgcggtattcggaatcttgcacgccctcgctcaagccttcgtcactggtcccgccacc aaacgtttcggcgagaagcaggccattatcgccggcatggcggccgacgcgctgggctacgtcttgctggcgt tcgcgacgcgaggctggatggccttccccattatgattcttctcgcttccggcggcatcgggatgcccgcgttgc aggccatgctgtccaggcaggtagatgacgaccatcagggacagcttcaaggatcgctcgcggctcttacca gcctaacttcgatcattggaccgctgatcgtcacggcgatttatgccgcctcggcgagcacatggaacgggttg gcatggattgtaggcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccac ctcgacctgaatggaagccggcggcacctcgctaacggattcaccactccaagaattggagccaatcaattct tgcggagaactgtgaatgcgcaaaccaacccttggcagaacatatccatcgcgtccgccatctccagcagcc gcacgcggcgcatctcgggcagcgt (SEQ ID NO 18) et dans lequel la cassette AIDA taatacgactcactataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaag gagatataccatgggcaataaggcctacagtatcatttggagccactccagacaggcctggattgtggcctca gagttagccagaggacatggttttgtccttgcaaaaaatacactgctggtattggcggttgtttccacaatcggaa atgcatttgcagtcgaccaccatcaccatcaccatctggaagcgctgttccagggtccgggtacccagaaaca gcgtaccgagctcgaaaacctgtacttccagggtgaacagaaactgattagcgaagaagatctgtctagagt gaataacaatggaagcattgtcattaataacagcattataaacgggaatattacgaatgatgctgacttaagtttt ggtacagcaaagctgctctctgctacagtgaatggtagtcttgttaataacaaaaatatcattcttaatcctacaa aagaaagtgcggccgctataggtaatactcttaccgtgtcaaattatactgggacaccgggaagtgttatttctct tggtggtgtgcttgaaggagataattcacttacggaccgtctggtggtgaaaggtaatacctctggtcaaagtga catcgtttatgtcaatgaagatggcagtggtggtcagacgagagatggtattaatattatttctgtagagggaaatt ctgatgcagaattctctctgaagaaccgcgtagttgccggagcttatgattacacactgcagaaaggaaacga gagtgggacagataataagggatggtatttaaccagtcatcttcccacatctgatacccggcaatacagaccg gagaacggaagttatgctaccaatatggcactggctaactcactgttcctcatggatttgaatgagcgtaagca attcagggccatgagtgataatacacagcctgagtctgcatccgtgtggatgaagatcactggaggaataagc tctggtaagctgaatgacgggcaaaataaaacaacaaccaatcagtttatcaatcagctcgggggggatattt ataaattccatgctgaacaactgggtgattttaccttagggattatgggaggatacgcgaatgcaaaaggtaaa acgataaattacacgagcaacaaagctgccagaaacacactggatggttattctgtcggggtatacggtacgt ggtatcagaatggggaaaatgcaacagggctctttgctgaaacttggatgcaatataactggtttaatgcatcag tgaaaggtgacggactggaagaagaaaaatataatctgaatggtttaaccgcttctgcaggtgggggatataa cctgaatgtgcacacatggacatcacctgaaggaataacaggtgaattctggttacagcctcatttgcaggctgt ctggatgggggttacaccggatacacatcaggaggataacggaacggtggtgcagggagcagggaaaaat aatattcagacaaaagcaggtattcgtgcatcctggaaggtgaaaagcaccctggataaggataccgggcg gaggttccgtccgtatatagaggcaaactggatccataacactcatgaatttggtgttaaaatgagtgatgacag ccagttgttgtcaggtagccgaaatcagggagagataaagacaggtattgaaggggtgattactcaaaacttg tcagtgaatggcggagtcgcatatcaggcaggaggtcacgggagcaatgccatctccggagcactggggat aaaatacagcttctgataatgacagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgcc accgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttg (SEQ ID NO 44) est remplacée par une cassette de clonage comprenant la séquence promotrice taatacgactcactata (SEQ ID NO 19) et la séquence terminatrice tagcataaccccttggggcctctaaacgggtcttgaggggttttttg (SEQ ID NO 20) du gène de la T7 RNA ploymérase.
Le vecteur peut être tout chromosome artificiel de levure adapté connu de l'homme de l'art. Il peut s'agir, par exemple, d'un Chromosome Artificiel de la Levure choisi dans le groupe comprenant pYAC-RC, pYAC3(+).
Le vecteur peut être tout chromosome artificiel bactérien adapté connu de l'homme de l'art. Il peut s'agir par exemple d'un chromosome artificiel bactérien choisi dans le groupe comprenant pUvBBAC, pCCI BAC, pBAC 108L.
Le vecteur d’expression d’une protéine de fusion selon l’invention peut comprendre les éléments suivants liés de manière fonctionnelle : a) un promoteur b) une séquence codant pour une protéine de fusion selon l’invention c) des signaux de terminaison de la transcription.
Dans la présente, par « promoteur », on entend une séquence ADN agissant en cis localisée en 5’ du site d’initiation de la transcription de la séquence codant pour un polypeptide à laquelle une séquence ADN d’une ARN polymérase peut se lier et initier une transcription correcte, et comprenant éventuellement des activateurs. Il peut s’agir par exemple de tout promoteur adapté connu de l’homme du métier. Il peut s’agir par exemple d’un promoteur constitutif, d’un promoteur viral, d’un promoteur bactérien. Il peut s’agir par exemple du promoteur T7, le promoteur T7 de bactériophage, de préférence le promoteur T7.
Dans la présente, par « signaux de terminaison de la transcription », on entend une séquence ADN adaptée pour la terminaison de la transcription. Il peut s’agir de tout signal de terminaison de la transcription connu de l’homme du métier. Il peut s’agir par exemple du terminateur T7 de séquence tagcataaccccttggggcctctaaacgggtcttgaggggttttttg (SEQ ID NO 20).
Le vecteur peut être choisi en fonction de la cellule hôte sélectionnée. L'homme de l'art, compte tenu de ses connaissances techniques, adaptera le vecteur en fonction de la cellule hôte.
La cellule hôte peut être toute cellule appropriée pour l'expression d’un acide nucléique ou d’un vecteur selon l'invention. Il peut s'agir, par exemple, de bactérie, par exemple de bactéries gram négatives ou de bactéries gram positives. Il peut s’agir par exemple Escherichia coli, Pischia pastoris, Saccharomyces cerevisiae. De préférence, la cellule hôte est Escherichia coli, de manière encore plus préférée, la cellule hôte peut être la souche bactérienne Escherichia coli BL21 (DE3) pLysE.
Avantageusement, les inventeurs ont démontré que l’expression de la protéine de fusion dans des cellules hôtes, par exemple des cellules bactériennes, permet avantageusement une production de la protéine de fusion et une localisation à la surface de la membrane de la cellule hôte. Par exemple, lorsque la cellule hôte est une bactérie gram négative, l’expression de la protéine de fusion permet avantageusement une production de la protéine de fusion et une localisation à la surface de la membrane externe de la bactérie. En d’autres termes, les inventeurs ont démontré que l’expression de la protéine de fusion dans des cellules hôtes permet avantageusement une production de la protéine de fusion, une localisation à la surface de la cellule hôte et avantageusement un ancrage de la protéine de fusion à la cellule hôte via sa membrane. La présente invention a également pour objet une cellule hôte comprenant un acide nucléique selon l’invention et/ou un vecteur selon l’invention.
La cellule hôte peut être tel que définie ci-dessus. De préférence la cellule hôte est une cellule bactérienne, par exemple une bactérie gram négative ou une bactérie gram positive, de préférence Escherichia coli, de manière encore plus préférée, la cellule hôte peut être la souche bactérienne Escherichia coli (BL21 (DE3) pLysE).
La présente invention a également pour objet, un procédé de production d’une protéine de fusion selon l’invention comprenant la culture d’une cellule hôte selon l’invention dans des conditions appropriées pour l’expression de la protéine de fusion.
La culture de la cellule hôte selon l’invention peut être réalisée dans tout milieu de culture adapté connu de l’homme du métier. Il peut s’agir par exemple de tout milieu riche de culture adapté connu de l’homme du métier. L’homme du métier de par ces connaissances générales adaptera et/ou choisira le milieu de culture en fonction de la cellule hôte. Par exemple, lorsque la cellules hôte est une cellule bactérienne, le milieu de culture peut être un milieu SOC, un milieu bouillon lysogène (en anglais LB « lysogeny broth »), de préférence un milieu SOC.
La culture de la cellule hôte selon l’invention peut être réalisée à toute température adaptée à la cellule hôte connue de l’homme du métier. Par exemple la culture peut être réalisée à une température comprise de 20 à 30°C, par exemple à une température de 26°C.
Le temps de culture peut être tout temps adapté à la cellule hôte connu de l’homme du métier. Par exemple Le temps de culture de la cellule hôte selon l’invention peut être compris de 24 à 72 heures, par exemple 53 heures.
Avantageusement, les inventeurs ont démontré que la protéine de fusion selon l’invention est présente à la surface de la cellule hôte dans laquelle elle est exprimée et est une protéine fonctionnelle. En particulier, les inventeurs ont démontré de manière surprenante que la protéine de fusion présentait une activité biologique, en particulier une activité enzymatique du cytochrome P450 de plante et une activité réductase de la NADPH P450 réductase de cytochrome P450 de plante. En d’autres termes, la protéine de fusion possède avantageusement de manière simultanée l’activité biologique du cytochrome P450 de plante et de la NADPH P450 réductase de cytochrome P450 de plante. Les inventeurs ont également démontré de manière surprenante et inattendue que la protéine de fusion selon l’invention étant une protéine fonctionnelle et présentant l’activité biologique du cytochrome P450 de plante et une activité réductase de la NADPH P450 réductase de cytochrome P450 de plante permet une bioconversion de substrats présents dans le milieu de culture.
La présente invention a également pour objet un procédé de bioconversion d’un substrat par une protéine de fusion selon l’invention comprenant les étapes :
- introduction dans un milieu de culture comprenant d’une cellule hôte selon l’invention, du substrat,
- incubation dudit milieu de culture pendant un temps suffisant pour la bioconversion dudit substrat par ladite protéine de fusion, et
- optionnellement récupération des métabolites résultant de la bioconversion dudit substrat.
Le milieu de culture est tel que défini ci-dessus.
La cellule hôte est telle que définie ci-dessus.
Dans la présente, le substrat peut être tout substrat adapté connu de l’homme du métier. Il peut s’agir par exemple d’un composé ou substrat, par exemple naturel ou obtenu par synthèse ou hémi-synthèse chimique. Il peut s’agir par exemple connu de tout composé ou substrat, par exemple naturel ou obtenu par synthèse ou hémi-synthèse chimique, connu de l’homme du métier. Il peut s’agir par exemple de l’acide cinnamique, de la déméthylsubérosine. Il peut s’agir également de tout nouveau composé dont on cherche à mettre en évidence qu’il est un substrat d’un cytochrome P450 de plante. Dans la présente, la concentration du substrat dans le milieu de culture comprenant d’une cellule hôte peut être compris de 100 pM à 250 pM, par exemple égale à 200 pM.
Dans la présente, le procédé de bioconversion peut comprendre en outre et préalablement à l’étape d’incubation, une étape d’introduction de nicotinamide adénine dinucléotide phosphate (NADPH) dans le milieu de culture.
Dans la présente, la concentration de nicotinamide adénine dinucléotide phosphate (NADPH) dans le milieu de culture comprenant d’une cellule hôte peut être compris de 200 pM à 450 pM, par exemple égale à 400 pM.
L’étape d’incubation de la cellule hôte selon l’invention peut être réalisée à toute température adaptée à la cellule hôte connue de l’homme du métier. Par exemple l’incubation peut être réalisée à une température comprise de 15 à 30°C, par exemple à une température de 20°C.
Le temps d’incubation peut être tout temps adapté à la cellule hôte connu de l’homme du métier. Par exemple Le temps d’incubation de la cellule hôte selon l’invention peut être compris de 30 minutes à 72 heures, par exemple 1 heure.
Dans la présente, la récupération des métabolites peut être réalisée par tout procédé adapté connu de l’homme du métier. Il peut s’agir par exemple d’une technique choisie parmi, une ultrafiltration, une filtration sur membrane ou sur gel, un échange d’ions, une élution sur hydroxyapatite, une séparation par interactions hydrophobes, par chromatographie, par exemple par chromatographie liquide ou tout autre moyen connu.
Dans la présente, les métabolites obtenus peuvent être tout métabolite de plante. Il peut s’agir par exemple de métabolites appartenant à la famille des polyphénols, des alcaloïdes et/ou des terpènes. Il peut s’agir avantageusement de métabolites appartenant à la famille des polyphénols.
Les métabolites obtenus peuvent donner accès à de nouveaux produits qui peuvent être des actifs alimentaires, cosmétiques, pharmaceutiques et parapharmaceutiques utilisables dans les domaines agroalimentaires, cosmétiques, pharmaceutiques et parapharmaceutiques. Ces nouveaux produits peuvent également être des produits actifs ou non actifs mais présentant une neutralité et/ou stabilité qui est très intéressante pour une utilisation dans chacun de ces domaines.
D’autres avantages apparaîtront encore à la lumière des exemples qui suivent, donnés à titre illustratif et non limitatif, en référence aux figures annexées.
Brève description des figures
La figure 1 représente un schéma de la protéine de fusion comprenant successivement un polypeptide d’adressage et d’ancrage à la membrane externe (C), un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante (B), un polypeptide de liaison comprenant au moins 47 acides aminés (L) et un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante (A), M correspond à la membrane bactérienne.
La figure 2 représente une représentation schématique du plasmide pAIDAI - TetR-lacIQ.
La figure 3 représente une représentation schématique du plasmide pAIDA1 -T7. La figure 4 représente une représentation schématique du plasmide pAIDA1 -T7 La figure 5 représente une représentation schématique du plasmide pAIDA1 -T7- CYP73A1 -ATR1 .
La figure 6 représente un schéma de différents éléments d’un exemple de protéine de fusion selon l’invention. Sur la figure AIDAI -tonneau-bêta AIDAI - 01 et AIDAI linker représentent respectivement un polypeptide d’adressage et d’ancrage à la membrane externe, un polypeptide de liaison, P450 73A1 un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante (P450 CYP73A1 ), lieur (« linker » en anglais) flexible : un polypeptide de liaison et ATR1 :P450 Reductase un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
La figure 7 représente des chromatogrammes correspondants à l’analyse réalisée par chromatographie liquide haute performance (HPLC) de milieu de culture issue d’une d’expérimentation de bioconversion en présence d’acide cinnamique. L’abscisse correspond au temps d’élution en minute et l’ordonné correspond à des unités arbitraires et permet de voir l’efficacité de la métabolisation. La figure 7A représente un diagramme concernant la métabolisation d’acide cinnamique par bioconversion, sur cette figure la figure 7A représente les chromatogrammes obtenus après culture de la souche E. Coli BL21 (DE3) pLysE transformée avec le plasmide pAIDA1 -T7-CYP73A1 -ATR1 et la figure 7B représente le diagramme après culture de la souche E. Coli BL21 (DE3) pLysE transformé avec le plasmide pAIDA1 -T7 dans la figure 4. Dans la figure 7A on constate l’apparition d’acide para-coumarique qui est le produit de métabolisation de l’acide cinnamique. Dans la figure 7B, l’acide cinnamique n’est pas métabolisé.
La figure 8 représente un alignement de séquences peptidiques réalisés avec l’outil de recherche d'alignement local de base (BLAST également désigné en anglais « Basic Local Alignment Search Tool »). Les séquences correspondent aux cytochromes P450 CYP76F112 et P450 CYP73A1
La figure 9 représente la réaction chimique correspondant la transformation de l’acide cinnamique en acide para-coumarique par le cytochrome P450 CYP73A1 (CYP73A1 ) et la réaction chimique correspondant la transformation de la déméthylsubérosine en Marmesine par le cytochrome P450 CYP76F112 (CYP76F112).
EXEMPLES
Exemple 1 : procédé de préparation d’une protéine de fusion et procédé de biotransformation utilisant ladite protéine
1) Construction d’un plasmide d’expression générique pAIDA-T7
La base du plasmide d’expression construit repose sur un plasmide commercial pAIDAI (https://www.addgene.org/79180/ [11]) qui est un plasmide à faible nombre de copie (« low copy » en anglais).
Remplacement du gène de sélection Le plasmide pAIDAI a été d’abord modifié en remplaçant le gène conférant la résistance au chloramphénicol par un gène confèrent la résistance à la Tétracycline cloné à partir du plasmide pBR322 commercialisé par la société Fisher Scientific (https://www.fishersci.fr/shop/products/fermentas-pbr322- dna/10191220 [11]). Pour cela, le plasmide pAIDAI était la matrice qui a été amplifiée par réaction de polymérisation en chaîne (PCR) en utilisant l’enzyme PrimeSTAR Max polymérase commercialisé par la société Takara Bio Inc, selon le procédé Protocole 1 : PrimeSTAR Max polymérase Protocole tel que décrit dans (https://www.takarabio.com/documents/User%20Manual/R045A_e.v2102Da.pdf [6]). L’amplification a été réalisée en utilisant les amorces LAEWXpr17-laclQ (tggcgacaccatcgaatggtgc (SEQ ID NO : 21 ) et LAEWXprO2: Reverse: tttagcttccttagctcctg (SEQ ID NO : 22). Cette amplification a permis de copier le plasmide dans sa globalité à l’exception du gène de résistance au chloramphénicol. Le même procédé a été mis en œuvre et a permis d’amplifier la séquence codant du gène de résistance à la Tétracycline. L’amplification a été faite cette fois à partir du plasmide pBR322 en utilisant les amorces LAEWXprO3 (gctaaggaagctaaaatgaaatctaacaatgcgct (SEQ ID NO 41 )) et LAEWXprO4 (tcgatggtgtcgccacgctgcccgagatgc (SEQ ID NO 42)). Les deux produits de PCR obtenus, à savoir le plasmide pAIDAI sans le gène de résistance au chloramphénicol et la séquence codante du gène de résistance à la tétracycline ont été fusionnés en utilisant le kit In-Fusion commercialisé par la société Takara Bio Inc selon le procédé Protocole 2 : In-Fusion Protocole décrit dans le document https://www.takarabio.com/documents/User%20Manual/ln/ln- Fusion%20Snap%20Assembly%20User%20Manual_071320.pdf [16]. Le plasmide recombinant obtenu a été introduit dans des bactéries Escherichia coli TQP10 chimiocompétentes commercialisées par la société Life Technologies Corporation selon le protocole de transformation TQP10 décrit dans https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/oneshottop10_man.pdf [17]). Les bactéries transformées ont été étalées sur un milieu de culture LB (bouillon lysogène) (10g peptone, 5g extrait de levure, 5g NaCI) contenant de la tétracycline. L’insertion du gène codant pour la résistance à la tétracycline a été vérifiée par PCR en utilisant les amorces LAEWXpr17 (SEQ ID NO 21 ) et LAEWXprO2 (SEQ ID NO 22).
Le plasmide pAIDA1 -TetR-laclQ, représenté sur la figure 2, recombinant ainsi construit a été utilisé pour la construction des autres plasmides. Pour simplifier la nomenclature, le plasmide est également désigné pAIDAI . Ce plasmide a été amplifié et purifié à partir d’une colonie positive selon le procédé Protocole 3 : le plasmide purification protocole décrit dans le document https://www.mn-net.com/media/pdf/45/51/02/lnstruction-NucleoSpin-Plasmid.pdf [18]. a) Promoteur et terminateur
Le promoteur et le terminateur de la cassette AIDA du plasmide pAIDAI ont été remplacés par deux cassettes de clonage disposant du promoteur et du terminateur de la T7 RNA Polymérase. Pour réaliser cette étape, différents clonages ont été réalisés
(i) pAIDAI a été amplifié par PCR en utilisant les amorces LAEWXpr30 (tcatcatcatgcctaatgagtgagaattcc (SEQ ID NO 23)) et LAEWXpr31 (ttggtgcgcaaactattaactgg (SEQ ID NO 24)). Cette étape d’amplification s’inclue par le fragment d’ADN contenu entre le promoteur pAIDAI et le terminateur de pAIDAI . Le produit d’amplification correspondait donc au plasmide sans promoteur et terminateur
(ii) En parallèle, le terminateur T7 a été amplifié par PCR à partir du plasmide pET28b-2 en utilisant les amorces LAEWXpr32-1-fr (ctcattaggcatgatgatgaaaggaagggaagaaagcgaaagg (SEQ ID NO
25)) et LAEWXpr32-2-rv
(agtactcctaggactagtggtaccagatccggctgctaacaaagc (SEQ ID NO
26)). Enfin le promoteur T7 a été amplifié par PCR à partir du plasmide pET28b-2 en utilisant les amorces LAEWXpr33-1 -rv (gttaatagtttgcgcaccaaatcggtgatgtcggcgatatagg (SEQ ID NO 27)) et LAEWXpr33-2-fr (ggtaccactagtcctaggagtactatggctgctgcccatggtata (SEQ ID NO 28)) selon le Protocole 1 tel que mentionné ci-dessus, (iii) Les trois fragments ont été fusionnés à l’aide du kit In-Fusion selon le Protocole 2 tel que mentionné ci-dessus. Ce produit de ligation a permis de générer le plasmide pAIDA1-T7 représenté sur la figure 3. b) Insertion de la cassette AIDAI
La séquence AIDA du plasmide pAIDAI original a été amplifié par PCR en utilisant les amorces LAEWXpr36-AIDA-fr
(aactttaagaaggagatataccatgggcaataaggcctacagtatcatttgg (SEQ ID NO 29)) et LAEWXpr37-AIDA-rv (tttgttagcagccggatctgtcattatcagaagctgtattttatc (SEQ ID NO 30)) selon le Protocole 1 tel que mentionné ci-dessus.
En parallèle, le plasmide pAIDA1-T7 a été digéré par les enzymes de restriction A/col et Kpn\ selon le procédé Protocole 4 : protocole de digestion tel que décrit dans http://assets.thermofisher.com/TFS-Assets/BID/Reference- Materials/fastdigest-restriction-enzymes-labaid.pdf [19]. Le plasmide pAIDA1-T7- Nco\-Kpn\ linéarisé et l’amplicon AIDAI ont été fusionnés par In-Fusion selon le Protocole 2 mentionné ci-dessus. Le plasmide recombinant générique pAIDAI- T7 complet avec AIDAI a été amplifié par transformation de bactéries. Le plasmide générique pAIDA1-T7 complet avec AIDAI obtenu est représenté sur la figure 4.
2) Construction de plasmide recombinant pour l’expression d’une protéine de fusion P450-ATR a) Le plasmide pAIDA1-T7 a été digéré par les enzymes de restriction Kpn\ and Sacl selon le Protocole 4 tel que mentionné ci-dessus. b) La séquence codant pour la partie extra-membranaire de la NADPH P450 réductase 1 d'Arabidopsis thaliana (ATR1 ) telle que décrite dans Urban et al, (1997) J Biol Chem 272(31 ):19176-86 [20]) a été amplifiée par PCR à partir d’un plasmide (pCR8_ATR1) en utilisant les amorces LAEWXprOô Forward (agcgctgttccagggtccgggtaccactagagtctctatcttc (SEQ ID NO 31 )) et LAEWXprO6 Reverse (ccgccaccagaaccgcccggccagacatctctgaggtatc (SEQ ID NO 32)) selon le Protocole 1 tel que mentionné ci-dessus). c) Le lieur (en anglais « linker ») (riche en paire GC) a été amplifié à partir d’une séquence synthétique en utilisant l’enzyme PrimeSTAR GXL DNA Polymérase commercialisé par la société Takara Bio Inc en utilisant les amorces LAEWX15-FlexL-fr (ccgggcggttctggtggcgg (SEQ ID NO 33)) et LAEWX16-FlexL-rvs (cggagaaccgccgctaccgc (SEQ ID NO 34)) selon le procédé Protocole 5 décrit dans PrimeSTAR GXL DNA Polymérase Manual, https://www.takara.co.kr/file/manual/pdf/R050A_e.v1906Da.pdf [21]). d) La séquence d’ADN codant pour la partie extra-membranaire du P450, CYP73A1 (Urban et al, (1997) J Biol Chem 272(31 ):19176-86 [20]) a été amplifié par PCR à partir d’un plasmide pYeDP60-CYP73A1 en utilisant les amorces LAEWXprO7 Forward (gcggtagcggcggttctccgcctggcccaatcccggttcc (SEQ ID NO 35)) et LAEWXprO8 Reverse (gaagtacaggttttcgagctcaaatgacctaggtttagc (SEQ ID NO 36)) selon le Protocole 1 mentionné ci-dessus. e) Les 4 fragments d’ADN générés par amplification PCR, à savoir SEQ ID NO
17, SEQ ID NO 15, SEQ ID NO 11 et le plasmide pAIDAI -T7 a été digéré par les enzymes de restriction Kpn\ and Sacl selon le Protocole 4 tel que mentionné ci-dessus. La séquence du plasmide digérée obtenu correspond à la séquence : aaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctgcg cgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccaatccggatata gttcctcctttcagcaaaaaacccctcaagacccgtttagaggccccaaggggttatgctagttattgctca gcggtggcagcagccaactcagcttcctttcgggctttgttagcagccggatctgtcattatcagaagctgta ttttatccccagtgctccggagatggcattgctcccgtgacctcctgcctgatatgcgactccgccattcactg acaagttttgagtaatcaccccttcaatacctgtctttatctctccctgatttcggctacctgacaacaactggct gtcatcactcattttaacaccaaattcatgagtgttatggatccagtttgcctctatatacggacggaacctcc gcccggtatccttatccagggtgcttttcaccttccaggatgcacgaatacctgcttttgtctgaatattatttttc cctgctccctgcaccaccgttccgttatcctcctgatgtgtatccggtgtaacccccatccagacagcctgca aatgaggctgtaaccagaattcacctgttattccttcaggtgatgtccatgtgtgcacattcaggttatatcccc cacctgcagaagcggttaaaccattcagattatatttttcttcttccagtccgtcacctttcactgatgcattaaa ccagttatattgcatccaagtttcagcaaagagccctgttgcattttccccattctgataccacgtaccgtata ccccgacagaataaccatccagtgtgtttctggcagctttgttgctcgtgtaatttatcgttttaccttttgcattcg cgtatcctcccataatccctaaggtaaaatcacccagttgttcagcatggaatttataaatatcccccccga gctgattgataaactgattggttgttgttttattttgcccgtcattcagcttaccagagcttattcctccagtgatctt catccacacggatgcagactcaggctgtgtattatcactcatggccctgaattgcttacgctcattcaaatcc atgaggaacagtgagttagccagtgccatattggtagcataacttccgttctccggtctgtattgccgggtat cagatgtgggaagatgactggttaaataccatcccttattatctgtcccactctcgtttcctttctgcagtgtgta atcataagctccggcaactacgcggttcttcagagagaattctgcatcagaatttccctctacagaaataat attaataccatctctcgtctgaccaccactgccatcttcattgacataaacgatgtcactttgaccagaggtat tacctttcaccaccagacggtccgtaagtgaattatctccttcaagcacaccaccaagagaaataacactt cccggtgtcccagtataatttgacacggtaagagtattacctatagcggccgcactttcttttgtaggattaag aatgatatttttgttattaacaagactaccattcactgtagcagagagcagctttgctgtaccaaaacttaagt cagcatcattcgtaatattcccgtttataatgctgttattaatgacaatgcttccattgttattcactctagacaga tcttcttcgctaatcagtttctgttcaccctggaagtacaggttttcgagctccggaccctggaacagcgcttcc agatggtgatggtgatggtggtcgactgcaaatgcatttccgattgtggaaacaaccgccaataccagca gtgtattttttgcaaggacaaaaccatgtcctctggctaactctgaggccacaatccaggcctgtctggagtg gctccaaatgatactgtaggccttattgcccatggtatatctccttcttaaagttaaacaaaattatttctagag gggaattgttatccgctcacaattcccctatagtgagtcgtattaatttcgcgggatcgagatctcgatcctcta cgccggacgcatcgtggccggcatcaccggcgccacaggtgcggttgctggcgcctatatcgccgacat caccgatttggtgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactg gatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataa atctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgt atcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagata ggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttc atttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttc gttccactgagcgtcagaccccttaataagatgatcttcttgagatcgttttggtctgcgcgtaatctcttgctct gaaaacgaaaaaaccgccttgcagggcggtttttcgaaggttctctgagctaccaactctttgaaccgag gtaactggcttggaggagcgcagtcaccaaaacttgtcctttcagtttagccttaaccggcgcatgacttca agactaactcctctaaatcaattaccagtggctgctgccagtggtgcttttgcatgtctttccgggttggactca agacgatagttaccggataaggcgcagcggtcggactgaacggggggttcgtgcatacagtccagcttg gagcgaactgcctacccggaactgagtgtcaggcgtggaatgagacaaacgcggccataacagcgg aatgacaccggtaaaccgaaaggcaggaacaggagagcgcacgagggagccgccagggggaaa cgcctggtatctttatagtcctgtcgggtttcgccaccactgatttgagcgtcagatttcgtgatgcttgtcaggg gggcggagcctatggaaaaacggctttgccgcggccctctcacttccctgttaagtatcttcctggcatcttc caggaaatctccgccccgttcgtaagccatttccgctcgccgcagtcgaacgaccgagcgtagcgagtc agtgagcgaggaagcggaatatatcctgtatcacatattctgctgacgcaccggtgcagccttttttctcctg ccacatgaagcacttcactgacaccctcatcagtgccaacatagtaagccagtatacactccgctagcgc tgaggtctgcctcgtgaagaaggtgttgctgactcataccaggcctgaatcgccccatcatccagccaga aagtgagggagccacggttgatgagagctttgttgtaggtggaccagttggtgattttgaacttttgctttgcc acggaacggtctgcgttgtcgggaagatgcgtgatctgatccttcaactcagcaaaagttcgatttattcaa caaagccacgttgtgtctcaaaatctctgatgttacattgcacaagataaaaatatatcatcatgaacaata aaactgtctgcttacataaacagtaatacaaggggtgttatgagccatattcaacgggaaacgtcttgctcg agtatccgctcatgagattatcaaaaaggatcttcacctagatccttttgtaagttctcatgtttgacagcttatc atcgataagctttaatgcggtagtttatcacagttaaattgctaacgcagtcaggcaccgtgtatgaaatcta acaatgcgctcatcgtcatcctcggcaccgtcaccctggatgctgtaggcataggcttggttatgccggtac tgccgggcctcttgcgggatatcgtccattccgacagcatcgccagtcactatggcgtgctgctagcgctat atgcgttgatgcaatttctatgcgcacccgttctcggagcactgtccgaccgctttggccgccgcccagtcct gctcgcttcgctacttggagccactatcgactacgcgatcatggcgaccacacccgtcctgtggatcctcta cgccggacgcatcgtggccggcatcaccggcgccacaggtgcggttgctggcgcctatatcgccgacat caccgatggggaagatcgggctcgccacttcgggctcatgagcgcttgtttcggcgtgggtatggtggca ggccccgtggccgggggactgttgggcgccatctccttgcatgcaccattccttgcggcggcggtgctcaa cggcctcaacctactactgggctgcttcctaatgcaggagtcgcataagggagagcgtcgaccgatgcc cttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatga ctgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctctgggtcattttcggcgaggaccgcttt cgctggagcgcgacgatgatcggcctgtcgcttgcggtattcggaatcttgcacgccctcgctcaagccttc gtcactggtcccgccaccaaacgtttcggcgagaagcaggccattatcgccggcatggcggccgacgc gctgggctacgtcttgctggcgttcgcgacgcgaggctggatggccttccccattatgattcttctcgcttccg gcggcatcgggatgcccgcgttgcaggccatgctgtccaggcaggtagatgacgaccatcagggacag cttcaaggatcgctcgcggctcttaccagcctaacttcgatcattggaccgctgatcgtcacggcgatttatg ccgcctcggcgagcacatggaacgggttggcatggattgtaggcgccgccctataccttgtctgcctcccc gcgttgcgtcgcggtgcatggagccgggccacctcgacctgaatggaagccggcggcacctcgctaac ggattcaccactccaagaattggagccaatcaattcttgcggagaactgtgaatgcgcaaaccaaccctt ggcagaacatatccatcgcgtccgccatctccagcagccgcacgcggcgcatctcgggcagcgtggcg acaccatcgaatggtgcaaaacctttcgcggtatggcatgatagcgcccggaagagagtcaattcaggg tggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccg cgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcgga gctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgcc acctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgg gtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaagcggcggtgcacaat cttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaa gctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctccc atgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttag cgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaat tcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgct gaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgc cattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacag ctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggacc gcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaag aaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct ggcacgacaggtttcccgactggaaagcgggcaagtgagtggataaccgtattaccgcctttgagtgag ctgataccgggaattctcactcattaggcatgatgatga (SEQ ID NO 43). Ensuite, les séquences SEQ ID NO 17, SEQ ID NO 15, SEQ ID NO 11 ont été fusionnés par In-Fusion selon le protocole Protocole 2 mentionné ci-dessus. Le produit de ligation a été introduit dans des bactéries E. coli et directement mis en culture sans passer par une phase de sélection sur milieu sélectif. La présence des éléments constitutifs du plasmide a été vérifiée par des PCR en utilisant les amorces LAEWXpr35-amont-T7 (tccatccagtctattaattgttgc (SEQ ID NO 37)), LAEWXpr22- ATR1 -rv (ccagacatctctgaggtatcttcc (SEQ ID NO 38)), LAEWXpr24-2kbATR1 -fr (ggagcaggaaggtgtgagttcgtc (SEQ ID NO 39)) et LAEWXpr25-P540-rv (accctggaagtacaggttttcg (SEQ ID NO 40)). L’ensemble des étapes a à e a permis la construction d’un plasmide pAIDA1 -T7- CYP73A1 -ATR1 représenté sur la figure 5.
3) Protéine de fusion
La protéine de fusion obtenue contient de l’extrémité N-terminale à l’extrémité C- terminale :
- un tag de 6 Histidines, permettant une immunodétection des protéines avec des anticorps anti His
- une séquence de clivage permettant d’enlever le tag,
- une séquence c-MYC, permettant une immunodétection des protéines avec des anticorps anti c-MYC
- un peptide de liaison AIDAI
- un polypeptide d’adressage et d’ancrage à la membrane externe : la séquence d’ancrage béta Barel de AIDAI , à savoir la séquence SEQ ID NO 1
- une séquence polypeptidique du cytochrome P450 CYP73A1 (cinnamate hydroxylase d’Helianthus tuberosus, NCBI ID : Sequence ID: Q04468.1 , UniProtKB/Swiss-Prot: Q04468.1 ) dans laquelle l’ancre membranaire a été retirée de la séquence codante, à savoir la séquence SEQ ID NO 3),
- un peptide de liaison de 51 acides aminés PGGSGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGG GSGGGSGGSP (SEQ ID NO 6), et
- une séquence polypeptidique de la NADPH P450 réductase d’Arabidopsis (Arabidopsis thaliana P450 reductase 1 (ATR1 ), mRNA - Sequence ID: NM_118585.4, NCBI Reference Sequence: NM_118585.4) dans laquelle l’ancre membranaire a été retirée, à savoir la séquence SEQ ID NO 7. Les séquences nucléiques codantes correspondant aux différents éléments de la protéine de fusion décrit ci-dessus ont été utilisées et assemblées successivement de 5’ vers 3’. En particulier, il s’agissait de :
- la séquence SEQ ID NO 44 codant pour un lieur AIDAI ,
- la séquence SEQ ID NO 10 codant pour un polypeptide d’adressage et d’ancrage à la membrane externe : la séquence d’ancrage Tonneau bêta
- la séquence SEQ ID NO 11 codant pour le cytochrome P450 CYP73A1 cinnamate hydroxylase d’Helianthus tuberosus, NCBI ID : Sequence ID: Q04468.1 , UniProtKB/Swiss-Prot: Q04468.1 )
- la séquence SEQ ID NO 15 codant pour un peptide de liaison de 51 acides aminés, et
- la séquence SEQ ID NO 17 codant pour la NADPH P450 réductase d’Arabidopsis (Arabidopsis thaliana P450 reductase 1 (ATR1 ), mRNA - Sequence ID: NM_118585.4, NCBI Reference Sequence: NM_118585.4)
La figure 6 est une représentation schématique de la protéine de fusion obtenue.
4) Expression des protéines recombinantes dans les bactéries E. coli a) Le système d’expression utilisé
Le plasmide pAIDAI et les plasmides recombinants contenant les gènes codant pour la protéine de fusion ont été introduits dans bactéries E. coli BL21 (DE3) plysE » (Novagen's® pET Systems). Les bactéries BL21 (DE3) pLysE sont adaptées pour la production de protéines placées sous le contrôle du promoteur T7. Les bactéries BL21 (DE3) pLysE portent le lysogène lambda DE3 et contiennent le plasmide pLysE, qui exprime de manière constitutive le lysozyme T7. Le lysozyme T7 réduit l'expression basale des gènes cibles en inhibant l'ARN polymérase T7. La souche BL21 (DE3) pLysE permet donc un contrôle plus strict de l'ARN polymérase T7. b) Préparation d’un exemple de protéine de fusion La protéine de fusion a été exprimée à partir du plasmide dont la construction a été décrite précédemment. Après la transformation des bactéries par le produit de ligation, il n’y a pas d’étape de sélection sur milieu solide. Les bactéries transformées ont été immédiatement mises en culture dans 50 ml de milieu SOC (Dextrose, 3.603 g/L, KCI, 0.186 g/L, MgSO4, 4.8 g/L, Tryptone, 20 g/L, extrait de levure (en anglais « Yeast extract ») 5 g/L) comprenant de la Tétracycline (20 pg/ml) et du Chloramphénicol (20 pg/ml), dans un erlenmeyer stérile de 250 mL. La culture a été réalisée pendant 53 h à 26°C avec une agitation de 180 tours par minute. Les cultures ont été ensuite refroidies sur de la glace pendant 10 minutes. La densité optique de la culture a été ajustée à D0 550nm= 0,3 par dilution dans du milieu SOC (4°C). Le volume du milieu de culture a été mesuré et les antibiotiques ont été re-ajoutés pour être à une concentration finale de 20 pg/ml de Tétracycline et 20 pg/ml de Chloramphénicol. La production de la protéine de fusion a été induite par ajout d’isopropyl 0-D-1- thiogalactopyranoside (IPTG) à une concentration de 20pM final pendant 24h à 7°C, sous une agitation de 180 tours par minutes. Au bout de 24h, la densité optique a été ajustée à 0,3 par dilution dans du milieu SOC (4°C). Les bactéries présentent dans 1 ,5 mL ont été récoltées par deux centrifugations à basse vitesses successives (4°C, 20 min, 1000 xg et 4°C, 10 min, 4000 xg).
Les bactéries ont été ensuite suspendues dans du tampon KPi (88 mM avec des additifs de KCI 1 mM, MgSÛ4 4 mM, glycérol 5% v/v, glucose 5% w/v, à 4°C (produits commandés chez Sigma Aldrich)).
La figure 1 est une représentation schématique de la protéine de fusion obtenue, ladite protéine de fusion étant ancrée dans la membrane bactérienne.
5) Bioconversion
Une étude de la bioconversion de l’acide cinnamique a été réalisée. La figure 9 (CYP73A1 ) représente la réaction de bioconversion correspondante. Pour cela, de l’acide cinnamique (200 pM) en tant que substrat et du nicotinamide adénine dinucléotide phosphate (NADPH) (400 pM) ont été ajoutés dans le milieu comprenant les bactéries E. co t obtenues au point 4 ci-dessus re-suspendues. Le procédé de bioconversion a été réalisé à 20°C pendant 1 h et sous agitation à 180 tours par minute. La réaction a été stoppée par une extraction avec 1 volume d’Acétate d’Ethyle. Les milieux ont été mélangés par vortex pendant 1 minutes suivi par une centrifugation à 10 OOOxg pour séparer les phases organiques et aqueuses. La phase organique supérieures a été récupérée et évaporée par Vivaspin. La poudre obtenue a été suspendue dans 150 pL de méthanol. L’extrait ainsi obtenu a été analysé par Chromatographie liquide à ultra haute performance couplée à un spectre de masse (UHPLC/MS/MS)
Les résultats obtenus représentés sur la figure 7. La figure 7A représente un chromatogramme obtenu à 300 nm et montrant 2 pics. Le pic majoritaire correspond au substrat, c’est-à-dire le cinnamate. Le pic minoritaire correspond au p-coumarate ou acide p-couramique formé par bioconversion dans le milieu de culture. Ce chromatogramme a été obtenu à partir du milieu de culture dans lequel ont été cultivées les bactéries recombinantes transformées avec les plasmides pAIDA1 -T7-CYP73A1 -ATR1 selon le point 4 ci-dessus. Le chromatogramme de la figure 7B correspond à une analyse du milieu de culture dans lequel ont été bactéries recombinantes transformées avec le plasmide pAIDA1 -T7 dans la figure 4. Ce plasmide ne peut produire de protéine de fusion et représente un contrôle négatif. L’analyse du chromatogramme indique la présence de cinnamate qui a été rajouté dans le milieu de culture. Aucune métabolisation de p-coumarate n’a pu être mise en évidence.
Cet exemple démontre donc clairement qu’un exemple de protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, avantageusement à la membrane externe, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante permet la bioconversion de substrat. Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimé à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement être utilisé dans un procédé de bioconversion de substrats.
Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimée à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement permettre une bioconversion de substrats dans le milieu de culture de ladite cellule.
Exemple 2 : protéine de fusion et bioconversion
Dans cet exemple, le cytochrome P450 est le cytochrome CYP76F112 (marmesin synthase, Ficus carica cytochrome P450 CYP76F112 mRNA, complete cds Sequence ID: MW348922.1 , GenBank: MW348922.1 ).
Dans cet exemple le procédé d’obtention de la protéine de fusion est identique au procédé décrit dans l’exemple 1 à l’exception des éléments suivants :
- La séquence codant pour le cytochrome P450 CYP73A1 est remplacée par la séquence codant pour le cytochrome P450 CYP76F112 de séquence caagtcacgacggttgtcatttcctccaccaccatggctaaagaagtcctccaggcaaacagccaagtcgtct ccagccggacaatcaccgacgcaagccgcgcccacagacacagcgattttagcatggttatgttgcccgtat cccctctgtggcgaaaccttcggaaaataagcaactcacacttgctttcctccaaggctcttgatggcaacatgg agctgagaaacaaaaaggtgcaagagctcctaaatgatgtccacaaaagcgtccaggccggggaggcgg tggagatcgcgagcctttctttcagagctactctgaatctcttgtccaccacatttttctccatggacatggcggatg acacaaattccgtcactctaaaagagctcaaggaggctatgtcgcacatgatggaagagttggggaagccta acttggccgattatttcccgtttctacaaaagattgacccccaaggcattaggcggcgcaacacggttactttccg gaaactgatcaacttgtttgggcgtatcatcgaccaaagattgaaagtgagagaagcgagtggttctttgaaag atgatgatattttagacactcttatcaacatgatggtggtggatcaggagaagaaagaggatcagcttgacaaa accataattgaacattttttactggatttattttcagcggggactgaaacgacttcaaccacgttggagtgggcaat ggctgagctagtaaaagcgccagagattatgtcaaaagcccgagcagagctagatcaagttataggcaaag gaaaccaagtgaaggaatcggacgtatctcgactcccttacttacaagccattgttaaagaaaccttccgcatg caccctacagctccattattgattcctcgcaaagccgacagtgacatcgaaatctccgactatatcatcccgaa ggatgctcag (SEQ ID NO 45) ou aaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggctttccg agtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaa agaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacag acacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaaataagcaactcaca cttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaaggtgcaagagctcctaaatgatg tccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttctttcagagctactctgaatctcttg tccaccacatttttctccatggacatggcggatgacacaaattccgtcactctaaaagagctcaaggaggctat gtcgcacatgatggaagagttggggaagcctaacttggccgattatttcccgtttctacaaaagattgaccccca aggcattaggcggcgcaacacggttactttccggaaactgatcaacttgtttgggcgtatcatcgaccaaagatt gaaagtgagagaagcgagtggttctttgaaagatgatgatattttagacactcttatcaacatgatggtggtggat caggagaagaaagaggatcagcttgacaaaaccataattgaacattttttactggatttattttcagcggggact gaaacgacttcaaccacgttggagtgggcaatggctgagctagtaaaagcgccagagattatgtcaaaagc ccgagcagagctagatcaagttataggcaaaggaaaccaagtgaaggaatcggacgtatctcgactccctta cttacaagccattgttaaagaaaccttccgcatgcaccctacagctccattattgattcctcgcaaagccgacag tgacatcgaaatctccgactatatcatcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagaga ctcaagcacatgggaaaatcccgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggc cgggattttaagctcattccgttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgca cttgatgttggggtctttgcttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggat gaaaagtttggcctcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcat (SEQ ID NO 71 )
- Le substrat acide cinnamique est remplacé par la déméthylsubérosine. La bioconversion du substrat génère la marmésine tel que représenté sur la figure 9 (CYP76F112).
Une comparaison des séquences peptidiques des cytochromes P450 CYP76F112 et P450 CYP73A1 par alignement de séquences peptidiques réalisée avec l’outil de recherche d'alignement local de base (BLAST également désigné en anglais « Basic Local Alignment Search Tool ») et est représenté sur la figure 8. Le résultat obtenu démontre un pourcentage d’identité de 28,7%.
Dans cet exemple, la bioconversion est réalisée selon le procédé décrit dans l’exemple 1 ci-dessus dans lequel le substrat utilisé est la déméthylsubérosine, Cet exemple démontre clairement qu’un exemple de protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante permet la bioconversion de substrat.
Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimé à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement être utilisé dans un procédé de bioconversion de substrats.
Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimée à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement permettre une bioconversion de substrats dans le milieu de culture de ladite cellule.
Exemple 3 : procédé de préparation d’une protéine de fusion et procédé de biotransformation utilisant ladite protéine
Dans cet exemple, le cytochrome P450 est le cytochrome CYP76F112 (marmesin synthase, Ficus carica cytochrome P450 CYP76F112 mRNA, complete cds Sequence ID: MW348922.1 , GenBank: MW348922.1 ) dont la séquence est aaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggctttccg agtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccaccatggctaa agaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagccgcgcccacag acacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaaataagcaactcaca cttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaaggtgcaagagctcctaaatgatg tccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttctttcagagctactctgaatctcttg tccaccacatttttctccatggacatggcggatgacacaaattccgtcactctaaaagagctcaaggaggctat gtcgcacatgatggaagagttggggaagcctaacttggccgattatttcccgtttctacaaaagattgaccccca aggcattaggcggcgcaacacggttactttccggaaactgatcaacttgtttgggcgtatcatcgaccaaagatt gaaagtgagagaagcgagtggttctttgaaagatgatgatattttagacactcttatcaacatgatggtggtggat caggagaagaaagaggatcagcttgacaaaaccataattgaacattttttactggatttattttcagcggggact gaaacgacttcaaccacgttggagtgggcaatggctgagctagtaaaagcgccagagattatgtcaaaagc ccgagcagagctagatcaagttataggcaaaggaaaccaagtgaaggaatcggacgtatctcgactccctta cttacaagccattgttaaagaaaccttccgcatgcaccctacagctccattattgattcctcgcaaagccgacag tgacatcgaaatctccgactatatcatcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagaga ctcaagcacatgggaaaatcccgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggc cgggattttaagctcattccgttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgca cttgatgttggggtctttgcttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggat gaaaagtttggcctcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcat (SEQ ID NO 71 ) (acide nucléique codant le domaine hydrophile du cytochrome P450 CYP76F112).
Une comparaison des séquences peptidiques des cytochromes P450 CYP76F1 12 et P450 CYP73A1 par alignement de séquences peptidiques a été réalisée avec l’outil de recherche d'alignement local de base (BLAST également désigné en anglais « Basic Local Alignment Search Tool ») et est représenté sur la figure 8. Le résultat obtenu démontre un pourcentage d’identité de 28,7%.
1) Construction d’un plasmide d’expression générique pAIDA-T7
La base du plasmide d’expression construit repose sur un plasmide commercial pAIDAI (https://www.addgene.org/79180/ [11]) qui est un plasmide à faible nombre de copie (« low copy » en anglais).
Remplacement du gène de sélection
Le plasmide pAIDAI a été d’abord modifié en remplaçant le gène conférant la résistance au chloramphénicol par un gène confèrent la résistance à la Tétracycline cloné à partir du plasmide pBR322 commercialisé par la société Fisher Scientific (https://www.fishersci.fr/shop/products/fermentas-pbr322- dna/10191220 [11]) comme décrit dans l’exemple 1 ci-dessus. Pour cela, le plasmide pAIDAI était la matrice qui a été amplifiée par réaction de polymérisation en chaîne (PCR) en utilisant l’enzyme PrimeSTAR Max polymérase commercialisé par la société Takara Bio Inc, selon le procédé Protocole 1 : PrimeSTAR Max polymérase Protocole tel que décrit dans (https://www.takarabio.com/documents/User%20Manual/R045A_e.v2102Da.pdf [6]). L’amplification a été réalisée en utilisant les amorces LAEWXpr17-laclQ (tggcgacaccatcgaatggtgc (SEQ ID NO : 21 ) et LAEWXprO2: Reverse: tttagcttccttagctcctg (SEQ ID NO : 22). Cette amplification a permis de copier le plasmide dans sa globalité à l’exception du gène de résistance au chloramphénicol. Le même procédé a été mis en œuvre et a permis d’amplifier la séquence codant du gène de résistance à la Tétracycline. L’amplification a été faite cette fois à partir du plasmide pBR322 en utilisant les amorces LAEWXprO3 (gctaaggaagctaaaatgaaatctaacaatgcgct (SEQ ID NO 41 )) et LAEWXprO4 (tcgatggtgtcgccacgctgcccgagatgc (SEQ ID NO 42)). Les deux produits de PCR obtenus, à savoir le plasmide pAIDAI sans le gène de résistance au chloramphénicol et la séquence codante du gène de résistance à la tétracycline ont été fusionnés en utilisant le kit In-Fusion commercialisé par la société Takara Bio Inc selon le procédé Protocole 2 : In-Fusion Protocole décrit dans le document https://www.takarabio.com/documents/User%20Manual/ln/ln- Fusion%20Snap%20Assembly%20User%20Manual_071320.pdf [16]. Le plasmide recombinant obtenu a été introduit dans des bactéries Escherichia coli TQP10 chimiocompétentes commercialisées par la société Life Technologies Corporation selon le protocole de transformation TQP10 décrit dans https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/oneshottop10_man.pdf [17]). Les bactéries transformées ont été étalées sur un milieu de culture LB (bouillon lysogène) (10g peptone, 5g extrait de levure, 5g NaCI) contenant de la tétracycline. L’insertion du gène codant pour la résistance à la tétracycline a été vérifiée par PCR en utilisant les amorces LAEWXpr17 (SEQ ID NO 21 ) et LAEWXprO2 (SEQ ID NO 22).
Le plasmide pAIDA1 -TetR-laclQ, représenté sur la figure 2, recombinant ainsi construit a été utilisé pour la construction des autres plasmides. Pour simplifier la nomenclature, le plasmide est également désigné pAIDAI . Ce plasmide a été amplifié et purifié à partir d’une colonie positive selon le procédé Protocole 3 : le plasmide purification protocole décrit dans le document https://www.mn-net.com/media/pdf/45/51/02/lnstruction-NucleoSpin-Plasmid.pdf [18]. a) Promoteur et terminateur
Le promoteur et le terminateur de la cassette AIDA du plasmide pAIDAI ont été remplacés par deux cassettes de clonage disposant du promoteur et du terminateur de la T7 RNA Polymérase comme décrit dans l’exemple 1 ci-dessus. Pour réaliser cette étape, différents clonages ont été réalisés
(i) pAIDAI a été amplifié par PCR en utilisant les amorces LAEWXpr30 (tcatcatcatgcctaatgagtgagaattcc (SEQ ID NO 23)) et LAEWXpr31 (ttggtgcgcaaactattaactgg (SEQ ID NO 24)). Cette étape d’amplification s’inclue par le fragment d’ADN contenu entre le promoteur pAIDAI et le terminateur de pAIDAI . Le produit d’amplification correspondait donc au plasmide sans promoteur et terminateur
(ii) En parallèle, le terminateur T7 a été amplifié par PCR à partir du plasmide pET28b-2 en utilisant les amorces LAEWXpr32-1 -fr (ctcattaggcatgatgatgaaaggaagggaagaaagcgaaagg (SEQ ID NO 25)) et LAEWXpr32-2-rv (agtactcctaggactagtggtaccagatccggctgctaacaaagc (SEQ ID NO 26)). Enfin le promoteur T7 a été amplifié par PCR à partir du plasmide pET28b-2 en utilisant les amorces LAEWXpr33-1 -rv (gttaatagtttgcgcaccaaatcggtgatgtcggcgatatagg (SEQ ID NO 27)) et LAEWXpr33-2-fr (ggtaccactagtcctaggagtactatggctgctgcccatggtata (SEQ ID NO 28)) selon le Protocole 1 tel que mentionné ci-dessus.
(iii) Les trois fragments ont été fusionnés à l’aide du kit In-Fusion selon le Protocole 2 tel que mentionné ci-dessus. Ce produit de ligation a permis de générer le plasmide pAIDAI -T7 représenté sur la figure 3. b) Insertion de la cassette AIDAI La séquence AIDA du plasmide pAIDAI original a été amplifié par PCR en utilisant les amorces LAEWXpr36-AIDA-fr
(aactttaagaaggagatataccatgggcaataaggcctacagtatcatttgg (SEQ ID NO 29)) et LAEWXpr37-AIDA-rv (tttgttagcagccggatctgtcattatcagaagctgtattttatc (SEQ ID NO 30)) selon le Protocole 1 tel que mentionné ci-dessus.
En parallèle, le plasmide pAIDA1-T7 a été digéré par les enzymes de restriction A/col et Kpn\ selon le procédé Protocole 4 : protocole de digestion tel que décrit dans http://assets.thermofisher.com/TFS-Assets/BID/Reference- Materials/fastdigest-restriction-enzymes-labaid.pdf [19]. Le plasmide pAIDAI- T7-Nco\-Kpn\ linéarisé et l’amplicon AIDAI ont été fusionnés par In-Fusion selon le Protocole 2 mentionné ci-dessus. Le plasmide recombinant générique pAIDA1-T7 complet avec AIDAI a été amplifié par transformation de bactéries. Le plasmide générique pAIDA1-T7 complet avec AIDAI obtenu est représenté sur la figure 4.
2) Construction de plasmide recombinant pour l’expression d’une protéine de fusion P450-ATR a) Le plasmide pAIDA1-T7 a été linéarisé et amplifié par PCR en utilisant les amorces Vecteur 5 ATR1 -FL-76F112 fwd (cgacaaagcatgagctcgaaaacctgtacttcc (SEQ ID NO 48)) et New Vector 5 rvs (agactctagtggtacccggaccctggaaca (SEQ ID NO 49)) selon le protocole 1 tel que mentionné ci-dessus. La séquence du plasmide linéarisée obtenue correspond à la séquence agactctagtggtacccggaccctggaacagcgcttccagatggtgatggtgatggtggtcgactgcaaa tgcatttccgattgtggaaacaaccgccaataccagcagtgtattttttgcaaggacaaaaccatgtcctctg gctaactctgaggccacaatccaggcctgtctggagtggctccaaatgatactgtaggccttattgcccatg gtatatctccttcttaaagttaaacaaaattatttctagaggggaattgttatccgctcacaattcccctatagtg agtcgtattaatttcgcgggatcgagatctcgatcctctacgccggacgcatcgtggccggcatcaccggc gccacaggtgcggttgctggcgcctatatcgccgacatcaccgatttggtgcgcaaactattaactggcga actacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttc tgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtat cattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggca actatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcag accaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatccttt ttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccttaataagatga tcttcttgagatcgttttggtctgcgcgtaatctcttgctctgaaaacgaaaaaaccgccttgcagggcggtttt tcgaaggttctctgagctaccaactctttgaaccgaggtaactggcttggaggagcgcagtcaccaaaact tgtcctttcagtttagccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggctgct gccagtggtgcttttgcatgtctttccgggttggactcaagacgatagttaccggataaggcgcagcggtcg gactgaacggggggttcgtgcatacagtccagcttggagcgaactgcctacccggaactgagtgtcagg cgtggaatgagacaaacgcggccataacagcggaatgacaccggtaaaccgaaaggcaggaacag gagagcgcacgagggagccgccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacc actgatttgagcgtcagatttcgtgatgcttgtcaggggggcggagcctatggaaaaacggctttgccgcg gccctctcacttccctgttaagtatcttcctggcatcttccaggaaatctccgccccgttcgtaagccatttccg ctcgccgcagtcgaacgaccgagcgtagcgagtcagtgagcgaggaagcggaatatatcctgtatcac atattctgctgacgcaccggtgcagccttttttctcctgccacatgaagcacttcactgacaccctcatcagtg ccaacatagtaagccagtatacactccgctagcgctgaggtctgcctcgtgaagaaggtgttgctgactca taccaggcctgaatcgccccatcatccagccagaaagtgagggagccacggttgatgagagctttgttgt aggtggaccagttggtgattttgaacttttgctttgccacggaacggtctgcgttgtcgggaagatgcgtgatc tgatccttcaactcagcaaaagttcgatttattcaacaaagccacgttgtgtctcaaaatctctgatgttacatt gcacaagataaaaatatatcatcatgaacaataaaactgtctgcttacataaacagtaatacaaggggtg ttatgagccatattcaacgggaaacgtcttgctcgagtatccgctcatgagattatcaaaaaggatcttcac ctagatccttttgtaagttctcatgtttgacagcttatcatcgataagctttaatgcggtagtttatcacagttaaat tgctaacgcagtcaggcaccgtgtatgaaatctaacaatgcgctcatcgtcatcctcggcaccgtcaccct ggatgctgtaggcataggcttggttatgccggtactgccgggcctcttgcgggatatcgtccattccgacag catcgccagtcactatggcgtgctgctagcgctatatgcgttgatgcaatttctatgcgcacccgttctcgga gcactgtccgaccgctttggccgccgcccagtcctgctcgcttcgctacttggagccactatcgactacgcg atcatggcgaccacacccgtcctgtggatcctctacgccggacgcatcgtggccggcatcaccggcgcc acaggtgcggttgctggcgcctatatcgccgacatcaccgatggggaagatcgggctcgccacttcggg ctcatgagcgcttgtttcggcgtgggtatggtggcaggccccgtggccgggggactgttgggcgccatctc cttgcatgcaccattccttgcggcggcggtgctcaacggcctcaacctactactgggctgcttcctaatgca ggagtcgcataagggagagcgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggtg ggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgcc ggcagcgctctgggtcattttcggcgaggaccgctttcgctggagcgcgacgatgatcggcctgtcgcttg cggtattcggaatcttgcacgccctcgctcaagccttcgtcactggtcccgccaccaaacgtttcggcgag aagcaggccattatcgccggcatggcggccgacgcgctgggctacgtcttgctggcgttcgcgacgcga ggctggatggccttccccattatgattcttctcgcttccggcggcatcgggatgcccgcgttgcaggccatgc tgtccaggcaggtagatgacgaccatcagggacagcttcaaggatcgctcgcggctcttaccagcctaa cttcgatcattggaccgctgatcgtcacggcgatttatgccgcctcggcgagcacatggaacgggttggca tggattgtaggcgccgccctataccttgtctgcctccccgcgttgcgtcgcggtgcatggagccgggccac ctcgacctgaatggaagccggcggcacctcgctaacggattcaccactccaagaattggagccaatca attcttgcggagaactgtgaatgcgcaaaccaacccttggcagaacatatccatcgcgtccgccatctcca gcagccgcacgcggcgcatctcgggcagcgtggcgacaccatcgaatggtgcaaaacctttcgcggta tggcatgatagcgcccggaagagagtcaattcagggtggtgaatgtgaaaccagtaacgttatacgatgt cgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcga aaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaac aactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgca aattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacga agcggcgtcgaagcctgtaaagcggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcatta actatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgat gtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagca tctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgt ctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactgg agtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggtt gccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggat atctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgttaaccaccatcaaac aggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaa gggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccg cctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggca agtgagtggataaccgtattaccgcctttgagtgagctgataccgggaattctcactcattaggcatgatgat gaaaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctg cgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccaatccggata tagttcctcctttcagcaaaaaacccctcaagacccgtttagaggccccaaggggttatgctagttattgctc agcggtggcagcagccaactcagcttcctttcgggctttgttagcagccggatctgtcattatcagaagctgt attttatccccagtgctccggagatggcattgctcccgtgacctcctgcctgatatgcgactccgccattcact gacaagttttgagtaatcaccccttcaatacctgtctttatctctccctgatttcggctacctgacaacaactgg ctgtcatcactcattttaacaccaaattcatgagtgttatggatccagtttgcctctatatacggacggaacctc cgcccggtatccttatccagggtgcttttcaccttccaggatgcacgaatacctgcttttgtctgaatattattttt ccctgctccctgcaccaccgttccgttatcctcctgatgtgtatccggtgtaacccccatccagacagcctgc aaatgaggctgtaaccagaattcacctgttattccttcaggtgatgtccatgtgtgcacattcaggttatatcc cccacctgcagaagcggttaaaccattcagattatatttttcttcttccagtccgtcacctttcactgatgcatta aaccagttatattgcatccaagtttcagcaaagagccctgttgcattttccccattctgataccacgtaccgta taccccgacagaataaccatccagtgtgtttctggcagctttgttgctcgtgtaatttatcgttttaccttttgcatt cgcgtatcctcccataatccctaaggtaaaatcacccagttgttcagcatggaatttataaatatcccccccg agctgattgataaactgattggttgttgttttattttgcccgtcattcagcttaccagagcttattcctccagtgatc ttcatccacacggatgcagactcaggctgtgtattatcactcatggccctgaattgcttacgctcattcaaatc catgaggaacagtgagttagccagtgccatattggtagcataacttccgttctccggtctgtattgccgggta tcagatgtgggaagatgactggttaaataccatcccttattatctgtcccactctcgtttcctttctgcagtgtgta atcataagctccggcaactacgcggttcttcagagagaattctgcatcagaatttccctctacagaaataat attaataccatctctcgtctgaccaccactgccatcttcattgacataaacgatgtcactttgaccagaggtat tacctttcaccaccagacggtccgtaagtgaattatctccttcaagcacaccaccaagagaaataacactt cccggtgtcccagtataatttgacacggtaagagtattacctatagcggccgcactttcttttgtaggattaag aatgatatttttgttattaacaagactaccattcactgtagcagagagcagctttgctgtaccaaaacttaagt cagcatcattcgtaatattcccgtttataatgctgttattaatgacaatgcttccattgttattcactctagacaga tcttcttcgctaatcagtttctgttcaccctggaagtacaggttttcgagctcatgctttgtcg (SEQ ID NO 50). b) La séquence codant pour la partie extra-membranaire de la NADPH P450 réductase 1 d'Arabidopsis thaliana (ATR1) telle que décrite dans Urban et al, (1997) J Biol Chem 272(31 ):19176-86 [20]) a été amplifiée par PCR à partir d’un plasmide (pCR8_ATR1) en utilisant les amorces ATR1 fwd 16123 (tccgggtaccactagagtctctatcttcttcggt (SEQ ID NO 51 )) et ATR1 rvs redo ( ccgggagctcccagacatctctgaggtatcttc (SEQ ID NO 52)) selon le Protocole 1 tel que mentionné ci-dessus). c) Le lieur (en anglais « linker ») (riche en paire GC) a été amplifié à partir d’une séquence synthétique en utilisant l’enzyme PrimeSTAR GXL DNA Polymérase commercialisée par la société Takara Bio Inc en utilisant les amorces FLfwd redo(agatgtctgggagctcccgggcggttctggt (SEQ ID NO 53)) et FLrvs 76F112 (ggacgaggtttctcgagcggagaaccgccgct (SEQ ID NO 54) selon le procédé Protocole 5 en deux étapes décrit dans PrimeSTAR GXL DNA Polymérase Manual, https://www.takara.co.kr/file/manual/pdf/R050A_e.v1906Da.pdf [21], d) La séquence d’ADN codant pour la partie extra-membranaire hydrophile (SEQ ID 71 ) du P450, CYP76F112 (Villard et al, (2021) New Phytologist 231 (5) : 1923-1939 [22]) a été amplifié par PCR à partir d’un plasmide pcr8- CYP76F112 décrit dans le document Villard et al, (2021 ) New Phytologist 231 (5) : 1923-1939 [22]) en utilisant les amorces 76F112 fwd (tccgctcgagaaacctcgtcccatcatcgga (SEQ ID NO 55)) et 76F112 rvs (tttcgagctcatgctttgtcggcacgggga (SEQ ID NO 56)) selon le Protocole 1 mentionné ci-dessus. La séquence codante e) Les 3 fragments d’ADN issues des séquences SEQ ID NO 71 , SEQ ID NO 15, SEQ ID NO 17 ont été fusionnés par PCR fusion. La PCR fusion consiste à utiliser comme template pour une réaction de PCR les 3 fragments d’ADN à concentration équimolaire pour hybrider les 3 séquences en une seule via leurs parties homologues permettant d’amplifier par réaction de PCR, selon le Protocole4 mentionné ci-dessus, une séquence correspondant à la séquence tccgggtaccactagagtctctatcttcttcggtacgcagactggaacagctgagggatttgctaaggcatt atccgaagaaatcaaagcgagatatgaaaaagcagcagtcaaagtcattgacttggatgactatgctgc cgatgatgaccagtatgaagagaaattgaagaaggaaactttggcatttttctgtgttgctacttatggagat ggagagcctactgacaatgctgccagattttacaaatggtttacggaggaaaatgaacgggatataaag cttcaacaactagcatatggtgtgtttgctcttggtaatcgccaatatgaacattttaataagatcgggatagtt cttgatgaagagttatgtaagaaaggtgcaaagcgtcttattgaagtcggtctaggagatgatgatcagag cattgaggatgattttaatgcctggaaagaatcactatggtctgagctagacaagctcctcaaagacgagg atgataaaagtgtggcaactccttatacagctgttattcctgaataccgggtggtgactcatgatcctcggttt acaactcaaaaatcaatggaatcaaatgtggccaatggaaatactactattgacattcatcatccctgcag agttgatgttgctgtgcagaaggagcttcacacacatgaatctgatcggtcttgcattcatctcgagttcgac atatccaggacgggtattacatatgaaacaggtgaccatgtaggtgtatatgctgaaaatcatgttgaaata gttgaagaagctggaaaattgcttggccactctttagatttagtattttccatacatgctgacaaggaagatg gctccccattggaaagcgcagtgccgcctcctttccctggtccatgcacacttgggactggtttggcaagat acgcagaccttttgaaccctcctcgaaagtctgcgttagttgccttggcggcctatgccactgaaccaagtg aagccgagaaacttaagcacctgacatcacctgatggaaaggatgagtactcacaatggattgttgcaa gtcagagaagtcttttagaggtgatggctgcttttccatctgcaaaacccccactaggtgtattttttgctgcaa tagctcctcgtctacaacctcgttactactccatctcatcctcgccaagattggcgccaagtagagttcatgtt acatccgcactagtatatggtccaactcctactggtagaatccacaagggtgtgtgttctacgtggatgaag aatgcagttcctgcggagaaaagtcatgaatgtagtggagccccaatctttattcgagcatctaatttcaagt taccatccaacccttcaactccaatcgttatggtgggacctgggactgggctggcaccttttagaggttttctg caggaaaggatggcactaaaagaagatggagaagaactaggttcatctttgctcttctttgggtgtagaaa tcgacagatggactttatatacgaggatgagctcaataattttgttgatcaaggcgtaatatctgagctcatc atggcattctcccgtgaaggagctcagaaggagtatgttcaacataagatgatggagaaggcagcaca agtttgggatctaataaaggaagaaggatatctctatgtatgcggtgatgctaagggcatggcgagggac gtccaccgaactctacacaccattgttcaggagcaggaaggtgtgagttcgtcagaggcagaggctata gttaagaaacttcaaaccgaaggaagatacctcagagatgtctgggagctcccgggcggttctggtggc ggtagcggcggtggcggttctggcggtggcggtagcggcggtggcggttctggcggtggcggtagcggc ggtggcggttctggcggtggcggtagcggcggtggcggttctggtggcggtagcggcggttctccgctcg agaaacctcgtcccatcatcggaagcctcttggagctcggcgaccaaccccacaggtccttggccaggc tttccgagtcttacggcccgtttatgcatttgaagctcggccaagtcacgacggttgtcatttcctccaccacc atggctaaagaagtcctccaggcaaacagccaagtcgtctccagccggacaatcaccgacgcaagcc gcgcccacagacacagcgattttagcatggttatgttgcccgtatcccctctgtggcgaaaccttcggaaa ataagcaactcacacttgctttcctccaaggctcttgatggcaacatggagctgagaaacaaaaaggtgc aagagctcctaaatgatgtccacaaaagcgtccaggccggggaggcggtggagatcgcgagcctttctt tcagagctactctgaatctcttgtccaccacatttttctccatggacatggcggatgacacaaattccgtcact ctaaaagagctcaaggaggctatgtcgcacatgatggaagagttggggaagcctaacttggccgattatt tcccgtttctacaaaagattgacccccaaggcattaggcggcgcaacacggttactttccggaaactgatc aacttgtttgggcgtatcatcgaccaaagattgaaagtgagagaagcgagtggttctttgaaagatgatgat attttagacactcttatcaacatgatggtggtggatcaggagaagaaagaggatcagcttgacaaaacca taattgaacattttttactggatttattttcagcggggactgaaacgacttcaaccacgttggagtgggcaatg gctgagctagtaaaagcgccagagattatgtcaaaagcccgagcagagctagatcaagttataggcaa aggaaaccaagtgaaggaatcggacgtatctcgactcccttacttacaagccattgttaaagaaaccttcc gcatgcaccctacagctccattattgattcctcgcaaagccgacagtgacatcgaaatctccgactatatca tcccgaaggatgctcaggtgattgtcaatgtatgggccattggtagagactcaagcacatgggaaaatcc cgacaagtttataccggagaggtttttggacatcgatatagatgtcggaggccgggattttaagctcattccg ttcggtgctggtcggagaatatgtcccggattcccattggcgatgcgaatgttgcacttgatgttggggtctttg cttcactcgtttgattggaagttggaagatggggttagacctgatgctctaaacatggatgaaaagtttggcc tcaccttgcaaatggctcagcctttgcgagctatccccgtgccgacaaagcatgagctcgaaa (SEQ ID NO 57) . f) Le fragment d’ADN ATR1 -FL-76F112 (SEQ ID NO 57) obtenu par PCR fusion et le plasmide linéarisé pAIDA1-T7 (SEQ ID NO 50) ont ensuite été fusionné par Infusion selon le protocole 2. Le produit de ligation a été introduit dans des bactéries E. co//HST08 (Takara). Les bactéries transformées ont été étalées sur un milieu de culture LB solide (bouillon lysogène) (10g peptone, 5g extrait de levure, 5g NaCI, 16 g Agar) contenant de la tétracycline (50pg/mL) à 37°C. Une colonie isolée a ensuite été utilisée pour amplifier, par culture en milieu LB liquide (sans Agar) contenant de la tétracycline (50 pg/mL) à 37°C, le plasmide pAIDA1-T7-CYP76F112-ATR1 . La présence des éléments constitutifs du plasmide a été vérifiée par des PCR en utilisant les amorces 27F (GCTAGAGTAAGTAGTTCGCCAGT (SEQ ID NO 72)), 51 F (CCTGAATACCGGGTGGTGAC (SEQ ID NO 58)), 52R (GCATATACACCTACATGGTCAC (SEQ ID NO 59)), 53F (GTGAAGGAGCTCAGAAGGAGTA (SEQ ID NO 60)), 54R (TAGAGTTCGGTGGACGTCCCT (SEQ ID NO 61 )), 62F (TTTGGGCGTATCATCGACCAA (SEQ ID NO 62)), 63R (ATGGTTTTGTCAAGCTGATCCTC (SEQ ID NO 63)), 57F (TTCTCTTGGTGGTGTGCTTGA (SEQ ID NO 64), 58R (catctctcgtctgaccacca (SEQ ID NO 65)), 59F (ATAACGGAACGGTGGTGCAGG (SEQ ID NO 66)), 60R (AACCTCCGCCCGGTATCCTT (SEQ ID NO 67)) et 61 R (ACGATACCGAAGACAGCTCATG (SEQ ID NO 68)) . L’ensemble des étapes a permis la construction d’un plasmide pAIDA1-T7-CYP76F112- ATR1
3) Protéine de fusion
La protéine de fusion obtenue contient de l’extrémité N-terminale à l’extrémité C-terminale :
- un tag de 6 Histidines, permettant une immunodétection des protéines avec des anticorps anti His
- une séquence de clivage permettant d’enlever le tag,
- une séquence c-MYC, permettant une immunodétection des protéines avec des anticorps anti c-MYC
- un peptide de liaison AIDAI
- un polypeptide d’adressage et d’ancrage à la membrane externe : la séquence d’ancrage béta Barel de AIDAI , à savoir la séquence SEQ ID NO 1
- une séquence polypeptidique du cytochrome P450 CYP76F112 (marmesin synthase de Ficus carica, NCBI ID : GenBank Sequence ID: MW348922.1 ) dans laquelle l’ancre membranaire a été retirée de la séquence codante, à savoir la séquence SEQ ID NO 70,
- un peptide de liaison de 51 acides aminés PGGSGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGG GSGGGSGGSP (SEQ ID NO 6), et
- une séquence polypeptidique de la NADPH P450 réductase d’Arabidopsis (Arabidopsis thaliana P450 reductase 1 (ATR1 ), mRNA - NCBI Reference Sequence : NM_118585.4 ) dans laquelle l’ancre membranaire a été retirée, à savoir la séquence SEQ ID NO 7.
Les séquences nucléiques codantes correspondant aux différents éléments de la protéine de fusion décrit ci-dessus ont été utilisées et assemblées successivement de 5’ vers 3’. En particulier, il s’agissait de :
- la séquence SEQ ID NO 44 codant pour un lieur AIDAI , - la séquence SEQ ID NO 10 codant pour un polypeptide d’adressage et d’ancrage à la membrane externe : la séquence d’ancrage Tonneau bêta
- la séquence SEQ ID NO 71 codant pour le cytochrome P450 CYP76F112 marmesin synthase de Ficus carica, NCBI ID : Sequence ID: MW348922.1 )
- la séquence SEQ ID NO 15 codant pour un peptide de liaison de 51 acides aminés, et
- la séquence SEQ ID NO 17 codant pour la NADPH P450 réductase d’Arabidopsis (Arabidopsis thaliana P450 reductase 1 (ATR1 ), mRNA - Sequence ID: NM_118585.4)
4) Expression des protéines recombinantes dans les bactéries E. coli a) Le système d’expression utilisé
Le plasmide pAIDAI et les plasmides recombinants contenant les gènes codant pour la protéine de fusion sont introduits dans bactéries E. coli BL21 (DE3) plysE » (Novagen's® pET Systems). Les bactéries BL21 (DE3) pLysE sont adaptées pour la production de protéines placées sous le contrôle du promoteur T7. Les bactéries BL21 (DE3) pLysE portent le lysogène lambda DE3 et contiennent le plasmide pLysE, qui exprime de manière constitutive le lysozyme T7. Le lysozyme T7 réduit l'expression basale des gènes cibles en inhibant l'ARN polymérase T7. La souche BL21 (DE3) pLysE permet donc un contrôle plus strict de l'ARN polymérase T7. b) Préparation d’un exemple de protéine de fusion
La protéine de fusion est exprimée à partir du plasmide dont la construction a été décrite au point 3 ci-dessus. L’introduction du plasmide dans les bactéries BL21 plysE est réalisé selon le protocole recommandé par le fournisseur (https://tools.thermofisher.com/content/sfs/manuals/oneshotbl21_man.pdf [23]) La présence des éléments constitutifs du plasmide est vérifiée par des PCR en utilisant les amorces 27F (GCTAGAGTAAGTAGTTCGCCAGT (SEQ ID NO 72), 51 F (CCTGAATACCGGGTGGTGAC (SEQ ID NO 58)), 52R
(gcatatacacctacatggtcac (SEQ ID NO 59)), 53F
(GTGAAGGAGCTCAGAAGGAGTA (SEQ ID NO 60)), 54R
(TAGAGTTCGGTGGACGTCCCT (SEQ ID NO 61 )), 62F
(TTTGGGCGTATCATCGACCAA (SEQ ID NO 62)), 63R (atggttttgtcaagctgatcctc (SEQ ID NO 63)), 57F (TTCTCTTGGTGGTGTGCTTGA (SEQ ID NO 64), 58R (CATCTCTCGTCTGACCACCA (SEQ ID NO 65)),59F (ATAACGGAACGGTGGTGCAGG (SEQ ID NO 66)), 60R (aacctccgcccggtatcctt (SEQ ID NO 67)) et 61 R (ACGATACCGAAGACAGCTCATG (SEQ ID NO 68)) sur l’extrait de plasmide obtenue à partir d’ une culture de BL21 plysE transformée par le plasmide pAIDAI -T7-CYP76F112-ATR1 .
Un stock glycérolé de la bactérie BL21 plysE contenant le plasmide pAIDA1 -T7-CYP76F112-ATR1 est ensuite utilisé pour inoculer selon les recommandations du fournisseur (in-vitrogen) une préculture sur la nuit, c’est-à- dire pendant 12-14 heures, de milieu LB (bouillon lysogène) (10g peptone, 5g extrait de levure, 5g NaCI) contenant de la tétracycline (50pg/mL) et du chloramphénicol (20pg/mL) à 37°C. Cette préculture est utilisée pour inoculer 50 mL de milieu LB (bouillon lysogène) (10g peptone, 5g extrait de levure, 5g NaCI) contenant de la tétracycline (50pg/mL) et du chloramphénicol (20pg/mL) à une D0 550nm = 0,05 dans un erlenmeyer stérile de 250 mL. Après environ 2 heures de cultures à 37°C avec une agitation de 180 tours par minute, la culture est arrêtée quand la densité optique de cette dernière atteint une D0 ssonm de 0,4. Les cultures sont ensuite refroidies sur de la glace pendant 10 minutes. Le volume du milieu de culture est mesuré et les antibiotiques sont re-ajoutés pour être à une concentration finale de 50 pg/ml de Tétracycline et 20 pg/ml de Chloramphénicol. La production de la protéine de fusion est induite par ajout d’isopropyl 0-D-1 - thiogalactopyranoside (IPTG) à une concentration de 20pM final pendant 24h à 7°C, sous une agitation de 180 tours par minutes. Au bout de 24h, la densité optique est ajustée à 0,4 par dilution dans du milieu LB (4°C). Les bactéries sont récoltées par deux centrifugations à basse vitesses successives (4°C, 20 min, 1000 xg et 4°C, 10 min, 4000 xg). Les bactéries sont ensuite suspendues dans du tampon (88 mM avec des additifs de KCI 1 mM, MgSÛ44 mM, glycérol 5% v/v, à 4°C (produits commandés chez Sigma Aldrich)).
La figure 1 est une représentation schématique de la protéine de fusion obtenue, ladite protéine de fusion étant ancrée dans la membrane bactérienne.
5) Bioconversion
Une étude de la bioconversion I du demethyl suberosin est réalisée. La figure 9 (CYP76F112) représente la réaction de bioconversion correspondante. Pour cela, du demethyl suberosine (100 pM) en tant que substrat et du nicotinamide adénine dinucléotide phosphate (NADPH) (400 pM) sont ajoutés dans le milieu comprenant les bactéries E. coli obtenues au point 4 ci-dessus resuspendues. Le procédé de bioconversion est réalisé à 20°C pendant 1 h et sous agitation à 180 tours par minute. La réaction est stoppée par une extraction avec 1 volume d’Acétate d’Ethyle. Les milieux sont mélangés par vortex pendant 5 minutes suivi par une centrifugation à 4400xg pour séparer les phases organiques et aqueuses. La phase organique supérieures est récupérée et évaporée par Vivaspin. La poudre obtenue est suspendue dans 100 pL de méthanol. L’extrait ainsi obtenu est analysé par Chromatographie liquide à ultra haute performance couplée à un spectre de masse (UHPLC/MS/MS).
Cet exemple démontre donc clairement qu’un exemple de protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, avantageusement à la membrane externe, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante permet la bioconversion de substrat.
Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimé à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement être utilisé dans un procédé de bioconversion de substrats.
Cet exemple démontre également clairement qu’un exemple de protéine de fusion selon l’invention peut être exprimée à la surface de cellule, en particulier de cellule bactérienne, et peut avantageusement permettre une bioconversion de substrats dans le milieu de culture de ladite cellule.
Références bibliographiques
1 . Guengerich et Macdonald, 1990, FASEB J. 4, pp 2453-2459
2. XU Jun et al. « The cytochrome P450 superfamily: Key players in plant development and defense » Journal of Integrative Agriculture 2015, 14(9): 1673-1686
3. Kenneth Jensen et al., Plant NADPH-cytochrome P450 oxidoreductases, Phytochemistry Volume 71 , 2-3, Février 2010, Pages 132-141
4. https://blog.addgene.org/plasmid-101 -origin-of-replication
5. https://www.qiagen.com/cn/resources/faq?id=1f42840e-fbd7-4734- b0cd-e17372a9e5a4&lang=en
6. https://www.takarabio.eom/documents/User%20Manual/R045A_e.v 2102Da.pdf
7. WO 83/004261
8. Naso et al 2017, "Adeno-Associated Virus (AAV) as a Vector for Gene Therapy", BioDrugs. 2017 Aug;31 (4):317-334. doi : 10.1007/s40259- 017-0234-5
9. Zincarelli 2008 "Analysis of AAV Serotypes 1 -9 Mediated Gene Expression and Tropism in Mice After Systemic Injection" Mol Ther. 2008 Jun;16(6):1073-80. doi: 10.1038/mt.2008.76. Epub 2008 Apr 15
10. https://www.addgene.org/79180/
11 . https://www.fishersci.fr/shop/products/fermentas-pbr322- dna/10191220
12. https://www.takarabio.com/products/cloning/in-fusion-cloning
13. https://www.fishersci.fr/shop/products/fermentas-pbr322- dna/10191220
14. Jarmander, J., Gustavsson, M., Do, TH. et al. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 11 , 118 (2012). https://doi.org/10.1186/1475-2859- 11 -118 15. Rosano GL and Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5:172. doi: 10.3389/fmicb.2014.00172
16. https://www.takarabio.com/documents/User%20Manual/ln/ln- Fusion%20Snap%20Assembly%20User%20Manual_071320.pdf
17. https://assets.thermofisher.com/TFS- Assets/LSG/manuals/oneshottop10_man.pdf
18. https://www.mn-net.com/media/pdf/45/51/02/lnstruction-NucleoSpin- Plasmid.pdf 19. http://assets.thermofisher.com/TFS-Assets/BID/Reference-
Materials/fastd igest-restriction-enzymes-labaid.pdf
20. Urban et al, (1997) J Biol Chem 272(31 ):19176-86
21 . https://www.takara.co.kr/file/manual/pdf/R050A_e.v1906Da.pdf.
22. Villard, C., Munakata, R., Kitajima, S., Van Velzen, R., Schranz, M. E., Larbat, R., & Hehn, A. (2021 ). A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 231(5), 1923-1939.
23. https://tools.thermofisher.com/content/sfs/manuals/oneshotbl21_ma n.pdf

Claims

REVENDICATIONS
1. Protéine de fusion comprenant successivement (i) au moins un polypeptide d’adressage et d’ancrage à la membrane bactérienne, (ii) au moins un polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante, (iii) au moins un polypeptide de liaison comprenant au moins 47 acides aminés, de préférence comprenant 51 acides aminés, et (iv) au moins un polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase de cytochrome P450 de plante.
2. Protéine de fusion selon la revendication 1 , dans laquelle la structure quaternaire dudit au moins un polypeptide d’adressage et d’ancrage à la membrane forme un tonneau bêta.
3. Protéine de fusion selon la revendication 1 ou 2, dans laquelle le polypeptide d’adressage et d’ancrage est le polypeptide de séquence MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAVVSTIGNAFAVD HHHHHHLEALFQGPGTQKQRTELENLYFQGEQKLISEEDLSRVNNNGSI VINNSIINGNITNDADLSFGTAKLLSATVNGSLVNNKNIILNPTKESAAAIGN TLTVSNYTGTPGSVISLGGVLEGDNSLTDRLWKGNTSGQSDIVYVNEDG SGGQTRDGINIISVEGNSDAEFSLKNRVVAGAYDYTLQKGNESGTDNKG WYLTSHLPTSDTRQYRPENGSYATNMALANSLFLMDLNERKQFRAMSD NTQPESASVWMKITGGISSGKLNDGQNKTTTNQFINQLGGDIYKFHAEQL GDFTLGIMGGYANAKGKTINYTSNKAARNTLDGYSVGVYGTWYQNGEN ATGLFAETWMQYNWFNASVKGDGLEEEKYNLNGLTASAGGGYNLNVHT WTSPEGITGEFWLQPHLQAVWMGVTPDTHQEDNGTWQGAGKNNIQTK AGIRASWKVKSTLDKDTGRRFRPYIEANWIHNTHEFGVKMSDDSQLLSG SRNQGEIKTGIEGVITQNLSVNGGVAYQAGGHGSNAISGALGIKYSF (SEQ ID NO 1 ).
4. Protéine de fusion selon l’une quelconque des revendications 1 à 3, dans laquelle ledit polypeptide du domaine hydrophile d’un cytochrome P450 de plante est un polypeptide ayant une identité de séquence d’au moins 28% identité avec le polypeptide de séquence IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLWVSSPELA KEVLHTQGVEFGSRTRNWFDIFTGKGQDMVFTVYGEHWRKMRRIMTV PFFTNKVVQQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYN NMFRIMFDRRFESEDDPLFLKLKALNGERSRLAQSFEYNYGDFIPILRPFL RNYLKLCKEVKDKRIQLFKDYFVDERKKIGSTKKMDNNQLKCAIDHILEAK EKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQAKLRHELDT KLGPGVQITEPDVQNLPYLQAWKETLRLRMAIPLLVPHMNLHDAKLGGF DIPAESKILVNAWWLANNPDQWKKPEEFRPERFLEEEAKVEANGNDFRY LPFGVGRRSCPGIILALPILGITIGRLVQNFELLPPPGQSKIDTDEKGGQFS LHILKHSTIVAKPRSF (SEQ ID NO 3).
5. Protéine de fusion selon l’une quelconque des revendications 1 à 3, dans laquelle ledit polypeptide du domaine hydrophile d’un cytochrome P450 de plante est un polypeptide choisi dans le groupe comprenant le polypeptide de séquence
IPVPIFGNWLQVGDDLNHRNLTDLAKRFGEILLLRMGQRNLVWSSPELA KEVLHTQGVEFGSRTRNWFDIFTGKGQDMVFTVYGEHWRKMRRIMTV PFFTNKVVQQYRYGWEAEAAAWDDVKKNPAAATEGIVIRRRLQLMMYN NMFRIMFDRRFESEDDPLFLKLKALNGERSRLAQSFEYNYGDFIPILRPFL RNYLKLCKEVKDKRIQLFKDYFVDERKKIGSTKKMDNNQLKCAIDHILEAK EKGEINEDNVLYIVENINVAAIETTLWSIEWGIAELVNHPEIQAKLRHELDT KLGPGVQITEPDVQNLPYLQAWKETLRLRMAIPLLVPHMNLHDAKLGGF DIPAESKILVNAWWLANNPDQWKKPEEFRPERFLEEEAKVEANGNDFRY LPFGVGRRSCPGIILALPILGITIGRLVQNFELLPPPGQSKIDTDEKGGQFS LHILKHSTIVAKPRSF (SEQ ID NO 3) et KPRPIIGSLLELGDQPHRSLARLSESYGPFMHLKLGQVTTWISSTTMAKE VLQANSQWSSRTITDASRAHRHSDFSMVMLPVSPLWRNLRKISNSHLLS SKALDGNMELRNKKVQELLNDVHKSVQAGEAVEIASLSFRATLNLLSTTF FSMDMADDTNSVTLKELKEAMSHMMEELGKPNLADYFPFLQKIDPQGIR RRNTVTFRKLINLFGRIIDQRLKVREASGSLKDDDILDTLINMMVVDQEKK EDQLDKTIIEHFLLDLFSAGTETTSTTLEWAMAELVKAPEIMSKARAELDQ VIGKGNQVKESDVSRLPYLQAIVKETFRMHPTAPLLIPRKADSDIEISDYIIP KDAQVIVNVWAIGRDSSTWENPDKFIPERFLDIDIDVGGRDFKLIPFGAGR RICPGFPLAMRMLHLMLGSLLHSFDWKLEDGVRPDALNMDEKFGLTLQM AQPLRAIPVPTKH (SEQ ID NO 70)
6. Protéine de fusion selon l’une quelconque des revendications 1 à 5, dans laquelle ledit polypeptide de liaison est un polypeptide de séquence PGGSGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSG GGSGGSP (SEQ ID NO 6).
7. Protéine de fusion selon l’une quelconque des revendications 1 à 6, dans laquelle ledit polypeptide d’un domaine hydrophile d’une NADPH P450 réductase est un polypeptide ayant une identité de séquence d’au moins 90% avec le polypeptide de séquence TRVSIFFGTQTGTAEGFAKALSEEIKARYEKAAVKVIDLDDYAADDDQYEE KLKKETLAFFCVATYGDGEPTDNAARFYKWFTEENERDIKLQQLAYGVFA LGNRQYEHFNKIGIVLDEELCKKGAKRLIEVGLGDDDQSIEDDFNAWKES LWSELDKLLKDEDDKSVATPYTAVIPEYRVVTHDPRFTTQKSMESNVAN GNTTIDIHHPCRVDVAVQKELHTHESDRSCIHLEFDISRTGITYETGDHVG VYAENHVEIVEEAGKLLGHSLDLVFSIHADKEDGSPLESAVPPPFPGPCTL GTGLARYADLLNPPRKSALVALAAYATEPSEAEKLKHLTSPDGKDEYSQ WIVASQRSLLEVMAAFPSAKPPLGVFFAAIAPRLQPRYYSISSSPRLAPSR VHVTSALVYGPTPTGRIHKGVCSTWMKNAVPAEKSHECSGAPIFIRASNF KLPSNPSTPIVMVGPGTGLAPFRGFLQERMALKEDGEELGSSLLFFGCR NRQMDFIYEDELNNFVDQGVISELIMAFSREGAQKEYVQHKMMEKAAQV WDLIKEEGYLYVCGDAKGMARDVHRTLHTIVQEQEGVSSSEAEAIVKKLQ TEGRYLRDVW (SEQ ID NO 7).
8. Protéine de fusion selon l’une quelconque des revendications 1 à 7, dans laquelle ledit polypeptide comprenant le domaine hydrophile d’un cytochrome P450 de plante ou ledit polypeptide comprenant le domaine hydrophile d’une NADPH P450 réductase est exempte de domaine transmembranaire.
9. Acide nucléique codant pour une protéine de fusion selon l’une quelconque des revendications 1 à 8.
10. Vecteur, de préférence d’expression, comprenant un acide nucléique selon la revendication 9.
11. Cellule hôte comprenant un acide nucléique selon la revendication 8 et/ou un vecteur selon la revendication 10.
12. Cellule hôte selon la revendication 11 , ladite cellule hôte étant une cellule bactérienne, de préférence Escherichia coli.
13. Procédé de production d'une protéine de fusion comprenant la culture d’une cellule hôte selon la revendication 11 ou 12 dans des conditions appropriées pour l'expression de la protéine de fusion 14. Procédé de bioconversion d’un substrat par une protéine de fusion selon l’une quelconque des revendications 1 à 8 comprenant les étapes de :
- introduction dans un milieu de culture comprenant une cellule hôte selon la revendication 11 ou 12, dudit substrat,
- incubation dudit milieu de culture pendant un temps suffisant pour la bioconversion dudit substrat par ladite protéine de fusion, et
- optionnellement récupération des métabolites résultant de la bioconversion dudit substrat.
PCT/FR2023/050742 2022-05-30 2023-05-26 Protéine de fusion et utilisation pour la bioconversion de molécules WO2023233094A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2205144 2022-05-30
FR2205144A FR3135988A1 (fr) 2022-05-30 2022-05-30 Protéine de fusion et utilisation pour la bioconversion de molécules

Publications (1)

Publication Number Publication Date
WO2023233094A1 true WO2023233094A1 (fr) 2023-12-07

Family

ID=84359733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050742 WO2023233094A1 (fr) 2022-05-30 2023-05-26 Protéine de fusion et utilisation pour la bioconversion de molécules

Country Status (2)

Country Link
FR (1) FR3135988A1 (fr)
WO (1) WO2023233094A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004261A1 (fr) 1982-06-02 1983-12-08 Elf Bio-Recherches Nouveau vecteur de clonage et d'expression, levure transformee par ce vecteur et leur application
WO2007044688A1 (fr) * 2005-10-07 2007-04-19 The Regents Of The University Of California Acides nucleiques codant des enzymes cytochrome du p450 modifiees et procedes pour les utiliser
WO2017034942A1 (fr) * 2015-08-21 2017-03-02 Manus Biosynthesis, Inc. Renforcement de la productivité de cellules hôtes e. coliexprimant de manière fonctionnelle des enzymes p450

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004261A1 (fr) 1982-06-02 1983-12-08 Elf Bio-Recherches Nouveau vecteur de clonage et d'expression, levure transformee par ce vecteur et leur application
WO2007044688A1 (fr) * 2005-10-07 2007-04-19 The Regents Of The University Of California Acides nucleiques codant des enzymes cytochrome du p450 modifiees et procedes pour les utiliser
WO2017034942A1 (fr) * 2015-08-21 2017-03-02 Manus Biosynthesis, Inc. Renforcement de la productivité de cellules hôtes e. coliexprimant de manière fonctionnelle des enzymes p450

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. MW348922.1
GUENGERICHMACDONALD, FASEB J., vol. 4, 1990, pages 2453 - 2459
HAUSJELL JOHANNA ET AL: "Recombinant production of eukaryotic cytochrome P450s in microbial cell factories", vol. 38, no. 2, 27 April 2018 (2018-04-27), XP093025160, ISSN: 0144-8463, Retrieved from the Internet <URL:https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20171290/482872/bsr-2017-1290.pdf> DOI: 10.1042/BSR20171290 *
HOTZE MICHAEL ET AL: "Cinnamate 4-hydroxylase fromCatharanthus roseusand a strategy for the functional expression of plant cytochrome P450proteins as translational fusions with P450reductase inEscherichia coli", FEBS LETTERS, vol. 374, no. 3, 6 November 1995 (1995-11-06), pages 345 - 350, XP028678326, ISSN: 0014-5793, DOI: 10.1016/0014-5793(95)01141-Z *
JARMANDER, J.GUSTAVSSON, M.DO, TH. ET AL.: "A dual tag system for facilitated détection of surface expressed proteins in Escherichia coli", MICROB CELL, vol. 11, 2012, pages 118, XP021128997, DOI: 10.1186/1475-2859-11-118
KENNETH JENSEN ET AL.: "Plant NADPH-cytochrome P450 oxidoreductases", PHYTOCHEMISTRY, vol. 71, no. 2-3, 2010, pages 132 - 141, XP026851499
KENNETH JENSEN ET AL.: "Plant NADPH-cytochrome P450 oxidoreductases", PHYTOCHEMISTRY, vol. 71, no. 2-3, February 2010 (2010-02-01), pages 132 - 141, XP026851499
LEONARD E ET AL: "Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli", METABOLIC ENGINEERING, ACADEMIC PRESS, AMSTERDAM, NL, vol. 8, no. 2, 1 March 2006 (2006-03-01), pages 172 - 181, XP024946932, ISSN: 1096-7176, [retrieved on 20060301], DOI: 10.1016/J.YMBEN.2005.11.001 *
NASO ET AL.: "Adeno-Associated Virus (AAV) as a Vector for Gene Therapy", BIODRUGS, vol. 31, no. 4, 2017, pages 317 - 334, XP055547503, DOI: 10.1007/s40259-017-0234-5
ROSANO GLCECCARELLI EA: "Recombinant protein expression in Escherichia coli: advances and challenges", FRONT. MICROBIOL, vol. 5, 2014, pages 172, XP055960324
ROSANO GLCECCARELLI EA: "Recombinant protein expression in Escherichia coli: advances and challenges.", FRONT. MICROBIOL., vol. 5, 2014, pages 172, XP055960324
URBAN ET AL., J BIOL CHEM, vol. 272, no. 31, 1997, pages 19176 - 86
VILLARD, C., MUNAKATA, R., KITAJIMA, S., VAN VELZEN, R., M.E., LARBAT, R., & HEHN, A.: "A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution.", NEW PHYTOLOGIST, vol. 231, no. 5, 2021, pages 1923 - 1939
XU JUN ET AL.: "The cytochrome P450 superfamily: Key players in plant development and defense", JOURNAL OF INTÉGRATIVE AGRICULTURE, vol. 14, no. 9, 2015, pages 1673 - 1686
ZINCARELLI: "Analysis of AAV Serotypes 1-9 Mediated Gene Expression and Tropism in Mice After Systemic Injection", MOL THER, vol. 16, no. 6, 2008, pages 1073 - 80, XP055338752, DOI: 10.1038/mt.2008.76

Also Published As

Publication number Publication date
FR3135988A1 (fr) 2023-12-01

Similar Documents

Publication Publication Date Title
US11597954B2 (en) Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
RU2521502C2 (ru) Микробиологический способ получения 1,2-пропандиола
JP2001505041A (ja) 組換えジオールデヒドラターゼを発現する組換え菌によるグリセロールからの1,3−プロパンジオールの製造
WO2003066863A1 (fr) Gene reductase d&#39;un compose carbonyle alpha-substitue-alpha, beta-insature
Völker et al. Functional expression, purification, and characterization of the recombinant Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700
JP5646168B2 (ja) 多剤排出蛋白質欠損株由来の形質転換株およびそれらを用いた微生物変換方法
US7105326B2 (en) Methods for the production of tyrosine, cinnamic acid and para-hydroxycinnamic acid
CA2849418C (fr) Production d&#39;isopropanol par des souches recombinantes ameliorees
NZ256991A (en) Biosynthesis of indole with modified tryptophan synthase, dna and host cell therefor
Wischgoll et al. Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria
Müller et al. Highly efficient and stereoselective biosynthesis of (2S, 5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae
WO2023233094A1 (fr) Protéine de fusion et utilisation pour la bioconversion de molécules
Kataoka et al. Gene cloning of an NADPH-dependent menadione reductase from Candida macedoniensis, and its application to chiral alcohol production
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
Lee et al. High-throughput screening methods for selecting L-threonine aldolases with improved activity
CA2372097C (fr) Epoxyde hydrolases d&#39;origine aspergillus
KR20190097250A (ko) 신규한 효소를 사용한 메틸글리옥살의 히드록시아세톤으로의 전환 및 그의 적용
KR20230009372A (ko) D-프럭토스를 d-알룰로스로 생물전환시키기 위한 d-알룰로스 3-에피머라제
US20030171544A1 (en) Alcohol dehydrogenase and use thereof
FR3118773A1 (fr) Production de sucres par aldolisation periplasmique
Xue et al. Codon-optimized Rhodotorula glutinis PAL expressed in Escherichia coli with enhanced activities
JP6635535B1 (ja) Efpタンパク質を発現する大腸菌およびそれを用いたフラボノイド化合物製造方法
US20160289702A1 (en) Biosynthetic Mint
US20240010996A1 (en) Bacterial unspecific peroxygenases (BUPO&#39;s) and methods and uses thereof
Li et al. Novel stereoselective carbonyl reductase from Kluyveromyces marxianus for chiral alcohols synthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23730851

Country of ref document: EP

Kind code of ref document: A1