WO2023231302A1 - 一种基于北斗卫星的列车初始定位计算方法及定位系统 - Google Patents

一种基于北斗卫星的列车初始定位计算方法及定位系统 Download PDF

Info

Publication number
WO2023231302A1
WO2023231302A1 PCT/CN2022/131080 CN2022131080W WO2023231302A1 WO 2023231302 A1 WO2023231302 A1 WO 2023231302A1 CN 2022131080 W CN2022131080 W CN 2022131080W WO 2023231302 A1 WO2023231302 A1 WO 2023231302A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
track
beidou
beidou satellite
calculation method
Prior art date
Application number
PCT/CN2022/131080
Other languages
English (en)
French (fr)
Inventor
徐先良
李紫薇
张亚忠
杨奉伟
安鸿飞
杨文�
曹德宁
Original Assignee
卡斯柯信号有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡斯柯信号有限公司 filed Critical 卡斯柯信号有限公司
Publication of WO2023231302A1 publication Critical patent/WO2023231302A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/028Determination of vehicle position and orientation within a train consist, e.g. serialisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the field of train positioning, and in particular to a train initial positioning calculation method and positioning system based on Beidou satellites.
  • Train positioning is a key technology for train operation control systems.
  • High-precision train position information and accurate track occupancy information are crucial to the safe operation of trains in the section and the overrunning, rendezvous or shunting operations in the station.
  • quickly confirming the location of the train will greatly improve the operating efficiency of the railway, and is of great significance for subsequent calculation of train running direction, application for resources, etc.
  • the initial position of the train is widely confirmed by the position of the transponder of the train passing by.
  • this method requires a large amount of ground equipment, which brings high construction costs, difficult maintenance and other problems, and also limits the operating efficiency of the train.
  • Satellite positioning technology has received widespread attention and application due to its real-time, high-precision, all-weather and other characteristics.
  • the Beidou-3 satellite was successfully networked in 2020.
  • my country's fully independently developed Beidou navigation system has further expanded its service scope and has It has a positioning accuracy comparable to that of the GPS navigation system, and with the differential positioning system, the positioning error can be reduced to less than meters, making it fully capable of being applied to train positioning.
  • Applying Beidou satellite navigation to the field of train positioning can determine the initial position of the train without starting the train, which can give full play to the advantages of low cost and high autonomy, and improve the transportation efficiency of the train.
  • the purpose of the present invention is to provide a train initial positioning calculation method and positioning system based on Beidou satellites, in order to overcome the shortcomings of the existing technology and utilize the all-weather and real-time characteristics of satellite positioning in a scenario where the train does not move after starting. You can start to calculate the initial position and improve the vehicle's carrying efficiency.
  • a train initial positioning calculation method based on Beidou satellites including the steps:
  • step S5 includes:
  • the non-single track position comparison algorithm includes the steps:
  • F2 Obtain the current Beidou navigation data, perform a map matching algorithm on the current Beidou navigation data and Tx, and generate a one-dimensional track-based train position MTLx based on the map matching results, including station number, track number, and parallel track offset;
  • step F5 If yes, then execute step F5;
  • F7 Initialize the only valid one-dimensional train position as the initial train position, and the train initial position is determined successfully.
  • the one-dimensional train position MTLx also includes a vertical track offset
  • Step F3 includes:
  • Threshold1 is the non-single track deviation threshold, Threshold1>0:
  • step F7 If yes, then execute step F7;
  • the single orbit position comparison algorithm includes the steps:
  • D2 Obtain the current Beidou navigation data, perform a map matching algorithm on the current Beidou navigation data and candidate track segments, and generate a track-based one-dimensional train position MTLD based on the map matching results, including station number, track number, and parallel track offset;
  • D5 Initialize MTLD to the initial position of the train, and the initial position of the train is determined successfully.
  • the one-dimensional train position MTLD also includes a vertical track offset
  • the method to determine whether the MTLD is valid in step D3 is to determine whether ⁇ the vertical orbit offset of the MTLD ⁇ Threshold2, where Threshold2 is the single orbit deviation threshold and Threshold2>0.
  • step D5 If yes, then execute step D5;
  • a Beidou satellite positioning system used to implement the above-mentioned train initial positioning calculation method based on Beidou satellites.
  • the Beidou satellite positioning system includes a vehicle-mounted subsystem; the vehicle-mounted subsystem includes a Beidou navigation receiver, and the Beidou navigation receiver
  • the Beidou satellite signal can be received and the orbital electronic map file can be obtained.
  • the Beidou navigation receiver includes components that can implement the Beidou satellite-based train initial positioning calculation method.
  • the Beidou satellite-based train initial positioning calculation method can be used. to determine the initial position of the train.
  • the vehicle-mounted subsystem includes two identical first Beidou navigation receivers and a second Beidou navigation receiver installed on the train that are mutually backup.
  • the first Beidou navigation receiver and the second Beidou navigation receiver calculate and output data respectively, and the output data are judged to be valid through a comparison algorithm. When the data are consistent, the final valid train position is obtained.
  • the Beidou satellite positioning system also includes a ground subsystem.
  • the ground subsystem includes a Beidou navigation receiver reference station, which receives Beidou satellite signals and sends Beidou carrier phase difference signals to the vehicle-mounted subsystem for assistance.
  • the on-board subsystem performs differential correction of train position to improve train positioning accuracy.
  • the Beidou satellite-based train initial positioning calculation method and positioning system provided by the present invention have the following beneficial effects:
  • the train position can be judged when the train is stationary, which can improve the operating efficiency of the train;
  • Figure 1 is a scheme structure diagram of the train initial positioning calculation method of the present invention
  • Figure 2 is a flow chart of the train initial positioning calculation method of the present invention
  • Figure 3 is a flow chart of the non-single track position comparison algorithm of the present invention.
  • Figure 4 is a flow chart of the single track position comparison algorithm of the present invention.
  • this embodiment provides a train initial positioning calculation method and positioning system based on Beidou satellites.
  • the calculation method includes steps:
  • S1 Receive Beidou satellite signals to obtain Beidou navigation data, and use existing technology data verification methods to verify the validity of the data;
  • the parallel track offset refers to the offset value of the current train position projected on the track electronic map along the track line direction
  • the vertical track offset refers to the current train position projected on the track electronic map perpendicular to the track. Deviation value in line direction
  • Threshold1 is the non-single orbit deviation threshold
  • Threshold1>0 which is the empirical value (when the vertical orbit offset exceeds Threshold1, it indicates that according to this Beidou navigation data
  • the train position projected on the electronic track map deviates greatly from the track line.
  • the accuracy of the Beidou navigation data is low, so the effective train position cannot be obtained):
  • step F5 If yes, then execute step F5;
  • step F6 If yes, then execute step F6;
  • N N+1, determine whether N ⁇ N1 (where N1 is the effective position count threshold of non-single track trains, an integer greater than 0, and an empirical value):
  • step F7 executes step F7 (when N ⁇ N1, it means that the Beidou satellite positioning for N1 consecutive periods is valid, that is, the Beidou navigation data at this stage is stable and reliable, and the Beidou navigation data can be used to initialize the train position);
  • F7 Initialize the only valid MTL as the train's initial position, and the train's initial position is determined successfully.
  • the single orbit position comparison algorithm is shown in Figure 4, including the steps:
  • D2 Obtain the current Beidou navigation data, perform a map matching algorithm on the current Beidou navigation data and candidate track segments, and generate a track-based one-dimensional train position MTLD based on the map matching results, including station number, track number, parallel track offset and vertical Orbital offset;
  • Threshold2 is a single orbit deviation threshold, Threshold2>0, which is an empirical value (when the vertical orbit offset exceeds Threshold2, it indicates that the projection is based on this Beidou navigation data
  • Threshold2 is a single orbit deviation threshold, Threshold2>0, which is an empirical value (when the vertical orbit offset exceeds Threshold2, it indicates that the projection is based on this Beidou navigation data
  • the train position on the track electronic map deviates greatly from the track line, and the accuracy of the Beidou navigation data is low, so the effective train position cannot be obtained
  • N N+1, determine whether N ⁇ N2 (where N2 is the effective position count threshold of a single track train, an integer greater than 0, and an empirical value):
  • step D5 executes step D5 (when N ⁇ N2, it means that the Beidou satellite positioning for N2 consecutive periods is valid, that is, the Beidou navigation data at this stage is stable and reliable, and the Beidou navigation data can be used to initialize the train position);
  • D5 Initialize MTLD to the initial position of the train, and the initial position of the train is determined successfully.
  • the Beidou satellite positioning system includes a vehicle-mounted subsystem; the vehicle-mounted subsystem includes a Beidou navigation receiver.
  • the Beidou navigation receiver can receive Beidou satellite signals and obtain orbital electronic map files.
  • the Beidou navigation receiver It also includes components that can implement the above-mentioned Beidou satellite-based train initial positioning calculation method, and determine the initial position of the train through the above-mentioned Beidou satellite-based train initial positioning calculation method.
  • the on-board subsystem includes two Beidou navigation receivers 1 and 2 that are identical and backup each other and are installed on the train to improve system redundancy.
  • Beidou Navigation Receiver 1 and Beidou Navigation Receiver 2 calculate and output data respectively. The two data passes through the position comparison algorithm, and the orbit position and vertical orbit deviation value are used to determine the validity of the data. When the data are consistent, the final result is obtained. Effective train position further improves positioning accuracy.
  • the Beidou satellite positioning system also includes a ground subsystem.
  • the ground subsystem includes a Beidou navigation receiver base station, which receives Beidou satellite signals and sends Beidou carrier phase difference signals to the vehicle subsystem to assist the vehicle. Different systems perform differential correction of train positions to further improve train positioning accuracy.
  • the Beidou satellite-based train initial positioning calculation method and positioning system provided by the present invention are functionally implemented based on the existing equipment of the new train control system without adding additional equipment; it can be realized under stationary train conditions.
  • the judgment of the train position can improve the operating efficiency of the train; it does not rely on track circuits and transponder equipment, saving equipment costs and maintenance costs, and improving the autonomy of train control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种基于北斗卫星的列车初始定位计算方法,包括:步骤S1,接收北斗卫星信号获取北斗导航数据,并校验该数据有效性;步骤S2,获取轨道电子地图文件,并校验该文件有效性;步骤S3,基于北斗导航数据和轨道电子地图文件,筛选出列车当前位置的可能轨段作为候选轨段,并将各候选轨段放入集合TrackList中;步骤S4,判断TrackList中的候选轨段数量是否为1;步骤S5,根据判断结果选择执行单一轨道位置比较算法或执行非单一轨道位置比较算法。可利用卫星定位全天候、实时性的特点,在启机后不动车的场景下,开始进行初始位置的计算,提高车辆的运载效率。还提供一种实现列车初始定位计算的北斗卫星定位系统。

Description

一种基于北斗卫星的列车初始定位计算方法及定位系统 技术领域
本发明涉及列车定位领域,尤其涉及一种基于北斗卫星的列车初始定位计算方法及定位系统。
背景技术
列车定位是列车运行控制系统的关键技术,高精度的列车位置信息和准确的轨道占用信息对列车在区间内安全运行和车站内进行越行、交会或调车作业至关重要。作为列车可靠运行的基础,快速确认列车的位置,将极大提升铁路的运营效率,对于后续计算列车运行方向、申请资源等都有重要的意义。目前列车初始位置广泛采用列车通过的应答器的位置来确认,而这种方式需要的大量地面设备,带来了建设成本高、维护困难等问题,也限制了列车的运行效率。
卫星定位技术因其实时、高精度、全天候等特性得到了广泛的关注和应用,尤其2020年北斗三号卫星的组网成功,我国全自主研发的北斗导航系统进一步扩大了服务范围,且已具备了可媲美GPS导航系统的定位精度,配合差分定位系统,可将定位误差缩小至米级以下,完全具有应用于列车定位的能力。将北斗卫星导航应用于列车定位领域,可以实现在启机后不行车的场景下就确定列车初始位置,能够极大发挥低成本和高自主性的优势,和提高列车的运载效率。
发明的公开
本发明的目的在于提供一种基于北斗卫星的列车初始定位计算方法及定位系统,是为了克服现有技术存在的缺陷,利用卫星定位全天候、实时性的特点,在启机后不动车的场景下就可以开始进行初始位置的计算,提高车辆的运载效率。
为实现上述目的,本发明通过以下技术方案实现:
一种基于北斗卫星的列车初始定位计算方法,包括步骤:
S1:接收北斗卫星信号获取北斗导航数据;
S2:获取轨道电子地图文件;
S3:基于所述北斗导航数据和轨道电子地图文件,筛选出列车当前位置的可能轨段作为候选轨段,并将各所述候选轨段放入集合TrackList中;
S4:判断所述集合TrackList中的所述候选轨段数量是否为1;
S5:根据判断结果选择执行单一轨道位置比较算法或执行非单一轨道位置比较算法。
优选地,步骤S5包括:
如果集合TrackList中的候选轨段数量大于1,则执行所述非单一轨道位置比较算法;
如果集合TrackList中的候选轨段数量等于1,则基于所述轨道电子地图文件,判断所述候选轨段是否存在其他平行轨段:
是,则将各所述平行轨段放入集合TrackList中,执行所述非单一轨道位置比较算法;
否,则执行所述单一轨道位置比较算法。
优选地,所述非单一轨道位置比较算法包括步骤:
F1:初始化,从TrackList中取出全部轨段分别记作T1、T2、……、Tn,变量x=1;
F2:获取当前北斗导航数据,将所述当前北斗导航数据与Tx进行地图匹配算法,根据地图匹配结果生成基于轨道的一维列车位置MTLx,包括站号、轨道号、平行轨道偏移量;
F3:判断MTLx是否有效;
F4:x=x+1,判断是否x>n:
是,则执行步骤F5;
否,则返回步骤F2;
F5:判断{MTL1、……、MTLn}是否只有唯一值有效:
否,则退出;
F7:将唯一有效的所述一维列车位置初始化为列车初始位置,列车初始位置确定成功。
优选地,所述一维列车位置MTLx还包括垂直轨道偏移量;
步骤F3包括:
判断是否│MTLx的垂直轨道偏移量│≤Threshold1,其中,Threshold1为非单一轨道偏差阈值,Threshold1>0:
是,则MTLx有效;
否,则MTLx无效。
优选地,步骤F1中还包括:列车有效位置计数器N=0;
步骤F5与F7之间还包括步骤F6:N=N+1,判断是否N≥N1,其中,N1为非单一轨道列车有效位置计数阈值,是大于0的整数:
是,则执行步骤F7;
否,则x=1,返回步骤F2。
优选地,所述单一轨道位置比较算法包括步骤:
D2:获取当前北斗导航数据,将当前北斗导航数据与候选轨段进行地图匹配算法,根据地图匹配结果生成基于轨道的一维列车位置MTLD,包括站号、轨道号、平行轨道偏移量;
D3:判断MTLD是否有效:
否,则退出;
D5:将MTLD初始化为列车初始位置,列车初始位置确定成功。
优选地,所述一维列车位置MTLD还包括垂直轨道偏移量;
步骤D3中判断MTLD是否有效的方法为:判断是否│MTLD的垂直轨道偏移量│≤Threshold2,其中,Threshold2为单一轨道偏差阈值,Threshold2>0。
优选地,在步骤D2之前还包括步骤D1:初始化,列车有效位置计数器N=0;
在步骤D3与D5之间还包括步骤D4:N=N+1,判断是否N≥N2,其中,N2为单一轨道列车有效位置计数阈值,是大于0的整数:
是,则执行步骤D5;
否,则返回步骤D2。
一种北斗卫星定位系统,用于实现上述的基于北斗卫星的列车初始定位计算方法,所述北斗卫星定位系统包括车载分系统;所述车载分系统包括北斗导航接收机,所述北斗导航接收机可以接收北斗卫星信号、获取所述轨道电子地图文件,所述北斗导航接收机包括可以实现所述基于北斗卫星的列车 初始定位计算方法的部件,可以通过所述基于北斗卫星的列车初始定位计算方法来确定列车的初始位置。
优选地,所述车载分系统包括两个安装在列车上的完全相同、互为备份的第一北斗导航接收机和第二北斗导航接收机。
优选地,所述第一北斗导航接收机和第二北斗导航接收机分别运算输出数据,所输出的数据通过比较算法判断数据有效性,当数据一致时获得最终有效的列车位置。
优选地,所述北斗卫星定位系统还包括地面分系统,所述地面分系统包括北斗导航接收机基准站,接收北斗卫星信号,并向所述车载分系统发送北斗载波相位差分信号,用于辅助所述车载分系统进行列车位置差分校正,提高列车定位精度。
综上所述,与现有技术相比,本发明提供的基于北斗卫星的列车初始定位计算方法及定位系统,具有如下有益效果:
1.在新型列控系统现有设备基础上即可功能实现,不增加额外的设备;
2.在列车静止条件下即可实现对列车位置的判断,可提高列车的运营效率;
3.不依赖轨道电路和应答器设备,节约设备成本和维护成本,提高列车控制的自主性。
附图的简要说明
图1为本发明的列车初始定位计算方法的方案结构图;
图2为本发明的列车初始定位计算方法的流程图;
图3为本发明的非单一轨道位置比较算法的流程图;
图4为本发明的单一轨道位置比较算法的流程图。
实现本发明的最佳方式
以下结合附图和具体实施方式对本发明提出的一种基于北斗卫星的列车初始定位计算方法及定位系统作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施方式的目的,并非用 以限定本发明实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
需要说明的是,在本发明中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括明确列出的要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
结合附图1~4所示,本实施例提供一种基于北斗卫星的列车初始定位计算方法及定位系统。如附图2所示,该计算方法包括步骤:
S1:接收北斗卫星信号获取北斗导航数据,并采用现有技术的数据校验方法校验该数据有效性;
S2:获取轨道电子地图文件,并采用现有技术的数据校验方法校验该文件有效性;
S3:基于北斗导航数据和轨道电子地图文件,通过对每个轨段的起止经纬度进行匹配,筛选出列车当前位置的可能轨段作为候选轨段,并将各候选轨段放入集合TrackList中;
S4:判断集合TrackList中的候选轨段数量是否为1:
是,则执行步骤S5;
否,则执行非单一轨道位置比较算法;
S5:基于轨道电子地图文件,判断该候选轨段是否存在其他平行轨段:
是,则将各平行轨段放入集合TrackList中,执行非单一轨道位置比较算法;
否,则执行单一轨道位置比较算法。
其中,非单一轨道位置比较算法如附图3所示,包括步骤:
F1:初始化,从集合TrackList中取出全部候选轨段分别记作T1、T2、……、Tn,列车有效位置计数器N=0,变量x=1;
F2:获取当前北斗导航数据,将当前北斗导航数据与候选轨段Tx进行 地图匹配算法,根据地图匹配结果对应生成基于轨道的一维列车位置MTLx,包括站号、轨道号、平行轨道偏移量和垂直轨道偏移量;
其中,平行轨道偏移量是指投影在轨道电子地图上的当前时刻列车位置沿轨道线路方向的偏移值;垂直轨道偏移量指投影在轨道电子地图上的当前时刻列车位置在垂直于轨道线路方向的偏差值;
F3:判断是否│MTLx的垂直轨道偏移量│≤Threshold1,其中,Threshold1为非单一轨道偏差阈值,Threshold1>0,为经验值(当垂直轨道偏移量超过Threshold1时,表明根据此北斗导航数据投影在轨道电子地图上的列车位置偏离轨道线路较大,此北斗导航数据精准度较低,所以无法得到有效的列车位置):
是,则MTLx有效;
否,则MTLx无效;
F4:x=x+1,判断是否x>n:
是,则执行步骤F5;
否,则返回步骤F2;
F5:判断{MTL1、……、MTLn}中是否只有唯一一个有效值MTL:
是,则执行步骤F6;
否,则退出(如果{MTL1、……、MTLn}中存在多个有效值,说明地图匹配失败,本周期无有效的北斗导航数据,退出程序,待下一周期再重新匹配);
F6:N=N+1,判断是否N≥N1(其中,N1为非单一轨道列车有效位置计数阈值,是大于0的整数,为经验值):
是,则执行步骤F7(当N≥N1时,表示连续N1个周期的北斗卫星定位都是有效的,即此阶段的北斗导航数据稳定可靠,可以使用该北斗导航数据初始化列车位置);
否,则x=1,返回步骤F2;
F7:将唯一有效的MTL初始化为列车初始位置,列车初始位置确定成功。
单一轨道位置比较算法如附图4所示,包括步骤:
D1:初始化,列车有效位置计数器N=0;
D2:获取当前北斗导航数据,将当前北斗导航数据与候选轨段进行地图匹配算法,根据地图匹配结果生成基于轨道的一维列车位置MTLD,包括站号、轨道号、平行轨道偏移量和垂直轨道偏移量;
D3:判断是否│MTLD的垂直轨道偏移量│≤Threshold2,其中,Threshold2为单一轨道偏差阈值,Threshold2>0,为经验值(当垂直轨道偏移量超过Threshold2时,表明根据此北斗导航数据投影在轨道电子地图上的列车位置偏离轨道线路较大,此北斗导航数据精准度较低,所以无法得到有效的列车位置):
是,则MTLD有效,执行步骤D4;
否,则MTLD无效,退出;
D4:N=N+1,判断是否N≥N2(其中,N2为单一轨道列车有效位置计数阈值,是大于0的整数,为经验值):
是,则执行步骤D5(当N≥N2时,表示连续N2个周期的北斗卫星定位都是有效的,即此阶段的北斗导航数据稳定可靠,可以使用该北斗导航数据初始化列车位置);
否,则返回步骤D2;
D5:将MTLD初始化为列车初始位置,列车初始位置确定成功。
本实施例还提供一种北斗卫星定位系统,用于实现上述的基于北斗卫星的列车初始定位计算方法。如附图1所示,该北斗卫星定位系统包括车载分系统;车载分系统包括北斗导航接收机,该北斗导航接收机可以接收北斗卫星信号,且可以获取轨道电子地图文件,该北斗导航接收机还包括可以实现上述的基于北斗卫星的列车初始定位计算方法的部件,通过上述的基于北斗卫星的列车初始定位计算方法来确定列车的初始位置。在一些实施例中,车载分系统包括两个安装在列车上的完全相同、互为备份的北斗导航接收机1和北斗导航接收机2,提高系统冗余度。在一些实施例中,北斗导航接收机1和北斗导航接收机2分别运算输出数据,两路数据通过位置比较算法,同时采用轨道位置和垂直轨道偏差值判断数据有效性,当数据一致时获得最终有效的列车位置,进一步提高定位准确性。在一些实施例中,该北斗卫星定位系统还包括地面分系统,地面分系统包括北斗导航接收机基准站,其接收北斗卫星信号,并向车载分系统发送北斗载波相位差分信号,用于辅助车载分 系统进行列车位置差分校正,进一步提高列车定位精度。
综上所述,本发明提供的基于北斗卫星的列车初始定位计算方法及定位系统,在新型列控系统现有设备基础上进行功能实现,不增加额外的设备;在列车静止条件下即可实现对列车位置的判断,可提高列车的运营效率;不依赖轨道电路和应答器设备,节约设备成本和维护成本,提高列车控制的自主性。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (12)

  1. 一种基于北斗卫星的列车初始定位计算方法,其特征在于,包括步骤:
    S1:接收北斗卫星信号获取北斗导航数据;
    S2:获取轨道电子地图文件;
    S3:基于所述北斗导航数据和轨道电子地图文件,筛选出列车当前位置的可能轨段作为候选轨段,并将各所述候选轨段放入集合TrackList中;
    S4:判断所述集合TrackList中的所述候选轨段数量是否为1;
    S5:根据判断结果选择执行单一轨道位置比较算法或执行非单一轨道位置比较算法。
  2. 如权利要求1所述的基于北斗卫星的列车初始定位计算方法,其特征在于,步骤S5包括:
    如果集合TrackList中的候选轨段数量大于1,则执行所述非单一轨道位置比较算法;
    如果集合TrackList中的候选轨段数量等于1,则基于所述轨道电子地图文件,判断所述候选轨段是否存在其他平行轨段:
    是,则将各所述平行轨段放入集合TrackList中,执行所述非单一轨道位置比较算法;
    否,则执行所述单一轨道位置比较算法。
  3. 如权利要求1所述的基于北斗卫星的列车初始定位计算方法,其特征在于,所述非单一轨道位置比较算法包括步骤:
    F1:初始化,从TrackList中取出全部轨段分别记作T1、T2、……、Tn,变量x=1;
    F2:获取当前北斗导航数据,将所述当前北斗导航数据与Tx进行地图匹配算法,根据地图匹配结果生成基于轨道的一维列车位置MTLx,包括站号、轨道号、平行轨道偏移量;
    F3:判断MTLx是否有效;
    F4:x=x+1,判断是否x>n:
    是,则执行步骤F5;
    否,则返回步骤F2;
    F5:判断{MTL1、……、MTLn}是否只有唯一值有效:
    否,则退出;
    F7:将唯一有效的所述一维列车位置初始化为列车初始位置,列车初始位置确定成功。
  4. 如权利要求3所述的基于北斗卫星的列车初始定位计算方法,其特征在于,
    所述一维列车位置MTLx还包括垂直轨道偏移量;
    步骤F3包括:
    判断是否│MTLx的垂直轨道偏移量│≤Threshold1,其中,Threshold1为非单一轨道偏差阈值,Threshold1>0:
    是,则MTLx有效;
    否,则MTLx无效。
  5. 如权利要求3所述的基于北斗卫星的列车初始定位计算方法,其特征在于,
    步骤F1中还包括:列车有效位置计数器N=0;
    步骤F5与F7之间还包括步骤F6:N=N+1,判断是否N≥N1,其中,N1为非单一轨道列车有效位置计数阈值,是大于0的整数:
    是,则执行步骤F7;
    否,则x=1,返回步骤F2。
  6. 如权利要求1所述的基于北斗卫星的列车初始定位计算方法,其特征在于,所述单一轨道位置比较算法包括步骤:
    D2:获取当前北斗导航数据,将当前北斗导航数据与候选轨段进行地图匹配算法,根据地图匹配结果生成基于轨道的一维列车位置MTLD,包括站号、轨道号、平行轨道偏移量;
    D3:判断MTLD是否有效:
    否,则退出;
    D5:将MTLD初始化为列车初始位置,列车初始位置确定成功。
  7. 如权利要求6所述的基于北斗卫星的列车初始定位计算方法,其特征在于,
    所述一维列车位置MTLD还包括垂直轨道偏移量;
    步骤D3中判断MTLD是否有效的方法为:判断是否│MTLD的垂直轨道偏移量│≤Threshold2,其中,Threshold2为单一轨道偏差阈值,Threshold2>0。
  8. 如权利要求6所述的基于北斗卫星的列车初始定位计算方法,其特征在于,
    在步骤D2之前还包括步骤D1:初始化,列车有效位置计数器N=0;
    在步骤D3与D5之间还包括步骤D4:N=N+1,判断是否N≥N2,其中,N2为单一轨道列车有效位置计数阈值,是大于0的整数:
    是,则执行步骤D5;
    否,则返回步骤D2。
  9. 一种北斗卫星定位系统,其特征在于,
    用于实现如权利要求1~8所述的基于北斗卫星的列车初始定位计算方法,所述北斗卫星定位系统包括车载分系统;所述车载分系统包括北斗导航接收机,所述北斗导航接收机可以接收北斗卫星信号、获取所述轨道电子地图文件,所述北斗导航接收机包括可以实现所述基于北斗卫星的列车初始定位计算方法的部件,可以通过所述基于北斗卫星的列车初始定位计算方法来确定列车的初始位置。
  10. 如权利要求9所述的北斗卫星定位系统,其特征在于,
    所述车载分系统包括两个安装在列车上的完全相同、互为备份的第一北斗导航接收机和第二北斗导航接收机。
  11. 如权利要求10所述的北斗卫星定位系统,其特征在于,
    所述第一北斗导航接收机和第二北斗导航接收机分别运算输出数据,所输出的数据通过比较算法判断数据有效性,当数据一致时获得最终有效的列车位置。
  12. 如权利要求9所述的北斗卫星定位系统,其特征在于,
    所述北斗卫星定位系统还包括地面分系统,所述地面分系统包括北斗导航接收机基准站,接收北斗卫星信号,并向所述车载分系统发送北斗载波相位差分信号,用于辅助所述车载分系统进行列车位置差分校正,提高列车定位精度。
PCT/CN2022/131080 2022-05-30 2022-11-10 一种基于北斗卫星的列车初始定位计算方法及定位系统 WO2023231302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210600655.7A CN115009329B (zh) 2022-05-30 2022-05-30 一种基于北斗卫星的列车初始定位计算方法及定位系统
CN202210600655.7 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231302A1 true WO2023231302A1 (zh) 2023-12-07

Family

ID=83070184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131080 WO2023231302A1 (zh) 2022-05-30 2022-11-10 一种基于北斗卫星的列车初始定位计算方法及定位系统

Country Status (2)

Country Link
CN (1) CN115009329B (zh)
WO (1) WO2023231302A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115009329B (zh) * 2022-05-30 2023-06-30 卡斯柯信号有限公司 一种基于北斗卫星的列车初始定位计算方法及定位系统
CN115892136A (zh) * 2022-12-21 2023-04-04 卡斯柯信号有限公司 一种融合历史运行轨迹和北斗导航的定位方法及其装置
CN116047550B (zh) * 2023-03-30 2023-07-11 卡斯柯信号(北京)有限公司 一种列车卫星定位初始化功能测试方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168216A (ja) * 2002-11-21 2004-06-17 Railway Technical Res Inst Gps測位による列車走行情報検出装置及びその列車走行情報検出方法
US20100312461A1 (en) * 2009-06-08 2010-12-09 Haynie Michael B System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
CN110579780A (zh) * 2019-08-28 2019-12-17 桂林电子科技大学 一种基于北斗geo卫星的阴影匹配改进算法
CN110901705A (zh) * 2019-10-30 2020-03-24 北京全路通信信号研究设计院集团有限公司 一种列车初始定位方法和系统
CN113428190A (zh) * 2021-07-27 2021-09-24 卡斯柯信号有限公司 基于铁路电子地图的列车定位方法、装置、设备及介质
CN113581260A (zh) * 2021-09-01 2021-11-02 兰州交通大学 一种基于gnss的列车轨道占用判别方法
CN113771916A (zh) * 2021-09-08 2021-12-10 交控科技股份有限公司 列车初始定位方法、装置、电子设备及存储介质
CN114044027A (zh) * 2021-12-24 2022-02-15 卡斯柯信号有限公司 一种在二维电子地图上实现列车定位的方法
CN115009329A (zh) * 2022-05-30 2022-09-06 卡斯柯信号有限公司 一种基于北斗卫星的列车初始定位计算方法及定位系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2361766C1 (ru) * 2008-02-27 2009-07-20 Закрытое акционерное общество "ОТРАСЛЕВОЙ ЦЕНТР ВНЕДРЕНИЯ НОВОЙ ТЕХНИКИ И ТЕХНОЛОГИЙ" ("ЗАО "ОЦВ") Способ управления движением поезда
CN102420921B (zh) * 2011-10-27 2013-12-25 中铁第一勘察设计院集团有限公司 基于北斗卫星导航辅助的铁路应急通信方法
CN102795248A (zh) * 2012-08-07 2012-11-28 张健 基于卫星精确定位的列车行驶动态跟踪监测系统
CN103171598B (zh) * 2013-04-12 2017-02-15 莱芜钢铁集团有限公司 一种列车定位方法及系统
CN109239748A (zh) * 2017-07-10 2019-01-18 比亚迪股份有限公司 基于gnss的列车运行信息获取方法和装置
US11414112B2 (en) * 2019-06-13 2022-08-16 Thales Method and system for determining the point location of a stopped vehicle on a storage track, using virtual beacons
CN111016974B (zh) * 2019-12-31 2024-03-29 卡斯柯信号有限公司 一种基于电子地图的列车完整性监控系统及方法
CN113970769B (zh) * 2021-09-06 2024-09-10 交控科技股份有限公司 基于北斗导航卫星系统的列车运行定位方法和装置
CN114475722B (zh) * 2022-01-10 2023-11-10 北京全路通信信号研究设计院集团有限公司 一种适用于环形铁路的列车卫星定位方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168216A (ja) * 2002-11-21 2004-06-17 Railway Technical Res Inst Gps測位による列車走行情報検出装置及びその列車走行情報検出方法
US20100312461A1 (en) * 2009-06-08 2010-12-09 Haynie Michael B System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
CN110579780A (zh) * 2019-08-28 2019-12-17 桂林电子科技大学 一种基于北斗geo卫星的阴影匹配改进算法
CN110901705A (zh) * 2019-10-30 2020-03-24 北京全路通信信号研究设计院集团有限公司 一种列车初始定位方法和系统
CN113428190A (zh) * 2021-07-27 2021-09-24 卡斯柯信号有限公司 基于铁路电子地图的列车定位方法、装置、设备及介质
CN113581260A (zh) * 2021-09-01 2021-11-02 兰州交通大学 一种基于gnss的列车轨道占用判别方法
CN113771916A (zh) * 2021-09-08 2021-12-10 交控科技股份有限公司 列车初始定位方法、装置、电子设备及存储介质
CN114044027A (zh) * 2021-12-24 2022-02-15 卡斯柯信号有限公司 一种在二维电子地图上实现列车定位的方法
CN115009329A (zh) * 2022-05-30 2022-09-06 卡斯柯信号有限公司 一种基于北斗卫星的列车初始定位计算方法及定位系统

Also Published As

Publication number Publication date
CN115009329B (zh) 2023-06-30
CN115009329A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023231302A1 (zh) 一种基于北斗卫星的列车初始定位计算方法及定位系统
CN101357643B (zh) 数字轨道地图辅助gps实现精确列车定位方法及系统
CN112429041B (zh) 一种基于卫星定位判定列车运行方向的方法及装置
CN101357644B (zh) 一种基于卫星定位的机车轮径自动校准系统及其方法
CN102590835B (zh) 一种gps/ins深组合跟踪环路高斯码相位鉴别器及其设计方法
US11414112B2 (en) Method and system for determining the point location of a stopped vehicle on a storage track, using virtual beacons
JPH0694472A (ja) 車両位置決定装置及びこの装置を有する車両
CN104197945A (zh) 一种基于低采样率浮动车数据的全局投票地图匹配方法
CN101950025A (zh) 用于局域增强系统的数据质量监测方法
CN104760607B (zh) 基于卫星定位的列车轨道占用检测方法和装置
CN101592723A (zh) Gps接收机及其定位方法
CN101937089B (zh) 用于在定位系统中弱数据位同步的方法和装置
CN101140321A (zh) 区域卫星导航系统及方法
CN101269666A (zh) 用于标识机车的轨道分配的系统方法和计算机可读媒体
CN110203253A (zh) 一种非固定式虚拟应答器实现方法
CN105044738A (zh) 一种接收机自主完好性监视的预测方法及预测系统
CN111352718B (zh) 一种gnss多系统掩星地面处理的业务化调度系统
CN104076373A (zh) 一种基于多信息融合辅助的载波跟踪方法与系统
CN1702475A (zh) 卫星位置表消息传送
CN116774258B (zh) 一种基于改进星历参数优选法的北斗广播星历合成方法
CN105527636A (zh) 导航信号捕获转跟踪方法及系统
Muellerschoen Results of an automated GPS tracking system in support of TOPEX/POSEIDON and GPSMet
CN114355420B (zh) 一种分布式北斗位置服务中心ppp产品定位方法及装置
CN1695070A (zh) 信标信号的验证
CN110221334A (zh) 用于确定铁路车辆位置的方法和相关系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944604

Country of ref document: EP

Kind code of ref document: A1