WO2023231447A1 - 一种带有贯通式补偿通道的耐高压型水密电缆接插件 - Google Patents

一种带有贯通式补偿通道的耐高压型水密电缆接插件 Download PDF

Info

Publication number
WO2023231447A1
WO2023231447A1 PCT/CN2023/075428 CN2023075428W WO2023231447A1 WO 2023231447 A1 WO2023231447 A1 WO 2023231447A1 CN 2023075428 W CN2023075428 W CN 2023075428W WO 2023231447 A1 WO2023231447 A1 WO 2023231447A1
Authority
WO
WIPO (PCT)
Prior art keywords
socket
plug
assembly
valve
shell
Prior art date
Application number
PCT/CN2023/075428
Other languages
English (en)
French (fr)
Inventor
余文韬
沈允生
杨申申
Original Assignee
中国船舶科学研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶科学研究中心 filed Critical 中国船舶科学研究中心
Publication of WO2023231447A1 publication Critical patent/WO2023231447A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/523Dustproof, splashproof, drip-proof, waterproof, or flameproof cases for use under water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of watertight connectors, in particular to a high-voltage resistant watertight cable connector with a through-type compensation channel.
  • the mainstream watertight cable connector is a rubber-type watertight cable connector.
  • Rubber vulcanization technology is used to achieve a watertight connection between the plug metal parts and the rubber tail cable.
  • the amount of water pressure this type of watertight cable connector can withstand in an underwater environment There are certain limits, and due to the immaturity of domestic rubber vulcanization technology and the limitations of the technology itself, this type of watertight cable connector has poor reliability, especially in the deep sea, where it withstands higher seawater pressure and faces a higher risk of failure. Also higher. If short circuit, open circuit, leakage and other faults occur while working underwater, it will cause great damage to the underwater equipment and bring great hidden dangers to the safety of personnel and equipment.
  • the watertight cable connectors used in the traditional underwater equipment field rely heavily on imports, especially when used in various deep-sea equipment with water depths of thousands of meters or even 10,000 meters.
  • Watertight cable connectors are monopolized by imported products, and the price is extremely high.
  • a single piece costs thousands to It ranges from tens of thousands; even so, its reliability is still low in ultra-high water pressure environments, and water leakage accidents often occur.
  • the applicant provides a reasonably structured high-voltage watertight cable connector with a through-type compensation channel, thereby greatly helping to ensure the safety and safety of power transmission in underwater ultra-high-voltage environments. High performance and reliability.
  • a high-pressure-resistant watertight cable connector with a through-type compensation channel including a socket assembly and a plug assembly that are inserted in opposite directions to match each other.
  • the axially penetrating socket assembly is equipped with a socket valve
  • the axial penetrating plug assembly is equipped with a plug valve;
  • the socket assembly is installed in the middle part of the inner hole of the axially penetrating socket shell, and the plug assembly is installed at the end of the inner hole of the axially penetrating plug shell.
  • the end of the plug shell extends into the inner hole of the socket shell;
  • the outer wall surface of the socket assembly and the inner wall surface of the socket shell are fitted and jointly pressed with a sealing piece 2.
  • the outer wall surface of the plug assembly and the inner wall surface of the plug casing are fitted and jointly pressed with a sealing piece 4.
  • the outer wall surface of the plug shell and the inner wall surface of the socket casing are fitted and jointly pressed together. Press-fit seal three.
  • Both the socket assembly and the plug assembly are circumferentially rotating structures.
  • the socket assembly and the socket shell are jointly provided with a limiting structure to prevent circumferential relative rotation.
  • the plug assembly and the plug shell are jointly provided with a limiting structure to prevent circumferential relative rotation. Another set of limiting structures with the same structure.
  • the end of the socket assembly facing away from the plug assembly is provided with a step limiting structure that matches the socket shell.
  • a socket retaining ring is embedded in the inner wall of the socket shell at the other end of the socket assembly; the end of the inner hole of the plug shell is embedded There is a plug retaining ring to prevent the plug assembly from coming out, and the other end of the plug assembly is provided with another set of step limiting structures that match the plug shell.
  • the outer wall of the plug housing has a bump extending outward along the circumference, and the end of the plug housing extends into the inner hole of the socket housing until it is inserted into the socket.
  • the bump gradually approaches and fits the end of the socket shell;
  • a thread retaining ring is embedded circumferentially on the outer wall of the plug shell located outside the end of the socket shell, and there is a gap between the thread retaining ring and the bump ;
  • It also includes a rotating threaded sleeve. One end of the rotating threaded sleeve shrinks inward and is embedded between the threaded sleeve retaining ring and the bump.
  • the other end of the rotating threaded sleeve is set on the outer wall of the socket shell and threadedly assembled.
  • the outer wall of the socket shell end facing away from the plug assembly is assembled to the wall of the oil-filled equipment through a threaded structure, and a seal is installed between the socket shell and the outer wall of the oil-filled equipment; the end of the plug assembly facing away from the socket shell is fitted with The end of the hose is fastened relative to the plug assembly via a clamp.
  • the end of the plug assembly fitted with the hose is concave along the circumferential direction to form an inner recess.
  • An inclined plane structure transition is provided between one end edge of the inner recess and the outer wall surface of the plug assembly.
  • the other end edge of the inner recess is connected to the end of the plug assembly.
  • a circumferentially protruding rib is formed between the ribs; the rib is located inside the hose, and the hoop is set at the inner recess of the plug assembly.
  • the socket assembly includes a socket core.
  • a plurality of parallel male pins are inserted through the socket core along the circumferential direction.
  • a socket valve is also installed on the socket core located inside the plurality of male pins;
  • the plug assembly includes a plug core, through which a plurality of female pins parallel to each other are inserted along the circumferential direction.
  • a plug valve is also installed on the plug core located inside the plurality of female pins;
  • the axial direction of the socket valve and the axial direction of the plug valve are arranged parallel and staggered from each other; during insertion, the socket valve is pressed and forced by the end face of the plug assembly to switch states, and the plug valve is pressed and forced by the end face of the socket assembly. Status switching.
  • the structure of the socket valve is the same as that of the plug valve.
  • the specific structure of the socket valve is: it includes a valve stem that is movable in the socket assembly along the axial direction. One end of the valve stem extends out of the socket assembly and faces the plug assembly, and the other end of the valve stem extends out of the socket assembly and faces the plug assembly. One end shrinks in the diameter direction to form a thin rod.
  • the thin rod is located inside the socket assembly and is fixedly connected with a stopper at the end.
  • the thin rod is covered with an elastic member. One end of the elastic member fits the valve stem and contracts to form a thin rod.
  • the other end of the elastic member is attached to the valve seat; the valve seat is fixed on the hole wall of the socket assembly outside the circumference of the valve stem, and the end of the valve seat located outside the thin stem is in contact with the stopper along the circumference. Side fit; there is a gap between the circumferential direction of the stopper and the hole wall of the socket assembly, the end of the valve stem is forced by the plug assembly to move toward the inside of the socket assembly, and the valve seat and the stopper are separated.
  • This application has a compact, reasonable structure and is easy to operate.
  • a through-type compensation channel is formed after the connector is inserted.
  • water-oil pressure compensation Through the principle of water-oil pressure compensation, it greatly helps ensure the power transmission in the underwater ultra-high-pressure environment. High safety and reliability, especially suitable for the use of oil-filled underwater equipment;
  • This application adopts the structural design of a through-type compensation channel to achieve internal and external pressure balance of watertight cable connectors and underwater oil-filled equipment, avoiding the risk of pressure failure, and can be applied to ultra-high water pressure environments;
  • This application adopts a double-valve structural design to realize the automatic opening of the compensation channel when the watertight cable connector is plugged in and assembled, and the automatic closing function of the compensation channel when disconnected and separated. On the basis of effectively ensuring reliable use under high water pressure, Effectively avoid oil leakage.
  • Figure 1 is a schematic structural diagram of the present invention.
  • Figure 2 is a partial enlarged view of point A in Figure 1.
  • Figure 3 is a partial enlarged view of B in Figure 1.
  • FIG. 4 is a schematic structural diagram of the socket shell and socket assembly of the present invention.
  • Figure 5 is a schematic structural diagram of the plug housing and plug assembly of the present invention.
  • FIG. 6 is a schematic structural diagram of the socket valve of the present invention (blocking state).
  • Figure 7 is a partial enlarged view of position C in Figure 6.
  • FIG 8 is a schematic structural diagram of the socket valve of the present invention (connected state).
  • Figure 9 is a partial enlarged view of D in Figure 8.
  • FIG 10 is a schematic structural diagram of the socket assembly of the present invention.
  • FIG. 11 is a side view of FIG. 10 .
  • Oil-filled equipment 11. Seal 1; 21. Cable one; 22. Cable two; 3. Socket shell; 4. Socket assembly; 41. Male pin; 42. Socket core; 43. Seal 2; 44. Socket valve; 45. Socket retaining ring; 421. Through hole; 422, outer step structure; 423, convex rib; 441. Valve stem; 442. Elastic member; 443. Thin stem part; 444. Valve seat; 445. Stopper; 4441. Inner step structure; 5. Plug assembly; 51. Plug retaining ring; 52. Seal three; 53. Plug core; 54. Seal four; 55. Female pin; 56. Plug valve; 6. Rotating screw sleeve; 61.
  • Screw sleeve retaining ring 62. convex edge; 7. Plug shell; 71. Bump; 72. Back-up ring groove; 73. Inclined structure; 74. Inner recess; 75. Rib; 8. Hose; 81. Hoop; k, spacing.
  • a high-voltage watertight cable connector with a through-type compensation channel in this embodiment includes a socket assembly 4 and a plug assembly 5 that are inserted in opposite directions and axially penetrate the socket assembly 4
  • a socket valve 44 is installed, and a plug valve 56 is installed axially through the plug assembly 5; when the male pin 41 in the socket assembly 4 and the female pin 55 in the plug assembly 5 are inserted into place, the opposite ends of the socket assembly 4 and the plug assembly 5 There is a distance k between the two parts.
  • both the socket valve 44 and the plug valve 56 are switched from blocking to the connected state.
  • the liquid circulates in the axial direction of the socket assembly 4, at the distance k, and in the axial direction of the plug assembly 5.
  • a through-type compensation channel is formed after the connector is inserted through the status switching of the valve. This is combined with the principle of water-oil pressure compensation to ensure power transmission in an underwater ultra-high-pressure environment. It is especially suitable for oil-filled underwater equipment. usage of.
  • the socket assembly 4 is installed in the middle of the inner hole of the axially penetrating socket shell 3, and the plug assembly 5 is installed at the end of the inner hole of the axially penetrating plug shell 7.
  • the end of the plug shell 7 extends to the inner hole of the socket shell 3. , so that the plug assembly 5 gradually approaches the socket assembly 4 until the female pin 55 and the male pin 41 are inserted into place; the outer wall surface of the socket assembly 4 and the inner wall surface of the socket shell 3 fit together and are jointly pressed with the sealing member 43, and the plug assembly 5.
  • the outer wall surface of the plug housing 7 and the inner wall surface of the plug housing 7 are fitted and jointly pressed with a sealing member 454.
  • the outer wall surface of the plug housing 7 and the inner wall surface of the socket housing 3 are fitted and jointly pressed with a sealing member 352. Through the sealing between the inner and outer walls The setting makes the formed through-type compensation channel relatively airtight and reliable, effectively ensuring the reliability during use.
  • the socket assembly 4 is arranged in the middle of the inner hole of the socket shell 3, so that after the insertion is in place, a relatively closed internal circulation space can be formed by the distance k between the end of the socket assembly 4 and the end of the plug assembly 5. , facilitating the formation of through-type compensation channels.
  • Both the socket assembly 4 and the plug assembly 5 are circumferentially rotating structures.
  • the socket assembly 4 and the socket shell 3 are jointly provided with a limiting structure to prevent circumferential relative rotation.
  • the plug assembly 5 and the plug housing 7 are jointly provided with a limiting structure to prevent circumferential relative rotation.
  • Another set of limiting structures with the same structure that rotates relative to each other.
  • the limiting structures between the socket assembly 4 and the socket shell 3 and between the plug assembly 5 and the plug shell 7 to prevent circumferential relative rotation have the same structure. Take the structure as an example.
  • a groove corresponding to the convex rib 423 is provided on the inner hole wall of the socket shell 3. Through the convex rib 423 The socket assembly 4 and the socket shell 3 are inserted into the groove to achieve circumferential positioning after assembly, which is reliable and practical, as shown in Figures 10 and 11.
  • the socket assembly 4 and the plug assembly 5 are both arranged in a circumferential rotation structure, such as a cylindrical structure, which facilitates reliable sealing when assembled with the corresponding socket shell 3 and plug shell 7; of course, the socket assembly 4 and the plug assembly 5 can also be set It is set as a non-circumferential rotary structure, such as a cylindrical structure with a square or rectangular cross-section, which is adapted to the socket shell 3 and the plug shell 7 and the wall surfaces that fit together are reliably sealed.
  • the setting of the non-circumferential rotary structure It also facilitates insertion guidance during installation, and can replace or even lift the above-mentioned limiting structure that prevents relative circumferential rotation.
  • the end of the socket assembly 4 facing away from the plug assembly 5 is provided with a step limiting structure that matches the socket shell 3.
  • a socket retaining ring 45 is embedded in the inner wall of the socket shell 3 at the other end of the socket assembly 4; the inner hole of the plug shell 7
  • a plug retaining ring 51 is embedded at the end to prevent the plug assembly 5 from coming out.
  • the other end of the plug assembly 5 is provided with another set of step limiting structures matching the plug housing 7 .
  • the structures of the step limiting structures between the socket assembly 4 and the socket shell 3 and between the plug assembly 5 and the plug shell 7 are the same.
  • the step limiting structure between the socket assembly 4 and the socket shell 3 as an example To explain; as shown in Figures 10 and 11, the end of the socket core 42 in the socket assembly 4 is retracted in the diameter direction to form an outer step structure 422, and the inner hole of the socket shell 3 is provided with an inner step that matches the outer step structure 422.
  • the outer step structure 422 gradually approaches, contacts and fits the inner step, then the insertion is in place, and then the socket is embedded in the hole of the socket shell 3
  • the retaining ring 45 is used to prevent the socket assembly 4 from coming out, thereby completing the insertion and position limiting of the socket assembly 4 in the socket shell 3.
  • the ridges 423 and grooves in the limiting structure that prevents circumferential relative rotation can be provided on the outer step structure 422 and the corresponding inner steps.
  • a bump 71 extends outward along the circumference of the outer wall of the plug housing 7.
  • the end of the plug housing 7 extends into the inner hole of the socket housing 3 until the insertion is in place.
  • the bump 71 gradually approaches and fits into the socket housing 3.
  • the socket shell 3 end; the plug shell 7 outer wall surface located outside the socket shell 3 end is circumferentially embedded with a thread retaining ring 61, and there is a gap between the thread retaining ring 61 and the bump 71; it also includes a rotating screw Sleeve 6, one end of the rotating screw sleeve 6 shrinks inward and is embedded between the screw sleeve retaining ring 61 and the bump 71, and the other end of the rotating screw sleeve 6 is sleeved on the outer wall surface of the socket shell 3 and threadedly assembled.
  • a retaining ring groove 72 is opened along the circumferential direction on the wall of the plug housing 7 located outside the side of the protrusion 71 away from the socket housing 3.
  • the retaining ring 61 of the threaded sleeve is embedded in the retaining ring groove 72 to rotate the threaded sleeve. 6 ends form a barrier.
  • the screw retaining ring 61 has a cylindrical structure, and its inner wall is provided with a threaded structure and is spirally sleeved on the outer wall of the socket housing 3. The end of the screw retaining ring 61 is retracted to form a convex edge 62.
  • the convex edge 62 gradually approaches and fits the side of the convex block 71, preventing the screw retaining ring 61 from further screwing in, and the convex edge 62 moves away from the side of the convex block 71.
  • the screw retaining ring 61 is installed externally to prevent the screw retaining ring 61 from rotating out in the reverse direction, thereby limiting the screw retaining ring 61 in both axial directions.
  • the reliable installation of the screw retaining ring 61 ensures that the plug shell 7. Axial stability and reliability after insertion relative to the socket shell 3.
  • the outer wall of the end of the socket shell 3 facing away from the plug assembly 5 is assembled to the wall of the oil-filled device 1 through a threaded structure.
  • a seal 11 is installed between the socket shell 3 and the outer wall of the oil-filled device 1 to help protect Isolation between inside and outside; the end of the plug assembly 5 facing away from the socket shell 3 is covered with a hose 8, and the end of the hose 8 is fastened relative to the plug assembly 5 through a hoop 81.
  • the end of the plug assembly 5 that is fitted with the hose 8 is concave along the circumferential direction to form an inner recess 74.
  • a transition of an inclined plane structure 73 is provided between one end edge of the inner recess 74 and the outer wall surface of the plug assembly 5.
  • a circumferentially protruding rib 75 is formed between the other edge of the recess 74 and the end of the plug assembly 5; the rib 75 is located inside the hose 8, and the hoop 81 is set at the inner concave portion 74 of the plug assembly 5; through the rib 75
  • the hose 8 set at the end of the plug assembly 5 is supported internally and tightened externally by the hoop 81, so that the hose 8 is stably and reliably attached to the outer wall of the plug assembly 5, and is fitted through the deformation of the hose 8 at the end of the sleeve. Helps achieve and ensure the sealing of the joint.
  • the socket assembly 4 includes a socket core 42.
  • a plurality of mutually parallel male pins 41 are inserted through the socket core 42 along the circumferential direction.
  • the socket core 42 located inside the multiple male pins 41 also has a socket core 42.
  • a socket valve 44 is installed throughout;
  • the plug assembly 5 includes a plug core 53.
  • a plurality of parallel female pins 55 are inserted through the plug core 53 along the circumferential direction.
  • a plug valve 56 is also installed on the plug core 53 inside the multiple female pins 55. ;
  • a plurality of male pins 41 and a plurality of female pins 55 are inserted in a one-to-one correspondence.
  • the socket core 42 forms a base for mounting the male pins 41 and the socket valve 44.
  • the shape of the socket core 42 is configured to match the socket shell 3; the plug core 53 forms a base for mounting the female pins 55 and the plug valve 56.
  • the base body is inserted and matched with the plug shell 7 through the configuration of the plug core 53 shape.
  • the socket core 42 is provided with axially penetrating holes, such as the through hole 421 for installing the socket valve 44.
  • the male pin 41 is in contact with the socket core 42. While fixing the insertion, both ends protrude corresponding holes, one end is used to protrude and match the female pin 55, and the other end is used to connect to the cable 21 to be connected; the through hole 421 is provided in While realizing the installation of the socket valve 44, it also reliably ensures the axial penetration of the socket assembly 4 when the socket valve 44 is connected;
  • the plug core 53 is also provided with a similar axial through hole.
  • One end of the female pin 55 is flush with the hole and is provided with an inner plug for insertion into the male pin 41.
  • the other end of the female pin 55 extends out of the hole and is connected to the corresponding cable 22; thus, after the male pin 41 and the female pin 55 are inserted, the electrical connection between the cable 1 21 and the cable 2 22 is achieved. .
  • the axial direction of the socket valve 44 and the axial direction of the plug valve 56 are arranged parallel and staggered from each other; during insertion, the socket valve 44 is pressed by the end face of the plug assembly 5 to switch states, and the plug valve 56 is squeezed by the end face of the socket assembly 4. Pressure is applied to switch the state; through the staggered setting of the socket valve 44 and the plug valve 56, the reliability and stability of the corresponding valve state switching during insertion are ensured.
  • the number of the socket valve 44 and the plug valve 56 can be one group each, or more than two groups according to actual needs.
  • the structure of the socket valve 44 is the same as that of the plug valve 56. As shown in Figures 6 and 7, the specific structure of the socket valve 44 is: it includes a valve stem 441 that is axially movably inserted into the socket assembly 4. One end of the valve stem 441 extends Exiting the socket assembly 4 and facing the plug assembly 5, the other end of the valve stem 441 shrinks in the diameter direction to form a thin rod portion 443.
  • the thin rod portion 443 is located inside the socket assembly 4 and has a stopper 445 fixedly connected to the end; the thin rod portion 443 is An elastic member 442 is set. One end of the elastic member 442 is attached to the step where the valve stem 441 shrinks into a thin rod portion 443.
  • the other end of the elastic member 442 is attached to the valve seat 444; the valve seat 444 is fixed on the outer circumference of the valve stem 441.
  • the end of the valve seat 444 located outside the thin rod portion 443 fits with the side of the stopper 445 in the circumferential direction; there is a gap between the stopper 445 in the circumferential direction and the hole wall of the socket assembly 4, and the valve stem 441
  • the end is forced by the plug assembly 5 to move toward the inside of the socket assembly 4, and the valve seat 444 and the stopper 445 are separated, as shown in Figures 8 and 9, so that the inner wall of the valve seat 444 and the socket assembly at the stopper 445 4 The inner hole is through.
  • valve seat 444 is an axially hollow cylindrical structure, which is built into the through hole 421 of the socket core 42. One end is flush with the hole, and the other end is recessed between the stopper 445 and the elastic member. 442, thereby achieving the contact force of the elastic member 442 or the fit with the stopper 445, and the installation is convenient and reliable, which can help ensure the accuracy of the installation position of the valve seat 444 inside the socket core 42;
  • the outer wall surface of the concave end of the valve seat 444 forms a tapered structure toward the stopper 445, which ensures circumferential contact between the end and the stopper 445 while reducing the contact area and improving the state switching.
  • the inner wall surface of the concave and contracted end of the valve seat 444 forms an inner step structure 4441 that fits the end of the elastic member 442 to ensure the stability and balance of the force contraction of the elastic member 442 when the valve stem 441 is retracted.
  • both ends of the valve stem 441 penetrate the valve seat 444.
  • the outer end of the valve stem 441 can be connected to a force-bearing end block with a larger diameter.
  • the force-bearing end block is driven by the force along the axial direction of the valve stem 441 to retract toward the socket core 42.
  • the force-bearing end block The width dimension along the indentation direction is smaller than the distance k between the socket assembly 4 and the plug assembly 5 in the flow state.
  • the socket cores 42 in the socket assembly 4 are arranged in a cylindrical structure with a circular cross-section, and are installed at even intervals along the circumferential direction.
  • the socket valve 44 is installed through the socket core 42 inside the pin 41; one end of the socket core 42 is concave along the circumferential direction to form an outer step structure 422, and is radially outward at one point on the circumference of the outer step structure 422.
  • a raised rib 423 extends.
  • the structural design of a through-type compensation channel is used to achieve internal and external pressure balance of the watertight cable connector and underwater oil-filled equipment, avoiding the risk of pressure failure, and can be applied to ultra-high water pressure environments;
  • a double-valve structural design is adopted to realize the automatic opening of the compensation channel when the watertight cable connector is inserted and assembled, and the automatic closing function of the compensation channel when it is pulled out and separated, effectively ensuring reliable use under high water pressure. Basically, it effectively prevents oil leakage.
  • a seal 11 is embedded in the end of the threaded structure of the socket shell 3 with the socket assembly 4 installed. Connect the tail end of the male pin 41 in the socket assembly 4 with the cable 21 of the oil-filled device 1. Connect the threaded structure of the socket shell 3 Screwly install it to the wall of the oil-filled device 1 until the end of the socket shell 3 contacts the outer wall of the oil-filled device 1 and the seal 11 is squeezed;
  • the elastic member 442 is pressed, thereby forming a through hole between the inside of the hose 8 , the plug valve 56 , the distance k between the plug assembly 5 and the socket assembly 4 , the socket valve 44 and the oil-filled device 1 Oil channel.
  • the invention Based on the state switching of the valve, the invention forms a through compensation channel inside the inserted watertight connector, which greatly helps ensure the power transmission in the underwater ultra-high pressure environment, has high safety and reliability, and is especially suitable for oil-filled underwater applications.
  • Use of Equipment The above description is an explanation of the present invention, not a limitation of the invention. Please refer to the claims for the limited scope of the present invention. Any modifications may be made within the protection scope of the present invention.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

一种带有贯通式补偿通道的耐高压型水密电缆接插件,包括相向插装的插座组件(4)和插头组件(5),轴向贯穿插座组件(4)安装有插座阀(44),轴向贯穿插头组件(5)安装有插头阀(56);在插座组件(4)的公插针(41)和插头组件(5)的母插针(55)插装到位时,插座组件(4)和插头组件(5)相向的端部之间存在间距,同时插座阀(44)和插头阀(55)均由阻断转换至连通状态,液体在插座组件(4)、间距处、插头组件(5)沿着轴向流通,从而通过阀的状态切换在接插件插装后形成贯通式的补偿通道,通过水油压力补偿的原理,助力水下超高压环境的电力传输,安全性和可靠性高。

Description

一种带有贯通式补偿通道的耐高压型水密电缆接插件 技术领域
本发明涉及水密接插件技术领域,尤其是一种带有贯通式补偿通道的耐高压型水密电缆接插件。
背景技术
大量的海洋油气生产、深海采矿装备、水下施工机械、载人潜水器、无人潜水器等各种海洋作业平台的水下活动中均需要各类水下设备提供保障,这些设备一般通过可承压的水密电缆接插件实现设备水压环境下的供能。
技术问题
传统技术中,主流使用的水密电缆接插件是橡胶型水密电缆接插件,采用橡胶硫化技术实现插头金属件与橡胶尾缆的水密连接,此类水密电缆接插件在水下环境承受的水压大小有一定极限,且由于国内橡胶硫化技术的不成熟和该技术本身的局限性,此类水密电缆接插件可靠性较差,尤其面对深海,其承受的海水压力更高,所面临的失效风险也更高。如果在水下工作时如果出现短路、断路、渗漏等故障就会对水下设备造成极大的破坏,对人员、设备的安全带来极大的隐患。
传统水下装备领域所使用的水密电缆接插件严重依赖进口,尤其应用于数千米乃至万米水深的各深海装备,水密电缆接插件被进口产品垄断,价格极其高昂,单件价格数千至数万不等;即便如此,其在超高水压环境下的可靠性依然较低,经常发生漏水事故。
技术解决方案
本申请人针对上述现有生产技术中的缺点,提供一种结构合理的带有贯通式补偿通道的耐高压型水密电缆接插件,从而极大地助力于保证水下超高压环境的电力传输,安全性和可靠性高。
本申请所采用的技术方案如下:
一种带有贯通式补偿通道的耐高压型水密电缆接插件,包括相向插装相配的插座组件和插头组件,轴向贯穿插座组件安装有插座阀,轴向贯穿插头组件安装有插头阀;在插座组件中公插针和插头组件中母插针插装到位时,插座组件和插头组件相向的端部存在间距,同时插座阀和插头阀均由阻断转换至连通状态,液体在插座组件轴向、间距处、插头组件轴向流通。作为上述技术方案的进一步改进:
所述插座组件安装于轴向贯通的插座外壳内孔的中部,插头组件安装于轴向贯通的插头外壳内孔的端部,插装时插头外壳端部伸至插座外壳内孔中;所述插座组件外壁面与插座外壳内壁面贴合并共同压装有密封件二,插头组件外壁面与插头外壳内壁面贴合并共同压装有密封件四,插头外壳外壁面与插座外壳内壁面贴合并共同压装有密封件三。
所述插座组件和插头组件均为周向回转结构,插座组件和插座外壳之间共同设置有阻止周向相对转动的限位结构,插头组件和插头外壳之间共同设置有阻止周向相对转动的另一组结构相同的限位结构。
背离插头组件的插座组件端部设置有与插座外壳相配的台阶限位结构,位于插座组件另一端处的插座外壳内壁面上嵌装有插座挡圈;所述插头外壳内孔端部处嵌装有防止插头组件脱出的插头挡圈,插头组件另一端设置有与插头外壳相配的另一组台阶限位结构。
所述插头外壳外壁面沿着圆周向外延伸有凸块,插头外壳端部伸至插座外壳内孔中至插装到 位时,凸块逐渐靠近并贴合于插座外壳端头;位于插座外壳端头外部的插头外壳外壁面上沿周向嵌装有螺套挡圈,螺套挡圈和凸块之间存在间隔;还包括旋转螺套,旋转螺套一端向内收缩并嵌装于螺套挡圈和凸块之间,旋转螺套另一端套装于插座外壳外壁面上并螺纹配装。背离插头组件的插座外壳端部外壁面通过螺纹结构配装至充油设备壁面上,插座外壳与充油设备外壁面之间还压装有密封件一;背离插座外壳的插头组件端部套装有软管,软管端部通过抱箍相对于插头组件套装紧固。
所述插头组件套装有软管的端部处沿周向内凹形成内凹部,内凹部一端边缘与插头组件外壁面之间设置有斜面结构的过渡,内凹部另一端边缘与插头组件端头之间形成周向外凸的挡边;所述挡边位于软管内部,抱箍套装于插头组件的内凹部处。
所述插座组件包括有插座芯,贯穿插座芯沿着周向插装有相互平行的多个公插针,位于多个公插针内侧的插座芯上还贯穿安装有插座阀;
所述插头组件包括有插头芯,贯穿插头芯沿着周向插装有相互平行的多个母插针,位于多个母插针内侧的插头芯上还贯穿安装有插头阀;
多个公插针与多个母插针一一对应插装。
所述插座阀的轴向与插头阀的轴向平行设置并相互错开;插装时,插座阀受到插头组件端面的挤压施力而状态切换,插头阀受到插座组件端面的挤压施力而状态切换。
所述插座阀与插头阀的结构相同,所述插座阀的具体结构为:包括沿轴向活动插装在插座组件内的阀杆,阀杆一端伸出插座组件并朝向插头组件,阀杆另一端在直径方向收缩形成细杆部,细杆部位于插座组件内部并在端部固定衔接有挡头;所述细杆部上套装有弹性件,弹性件一端贴合于阀杆收缩成细杆部的台阶处,弹性件另一端贴合于阀座上;所述阀座固定于阀杆圆周外部的插座组件孔壁上,位于细杆部外侧的阀座端部沿圆周周向与挡头侧面贴合;所述挡头圆周方向与插座组件孔壁之间存在间隙,阀杆端部受到插头组件的施力而向着插座组件内部移动,阀座与挡头之间脱离。
有益效果
本申请结构紧凑、合理,操作方便,通过阀的状态切换在接插件插装后形成贯通式的补偿通道,通过水油压力补偿的原理,极大地助力于保证水下超高压环境的电力传输,安全性和可靠性高,尤其适用于充油水下设备的使用;
本申请采用贯通式补偿通道的结构设计,实现了水密电缆接插件和水下充油设备的内外压力平衡,规避了承压失效的风险,可应用于超高水压环境;
本申请采用双阀的结构设计,实现了水密电缆接插件插合装配时补偿通道的自动打开、以及拔开分离时补偿通道的自动关闭功能,在有效保证高水压下的可靠使用基础上,有效避免油液的渗漏。
附图说明
图1为本发明的结构示意图。
图2为图1中A处的局部放大图。
图3为图1中B处的局部放大图。
图4为本发明插座外壳与插座组件的结构示意图。
图5为本发明插头外壳与插头组件的结构示意图。
图6为本发明插座阀的结构示意图(阻断状态)。
图7为图6中C处的局部放大图。
图8为本发明插座阀的结构示意图(连通状态)。
图9为图8中D处的局部放大图。
图10为本发明插座组件的结构示意图。
图11为图10的侧视图。
其中:1、充油设备;11、密封件一;
21、电缆一;22、电缆二;
3、插座外壳;
4、插座组件;41、公插针;42、插座芯;43、密封件二;44、插座阀;45、插座挡圈;421、
通孔;422、外台阶结构;423、凸棱;
441、阀杆;442、弹性件;443、细杆部;444、阀座;445、挡头;4441、内台阶结构;
5、插头组件;51、插头挡圈;52、密封件三;53、插头芯;54、密封件四;55、母插针;
56、插头阀;
6、旋转螺套;61、螺套挡圈;62、凸边;
7、插头外壳;71、凸块;72、挡圈槽;73、斜面结构;74、内凹部;75、挡边;
8、软管;81、抱箍;
k、间距。
本发明的实施方式
下面结合附图,说明本发明的具体实施方式。
如图1和图2所示,本实施例的一种带有贯通式补偿通道的耐高压型水密电缆接插件,包括相向插装相配的插座组件4和插头组件5,轴向贯穿插座组件4安装有插座阀44,轴向贯穿插头组件5安装有插头阀56;在插座组件4中公插针41和插头组件5中母插针55插装到位时,插座组件4和插头组件5相向的端部存在间距k,同时插座阀44和插头阀56均由阻断转换至连通状态,液体在插座组件4轴向、间距k处、插头组件5轴向流通。
本实施例中,通过阀的状态切换在接插件插装后形成贯通式的补偿通道,再结合水油压力补偿的原理,来保证水下超高压环境的电力传输,尤其适用于充油水下设备的使用。
插座组件4安装于轴向贯通的插座外壳3内孔的中部,插头组件5安装于轴向贯通的插头外壳7内孔的端部,插装时插头外壳7端部伸至插座外壳3内孔中,使得插头组件5逐渐靠近插座组件4直至母插针55与公插针41对应插装到位;插座组件4外壁面与插座外壳3内壁面贴合并共同压装有密封件二43,插头组件5外壁面与插头外壳7内壁面贴合并共同压装有密封件四54,插头外壳7外壁面与插座外壳3内壁面贴合并共同压装有密封件三52,通过内外壁之间密封件的设置,使得形成的贯通式补偿通道是相对密闭、可靠的,有效保证了使用过程中的可靠性。
本实施例中,将插座组件4布设于插座外壳3内孔中部,从而能够在插装到位后,在插座组件4端部和插头组件5端部之间由间距k形成相对密闭的内部流通空间,助力于贯通式补偿通道的形成。
插座组件4和插头组件5均为周向回转结构,插座组件4和插座外壳3之间共同设置有阻止周向相对转动的限位结构,插头组件5和插头外壳7之间共同设置有阻止周向相对转动的另一组结构相同的限位结构。
本实施例中,插座组件4与插座外壳3之间、插头组件5与插头外壳7之间的阻止周向相对转动的限位结构的结构相同,以插座组件4与插座外壳3之间的限位结构为例,在插座组件4的插座芯42圆周壁面端部沿着轴向延伸有凸棱423,插座外壳3内孔壁面上开设有与凸棱423相对应的凹槽,通过凸棱423与凹槽的相配插装,来实现插座组件4与插座外壳3之间的配装后的周向限位,可靠实用,如图10和图11所示。
本实施例中,插座组件4和插头组件5均设置为周向回转结构,比如圆柱形结构,便利于与相应插座外壳3、插头外壳7装配时的可靠密封;当然,插座组件4和插头组件5也可以设 置为非周向回转结构,比如截面为正方形或矩形的柱形结构,其与插座外壳3、插头外壳7适配安装并且相贴合的壁面可靠密封即可,非周向回转结构的设置,也便利于安装时的插装导向,可以替代甚至升力上述阻止周向相对转动的限位结构的设置。
背离插头组件5的插座组件4端部设置有与插座外壳3相配的台阶限位结构,位于插座组件4另一端处的插座外壳3内壁面上嵌装有插座挡圈45;插头外壳7内孔端部处嵌装有防止插头组件5脱出的插头挡圈51,插头组件5另一端设置有与插头外壳7相配的另一组台阶限位结构。
本实施例中,插座组件4与插座外壳3之间、插头组件5和插头外壳7之间的台阶限位结构的结构相同,以插座组件4与插座外壳3之间的台阶限位结构为例进行说明;如图10和图11所示,插座组件4中的插座芯42端部直径方向内缩形成外台阶结构422,插座外壳3内孔中设置有与该外台阶结构422相配的内部台阶,在插座组件4从插座外壳3孔口处向内插装过程中,外台阶结构422逐渐靠近并接触、贴合于内部台阶,则插装到位,而后在插座外壳3孔口处嵌装插座挡圈45来防止插座组件4的脱出,从而完成插座组件4在插座外壳3内的插装和限位。
本实施例中,上述阻止周向相对转动的限位结构中的凸棱423、凹槽可以设置于外台阶结构422和相应的内部台阶上,在插座组件4相对于插座外壳3插装到位时,进行轴向插装方向和周向转动方向的限位,使其最终插装可靠。
如图3所示,插头外壳7外壁面沿着圆周向外延伸有凸块71,插头外壳7端部伸至插座外壳3内孔中至插装到位时,凸块71逐渐靠近并贴合于插座外壳3端头;位于插座外壳3端头外部的插头外壳7外壁面上沿周向嵌装有螺套挡圈61,螺套挡圈61和凸块71之间存在间隔;还包括旋转螺套6,旋转螺套6一端向内收缩并嵌装于螺套挡圈61和凸块71之间,旋转螺套6另一端套装于插座外壳3外壁面上并螺纹配装。
本实施例中,位于凸块71远离插座外壳3侧面外部的插头外壳7壁面上沿着周向开设有挡圈槽72,螺套挡圈61嵌装于挡圈槽72中,对旋转螺套6端部形成阻挡。
本实施例中,螺套挡圈61为筒型结构,其内壁开设有螺纹结构并螺旋套设于插座外壳3外壁面上,螺套挡圈61端部内收形成凸边62,在螺套挡圈61沿着螺纹结构旋转至插座外壳3上时,凸边62逐渐靠近并贴合于凸块71侧面,阻止螺套挡圈61的进一步旋入,并且在凸边62远离凸块71的侧面外部装设螺套挡圈61,以阻止螺套挡圈61的反向旋出,从而对螺套挡圈61进行轴向的双向限位,通过螺套挡圈61的可靠安装保证了插头外壳7相对于插座外壳3插装后的轴向稳定和可靠性。
背离插头组件5的插座外壳3端部外壁面通过螺纹结构配装至充油设备1壁面上,插座外壳3与充油设备1外壁面之间还压装有密封件一11,以助力于保障内外的隔离;背离插座外壳3的插头组件5端部套装有软管8,软管8端部通过抱箍81相对于插头组件5套装紧固。如图5所示,插头组件5套装有软管8的端部处沿周向内凹形成内凹部74,内凹部74一端边缘与插头组件5外壁面之间设置有斜面结构73的过渡,内凹部74另一端边缘与插头组件5端头之间形成周向外凸的挡边75;挡边75位于软管8内部,抱箍81套装于插头组件5的内凹部74处;通过挡边75和抱箍81对套装于插头组件5端部处的软管8进行内撑外紧,使得软管8稳定可靠贴合于插头组件5外壁面上,并通过套装处软管8的形变贴合助力于实现、保证相接处的密封性。
如图4所示,插座组件4包括有插座芯42,贯穿插座芯42沿着周向插装有相互平行的多个公插针41,位于多个公插针41内侧的插座芯42上还贯穿安装有插座阀44;
插头组件5包括有插头芯53,贯穿插头芯53沿着周向插装有相互平行的多个母插针55,位于多个母插针55内侧的插头芯53上还贯穿安装有插头阀56;
多个公插针41与多个母插针55一一对应插装。
本实施例中,插座芯42形成安装公插针41、插座阀44的基体,通过插座芯42外形的设置与插座外壳3插装相配;插头芯53形成安装母插针55、插头阀56的基体,通过插头芯53外形的设置与插头外壳7插装相配。
本实施例中,为了贯穿安装公插针41、插座阀44,在插座芯42上均开设有轴向贯穿的孔,比如安装插座阀44的通孔421,公插针41在与插座芯42固定插装的同时两端均伸出相应的孔口,一端用于凸出后与母插针55插装相配,另一端用于与待连接的电缆一21相连;通孔421的设置,在实现插座阀44安装的同时,也可靠保证了插座阀44连通状态时插座组件4的轴向贯通;
同样的,为了贯穿安装母插针55和插头阀56,插头芯53上也开设有相似的轴向贯穿的孔,母插针55一端与该孔齐平并设置有与公插针41插装的内盲孔,母插针55另一端则伸出孔口并与相应的电缆二22相连;从而在公插针41与母插针55插装后,实现电缆一21与电缆二22的电性连接。
插座阀44的轴向与插头阀56的轴向平行设置并相互错开;插装时,插座阀44受到插头组件5端面的挤压施力而状态切换,插头阀56受到插座组件4端面的挤压施力而状态切换;通过插座阀44与插头阀56的错开设置,以保证插装时相应阀状态切换的可靠和稳定性。本实施例中,插座阀44和插头阀56的数量可以各为一组,或是根据实际需要设置为两组以上。
在状态切换为流通状态时,插座阀44的阀杆441外端头与插头组件5贴合挤压,该阀杆441外端头与插座组件4通孔421孔口之间存在流通间隙;同样的,在流通状态时,插头阀56的阀杆441外端头与插头组件5通孔421孔口之间同样存在流通间隙。
插座阀44与插头阀56的结构相同,如图6和图7所示,插座阀44的具体结构为:包括沿轴向活动插装在插座组件4内的阀杆441,阀杆441一端伸出插座组件4并朝向插头组件5,阀杆441另一端在直径方向收缩形成细杆部443,细杆部443位于插座组件4内部并在端部固定衔接有挡头445;细杆部443上套装有弹性件442,弹性件442一端贴合于阀杆441收缩成细杆部443的台阶处,弹性件442另一端贴合于阀座444上;阀座444固定于阀杆441圆周外部的插座组件4孔壁上,位于细杆部443外侧的阀座444端部沿圆周周向与挡头445侧面贴合;挡头445圆周方向与插座组件4孔壁之间存在间隙,阀杆441端部受到插头组件5的施力而向着插座组件4内部移动,阀座444与挡头445之间脱离,如图8和图9所示,使得阀座444内壁与挡头445处的插座组件4内孔贯通。
本实施例中,阀座444为轴向空心的筒状结构,其内置配装于插座芯42的通孔421中,一端与孔口齐平,另一端内凹收缩位于挡头445与弹性件442之间,从而实现对弹性件442的接触施力或者是与挡头445的贴合,并且安装方便、可靠,能够助力于保证阀座444在插座芯42内部安装位置的准确性;
本实施例中,阀座444内凹收缩的端部外壁面形成朝向挡头445的锥面结构,在保证端头与挡头445周向接触的同时以减小接触面积,以提升状态切换的可靠和灵活性;阀座444内凹收缩的端部的内壁面则形成贴合弹性件442端部的内台阶结构4441,以保证阀杆441内收时弹性件442受力收缩的稳定均衡性;
本实施例中,阀杆441两端贯穿阀座444,为了保证连通状态下的贯通性,阀杆441外壁面与阀座444内壁面之间存在间隙。
本实施例中,阀杆441外端头可以衔接直径较大的受力端块,受力端块受到沿阀杆441轴向的力而带动其一起向着插座芯42缩进,受力端块沿着缩进方向的宽度尺寸小于流通状态下插座组件4与插头组件5之间的间距k。
如图10和图11所示,为本实施例的一个优选例,以插座组件4为例,插座组件4中插座芯42设置为截面为圆形的柱形结构,沿着圆周方向间隔均匀安装有六组公插针41,在六组公 插针41内侧的插座芯42上贯穿安装插座阀44;插座芯42其中一端端头处沿着周向内凹形成外台阶结构422,并在该外台阶结构422圆周的一处径向向外延伸有凸棱423,在插座组件4与插座外壳3安装时,外台阶结构422的设置形成安装方向的限位,凸棱423则实现了周向相对转动的限制,使得插座组件4与插座外壳3之间的安装可靠性好。
本实施例中,采用贯通式补偿通道的结构设计,实现了水密电缆接插件和水下充油设备的内外压力平衡,规避了承压失效的风险,可应用于超高水压环境;
本实施例中,采用双阀的结构设计,实现了水密电缆接插件插合装配时补偿通道的自动打开、以及拔开分离时补偿通道的自动关闭功能,在有效保证高水压下的可靠使用基础上,有效避免油液的渗漏。
本实施例的实际使用方式为:
在安装有插座组件4的插座外壳3螺纹结构端头内嵌安装密封件一11,将插座组件4中公插针41尾端与充油设备1的电缆一21连接,将插座外壳3的螺纹结构螺旋安装至充油设备1壁面上,直至插座外壳3端头与充油设备1外壁面相抵,密封件一11受挤压;
将插头组件5中母插针55尾端与软管8中电缆二22连接,在安装有该插头组件5的插头外壳7端部套装软管8,并将软管8通过抱箍81固定;
在插座外壳3内壁面上安装密封件三52,将插头外壳7伸至插座外壳3内直至公插针41与母插针55相互对应插装;
将旋转螺套6从插头外壳7端向着插座外壳3端部进行螺旋锁装,直至旋转螺套6的凸边62与插头外壳7的凸块71相抵,并在凸边62另一侧的插头外壳7上嵌装螺套挡圈61进行限位,此时公插针41与母插针55插装到位,插座阀44和插头阀56各自阀杆441端部受到挤压力而回缩,从阻断状态转换为连通状态,弹性件442受压,从而在软管8内部、插头阀56、插头组件5与插座组件4的间距k、插座阀44和充油设备1之间形成贯通的油路通道。
本发明基于阀的状态切换,在插装后的水密接插件内部形成贯通的补偿通道,极大地助力于保证水下超高压环境的电力传输,安全性和可靠性高,尤其适用于充油水下设备的使用。以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在本发明的保护范围之内,可以作任何形式的修改。

Claims (10)

  1. 一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:包括相向插装相配的插座组件(4)和插头组件(5),轴向贯穿插座组件(4)安装有插座阀(44),轴向贯穿插头组件(5)安装有插头阀(56);在插座组件(4)中公插针(41)和插头组件(5)中母插针(55)插装到位时,插座组件(4)和插头组件(5)相向的端部存在间距(k),同时插座阀(44)和插头阀(56)均由阻断转换至连通状态,液体在插座组件(4)轴向、间距(k)处、插头组件(5)轴向流通。
  2. 如权利要求1所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插座组件(4)安装于轴向贯通的插座外壳(3)内孔的中部,插头组件(5)安装于轴向贯通的插头外壳(7)内孔的端部,插装时插头外壳(7)端部伸至插座外壳(3)内孔中;所述插座组件(4)外壁面与插座外壳(3)内壁面贴合并共同压装有密封件二(43),插头组件(5)外壁面与插头外壳(7)内壁面贴合并共同压装有密封件四(54),插头外壳(7)外壁面与插座外壳(3)内壁面贴合并共同压装有密封件三(52)。
  3. 如权利要求2所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插座组件(4)和插头组件(5)均为周向回转结构,插座组件(4)和插座外壳(3)之间共同设置有阻止周向相对转动的限位结构,插头组件(5)和插头外壳(7)之间共同设置有阻止周向相对转动的另一组结构相同的限位结构。
  4. 如权利要求2所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:背离插头组件(5)的插座组件(4)端部设置有与插座外壳(3)相配的台阶限位结构,位于插座组件(4)另一端处的插座外壳(3)内壁面上嵌装有插座挡圈(45);所述插头外壳(7)内孔端部处嵌装有防止插头组件(5)脱出的插头挡圈(51),插头组件(5)另一端设置有与插头外壳(7)相配的另一组台阶限位结构。
  5. 如权利要求2所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插头外壳(7)外壁面沿着圆周向外延伸有凸块(71),插头外壳(7)端部伸至插座外壳(3)内孔中至插装到位时,凸块(71)逐渐靠近并贴合于插座外壳(3)端头;位于插座外壳(3)端头外部的插头外壳(7)外壁面上沿周向嵌装有螺套挡圈(61),螺套挡圈(61)和凸块(71)之间存在间隔;还包括旋转螺套(6),旋转螺套(6)一端向内收缩并嵌装于螺套挡圈(61)和凸块(71)之间,旋转螺套(6)另一端套装于插座外壳(3)外壁面上并螺纹配装。
  6. 如权利要求2所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:背离插头组件(5)的插座外壳(3)端部外壁面通过螺纹结构配装至充油设备(1)壁面上,插座外壳(3)与充油设备(1)外壁面之间还压装有密封件一(11);背离插座外壳(3)的插头组件(5)端部套装有软管(8),软管(8)端部通过抱箍(81)相对于插头组件(5)套装紧固。
  7. 如权利要求6所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插头组件(5)套装有软管(8)的端部处沿周向内凹形成内凹部(74),内凹部(74)一端边缘与插头组件(5)外壁面之间设置有斜面结构(73)的过渡,内凹部(74)另一端边缘与插头组件(5)端头之间形成周向外凸的挡边(75);所述挡边(75)位于软管(8)内部,抱箍(81)套装于插头组件(5)的内凹部(74)处。
  8. 如权利要求1所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插座组件(4)包括有插座芯(42),贯穿插座芯(42)沿着周向插装有相互平行的多个公插针(41),位于多个公插针(41)内侧的插座芯(42)上还贯穿安装有插座阀(44); 所述插头组件(5)包括有插头芯(53),贯穿插头芯(53)沿着周向插装有相互平行的多个母插针(55),位于多个母插针(55)内侧的插头芯(53)上还贯穿安装有插头阀(56);多个公插针(41)与多个母插针(55)一一对应插装。
  9. 如权利要求1或8所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插座阀(44)的轴向与插头阀(56)的轴向平行设置并相互错开;插装时,插座阀(44)受到插头组件(5)端面的挤压施力而状态切换,插头阀(56)受到插座组件(4)端面的挤压施力而状态切换。
  10. 如权利要求1或8所述的一种带有贯通式补偿通道的耐高压型水密电缆接插件,其特征在于:所述插座阀(44)与插头阀(56)的结构相同,所述插座阀(44)的具体结构为:包括沿轴向活动插装在插座组件(4)内的阀杆(441),阀杆(441)一端伸出插座组件(4)并朝向插头组件(5),阀杆(441)另一端在直径方向收缩形成细杆部(443),细杆部(443)位于插座组件(4)内部并在端部固定衔接有挡头(445);所述细杆部(443)上套装有弹性件(442),弹性件(442)一端贴合于阀杆(441)收缩成细杆部(443)的台阶处,弹性件(442)另一端贴合于阀座(444)上;所述阀座(444)固定于阀杆(441)圆周外部的插座组件(4)孔壁上,位于细杆部(443)外侧的阀座(444)端部沿圆周周向与挡头(445)侧面贴合;所述挡头(445)圆周方向与插座组件(4)孔壁之间存在间隙,阀杆(441)端部受到插头组件(5)的施力而向着插座组件(4)内部移动,阀座(444)与挡头(445)之间脱离。
PCT/CN2023/075428 2022-06-02 2023-02-10 一种带有贯通式补偿通道的耐高压型水密电缆接插件 WO2023231447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210622685.8 2022-06-02
CN202210622685.8A CN115000752B (zh) 2022-06-02 2022-06-02 一种带有贯通式补偿通道的耐高压型水密电缆接插件

Publications (1)

Publication Number Publication Date
WO2023231447A1 true WO2023231447A1 (zh) 2023-12-07

Family

ID=83031706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075428 WO2023231447A1 (zh) 2022-06-02 2023-02-10 一种带有贯通式补偿通道的耐高压型水密电缆接插件

Country Status (2)

Country Link
CN (1) CN115000752B (zh)
WO (1) WO2023231447A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000752B (zh) * 2022-06-02 2023-06-30 中国船舶科学研究中心 一种带有贯通式补偿通道的耐高压型水密电缆接插件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320680A (ja) * 1996-05-30 1997-12-12 Japan Marine Sci & Technol Center 油充填水中ケーブル用コネクタ
RU2162272C1 (ru) * 1999-05-31 2001-01-20 Открытое акционерное общество "Борец" Погружной маслозаполненный электродвигатель
CN102593640A (zh) * 2012-02-20 2012-07-18 宝鸡石油机械有限责任公司 一种水下电缆连接器
CN105655800A (zh) * 2014-11-10 2016-06-08 中国科学院沈阳自动化研究所 一种深海充油电缆快速对接装置
CN212659735U (zh) * 2020-07-27 2021-03-05 成都宏明电子股份有限公司 一种基于钢珠锁紧结构的拉绳脱落电连接器
CN115000752A (zh) * 2022-06-02 2022-09-02 中国船舶科学研究中心 一种带有贯通式补偿通道的耐高压型水密电缆接插件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172447B2 (en) * 2004-10-07 2007-02-06 Oceanworks International, Inc. Subsea gang connector system
CN104682081B (zh) * 2013-11-30 2017-01-18 中国科学院沈阳自动化研究所 一种水密同轴连接器
US9388643B1 (en) * 2015-01-12 2016-07-12 Teledyne Instruments, Inc. Harsh environment pressure compensator for inline cable termination
CN206774754U (zh) * 2017-03-22 2017-12-19 山东龙立电子有限公司 可在水下带电插拔的充油插孔
CN110865439A (zh) * 2019-11-28 2020-03-06 中天海洋系统有限公司 一种分瓣式水密光连接器
CN111463624B (zh) * 2020-04-02 2021-03-09 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种可带电插拔的水下湿式电连接器
CN112600029B (zh) * 2020-12-07 2021-10-29 浙江大学 一种水下湿拔插压力平衡电连接器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320680A (ja) * 1996-05-30 1997-12-12 Japan Marine Sci & Technol Center 油充填水中ケーブル用コネクタ
RU2162272C1 (ru) * 1999-05-31 2001-01-20 Открытое акционерное общество "Борец" Погружной маслозаполненный электродвигатель
CN102593640A (zh) * 2012-02-20 2012-07-18 宝鸡石油机械有限责任公司 一种水下电缆连接器
CN105655800A (zh) * 2014-11-10 2016-06-08 中国科学院沈阳自动化研究所 一种深海充油电缆快速对接装置
CN212659735U (zh) * 2020-07-27 2021-03-05 成都宏明电子股份有限公司 一种基于钢珠锁紧结构的拉绳脱落电连接器
CN115000752A (zh) * 2022-06-02 2022-09-02 中国船舶科学研究中心 一种带有贯通式补偿通道的耐高压型水密电缆接插件

Also Published As

Publication number Publication date
CN115000752B (zh) 2023-06-30
CN115000752A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US20160072219A1 (en) Wet mate connector
US8025506B2 (en) Harsh environment rotary joint electrical connector
WO2023231447A1 (zh) 一种带有贯通式补偿通道的耐高压型水密电缆接插件
CN107152575B (zh) 一种同轴式自封接头
US6561268B2 (en) Connector
CN211265803U (zh) 一种密封性电连接器
JP2016517621A (ja) 複合接続システム
GB1282811A (en) Improvements relating to connectors for pipes and the like
CN111463624B (zh) 一种可带电插拔的水下湿式电连接器
CN202381893U (zh) 矿用隔爆设备自密封调心水路快速连接装置
CN105470722B (zh) 一种电连接器组件
CN108832379B (zh) 一种水下湿插拔变换装置
US3899199A (en) Self-aligning coupling
CN105048175A (zh) 一种连接器组件
CN218761436U (zh) 一种可主动控制的充注阀
CN207994190U (zh) 一种湿插拔防水电气通用连接头
CN108092061B (zh) 一种水下湿式电气通用连接方法
CN212273342U (zh) 水下密封连通结构
CN108075330A (zh) 一种水下湿式电气通用连接头
CN207740605U (zh) 一种双腔液压快换接头
CN105048162A (zh) 一种插座及连接器组件
CN117060147B (zh) 电缆装置及采油设备
CN217328945U (zh) 一种导热油快接接头
CN108036135A (zh) 一种双腔液压快换接头
CN207611916U (zh) 一种带有对中结构的水下湿式电气通用连接头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814646

Country of ref document: EP

Kind code of ref document: A1