WO2023230964A1 - 一种人体姿态识别系统 - Google Patents

一种人体姿态识别系统 Download PDF

Info

Publication number
WO2023230964A1
WO2023230964A1 PCT/CN2022/096684 CN2022096684W WO2023230964A1 WO 2023230964 A1 WO2023230964 A1 WO 2023230964A1 CN 2022096684 W CN2022096684 W CN 2022096684W WO 2023230964 A1 WO2023230964 A1 WO 2023230964A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
transmitter
receiver
user
ultrasonic transmitter
Prior art date
Application number
PCT/CN2022/096684
Other languages
English (en)
French (fr)
Inventor
邓文俊
周鑫
苏雷
黎美琪
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2022/096684 priority Critical patent/WO2023230964A1/zh
Publication of WO2023230964A1 publication Critical patent/WO2023230964A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to the technical field of gesture recognition, and in particular to a human gesture recognition system.
  • human posture recognition is widely used in many fields such as sports and health, games, medical health, and wearable electronic devices.
  • human posture recognition may require the use of a variety of sensors including infrared sensors, inertial sensors, etc.
  • the accuracy of human posture recognition using infrared sensors or inertial sensors is low, making the application of human posture recognition difficult.
  • this application hopes to provide a human body posture recognition system to improve the accuracy of human body posture recognition.
  • Embodiments of this specification provide a human body posture recognition system, including: at least one group of ultrasonic sensors, each group of ultrasonic sensors including: an ultrasonic transmitter for transmitting ultrasonic waves and an ultrasonic receiver for receiving the ultrasonic waves, wherein, The ultrasonic transmitter and the ultrasonic receiver are respectively located at different parts of the user's body; and a processor configured to, based on the position information of the ultrasonic transmitter and the ultrasonic receiver, the ultrasonic transmitter emits the ultrasonic wave.
  • the ultrasonic receiver receives the information of the ultrasonic wave and identifies the user's posture.
  • clothing is further included, and the at least one set of ultrasonic sensors is integrated into the clothing.
  • the ultrasonic transmitter and the ultrasonic receiver are distributed on the sleeves or trouser legs of the garment.
  • the ultrasonic transmitter and the ultrasonic receiver are respectively located on the sleeves or trouser legs of the garment. Describe the limbs on both sides corresponding to the user's elbow or knee joints.
  • the identification is based on the position information of the ultrasonic transmitter and the ultrasonic receiver, the information of the ultrasonic transmitter transmitting the ultrasonic wave, and the information of the ultrasonic receiver receiving the ultrasonic wave.
  • the user's gesture includes: obtaining the distance between the ultrasonic transmitter and the ultrasonic transmitter based on information about the ultrasonic transmitter transmitting the ultrasonic wave and information about the ultrasonic receiver receiving the ultrasonic wave; The distance between the ultrasonic transmitter and the ultrasonic transmitter and the position information of the ultrasonic transmitter and the ultrasonic receiver are used to obtain the bending between the two limbs corresponding to the elbow joint or the knee joint. angle.
  • each set of ultrasonic sensors includes an ultrasonic transmitter and at least two ultrasonic receivers, and the at least two ultrasonic receivers include a first ultrasonic receiver and a second ultrasonic receiver, and based on the The position information of the ultrasonic transmitter and the ultrasonic receiver, the information of the ultrasonic transmitter transmitting the ultrasonic wave, and the information of the ultrasonic receiver receiving the ultrasonic wave, identifying the user's gesture includes: based on the ultrasonic wave The transmitter transmits the information of the ultrasonic wave, the first ultrasonic receiver receives the information of the ultrasonic wave, and the second ultrasonic receiver receives the information of the ultrasonic wave, and the ultrasonic transmitter and the first ultrasonic transmitter are determined. the first distance between the ultrasonic emitter and the second ultrasonic emitter; and the elbow joint or the knee joint is determined according to the first distance and the second distance. The angle of rotation between the two limbs corresponding to the joint.
  • the opposite side of the limbs on both sides of the elbow joint or knee joint is represented by the inner side of the two limbs corresponding to the elbow joint or knee joint, and the ultrasonic transmitter
  • the ultrasonic receiver is located on the inside of both limbs corresponding to the elbow joint or knee joint.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is no less than 10 cm.
  • the ultrasonic transmitter includes an output end for emitting the ultrasonic wave, the output end facing away from the garment;
  • the ultrasonic receiver includes a receiving end for receiving the ultrasonic wave, the receiving end The end is away from the garment; the angle between the plane where the output end is located and the plane where the receiving end is located is not greater than 170°.
  • the ultrasonic transmitter is tilted relative to the user's limb contact part below it and toward the ultrasonic receiver, and the normal direction of the output end is consistent with the normal direction of the user's limb contact part below the ultrasonic transmitter.
  • the included angle is not less than 5°.
  • the ultrasonic receiver is tilted relative to the user's limb contact part below it and toward the ultrasonic transmitter, and the normal direction of the receiving end is consistent with the normal direction of the user's limb contact part below the ultrasonic receiver.
  • the included angle is not less than 5°.
  • the ultrasonic transmitter is located at the upper arm of the garment corresponding to the human body
  • the ultrasonic receiver is located at the torso portion of the garment corresponding to the human body
  • the ultrasonic receiver and the ultrasonic receiver The device cooperates with the device to identify the posture of the upper arm relative to the torso.
  • the attitude of the upper arm relative to the trunk part includes an angle of the upper arm relative to the trunk part
  • the identifying the attitude of the upper arm relative to the trunk part includes: emitting the said upper arm based on the ultrasonic transmitter.
  • the ultrasonic wave information and the ultrasonic receiver receive the ultrasonic wave information and obtain the distance between the ultrasonic transmitter and the ultrasonic transmitter; based on the distance between the ultrasonic transmitter and the ultrasonic transmitter and The position information of the ultrasonic transmitter and the ultrasonic receiver determines the angle of the upper arm relative to the torso.
  • the ultrasonic transmitter includes at least two ultrasonic transmitters
  • the ultrasonic receiver includes at least three ultrasonic receivers
  • identifying the posture of the user's upper arm relative to the torso includes: based on the The position information of the at least three ultrasonic receivers determines the position change information of the at least two ultrasonic transmitters; and the movement state of the upper arm relative to the trunk is identified based on the position change information of the at least two ultrasonic transmitters.
  • the at least three ultrasound receivers are not in the same straight line.
  • the distance between the at least two ultrasonic transmitters is not less than 1 cm, and the distance between the at least three ultrasonic receivers is not less than 1 cm.
  • the portion of the garment corresponding to the torso of the human body includes at least one of the front side of the left shoulder, the front side of the right shoulder, the left waist side, the right waist side, and the chest.
  • the ultrasonic transmitter and the ultrasonic receiver are respectively located at two trouser legs in the garment. Based on the position information of the ultrasonic transmitter and the ultrasonic receiver, the ultrasonic The transmitter transmits the information of the ultrasonic wave, and the ultrasonic receiver receives the information of the ultrasonic wave. Identifying the user's posture includes: based on the information of the ultrasonic transmitter transmitting the ultrasonic wave and the ultrasonic receiver receiving the information of the ultrasonic wave. Obtain the distance between the ultrasonic transmitter and the ultrasonic transmitter based on the ultrasonic wave information; based on the distance between the ultrasonic transmitter and the ultrasonic transmitter and the ultrasonic transmitter and the ultrasonic receiver The position information of the user's legs is determined.
  • each group of the ultrasonic sensors includes a plurality of ultrasonic transmitters, and the time points at which the plurality of ultrasonic transmitters emit ultrasonic waves have time intervals.
  • the time interval between two adjacent ultrasonic transmitters emitting ultrasonic waves is greater than 2.9 ms.
  • each group of ultrasonic sensors includes a plurality of ultrasonic transmitters, and the ultrasonic waves emitted by the plurality of ultrasonic transmitters have different frequencies.
  • each group of ultrasonic sensors includes a plurality of ultrasonic transmitters, and the ultrasonic waves emitted by the plurality of ultrasonic transmitters have different codes.
  • Figure 1 is an exemplary framework diagram of a human gesture recognition system according to some embodiments of this specification
  • Figure 2 is an exemplary schematic diagram of ultrasonic transmitters and ultrasonic receivers distributed on both sides of the limbs corresponding to the elbow joint or knee joint of the user according to some embodiments of this specification;
  • Figure 3 is an exemplary flow chart for identifying user gestures according to some embodiments of this specification.
  • Figure 4 is an exemplary schematic diagram of identifying user gestures according to some embodiments of this specification.
  • Figure 5 is an exemplary flow chart for identifying user gestures according to other embodiments of this specification.
  • Figure 6A is an exemplary schematic diagram of identifying user gestures according to other embodiments of this specification.
  • Figure 6B is a side view of the distribution of exemplary ultrasound transmitters and ultrasound receivers on both sides of the limbs corresponding to the elbow joint or knee joint according to some embodiments of this specification;
  • Figure 6C is a top view of the distribution of exemplary ultrasonic transmitters and ultrasonic receivers on both sides of the limbs corresponding to the elbow joint or knee joint according to some embodiments of this specification;
  • Figure 7 is an exemplary schematic diagram of the arrangement position of an ultrasonic sensor according to some embodiments of this specification.
  • Figure 8 is an exemplary schematic diagram of the arrangement position of another ultrasonic sensor according to some embodiments of this specification.
  • Figure 9 is a schematic diagram of the distribution of ultrasonic transmitters and ultrasonic receivers on the upper arm and torso according to some embodiments of this specification;
  • Figure 10 is an exemplary schematic diagram of the arrangement position of an ultrasonic sensor according to some embodiments of this specification.
  • Figure 11 is an exemplary flow chart of a method for determining the angle of the upper arm relative to the torso according to some embodiments of the present specification
  • Figure 12 is an exemplary flowchart of a method for identifying the movement state of the upper arm relative to the trunk part according to some embodiments of this specification;
  • Figure 13 is an exemplary schematic diagram of the arrangement position of an ultrasonic sensor according to other embodiments of this specification.
  • Figure 14 is an exemplary schematic diagram of a three-point positioning method according to some embodiments of this specification.
  • Figure 15 is a schematic diagram of the distribution of ultrasonic transmitters and ultrasonic receivers on the thigh and calf according to some embodiments of this specification;
  • Figure 16 is an exemplary flowchart of a method for determining the posture of a user's legs according to some embodiments of this specification
  • Figure 17 is an exemplary schematic diagram of time-division multiplexing based on ultrasonic sensors according to some embodiments of this specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • the human gesture recognition system may include at least one set of ultrasonic sensors and a processor.
  • each set of ultrasonic sensors may include an ultrasonic transmitter for transmitting ultrasonic waves and an ultrasonic receiver for receiving ultrasonic waves, wherein the ultrasonic transmitter and the ultrasonic receiver are respectively located at different parts of the user's body.
  • ultrasonic transmitters and ultrasonic receivers can be respectively distributed on the upper arm and lower arm on both sides of the user's elbow joint.
  • the ultrasonic transmitter and the ultrasonic receiver can be respectively distributed on the thighs and calves on both sides of the user's knee joint.
  • ultrasonic transmitters and ultrasonic receivers can be distributed on the upper arm and torso.
  • the ultrasonic transmitter and the ultrasonic receiver may be located on two legs of the user respectively.
  • a processor configured to identify the gesture of the user based on position information of the ultrasonic transmitter and the ultrasonic receiver, information of the ultrasonic transmitter transmitting ultrasonic waves, and information of the ultrasonic receiver receiving ultrasonic waves.
  • the human body gesture recognition system provided by the embodiments of this specification sets ultrasonic transmitters and ultrasonic receivers in different parts of the user's body.
  • the processor can obtain the user's information based on the information of the ultrasonic transmitter transmitting ultrasonic waves and the ultrasonic receiver receiving the ultrasonic waves.
  • a spatial coordinate system can be established with any point of the human body in a standing posture as the origin to obtain the ultrasonic transmitter and ultrasonic receiver in different parts of the user's body. location information (for example, three-dimensional coordinates).
  • the processor can determine the posture of the user's limbs and the posture of the limbs relative to the trunk based on the position information of the ultrasonic transmitter and the ultrasonic receiver, the information of the ultrasonic transmitter emitting ultrasonic waves, and the information of the ultrasonic receiver receiving ultrasonic waves. Recognize the user's full body posture.
  • This manual provides that the human posture recognition system can improve the accuracy of user posture recognition by designing the position and/or number of ultrasonic generators and ultrasonic receivers in the ultrasonic sensor.
  • this specification provides that the human posture recognition system can set up different numbers and/or positions of ultrasonic sensors for different joints or parts of the human body to improve the accuracy of the obtained user's posture.
  • Figure 1 is an exemplary framework diagram of a human gesture recognition system according to some embodiments of this specification.
  • the human gesture recognition system 100 may refer to a system for recognizing the gesture of a human body. For example, when the posture of the human body changes, such as when the user performs a curling movement of the arm, the human body posture recognition system 100 can recognize that the user performs a curling movement of the arm based on the bending condition of the user's arm.
  • the human gesture recognition system 100 may include at least a set of ultrasonic sensors 110 and a processor 120 .
  • the human gesture recognition system 100 may include multiple sets of ultrasonic sensors 110, and the multiple sets of ultrasonic sensors 110 may be distributed in different parts of the user. For example, multiple sets of ultrasonic sensors may be located at any one or more locations on the user's limbs (eg, arms, legs, etc.), trunk (eg, shoulders, chest, back, waist, etc.), head, etc.
  • each set of ultrasonic sensors 110 may include an ultrasonic transmitter 131 for transmitting ultrasonic waves and an ultrasonic receiver 132 for receiving ultrasonic waves.
  • the ultrasound transmitter 131 and the ultrasound receiver 132 are located at different parts of the user's body.
  • ultrasonic transmitters and ultrasonic receivers can be respectively distributed on the upper arm and lower arm on both sides of the user's elbow joint.
  • the ultrasonic transmitter and the ultrasonic receiver can be respectively distributed on the thighs and calves on both sides of the user's knee joint.
  • ultrasonic transmitters and ultrasonic receivers can be distributed on the upper arm and torso.
  • each set of ultrasonic sensors 110 may include at least one ultrasonic transmitter 131 and at least one ultrasonic receiver 132 .
  • each group of ultrasonic sensors 110 may include one ultrasonic transmitter 131 and multiple ultrasonic receivers 132 .
  • each group of ultrasonic sensors 110 may include multiple ultrasonic transmitters 131 and one ultrasonic receiver 132 .
  • each group of ultrasonic sensors 110 may include multiple ultrasonic transmitters 131 and multiple ultrasonic receivers 132 .
  • the number of ultrasonic transmitters 131 and ultrasonic receivers 132 corresponding to the multiple sets of ultrasonic sensors 110 may be the same or different.
  • the number of ultrasonic transmitters 131 and ultrasonic receivers 132 distributed on the upper and lower arms on both sides of the user's elbow joint is smaller than the number of ultrasonic transmitters 131 and ultrasonic receivers 132 distributed on the inner side of the user's upper arms and torso.
  • the ultrasonic transmitter 131 may refer to a device capable of transmitting ultrasonic waves.
  • the ultrasonic transmitter 131 can convert electrical signals into ultrasonic waves and transmit them.
  • the ultrasound transmitter 131 may include, but is not limited to, a magnetostrictive transmitter, a piezoelectric ultrasound transmitter, a micromachined ultrasound transmitter, or the like.
  • Ultrasound receiver 132 may refer to a device capable of receiving ultrasound waves.
  • the ultrasonic receiver 132 may receive ultrasonic waves and convert the ultrasonic waves into electrical signals.
  • ultrasound receiver 132 may include, but is not limited to, a magnetostrictive receiver, a piezoelectric ultrasound receiver, a micromachined ultrasound receiver, or the like.
  • the processor 120 may be used to process information and/or data related to the human gesture recognition system 100, for example, processing the position information of the ultrasonic transmitter and the ultrasonic receiver, the information of the ultrasonic transmitter transmitting ultrasonic waves, and the information of the ultrasonic receiver receiving ultrasonic waves. wait.
  • the processor 120 may process data, information, and/or processing results obtained from other devices or system components, and execute program instructions based on the data, information, and/or processing results to perform one or more functions described in this specification.
  • processor 120 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction processor (ASIP), a reduced instruction set computer (RISC), a microprocessor, the like, or any combination thereof.
  • the processor 120 may be configured to identify the user's gesture based on the position information of the ultrasound transmitter and the ultrasound receiver, the information that the ultrasound transmitter transmits ultrasound waves, and the ultrasound receiver receives ultrasound waves.
  • the position information of the ultrasonic transmitter and the ultrasonic receiver may refer to the spatial distribution information of the ultrasonic transmitter and the ultrasonic receiver on the user's body.
  • the position information of the ultrasonic transmitter and ultrasonic receiver can be represented by coordinates and other methods.
  • the positions of the ultrasonic transmitter and ultrasonic receiver on the user's body are fixed.
  • a spatial coordinate system can be established with any point of the human body in a standing posture as the origin, and the coordinates of the ultrasonic transmitter and ultrasonic receiver in different parts of the user's body can be obtained.
  • Location information e.g., three-dimensional coordinates). It should be noted that the position information of the ultrasonic transmitter and the ultrasonic receiver can be fixed, or can be adaptively adjusted according to the user's age, gender, height, weight, body shape and other factors.
  • the information that the ultrasonic transmitter emits ultrasonic waves may refer to information related to the process of the ultrasonic transmitter emitting ultrasonic waves. For example, the time when the ultrasonic transmitter emits ultrasonic waves, the frequency at which the ultrasonic transmitter emits ultrasonic waves, the encoding of which the ultrasonic transmitter emits ultrasonic waves, etc.
  • the information that the ultrasonic receiver receives ultrasonic waves may refer to information related to the process of the ultrasonic receiver receiving ultrasonic waves. For example, the time of the ultrasonic wave received by the ultrasonic receiver, the frequency of the ultrasonic wave received by the ultrasonic receiver, the encoding of the ultrasonic wave received by the ultrasonic receiver, etc.
  • the user's gesture can be recognized.
  • the ultrasonic transmitter and the ultrasonic receiver are respectively disposed on the user's right forearm and right upper arm.
  • the processor 120 can be based on the position information of the ultrasonic transmitter and the ultrasonic receiver, as well as the information of the ultrasonic transmitter transmitting ultrasonic waves and the ultrasonic reception.
  • the device receives ultrasonic information and identifies the bending angle between the limbs on both sides corresponding to the elbow or knee joint.
  • the ultrasonic receiver is placed on the upper arm of the human body, and the ultrasonic transmitter is placed on the torso of the human body.
  • the processor 120 can be based on the position information of the ultrasonic transmitter and the ultrasonic receiver, and the information that the ultrasonic transmitter transmits ultrasonic waves.
  • the ultrasonic receiver receives ultrasonic information and identifies the posture of the arm relative to the trunk (for example, the arm swings back and forth, up and down, left and right relative to the trunk). For more information on identifying the bending angle between the limbs corresponding to the elbow or knee joints and identifying the posture of the upper arm relative to the torso, please refer to Figures 2-5, Figure 6A, Figure 6B, Figure 6C, Figure 9 - Figure 14 and its associated description.
  • the human gesture recognition system 100 may also include clothing 130.
  • the clothing 130 may be worn by the user, and at least one set of ultrasonic sensors 110 is integrated into the clothing.
  • the garment 130 may include any one or more of tops, pants, jumpsuits, and the like.
  • ultrasonic sensor 110 may be integrated into clothing in a variety of ways.
  • ultrasonic sensors can be sewn together with clothing through sewing threads such as cotton thread and nylon thread.
  • the ultrasonic sensor 110 can be bonded to clothing through acrylic glue, composite structural glue, polymer glue, or other glue.
  • the ultrasonic sensor 110 can be provided with clothing through a detachable structure such as a buckle or Velcro.
  • the garment 130 may be a single-layer structure, and the ultrasonic sensor 110 may be located on the upper or lower surface of the single-layer structure. In some embodiments, the garment 130 may be a multi-layer structure, and the ultrasonic sensor 110 may be located on the upper surface, lower surface, or between two adjacent layer structures of the garment 130 .
  • processor 120 may be integrated on garment 130.
  • the processor 120 is disposed on the garment 130 through sewing, adhesion, or other methods.
  • processor 120 may be provided separately from garment 130.
  • the processor 120 may communicate with the ultrasonic sensor 110 disposed on the garment 130 or the user's body through a wired network and/or a wireless network.
  • Exemplary wired networks may include cable networks, fiber optic networks, and the like.
  • Exemplary wireless networks may include wireless local area networks (WLAN), Bluetooth networks, Global System for Mobile Communications (GSM) networks, and the like.
  • the ultrasonic sensor in the human gesture recognition system can also be directly placed on the user's body.
  • the ultrasonic transmitter and ultrasonic receiver corresponding to the ultrasonic sensor can be fixed to the user's body or clothing through fasteners (eg, belt-like structures, pins, buckles), glue, or adhesive members.
  • the ultrasonic sensors 110 can be arranged at different parts of the user's body. Furthermore, each group of ultrasonic sensors 110 corresponds to an ultrasonic transmitter 131 and an ultrasonic receiver. 132 is distributed in different parts of the user's body. The postures of different parts will be described below in conjunction with the distribution of the ultrasonic transmitter 131 and the ultrasonic receiver 132 .
  • the ultrasonic transmitter and the ultrasonic receiver can be respectively located at both sides of the limbs corresponding to the user's elbow joint or knee joint to identify the movement posture of the user's arms or legs. For example, identify the bending angle or rotation angle between the limbs on both sides corresponding to the user's elbow joint or knee joint.
  • the limbs on both sides corresponding to the elbow joint can refer to the upper arm and forearm, and the limbs on both sides corresponding to the knee joint can refer to the thigh and calf.
  • one of the ultrasonic transmitter and the ultrasonic receiver is located at the upper arm, and the other is located at the lower arm.
  • one of the ultrasonic transmitter and the ultrasonic receiver is located on the thigh, and the other is located on the calf.
  • the ultrasonic transmitter and ultrasonic receiver are arranged on the sleeves or trouser legs of the clothing, so that when the user wears the clothing, the ultrasonic transmitter and ultrasonic receiver can be located respectively on the user's elbow joint or The knee joints correspond to the limbs on both sides.
  • FIG 2 is an exemplary schematic diagram of ultrasonic transmitters and ultrasonic receivers distributed on both sides of the limbs corresponding to the elbow joint or knee joint of the user according to some embodiments of this specification.
  • the ultrasonic transmitter 210 and the ultrasonic receiver 220 are located on both sides of the limbs corresponding to the user's elbow joint.
  • the ultrasonic transmitter 210 is located on the user's left upper arm, and the ultrasonic receiver 220 is located on the user's left forearm;
  • the ultrasonic transmitter 230 and the ultrasonic receiver 240 are respectively located on both sides of the limbs corresponding to the user's elbow joint.
  • the ultrasonic transmitter 230 is located on the user's right upper arm, and the ultrasonic receiver 240 is located on the user's right forearm; the ultrasonic transmitter 250 and the ultrasonic receiver 240 are located on the user's right forearm.
  • the receivers 260 are respectively located on both sides of the limbs corresponding to the user's knee joint.
  • the ultrasonic transmitter 250 is located on the user's left thigh, and the ultrasonic receiver 260 is located on the user's left calf.
  • the ultrasonic transmitter 270 and the ultrasonic receiver 280 are respectively located on the user's knee joint. For the corresponding limbs on both sides, the ultrasound transmitter 270 is located on the user's right thigh, and the ultrasound receiver 280 is located on the user's right calf.
  • the arrangement position of the ultrasonic sensor shown in FIG. 2 is only an example, and it can be understood that the positions of the ultrasonic transmitter and the ultrasonic receiver shown in FIG. 2 can be interchanged.
  • the ultrasound transmitter 210 is located on the user's left forearm, and the ultrasound receiver 220 is located on the user's left upper arm.
  • the ultrasound transmitter 270 is located on the user's right calf, and the ultrasound receiver 280 is located on the user's right thigh. More information about the arrangement location of the ultrasonic sensors can be found in Figures 7 and 8 and their descriptions.
  • each group of ultrasonic sensors can include multiple ultrasonic transmitters or ultrasonic receivers.
  • one ultrasonic transmitter is installed on the user's left forearm, and two ultrasonic receivers are installed on the user's left upper arm.
  • three ultrasonic transmitters are provided on the user's left forearm, and three ultrasonic receivers are provided on the user's left upper arm. More information on setting up multiple ultrasound transmitters and ultrasound receivers can be found elsewhere in this specification, for example, Figures 5-6C, Figures 11-14 and their related descriptions.
  • FIG. 3 is an exemplary flowchart of a method for identifying user gestures according to some embodiments of this specification.
  • process 300 may be performed by processor 120. As shown in Figure 3, process 300 may include the following steps:
  • Step 310 Obtain the distance between the ultrasonic transmitter and the ultrasonic receiver based on information about the ultrasonic transmitter transmitting ultrasonic waves and information about the ultrasonic receiver receiving ultrasonic waves.
  • the processor may obtain the distance between the ultrasonic transmitter and the ultrasonic receiver based on the time when the ultrasonic transmitter transmits the ultrasonic wave and the time when the ultrasonic receiver receives the ultrasonic wave.
  • the ultrasonic transmitter 410 is located at the user's upper arm, and the ultrasonic receiver 420 is located at the user's forearm.
  • the ultrasonic transmitter 410 emits ultrasonic waves that can be received by the ultrasonic receiver 420 .
  • the time when the ultrasonic transmitter 410 emits the ultrasonic wave is t1
  • the time when the ultrasonic receiver 420 receives the ultrasonic wave is t2.
  • the processor can calculate based on the difference ⁇ t between t1 and t2, and the propagation speed of the ultrasonic wave in the air is C(1 (approximately 340 m/s under the conditions of a standard atmospheric pressure and 15°C). By multiplying the above ⁇ t and C, the result of the multiplication can be determined as the distance X between the ultrasonic transmitter 410 and the ultrasonic receiver 420.
  • Step 320 Based on the distance between the ultrasonic transmitter and the ultrasonic receiver and the position information of the ultrasonic transmitter and the ultrasonic receiver, obtain the bending angle between the limbs on both sides corresponding to the elbow joint or knee joint.
  • the bending angle between the limbs corresponding to the elbow or knee joint can refer to the bending angle between the left (right) forearm and the left (right) upper arm or the bending angle between the left (right) calf and the left (right) thigh. Bend angle.
  • the O point shown in Figure 4 can be regarded as the location of the elbow joint, and the ⁇ angle can be Considered as the bending angle (i.e., the angle between the upper arm and the lower arm).
  • the bending angle here can be regarded as the angle between the extension direction of the big arm and the extension direction of the forearm, and point O can be regarded as the intersection point of the extension direction of the big arm and the extension direction of the forearm.
  • the processor can obtain the limbs on both sides corresponding to the elbow joint or knee joint through formula (1) based on the distance between the ultrasonic transmitter and the ultrasonic receiver and the position information of the ultrasonic transmitter and the ultrasonic receiver.
  • c is a length value that can characterize the dimension of the user's forearm where the ultrasonic transmitter is located
  • d is a length value that can represent the dimension of the user's upper arm where the ultrasonic receiver is located.
  • the value of c or d is positively related to the dimension of the user's arm. For example, the thicker the user's arms or forearms, the larger the c or d.
  • the circumference of the cross-sectional shape of the small arm or big arm taken along the vertical direction of extension of the small arm or big arm and passing through the geometric center of the ultrasonic transmitter is used as the dimension at the user's small arm or big arm.
  • the cross-sectional shape can be approximately regarded as an ellipse, with the major axis radius or minor axis radius of the ellipse being c or d.
  • a can represent the distance between the center point of the cross-sectional shape and the joint (for example, the elbow joint, represented by point O in Figure 4), and b can represent the distance between the center of the cross-sectional shape and the joint (for example, the elbow joint) .
  • a, b, c, d are all known parameters.
  • c and d may be determined based on the user's arm/leg dimensions, for example, based on the user's arm/leg dimensions, c and d may be determined through measurement.
  • a and b can be determined based on the position information of the ultrasonic transmitter and ultrasonic receiver. For example, a three-dimensional spatial coordinate system is established using a certain position of the human body as an element to obtain the position information (coordinate information) of the ultrasonic transmitter and ultrasonic receiver. Joint (for example, point O) coordinate information, user arm dimensions, etc., determine a and b.
  • the ultrasonic transmitter and ultrasonic receiver corresponding to the ultrasonic sensor are arranged on the corresponding limbs on both sides of the knee joint or elbow joint, and through the information of the ultrasonic sensor (for example, the ultrasonic transmitter and the ultrasonic sensor), the elbow joint or knee joint can be determined
  • the corresponding bending angle between the limbs on both sides is used to identify the local movement posture of the user's limbs.
  • the human posture recognition system is stable, the algorithm is relatively simple, and it can more accurately identify the movement posture of the user's limbs.
  • FIG. 5 is an exemplary flowchart of a method for identifying a user's gesture according to other embodiments of this specification.
  • process 500 may be performed by processor 120. As shown in Figure 5, process 500 may include the following steps:
  • Step 510 Determine the first distance between the ultrasonic transmitter and the first ultrasonic receiver and the ultrasonic distance based on information about the ultrasonic transmitter transmitting ultrasonic waves, information about the first ultrasonic receiver receiving ultrasonic waves, and information about the second ultrasonic receiver receiving ultrasonic waves. The second distance between the transmitter and the second ultrasonic receiver.
  • each group of ultrasonic sensors can include multiple ultrasonic transmitters or ultrasonic receivers.
  • each set of ultrasonic sensors may include at least two ultrasonic transmitters and one ultrasonic receiver.
  • each group of ultrasonic sensors may include at least two ultrasonic transmitters and at least two ultrasonic receivers.
  • each group of ultrasonic sensors may include one ultrasonic transmitter and at least two ultrasonic receivers.
  • each set of ultrasonic sensors may include multiple ultrasonic transmitters or ultrasonic receivers.
  • each group of ultrasonic sensors may include one ultrasonic transmitter and at least two ultrasonic receivers.
  • each set of ultrasonic sensors includes an ultrasonic transmitter and at least two ultrasonic receivers, the at least two ultrasonic receivers including a first ultrasonic receiver and a second ultrasonic receiver.
  • each group of ultrasonic sensors includes an ultrasonic transmitter 610 , a first ultrasonic receiver 620 and a second ultrasonic receiver 630 .
  • the first distance may refer to the distance between the ultrasound transmitter and the first ultrasound receiver. As shown in Figure 6A, the distance X1 between the ultrasound transmitter 610 and the first ultrasound receiver 620.
  • the second distance may refer to the distance between the ultrasound transmitter and the second ultrasound receiver. As shown in Figure 6A, the distance X2 between the ultrasound transmitter 610 and the second ultrasound receiver 630.
  • the processor may determine the distance between the ultrasonic transmitter and the first ultrasonic receiver based on the time when the ultrasonic transmitter transmits the ultrasonic wave and the time when the first ultrasonic receiver receives the ultrasonic wave and the time when the second ultrasonic receiver receives the ultrasonic wave. a first distance and a second distance between the ultrasonic transmitter and the second ultrasonic receiver. Taking the ultrasonic transmitter and the ultrasonic receiver distributed on the upper and lower arms on both sides of the elbow joint as an example, as shown in Figure 6A, the ultrasonic transmitter 610 is located at the user's upper arm, and the first ultrasonic receiver 620 and the second ultrasonic receiver The detector 630 is located at the user's forearm.
  • the ultrasonic wave emitted by the ultrasonic transmitter 610 can be received by the first ultrasonic receiver 620 and the second ultrasonic receiver 630. Specifically, the time when the ultrasonic transmitter 610 emits ultrasonic waves is t1, the time when the first ultrasonic receiver 620 receives the ultrasonic wave is t2, and the time when the second ultrasonic receiver 630 receives the ultrasonic wave is t3.
  • the processor can calculate the difference between t1 and t3 based on the difference ⁇ t12 between t1 and t2. Value ⁇ t13, the propagation speed of ultrasonic waves in the air is C (approximately 340m/s under the conditions of 1 standard atmosphere and 15°C).
  • the forearm when the arm is straightened normally, the forearm does not rotate relative to the upper arm. Due to the characteristics of the human elbow joint, the forearm usually rotates in the opposite direction of the arm extension direction (the direction from the forearm to the hand). Rotate in the clockwise direction (the direction indicated by the arrow shown in FIG. 6A).
  • the first ultrasonic receiver 620 can be disposed on the same side of the user's forearm and the palm of the hand
  • the second ultrasonic receiver 630 can be disposed on the same side of the user's forearm and the back of the hand, so as to more accurately detect Identify the rotation angle of the user's forearm relative to the upper arm.
  • Step 520 Determine the rotation angle between the limbs on both sides corresponding to the elbow joint or the knee joint based on the first distance and the second distance.
  • the rotation angle between the limbs on both sides corresponding to the elbow joint can refer to the rotation angle of the forearm relative to the upper arm.
  • the rotation angle between the two limbs corresponding to the knee joint can refer to the rotation angle of the calf relative to the thigh.
  • FIG. 6B is a side view of the distribution of exemplary ultrasonic transmitters and ultrasonic receivers on both sides of the limbs corresponding to the elbow joint or knee joint according to some embodiments of this specification
  • FIG. shows a top view of the distribution of exemplary ultrasonic transmitters and ultrasonic receivers on both sides of the limbs corresponding to the elbow joint or knee joint.
  • the first ultrasonic receiver 620 and the second ultrasonic receiver 630 may be relative to a straight line parallel to the extension direction of the arm and passing through the ultrasonic transmitter (for example, FIG.
  • the straight lines L) shown in Figures 6B and 6C are approximately symmetrically arranged.
  • the first distance X1 and the second distance X2 shown in FIG. 6B or 6C can be regarded as approximately equal.
  • the first ultrasonic receiver 620 and the second distance X2 are approximately equal.
  • the connection between the two ultrasonic receivers 630 is the first straight line L1.
  • the first ultrasonic receiver 620 and the second ultrasonic receiver 630 will also rotate relative to the ultrasonic transmitter 610.
  • the first ultrasonic receiver 620 and the second ultrasonic receiver 630 The connection line is the second straight line L2.
  • the angle ⁇ formed by the first straight line L1 and the second straight line L2 can be regarded as the rotation angle of the forearm relative to the upper arm.
  • the first distance X1 and the second distance X2 will change. For example, as shown in FIG.
  • the processor can determine the rotation angle ⁇ between the limbs on both sides corresponding to the elbow joint or the knee joint based on the first distance and the second distance. Specifically, it can be obtained through formula (2):
  • represents the direction of rotation
  • + represents that the small arm rotates relative to the big arm toward the side of the arm where the first ultrasonic receiver 620 is located
  • - represents that the small arm rotates relative to the big arm toward the side of the arm where the second ultrasonic receiver 630 is located.
  • rotation angle ⁇ determined by formula (2) is a relative quantity and is only used to characterize the degree of rotation of the forearm or lower leg. It is not the exact rotation between the limbs on both sides corresponding to the elbow joint or knee joint. angle.
  • the processor may determine the bending angle between the limbs on both sides corresponding to the elbow joint or the knee joint based on the first distance and the second distance. . As shown in FIG. 6B and FIG. 6C , the processor may add the first distance X1 and the second distance X2 and divide them by 2 to obtain the center of the line connecting the first ultrasonic receiver 620 and the second ultrasonic receiver 630 . The distance X between the point M and the ultrasonic transmitter 610, and then based on formula (1), the bending angle ⁇ of the elbow joint can be determined. More information about formula (1) can be found in Figure 3 and its description. It should be noted that the calculation of The distance between the two ultrasonic receivers 630, so in this case, the calculated result X can be approximately equal to the distance between the ultrasonic transmitter and the ultrasonic receiver.
  • Ultrasonic sensors have a limited operating range. For example, an ultrasonic transmitter can only emit ultrasonic waves in a certain direction, and an ultrasonic receiver can only receive ultrasonic waves in a certain direction.
  • the operating range of an ultrasonic sensor can be determined to some extent by the manufacturing process of the ultrasonic sensor. Therefore, before designing the placement of the ultrasonic sensor, you need to understand the working range of the ultrasonic sensor. The structure of the ultrasonic transmitter and ultrasonic receiver will be described below.
  • the ultrasonic transmitter may include a vibrating unit and a housing.
  • the vibrating unit converts electrical signals into ultrasonic waves.
  • the shell can provide fixed support for the ultrasonic transmitter and isolate the external environment.
  • the housing can also limit the direction of emitted ultrasonic waves through various settings.
  • the housing may be provided with a hole to allow ultrasonic waves to be emitted from the hole.
  • the shell can be provided with materials on one side (for example, setting the type or thickness of the material so that the material on this side is different from the materials on other sides) or structure (for example, setting the structure with deformation, special shape, etc., So that the structure of this side is different from the structure of other sides) to allow ultrasonic waves to be emitted from this side.
  • the side that emits ultrasonic waves may be referred to as the output end.
  • a side of the housing with a hole or a material different from the other sides may be called an output end.
  • an ultrasound receiver may include a transducer unit and a housing.
  • the transducer unit can convert ultrasonic waves into electrical signals.
  • the shell can provide fixed support for the ultrasonic receiver and isolate the external environment.
  • the housing of the ultrasonic receiver can also be configured with reference to the housing of the ultrasonic transmitter mentioned above to limit the direction in which ultrasonic waves are received.
  • one side has a hole, the material or structure on one side is provided, etc.
  • the side that receives ultrasonic waves may be called a receiving end.
  • the side of the housing with the hole or the side made of a different material than the other sides may be called the receiving end.
  • the ultrasonic transmitter and the ultrasonic receiver are located inside the two limbs corresponding to the elbow joint or knee joint, where the elbow joint or knee joint In the bent state, the opposite limb side of the limbs on both sides is represented as the inner side of the limbs on both sides corresponding to the elbow joint or knee joint. Since the forearm in the arm can rotate relative to the upper arm, taking the arm as an example, the inner sides of the limbs on both sides corresponding to the elbow joint can also be the part on the same side of the arm and the palm when the arm is naturally straightened.
  • Figure 7 is a schematic diagram of the distribution of ultrasound transmitters and ultrasound receivers on both sides of the limbs corresponding to the elbow joint or knee joint according to some embodiments of this specification. As shown in FIG. 7 , the ultrasonic transmitter 710 and the ultrasonic receiver 720 are located inside the limbs on both sides corresponding to the elbow joint or knee joint.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is not less than 10 cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is no less than 15cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is not less than 20cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is no greater than the user's limbs (for example, leg or arm) length. It should be noted that different users have different limb lengths. In actual application scenarios, adaptive adjustments can be made according to the user's actual situation (for example, limb length).
  • the distance between the ultrasonic transmitter and the ultrasonic receiver is no greater than the length of a sleeve or trouser leg in the garment.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver may be no less than 10 cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver may be no less than 15 cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver may be no less than 20 cm. It is understood that the length of each person's limbs may be different, so the clothing can be designed for different users so that the placement of the ultrasonic sensors achieves the desired effect. Children's limbs are usually shorter. For example, the arm length of children aged 4 to 12 years is usually greater than 30cm, and the leg length is usually greater than 60cm. The distance between the ultrasonic transmitter and the ultrasonic receiver at the sleeves of children's clothing can be 10cm-30cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver at the sleeve of children's clothing can be 20cm-50cm.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver at the arm or leg of the adult garment may be 20cm-50cm.
  • the ultrasonic transmitter includes an output end for emitting ultrasonic waves, and the output direction of the output end is toward the outside of the clothing, or away from the part where the ultrasonic transmitter is in direct or indirect contact with the user's limb.
  • the ultrasonic transmitter 710 and the ultrasonic receiver 720 are located on the surface of clothing or the user's skin as an example.
  • the ultrasonic transmitter 710 includes an output end 711 , and the output direction of the output end 711 is toward the outside of the clothing, or away from the ultrasonic emission.
  • the ultrasonic receiver includes a receiving end for receiving ultrasonic waves, and the receiving end faces the outside of the garment, or away from the part where the ultrasonic receiver is in direct or indirect contact with the user's limb.
  • the ultrasonic receiver 720 includes a receiving end 721 , and the receiving end 721 faces the outside of the garment, or away from the part where the ultrasonic receiver 720 is in direct or indirect contact with the user's limb.
  • the ultrasonic transmitter and the ultrasonic receiver can be located between the two layers of the garment, wherein the output direction of the ultrasonic transmitter and the ultrasonic receiver is toward the outside of the garment, that is, , when the user wears the clothing, the output end of the ultrasonic transmitter and the receiving end of the ultrasonic receiver are away from the parts that are in direct or indirect contact with the user's limbs.
  • the ultrasonic wave emitted by the ultrasonic transmitter radiates to the outside world through its output end, and the ultrasonic receiver needs to receive the ultrasonic wave through its receiving end. Since the ultrasonic transmitter and ultrasonic receiver are located at the user's upper arm and forearm respectively, If the user straightens his arms or legs, the ultrasonic receiver may not be able to receive the ultrasonic waves emitted by the ultrasonic transmitter. In order to ensure that the ultrasonic waves emitted by the ultrasonic transmitter can be received by the ultrasonic receiver and improve the reliability of the human posture recognition system, in In some embodiments, the angle between the plane where the output end is located and the plane where the receiving end is located may be less than 180°.
  • the angle between the plane where the output end is located and the plane where the receiving end is located is not greater than 170°.
  • the angle between the plane where the output end is located and the plane where the receiving end is located is not greater than 150°.
  • the angle between the plane where the output end is located and the plane where the receiving end is located is not greater than 130°.
  • the angle ⁇ shown in FIG. 7 can be regarded as the angle between the plane where the output end of the ultrasonic transmitter 710 is located and the plane where the receiving end of the ultrasonic receiver 720 is located. It should be noted that the plane where the output end is located is the plane where the side wall of the ultrasonic transmitter housing that emits ultrasonic waves is located.
  • an ultrasonic transmitter can include a shell and a vibration unit.
  • the vibration unit generates ultrasonic waves based on electrical signals.
  • the ultrasonic waves can be radiated to the outside through a hole provided on the housing.
  • the side wall where the hole is located can be regarded as the side wall of the ultrasonic transmitter. output terminal.
  • the housing may not be provided with a hole, and the ultrasonic waves may be directly radiated to the outside from a side wall of the housing.
  • the side wall may also be regarded as the output end of the ultrasonic transmitter.
  • the plane where the receiving end is located is the plane where the side wall of the ultrasonic receiver housing for receiving ultrasonic waves is located.
  • an ultrasonic receiver may include a housing and a transducing unit.
  • the transducing unit generates an electrical signal based on a sound signal.
  • the ultrasonic waves emitted by the ultrasonic transmitter may be transmitted to the interior of the ultrasonic receiver's housing through a hole provided on the housing.
  • the side wall where the hole is located can be regarded as the receiving end of the ultrasonic receiver.
  • the housing may not be provided with a hole, and the ultrasonic wave may be directly received from a side wall of the housing.
  • the side wall may also be regarded as the receiving end of the ultrasonic receiver.
  • the ultrasonic transmitter is tilted relative to the user's limb contact area below it and toward the ultrasonic receiver. It is set that the angle between the normal direction of the output end and the normal direction of the user's limb contact part below the ultrasonic transmitter is not less than 15°. Preferably, the angle between the normal direction of the output end and the normal direction of the user's limb contact part below the ultrasonic transmitter is not less than 10°.
  • the angle between the normal direction of the output end and the normal direction of the user's limb contact part below the ultrasonic transmitter is not less than 5°.
  • the user's body contact part can be the user's skin or clothing.
  • the user's body contact part may be the clothing.
  • the ultrasonic sensor is directly arranged with the user's skin, the user's body contact part may be the user's skin.
  • the ultrasonic transmitter 710 is tilted relative to the user's limb contact part below it and toward the ultrasonic receiver 720.
  • the normal line of the output end is p
  • the normal line of the user's limb contact part below the ultrasonic transmitter is q.
  • the ⁇ 1 angle can be regarded as the angle between the normal p and the normal q.
  • the ultrasonic receiver is tilted relative to the user's limb contact part below it and toward the ultrasonic transmitter, and the angle between the normal direction of the receiving end and the normal direction of the user's limb contact part below the ultrasonic receiver is not less than 15°.
  • the angle between the normal direction of the receiving end and the normal direction of the user's limb contact part below the ultrasonic receiver is not less than 10°.
  • the angle between the normal direction of the receiving end and the normal direction of the user's limb contact part below the ultrasonic receiver is not less than 5°.
  • the ultrasonic receiver 720 is tilted relative to the user's limb contact part below it and toward the ultrasonic transmitter 710.
  • the normal line of the receiving end is s
  • the normal line of the user's limb contact part below the ultrasonic receiver is r.
  • the ⁇ 2 angle can be regarded as the angle between the normal line s and the normal line r.
  • the angle between the plane where the output end is located and the plane where the receiving end is located is not greater than 170°, which ensures that the ultrasonic receiver can always receive the ultrasonic waves emitted by the ultrasonic transmitter, improving the reliability of the system. .
  • the exemplary ultrasonic transmitter 710 and ultrasonic receiver 720 shown in FIG. 7 are rectangular parallelepipeds, and the ultrasonic transmitter and ultrasonic receiver may also have other structures and/or shapes.
  • the ultrasonic transmitter 810 and the ultrasonic receiver 820 may include a right-angled trapezoidal body.
  • the right-angled trapezoidal body may be understood as a rectangular parallelepiped structure with one edge shaved off along its length direction, width direction or thickness direction. The surface formed by this edge is the trapezoidal surface of a right-angled trapezoid.
  • the steps of the right-angled trapezoidal body (812 and 822 shown in Figure 8) are in physical contact with the user.
  • the ultrasonic transmitter 810 is tilted relative to the user's limb contact part below it and toward the ultrasonic receiver 820.
  • the normal line of the output end 811 is p
  • the normal line of the user's limb contact part below the ultrasonic transmitter is q
  • the ⁇ 1 angle shown in Figure 8 It can be regarded as the angle between normal p and normal q.
  • the ultrasonic receiver 820 is tilted relative to the user's limb contact part below it and toward the ultrasonic transmitter 810.
  • the normal line of the receiving end 821 is s.
  • the normal line of the user's limb contact part below the ultrasonic receiver is r.
  • the ⁇ 2 angle shown in Figure 8 It can be regarded as the angle between the normal line s and the normal line r.
  • the ultrasonic transmitter and the ultrasonic receiver can also be other than those shown in Figures 7 and 8, which can satisfy the angle between the normal direction of the output end and the normal direction of the user's limb contact part below the ultrasonic transmitter, and the receiving The angle between the normal direction of the end and the normal direction of the user's limb contact part below the ultrasonic receiver, other structures and/or shapes. For example, triangular prism, hexagonal prism, cylindrical body, etc.
  • the ultrasonic transmitter and ultrasonic receiver shown in Figures 7 and 8 can be fixed to the human body or clothing through glue or adhesives.
  • the ultrasonic transmitter and the ultrasonic receiver can also be fixed by providing a fixing member, so that the angle between the normal direction of the output end and the normal direction of the user's limb contact part below the ultrasonic transmitter is not less than a specific angle (for example, , 5°), the angle between the normal direction of the receiving end and the normal direction of the user's limb contact part below the ultrasonic receiver is not less than a specific angle (for example, 5°).
  • the fixture may be integrally formed with the ultrasonic sensor (eg, ultrasonic transmitter or ultrasonic receiver), or may be a separate structure relative to the ultrasonic sensor.
  • the fixing member may be a wedge-shaped structure, and the wedge-shaped structure is interposed between the ultrasonic transmitter and the clothing in contact with the user's skin, and between the ultrasonic receiver and the clothing in contact with the user's skin.
  • the ultrasonic sensor can not only obtain the bending angle between the two limbs corresponding to the elbow joint or the knee joint and the rotation angle between the two limbs corresponding to the elbow joint or knee joint, but can also be used to identify the position of the upper arm relative to the torso. posture.
  • the ultrasonic transmitter can be located in the garment at the upper arm corresponding to the human body, and the ultrasonic receiver can be located in the garment at the torso portion of the human body, and the ultrasonic receiver and the ultrasonic receiver cooperate to identify the upper arm relative to the torso portion. posture.
  • the ultrasonic receiver may be located at the upper arm of the garment corresponding to the human body, and the ultrasonic transmitter may be located at the torso portion of the garment corresponding to the human body.
  • Figure 9 is a schematic diagram of the distribution of ultrasonic transmitters and ultrasonic receivers on the upper arm and torso according to some embodiments of this specification.
  • the ultrasonic transmitter 910 and the ultrasonic transmitter 930 are located in the clothing corresponding to the upper arm of the human body, and the ultrasonic receiver 920 and the ultrasonic receiver 940 are located in the clothing corresponding to the torso of the human body.
  • ultrasound receivers may be located at multiple locations in the garment corresponding to torso areas of the human body. In order to achieve more accurate measurement results, it can be placed in the position shown in Figure 10.
  • the body parts corresponding to the shoulder joint have more complex movement patterns than the limbs on both sides corresponding to the elbow or knee joints.
  • the upper arms can move relative to the torso. Up and down, front and back, rotation, swing and other actions.
  • the scope of action of ultrasonic sensors is limited. Therefore, for an ultrasonic transmitter, if only one ultrasonic receiver is set up, there will often be a measurement dead zone. In some states, the ultrasonic waves emitted by the ultrasonic transmitter cannot be received for accurate positioning.
  • a set of ultrasound sensors may include at least one ultrasound generator and a plurality of ultrasound receivers.
  • Fig. 10 is an exemplary schematic diagram of the arrangement position of the ultrasonic sensor according to some embodiments of this specification, wherein (a) in Fig. 10 is an exemplary schematic diagram of the arrangement position of the ultrasonic sensor on the front of the human body. In Fig. 10 The accompanying drawing (b) is an exemplary schematic diagram of the arrangement position of the ultrasonic sensor on the back of the human body.
  • the ultrasonic transmitter 1010 and the ultrasonic transmitter 1020 can be located at the two big arms of the human body respectively, such as the ultrasonic receiver (shown in Figure (a)
  • the square black area shown) can be located at any one or more places of the human body such as the front of the left shoulder, the front of the right shoulder, the left waist, the right waist, the chest, etc.
  • the ultrasonic receivers located on the front side of the left shoulder and the left waist can receive ultrasonic waves from the ultrasonic transmitter of the left upper arm (ie, the ultrasonic transmitter 1010 shown in Figure 10), and the ultrasonic receivers located on the front side of the right shoulder and the right
  • the ultrasonic receiver on the waist side can receive ultrasonic waves from the ultrasonic transmitter of the right upper arm (i.e., the ultrasonic transmitter 1020 shown in Figure 10)
  • the ultrasonic receiver located on the chest can receive ultrasonic waves from the ultrasonic transmitter of the left upper arm.
  • Ultrasound waves can also be received from the ultrasound transmitter on the right upper arm.
  • the ultrasonic transmitter 1010 and the ultrasonic transmitter 1020 can be located at the two upper arms of the clothing corresponding to the human body, and the ultrasonic receiver can be located at the front of the left shoulder and the right shoulder of the clothing corresponding to the human body. At least one of the front side, left waist side, right waist side, and chest. This setting ensures that when the user's arm makes any movement centered on the shoulder joint, at least one ultrasonic receiver can receive the ultrasonic waves from the ultrasonic transmitter, thereby performing human body posture recognition.
  • one or more ultrasonic transmitters can be installed on each of the user's upper arms, the front of the user's left shoulder, and the front of the right shoulder.
  • One or more ultrasound receivers can be installed at any one part of the left waist, right waist, and chest at the same time.
  • at least two ultrasound transmitters can be installed on each of the user's upper arms, and at least three ultrasound transmitters can be installed on any one of the user's front left shoulder, front right shoulder, left waist, right waist, and chest.
  • Ultrasonic receivers, multiple ultrasonic receivers are not on the same straight line.
  • the number of ultrasonic receivers may be three, and the three ultrasonic receivers are distributed in a triangular shape.
  • the number of ultrasonic receivers may be four, and the four ultrasonic receivers are distributed in a triangle or a quadrilateral.
  • the distance between the ultrasonic sensors needs to be limited.
  • the distance between at least two ultrasonic transmitters is not less than 0.5cm, and the distance between at least three ultrasonic receivers is not less than 0.5cm.
  • the distance between at least two ultrasonic transmitters is not less than 0.5cm.
  • the distance between two ultrasonic receivers is not less than 0.8cm, and the distance between at least three ultrasonic receivers is not less than 0.8cm; further preferably, the distance between at least two ultrasonic transmitters is not less than 1cm, and the distance between at least three ultrasonic receivers is not less than 0.8cm.
  • the distance between two ultrasonic receivers should not be less than 1cm.
  • the posture of the upper arm relative to the torso portion may include an angle of the upper arm relative to the torso portion.
  • the angle of the upper arm relative to the torso can be understood as the angle formed by the extension direction of the upper arm and the side of the torso. Determination of the angle of the upper arm relative to the torso is clearly described here in conjunction with Figure 11 .
  • FIG. 11 is an exemplary flowchart of a method for determining the angle of the upper arm relative to the trunk part according to some embodiments of the present specification.
  • process 1100 may be performed by processor 120. As shown in Figure 11, process 1100 may include the following steps:
  • Step 1110 Obtain the distance between the ultrasonic transmitter and the ultrasonic receiver based on information about the ultrasonic transmitter transmitting ultrasonic waves and information about the ultrasonic receiver receiving ultrasonic waves.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver can be obtained by referring to the relevant content in Figure 3.
  • Step 1120 Determine the angle of the upper arm relative to the torso based on the distance between the ultrasonic transmitter and the ultrasonic receiver and the position information of the ultrasonic transmitter and the ultrasonic receiver.
  • the angle of the upper arm relative to the torso is related to the placement of the ultrasonic sensor.
  • the angle of the upper arm relative to the trunk can refer to the angle between the upper arm and the side of the trunk, as shown in Figure 13 , the ultrasonic transmitter 1310 is located on the upper arm, and the ultrasonic receiver 1320 is located on the waist side.
  • the angle of the upper arm relative to the trunk part may refer to the angle between the upper arm and the waist side.
  • the angle of the upper arm relative to the torso can refer to the angle of the arm extending forward and swinging back.
  • the angle of the upper arm relative to the torso can be determined with reference to the relevant content in Figure 3.
  • FIG 12 is an exemplary flowchart of a method for identifying the movement state of the upper arm relative to the trunk part according to some embodiments of this specification.
  • the movement state of the upper arm relative to the trunk is relatively complex.
  • each group of ultrasonic sensors may include at least two ultrasonic transmitters and at least three ultrasonic receivers. device.
  • process 1200 may be performed by processor 120. As shown in Figure 12, process 1200 may include the following steps:
  • Step 1210 Determine position change information of at least two ultrasonic transmitters based on position information of at least three ultrasonic receivers.
  • At least three ultrasound receivers are not in the same straight line.
  • the lines connecting the positions of the ultrasonic receiver 1421, the ultrasonic receiver 1422, and the ultrasonic receiver 1423 can form a triangle, that is, the three ultrasonic receivers are not on the same straight line.
  • the distance between the ultrasonic sensors needs to be limited.
  • the distance between at least two ultrasonic transmitters is not less than 0.5cm, and the distance between at least three ultrasonic receivers is not less than 0.5cm.
  • the distance between at least two ultrasonic transmitters is not less than 0.5cm.
  • the distance between two ultrasonic receivers is not less than 0.8cm, and the distance between at least three ultrasonic receivers is not less than 0.8cm; further preferably, the distance between at least two ultrasonic transmitters is not less than 1cm, and the distance between at least three ultrasonic receivers is not less than 0.8cm.
  • the distance between two ultrasonic receivers should not be less than 1cm.
  • determining the position change information of at least two ultrasonic transmitters based on the position information of at least three ultrasonic receivers may include: determining the position information of the ultrasonic transmitter based on the position information of at least three ultrasonic receivers, specifically See through formula (3),
  • the coordinates of the three ultrasonic receivers are (x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), (x 3 , y 3 , z 3 ) are known, and the ultrasonic transmitter
  • the coordinates are (x, y, z), R 1 , R 2 and R 3 represent the distances between the three ultrasonic sensors and the ultrasonic receiver.
  • the ultrasonic transmitter 1410 includes an ultrasonic transmitter 1411 and an ultrasonic transmitter 1412
  • the ultrasonic receiver 1420 includes an ultrasonic receiver 1421 , an ultrasonic receiver 1422 , and an ultrasonic receiver 1423 .
  • the processor may determine the coordinates of the ultrasonic transmitter 1411 and the ultrasonic transmitter 1412 respectively through formula (3) based on the position information of the three ultrasonic receivers.
  • the position information of the ultrasonic transmitter may be the position information of the corresponding ultrasonic transmitter after the user's arm moves. That is to say, the coordinates of the ultrasonic transmitter 1411 and the ultrasonic transmitter 1412 when the human body's upper arm is in a certain posture can be determined in the above manner.
  • determining the position change information of at least two ultrasonic transmitters based on the position information of at least three ultrasonic receivers may include: determining the position information of a reference point based on the position information of at least three ultrasonic receivers, based on the reference The position information of the point and the position information of the corresponding ultrasonic transmitter after the movement of the user's arm are determined to determine the position change information of at least two ultrasonic transmitters.
  • the reference point may refer to any point in the pattern formed by at least three ultrasound receivers.
  • the reference point may be the geometric center in a pattern of at least three ultrasound receivers.
  • the processor can determine the coordinates of the geometric center of the triangle formed by the three ultrasonic receivers based on the coordinate information of the ultrasonic receiver 1421, the ultrasonic receiver 1422 and the ultrasonic receiver 1423, and set the geometric center of the triangle as a reference point.
  • Position change information refers to the difference in distance from the reference point to different ultrasonic transmitters when the user is in a certain movement posture.
  • the ultrasonic transmitter includes the ultrasonic transmitter 1411 and the ultrasonic transmitter 1412 shown in Figure 14.
  • the position change information of the two ultrasonic transmitters includes the reference point and the ultrasonic transmitter 1411 and the distance between the reference point and the ultrasonic transmitter 1412.
  • the distances between the reference points and the two ultrasonic transmitters can be regarded as approximately equal.
  • the two ultrasonic transmitters rotate relative to the reference point.
  • the distances X1' and X2' between the two ultrasonic transmitters and the reference point change.
  • the corresponding distances between X1' and X2' If the values are not equal, the rotation degree and movement direction of the big arm relative to the torso can be determined by the magnitude and sign of the difference between X1' and X2' (that is, the position change information of the two ultrasonic transmitters).
  • the rotation angle of the upper arm relative to the torso please refer to the relevant content in Figures 5 to 6C.
  • Step 1220 Identify the movement state of the upper arm relative to the torso based on the position change information of at least two ultrasonic transmitters.
  • the movement state of the big arm relative to the trunk part may include the rotation angle, movement direction, etc. of the big arm relative to the trunk part.
  • the rotation angle can be used to characterize the degree of rotation of a specific position of the arm (for example, the arm area corresponding to the armpit) relative to the torso with the shoulder joint as the center.
  • the processor may determine the distance between the reference point and the two ultrasonic transmitters (for example, X1' and X2') according to the position (coordinates) of the reference point and the position information of the two ultrasonic transmitters. , determine the rotation angle of the upper arm relative to the trunk through the above formula (2).
  • result determined by formula (2) is a relative quantity that can represent the degree of rotation of the big arm, and is not the precise rotation angle of the big arm relative to the torso.
  • the processor may determine the upper arm based on the rotation angle of the upper arm relative to the torso, the position information of the ultrasonic transmitter and the ultrasonic receiver, the information of the ultrasonic transmitter transmitting ultrasonic waves, and the information of the ultrasonic receiver receiving ultrasonic waves.
  • the state of motion relative to the torso part For example, when the ultrasonic receiver disposed on the chest receives the ultrasonic waves emitted by the ultrasonic transmitter disposed on the upper arm, the processor may determine that the upper arm extends forward relative to the torso.
  • the distance between the ultrasound transmitter and the ultrasound receiver on the chest can be determined through the information of the ultrasound transmitter transmitting the ultrasound and the information of the ultrasound receiver receiving the ultrasound. , thereby determining the angle of arm extension.
  • the processor can determine the rotation angle of the big arm (for example, the part corresponding to the armpit of the big arm) relative to the trunk part (waist side part), and then determine the rotation angle of the big arm relative to the trunk part. The movement of the arm relative to the torso.
  • different ultrasonic transmitters in order to avoid signal crosstalk between different ultrasonic transmitters, different ultrasonic transmitters can be time-division multiplexed so that there is a certain time interval between the transmission signals of different ultrasonic transmitters.
  • the sampling rate will decrease, that is, the more the number of ultrasonic transmitters, the fewer signals the ultrasonic receiver collects from the same ultrasonic transmitter per second. Therefore, in order to increase the sampling rate of the same ultrasonic transmitter, the fewer ultrasonic transmitters used in the overall layout, the better.
  • Arranging the ultrasonic transmitter on the big arm can save the most ultrasound energy while ensuring that multiple human postures can be recognized.
  • the number of emitters More information on time-division multiplexing of ultrasound transmitters can be found in Figure 17 and its description.
  • the positioning accuracy requirements R 1 , R 2 , and R 3 are the distances between the ultrasonic transmitter and multiple ultrasonic receivers at the same time, that is, R 1 , R 2 , and R 3 should be as close as possible. determined at the same moment. The larger the time gap, the larger the error.
  • One ultrasonic transmitter emits ultrasonic waves, and three ultrasonic receivers receive ultrasonic waves, which can ensure the simultaneity of ultrasonic waves to the greatest extent. On the contrary, if three ultrasonic transmitters transmit ultrasonic waves and one ultrasonic receiver receives ultrasonic waves, the ultrasonic waves will be received by one ultrasonic transmitter. Under the influence of time-division multiplexing, there is a large time difference in the transmission time of the three ultrasonic transmitters, so the obtained R 1 , R 2 , and R 3 are not data at the same time, and the calculation error will be large.
  • ultrasonic sensors By using ultrasonic sensors and designing their placement, they can also be used to determine the posture of the user's legs.
  • Figure 16 is an exemplary flowchart of a method for determining the posture of a user's legs according to some embodiments of this specification.
  • process 1600 may be performed by processor 120.
  • process 1600 may include the following steps:
  • Step 1610 Obtain the distance between the ultrasonic transmitter and the ultrasonic receiver based on information about the ultrasonic transmitter transmitting ultrasonic waves and information about the ultrasonic receiver receiving ultrasonic waves.
  • the ultrasonic transmitter and the ultrasonic receiver can be located on the two thighs or two calves of the user respectively to identify the posture of the user's legs.
  • one of the ultrasound transmitter and the ultrasound receiver is located on the left thigh and the other is located on the right thigh.
  • one of the ultrasonic transmitter and the ultrasonic receiver is located at the left calf, and the other is located at the right calf.
  • the ultrasonic transmitter and the ultrasonic receiver can be respectively located at two trouser legs in the clothing to identify the posture of the user's legs.
  • one of the ultrasonic transmitter and the ultrasonic receiver is located at the left trouser leg corresponding to the left thigh, and the other is located at the right trouser leg corresponding to the right thigh.
  • one of the ultrasonic transmitter and the ultrasonic receiver is located at the left trouser leg corresponding to the left calf, and the other is located at the right trouser leg corresponding to the right calf.
  • the ultrasonic transmitter 1510 and the ultrasonic receiver 1520 may be located on the trouser leg of the garment corresponding to the thigh, and the ultrasonic transmitter 1530 and the ultrasonic receiver 1540 may be located on the trouser leg of the garment corresponding to the calf.
  • the distance between the ultrasonic transmitter and the ultrasonic receiver can be obtained by referring to the relevant content in Figure 3.
  • Step 1620 Determine the posture of the user's legs based on the distance between the ultrasonic transmitter and the ultrasonic receiver and the position information of the ultrasonic transmitter and the ultrasonic receiver.
  • the posture of the legs may refer to information related to the positions and postures of the two legs. For example, the angle formed between the respective extension directions of the two legs, the movement state of the two legs (such as standing, walking, running, etc.), the posture of the two legs (crossed legs, parallel legs, etc.), etc.
  • the processor may determine the posture of the user's legs based on position information of the ultrasound transmitter and the ultrasound receiver, and a comparison of the distance between the ultrasound transmitter and the ultrasound receiver with a threshold.
  • a set of ultrasonic sensors e.g., a first ultrasonic transmitter and a first ultrasonic receiver
  • another set of ultrasonic sensors e.g., a second ultrasonic receiver
  • ultrasonic transmitter and second ultrasonic receiver are disposed on the user's left and right calves.
  • the processor may be based on a distance between the first ultrasound transmitter and the first ultrasound receiver being less than a threshold (eg, 4 cm), and a distance between the second ultrasound transmitter and the second ultrasound receiver being less than a threshold (eg, 6 cm). , determine that the user's leg posture is parallel. It should be noted that the threshold can be set according to different users.
  • the ultrasonic transmitter and ultrasonic receiver By placing the ultrasonic transmitter and ultrasonic receiver at different positions on the human body, posture recognition of different parts of the human body can be achieved.
  • the ultrasonic transmitter and the ultrasonic receiver at the limbs on both sides corresponding to the user's elbow or knee joint, the movement posture of the user's arms or legs can be identified;
  • the ultrasonic receiver is set on the torso of the human body, which can identify the posture of the upper arm relative to the torso; by setting the ultrasonic transmitter and the ultrasonic receiver on the user's two thighs or two calves respectively, the user can be identified Leg posture.
  • the movement posture of the user's arms or legs, the posture of the upper arm relative to the torso, and the posture of the user's legs can be obtained at the same time, thereby achieving full body monitoring of the user. gesture recognition.
  • time-division multiplexing can be used to transmit different ultrasonic waves in the time domain. time to differentiate.
  • Figure 17 is an exemplary schematic diagram of time-division multiplexing based on ultrasonic sensors according to some embodiments of this specification.
  • Time-division multiplexing can mean that different devices (eg, ultrasound transmitters) generate ultrasound waves at different times.
  • time-division multiplexing can be implemented based on different times at which different ultrasonic transmitters in each group of ultrasonic sensors emit ultrasonic waves.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the time points at which the multiple ultrasonic transmitters emit ultrasonic waves have time intervals.
  • the microcontroller controls the working status of the ultrasonic transmitter 1710 and the ultrasonic transmitter 1720 respectively through control signals.
  • the ultrasonic transmitter 1710 emits ultrasonic waves
  • the ultrasonic transmitter 1720 is in a dormant state and does not emit ultrasonic waves.
  • the ultrasonic receiver 1730, the ultrasonic receiver 1740, and the ultrasonic receiver 1750 all receive ultrasonic waves from the ultrasonic transmitter 1710. After time ⁇ t, the ultrasonic transmitter 1720 starts to transmit ultrasonic waves.
  • the distance L between the ultrasonic transmitter and the ultrasonic receiver is less than 1m, so the transmission time t of the ultrasonic wave is less than 2.9ms. Therefore, in order to prevent crosstalk between different signals, it is necessary to limit the time interval between two adjacent ultrasonic transmitters emitting ultrasonic waves. In some embodiments, the time interval between two adjacent ultrasonic transmitters emitting ultrasonic waves is greater than 2.9 ms. With this setting, even if all the ultrasonic receivers are always in working condition, they can receive and distinguish ultrasonic waves from different ultrasonic transmitters in real time. The microcontroller can calculate the corresponding ultrasonic emission based on the ultrasonic waves incoming from the ultrasonic receivers through the time difference. Changes in the relative distance and position of the device.
  • the frequencies of ultrasonic waves emitted by different ultrasonic transmitters can be set.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the ultrasonic waves emitted by the multiple ultrasonic transmitters have different frequencies.
  • the frequency of the ultrasonic waves emitted by the ultrasonic transmitter 1710 is 50 kHz to 140 kHz
  • the frequency of the ultrasonic waves emitted by the ultrasonic transmitter 1720 is 200 kHz ⁇ 300 kHz.
  • the processor can locate the ultrasonic transmitter that emits the ultrasonic wave according to the frequency of the ultrasonic wave, and further determine the distance and position of the ultrasonic transmitter and the ultrasonic receiver.
  • the encoding of the ultrasonic waves emitted by the ultrasonic transmitters can be set.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the ultrasonic waves emitted by the multiple ultrasonic transmitters have different codes.
  • the processor can encode ultrasonic waves through a universal codec IC group, so that multiple ultrasonic transmitters can emit ultrasonic waves with different encodings.
  • the human posture recognition system may use multiple sets of ultrasonic sensors.
  • the multiple ultrasonic transmitters included in the multiple sets of ultrasonic sensors may cause signal crosstalk.
  • multiple sets of ultrasonic sensors in different groups may be used. Set up an ultrasonic transmitter.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the time points at which the multiple ultrasonic transmitters in different groups emit ultrasonic waves have time intervals. For example, if crosstalk may occur between the signals of the first ultrasonic transmitter of group A and the second ultrasonic transmitter of group B, you can set the time point at which the first ultrasonic transmitter of group A and the second ultrasonic transmitter of group B emit ultrasonic waves. Has a preset time interval.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the multiple ultrasonic transmitters in different groups emit ultrasonic waves at different frequencies.
  • the frequency of the ultrasonic waves emitted by the plurality of ultrasonic transmitters in group A is 50 kHz to 140 kHz
  • the frequency of the ultrasonic waves emitted by the plurality of ultrasonic transmitters in group B is 200 kHz to 300 kHz.
  • each group of ultrasonic sensors includes multiple ultrasonic transmitters, and the ultrasonic waves emitted by the multiple ultrasonic transmitters in different groups have different codes.
  • the codes emitted by multiple ultrasonic transmitters in group A are I, II, and III
  • the codes emitted by multiple ultrasonic transmitters in group B are V, VI, and VII.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product, or combination of matter, or combination thereof. any new and useful improvements. Accordingly, various aspects of the present application may be executed entirely by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product including computer-readable program code located on one or more computer-readable media.
  • Computer storage media may contain a propagated data signal embodying the computer program code, such as at baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • Computer storage media may be any computer-readable media other than computer-readable storage media that enables communication, propagation, or transfer of a program for use in connection with an instruction execution system, apparatus, or device.
  • Program code located on a computer storage medium may be transmitted via any suitable medium, including radio, electrical cable, fiber optic cable, RF, or similar media, or a combination of any of the foregoing.
  • the computer program coding required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, as a stand-alone software package, or partially on the user's computer and partially on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer via any form of network, such as a local area network (LAN) or a wide area network (WAN), or to an external computer (e.g. via the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximations, in specific embodiments, such numerical values are set as accurately as feasible.

Abstract

本说明书的一个或多个实施例涉及一种人体姿态识别系统,包括:至少一组超声传感器,每组超声传感器包括:用于发射超声波的超声发射器和用于接收所述超声波的超声接收器,其中,所述超声发射器和所述超声接收器分别位于用户身体的不同部位;以及处理器,被配置为基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态。

Description

一种人体姿态识别系统 技术领域
本申请涉及姿态识别技术领域,特别涉及一种人体姿态识别系统。
背景技术
随着科学技术的不断发展,人体姿态识别被广泛应用于运动健康、游戏、医疗健康、可穿戴电子设备等众多领域。目前人体姿态识别可能需要使用包括红外传感器、惯性传感器等在内的多种传感器。然而,采用红外传感器或惯性传感器对人体姿态进行识别的精准度较低,导致人体姿态识别的应用难度高。
因此,本申请希望提供一种人体姿态识别系统,以提高人体姿态识别的精度。
发明内容
本说明书实施例提供一种人体姿态识别系统,包括:至少一组超声传感器,每组超声传感器包括:用于发射超声波的超声发射器和用于接收所述超声波的超声接收器,其中,所述超声发射器和所述超声接收器分别位于用户身体的不同部位;以及处理器,被配置为基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态。
在一些实施例中,还包括服装,所述至少一组超声传感器集成于所述服装中。
在一些实施例中,所述超声发射器和所述超声接收器分布于所述服装的袖子或裤腿处,当用户穿戴所述服装时,所述超声发射器和所述超声接收器分别位于所述用户肘关节或膝关节对应的两侧肢体处。
在一些实施例中,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,获取所述肘关节或所述膝关节对应的两侧肢体之间的弯曲角度。
在一些实施例中,所述每组超声传感器包括超声发射器和至少两个超声接收器,所述至少两个超声接收器包括第一超声接收器和第二超声接收器,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:基于所述超声发射器发射所述超声波的信息、所述第一超声接收器接收所述超声波的信息以及所述第二超声接收器接收所述超声波的信息,确定所述超声发射器和所述第一超声发射器之间的第一距离以及所述超声发射器和所述第二超声发射器之间的第二距离;根据所述第一距离与所述第二距离,确定所述肘关节或所述膝关节对应的两侧肢体之间的旋转角度。
在一些实施例中,所述肘关节或膝关节在弯曲状态下,其两侧肢体中正对的肢体侧部表征为所述肘关节或膝关节对应的两侧肢体的内侧,所述超声发射器和所述超声接收器位于所述肘关节或膝关节对应的两侧肢体的内侧。
在一些实施例中,当所述用户伸直手臂或腿部时,所述超声发射器和所述超声接收器的距离不小于10cm。
在一些实施例中,所述超声发射器包括用于发出所述超声波的输出端,所述输出端背离所述服装;所述超声接收器包括用于接收所述超声波的接收端,所述接收端背离所述服装;所述输出端所在平面与所述接收端所在平面的夹角不大于170°。
在一些实施例中,所述超声发射器相对其下方用户肢体接触部位并且朝向所述超声接收器倾斜设置,所述输出端的法线方向与所述超声发射器下方用户肢体接触部位的法线方向的夹角不小于5°。
在一些实施例中,所述超声接收器相对其下方用户肢体接触部位并且朝向所述超声发射器倾斜设置,所述接收端的法线方向与所述超声接收器下方用户肢体接触部位的法线方向的夹角不小于5°。
在一些实施例中,所述超声发射器位于所述服装中对应人体的大臂处,所述超声接收器位于所述服装中对应人体的躯干部位处,所述超声接收器和所述超声接收器配合以识别大臂相对于躯干部位的姿态。
在一些实施例中,所述大臂相对于躯干部位的姿态包括所述大臂相对于躯干部位的角度,所述识别大臂相对于躯干部位的姿态包括:基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,确定所述大臂相对于躯干部位的角度。
在一些实施例中,所述超声发射器包括至少两个超声发射器,所述超声接收器包括至少三个超声接收器,所述识别所述用户大臂相对于躯干部位的姿态包括:基于所述至少三个超声接收器的位置信息确定所述至少两个超声发射器的位置变化信息;根据所述至少两个超声发射器的位置变化信息识别所述大臂相对于躯干部位的运动状态。
在一些实施例中,所述至少三个超声接收器不在同一条直线上。
在一些实施例中,所述至少两个超声发射器两两之间的间距不小于1cm,所述至少三个超声接收器两两之间的间距不小于1cm。
在一些实施例中,所述服装中对应人体的躯干部位处包括左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部中的至少一处。
在一些实施例中,所述超声发射器和所述超声接收器分别位于所述服装中的两条裤腿处,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,确定所述用户腿部的位姿。
在一些实施例中,每组所述超声传感器中包括多个超声发射器,所述多个超声发射器发出超声波的时间点具有时间间隔。
在一些实施例中,相邻两个所述超声发射器发出超声波的时间间隔大于2.9ms。
在一些实施例中,每组超声传感器中包括多个超声发射器,所述多个超声发射器发出的超声波的频率不同。
在一些实施例中,每组超声传感器中包括多个超声发射器,所述多个超声发射器发出的超声波具有不同的编码。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的人体姿态识别系统的示例性框架图;
图2是根据本说明书一些实施例所示的超声发射器和超声接收器分布于用户肘关节或膝关节对应的两侧肢体的示例性示意图;
图3是根据本说明书一些实施例所示的识别用户姿态的示例性流程图;
图4是根据本说明书一些实施例所示的识别用户姿态的示例性示意图;
图5是根据本说明书另一些实施例所示的识别用户姿态的示例性流程图;
图6A是根据本说明书另一些实施例所示的识别用户姿态的示例性示意图;
图6B是根据本说明书一些实施例所示的示例性的超声发射器和超声接收器在肘关节或膝关节对应的两侧肢体的分布侧视图;
图6C是根据本说明书一些实施例所示的示例性的超声发射器和超声接收器在肘关节或膝关节对应的两侧肢体的分布俯视图;
图7是根据本说明书一些实施例所示的一种超声传感器的布置位置的示例性示意图;
图8是根据本说明书一些实施例所示的另一种超声传感器的布置位置的示例性示意图;
图9是根据本说明书一些实施例所示的超声发射器和超声接收器在大臂和躯干部位的分布示意图;
图10是根据本说明书一些实施例所示的超声传感器的布置位置的示例性示意图;
图11是根据本说明书一些实施例所示的确定大臂相对于躯干部位的角度的方法的示例性 流程图;
图12是根据本说明书一些实施例所示的识别大臂相对于躯干部位的运动状态的方法的示例性流程图;
图13是根据本说明书另一些实施例所示的超声传感器的布置位置的示例性示意图;
图14是根据本说明书一些实施例所示的三点定位法的示例性示意图;
图15是根据本说明书一些实施例所示的超声发射器和超声接收器在大腿和小腿的分布示意图;
图16是根据本说明书一些实施例所示的确定用户腿部的位姿的方法的示例性流程图;
图17是根据本说明书一些实施例所示的基于超声传感器实现分时复用的示例性示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例提供了一种人体姿态识别系统。在一些实施例中,人体姿态识别系统可以包括至少一组超声传感器和处理器。在一些实施例中,每组超声传感器可以包括用于发射超声波的超声发射器和用于接收超声波的超声接收器,其中,超声发射器和超声接收器分别位于用户身体的不同部位。例如,超声发射器和超声接收器可以分别分布于用户肘关节两侧的大臂和小臂处。又例如,超声发射器和超声接收器可以分别分布于用户膝关节两侧的大腿和小腿处。又例如,超声发射器和超声接收器可以分布于大臂和躯干部位。再例如,超声发射器和超声接收器可以分别位于用户的两条腿部。处理器,被配置为基于超声发射器和超声接收器的位置信息、超声发射器发射超声波的信息以及超声接收器接收超声波的信息,识别所述用户的姿态。本说明书实施例提供的人体姿态识别系统通过在用户身体的不同部位设置超声发射器和超声接收器,处理器可以基于超声发射器发射超声波的信息和超声接收器接收所述超声波的信息,获取用户身体不同部位的超声发射器和超声接收器的距离。进一步地,超声发射器和超声接收器在用户身体上的位置是固定的,可以以人体在站立姿态时的任意一点为原点建立空间坐标系,获取用户身体不同部位的超声发射器和超声接收器的位置信息(例如,三维坐标)。当用户进行运动时,处理器可以基于超声发射器和超声接收器的位置信息、超声发射器发射超声波的信息以及超声接收器接收超声波的信息确定用户肢体的姿态、肢体相对躯干部位的姿态,从而识别用户的全身姿态。本说明书提供人体姿态识别系统可以通过设计超声传感器中超声发生器和超声接收器的位置和/或数量,提高对用户姿态识别的精度。除此之外,本说明书提供人体姿态识别系统可以针对不同人体关节或部位设置不同数量和/或位置的超声传感器进而提高获得的用户的姿态的精度。
图1是根据本说明书一些实施例所示的人体姿态识别系统的示例性框架图。
人体姿态识别系统100可以指用来识别人体的姿态的系统。例如,当人体的姿态发生变化时,如,用户手臂进行弯举动作时,人体姿态识别系统100可以根据用户手臂的弯曲情况,识别到用户手臂进行了弯举动作。如图1所示,人体姿态识别系统100可以包括至少一组超声传感器110和处理器120。在一些实施例中,人体姿态识别系统100可以包括多组超声传感器110,多组超声传感器110可以分布于用户的不同部位。例如,多组超声传感器可以位于用户的四肢(例如,手臂、腿部等)、躯干部位(例如,肩部、胸部、背部、腰侧等)、头部等中的任意一处或多处。
在一些实施例中,每组超声传感器110可以包括用于发射超声波的超声发射器131和用于 接收超声波的超声接收器132。在一些实施例中,超声发射器131和超声接收器132分别位于用户身体的不同部位。例如,超声发射器和超声接收器可以分别分布于用户肘关节两侧的大臂和小臂处。又例如,超声发射器和超声接收器可以分别分布于用户膝关节两侧的大腿和小腿处。又例如,超声发射器和超声接收器可以分布于大臂和躯干部位。再例如,超声发射器和超声接收器可以分别位于用户的两条腿部。在一些实施例中,每组超声传感器110可以包括至少一个超声发射器131和至少一个超声接收器132。例如,每组超声传感器110可以包括一个超声发射器131和多个超声接收器132。又例如,每组超声传感器110可以包括多个超声发射器131和一个超声接收器132。再例如,每组超声传感器110可以包括多个超声发射器131和多个超声接收器132。在一些实施例中,人体姿态识别系统100包括多组超声传感器110时,多组超声传感器110对应的超声发射器131和超声接收器132的数量可以相同或不同。例如,分布于用户肘关节两侧的大臂和小臂的超声发射器131和超声接收器132的数量小于分布于用户大臂内侧和躯干部位的超声发射器131和超声接收器132数量。
超声发射器131可以指能够发射超声波的设备。超声发射器131可以将电信号转换为超声波,并进行发射。在一些实施例中,超声发射器131可以包括但不限于磁致伸缩发射器、压电超声发射器、微机械超声发射器等。
超声接收器132可以指能够接收超声波的设备。超声接收器132可以接收超声波,并将超声波转换为电信号。在一些实施例中,超声接收器132可以包括但不限于磁致伸缩接收器、压电超声接收器、微机械超声接收器等。
处理器120可以用于处理与人体姿态识别系统100有关的信息和/或数据,例如,处理超声发射器和超声接收器的位置信息、超声发射器发射超声波的信息以及超声接收器接收超声波的信息等。处理器120可以处理从其他设备或系统组成部分中获得的数据、信息和/或处理结果,并基于这些数据、信息和/或处理结果执行程序指令,以执行本说明书中描述的一个或以上功能。仅仅作为示例,处理器120可以包括中央处理器(CPU)、专用集成电路(ASIC)、专用指令处理器(ASIP)、精简指令集电脑(RISC)、微处理器等或以上任意组合。
在一些实施例中,处理器120可以被配置为基于超声发射器和超声接收器的位置信息、超声发射器发射超声波的信息以及超声接收器接收超声波的信息,识别用户的姿态。
超声发射器和超声接收器的位置信息可以指超声发射器和超声接收器在用户身体上空间分布信息。例如,超声发射器在身体用户的位置、超声接收器在用户身体的位置等。超声发射器和超声接收器的位置信息可以通过坐标等方式进行表示。例如,超声发射器和超声接收器在用户身体上的位置是固定的,可以以人体在站立姿态时的任意一点为原点建立空间坐标系,获取用户身体不同部位的超声发射器和超声接收器的位置信息(例如,三维坐标)。需要说明的是,超声发射器和超声接收器的位置信息可以是固定的,也可以根据用户的年龄、性别、身高、体重、体型等因素进行适应性调整。
超声发射器发射超声波的信息可以指与超声发射器发射超声波的过程相关的信息。例如,超声发射器发射超声波的时间、超声发射器发射超声波的频率、超声发射器发射超声波的编码等。超声接收器接收超声波的信息可以指与超声接收器接收超声波的过程相关的信息。例如,超声接收器接收的超声波时间、超声接收器接收超声波的频率、超声接收器接收超声波的编码等。
在一些实施例中,通过对超声传感器中的超声发射器和超声接收器的布置位置进行设计,可以实现对用户的姿态的识别。例如,将超声发射器和超声接收器分别设置于用户的右小臂和右大臂,处理器120可以基于超声发射器和超声接收器的位置信息,以及超声发射器发射超声波的信息和超声接收器接收超声波的信息,识别肘关节或膝关节对应的两侧肢体之间的弯曲角度。又例如,将超声接收器设置于人体的大臂处,超声发射器设置于人体的躯干部位处,处理器120可以基于超声发射器和超声接收器的位置信息,以及超声发射器发射超声波的信息和超声接收器接收超声波的信息,识别大臂相对于躯干部位的姿态(例如,大臂相对于躯干部位前后、上下、左右摆动)。关于识别肘关节或膝关节对应的两侧肢体之间的弯曲角度和识别大臂相对于躯干部位的姿态的更多内容可以参见图2-图5、图6A、图6B、图6C、图9-图14及其相关说明。
在一些实施例中,人体姿态识别系统100还可以包括服装130,服装130可以用于用户进行穿戴,至少一组超声传感器110集成于服装中。在一些实施例中,服装130可以包括上衣、裤装、连体衣等中的任意一种或多种。在一些实施例中,超声传感器110可以通过多种方式集成于服装中。例如,超声传感器可以通过棉线、尼龙线等缝补线与服装缝补在一起。又例如,超声传感器110可以通过丙烯酸酯胶、复合型结构胶、高分子胶等胶水与服装粘接在一起。再例如,超声传感器110 可以通过卡扣、尼龙搭扣等可拆卸结构与服装设置在一起。在一些实施例中,服装130可以为单层结构,超声传感器110可以位于该单层结构的上表面或下表面。在一些实施例中,服装130可以为多层结构,超声传感器110可以位于服装130的上表面、下表面或相邻的两层结构之间。
在一些实施例中,处理器120可以集成于服装130上。例如,通过缝补、粘接等方式,将处理器120设置在服装130上。在一些实施例中,处理器120可以与服装130分开设置。例如,处理器120可以与服装130或用户身体上设置的超声传感器110通过有线网络和/或无线网络进行通信。示例性的有线网络可以包括电缆网络、光纤网络等。示例性的无线网络可以包括无线局域网络(WLAN)、蓝牙网络、全球移动通讯系统(GSM)网络等。
在一些实施例中,人体姿态识别系统中的超声传感器还可以直接设置在用户的身体上。例如,超声传感器对应的超声发射器和超声接收器可以通过固定件(例如,带状结构、别针、卡扣)、胶水或粘接件与用户的身体或者服装固定。
为了提高人体姿态识别系统对用户姿态识别的精度,在一些实施例中,可以将超声传感器110设置在用户身体的不同部位,进一步地,每组超声传感器110对应的超声发射器131和超声接收器132的分布在用户身体的不同部位,以下结合超声发射器131和超声接收器132的分布情况对不同部位的姿态进行说明。
在一些实施例中,超声发射器和超声接收器可以分别位于用户肘关节或膝关节对应的两侧肢体处,以识别用户手臂或腿部的运动姿态。例如,识别用户肘关节或膝关节对应的两侧肢体之间的弯曲角度或者旋转角度等。肘关节对应的两侧肢体可以指大臂和小臂,膝关节对应的两侧肢体可以指大腿和小腿。例如,超声发射器和超声接收器中的一种位于大臂处,另一种位于小臂处。又例如,超声发射器和超声接收器中的一种位于大腿处,另一种位于小腿处。在一些实施例中,超声传感器集成于服装上时,超声发射器和超声接收器布置于服装的袖子或裤腿处,使用户穿戴服装时,超声发射器和超声接收器可以分别位于用户肘关节或膝关节对应的两侧肢体处。
图2是根据本说明书一些实施例所示的超声发射器和超声接收器分布于用户肘关节或膝关节对应的两侧肢体的示例性示意图。如图2所示,超声发射器210和超声接收器220分别位于用户肘关节对应的两侧肢体,其中,超声发射器210位于用户的左大臂,超声接收器220位于用户的左小臂;超声发射器230和超声接收器240分别位于用户肘关节对应的两侧肢体,其中,超声发射器230位于用户的右大臂,超声接收器240位于用户的右小臂;超声发射器250和超声接收器260分别位于用户膝关节对应的两侧肢体,其中,超声发射器250位于用户的左大腿,超声接收器260位于用户的左小腿;超声发射器270和超声接收器280分别位于用户膝关节对应的两侧肢体,其中,超声发射器270位于用户的右大腿,超声接收器280位于用户的右小腿。
图2所示的超声传感器的布置位置仅作为示例,可以理解的是,如图2所示的超声发射器和超声接收器的位置可以互换。例如,超声发射器210位于用户的左小臂,超声接收器220位于用户的左大臂。又例如,超声发射器270位于用户的右小腿,超声接收器280位于用户的右大腿。关于超声传感器的布置位置的更多内容可以参见图7和图8及其说明。
为了进一步提高人体姿态识别系统的识别精度,减小测量死角,以及防止人体遮挡的影响,每组超声传感器可以包括多个超声发射器或超声接收器。例如,在用户的左小臂设置1个超声发射器,在用户的左大臂设置2个超声接收器。又例如,在用户的左小臂设置3个超声发射器,在用户的左大臂设置3个超声接收器。关于设置多个超声发射器与超声接收器的更多内容可以在本说明书的其他地方找到,例如,图5-图6C、图11-图14及其相关说明。
图3是根据本说明书一些实施例所示的识别用户姿态的方法的示例性流程图。在一些实施例中,流程300可以由处理器120执行。如图3所示,流程300可以包括下述步骤:
步骤310,基于超声发射器发射超声波的信息和超声接收器接收超声波的信息,获取超声发射器和超声接收器之间的距离。
在一些实施例中,处理器可以基于超声发射器发射超声波的时间和超声接收器接收超声波的时间,获取超声发射器和超声接收器之间的距离。以超声发射器和超声接收器分布于肘关节两侧的大臂和小臂作为示例,如图4所示,超声发射器410位于用户大臂处,超声接收器420位于用户小臂处,在人体姿态识别系统工作时,超声发射器410发射超声波可以被超声接收器420接收。具体地,超声发射器410发射超声波的时间为t1,超声接收器420接收超声波的时间为t2,处理器可以基于t1与t2之间的差值Δt,超声波在空气中的传播速度为C(1个标准大气压和15℃的条件下约为340m/s),将上述的Δt与C进行相乘,即可将相乘的结果确定为超声发射器410和超声接收器420之间的距离X。
步骤320,基于超声发射器和超声接收器之间的距离以及超声发射器和超声接收器的位置信息,获取肘关节或膝关节对应的两侧肢体之间的弯曲角度。
肘关节或膝关节对应的两侧肢体之间的弯曲角度可以指左(右)小臂与左(右)大臂之间的弯曲角度或左(右)小腿与左(右)大腿之间的弯曲角度。以超声发射器和超声接收器分布于肘关节两侧的大臂和小臂作为示例,如图4所示,可以将图4中示出的O点视为肘关节所在的位置,α角可以视为弯曲角度(即,大臂与小臂之间的角度)。需要注意的是,这里弯曲角度可以视为大臂的延伸方向与小臂的延伸方向的夹角,O点可以视为大臂的延伸方向与小臂的延伸方向的交点。
在一些实施例中,处理器可以基于超声发射器和超声接收器之间的距离以及超声发射器和超声接收器的位置信息,通过公式(1),获取肘关节或膝关节对应的两侧肢体之间的弯曲角度α:
Figure PCTCN2022096684-appb-000001
其中,c是可以表征超声发射器所在的用户小臂处的维度的长度数值,d是可以表征超声接收器所在的用户大臂的维度的长度数值。c或d的数值与用户手臂的维度正相关。例如,用户大臂或小臂越粗,c或d越大。仅作为示例性说明,沿垂直小臂或大臂的延伸方向,并过超声发射器的几何中心截取的小臂或大臂的截面形状的周长作为用户小臂或大臂处的维度,该截面形状可以近似视为椭圆形,该椭圆形的长轴半径或短轴半径作为c或d。a可以表征截面形状的中心点与关节(例如,肘关节,在图4中以O点进行表征)之间的距离,b可以表征截面形状的中心与关节(例如,肘关节)之间的距离。a、b、c、d均为已知参数。c和d可以基于用户手臂/腿部维度进行确定,例如,基于用户手臂/腿部维度,通过测量,可以确定c和d。a和b可以基于超声发射器和超声接收器的位置信息进行确定,例如,以人体某个位置作为元件建立三维空间坐标系,获取超声发射器和超声接收器的位置信息(坐标信息)、肘关节(例如,O点)坐标信息、用户手臂维度等,确定a和b。将超声传感器对应的超声发射器和超声接收器设置于膝关节或肘关节两侧对应的肢体上,并通过超声传感器(例如,超声发射器和超声传感器)的信息,可以确定肘关节或膝关节对应的两侧肢体之间的弯曲角度,以识别用户肢体局部的运动姿态,该人体姿态识别系统稳定,算法较为简单,可以较为精准地识别用户肢体的运动姿态。
肘关节或膝关节对应的两侧肢体的运动状态并非以肘关节或膝关节为中心做弯曲运动,关节两侧对应的肢体的运动状态还可以是以关节为中心进行旋转。例如,小臂可以以肘关节为中心相对于大臂进行旋转。为了更加精准地识别用户肢体的姿态,在一些实施例中,通过在肘关节或膝关节对应的两侧肢体上分别设置超声发射器和超声接收器还可以识别用户肘关节或膝关节对应的两侧肢体之间的旋转角度。图5是根据本说明书另一些实施例所示的识别用户的姿态方法的示例性流程图。在一些实施例中,流程500可以由处理器120执行。如图5所示,流程500可以包括下述步骤:
步骤510,基于超声发射器发射超声波的信息、第一超声接收器接收超声波的信息以及第二超声接收器接收超声波的信息,确定超声发射器和第一超声接收器之间的第一距离以及超声发射器和第二超声接收器之间的第二距离。
为了进一步提高人体姿态识别系统的识别精度,减小测量死角,每组超声传感器可以包括多个超声发射器或超声接收器。例如,每组超声传感器可以包括至少两个超声发射器与一个超声接收器。又例如,每组超声传感器可以包括至少两个超声发射器与至少两个超声接收器。再例如,每组超声传感器可以包括一个超声发射器与至少两个超声接收器。在确定肘关节或膝关节对应的两侧肢体之间的旋转角度时,每组超声传感器可以包括多个超声发射器或超声接收器。出于说明的目的,以下将以每组超声传感器可以包括一个超声发射器与至少两个超声接收器为例进行说明。
在一些实施例中,每组超声传感器包括超声发射器和至少两个超声接收器,至少两个超声接收器包括第一超声接收器和第二超声接收器。如图6A中所示,每组超声传感器包括超声发射器610、第一超声接收器620和第二超声接收器630。
第一距离可以指超声发射器和第一超声接收器之间的距离。如图6A中所示,超声发射器610与第一超声接收器620之间的距离X1。第二距离可以指超声发射器和第二超声接收器之间的距离。如图6A中所示,超声发射器610与第二超声接收器630之间的距离X2。
在一些实施例中,处理器可以基于超声发射器发射超声波的时间和第一超声接收器接收超声波的时间以及第二超声接收器接收超声波的时间,确定超声发射器和第一超声接收器之间的第一距离以及超声发射器和第二超声接收器之间的第二距离。以超声发射器和超声接收器分布于肘关节两侧的大臂和小臂作为示例,如图6A所示,超声发射器610位于用户大臂处,第一超声接收器620 和第二超声接收器630位于用户小臂处,在人体姿态识别系统工作时,超声发射器610发射超声波可以被第一超声接收器620和第二超声接收器630接收,具体地,超声发射器610发射超声波的时间为t1,第一超声接收器620接收超声波的时间为t2,第二超声接收器630接收超声波的时间为t3,处理器可以基于t1与t2之间的差值Δt12,t1与t3之间的差值Δt13,超声波在空气中的传播速度为C(1个标准大气压和15℃的条件下约为340m/s),将上述的Δt12、Δt13分别与C进行相乘,即可将相乘的结果确定为超声发射器610和第一超声接收器620之间的距离X1,超声发射器610和第二超声接收器630之间的距离X2。
以人体右手臂作为示例,当手臂正常伸直时,小臂未相对于大臂发生旋转,由于人体肘关节的特性,小臂通常是朝手臂延伸方向(小臂至手部的方向)的逆时针方向(图6A中示出的箭头所指方向)旋转。基于此,在一些实施例中,第一超声接收器620可以设置于用户小臂与掌心同一侧的位置,第二超声接收器630可以位于用户小臂与手背同侧的位置,从而更加精准地识别用户小臂相对于大臂的旋转角度。
步骤520,根据第一距离与第二距离,确定肘关节或膝关节对应的两侧肢体之间的旋转角度。
肘关节对应的两侧肢体之间的旋转角度可以指小臂相对于大臂旋转的角度。膝关节对应的两侧肢体之间的旋转角度可以指小腿相对于大腿旋转的角度。
为了更清楚地进行说明,下文将结合图6B和图6C进行说明。其中,图6B是根据本说明书一些实施例所示的示例性的超声发射器和超声接收器在肘关节或膝关节对应的两侧肢体的分布侧视图,图6C是根据本说明书一些实施例所示的示例性的超声发射器和超声接收器在肘关节或膝关节对应的两侧肢体的分布俯视图。
如图6B和图6C所示,在一些实施例中,第一超声接收器620和第二超声接收器630可以相对于与大臂的延伸方向中平行且过超声发射器的直线(例如,图6B和图6C中示出的直线L)近似对称设置。当手臂正常伸直时,小臂未相对于大臂发生旋转,图6B或图6C所示的第一距离X1和第二距离X2可以视为近似相等,此时第一超声接收器620与第二超声接收器630的连线为第一直线L1。
当小臂相对于大臂发生旋转时,第一超声接收器620和第二超声接收器630也会相对于超声发射器610发生旋转,此时第一超声接收器620和第二超声接收器630的连线为第二直线L2。当用户小臂和大臂由伸直状态变为小臂相对于旋转状态时,第一直线L1与第二直线L2所形成的夹角β可以视为小臂相对于大臂的旋转角度。当小臂相对于大臂发生旋转时,第一距离X1和第二距离X2会发生变化。例如,如图6B或图6C所示,当小臂相对于大臂向第一超声接收器620所在的手臂一侧旋转(即,图6B或图6C所示的环形箭头的方向)时,第一距离X1会变大,第二距离X2会变小,造成第一距离X1大于第二距离X2。当小臂相对于大臂向第二超声接收器630所在的手臂一侧旋转时,第一距离X1会变小,第二距离X2会变大,造成第一距离X1小于第二距离X2。
在一些实施例中,处理器可以根据第一距离和第二距离,确定肘关节或膝关节对应的两侧肢体之间的旋转角度β,具体可以通过公式(2)得出:
β∝±(X1-X2)   (2)
其中,±表示旋转方向,+表示小臂相对于大臂向第一超声接收器620所在的手臂一侧旋转,-表示小臂相对于大臂向第二超声接收器630所在的手臂一侧旋转。
需要说明的是,通过公式(2)确定的旋转角度β是一个相对量,仅用于表征小臂或小腿的旋转程度,并不是精确的肘关节或膝关节对应的两侧肢体之间的旋转角度。
在一些实施例中,当一组超声传感器中超声接收器的数量为两个时,处理器可以基于第一距离和第二距离,确定肘关节或膝关节对应的两侧肢体之间的弯曲角度。如图6B和图6C所示,处理器可以基于第一距离X1和第二距离X2,将二者相加除以2,获取第一超声接收器620和第二超声接收器630连线的中点M与超声发射器610之间的距离X,然后基于公式(1),即可确定肘关节的弯曲角度α。关于公式(1)的更多内容可以参见图3及其说明。需要说明的是,此处的X的计算是近似相等的,因为第一超声接收器620和第二超声接收器630之间的距离远远小于超声发射器610和第一超声接收器620或第二超声接收器630的距离,所以在这种情况下,可以将计算结果X近似等于超声发射器和超声接收器之间的距离。
超声传感器具有有限的工作范围,例如,超声发射器只能向某个方向发出超声波,超声接收器只能接收某个方向的超声波。超声传感器的工作范围在一定程度上可以由超声传感器的制造过程决定。因此,在对超声传感器的布置位置进行设计之前,需要了解超声传感器的工作范围,下文 将对超声发射器和超声接收器的结构进行说明。
在一些实施例中,超声发射器可以包括振动单元和壳体。振动单元可以将电信号转化为超声波。壳体可以为超声发射器提供固定支撑、隔离外部环境等作用。此外,壳体还可以通过多种设置,限制发射超声波的方向。例如,壳体可以设置孔部,以允许超声波从孔部发射出去。又例如,壳体可以设置一侧的材料(如,对材料的种类或厚度进行设置,以使该侧的材料不同于其他侧的材料)或结构(如,对结构进行变形、异形等设置,以使该侧的结构不同于其他侧的结构),以允许超声波从该侧发射出去。在一些实施例中,发出超声波的一侧可以被称为输出端。例如,壳体上有孔部的一侧、材料不同于其他侧的一侧可以被称为输出端。
在一些实施例中,超声接收器可以包括换能单元和壳体。换能单元可以将超声波转化为电信号。壳体可以为超声接收器提供固定支撑、隔离外部环境等作用。此外,还可以参照上述超声发射器的壳体,对超声接收器的壳体进行设置,以限制接收超声波的方向。例如,设置一侧具有孔部、设置一侧的材料或结构等。在一些实施例中,接收超声波的一侧可以被称为接收端。例如,壳体上有孔部的一侧、材料不同于其他侧的一侧可以被称为接收端。
为了保证超声发射器发出的超声波始终能够被超声接收器接收,在一些实施例中,超声发射器和超声接收器位于肘关节或膝关节对应的两侧肢体的内侧,其中,肘关节或膝关节在弯曲状态下,其两侧肢体中正对的肢体侧部表征为肘关节或膝关节对应的两侧肢体的内侧。由于手臂中的小臂可以相对于大臂旋转,以手臂作为示例,肘关节对应的两侧肢体的内侧还可以为手臂自然伸直时,手臂与掌心同侧的部位。图7是根据本说明书一些实施例所示的超声发射器和超声接收器在肘关节或膝关节对应的两侧肢体的分布示意图。如图7所示,超声发射器710和超声接收器720位于肘关节或膝关节对应的两侧肢体的内侧。
超声发射器和超声接收器之间的距离过小会导致超声发射器的输出端过于靠近超声接收器的接收端,测取的超声发射器和超声接收器之间的距离变化差值过小,无法精准地计算出关节的弯曲角度。为了提高人体姿态识别系统的精准性,在一些实施例中,当用户伸直手臂或腿部时,超声发射器和超声接收器的距离不小于10cm。优选地,当用户伸直手臂或腿部时,超声发射器和超声接收器的距离不小于15cm。进一步优选地,当用户伸直手臂或腿部时,超声发射器和超声接收器的距离不小于20cm。为了使得超声发射器和超声接收器可以分布于用户肢体上,而不影响用户其他部位的正常工作,在一些实施例中,超声发射器和超声接收器之间的距离不大于用户肢体(例如,腿部或手臂)的长度。需要注意的是,不同用户的肢体长度不同,在实际应用场景中,可以根据用户的实际情况(例如,肢体长度)进行适应性调整。
当超声传感器集成于服装上时,在一些实施例中,超声发射器和超声接收器的距离不大于服装中袖子或裤腿的长度。在一些实施例中,当超声传感器集成于服装上,且服装处于平铺展开装态时,超声发射器和超声接收器的距离可以不小于10cm。优选地,当超声传感器集成于服装上,且服装处于平铺展开装态时,超声发射器和超声接收器的距离可以不小于15cm。进一步优选地,当超声传感器集成于服装上,且服装处于平铺展开装态时,超声发射器和超声接收器的距离可以不小于20cm。可以理解的是,每个人的四肢的长度可能不相同,因此可以针对不同用户,对服装进行设计,以使超声传感器的布置位置达到预期的效果。儿童的四肢通常较短,例如,4岁至12岁儿童的手臂长度通常大于30cm,腿部长度通常大于60cm,儿童服装的袖子处的超声发射器和超声接收器的距离可以为10cm-30cm,儿童服装的袖子处的超声发射器和超声接收器的距离可以为20cm-50cm。示例性地,通常成人的四肢长度相对于儿童的四肢长度,成人服装手臂或腿部处的超声发射器和超声接收器的距离可以为20cm-50cm。
在一些实施例中,超声发射器包括用于发出超声波的输出端,输出端的输出方向朝向服装外侧,或者背离超声发射器与用户肢体直接或间接接触的部位。如图7所示,以超声发射器710和超声接收器720位于服装或用户皮肤表面作为示例进行说明,超声发射器710包括输出端711,输出端711的输出方向朝向服装外侧,或者背离超声发射器710与用户肢体直接或间接接触的部位。在一些实施例中,超声接收器包括用于接收超声波的接收端,接收端朝向服装的外侧,或者背离超声接收器与用户肢体直接或间接接触的部位。如图7所示,超声接收器720包括接收端721,接收端721朝向服装的外侧,或者背离超声接收器720与用户肢体接触直接或间接的部位。在一些实施例中,服装为多层结构时,超声发射器和超声接收器可以位于服装的两层结构之间,其中,超声发射器和超声接收器的输出方向朝向服装的外侧,也就是说,当用户穿戴服装时,超声发射器的输出端和超声接收器的接收端背离与用户肢体直接或间接接触的部位。
如上文所述,超声发射器发出的超声波通过其输出端向外界辐射,超声接收器需要通过其 接收端接收该超声波,由于超声发射器和超声接收器分别位于用户的大臂和小臂处,若用户伸直手臂或腿部,则可能导致超声接收器无法接收到超声发射器发射的超声波,为了保证超声发射器发射的超声波可以被超声接收器接收,提高人体姿态识别系统的可靠性,在一些实施例中,输出端所在平面与接收端所在平面的夹角可以小于180°。优选地,输出端所在平面与接收端所在平面的夹角不大于170°。较为优选地,输出端所在平面与接收端所在平面的夹角不大于150°。进一步优选地,输出端所在平面与接收端所在平面的夹角不大于130°。如图7所示,可以将图7中示出的θ角视为超声发射器710的输出端所在平面与超声接收器720的接收端所在平面的夹角。需要注意的是,输出端所在的平面是超声发射器的壳体发出超声波的侧壁所在的平面。例如,超声发射器可以包括壳体和振动单元,振动单元基于电信号产生超声波,超声波可以通过壳体上设置的孔部向外部辐射,则该孔部所在的侧壁可以视为超声发射器的输出端。又例如,壳体上也可以不设置孔部,超声波也可以直接从壳体的一个侧壁向外部辐射,该侧壁也可以视为超声发射器的输出端。相对应地,接收端所在的平面是超声接收器的壳体用于接收超声波的侧壁所在的平面。例如,超声接收器可以包括壳体和换能单元,换能单元基于声音信号产生电信号,超声发射器发射的超声波可以通过壳体上设置的孔部,传递至超声接收器的壳体内部并作用于换能单元,该孔部所在的侧壁可以视为超声接收器的接收端。又例如,壳体上也可以不设置孔部,超声波也可以直接从壳体的一个侧壁接收超声波,该侧壁也可以视为超声接收器的接收端。
为了使得输出端所在平面与接收端所在平面形成的夹角在特定角度范围内(例如,小于170°),在一些实施例中,超声发射器相对其下方用户肢体接触部位并且朝向超声接收器倾斜设置,输出端的法线方向与超声发射器下方用户肢体接触部位的法线方向的夹角不小于15°。优选地,输出端的法线方向与超声发射器下方用户肢体接触部位的法线方向的夹角不小于10°。进一步优选地,输出端的法线方向与超声发射器下方用户肢体接触部位的法线方向的夹角不小于5°。其中,用户肢体接触部位可以为用户的皮肤或服装。例如,当用户穿戴集成了超声传感器的服装时,用户肢体接触部位可以为服装。又例如,当超声传感器直接与用户的皮肤设置在一起时,用户肢体接触部位可以为用户的皮肤。如图7所示,超声发射器710相对其下方用户肢体接触部位并且朝向超声接收器720倾斜设置,输出端的法线为p,超声发射器下方用户肢体接触部位的法线为q,图7示出的β1角可以视为法线p与法线q的夹角。
在一些实施例中,超声接收器相对其下方用户肢体接触部位并且朝向超声发射器倾斜设置,接收端的法线方向与超声接收器下方用户肢体接触部位的法线方向的夹角不小于15°。优选地,接收端的法线方向与超声接收器下方用户肢体接触部位的法线方向的夹角不小于10°。进一步优选地,接收端的法线方向与超声接收器下方用户肢体接触部位的法线方向的夹角不小于5°。如图7所示,超声接收器720相对其下方用户肢体接触部位并且朝向超声发射器710倾斜设置,接收端的法线为s,超声接收器下方用户肢体接触部位的法线为r,图7示出的β2角可以视为法线s与法线r的夹角。
通过上述方式对β1和β2设置,使得输出端所在平面与接收端所在平面的夹角不大于170°,可以确保超声接收器可以始终能够接收到超声发射器发出的超声波,提高了系统的可靠性。
图7所示的示例性的超声发射器710和超声接收器720为长方体,超声发射器和超声接收器还可以具有其他的结构和/或形状。
如图8所示,超声发射器810和超声接收器820可以包括直角梯形体,该直角梯形体可以理解为长方体结构沿其长度方向、宽度方向或厚度方向削去一条棱的结构体,削去该棱所形成的面为直角梯形体的梯面。在一些实施例中,直角梯形体的梯面(图8中示出的812和822)与用户肢体接触。超声发射器810相对其下方用户肢体接触部位并且朝向超声接收器820倾斜设置,输出端811的法线为p,超声发射器下方用户肢体接触部位的法线为q,图8示出的β1角可以视为法线p与法线q的夹角。超声接收器820相对其下方用户肢体接触部位并且朝向超声发射器810倾斜设置,接收端821的法线为s,超声接收器下方用户肢体接触部位的法线为r,图8示出的β2角可以视为法线s与法线r的夹角。
可以理解的是,超声发射器和超声接收器还可以是除图7和图8所示的,可以满足输出端的法线方向与超声发射器下方用户肢体接触部位的法线方向的夹角,接收端的法线方向与超声接收器下方用户肢体接触部位的法线方向的夹角,其他的结构和/或形状。例如,三棱柱、六棱柱、柱形体等。
图7和图8所示的超声发射器和超声接收器可以通过胶水或粘接件等方式与人体或服装进行固定。在一些实施例中,超声发射器和超声接收器还可以通过设置固定件实现固定,使得输出端的法线方向与超声发射器下方用户肢体接触部位的法线方向的夹角不小于特定角度(例如,5°), 接收端的法线方向与超声接收器下方用户肢体接触部位的法线方向的夹角不小于特定角度(例如,5°)。在一些实施例中,固定件可以与超声传感器(例如,超声发射器或超声接收器)一体成型,或者相对于超声传感器独立的结构。以图7作为示例性,固定件可以为楔形结构,楔形结构插设于超声发射器和与用户皮肤接触的服装之间以及超声接收器和与用户皮肤接触的服装之间。
超声传感器不仅可以获取肘关节或所述膝关节对应的两侧肢体之间的弯曲角度以及肘关节或膝关节对应的两侧肢体之间的旋转角度,还可以用于识别大臂相对于躯干部位的姿态。
在一些实施例中,超声发射器可以位于服装中对应人体的大臂处,超声接收器可以位于服装中对应人体的躯干部位处,超声接收器和超声接收器配合以识别大臂相对于躯干部位的姿态。在一些实施例中,超声接收器可以位于服装中对应人体的大臂处,超声发射器可以位于服装中对应人体的躯干部位处。图9是根据本说明书一些实施例所示的超声发射器和超声接收器在大臂和躯干部位的分布示意图。如图9所示,超声发射器910和超声发射器930位于服装中对应人体的大臂处,超声接收器920和超声接收器940位于服装中对应人体的躯干部位处。
在一些实施例中,超声接收器可以位于服装中对应人体的躯干部位处的多个位置。为了实现更准确的测量结果,可以放置于图10所示的位置。
可以理解的是,肩关节对应的身体部位(例如,大臂和躯干部位)与肘关节或膝关节对应的两侧肢体相比,其运动形式更加复杂,如,大臂可以相对于躯干部位进行上下、前后、旋转、摆动等动作。超声传感器的作用范围有限,因此对于一个超声发射器,若只设置一个超声接收器往往存在测量死角,在某些状态下无法接收到超声发射器发出的超声波从而进行准确定位,为了提高超声传感器对肩关节对应的身体部位(例如,大臂和躯干部位)的运动状态的识别的精准度,在一些实施例中,肩关节处对应设置的超声传感器可以为多组。在一些实施中,一组超声传感器可以包括至少一个超声发生器和多个超声接收器。
图10是根据本说明书一些实施例所示的超声传感器的布置位置的示例性示意图,其中,图10中的附图(a)是超声传感器在人体正面的布置位置的示例性示意图,图10中的附图(b)是超声传感器在人体背面的布置位置的示例性示意图。
如图10中的附图(a)和附图(b)所示,超声发射器1010和超声发射器1020可以分别位于人体的两个大臂处,如超声接收器(图(a)中示出的正方形黑色区域)可以位于人体的左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部等位置中的任意一处或任意多处。进一步地,位于左肩部前侧和左腰侧的超声接收器可以接收来自左大臂的超声发射器(即,图10所示的超声发射器1010)的超声波,位于右肩部前侧和右腰侧的超声接收器可以接收来自右大臂的超声发射器(即,图10所示的超声发射器1020)的超声波,位于胸部的超声接收器既可以接收来自左大臂的超声发射器的超声波,也可以接收来自右大臂的超声发射器的超声波。当超声传感器集成于服装上时,超声发射器1010和超声发射器1020可以分别位于服装中对应人体的两个大臂处,超声接收器可以位于服装中对应人体的左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部中的至少一处。如此设置,可以确保用户手臂在以肩关节为中心做任何运动时,均有至少一个超声接收器可以接收到来自超声发射器的超声波,从而进行人体姿态识别。在一些实施例中,为了进一步地提高人体姿态识别系统对人体动作的识别精度,用户每个大臂处均可以设置一个或多个超声发射器,用户的左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部中的任意一个部位可以同时设置一个或多个超声接收器。优选地,用户每个大臂处均可以设置至少两个超声发射器,用户的左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部中的任意一个部位可以设置至少三个超声接收器,多个超声接收器不在同一条直线上。例如,超声接收器的数量可以为三个,三个超声接收器呈三角形分布。又例如,超声接收器的数量可以为四个,四个超声接收器呈三角形或四边形分布。为了保证测量精度,同时考虑人体的尺寸有限以及超声传感器的角度,需要对超声传感器之间的距离做出限定。在一些实施例中,至少两个超声发射器两两之间的间距不小于0.5cm,至少三个超声接收器两两之间的间距不小于0.5cm,优选地,至少两个超声发射器两两之间的间距不小于0.8cm,至少三个超声接收器两两之间的间距不小于0.8cm;进一步优选地,至少两个超声发射器两两之间的间距不小于1cm,至少三个超声接收器两两之间的间距不小于1cm。
在一些实施例中,大臂相对于躯干部位的姿态可以包括大臂相对于躯干部位的角度。大臂相对于躯干部位的角度可以理解为大臂的延伸方向与躯干部位的侧面所形成的角度。这里结合图11以清楚地对确定大臂相对躯干部位的角度进行描述。图11是根据本说明书一些实施例所示的确定大臂相对于躯干部位的角度的方法的示例性流程图。在一些实施例中,流程1100可以由处理器120执行。如图11所示,流程1100可以包括下述步骤:
步骤1110,基于超声发射器发射超声波的信息和超声接收器接收超声波的信息,获取超声发射器和超声接收器之间的距离。
基于超声发射器发射超声波的信息和超声接收器接收超声波的信息,获取超声发射器和超声接收器之间的距离,可以参照图3中的相关内容进行获取。
步骤1120,基于超声发射器和超声接收器之间的距离以及超声发射器和超声接收器的位置信息,确定大臂相对于躯干部位的角度。
大臂相对于躯干部位的角度与超声传感器的布置位置相关。当超声发射器位于大臂,超声接收器位于躯干侧部(如,腰侧、肋部等),大臂相对于躯干部位的角度可以指大臂与躯干侧部的角度,如图13所示,超声发射器1310位于大臂,超声接收器1320位于腰侧,大臂相对于躯干部位的角度可以指大臂与腰侧的角度。当超声发射器位于大臂,超声接收器位于前胸或后背,大臂相对于躯干部位的角度可以指手臂前伸、后摆的角度。
基于超声发射器和超声接收器之间的距离以及超声发射器和超声接收器的位置信息,确定大臂相对于躯干部位的角度,可以参照图3中的相关内容进行确定。
图12是根据本说明书一些实施例所示的识别大臂相对于躯干部位的运动状态的方法的示例性流程图。大臂相对于躯干部位的运动状态较为复杂,为了提高人体姿态识别系统对该运动状态的识别精度,在一些实施例中,每组超声传感器可以包括至少两个超声发射器和至少三个超声接收器。在一些实施例中,流程1200可以由处理器120执行。如图12所示,流程1200可以包括下述步骤:
步骤1210,基于至少三个超声接收器的位置信息确定至少两个超声发射器的位置变化信息。
在一些实施例中,至少三个超声接收器不在同一条直线上。如图14所示,超声接收器1421、超声接收器1422、超声接收器1423所在的位置连线可以构成三角形,即三个超声接收器不在同一条直线上。
为了保证测量精度,同时考虑人体的尺寸有限以及超声传感器的角度,需要对超声传感器之间的距离做出限定。在一些实施例中,至少两个超声发射器两两之间的间距不小于0.5cm,至少三个超声接收器两两之间的间距不小于0.5cm,优选地,至少两个超声发射器两两之间的间距不小于0.8cm,至少三个超声接收器两两之间的间距不小于0.8cm;进一步优选地,至少两个超声发射器两两之间的间距不小于1cm,至少三个超声接收器两两之间的间距不小于1cm。
在一些实施例中,基于至少三个超声接收器的位置信息确定至少两个超声发射器的位置变化信息可以包括:基于至少三个超声接收器的位置信息可以确定超声发射器的位置信息,具体见通过公式(3),
Figure PCTCN2022096684-appb-000002
其中,三个超声接收器的坐标为(x 1,y 1,z 1)、(x 2,y 2,z 2)、(x 3,y 3,z 3)是已知的,超声发射器的坐标为(x,y,z),R 1、R 2和R 3表示三个超声传感器与超声接收器的距离。
如图14所示,超声发射器1410包括超声发射器1411和超声发射器1412,超声接收器1420包括超声接收器1421、超声接收器1422和超声接收器1423。处理器可以基于三个超声接收器的位置信息,通过公式(3)分别确定超声发射器1411和超声发射器1412的坐标。
在一些实施例中,超声发射器的位置信息可以是用户大臂运动后对应的超声发射器的位置信息。也就是说,可以通过上述方式确定人体大臂处于某个姿态时的超声发射器1411和超声发射器1412的坐标。
在一些实施例中,基于至少三个超声接收器的位置信息确定至少两个超声发射器的位置变化信息可以包括:根据至少三个超声接收器的位置信息确定一个参考点的位置信息,基于参考点的位置信息和用户大臂运动后对应的超声发射器的位置信息,确定至少两个超声发射器的位置变化信息。参考点可以指由至少三个超声接收器所构成的图形中的任意一点。例如,参考点可以是至少三个超声接收器所构成的图形中的几何中心。如图14所示,处理器可以根据超声接收器1421、超声接收器1422和超声接收器1423的坐标信息,确定三个超声接收器所构成的三角形的几何中心的坐标,并将三角形的几何中心作为参考点。位置变化信息是指用户在某个运动姿态时,参考点至不同超声发射器的距离的差值。例如,超声发射器包括图14所示的超声发射器1411和超声发射器1412,当用户大臂处于手臂展开的扩胸动作时,两个超声发射器的位置变化信息包括参考点与超声发射器1411的距离和参考点与超声发射器1412的距离之间的差值。仅作为示例性说明,当用户自然站立 手臂向下自然伸直时,参考点分别与两个超声发射器之间的距离(例如,X1’和X2’)可以视为近似相等,当用户大臂以肩关节为中心进行旋转时,两个超声发射器相对于参考点发生旋转,此时两个超声发射器与参考点之间的距离X1’和X2’发生变化,X1’和X2’对应的数值不相等,通过X1’和X2’的差值的大小和正负(即两个超声发射器的位置变化信息)可以确定大臂相对于躯干部位的旋转程度和运动方向。关于大臂相对于躯干部位的旋转角度的具体内容可以参考图5至图6C的相关内容。
步骤1220,根据至少两个超声发射器的位置变化信息识别大臂相对于躯干部位的运动状态。
大臂相对于躯干部位的运动状态可以包括大臂相对于躯干部位的旋转角度、运动方向等。旋转角度可以用于表征大臂的特定位置(例如,腋下相对应的大臂区域)以肩关节为中心相对于躯干部位的旋转程度。
在一些实施例中,处理器可以根据参考点的位置(坐标)以及两个超声发射器的位置信息,确定参考点分别与两个超声发射器之间的距离(例如,X1’和X2’),通过上述公式(2),确定大臂相对于躯干部位的旋转角度。例如,处理器可以将超声发射器1411与参考点的距离作为X1’,将超声发射器1412与参考点的距离作为X2’,然后将X1=X1’和X2=X2’代入公式(2)中,即可确定大臂相对于躯干部位的旋转角度。
同样需要说明的是,通过公式(2)确定的结果是一个相对的量,可以表示大臂的旋转程度,并不是精确的大臂相对于躯干部位的旋转角度。
在一些实施例中,处理器可以基于大臂相对于躯干部位的旋转角度,超声发射器和超声接收器的位置信息、超声发射器发射超声波的信息和超声接收器接收超声波的信息,确定大臂相对于躯干部位的运动状态。例如,当设置于前胸的超声接收器接收到设置于大臂的超声发射器发出的超声波后,处理器可以确定大臂相对于躯干部位发生了前伸。进一步地,当超声发射器发出声波被胸部的超声接收器接收之后,通过超声发射器发射所述超声波的信息和超声接收器接收超声波的信息可以确定超声发射器与胸前的超声接收器的距离,从而确定手臂前伸的角度。更进一步地,处理器可以基于大臂相对于躯干部位的旋转角度,可以确定大臂(例如,大臂腋下对应的部位)相对于躯干部位(腰侧部位)的旋转角度,进而可以确定大臂相对于躯干部位的运动状态。
在一些实施例中,为了避免不同超声发射器之间的信号串扰,可以对不同超声发射器进行分时复用,使不同的超声发射器的发射信号之间存在一定的时间间隔。这种情况下,如果超声发射器的数量过多,会造成采样率的下降,即,超声发射器的数量越多,超声接收器每秒从同一超声发射器采集到的信号越少。因此,为了提高对同一超声发射器的采样率,整体布局所用的超声发射器越少越好,将超声发射器布置在大臂上可以在确保能识别多种人体姿态的前提下,最节省超声发射器的数量。关于超声发射器的分时复用的更多内容可以参见图17及其说明。
同时,以上设计可以使计算结果更精确。在使用公式(2)时,其定位精度要求R 1、R 2、R 3是同一个时刻下超声发射器与多个超声接收器的距离,即R 1、R 2、R 3尽可能是在同一个时刻确定的。时间差距越大,误差越大。由1个超声发射器发射超声波,3个超声接收器接收超声波,能够最大程度保证超声波的同时性;反之,如果是3个超声发射器发射超声波,1个超声接收器接收超声波,在超声发射器分时复用的影响下,3个超声发射器的发射时间存在较大时间差,则得到的R 1、R 2、R 3并不是同一时刻下的数据,计算误差会较大。
通过使用超声传感器,对其布置位置进行设计,还可以用于确定用户腿部的位姿。
图16是根据本说明书一些实施例所示的确定用户腿部的位姿的方法的示例性流程图。在一些实施例中,流程1600可以由处理器120执行。如图16所示,流程1600可以包括下述步骤:
步骤1610,基于超声发射器发射超声波的信息和超声接收器接收超声波的信息,获取超声发射器和超声接收器之间的距离。
在一些实施例中,超声发射器和超声接收器可以分别位于用户的两条大腿或两条小腿,以识别用户腿部的位姿。例如,超声发射器和超声接收器中的一种位于左大腿处,另一种位于右大腿处。又例如,超声发射器和超声接收器中的一种位于左小腿处,另一种位于右小腿处。
在一些实施例中,超声传感器集成于服装上时,超声发射器和超声接收器可以分别位于服装中的两条裤腿处,以识别用户腿部的位姿。例如,超声发射器和超声接收器中的一种位于左大腿对应的左裤腿处,另一种位于右大腿对应的右裤腿处。又例如,超声发射器和超声接收器中的一种位于左小腿对应的左裤腿处,另一种位于右小腿对应的右裤腿处。如图15所示,超声发射器1510和超声接收器1520可以位于大腿对应的服装中的裤腿,超声发射器1530和超声接收器1540可以位于小腿对应的服装中的裤腿。
基于超声发射器发射超声波的信息和超声接收器接收超声波的信息,获取超声发射器和超声接收器之间的距离,可以参照图3中的相关内容进行获取。
步骤1620,基于超声发射器和超声接收器之间的距离以及超声发射器和超声接收器的位置信息,确定用户腿部的位姿。
腿部的位姿可以指与两个腿部的位置和姿势相关的信息。例如,两腿各自延伸方向之间形成的角度、两腿的运动状态(如,站立、行走、跑步等)、两腿的姿势(叉腿、并腿等)等。
在一些实施例中,处理器可以基于超声发射器和超声接收器的位置信息,以及超声发射器和超声接收器之间的距离与阈值的比较,确定用户腿部的位姿。例如,用户的左大腿和右大腿处设置一组超声传感器(例如,第一超声发射器和第一超声接收器),用户的左小腿和右小腿处设置另一组超声传感器(例如,第二超声发射器和第二超声接收器)。处理器可以基于第一超声发射器和第一超声接收器之间的距离小于阈值(例如,4cm),以及第二超声发射器和第二超声接收器之间的距离小于阈值(例如,6cm),确定用户的腿部姿势为并腿。需要注意的是,阈值可以根据不同用户进行设置。
将超声发射器和超声接收器设置于人体不同的位置,可以实现对人体的不同部位进行姿态识别。如上文所述,通过将超声发射器和超声接收器分别设置于用户肘关节或膝关节对应的两侧肢体处,可以识别用户手臂或腿部的运动姿态;通过将超声发射器设置于人体的大臂处,超声接收器设置于人体的躯干部位,可以识别大臂相对于躯干部位的姿态;通过将超声发射器和超声接收器分别设置于用户的两条大腿或两条小腿,可以识别用户腿部的位姿。
在上述人体的不同部位同时设置超声发射器和超声接收器,可以同时获取用户手臂或腿部的运动姿态、大臂相对于躯干部位的姿态以及用户腿部的位姿,进而可以实现对用户全身的姿态进行识别。
本系统中需要同时使用多个超声发射器发射超声波,在一些实施例中,为了避免不同超声发射器间的超声波出现相互串扰,可以采用分时复用的方式在时域上将不同超声波的发射时间进行区分。
图17是根据本说明书一些实施例所示的基于超声传感器实现分时复用的示例性示意图。
分时复用可以指不同器件(例如,超声发射器)在不同时段产生超声波。在一些实施例中,分时复用可以基于每组超声传感器中的不同的超声发射器的发出超声波的不同时间进行实现。
在一些实施例中,每组超声传感器中包括多个超声发射器,多个超声发射器发出超声波的时间点具有时间间隔。如图17所示,微控制器通过控制信号分别控制超声发射器1710与超声发射器1720的工作状态,当超声发射器1710发射超声波时,超声发射器1720处于休眠状态不发射超声波,则此时超声接收器1730、超声接收器1740、超声接收器1750接收到的都是来自超声发射器1710的超声波,经过时间Δt,超声发射器1720开始发射超声波。
受到人体尺寸限制,超声发射器与超声接收器之间的距离L小于1m,那么超声波的传输时间t小于2.9ms。因此为了防止不同信号之间出现串扰,需要对相邻两个超声发射器发出超声波的时间间隔进行限定。在一些实施例中,相邻两个超声发射器发出超声波的时间间隔大于2.9ms。如此设置,即使所有的超声接收器始终处于工作状态,其也可以实时接收并区分来自不同超声发射器的超声波,微控制器可以基于超声接收器传入的超声波,通过时间差计算与对应的超声发射器的相对距离与位置的变化。
在一些实施例中,为了避免不同超声发射器间的超声波出现相互串扰,可以对不同超声发射器发出的超声波的频率进行设置。例如,每组超声传感器中包括多个超声发射器,多个超声发射器发出的超声波的频率不同。例如,超声发射器1710发出的超声波的频率为50kHz~140kHz,超声发射器1720发出的超声波的频率为200kHz~300kHz。当超声接收器接收到超声波时,处理器可以根据超声波的频率定位到发出该超声波的超声发射器,并进一步确定该超声发射器与超声接收器的距离和位置。
在一些实施例中,为了避免不同超声发射器间的超声波出现相互串扰,可以对超声发射器发出的超声波的编码进行设置。例如,每组超声传感器中包括多个超声发射器,多个超声发射器发出的超声波具有不同的编码。例如,处理器可以通过通用编解码IC组,对超声波进行编码,使多个超声发射器可以发出具有不同的编码的超声波。
可以理解的是,人体姿态识别系统可能用到多组超声传感器,多组超声传感器中包括的多个超声发射器可能会发生信号的串扰,为了避免此种情况的发生,可以对不同组的多个超声发射器进行设置。
在一些实施例中,每组超声传感器中包括多个超声发射器,不同组的多个超声发射器发出超声波的时间点具有时间间隔。例如,若A组的第一超声发射器与B组的第二超声发射器信号可能发生串扰,则可以设置A组的第一超声发射器与B组的第二超声发射器发出超声波的时间点具有预设的时间间隔。
在一些实施例中,每组超声传感器中包括多个超声发射器,不同组的多个超声发射器发出的超声波的频率不同。例如,A组的多个超声发射器发出的超声波的频率为50kHz~140kHz,B组的多个超声发射器发出的超声波的频率为200kHz~300kHz。
在一些实施例中,每组超声传感器中包括多个超声发射器,不同组的多个超声发射器发出的超声波具有不同的编码。例如,A组的多个超声发射器发出的编码为Ⅰ、Ⅱ、Ⅲ,B组的多个超声发射器发出的编码为Ⅴ、Ⅵ、Ⅶ。
通过上述的分时复用,以及对超声发射器发出的超声波的频率和编码进行设置,可以避免信号的串扰,防止对超声发射器和超声接收器的距离产生错误的计算而影响用户位姿的识别。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (21)

  1. 一种人体姿态识别系统,包括:
    至少一组超声传感器,每组超声传感器包括:
    用于发射超声波的超声发射器和用于接收所述超声波的超声接收器,其中,所述超声发射器和所述超声接收器分别位于用户身体的不同部位;以及
    处理器,被配置为基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态。
  2. 根据权利要求1所述的人体姿态识别系统,其中,还包括服装,所述至少一组超声传感器集成于所述服装中。
  3. 根据权利要求2所述的人体姿态识别系统,其中,所述超声发射器和所述超声接收器分布于所述服装的袖子或裤腿处,当用户穿戴所述服装时,所述超声发射器和所述超声接收器分别位于所述用户肘关节或膝关节对应的两侧肢体处。
  4. 根据权利要求3所述的人体姿态识别系统,其中,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:
    基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;
    基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,获取所述肘关节或所述膝关节对应的两侧肢体之间的弯曲角度。
  5. 根据权利要求3所述的人体姿态识别系统,其中,所述每组超声传感器包括超声发射器和至少两个超声接收器,所述至少两个超声接收器包括第一超声接收器和第二超声接收器,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:
    基于所述超声发射器发射所述超声波的信息、所述第一超声接收器接收所述超声波的信息以及所述第二超声接收器接收所述超声波的信息,确定所述超声发射器和所述第一超声发射器之间的第一距离以及所述超声发射器和所述第二超声发射器之间的第二距离;
    根据所述第一距离与所述第二距离,确定所述肘关节或所述膝关节对应的两侧肢体之间的旋转角度。
  6. 根据权利要求3所述的人体姿态识别系统,其中,所述肘关节或膝关节在弯曲状态下,其两侧肢体中正对的肢体侧部表征为所述肘关节或膝关节对应的两侧肢体的内侧,所述超声发射器和所述超声接收器位于所述肘关节或膝关节对应的两侧肢体的内侧。
  7. 根据权利要求3所述的人体姿态识别系统,其中,当所述用户伸直手臂或腿部时,所述超声发射 器和所述超声接收器的距离不小于10cm。
  8. 根据权利要求3-7任一项所述的人体姿态识别系统,其中,
    所述超声发射器包括用于发出所述超声波的输出端,所述输出端背离所述服装;
    所述超声接收器包括用于接收所述超声波的接收端,所述接收端背离所述服装;
    所述输出端所在平面与所述接收端所在平面的夹角不大于170°。
  9. 根据权利要求8所述的人体姿态识别系统,其中,所述超声发射器相对其下方用户肢体接触部位并且朝向所述超声接收器倾斜设置,所述输出端的法线方向与所述超声发射器下方用户肢体接触部位的法线方向的夹角不小于5°。
  10. 根据权利要求8所述的人体姿态识别系统,其中,所述超声接收器相对其下方用户肢体接触部位并且朝向所述超声发射器倾斜设置,所述接收端的法线方向与所述超声接收器下方用户肢体接触部位的法线方向的夹角不小于5°。
  11. 根据权利要求2所述的人体姿态识别系统,其中,所述超声发射器位于所述服装中对应人体的大臂处,所述超声接收器位于所述服装中对应人体的躯干部位处,所述超声接收器和所述超声接收器配合以识别大臂相对于躯干部位的姿态。
  12. 根据权利要求11所述的人体姿态识别系统,其中,所述大臂相对于躯干部位的姿态包括所述大臂相对于躯干部位的角度,所述识别大臂相对于躯干部位的姿态包括:
    基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;
    基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,确定所述大臂相对于躯干部位的角度。
  13. 根据权利要求11所述的人体姿态识别系统,其中,所述超声发射器包括至少两个超声发射器,所述超声接收器包括至少三个超声接收器,所述识别所述用户大臂相对于躯干部位的姿态包括:
    基于所述至少三个超声接收器的位置信息确定所述至少两个超声发射器的位置变化信息;
    根据所述至少两个超声发射器的位置变化信息识别所述大臂相对于躯干部位的运动状态。
  14. 根据权利要求12所述的人体姿态识别系统,所述至少三个超声接收器不在同一条直线上。
  15. 根据权利要求13所述的人体姿态识别系统,其中,所述至少两个超声发射器两两之间的间距不小于1cm,所述至少三个超声接收器两两之间的间距不小于1cm。
  16. 根据权利要求11-15任一项所述的人体姿态识别系统,其中,所述服装中对应人体的躯干部位处包括左肩部前侧、右肩部前侧、左腰侧、右腰侧、胸部中的至少一处。
  17. 根据权利要求2所述的人体姿态识别系统,其中,所述超声发射器和所述超声接收器分别位于所述服装中的两条裤腿处,所述基于所述超声发射器和所述超声接收器的位置信息、所述超声发射器发射所述超声波的信息,以及所述超声接收器接收所述超声波的信息,识别所述用户的姿态包括:
    基于所述超声发射器发射所述超声波的信息和所述超声接收器接收所述超声波的信息,获取所述超声发射器和所述超声发射器之间的距离;
    基于所述超声发射器和所述超声发射器之间的距离以及所述超声发射器和所述超声接收器的位置信息,确定所述用户腿部的位姿。
  18. 根据权利要求1-17任一项所述的人体姿态识别系统,其中,每组所述超声传感器中包括多个超声发射器,所述多个超声发射器发出超声波的时间点具有时间间隔。
  19. 根据权利要求18所述的人体姿态识别系统,其中,相邻两个所述超声发射器发出超声波的时间间隔大于2.9ms。
  20. 根据权利要求1-17任一项所述的人体姿态识别系统,其中,每组超声传感器中包括多个超声发射器,所述多个超声发射器发出的超声波的频率不同。
  21. 根据权利要求1-17任一项所述的人体姿态识别系统,其中,每组超声传感器中包括多个超声发射器,所述多个超声发射器发出的超声波具有不同的编码。
PCT/CN2022/096684 2022-06-01 2022-06-01 一种人体姿态识别系统 WO2023230964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096684 WO2023230964A1 (zh) 2022-06-01 2022-06-01 一种人体姿态识别系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096684 WO2023230964A1 (zh) 2022-06-01 2022-06-01 一种人体姿态识别系统

Publications (1)

Publication Number Publication Date
WO2023230964A1 true WO2023230964A1 (zh) 2023-12-07

Family

ID=89026743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096684 WO2023230964A1 (zh) 2022-06-01 2022-06-01 一种人体姿态识别系统

Country Status (1)

Country Link
WO (1) WO2023230964A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137850A (ja) * 1992-10-30 1994-05-20 Res Dev Corp Of Japan 超音波によるロボットの3次元位置・姿勢計測装置及びその計測方法
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
CN107066086A (zh) * 2017-01-17 2017-08-18 上海与德信息技术有限公司 一种基于超声波的手势识别方法及装置
CN108089699A (zh) * 2016-11-21 2018-05-29 宏达国际电子股份有限公司 人体姿势侦测系统、服装以及方法
CN108387871A (zh) * 2018-01-30 2018-08-10 吉林大学 一种实现六自由度测量的超声三维定位系统和定位方法
CN216395231U (zh) * 2021-12-09 2022-04-29 南京信息工程大学 一种具有手腕姿势报警纠正功能的健身手套

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
JPH06137850A (ja) * 1992-10-30 1994-05-20 Res Dev Corp Of Japan 超音波によるロボットの3次元位置・姿勢計測装置及びその計測方法
CN108089699A (zh) * 2016-11-21 2018-05-29 宏达国际电子股份有限公司 人体姿势侦测系统、服装以及方法
CN107066086A (zh) * 2017-01-17 2017-08-18 上海与德信息技术有限公司 一种基于超声波的手势识别方法及装置
CN108387871A (zh) * 2018-01-30 2018-08-10 吉林大学 一种实现六自由度测量的超声三维定位系统和定位方法
CN216395231U (zh) * 2021-12-09 2022-04-29 南京信息工程大学 一种具有手腕姿势报警纠正功能的健身手套

Similar Documents

Publication Publication Date Title
US20210169402A1 (en) Wearable Wrist Joint-Action Detectors
US11301048B2 (en) Wearable device for detecting light reflected from a user
US10779766B2 (en) Wearable measurement apparatus
CN107427235B (zh) 腕戴式脉搏传导时间传感器
US10478099B2 (en) Systems and methods for determining axial orientation and location of a user's wrist
JP6583605B2 (ja) 運動情報生成装置及び運動情報生成方法、運動情報生成プログラム
US10099053B2 (en) Epidermal electronics to monitor repetitive stress injuries and arthritis
CA2139336C (en) Determination of kinematically constrained multi-articulated structures
JP6136806B2 (ja) 身体情報取得装置、身体情報取得方法、身体情報取得プログラム
US8814810B2 (en) Orthopedic method and system for mapping an anatomical pivot point
US8864686B2 (en) Virtual mapping of an anatomical pivot point and alignment therewith
CN103105945B (zh) 一种支持多点触摸手势的人机交互戒指
CN109407836A (zh) 一种手部动作捕捉系统及交互系统
US20160015280A1 (en) Epidermal electronics to monitor repetitive stress injuries and arthritis
CN209216040U (zh) 一种手部动作捕捉系统及交互系统
CN105979855A (zh) 检测正在穿戴可穿戴电子设备的肢体
US11237632B2 (en) Ring device having an antenna, a touch pad, and/or a charging pad to control a computing device based on user motions
US20170273663A1 (en) Image processing for an ultrasonic fetal imaging device
CN110381407A (zh) 一种无线耳机及其佩戴检测系统及方法
CN206473763U (zh) 一种调整泳姿的穿戴设备
WO2023230964A1 (zh) 一种人体姿态识别系统
US20170273662A1 (en) Ultrasonic fetal imaging with shear waves
CN117179810A (zh) 一种人体姿态识别系统
EP3586743A1 (en) Method and apparatus for determining information regarding body position
WO2019205174A1 (zh) 一种脉搏波传导参数测量系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944295

Country of ref document: EP

Kind code of ref document: A1