WO2023231943A1 - 一种中高压直挂式储能液冷系统 - Google Patents

一种中高压直挂式储能液冷系统 Download PDF

Info

Publication number
WO2023231943A1
WO2023231943A1 PCT/CN2023/096742 CN2023096742W WO2023231943A1 WO 2023231943 A1 WO2023231943 A1 WO 2023231943A1 CN 2023096742 W CN2023096742 W CN 2023096742W WO 2023231943 A1 WO2023231943 A1 WO 2023231943A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid cooling
energy storage
pipeline
medium
level
Prior art date
Application number
PCT/CN2023/096742
Other languages
English (en)
French (fr)
Inventor
刘松斌
朱天佑
赵俊懿
郗小龙
王纪林
Original Assignee
海南金盘智能科技股份有限公司
海南金盘科技储能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210606512.7A external-priority patent/CN114976354A/zh
Priority claimed from CN202221344456.6U external-priority patent/CN217507470U/zh
Application filed by 海南金盘智能科技股份有限公司, 海南金盘科技储能技术有限公司 filed Critical 海南金盘智能科技股份有限公司
Publication of WO2023231943A1 publication Critical patent/WO2023231943A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids

Definitions

  • This application relates to the field of heat dissipation technology for energy storage equipment, and in particular to a medium- and high-voltage direct-mounted energy storage liquid cooling system.
  • the medium and high voltage direct-mounted energy storage system has a relatively large single unit capacity.
  • the battery uses a 0.5C battery, which generates heat.
  • the volume is also relatively large.
  • the traditional air-conditioning-enhanced forced-air cooling duct design is difficult to meet the needs of large-capacity energy storage systems.
  • the temperature differences between battery cells at the cell level, module level, PACK level, battery cluster level, and clusters Relatively large, the battery core temperature inconsistency is very serious, and the battery core is prone to short board effect, which seriously affects the normal operation of the energy storage system, resulting in a significant reduction in the capacity utilization of the energy storage system, and affecting the normal income of the energy storage power station.
  • the medium and high voltage direct-mounted energy storage system operates in the 6kV ⁇ 35kV power system and adopts a container design.
  • the energy storage system operates in a high voltage suspension to the ground. If air conditioning plus forced air cooling technology is used, the PACK battery core cannot be cooled by forced small fans. , with high failure rate and poor reliability, which puts forward high requirements for the capacity of high-level power-taking converters; in order to meet the needs of air cooling and heat dissipation, a unified large air duct design is generally adopted, which occupies a large space in the container, and the battery volume ratio of the energy storage system is greatly increased. reduce.
  • the purpose of this application is to provide a medium and high-voltage direct-mounted energy storage liquid cooling system, which adopts a liquid cooling system design to solve the problem of low battery volume ratio, poor cell temperature consistency, and poor cell temperature consistency in medium- and high-voltage direct-mounted energy storage systems. It is prone to short board effects and is a key technology to improve the capacity utilization of battery energy storage systems.
  • this application provides a medium and high-voltage direct-mounted energy storage liquid cooling system, which includes a container and a liquid cooling circulation pipeline.
  • the container contains an energy storage PCS and a battery, and the liquid cooling circulation pipeline is provided with In the container, the liquid cooling circulation pipeline realizes liquid cooling and heat dissipation of the energy storage PCS and battery.
  • a liquid-cooling PACK is also included.
  • the liquid-cooling PACK contains batteries and modules, and the liquid-cooling PACK is connected to the liquid-cooling circulation pipeline.
  • the liquid cooling circulation pipeline includes:
  • the first-level pipeline is installed outside the container
  • a second-level pipeline is provided inside the container and connected with the first-level pipeline
  • the third-level pipeline is installed inside the container and connected with the second-level pipeline.
  • Each The third-level pipeline corresponds to each cluster of batteries;
  • the fourth-level pipeline is used to connect each of the liquid-cooled PACK and energy storage PCS with the third-level pipeline.
  • the first-level pipeline is arranged outside the top of the container, is designed with stainless steel, and is coated with an insulation layer.
  • the fourth-level pipeline is a hose, and the water inlet and outlet pipes of the liquid-cooling PACK adopt a hot-swappable design.
  • the second-level pipeline, the third-level pipeline and the fourth-level pipeline use PPH insulation material, and the second-level pipeline uses insulating resin in the bottom of the container.
  • the insulating support supports and surrounds the battery cluster.
  • the liquid cooling circulation pipeline further includes a control valve, which is used to adjust the liquid cooling flow rate of the energy storage PCS.
  • the liquid cooling PACK includes a box with an IP protection level and a liquid cooling plate disposed in the box.
  • a layer of thermally conductive silica gel is placed between the bottom of the battery core and the liquid cooling plate.
  • the liquid cooling plate has internal pipelines for liquid cooling flow.
  • a liquid-cooled air conditioner is further included, and the liquid-cooled air conditioner is disposed in the container.
  • the first-level pipeline includes a primary water inlet pipe for injecting water into the second-level pipeline and a primary water return pipe for returning water.
  • the first-level pipeline also includes a primary water inlet pipe for returning water to the second-level pipeline.
  • the water inlet pipe of the liquid-cooled air conditioner supplies water to the liquid-cooled air conditioner and the water return pipe of the liquid-cooled air conditioner returns water.
  • the medium and high-voltage direct-mounted energy storage liquid cooling system includes a container and a liquid cooling circulation pipeline.
  • the container contains an energy storage PCS and a battery, and the liquid cooling circulation pipeline is installed in the container.
  • the liquid cooling circulation pipeline is used to realize liquid cooling and heat dissipation of the energy storage PCS and battery.
  • This medium- and high-voltage direct-mounted energy storage liquid cooling system adopts liquid cooling system design, which is a solution to the problem of low battery volume ratio, poor battery core temperature consistency, and prone to short-board effects in the battery cells of medium- and high-voltage direct-mounted energy storage systems. Key technology for energy storage system capacity utilization.
  • Figure 1 is a front view of a medium- and high-voltage direct-mounted energy storage liquid cooling system provided by an embodiment of the present application;
  • Figure 2 is an isometric view of a medium- and high-voltage direct-mounted energy storage liquid cooling system provided by an embodiment of the present application.
  • Figure 1 is a front view of a medium-high-voltage direct-mounted energy storage liquid cooling system provided by an embodiment of the present application.
  • Figure 2 is a medium-high-voltage direct-mounted energy storage liquid cooling system provided by an embodiment of the present application. Isometric view of the cooling system.
  • the present application provides a medium and high-voltage direct-mounted energy storage liquid cooling system, which adopts a liquid cooling system design to solve the problem of low battery volume ratio and battery core problems in medium- and high-voltage direct-mounted energy storage systems. Temperature consistency is relatively poor, batteries are prone to short board effects, and it is a key technology to improve the capacity utilization of battery energy storage systems.
  • the medium and high-voltage direct-mounted energy storage liquid cooling system includes a container and a liquid cooling circulation pipeline.
  • the container is equipped with an energy storage PCS60 and a battery.
  • the liquid cooling circulation pipeline is installed in the container so that the liquid cooling circulation pipeline can realize energy storage. Liquid cooling for PCS60 and battery.
  • the mid-to-high direct-mounted energy storage system of this embodiment adopts liquid cooling technology, which enhances the heat dissipation effect of the energy storage PCS60 and the battery.
  • the battery core temperature has good consistency, and the temperature difference is controlled at ⁇ 3°C, which overcomes the short board effect of the battery.
  • Improve the capacity utilization rate of the energy storage system the medium and high-voltage direct-mounted energy storage system uses liquid cooling technology, which eliminates the unified large air duct design of the traditional air conditioner and fan, saves container space, and increases the battery volume ratio of the energy storage container.
  • a liquid cooling PACK 50 is also included.
  • the liquid cooling PACK 50 contains batteries and modules, and the liquid cooling PACK 50 is connected to the liquid cooling circulation pipeline.
  • the cells and modules of the medium- and high-voltage direct-mounted energy storage system are placed in the liquid-cooled PACK50.
  • the battery core adopts liquid cooling technology to ensure battery core temperature consistency, and the battery core temperature difference is controlled within ⁇ 3°C.
  • the liquid-cooled PACK50 includes a box with an IP65 protection level and a liquid-cooled plate installed in the box.
  • the bottom of the battery core is in contact with the liquid-cooled plate.
  • the inside of the liquid-cooled plate is filled with pipes, and liquid cooling flows in the pipes. Take away the heat generated by the battery core during operation.
  • a layer of thermally conductive silica gel is generally placed between the bottom of the battery core and the liquid cooling plate.
  • the liquid cooling circulation pipeline includes:
  • the first-level pipeline 10 is installed outside the container;
  • the second-level pipeline 20 is installed inside the container and connected with the first-level pipeline 10;
  • the third-level pipeline 30 is provided inside the container and connected with the second-level pipeline 20. Each third-level pipeline 30 corresponds to each cluster of batteries;
  • the fourth-level pipeline 40 is used to connect each liquid cooling PACK50 and energy storage PCS60 with the third-level pipeline 30 .
  • the liquid cooling system of the medium and high-voltage direct-mounted energy storage system adopts a four-level pipeline container design to ensure balanced water pressure in the first-level pipeline and consistent liquid cooling flow in each container; the internal pipelines in each container pass Control the flow rate to ensure the flow of secondary pipelines, third-level pipelines and fourth-level pipelines.
  • the flow rate should be kept consistent to ensure that the flow rate of each cluster and each liquid-cooled PACK50 is basically the same.
  • the first-level pipeline 10 is arranged outside the top of the container, is designed with stainless steel, and is covered with an external insulation layer, which can effectively prevent the external environment from disturbing the water temperature of the liquid-cooling pipeline.
  • the first-level pipeline 10 is divided into a primary water inlet pipe 101, a primary return water pipe 102 and a flow equalizing pipeline.
  • the primary water inlet pipe 101 is used to inlet water into the second-level pipeline 20
  • the primary return water pipe is 102 is used to return water from the second-level pipeline 20
  • the flow equalizing pipeline mainly ensures that the liquid cooling flow entering each container is balanced.
  • the second-level pipeline 20 has an inlet pipe connected with the primary water inlet pipe 101 and a return pipe connected with the primary return water pipe 102.
  • the second-level pipeline 20 and the first-level pipeline 10 pass through the flange. connect.
  • the second-level pipeline 20 is supported by supports in the bottom of the container and surrounds the battery cluster.
  • Each cluster of batteries corresponds to the third-level pipeline 30 , and the water inlet and outlet interface of each cluster of liquid-cooled PACK50 is connected to the third-level pipeline 30 through the fourth-level pipeline 40 .
  • the fourth-level pipeline 40 is a hose and is connected to the third-level pipeline 30 and the water inlet and outlet interface of the liquid cooling PACK 50 .
  • the water inlet and outlet pipes of the liquid-cooled PACK50 adopt a hot-swappable design
  • the fourth-level pipeline 40 of the medium- and high-voltage direct-mounted energy storage system is connected to each cluster of liquid-cooled PACK50 and energy storage PCS60 through hot-swappable pipes.
  • Hot-swappable pipe fittings can connect or disconnect the liquid-cooled PACK50 or energy storage PCS60 with the fourth-level pipeline 40 with water pressure, which facilitates the operation and maintenance of the liquid-cooled PACK50 and energy storage PCS60.
  • the second-level pipeline 20, the third-level pipeline 30, and the fourth-level pipeline 40 use PPH insulating materials to enhance the insulation performance and anti-condensation of the pipelines, and improve the performance of the liquid-cooled pipelines in medium and high-voltage environments.
  • Safety and reliability; the second-level pipeline 20 is supported by insulating resin insulating supports to improve the insulation performance of the liquid cooling pipeline inside the container and improve the operation safety and reliability of the medium and high-voltage direct-mounted energy storage system.
  • the liquid cooling circulation pipeline also includes a control valve, which is used to adjust the liquid cooling flow of the energy storage PCS60.
  • the medium and high-voltage direct-mounted energy storage system adopts a common cabin design for the battery and energy storage PCS60.
  • the heat dissipation of the energy storage PCS60 is directly connected to the fourth-level pipeline 40 and the third-level pipeline 30.
  • the heating power of PCS60 is different from that of liquid cooling PACK50.
  • the liquid cooling flow of energy storage PCS60 is adjusted through the control valve to ensure effective heat dissipation of energy storage PCS60.
  • This application designs a liquid cooling system for a medium- and high-voltage direct-mounted energy storage system.
  • the liquid cooling system is divided into a four-level pipeline structure to ensure the consistency of cell temperature balance at the cell level, module level, PACK level, and cluster level. Improve the heat exchange capacity of the battery core, provide a safe and comfortable external temperature environment for the battery core, and reduce the risk of thermal runaway.
  • the liquid cooling system also exchanges heat for the medium and high-voltage direct-mounted energy storage PCS60 to ensure the safe and reliable operation of the energy storage PCS60.
  • a liquid-cooled air conditioner is also included, and the liquid-cooled air conditioner is arranged in the container.
  • a liquid-cooled air conditioner is used in the medium- and high-voltage direct-mounted energy storage system to effectively dissipate the radiant energy absorbed by the container under solar radiation and keep the working environment temperature of the container at 25°C.
  • the liquid-cooled air conditioner uses the liquid cooling circulation system of the liquid cooling system itself to reduce power consumption.
  • Liquid-cooled air conditioners have dehumidification and heating functions, which can effectively prevent condensation inside the container.
  • the first-stage pipeline 10 also includes a liquid-cooled air-conditioning water inlet pipe 103 for injecting water into the liquid-cooled air-conditioner and a liquid-cooled air-conditioning return water pipe 104 for returning water.
  • the water outlet of the liquid cooling machine is connected to the first-level pipeline 10 of the container.
  • the first-level pipeline 10 is connected to the second-level pipeline 20 through the internal flange of the container.
  • the third-level pipeline 30 is connected to the second-level pipeline 20
  • the fourth-level pipeline 40 is connected to the second-level pipeline 20
  • the fourth-level pipeline 40 is connected through hot-swappable pipe fittings.
  • the liquid-cooled PACK50 and medium- and high-voltage direct-mounted energy storage PCS60 inside the container dissipate heat through the liquid cooling system, and the return water returns to the liquid cooling unit through the fourth-level, third-level, second-level and first-level pipelines.
  • the medium- and high-voltage direct-mounted energy storage liquid cooling system adopts a four-level pipeline architecture, which can effectively dissipate heat for the liquid-cooled PACK50 and energy storage PCS60 and ensure the battery temperature balance and consistency in the liquid-cooled PACK50;
  • the fourth-level pipeline of the liquid cooling system of the medium and high-voltage direct-mounted energy storage system is connected to the liquid cooling PACK50 and energy storage PCS60 using hot-swappable pipe fittings to facilitate the operation and maintenance of the liquid cooling PACK50 and energy storage PCS60 and prevent malfunctions during operation and maintenance. , dripping, leaking;
  • the medium- and high-voltage direct-mounted energy storage system uses liquid cooling technology to increase the battery volume ratio of the energy storage system. Efficient use of container space;
  • Liquid-cooled air conditioners replace ordinary air conditioners and have dehumidification and heating functions to prevent condensation and reduce electricity consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种中高压直挂式储能液冷系统,包括集装箱和液冷循环管路,所述集装箱内容置有储能PCS和电池,所述液冷循环管路设置于所述集装箱,以使所述液冷循环管路实现对储能PCS和电池的液冷散热。上述中高压直挂式储能液冷系统,采用液冷系统设计,是解决中高压直挂储能系统电池容积率不高、电芯温度一致性比较差、电芯容易出现短板效应、提高电池储能系统容量利用率的关键性技术。

Description

一种中高压直挂式储能液冷系统
本申请要求于2022年05月31日提交中国专利局、申请号为202210606512.7、发明名称为“一种中高压直挂式储能液冷系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请同时要求于2022年05月31日提交中国专利局、申请号为202221344456.6、发明名称为“一种中高压直挂式储能液冷系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能设备散热技术领域,特别涉及一种中高压直挂式储能液冷系统。
背景技术
随着3060双碳目标的确立,特别是十四五规划将我国能源战略进行了重大调整,提高新能源光伏、风电发电比例,将传统化石能源向清洁能源转换。作为新能源光伏、风电重要支撑技术—储能,解决光伏、风电并网给电网带来的间歇性、不确定性和波动性,平滑并网输出和稳定电力系统运行都具有非常重要的作用。
根据国家发改委和各省市发改委相关文件要求,对新能源并网发电厂强制配置一定容量的储能,根据各省对新能源调节能力和电网结构的不同,按照新能源发电功率,一般配置10%~30%的储能。储能系统正朝着高电压、大容量、集群化、规模化的方向发展,特别是共享储能的提出,对储能系统容量和寿命都提出了更高的要求,目前,35kV高压直挂储能具有运行电压等级比较高,不需要并网升压变压器,单机容量最大20MW/40MWh,在百兆瓦大容量储能系统,特别是对光伏、风电新能源发电侧,高压直挂储能具有很大的技术优势。
中高压直挂储能系统单机容量比较大,电池采用0.5C电池,电池发热 量也比较大,传统的空调加强制风冷风道设计难以满足大容量储能系统的需求,电芯级、模组级、PACK级、电池簇级以及簇与簇电芯之间的温度差异比较大,电芯温度不一致性非常严重,电芯易出现短板效应,严重影响储能系统的正常运行,导致储能系统容量利用率大大降低,影响储能电站的正常收益。中高压直挂储能系统运行于6kV~35kV电力系统中,采用集装箱设计,储能系统对地高电压悬浮运行,如果采用空调加强制风冷技术,PACK电芯散热不能采用强制小风机散热方式,故障率高,可靠性差,对高位取电变换器容量提出了很高的要求;为了满足风冷散热需求,一般采用统一大风道设计,占据集装箱很大的空间,储能系统电池容积率大大降低。
因此,如何能够提供一种解决上述技术问题的中高压直挂式储能液冷系统是本领域技术人员亟需解决的技术问题。
发明内容
本申请的目的是提供一种中高压直挂式储能液冷系统,采用液冷系统设计,是解决中高压直挂储能系统电池容积率不高、电芯温度一致性比较差、电芯容易出现短板效应、提高电池储能系统容量利用率的关键性技术。
为实现上述目的,本申请提供一种中高压直挂式储能液冷系统,包括集装箱和液冷循环管路,所述集装箱内容置有储能PCS和电池,所述液冷循环管路设置于所述集装箱,以使所述液冷循环管路实现对储能PCS和电池的液冷散热。
在一些实施例中,还包括液冷PACK,所述液冷PACK内容置有电芯和模组,所述液冷PACK连通所述液冷循环管路。
在一些实施例中,所述液冷循环管路包括:
第一级管路,设置于所述集装箱外部;
第二级管路,设置于所述集装箱内部且与所述第一级管路连通;
第三级管路,设置于所述集装箱内部且与所述第二级管路连通,每一 所述第三级管路对应于每一簇电池;
第四级管路,用于使每一所述液冷PACK和储能PCS与所述第三级管路连通。
在一些实施例中,所述第一级管路设置于所述集装箱顶部外,采用不锈钢设计,外敷保温层。
在一些实施例中,所述第四级管路为软管,所述液冷PACK的进出水管件采用热插拔设计。
在一些实施例中,所述第二级管路、所述第三级管路和所述第四级管路采用PPH绝缘材料,所述第二级管路在所述集装箱底部内采用绝缘树脂绝缘支撑件支撑并围绕电池簇一圈。
在一些实施例中,所述液冷循环管路还包括控制阀,所述控制阀用于调整储能PCS的液冷流量。
在一些实施例中,所述液冷PACK包括采用IP防护等级的箱体以及设置于所述箱体内的液冷板,在电芯底部和所述液冷板之间垫一层导热硅胶,所述液冷板内部具有供液冷流动的管路。
在一些实施例中,还包括液冷空调,所述液冷空调设置于所述集装箱内。
在一些实施例中,所述第一级管路包括用于向所述第二级管路进水的一级进水管以及回水的一级回水管,所述第一级管路还包括用于向所述液冷空调进水的液冷空调进水管以及回水的液冷空调回水管。
相对于上述背景技术,本申请所提供的中高压直挂式储能液冷系统包括集装箱和液冷循环管路,集装箱内容置有储能PCS和电池,液冷循环管路设置于集装箱,以使液冷循环管路实现对储能PCS和电池的液冷散热。该中高压直挂式储能液冷系统采用液冷系统设计,是解决中高压直挂储能系统电池容积率不高、电芯温度一致性比较差、电芯容易出现短板效应、提高电池储能系统容量利用率的关键性技术。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的中高压直挂式储能液冷系统的正视图;
图2为本申请实施例提供的中高压直挂式储能液冷系统的轴测图。
其中:
10-第一级管路、20-第二级管路、30-第三级管路、40-第四级管路、50-液冷PACK、60-储能PCS、101-一级进水管、102-一级回水管、103-液冷空调进水管、104-液冷空调回水管。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本技术领域的技术人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
请参考图1和图2,其中,图1为本申请实施例提供的中高压直挂式储能液冷系统的正视图,图2为本申请实施例提供的中高压直挂式储能液冷系统的轴测图。
在第一种具体的实施方式中,本申请提供了一种中高压直挂式储能液冷系统,采用液冷系统设计,是解决中高压直挂储能系统电池容积率不高、电芯温度一致性比较差、电芯容易出现短板效应、提高电池储能系统容量利用率的关键性技术。
该中高压直挂式储能液冷系统包括集装箱和液冷循环管路,集装箱内容置有储能PCS60和电池,液冷循环管路设置于集装箱,以使液冷循环管路实现对储能PCS60和电池的液冷散热。
需要注意的是,本实施例的中高直挂储能系统采用液冷技术,增强了储能PCS60和电池散热效果,电芯温度一致性好,温差控制在±3℃,克服电池短板效应,提高储能系统容量利用率;中高压直挂储能系统采用液冷技术,消除了传统空调加风机统一大风道设计,节省集装箱空间,提高储能集装箱电池容积率。
在一些实施例中,还包括液冷PACK50,液冷PACK50内容置有电芯和模组,液冷PACK50连通液冷循环管路。
在本实施例中,中高压直挂储能系统电芯和模组放到液冷PACK50中。电芯采用液冷技术,保证电芯温度一致性,电芯温度差异控制在±3℃。
示例性的,液冷PACK50包括采用IP65防护等级的箱体以及设置于箱体内的液冷板,电芯底部与液冷板相接触,液冷板内部充满管路,液冷在管路流动,带走电芯在工作过程中产生的热量。
为了增强电芯与液冷板换热效果,一般在电芯底部和液冷板之间垫一层导热硅胶。
在一些实施例中,液冷循环管路包括:
第一级管路10,设置于集装箱外部;
第二级管路20,设置于集装箱内部且与第一级管路10连通;
第三级管路30,设置于集装箱内部且与第二级管路20连通,每一第三级管路30对应于每一簇电池;
第四级管路40,用于使每一液冷PACK50和储能PCS60与第三级管路30连通。
在本实施例中,中高压直挂储能系统液冷系统采用四级管路集装箱设计,保证一级管路的水压均衡,保证每个集装箱液冷流量一致;每个集装箱内部管路通过对流量的控制,保证二级管路、三级管路和四级管路的流 量保持一致,保证每一簇和每一个液冷PACK50的流量基本一致。
示例性的,第一级管路10设置于集装箱顶部外,采用不锈钢设计,外敷保温层,可有效阻止外部环境对液冷管路水温度的扰动。
具体而言,第一级管路10分为一级进水管101、一级回水管102和均流管路,一级进水管101用于向第二级管路20进水,一级回水管102用于由第二级管路20回水,均流管路主要保证进入每个集装箱的液冷流量均衡。
除此以外,第二级管路20有与一级进水管101连通的进水管以及与一级回水管102连通的回水管,第二级管路20与第一级管路10通过法兰盘连接。第二级管路20在集装箱底部内采用支撑件支撑并围绕电池簇一圈。
每一簇电池都对应第三级管路30,每一簇液冷PACK50进出水接口通过第四级管路40与第三级管路30相连。
在一些实施例中,第四级管路40为软管,与第三级管路30和液冷PACK50进出水接口连接。
示例性的,液冷PACK50的进出水管件采用热插拔设计;中高压直挂储能系统第四级管路40与每簇液冷PACK50和储能PCS60通过热插拔管件连接。热插拔管件可以带水压将液冷PACK50或储能PCS60与第四级管路40接通或断开,方便液冷PACK50和储能PCS60的运维。
示例性的,第二级管路20、第三级管路30和第四级管路40采用PPH绝缘材料,增强管路的绝缘性能和防凝露,提高液冷管路在中高压环境中的安全性和可靠性;第二级管路20采用绝缘树脂绝缘支撑件进行支撑,提高集装箱内部液冷管路绝缘性能,提高中高压直挂储能系统运行安全性和可靠性。
在一些实施例中,液冷循环管路还包括控制阀,控制阀用于调整储能PCS60的液冷流量。
在本实施例中,中高压直挂储能系统采用电池和储能PCS60共舱设计,储能PCS60散热采用第四级管路40与第三级管路30直接相连,考虑储能 PCS60的发热功率与液冷PACK50的发热功率不同,通过控制阀调整储能PCS60的液冷流量,保证储能PCS60有效散热。
本申请对中高压直挂储能系统液冷系统进行设计,液冷系统共分为四级管路架构,保证电芯级、模组级、PACK级、簇级电芯温度均衡的一致性,提高电芯的换热能力,为电芯提供安全舒适的外部温度环境,降低热失控风险,同时,液冷系统也为中高压直挂储能PCS60进行换热,保证储能PCS60安全可靠运行。
在一些实施例中,还包括液冷空调,液冷空调设置于集装箱内。
在本实施例中,中高压直挂储能系统内采用液冷空调对集装箱在太阳辐射情况下吸收的辐射能进行有效散热,保持集装箱工作环境温度在25℃。同时液冷空调利用液冷系统自身的液冷循环系统,降低用电功耗。液冷空调具有除湿和加热功能,可以有效防止集装箱内部凝露的发生。
具体而言,第一级管路10还包括用于向液冷空调进水的液冷空调进水管103以及回水的液冷空调回水管104。
在一种具体实施例的说明中,液冷机出水口连接集装箱的第一级管路10,第一级管路10通过集装箱内部法兰与第二级管路20相连,第三级管路30与第二级管路20相连,第四级管路40与第二级管路20相连,并且第四级管路40通过热插拔管件相连。集装箱内部液冷PACK50和中高压直挂储能PCS60通过液冷系统散热,回水通过四级、三级、二级和一级管路回到液冷机组。
需要强调的是,本申请具备以下优点:
1、中高压直挂储能液冷系统采用四级管路架构,可以对液冷PACK50和储能PCS60实现有效地散热,保证液冷PACK50内电池温度均衡一致性;
2、中高压直挂储能系统液冷系统四级管路与液冷PACK50和储能PCS60采用热插拔管件连接,方便对液冷PACK50和储能PCS60运维,防止在运维中的跑、冒、滴、漏水现象;
3、中高压直挂储能系统采用液冷技术,提高储能系统电池容积率,有 效利用集装箱空间;
4、液冷空调代替普通空调,具有除湿、加热功能,防止凝露的发生,减少用电损耗。
需要注意的是,本申请中提及的诸多部件均为通用标准件或本领域技术人员知晓的部件,其结构和原理都为本技术人员均可通过技术手册得知或通过常规实验方法获知。
需要说明的是,在本说明书中,诸如第一和第二之类的关系术语仅仅用来将一个实体与另外几个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。
以上对本申请所提供的中高压直挂式储能液冷系统进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (10)

  1. 一种中高压直挂式储能液冷系统,其特征在于,包括集装箱和液冷循环管路,所述集装箱内容置有储能PCS(60)和电池,所述液冷循环管路设置于所述集装箱,以使所述液冷循环管路实现对储能PCS(60)和电池的液冷散热。
  2. 根据权利要求1所述的中高压直挂式储能液冷系统,其特征在于,还包括液冷PACK(50),所述液冷PACK(50)内容置有电芯和模组,所述液冷PACK(50)连通所述液冷循环管路。
  3. 根据权利要求2所述的中高压直挂式储能液冷系统,其特征在于,所述液冷循环管路包括:
    第一级管路(10),设置于所述集装箱外部;
    第二级管路(20),设置于所述集装箱内部且与所述第一级管路(10)连通;
    第三级管路(30),设置于所述集装箱内部且与所述第二级管路(20)连通,每一所述第三级管路(30)对应于每一簇电池;
    第四级管路(40),用于使每一所述液冷PACK(50)和储能PCS(60)与所述第三级管路(30)连通。
  4. 根据权利要求3所述的中高压直挂式储能液冷系统,其特征在于,所述第一级管路(10)设置于所述集装箱顶部外,采用不锈钢设计,外敷保温层。
  5. 根据权利要求3所述的中高压直挂式储能液冷系统,其特征在于,所述第四级管路(40)为软管,所述液冷PACK(50)的进出水管件采用热插拔设计。
  6. 根据权利要求3所述的中高压直挂式储能液冷系统,其特征在于,所述第二级管路(20)、所述第三级管路(30)和所述第四级管路(40)采用PPH绝缘材料,所述第二级管路(20)在所述集装箱底部内采用绝缘树脂绝缘支撑件支撑并围绕电池簇一圈。
  7. 根据权利要求3所述的中高压直挂式储能液冷系统,其特征在于,所述液冷循环管路还包括控制阀,所述控制阀用于调整储能PCS(60)的液冷流量。
  8. 根据权利要求2至7任一项所述的中高压直挂式储能液冷系统,其特征在于,所述液冷PACK(50)包括采用IP65防护等级的箱体以及设置于所述箱体内的液冷板,在电芯底部和所述液冷板之间垫一层导热硅胶,所述液冷板内部具有供液冷流动的管路。
  9. 根据权利要求3至7任一项所述的中高压直挂式储能液冷系统,其特征在于,还包括液冷空调,所述液冷空调设置于所述集装箱内。
  10. 根据权利要求9所述的中高压直挂式储能液冷系统,其特征在于,所述第一级管路(10)包括用于向所述第二级管路(20)进水的一级进水管(101)以及回水的一级回水管(102),所述第一级管路(10)还包括用于向所述液冷空调进水的液冷空调进水管(103)以及回水的液冷空调回水管(104)。
PCT/CN2023/096742 2022-05-31 2023-05-29 一种中高压直挂式储能液冷系统 WO2023231943A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210606512.7 2022-05-31
CN202210606512.7A CN114976354A (zh) 2022-05-31 2022-05-31 一种中高压直挂式储能液冷系统
CN202221344456.6U CN217507470U (zh) 2022-05-31 2022-05-31 一种中高压直挂式储能液冷系统
CN202221344456.6 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231943A1 true WO2023231943A1 (zh) 2023-12-07

Family

ID=89026901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096742 WO2023231943A1 (zh) 2022-05-31 2023-05-29 一种中高压直挂式储能液冷系统

Country Status (1)

Country Link
WO (1) WO2023231943A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954936A (zh) * 2021-04-25 2021-06-11 阳光电源股份有限公司 储能集装箱、风电储能系统和多能互补能源站
CN214124849U (zh) * 2020-12-18 2021-09-03 阳光电源股份有限公司 一种集装箱式储能系统
CN113381108A (zh) * 2021-06-21 2021-09-10 南方电网调峰调频发电有限公司 一种锂离子储能系统专用的集装箱及使用方法
CN215680817U (zh) * 2021-08-19 2022-01-28 厦门海辰新能源科技有限公司 储能系统
CN216213779U (zh) * 2021-10-09 2022-04-05 瑞浦能源有限公司 集装箱式储能系统
CN114976354A (zh) * 2022-05-31 2022-08-30 海南金盘智能科技股份有限公司 一种中高压直挂式储能液冷系统
CN217507470U (zh) * 2022-05-31 2022-09-27 海南金盘智能科技股份有限公司 一种中高压直挂式储能液冷系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214124849U (zh) * 2020-12-18 2021-09-03 阳光电源股份有限公司 一种集装箱式储能系统
CN112954936A (zh) * 2021-04-25 2021-06-11 阳光电源股份有限公司 储能集装箱、风电储能系统和多能互补能源站
CN113381108A (zh) * 2021-06-21 2021-09-10 南方电网调峰调频发电有限公司 一种锂离子储能系统专用的集装箱及使用方法
CN215680817U (zh) * 2021-08-19 2022-01-28 厦门海辰新能源科技有限公司 储能系统
CN216213779U (zh) * 2021-10-09 2022-04-05 瑞浦能源有限公司 集装箱式储能系统
CN114976354A (zh) * 2022-05-31 2022-08-30 海南金盘智能科技股份有限公司 一种中高压直挂式储能液冷系统
CN217507470U (zh) * 2022-05-31 2022-09-27 海南金盘智能科技股份有限公司 一种中高压直挂式储能液冷系统

Similar Documents

Publication Publication Date Title
CN217507470U (zh) 一种中高压直挂式储能液冷系统
CN204704909U (zh) 光伏发电与市电互补的空气源热泵供热系统
CN114976354A (zh) 一种中高压直挂式储能液冷系统
CN203719001U (zh) 作为应急冷源使用的闭式承压水蓄冷系统
CN112072211A (zh) 一种分散式大规模电池储能热管理系统及其运行方法
CN212461827U (zh) 一种分散式大规模电池储能热管理系统
WO2023231943A1 (zh) 一种中高压直挂式储能液冷系统
CN108826744A (zh) 用超临界水氧化系统余能进行冷热电多联供的系统
CN218385290U (zh) 一种燃料电池相变强化散热系统
CN117393797A (zh) 一种燃料电池电堆冷却系统及控制方法
CN216054964U (zh) 一种基于锂电池的安全储能系统
CN215120147U (zh) 储能电站
CN208720337U (zh) 光热建筑一体化供暖系统
CN113793999A (zh) 一种新型储能集装箱热管理系统
CN208595723U (zh) 一种低温空气源热泵
CN206402625U (zh) 一种用于不间断电源的散热装置
Huang et al. A High-efficiency air-cooling and waste heat utilization system for 100Mvar STATCOM
CN205532740U (zh) 低压蒸汽二次压差再循环大功率汽轮机异步发电供热首站
CN117117242B (zh) 一种液流电池储能换热系统及控制方法
CN204534939U (zh) 机房空调热水控制装置
CN206947812U (zh) 一种变电站冷却系统
CN220383432U (zh) 一种pcs循环水冷却系统
CN220624454U (zh) 一种热电联产空气源热泵及热电联产系统
CN216414157U (zh) 一种用于变频室的降温冷却系统
Sheng-Li et al. Exploratory Research on the Cooling Mode of Offshore Wind Power Converter Substation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815126

Country of ref document: EP

Kind code of ref document: A1