WO2023231726A1 - Pv/t耦合双源热泵建筑综合供能系统的控制方法 - Google Patents

Pv/t耦合双源热泵建筑综合供能系统的控制方法 Download PDF

Info

Publication number
WO2023231726A1
WO2023231726A1 PCT/CN2023/093165 CN2023093165W WO2023231726A1 WO 2023231726 A1 WO2023231726 A1 WO 2023231726A1 CN 2023093165 W CN2023093165 W CN 2023093165W WO 2023231726 A1 WO2023231726 A1 WO 2023231726A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
control valve
pump
temperature
source side
Prior art date
Application number
PCT/CN2023/093165
Other languages
English (en)
French (fr)
Inventor
张占辉
岳欣
张依章
曹宝
Original Assignee
天津市滨海新区环境创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市滨海新区环境创新研究院 filed Critical 天津市滨海新区环境创新研究院
Publication of WO2023231726A1 publication Critical patent/WO2023231726A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1045Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the field of renewable energy technology, and in particular to a control method for a PV/T coupled dual-source heat pump building comprehensive energy supply system.
  • Coping with climate change and reducing carbon dioxide emissions is a unified consensus reached by the entire human society.
  • the total carbon emissions of the entire building process in China accounted for 51.3% of the country's carbon emissions, of which the carbon emissions during the building operation stage accounted for about 21.9% of the country's carbon emissions.
  • the carbon emissions during the building operation stage accounted for a relatively high proportion, and the energy structure during the building operation stage Mainly for the needs of "heat, electricity and cooling", therefore in the context of "dual carbon", we must vigorously develop new building comprehensive energy supply systems based on renewable energy to reduce carbon emissions in the building sector.
  • the ground source heat pump system uses the soil as the cold/heat source. Since the soil temperature fluctuates slightly throughout the year and lags behind the atmospheric temperature, its performance coefficient is higher than that of the traditional air source heat pump system. It is an energy-efficient, pollution-free, and reliable system. Renewable building energy utilization form; however, in the severe cold and cold areas of northern China, due to low outdoor temperatures and long heating periods, the heating load is much greater than the cooling load. If things go on like this, it will cause underground cold accumulation.
  • the photovoltaic (PV) system collects solar energy and converts it into electrical energy. About 20% of the solar radiation is converted into electrical energy, and the other about 80% of the radiation is converted into heat energy or lost, and the temperature effect of the photovoltaic module is significant (each increase 1°C, the power generation efficiency decreases by about 0.3%). When the waste heat generated by photovoltaic modules cannot be used, there will be a problem of inhibiting power generation.
  • the solar photovoltaic photothermal module (Photovoltaic/ThermalUnit, PV/T) converts solar energy into electrical energy while collecting part of the thermal energy (waste heat). It can realize the recovery and utilization of excess thermal energy (waste heat) while generating solar photovoltaic power, which is beneficial to photovoltaics.
  • the battery has a cooling effect, which can improve the power generation efficiency and the life of the components; the temperature of hot water generated by PV/T can generally reach 45°C, which can be used for building heating, domestic hot water, and can be used for cross-season heat storage in the ground for ground source heat pumps. , can achieve the best matching of building heat load, electric load and cooling load, greatly reducing the cost of building energy system.
  • the purpose of this disclosure is to provide a control method for a PV/T coupled dual-source heat pump building comprehensive energy supply system to realize solar heat storage directly underground, improve the heat collection and storage efficiency and the power generation efficiency of PV/T, and at the same time achieve " "Cold and hot” dual storage enables large-span energy cascade utilization from high-grade to low-grade water storage tank temperatures, thereby improving the comprehensive utilization efficiency of solar energy. It can not only efficiently provide "heat, electricity, and cold” energy for buildings, but also reduce the consumption of fossil energy, reduce carbon emissions in the construction field, and greatly reduce building energy costs. It has broad application prospects and is conducive to popularization and application. .
  • the PV/T coupled dual-source heat pump building comprehensive energy supply system includes PV/T, underground pipe replacement Heater, hot water storage tank, heat pump unit, user terminal, first heat storage control valve, second heat storage control valve, first heat collection control valve, second heat collection control valve, first heat storage tank heat storage Control valve, second heat storage tank heat storage control valve, third heat storage tank heat storage control valve, first direct supply control valve, second direct supply control valve, first water source side control valve, second water source side Control valve, first ground source side control valve, second ground source side control valve, first load gate valve, second load gate valve, first source side gate valve, second source side gate valve, third load control valve, first ground Source side cooling gate valve, second source side cooling gate valve, first load side cooling gate valve, second load side cooling gate valve, first heat supplement control valve, second heat supplement control valve, heat storage pump, heat collector pump , terminal pump, source side pump, temperature monitoring system, combiner box,
  • the temperature monitoring system includes a first temperature sensor, a second temperature sensor and a third temperature sensor.
  • the first temperature sensor is used to monitor the outlet temperature of the PV/T
  • the second temperature sensor is used to monitor the hot water storage tank.
  • the high temperature outlet temperature, the third temperature sensor is used to monitor the low temperature inlet temperature of the hot water storage tank;
  • the controller is respectively connected with the first temperature sensor, the second temperature sensor, the third temperature sensor, the heat storage pump, the heat collecting pump, Terminal pump and source side pump connection;
  • the outlet of the PV/T, the first heat storage control valve, the heat storage inlet of the underground pipe heat exchanger, the heat storage outlet of the underground pipe heat exchanger, the heat storage pump, the second heat storage control valve, PV/T The inlets are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a solar heat storage cycle;
  • the outlet of the PV/T, the first heat collecting control valve, the high temperature inlet of the hot water storage tank, the low temperature outlet of the hot water storage tank, the second heat collecting control valve, the heat collecting pump, and the inlet of the PV/T are arranged according to the heat transfer process.
  • the direction of mass flow is connected sequentially through pipelines to form a solar heat collection cycle;
  • heat storage pump heat storage control valve of the third heat storage tank, heat storage control valve of the second heat storage tank, and the low-temperature inlet of the heat storage tank are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a heat storage tank. heat storage cycle;
  • the high-temperature outlet of the hot water storage tank, the first direct supply control valve, the terminal pump, the first load gate valve, the heat pump unit condenser inlet, the heat pump unit condenser outlet, the second load gate valve, the user terminal, and the second direct supply control The low-temperature inlet of the valve and hot water storage tank is connected sequentially through pipelines according to the flow direction of the heat transfer medium to form a direct heating cycle;
  • the second source side gate valve, the second water source side control valve, the second hot water storage tank heat storage control valve, and the low temperature inlet of the hot water storage tank are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a water source heat pump heat cycle;
  • the condenser outlet of the heat pump unit, the second load gate valve, the user terminal, the third load control valve, the terminal pump, the first load gate valve, and the condenser inlet of the heat pump unit are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a heat pump unit.
  • the first ground source side control valve, the first water source side control valve, the source side pump, the first source side gate valve, and the evaporator inlet of the heat pump unit are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a ground source heat pump heat cycle. ;
  • the evaporator outlet of the heat pump unit, the first load side cooling gate valve, the user terminal, the third load control valve, the terminal pump, the second load side cooling gate valve, and the heat pump unit evaporator inlet pass through the pipe according to the flow direction of the heat transfer medium.
  • the circuits are connected sequentially to form the load-side cooling cycle of the heat pump unit;
  • the condenser outlet of the heat pump unit, the first ground source side cooling gate valve, the source side pump, the first heat supplement control valve, the heat supplement inlet/heat storage inlet/heat outlet of the underground pipe heat exchanger, and the underground pipe The heat exchanger's heat supplement outlet/heat storage outlet/heat inlet, second heat supplement control valve, second ground source side cooling gate valve, and heat pump unit condenser inlet are sequentially connected through pipelines according to the flow direction of the heat transfer medium.
  • control method of the PV/T coupled dual-source heat pump building comprehensive energy supply system is specifically as follows:
  • the controller When the outlet of the PV/T reaches the first temperature set value, the controller outputs a signal to start the heat storage pump. At this time, the first heat storage control valve and the second heat storage control valve are both opened, and the other control valves are all closed, turning the PV The heat collected by /T is stored in the underground tube heat exchanger, that is, the solar heat storage mode is operated. As the amount of solar radiation continues to increase, the heat collected by PV/T continues to increase, and the outlet temperature of PV/T continues to increase.
  • the controller outputs a signal to start the heat collector pump, and at the same time the heat storage pump stops.
  • the first heat collector control valve and the second heat collector control valve are both opened, and the remaining All valves are closed, and the heat collected by the PV/T is stored in the hot water storage tank, that is, the solar heat collection cycle is run, and the solar heat storage cycle is switched to the solar heat collection cycle, thereby improving the power generation efficiency of the PV/T;
  • the first The temperature set value is lower than the second temperature set value;
  • the first load gate valve, the second load gate valve, the first source side gate valve, and the second source side gate valve are always open, and the first ground source side cooling gate valve, the second ground source side cooling gate valve, and the first load side
  • the cooling supply gate valve and the second load side cooling supply gate valve are normally closed.
  • the controller When the high temperature outlet of the hot water storage tank reaches the third temperature set value, the controller outputs a signal to the terminal pump to start.
  • the first direct supply control valve and the second direct supply control valve The control valve is opened and other electric valves are closed.
  • the hot water from the hot water storage tank enters the condenser inlet of the heat pump unit and directly supplies heat to the room. At this time, it is a direct solar heating cycle.
  • the high temperature outlet of the hot water storage tank is lower than the fourth temperature setting.
  • the ground source heat pump heat cycle is started at the same time to draw heat from the underground pipe.
  • the hot water from the hot water storage tank enters the condenser inlet of the heat pump unit to provide the terminal return water temperature and improve the efficiency of the heat pump unit. At this time, it is running underground.
  • the solar direct heating cycle is stopped and switched to the water source heat pump heating mode.
  • the first ground source side control valve , the second ground source side control valve is closed, the first water source side control valve, the second water source side control valve, the first hot water storage tank heat storage control valve, and the second hot water storage tank heat storage control valve are opened to realize solar thermal energy Multiplying effect, when the low-temperature inlet temperature of the hot water storage tank is lower than the sixth temperature set value, the water source heat pump heating mode switches to the ground source heat pump heat circulation mode, realizing a large-span energy cascade from high grade to low grade solar energy. Utilize; the third temperature set value, the fourth temperature set value, the fifth temperature set value, and the sixth temperature set value gradually decrease;
  • the first load gate valve, the second load gate valve, the first source side gate valve, and the second source side gate valve are normally closed, and the first ground source side cooling gate valve, the second ground source side cooling gate valve, and the first load side
  • the cooling gate valve and the second load side cooling gate valve are always open.
  • the traditional refrigerant four-way valve of the heat pump is changed through the pipeline bypass method to achieve switching between heating and cooling. That is, the condensing heat of the building is controlled underground through the pipeline. Supplement heat to balance the underground soil temperature.
  • the building condensation heat passes through the first ground source side cooling gate valve, the second ground source side cooling gate valve, the first load side cooling gate valve, and the second load side cooling gate valve.
  • the first heat supply control valve and the second heat supply control valve are opened at this time, and the condensation heat of the building is supplied to the underground pipe heat exchanger.
  • the solar radiation is good, it reaches the outlet of PV/T
  • solar heat storage can also be carried out through PV/T, that is, "hot and cold" dual storage can be achieved at the same time, and the joint operation of the heat supplement cycle and the underground heat storage cycle can be realized.
  • the PV/T adopts vacuum tube solar photovoltaic and photothermal integrated components.
  • the system includes a control valve and a gate valve; the control valve is an electric control valve installed in each system cycle; the gate valve is a manual gate valve, which is divided into a heating season gate valve and a cooling season gate valve.
  • the PV/T is connected to the combiner box, MPPT controller, and inverter in sequence.
  • the inverter is connected to the user load and the national grid respectively.
  • the DC power sent by the PV/T enters the combiner box, MPPT control It is converted into AC through the inverter for user load or surplus electricity to enter the national grid.
  • the PV/T photovoltaic power generation is carried out throughout the year, adopting the mode of "spontaneous self-use and grid-connected surplus power".
  • the present disclosure provides a control method for a PV/T coupled dual-source heat pump building comprehensive energy supply system, which has the following beneficial effects.
  • This disclosure has strong applicability in severe cold and cold areas in northern China. Compared with traditional collectors, the outlet water temperature of PV/T is lower. In the non-heating season, solar energy directly stores heat underground, eliminating the need for an intermediate buffer water tank. The heat collection and heat storage efficiency is improved, and the power generation efficiency of PV/T is also greatly improved.
  • the present disclosure supplies building condensation heat to the underground through pipeline bypass control to balance the underground soil temperature.
  • solar heat storage can also be performed through PV/T, that is, dual "cold and hot” storage can be achieved at the same time.
  • the present disclosure utilizes the solar thermal energy multiplication effect to achieve large-span energy cascade utilization from high-grade to low-grade water storage tank temperatures, thereby improving the comprehensive utilization efficiency of solar energy. It can not only efficiently provide "heat, electricity, and cold" energy for buildings, but also reduce the consumption of fossil energy, reduce carbon emissions in the construction field, and greatly reduce building energy costs. It has broad application prospects and is conducive to promotion. application.
  • Figure 1 is a schematic structural diagram of the PV/T coupled dual-source heat pump building comprehensive energy supply system.
  • Hot water storage tank 1.PV/T 2. Underground pipe heat exchanger 3. Hot water storage tank 4. Heat pump unit 5. User terminal 6. Valve 611. First heat storage control valve 612. Second heat storage control valve 621. First Heat collection control valve 622. Second heat collection control valve 631. Heat storage control valve of the first hot water storage tank 632. Heat storage control valve of the second hot water storage tank 633. Heat storage control valve of the third hot water storage tank 641. The first direct supply control valve 642. The second direct supply control valve 651. The first water source side control valve 652. The second water source side control valve 661. The first ground source side control valve 662. The second ground source side control valve 671. First load gate valve 672. Second load gate valve 673. First source side gate valve 674. Second source side gate valve 675. Third load control valve 681.
  • FIG. 1 it is a schematic structural diagram of the PV/T coupled dual-source heat pump building comprehensive energy supply system.
  • the building's comprehensive energy supply system of the PV/T coupled dual-source heat pump includes PV/T1, underground pipe heat exchanger 2, hot water storage tank 3, heat pump unit 4, user terminal 5, first heat storage control valve 611, The second heat storage control valve 612, the first heat collection control valve 621, the second heat collection control valve 622, the first heat storage tank heat storage control valve 631, the second heat storage tank heat storage control valve 632, the third heat storage tank Hot water tank heat storage control valve 633, first direct supply control valve 641, second direct supply control valve 642, first water source side control valve 651, second water source side control valve 652, first ground source side control valve 661, The second ground source side control valve 662, the first load gate valve 671, the second load gate valve 672, the first source side gate valve 673, the second source side gate valve 674, the third load control valve 675, and the first ground source side cooling gate valve 681, the second ground source side cooling
  • the temperature monitoring system includes a first temperature sensor 8, a second temperature sensor 9 and a third temperature sensor 10.
  • the first temperature sensor 8 is used to monitor the outlet temperature of PV/T1
  • the second temperature sensor 9 is used to monitor the hot water storage tank 3.
  • the third temperature sensor 10 is used to monitor the low temperature inlet temperature of the hot water storage tank 3; the controller 16 is respectively connected with the first temperature sensor 8, the second temperature sensor 9, the third temperature sensor 10, the heat storage pump 71, The heat collecting pump 72, the terminal pump 73, and the source side pump 74 are connected.
  • PV/T1 is connected to the combiner box 11, MPPT controller 12, and inverter 13 in sequence.
  • the inverter 13 is connected to the user load 14 and the national grid 15 respectively.
  • PV/T1 The DC power sent by PV/T1 enters the combiner box 11 and MPPT controller 12. , converted into AC through the inverter 13 for user load 14 or surplus electricity to enter the national grid 15.
  • PV/T1 Photovoltaic power generation which generates electricity throughout the year, adopts the model of "self-use for self-use and surplus electricity for grid connection".
  • the inlets of PV/T1 are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a solar heat storage cycle.
  • the outlet of PV/T1, the first heat collecting control valve 621, the high temperature inlet of the hot water storage tank 3, the low temperature outlet of the hot water storage tank 3, the second heat collecting control valve 622, the heat collecting pump 72, and the inlet of PV/T1 are as follows:
  • the flow direction of the heat transfer medium is connected sequentially through pipelines to form a solar heat collection cycle.
  • the hot water storage tank 3 can be Heat to underground pipe heat exchanger 2.
  • the heat storage outlet, the heat storage pump 71, the third heat storage tank heat storage control valve 633, the second heat storage tank heat storage control valve 632, and the low temperature inlet of the heat storage tank 3 pass through the pipeline according to the flow direction of the heat transfer medium.
  • the sequential connections form a heat storage cycle of the hot water storage tank.
  • the high temperature outlet of the hot water storage tank 3, the first direct supply control valve 641, the terminal pump 73, the first load gate valve 671, the condenser inlet of the heat pump unit 4, the condenser outlet of the heat pump unit 4, the second load gate valve 672, and the user terminal 5 , the second direct supply control valve 642, and the low-temperature inlet of the hot water storage tank 3 are sequentially connected through pipelines according to the flow direction of the heat transfer medium to form a direct heating cycle.
  • the hot water storage tank 3 can be used to directly provide heat indoors.
  • the evaporator outlet, the second source side gate valve 674, the second water source side control valve 652, the second hot water storage tank heat storage control valve 632, and the low temperature inlet of the hot water storage tank 3 pass through the pipeline according to the flow direction of the heat transfer medium.
  • the sequential connections form a water source heat pump heat extraction cycle. At this time, the thermal energy doubling effect of solar energy can be realized, and the energy cascade utilization of the large-span temperature of the hot water storage tank 3 can be realized.
  • the condenser outlet of heat pump unit 4, the second load gate valve 672, the user terminal 5, the third load control valve 675, the terminal pump 73, the first load gate valve 671, and the condenser inlet of heat pump unit 4 pass through the pipeline according to the flow direction of the heat transfer medium. Sequential connections constitute the load-side heating cycle of the heat pump unit.
  • the load-side heating cycle of the heat pump unit needs to run together with the water-source heat pump heat-taking cycle.
  • the heat inlet, the first ground source side control valve 661, the first water source side control valve 651, the source side pump 74, the first source side gate valve 673, and the evaporator inlet of the heat pump unit 4 pass through the pipeline according to the flow direction of the heat transfer medium.
  • the sequential connections form a ground source heat pump heat extraction cycle, which needs to run together with the load side heat supply cycle of the heat pump unit.
  • Heat pump unit 4 evaporator outlet, first load side cooling gate valve 683, user terminal 5, third load side control valve 675, terminal pump 73, second load side cooling gate valve 684, heat pump unit 4 evaporator inlet according to the heat transfer process The mass flow directions are sequentially connected through pipelines to form a load-side cooling cycle of the heat pump unit.
  • the heat supply outlet of the underground pipe heat exchanger 2, the heat storage outlet/heat inlet/, the second heat supply control valve 692, the second ground source side cooling gate valve 682, and the condenser inlet of the heat pump unit 4 flow according to the heat transfer working fluid.
  • the directions are sequentially connected through pipelines to form a ground source heat pump heating cycle.
  • the condensation heat of the building is controlled through pipeline bypass to realize the condensation heat to the underground to balance the underground soil temperature.
  • PV/ T1 performs solar heat storage, that is, it achieves "hot and cold" dual storage at the same time.
  • control method of the PV/T coupled dual-source heat pump building comprehensive energy supply system is as follows:
  • (1) Non-heating season During the non-heating season, when the outlet of PV/T1 reaches the first temperature set value (25°C in this embodiment), the controller 16 outputs a signal to the heat storage pump 71 to start. At this time, the first The heat storage control valve 611 and the second heat storage control valve 612 are both opened, and the other control valves are all closed.
  • the heat collected by PV/T1 is stored in the underground pipe heat exchanger, that is, the solar heat storage mode is operated. As the solar radiation As the amount of heat continues to increase, the heat collected by PV/T1 continues to increase, and the outlet temperature of PV/T1 continues to rise.
  • the soil heat storage is not timely, and the soil heat storage is not timely. If the hot return water temperature is too high, the temperature of the water entering PV/T1 will be too high, thus affecting the power generation efficiency of PV/T1. Therefore, when the outlet of PV/T1 reaches the second temperature set value (45°C in this embodiment), The controller 16 outputs a signal to start the heat collecting pump 72, and at the same time the heat storage pump 71 stops. At this time, the first heat collecting control valve 621 and the second heat collecting control valve 622 are both opened, and the other valves are all closed to store the heat collected by PV/T1. In the hot water storage tank 3, the solar heat collection cycle is run, and the solar heat storage cycle is switched to the solar heat collection cycle, thereby improving the power generation efficiency of PV/T1;
  • the first load gate valve 671, the second load gate valve 672, the first source side gate valve 673, and the second source side gate valve 674 are always open, and the first ground source side cooling gate valve 681 and the second ground source side cooling gate valve 681
  • the gate valve 682, the first load side cooling gate valve 683, and the second load side cooling gate valve 684 are normally closed.
  • the controller 16 The output signal is used to start the terminal pump, the first direct supply control valve 641 and the second direct supply control valve 642 are opened, and other electric valves are closed.
  • the hot water in the hot water storage tank 3 enters the condenser inlet of the heat pump unit 4 and directly supplies heat to the room. At this time, it is a solar direct heating cycle.
  • the ground source heat pump heat extraction cycle is started at the same time to extract heat from the underground pipe.
  • the hot water from the hot water storage tank 3 enters the condenser inlet of the heat pump unit 4 to provide the terminal return water temperature and improve the efficiency of the heat pump unit 4. At this time, the ground source heat pump and solar combined heating mode is operated.
  • the solar direct heating cycle is stopped and switched to the water source heat pump heating mode.
  • the first ground source side control valve 661 and the second ground source side control valve 661 Valve 662 is closed, and the first water source side control valve 651, the second water source side control valve 652, the first hot water storage tank heat storage control valve 631, and the second hot water storage tank heat storage control valve 632 are opened to achieve the solar thermal energy doubling effect.
  • the water source heat pump heating mode is switched to the ground source heat pump heat circulation mode to realize the transition from high grade to low grade solar energy. tasteful and wide-span energy cascade utilization;
  • the first load gate valve 671, the second load gate valve 672, the first source side gate valve 673, and the second source side gate valve 674 are normally closed, and the first ground source side cooling gate valve 681 and the second ground source side cooling gate valve 681 are normally closed.
  • the gate valve 682, the first load side cooling gate valve 683, and the second load side cooling gate valve 684 are always open.
  • the traditional four-way valve of the refrigerant of the heat pump is changed through the pipeline bypass method to achieve switching between heating and cooling, that is, the building
  • the condensation heat is controlled through the pipeline bypass to supplement the condensation heat to the underground to balance the underground soil temperature.
  • the building condensation heat passes through the first ground source side cooling gate valve 681 and the second ground source side cooling gate valve 682 beside the pipeline.
  • the outlet water temperature of PV/T1 of this disclosure is lower.
  • solar energy can directly store heat underground during the non-heating season.
  • the heat transfer process of heat storage includes three links: (1) PV/T1 Convection heat transfer from hot water to the inner wall of the underground pipe heat exchanger 2; (2) Heat conduction from the inner wall of the underground pipe heat exchanger 2 to the outer wall; (3) Heat transfer from the outer wall of the underground pipe heat exchanger 2 to the soil Convection heat transfer, so the heat transfer thermal resistance of the soil is large, while the heat transfer thermal resistance of PV/T1 hot water is very small, so the heat transfer coefficient of the soil is much smaller than the heat transfer coefficient of water.
  • this disclosure controls the condensation heat at the user end 5 through pipeline bypass control to supplement the condensation heat to the underground pipe heat exchanger 2 to balance the underground soil temperature.
  • solar heat storage can also be performed through PV/T1 , that is, simultaneously achieving "hot and cold" dual storage of condensation heat supplementation + PV/T1 heat storage, reducing the construction investment of the underground pipe heat exchanger 2.
  • This disclosure realizes solar heat storage directly underground, improves the heat collection and storage efficiency as well as the power generation efficiency of PV/T1, and simultaneously realizes "cold and hot” dual storage, realizing a large-span change in the temperature of the water storage tank from high grade to low grade.
  • Energy cascade utilization to improve the comprehensive utilization efficiency of solar energy. It can not only efficiently provide "heat, electricity, and cold” energy for buildings, but also reduce the consumption of fossil energy and reduce carbon emissions in the construction field. It has broad application prospects and is conducive to popularization and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

提供一种PV/T耦合双源热泵建筑综合供能系统的控制方法,该综合供能系统包括太阳能储热循环,太阳能集热循环,蓄热水箱储热循环,直接供热循环,水源热泵取热循环,热泵机组负荷侧供热循环,地源热泵取热循环,热泵机组负荷侧供冷循环和地源热泵补热循环,实现太阳能直接向地下储热,提高了集热和储热效率及PV/T的发电效率,能同时实现储冷及储热,实现蓄热水箱(3)温度从高品位到低品位的大跨度的能量梯级利用,提高了太阳能的综合利用效率。

Description

PV/T耦合双源热泵建筑综合供能系统的控制方法
本公开要求于2022年5月31日提交、申请号为202210603968 .8且名称为“PV/T耦合双源热泵建筑综合供能系统的控制方法”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及可再生能源技术领域,特别涉及一种PV/T耦合双源热泵建筑综合供能系统的控制方法。
背景技术
应对气候变化,减少二氧化碳排放是全人类社会达成的统一共识。中国建筑全过程碳排放总量占全国碳排放的比重为51.3%,其中建筑运行阶段碳排约占全国碳排放的比重为21.9%,建筑运行阶段碳排放占比较高,而建筑运行阶段能源结构主要为“热、电、冷”的需求,因此在“双碳”背景下,要大力发展以可再生能源为主的新型建筑综合能源供能系统,减少建筑领域的碳排放量。
中国太阳能资源丰富,全年日照时数大于2000h的地区,约占全国总面积的2/3以上;不过,太阳能受到阴雨天气、季节性、昼夜等条件的影响,出现能量输出的不连续性、不稳定稳定性等问题。地源热泵系统以土壤为冷/热源,由于土壤温度全年波动小,且相对于大气温度的滞后性,使其性能系数较传统空气源热泵系统高,是一种高效节能、无污染、可再生的建筑能源利用形式;不过,在中国北方严寒和寒冷地区,由于室外温度较低,供暖期长,热负荷远大于冷负荷,长此以往,会造成地下冷堆积。
光伏(Photovoltaic,PV)系统是收集太阳能转化成电能,约20%太阳辐照量转换为电能,其他约80%的辐照量转化为热能或者散失掉,并且光伏组件温度效应显著(每升高1℃,发电效率约下降0.3%),当光伏组件产生的废热无法利用时,还会有抑制发电的问题。而太阳能光伏光热组件(Photovoltaic/ThermalUnit,PV/T)将太阳能转换为电能的同时收集部分热能(废热),可以实现在太阳能光伏发电的同时回收多余的热能(废热)并加以利用,对光伏电池具有冷却作用,可以提高发电效率和组件的寿命;PV/T产生的热水温度一般可达到45℃,可用于使用建筑供暖、生活热水,并可以为地源热泵土壤进行跨季节储热,可以实现建筑热负荷、电负荷、冷负荷的最佳匹配,大大降低建筑用能系统的成本。
有鉴于此,特提出本公开。
发明内容
本公开的目的是提供一种PV/T耦合双源热泵建筑综合供能系统的控制方法,实现太阳能直接向地下储热,提高了集热和储热效率以及PV/T的发电效率,同时实现“冷热”双储,实现蓄热水箱温度从高品位到低品位的大跨度的能量梯级利用,以此提高太阳能的综合利用效率。不仅可以高效地为建筑提供“热、电、冷”能源,同时减少了化石能源的消耗,降低了建筑领域的碳排量,大大降低建筑用能成本,具有广阔的应用前景,有利于推广应用。
为了实现上述目的,本公开提供的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,所述PV/T耦合双源热泵建筑综合供能系统包括PV/T,地埋管换热器,蓄热水箱,热泵机组,用户末端,第一储热控制阀,第二储热控制阀,第一集热控制阀,第二集热控制阀,第一蓄热水箱储热控制阀,第二蓄热水箱储热控制阀,第三蓄热水箱储热控制阀,第一直供控制阀,第二直供控制阀,第一水源侧控制阀,第二水源侧控制阀,第一地源侧控制阀,第二地源侧控制阀,第一负荷闸阀,第二负荷闸阀,第一源侧闸阀,第二源侧闸阀,第三负荷控制阀,第一地源侧供冷闸阀,第二地源侧供冷闸阀,第一负荷侧供冷闸阀,第二负荷侧供冷闸阀,第一补热控制阀,第二补热控制阀,储热泵,集热泵,末端泵,源侧泵,温度监测系统,汇流箱,MPPT控制器,逆变器,用户负载,国家电网和控制器;
所述温度监测系统包括第一温度传感器,第二温度传感器和第三温度传感器,所述第一温度传感器用于监测PV/T的出口温度,所述第二温度传感器用于监测蓄热水箱的高温出口温度,所述第三温度传感器用于监测蓄热水箱的低温进口温度;所述控制器分别与第一温度传感器、第二温度传感器、第三温度传感器、储热泵、集热泵、末端泵、源侧泵连接;
所述PV/T的出口、第一储热控制阀、地埋管换热器的储热进口、地埋管换热器的储热出口、储热泵、第二储热控制阀、PV/T的进口按照传热工质流动方向通过管路循序连接构成太阳能储热循环;
所述PV/T的出口、第一集热控制阀、蓄热水箱的高温进口、蓄热水箱的低温出口、第二集热控制阀、集热泵、PV/T的进口按照传热工质流动方向通过管路循序连接构成太阳能集热循环;
所述蓄热水箱的高温出口、第一蓄热水箱储热控制阀、第一地源侧控制阀、地埋管换热器的储热进口、地埋管换热器的储热出口、储热泵、第三蓄热水箱储热控制阀、第二蓄热水箱储热控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成蓄热水箱储热循环;
所述蓄热水箱的高温出口、第一直供控制阀、末端泵、第一负荷闸阀、热泵机组冷凝器进口、热泵机组冷凝器出口、第二负荷闸阀、用户末端、第二直供控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成直接供热循环;
所述蓄热水箱的高温出口、第一蓄热水箱储热控制阀、第一水源侧控制阀、源侧泵、第一源侧闸阀、热泵机组蒸发器进口、热泵机组蒸发器出口、第二源侧闸阀、第二水源侧控制阀、第二蓄热水箱储热控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成水源热泵取热循环;
所述热泵机组冷凝器出口、第二负荷闸阀、用户末端、第三负荷控制阀、末端泵、第一负荷闸阀、热泵机组冷凝器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供热循环;
所述热泵机组蒸发器出口、第二源侧闸阀、第二水源侧控制阀、第二地源侧控制阀、地埋管换热器的取热出口、地埋管换热器的取热进口、第一地源侧控制阀、第一水源侧控制阀、源侧泵、第一源侧闸阀、热泵机组蒸发器进口按照传热工质流动方向通过管路循序连接构成地源热泵取热循环;
所述热泵机组蒸发器出口、第一负荷侧供冷闸阀、用户末端、第三负荷控制阀、末端泵、第二负荷侧供冷闸阀、热泵机组蒸发器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供冷循环;
所述热泵机组冷凝器出口、第一地源侧供冷闸阀、源侧泵、第一补热控制阀、地埋管换热器的补热进口/储热进口/取热出口、地埋管换热器的补热出口/储热出口/取热进口、第二补热控制阀、第二地源侧供冷闸阀、热泵机组冷凝器进口按照传热工质流动方向通过管路循序连接构成地源热泵补热循环;
所述PV/T耦合双源热泵建筑综合供能系统的控制方法具体如下:
(一)非供热季
当PV/T的出口达到第一温度设定值时,控制器输出信号给储热泵启动,此时第一储热控制阀和第二储热控制阀均打开,其余控制阀全部关闭,将PV/T收集的热量储存到地埋管换热器中,即运行太阳能储热模式,随着太阳能辐射量的不断增强,PV/T收集的热量不断增多,PV/T的出口温度不断升高,同时考虑到土壤传热系数远小于水的传热系数,一般情况土壤储热不及时,储热回水温度过高,会导致进入PV/T水温过高,从而影响PV/T的发电效率,因此,当PV/T的出口达到第二温度设定值时,控制器输出信号给集热泵启动,同时储热泵停止,此时第一集热控制阀和第二集热控制阀均打开,其余阀门全部关闭,将PV/T收集的热量储存到蓄热水箱中,即运行太阳能集热循环,太阳能储热循环切换为太阳能集热循环,从而提高PV/T的发电效率;所述第一温度设定值低于第二温度设定值;
(二)供热季
供热季时第一负荷闸阀、第二负荷闸阀、第一源侧闸阀、第二源侧闸阀常开,第一地源侧供冷闸阀、第二地源侧供冷闸阀、第一负荷侧供冷闸阀、第二负荷侧供冷闸阀常闭,蓄热水箱的高温出口达到第三温度设定值时,控制器输出信号给末端泵启动,第一直供控制阀、第二直供控制阀打开,其他电动阀门关闭,蓄热水箱的热水进入热泵机组冷凝器进口直接向室内供热,此时为太阳能直接供热循环,蓄热水箱的高温出口低于第四温度设定值时,同时启动地源热泵取热循环,从地埋管取热,蓄热水箱的热水进入热泵机组冷凝器进口,提供末端回水温度,提高热泵机组效率,此时即运行地源热泵与太阳能联合供暖模式,当蓄热水箱的高温出口低于第五温度设定值时,停止太阳能直接供热循环,切换为水源热泵供热模式,此时第一地源侧控制阀、第二地源侧控制阀关闭,第一水源侧控制阀、第二水源侧控制阀、第一蓄热水箱储热控制阀、第二蓄热水箱储热控制阀打开,实现太阳能热能倍增效应,当蓄热水箱的低温进口温度低于第六温度设定值时,水源热泵供热模式切换为地源热泵取热循环模式,实现太阳能从高品位到低品位大跨度的能量梯级利用;所述第三温度设定值、第四温度设定值、第五温度设定值、第六温度设定值逐渐降低;
(三)供冷季
供冷季时第一负荷闸阀、第二负荷闸阀、第一源侧闸阀、第二源侧闸阀常闭,第一地源侧供冷闸阀、第二地源侧供冷闸阀、第一负荷侧供冷闸阀、第二负荷侧供冷闸阀常开,通过管路旁通法改变热泵传统的制冷剂的四通阀实现供热与供冷的切换,即建筑冷凝热通过管路旁控制向地下补热来平衡地下土壤温度,所述建筑冷凝热通过管路旁为第一地源侧供冷闸阀、第二地源侧供冷闸阀、第一负荷侧供冷闸阀、第二负荷侧供冷闸阀所在管路,此时第一补热控制阀、第二补热控制阀打开,建筑冷凝热向地埋管换热器进行补热,同时太阳辐射量较好时,达到PV/T的出口达到储热循环的第七温度设定值时,也可以通过PV/T进行太阳能储热,即同时实现“冷热”双储,可实现补热循环与地埋储热循环联合运行。
优选地,所述PV/T采用真空管式太阳能光伏光热一体化组件。
优选地,该系统包括控制阀和闸阀;控制阀为电动控制阀设置于各系统循环;闸阀为手动闸阀,分为供热季闸阀、供冷季闸阀。
优选地,所述PV/T 依次与汇流箱、MPPT控制器、逆变器连接,所述逆变器分别与用户负载和国家电网连接,所述PV/T发送的直流电进入汇流箱、MPPT控制器,经过逆变器转化为交流供用户负载或者余电进入国家电网。
优选地,所述PV/T光伏发电,全年进行发电,采用“自发自用、余电上网”的模式。
本公开提供的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,具有如下有益效果。
1.本公开在中国北方严寒和寒冷地区适用性较强,PV/T相较于传统的集热器的出水温度较低,在非供热季太阳能直接向地下储热,省去了中间缓冲水箱,提高了集热和储热效率,同时也大大提高了PV/T的发电效率。
2.本公开考虑到土壤传热系数远小于水的传热系数,一般情况PV/T向地下土壤储热不及时,储热回水温度过高,会导致进入PV/T水温过高,影响PV/T的发电效率;当PV/T的出口温度超过第二温度设定值时,可实现太阳能储热循环切换为太阳能集热循环,进而提高PV/T的发电效率。
3.本公开在供冷季将建筑冷凝热通过管路旁通控制向地下补热来平衡地下土壤温度,同时也可以通过PV/T进行太阳能储热,即同时实现“冷热”双储。
4.本公开利用太阳能热能倍增效应实现蓄热水箱温度从高品位到低品位的大跨度的能量梯级利用,以此提高太阳能的综合利用效率。可不仅可以高效地为建筑提供“热、电、冷”能源,同时减少了化石能源的消耗,降低了建筑领域的碳排量,大大降低建筑用能成本,具有广阔的应用前景,有利于推广应用。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为PV/T耦合双源热泵建筑综合供能系统的结构示意图。
图中:
1.PV/T  2.地埋管换热器  3.蓄热水箱  4.热泵机组  5.用户末端  6.阀门611.第一储热控制阀  612.第二储热控制阀  621.第一集热控制阀  622.第二集热控制阀  631.第一蓄热水箱储热控制阀  632.第二蓄热水箱储热控制阀  633.第三蓄热水箱储热控制阀  641.第一直供控制阀  642.第二直供控制阀  651.第一水源侧控制阀  652.第二水源侧控制阀  661.第一地源侧控制阀  662.第二地源侧控制阀  671.第一负荷闸阀  672.第二负荷闸阀  673.第一源侧闸阀  674.第二源侧闸阀  675.第三负荷控制阀  681.第一地源侧供冷闸阀  682.第二地源侧供冷闸阀  683.第一负荷侧供冷闸阀  684.第二负荷侧供冷闸阀  691.第一补热控制阀  692.第二补热控制阀  71.储热泵  72.集热泵  73.末端泵  74.源侧泵  8.第一温度传感器  9.第二温度传感器  10.第三温度传感器  11.汇流箱  12.MPPT控制器  13.逆变器  14.用户负载  15.国家电网  16.控制器。
具体实施方式
下面结合具体实施例和附图对本公开做进一步说明,以助于理解本公开的内容。
如图1所示,为PV/T耦合双源热泵建筑综合供能系统的结构示意图。该PV/T耦合双源热泵的建筑综合供能系统包括PV/T1,地埋管换热器2,蓄热水箱3,热泵机组4,用户末端5,第一储热控制阀611,第二储热控制阀612,第一集热控制阀621,第二集热控制阀622,第一蓄热水箱储热控制阀631,第二蓄热水箱储热控制阀632,第三蓄热水箱储热控制阀633,第一直供控制阀641,第二直供控制阀642,第一水源侧控制阀651,第二水源侧控制阀652,第一地源侧控制阀661,第二地源侧控制阀662,第一负荷闸阀671,第二负荷闸阀672,第一源侧闸阀673,第二源侧闸阀674,第三负荷控制阀675,第一地源侧供冷闸阀681,第二地源侧供冷闸阀682,第一负荷侧供冷闸阀683,第二负荷侧供冷闸阀684,第一补热控制阀691,第二补热控制阀692,储热泵71,集热泵72,末端泵73,源侧泵74,温度监测系统,汇流箱11,MPPT控制器12,逆变器13,用户负载14,国家电网15和控制器16;PV/T1采用真空管式太阳能光伏光热一体化组件。该系统包括控制阀和闸阀;控制阀为电动控制阀设置于各系统循环;闸阀为手动闸阀,分为供热季闸阀、供冷季闸阀。
温度监测系统包括第一温度传感器8,第二温度传感器9和第三温度传感器10,第一温度传感器8用于监测PV/T1的出口温度,第二温度传感器9用于监测蓄热水箱3的高温出口温度,第三温度传感器10用于监测蓄热水箱3的低温进口温度;控制器16分别与第一温度传感器8、第二温度传感器9、第三温度传感器10、储热泵71、集热泵72、末端泵73、源侧泵74连接。PV/T1依次与汇流箱11、MPPT控制器12、逆变器13连接,逆变器13分别与用户负载14和国家电网15连接,PV/T1发送的直流电进入汇流箱11、MPPT控制器12,经过逆变器13转化为交流供用户负载14或者余电进入国家电网15。PV/T1 光伏发电,全年进行发电,采用“自发自用、余电上网”的模式。
PV/T1的出口、第一储热控制阀611、地埋管换热器2的储热进口、地埋管换热器2的储热出口、储热泵71、第二储热控制阀612、PV/T1的进口按照传热工质流动方向通过管路循序连接构成太阳能储热循环。
PV/T1的出口、第一集热控制阀621、蓄热水箱3的高温进口、蓄热水箱3的低温出口、第二集热控制阀622、集热泵72、PV/T1的进口按照传热工质流动方向通过管路循序连接构成太阳能集热循环,当夜晚无太阳辐射时,且蓄热水箱3的高温出口温度值高于设定温度时,可将蓄热水箱3储热到地埋管换热器2。
蓄热水箱3的高温出口、第一蓄热水箱储热控制阀631、第一地源侧控制阀661、地埋管换热器2的储热进口、地埋管换热器2的储热出口、储热泵71、第三蓄热水箱储热控制阀633、第二蓄热水箱储热控制阀632、蓄热水箱3的低温进口按照传热工质流动方向通过管路循序连接构成蓄热水箱储热循环。
蓄热水箱3的高温出口、第一直供控制阀641、末端泵73、第一负荷闸阀671、热泵机组4冷凝器进口、热泵机组4冷凝器出口、第二负荷闸阀672、用户末端5、第二直供控制阀642、蓄热水箱3的低温进口按照传热工质流动方向通过管路循序连接构成直接供热循环,当蓄热水箱3的高温出口超过设定温度时,可以用蓄热水箱3直接向室内供热,此时不用开启热泵机组4,将大大提高系统的效率;当蓄热水箱3的高温出口低于一定设定温度时,启动地源热泵+太阳能联合供暖模式,提供末端回水温度,以此提高热泵机组4的效率。
蓄热水箱3的高温出口、第一蓄热水箱储热控制阀631、第一水源侧控制阀651、源侧泵74、第一源侧闸阀673、热泵机组4蒸发器进口、热泵机组4蒸发器出口、第二源侧闸阀674、第二水源侧控制阀652、第二蓄热水箱储热控制阀632、蓄热水箱3的低温进口按照传热工质流动方向通过管路循序连接构成水源热泵取热循环,此时可以实现太阳能的热能倍增效应,实现蓄热水箱3温度大跨度的能量梯级利用。
热泵机组4冷凝器出口、第二负荷闸阀672、用户末端5、第三负荷控制阀675、末端泵73、第一负荷闸阀671、热泵机组4冷凝器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供热循环,热泵机组负荷侧供热循环需要与水源热泵取热循环一起运行。
热泵机组4蒸发器出口、第二源侧闸阀674、第二水源侧控制阀652、第二地源侧控制阀662、地埋管换热器2的取热出口、地埋管换热器2的取热进口、第一地源侧控制阀661、第一水源侧控制阀651、源侧泵74、第一源侧闸阀673、热泵机组4蒸发器进口按照传热工质流动方向通过管路循序连接构成地源热泵取热循环,地源热泵取热循环需要与热泵机组负荷侧供热循环一起运行。
热泵机组4蒸发器出口、第一负荷侧供冷闸阀683、用户末端5、第三负荷控制阀675、末端泵73、第二负荷侧供冷闸阀684、热泵机组4蒸发器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供冷循环。
热泵机组4冷凝器出口、第一地源侧供冷闸阀681、源侧泵74、第一补热控制阀691、地埋管换热器2的补热进口/储热进口/取热出口、地埋管换热器2的补热出口储热出口/取热进口/、第二补热控制阀692、第二地源侧供冷闸阀682、热泵机组4冷凝器进口按照传热工质流动方向通过管路循序连接构成地源热泵补热循环,本公开在供冷季将建筑冷凝热通过管路旁通控制实现将冷凝热向地下补热来平衡地下土壤温度,同时也可以通过PV/T1进行太阳能储热,即同时实现“冷热”双储。
PV/T耦合双源热泵建筑综合供能系统的控制方法具体如下:
(一)非供热季非供热季时,当PV/T1的出口达到第一温度设定值(本实施例25℃)时,控制器16输出信号给储热泵71启动,此时第一储热控制阀611和第二储热控制阀612均打开,其余控制阀全部关闭,将PV/T1收集的热量储存到地埋管换热器中,即运行太阳能储热模式,随着太阳能辐射量的不断增强,PV/T1收集的热量不断增多,PV/T1的出口温度不断升高,同时考虑到土壤传热系数远小于PV/T1的传热系数,一般情况土壤储热不及时,储热回水温度过高,会导致进入PV/T1水温过高,从而影响PV/T1 的发电效率,因此,当PV/T1的出口达到第二温度设定值(本实施例45℃)时,控制器16输出信号给集热泵72启动,同时储热泵71停止,此时第一集热控制阀621和第二集热控制阀622均打开,其余阀门全部关闭,将PV/T1收集的热量储存到蓄热水箱3中,即运行太阳能集热循环,太阳能储热循环切换为太阳能集热循环,从而提高PV/T1 的发电效率;
(二)供热季
供热季时,第一负荷闸阀671、第二负荷闸阀672、第一源侧闸阀673、第二源侧闸阀674常开,第一地源侧供冷闸阀681、第二地源侧供冷闸阀682、第一负荷侧供冷闸阀683、第二负荷侧供冷闸阀684常闭,蓄热水箱3的高温出口达到第三温度设定值(本实施例45℃)时,控制器16输出信号给末端泵启动,第一直供控制阀641、第二直供控制阀642打开,其他电动阀门关闭,蓄热水箱3的热水进入热泵机组4冷凝器进口直接向室内供热,此时为太阳能直接供热循环,蓄热水箱3的高温出口低于第四温度设定值(本实施例40℃)时,同时启动地源热泵取热循环,从地埋管取热,蓄热水箱3的热水进入热泵机组4冷凝器进口,提供末端回水温度,提高热泵机组4的效率,此时即运行地源热泵与太阳能联合供暖模式,当蓄热水箱3的高温出口低于第五温度设定值(本实施例30℃)时,停止太阳能直接供热循环,切换为水源热泵供热模式,此时第一地源侧控制阀661、第二地源侧控制阀662关闭,第一水源侧控制阀651、第二水源侧控制阀652、第一蓄热水箱储热控制阀631、第二蓄热水箱储热控制阀632打开,实现太阳能热能倍增效应,当蓄热水箱3的低温进口温度低于第六温度设定值(本实施例10℃)时,水源热泵供热模式切换为地源热泵取热循环模式,实现太阳能从高品位到低品位大跨度的能量梯级利用;
(三)供冷季
供冷季时,第一负荷闸阀671、第二负荷闸阀672、第一源侧闸阀673、第二源侧闸阀674常闭,第一地源侧供冷闸阀681、第二地源侧供冷闸阀682、第一负荷侧供冷闸阀683、第二负荷侧供冷闸阀684常开,通过管路旁通法改变热泵传统的制冷剂的四通阀实现供热与供冷的切换,即建筑冷凝热通过管路旁通实现控制实现将冷凝热向地下补热来平衡地下土壤温度,建筑冷凝热通过管路旁为第一地源侧供冷闸阀681、第二地源侧供冷闸阀682、第一负荷侧供冷闸阀683、第二负荷侧供冷闸阀684所在管路,此时第一补热控制阀、第二补热控制阀打开,建筑冷凝热向地埋管换热器2进行补热,同时太阳辐射量较好时,达到PV/T的出口达到储热循环的第七温度设定值时,也可以通过PV/T1进行太阳能储热,即同时实现“冷热”双储,可实现补热循环与地埋储热循环联合运行。
本公开PV/T1相较于传统集热器的出水温度较低,通控制阀在非供热季太阳能直接向地下储热,储热的传热过程包括三个环节:(1)PV/T1热水到地埋管换热器2内壁面的对流换热;(2)地埋管换热器2内壁面到外壁面的导热;(3)地埋管换热器2外壁面到土壤的对流换热,因此土壤的传热热阻较大,而同时PV/T1热水的传热热阻很小,因此土壤传热系数远小于水的传热系数,当随着太阳能辐射量的不断增强,PV/T1收集的热量不断增多,土壤储热不及时,储热回水温度过高,导致进入PV/T1水温过高,从而影响PV/T1的发电效率,所以此时急需要将PV/T1的热量进行转移。考虑到从水到水的传热系数约为1000~2500W/(㎡·K),所以将PV/T1收集的热量储存到蓄热水箱3中,从而不影响PV/T1 的发电效率。
本公开在供冷季将用户末端5冷凝热通过管路旁通控制实现将冷凝热向地下地埋管换热器2补热来平衡地下土壤温度,同时也可以通过PV/T1进行太阳能储热,即同时实现冷凝热补热+PV/T1储热的“冷热”双储,减少地埋管换热器2的建设投资。
本公开实现太阳能直接向地下储热,提高了集热和储热效率以及PV/T1的发电效率,同时实现“冷热”双储,实现蓄热水箱温度从高品位到低品位的大跨度的能量梯级利用,以此提高太阳能的综合利用效率。不仅可以高效地为建筑提供“热、电、冷”能源,同时减少了化石能源的消耗,降低了建筑领域的碳排量,具有广阔的应用前景,有利于推广应用。
本公开中应用了具体个例对发明构思进行了详细阐述,以上实施例的说明只是用于帮助理解本公开的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离该发明构思的前提下,所做的任何显而易见的修改、等同替换或其他改进,均应包含在本公开的保护范围之内。

Claims (5)

  1. 一种PV/T耦合双源热泵建筑综合供能系统的控制方法,所述PV/T耦合双源热泵建筑综合供能系统包括PV/T,地埋管换热器,蓄热水箱,热泵机组,用户末端,第一储热控制阀,第二储热控制阀,第一集热控制阀,第二集热控制阀,第一蓄热水箱储热控制阀,第二蓄热水箱储热控制阀,第三蓄热水箱储热控制阀,第一直供控制阀,第二直供控制阀,第一水源侧控制阀,第二水源侧控制阀,第一地源侧控制阀,第二地源侧控制阀,第一负荷闸阀,第二负荷闸阀,第一源侧闸阀,第二源侧闸阀,第三负荷控制阀,第一地源侧供冷闸阀,第二地源侧供冷闸阀,第一负荷侧供冷闸阀,第二负荷侧供冷闸阀,第一补热控制阀,第二补热控制阀,储热泵,集热泵,末端泵,源侧泵,温度监测系统,汇流箱,MPPT控制器,逆变器,用户负载,国家电网和控制器;
    所述温度监测系统包括第一温度传感器,第二温度传感器和第三温度传感器,所述第一温度传感器用于监测PV/T的出口温度,所述第二温度传感器用于监测蓄热水箱的高温出口温度,所述第三温度传感器用于监测蓄热水箱的低温进口温度;所述控制器分别与第一温度传感器、第二温度传感器、第三温度传感器、储热泵、集热泵、末端泵、源侧泵连接;
    所述PV/T的出口、第一储热控制阀、地埋管换热器的储热进口、地埋管换热器的储热出口、储热泵、第二储热控制阀、PV/T的进口按照传热工质流动方向通过管路循序连接构成太阳能储热循环;
    所述PV/T的出口、第一集热控制阀、蓄热水箱的高温进口、蓄热水箱的低温出口、第二集热控制阀、集热泵、PV/T的进口按照传热工质流动方向通过管路循序连接构成太阳能集热循环;
    所述蓄热水箱的高温出口、第一蓄热水箱储热控制阀、第一地源侧控制阀、地埋管换热器的储热进口、地埋管换热器的储热出口、储热泵、第三蓄热水箱储热控制阀、第二蓄热水箱储热控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成蓄热水箱储热循环;
    所述蓄热水箱的高温出口、第一直供控制阀、末端泵、第一负荷闸阀、热泵机组冷凝器进口、热泵机组冷凝器出口、第二负荷闸阀、用户末端、第二直供控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成直接供热循环;
    所述蓄热水箱的高温出口、第一蓄热水箱储热控制阀、第一水源侧控制阀、源侧泵、第一源侧闸阀、热泵机组蒸发器进口、热泵机组蒸发器出口、第二源侧闸阀、第二水源侧控制阀、第二蓄热水箱储热控制阀、蓄热水箱的低温进口按照传热工质流动方向通过管路循序连接构成水源热泵取热循环;
    所述热泵机组冷凝器出口、第二负荷闸阀、用户末端、第三负荷控制阀、末端泵、第一负荷闸阀、热泵机组冷凝器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供热循环;
    所述热泵机组蒸发器出口、第二源侧闸阀、第二水源侧控制阀、第二地源侧控制阀、地埋管换热器的取热出口、地埋管换热器的取热进口、第一地源侧控制阀、第一水源侧控制阀、源侧泵、第一源侧闸阀、热泵机组蒸发器进口按照传热工质流动方向通过管路循序连接构成地源热泵取热循环;
    所述热泵机组蒸发器出口、第一负荷侧供冷闸阀、用户末端、第三负荷控制阀、末端泵、第二负荷侧供冷闸阀、热泵机组蒸发器进口按照传热工质流动方向通过管路循序连接构成热泵机组负荷侧供冷循环;
    所述热泵机组冷凝器出口、第一地源侧供冷闸阀、源侧泵、第一补热控制阀、地埋管换热器的补热进口/储热进口/取热出口、地埋管换热器的补热出口/储热出口/取热进口、第二补热控制阀、第二地源侧供冷闸阀、热泵机组冷凝器进口按照传热工质流动方向通过管路循序连接构成地源热泵补热循环;
    所述PV/T耦合双源热泵建筑综合供能系统的控制方法具体如下:
    (一)非供热季
    当PV/T的出口达到第一温度设定值时,控制器输出信号给储热泵启动,此时第一储热控制阀和第二储热控制阀均打开,其余控制阀全部关闭,将PV/T收集的热量储存到地埋管换热器中;当PV/T的出口达到第二温度设定值时,控制器输出信号给集热泵启动,同时储热泵停止,此时第一集热控制阀和第二集热控制阀均打开,其余阀门全部关闭,将PV/T收集多余的热量储存到蓄热水箱中;所述第一温度设定值低于第二温度设定值;
    (二)供热季
    当蓄热水箱的高温出口达到第三温度设定值时,控制器输出信号给末端泵启动,第一直供控制阀、第二直供控制阀打开,其他电动阀门关闭,蓄热水箱的热水进入热泵机组冷凝器进口直接向室内供热;当蓄热水箱的高温出口低于第四温度设定值时,同时启动地源热泵取热循环,从地埋管取热,蓄热水箱的热水进入热泵机组冷凝器进口,提供末端回水温度;当蓄热水箱的高温出口低于第五温度设定值时,停止太阳能直接供热循环,切换为水源热泵供热模式;当蓄热水箱的低温进口温度低于第六温度设定值时,切换为地源热泵地源热泵取热循环模式;所述第三温度设定值、第四温度设定值、第五温度设定值、第六温度设定值逐渐降低;
    (三)供冷季
    建筑冷凝热通过管路旁控制向地下补热来平衡地下土壤温度,当PV/T的出口达到储热循环的第七温度设定值时,可通过PV/T进行太阳能储热。
  2. 根据权利要求1所述的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,所述PV/T采用真空管式太阳能光伏光热一体化组件。
  3. 根据权利要求1所述的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,该系统包括控制阀和闸阀;控制阀为电动控制阀设置于各系统循环;闸阀为手动闸阀,分为供热季闸阀、供冷季闸阀。
  4. 根据权利要求2所述的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,所述PV/T依次与汇流箱、MPPT控制器、逆变器连接,所述逆变器分别与用户负载和国家电网连接,所述PV/T发送的直流电进入汇流箱、MPPT控制器,经过逆变器转化为交流供用户负载或者余电进入国家电网。
  5. 根据权利要求2所述的一种PV/T耦合双源热泵建筑综合供能系统的控制方法,所述PV/T光伏发电,全年进行发电,采用“自发自用、余电上网”的模式。
PCT/CN2023/093165 2022-05-31 2023-05-10 Pv/t耦合双源热泵建筑综合供能系统的控制方法 WO2023231726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210603968.8A CN114688764B (zh) 2022-05-31 2022-05-31 Pv/t耦合双源热泵建筑综合供能系统的控制方法
CN202210603968.8 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231726A1 true WO2023231726A1 (zh) 2023-12-07

Family

ID=82131029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093165 WO2023231726A1 (zh) 2022-05-31 2023-05-10 Pv/t耦合双源热泵建筑综合供能系统的控制方法

Country Status (2)

Country Link
CN (1) CN114688764B (zh)
WO (1) WO2023231726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024081897A1 (en) 2022-10-14 2024-04-18 Pulse Biosciences, Inc. Multi-strut ablation and sensing catheter devices and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688764B (zh) * 2022-05-31 2022-08-30 天津市滨海新区环境创新研究院 Pv/t耦合双源热泵建筑综合供能系统的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183933A (ja) * 2004-12-27 2006-07-13 Sanyo Electric Co Ltd 太陽光発電システム
CN203501534U (zh) * 2013-09-25 2014-03-26 陕西东泰能源科技有限公司 一种蓄能式地源热泵与太阳能的复合系统
CN209042658U (zh) * 2018-11-19 2019-06-28 天津城建大学 一种寒冷地区复合型地源热泵优化集成系统
CN110645732A (zh) * 2019-10-30 2020-01-03 中国长江三峡集团有限公司 一种基于可逆膨胀机的综合能源系统及运行方法
KR20200141577A (ko) * 2019-06-10 2020-12-21 이만숙 태양열 및 공기 열에 의한 히트펌프 시스템과 태양광이 융합된 하이브리드 난방 시스템 및 제어방법
CN113432173A (zh) * 2021-07-26 2021-09-24 河北工业大学 一种光伏直驱的太阳能跨季节储热供热系统及其运行方法
CN114688764A (zh) * 2022-05-31 2022-07-01 天津市滨海新区环境创新研究院 Pv/t耦合双源热泵的建筑综合供能系统及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936620A (zh) * 2009-06-29 2011-01-05 大连葆光节能空调设备厂 管桩式地源热泵系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183933A (ja) * 2004-12-27 2006-07-13 Sanyo Electric Co Ltd 太陽光発電システム
CN203501534U (zh) * 2013-09-25 2014-03-26 陕西东泰能源科技有限公司 一种蓄能式地源热泵与太阳能的复合系统
CN209042658U (zh) * 2018-11-19 2019-06-28 天津城建大学 一种寒冷地区复合型地源热泵优化集成系统
KR20200141577A (ko) * 2019-06-10 2020-12-21 이만숙 태양열 및 공기 열에 의한 히트펌프 시스템과 태양광이 융합된 하이브리드 난방 시스템 및 제어방법
CN110645732A (zh) * 2019-10-30 2020-01-03 中国长江三峡集团有限公司 一种基于可逆膨胀机的综合能源系统及运行方法
CN113432173A (zh) * 2021-07-26 2021-09-24 河北工业大学 一种光伏直驱的太阳能跨季节储热供热系统及其运行方法
CN114688764A (zh) * 2022-05-31 2022-07-01 天津市滨海新区环境创新研究院 Pv/t耦合双源热泵的建筑综合供能系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024081897A1 (en) 2022-10-14 2024-04-18 Pulse Biosciences, Inc. Multi-strut ablation and sensing catheter devices and methods

Also Published As

Publication number Publication date
CN114688764B (zh) 2022-08-30
CN114688764A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023231726A1 (zh) Pv/t耦合双源热泵建筑综合供能系统的控制方法
CN113639486A (zh) 一种基于光伏光热的地源热泵耦合系统
CN206959110U (zh) 一种太阳能光伏光热一体化联合空气源热泵供暖系统
CN107062703B (zh) 一种基于pvt集热器的直流热泵系统
CN104061717B (zh) 一种季节性蓄热太阳能低温热发电复合地源热泵系统
CN213901222U (zh) 一种光伏光热一体化与太阳能复合热泵供暖系统
CN111853912A (zh) 多源互补耦合低温蓄热广义供热系统
CN216716614U (zh) 一种风光电热互补式冷热水双供系统
CN101832611A (zh) 一种光、电和地热一体化空调系统装置
CN203823962U (zh) 带热水供应的家用光伏直流变频空调器
CN106016825A (zh) 太阳能、空气源热泵双热源三联供系统
CN206817589U (zh) 一种利用多种自然环保能源的智能集成热利用装置
CN109268922A (zh) 直膨式热泵加光伏发电耦合利用采暖系统
CN211854524U (zh) 一种太阳能空气源热泵系统
CN114704893B (zh) 一种多源协同的热泵集成系统
CN106352597B (zh) 采用pvt集热器进行吸附制冷与发电系统
CN106839217B (zh) 脱电独立运行复合式热泵空调系统及其控制方法
CN215951770U (zh) 一种太阳能光伏变频热泵机组
CN115540018A (zh) 光伏光热复合双源热泵的家庭热电冷联供系统及功能方法
CN209147217U (zh) 直膨式热泵加光伏发电耦合利用采暖系统
CN113028678A (zh) 一种太阳能光伏变频热泵机组
CN201662251U (zh) 真空热管式太阳能与地源热泵热回收复合式热水系统
CN206709447U (zh) 基于pvt集热器的直流热泵系统
CN220958626U (zh) 一种pv/t耦合双源热泵建筑供暖系统
CN111322670A (zh) 一种适应超低温环境的太阳能供暖系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814912

Country of ref document: EP

Kind code of ref document: A1