WO2023230771A1 - 成像方法、成像装置、电子设备及存储介质 - Google Patents

成像方法、成像装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023230771A1
WO2023230771A1 PCT/CN2022/096016 CN2022096016W WO2023230771A1 WO 2023230771 A1 WO2023230771 A1 WO 2023230771A1 CN 2022096016 W CN2022096016 W CN 2022096016W WO 2023230771 A1 WO2023230771 A1 WO 2023230771A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
water
fat
target area
radio frequency
Prior art date
Application number
PCT/CN2022/096016
Other languages
English (en)
French (fr)
Inventor
吴垠
匡俊峰
郑海荣
刘新
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2022/096016 priority Critical patent/WO2023230771A1/zh
Publication of WO2023230771A1 publication Critical patent/WO2023230771A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present application belongs to the field of medical imaging technology, and in particular relates to an imaging method, imaging device, electronic equipment and computer-readable storage medium.
  • Fat is an important component of the human body and participates in various life activities of the human body. Fat metabolism in different parts of the body can reflect different aspects of human health. Therefore, fat imaging technology can provide effective auxiliary information for doctors’ diagnosis.
  • Existing fat imaging technologies mainly include magnetic resonance spectroscopy imaging methods.
  • the spatial resolution of the magnetic resonance spectroscopy imaging method is limited, and it can only obtain the overall information of large voxels at the centimeter level, that is, the imaging spatial resolution is low.
  • the present application provides an imaging method, imaging device, electronic equipment and computer-readable storage medium, which can solve the problem of low imaging spatial resolution in current magnetic resonance spectrum imaging methods.
  • this application provides an imaging method, including:
  • a second signal is determined based on the mixed signal and the first signal, and a fat peak map of the target area is generated based on the spectrum distribution of the second signal.
  • the second signal is the signal of the fat.
  • this application provides an imaging device, including:
  • An excitation module for each preset frequency within the above-mentioned preset frequency range: transmitting a radio frequency pulse of the above-mentioned preset frequency to the target area, and the above-mentioned radio frequency pulse is used to excite the water and fat in the above-mentioned target area, so that the above-mentioned target The water and fat in the area are stimulated to a saturated state;
  • An acquisition module used to collect the saturated signal corresponding to the above-mentioned preset frequency after transmitting the above-mentioned radio frequency pulse;
  • a determination module for comparing the above-mentioned saturated signals corresponding to all the above-mentioned preset frequencies with the pre-collected initial signals to determine the mixed signals of the above-mentioned water and the above-mentioned fat within the above-mentioned preset frequency range;
  • a calculation module used to calculate the above-mentioned first signal of water based on the spectral distribution characteristics of water molecules
  • An imaging module is configured to determine a second signal based on the mixed signal and the first signal, and generate a fat peak map of the target area based on the spectrum distribution of the second signal, where the second signal is the signal of the fat.
  • the present application provides an electronic device.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the above steps are implemented. Steps of the first aspect of the method.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the steps of the method of the first aspect are implemented.
  • the present application provides a computer program product.
  • the computer program product includes a computer program.
  • the steps of the method of the first aspect are implemented.
  • the beneficial effects of this application are: by exciting and saturating water and fat in the target area with radio frequency pulses, a mixed signal of water and fat can be obtained; and then the first signal of water can be calculated based on the water molecule saturation model. ; After obtaining the mixed signal and the first signal, the spectrum distribution of the first signal can be separated from the spectrum distribution of the mixed signal, thereby obtaining the spectrum distribution of the fat signal, that is, the spectrum distribution of the second signal, and finally using the second The spectral distribution of the signal images the target area to generate a corresponding fat peak map for doctors to provide auxiliary information for patient diagnosis.
  • the conventional spin echo-like magnetic resonance signal acquisition method can be used to obtain the mixed signal.
  • millimeter-level images can be generated, thereby improving the spatial resolution of the spectrum image.
  • Figure 1 is a schematic flowchart of an imaging method provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of obtaining the spectrum distribution of a fat signal provided by an embodiment of the present application
  • Figure 3 is a fat peak spectrum at a chemical shift of -2.6ppm of the fat in the area where the cone is located in the abdominal cross-section provided by the embodiment of the present application;
  • Figure 4 is a fat peak spectrum at a chemical shift of -3.4ppm of the fat in the area where the cone is located in the abdominal cross-section provided by the embodiment of the present application;
  • Figure 5 is a schematic structural diagram of an imaging device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this application proposes an imaging method that can remove the spectral distribution of the first signal (water signal) from the spectral distribution of the mixed signal (water and fat signal), and obtain the second signal ( The target area can be further imaged based on the spectral distribution of the second signal (fat signal), and a fat peak map with higher spatial resolution can be obtained.
  • the imaging method provided by the embodiments of the present application can be applied to magnetic resonance equipment.
  • the magnetic resonance equipment can have a built-in processor to implement the imaging method of the present application, or an external processor and electronic equipment such as a computer can implement the imaging method of the present application.
  • the embodiments of the present application do not place any restrictions on the specific type of electronic equipment.
  • FIG. 1 shows a schematic flow chart of the imaging method provided by this application.
  • the imaging method includes:
  • Step 110 For each preset frequency within the preset frequency range: transmit a radio frequency pulse of a preset frequency to the target area, so that the water and fat in the target area are excited to a saturated state.
  • the target area is generally the cross-sectional area of the human body to be imaged, such as the cross-sectional area of the human abdomen; of course, it can also be the area formed by a certain part within the cross-section, such as the area where the cone is located in the cross-section of the human abdomen.
  • radio frequency pulses can be used to excite the water and fat in the target area within a specific frequency range, so that the water and fat are excited to a saturated state.
  • the specific frequency range is the preset frequency range, which covers the resonance frequency of water molecules and the resonance frequency of fat.
  • the magnetic resonance equipment can be divided into multiple preset frequencies.
  • radio frequency pulses can be emitted to excite the water and fat in the target area to a saturated state, so as to facilitate the collection of the preset frequencies.
  • Correlated signals of water and fat at set frequencies are proportional to the number of preset frequencies. That is, the more preset frequencies there are, the more radio frequency pulses are emitted, and the related signals obtained are richer and more accurate.
  • the chemical shift is used as the abscissa, so the above-mentioned preset frequency range and preset frequency can be converted.
  • the resonant frequency of water is used as the reference frequency, that is, the chemical shift refers to the chemical shift of water and/or fat relative to the resonant frequency of water molecules.
  • the chemical shift of water relative to the resonant frequency of water molecules can be recorded as the first chemical shift of water, and the chemical shift of fat relative to the resonant frequency of water molecules can be recorded as the second chemical shift.
  • the conversion of the preset frequency range into chemical shifts can be recorded as the preset chemical shift range.
  • the preset chemical shift range covers the chemical shifts of the second chemical shift and the first chemical shift, for example, between -5ppm and 5ppm. between.
  • the intensity of the mixed signal of water and fat will gradually decrease. That is, the degree of reduction of the mixed signal reflects the range of the preset chemical shift range. The intensity change of the internal mixed signal.
  • a radio frequency pulse with an energy of 0.5 ⁇ T to 1.5 ⁇ T, preferably 0.9 ⁇ T to 1.1 ⁇ T, and more preferably 1 ⁇ T can be used; the radio frequency
  • the pulse emission duration may be between 50ms and 500ms, preferably between 100ms and 200ms, and more preferably 100ms.
  • the energy value of the radio frequency pulse and the emission duration value can be freely combined.
  • the energy of the radio frequency pulse is 1 ⁇ T and the emission duration is 100ms, or the energy of the radiofrequency pulse is 0.9 ⁇ T and the emission duration is 100ms.
  • Step 120 After transmitting the radio frequency pulse, collect the saturated signal corresponding to the preset frequency.
  • the emission of radiofrequency pulses changes the intensity of the mixed signal from water and fat.
  • the corresponding saturated signal can be collected at each preset frequency. After collecting the saturated signals corresponding to all preset frequencies, the number equal to the number of preset frequencies can be obtained.
  • the saturation signal is used to generate the subsequent mixed signal of water and fat.
  • the above signal acquisition method is a spin echo type magnetic resonance data acquisition method.
  • the reason why the magnetic resonance data acquisition method is used is that after processing, the signal data collected by this method can obtain millimeter-level imaging. That is to say, this application can process based on the collected mixed signals to obtain imaging with a higher spatial resolution than magnetic resonance spectrum imaging (spatial resolution is centimeter level).
  • Step 130 Compare the saturated signals corresponding to all preset frequencies with the pre-collected initial signals to determine the mixed signals of water and fat within the preset frequency range;
  • the initial signals of water and fat can be collected first, and the saturated signal corresponding to each preset frequency can be compared with the initial signal to determine the preset frequency range.
  • Mixed signals of internal water and fat For example, the signal change obtained at each preset frequency can be obtained by making a difference between the signals obtained from water and fat in the saturated state and the initial signals collected from water and fat when no radio frequency pulse is emitted. Based on this, an overall mixed signal of water and fat can be obtained. It can be considered that the final mixed signal is a signal collection, which includes the mixed signal corresponding to each preset frequency. It can be understood that the more preset frequencies within the preset frequency range, the higher the acquisition frequency of the saturated signal, and correspondingly, the more accurate the obtained mixed signal will be.
  • Step 140 Calculate the first signal of water.
  • the first signal of water can be calculated first.
  • the first signal may be fitted by a single-cell Lorentz model, or the first signal may be calculated from a water molecule signal saturation model based on relaxation information and attribute information of the radio frequency pulse.
  • the specific calculation method of the first signal is not limited in this embodiment.
  • the above step 140 specifically includes:
  • the first signal of water is fitted through the single-cell Lorentz model, where the fitting formula of the first signal is:
  • Z water ( ⁇ ) is the first signal
  • is the chemical shift of water relative to the resonance frequency of water molecules
  • A is the amplitude of the first signal
  • lw is the bandwidth of the first signal.
  • the fat peaks are mainly concentrated in the chemical shift range of -3.8ppm to -2ppm.
  • the chemical shift range of -2ppm and above is the dominant range of the spectral distribution of the first signal, that is Water wave peaks are mainly concentrated in the chemical shift range of -2ppm and above.
  • a specific resonance frequency range can be determined based on the first chemical shift, so that the first signal can be accurately calculated.
  • the chemical shift calculation range includes the first chemical shift
  • the determined chemical shift calculation range is the dominant range of the spectral distribution of the first signal.
  • it can be a chemical shift of -2ppm and above, expressed as ⁇ >-2ppm.
  • the chemical shift calculation range here is determined from the preset chemical shift range in step 110.
  • the first signal can be further determined according to the above fitting formula. It can be understood that the chemical shift calculation range can also be divided into multiple chemical shift points, and for each chemical shift point, a corresponding first signal can be calculated. Like the mixed signal, the finally obtained first signal is also regarded as a signal collection, which includes the first signal corresponding to each chemical shift point.
  • the first signal in addition to obtaining the first signal through single-cell Lorentz model fitting as described above, the first signal can also be obtained in the following manner:
  • Step 141 Collect longitudinal relaxation data and transverse relaxation data of water.
  • Step 142 Calculate the longitudinal relaxation rate R 1w of water based on the longitudinal relaxation data.
  • Step 143 Calculate the transverse relaxation rate R 2w of water based on the transverse relaxation data.
  • Step 144 Calculate the first signal based on the longitudinal relaxation rate, the transverse relaxation rate and the attribute information of the radio frequency pulse.
  • the first signal is estimated.
  • the formula is:
  • the two types of relaxation data are longitudinal relaxation data and transverse relaxation data.
  • the longitudinal relaxation data is T1 mapping
  • the transverse relaxation data is T2 mapping.
  • T1 mapping is the data obtained by weighting the signal with T1 relaxation time
  • T2 mapping is the data obtained by weighting the signal with T2 relaxation time.
  • the longitudinal relaxation rate and transverse relaxation rate of water can be calculated respectively based on the relevant data obtained; by combining the two relaxation rates with the attribute information of the radio frequency pulse, the first can be further estimated Signal.
  • the attribute information of the radio frequency pulse includes the energy of the radio frequency pulse and the emission duration of the radio frequency pulse.
  • Step 150 Determine a second signal based on the mixed signal and the first signal, and generate a fat peak map of the target area based on the spectrum distribution of the second signal.
  • the spectral distribution of the fat signal can be determined based on the spectral distribution corresponding to the two signals. That is, the spectrum distribution of the second signal is determined, so that the magnetic resonance equipment can image the target area based on the spectrum distribution of the second signal, and obtain the fat peak map of the target area.
  • This fat peak map can characterize the distribution of fat, provide doctors with relevant information about fat metabolism in the target area, and help doctors further diagnose the patient's disease.
  • the above step 150 specifically includes: making a difference between the spectrum distribution of the mixed signal and the spectrum distribution of the first signal to obtain the spectrum distribution of the second signal, and generating a fat peak map of the target area based on the spectrum distribution of the second signal.
  • the embodiment of the present application saturates water and fat in the target area with radio frequency pulses to obtain a mixed signal of water and fat; then calculates the first signal of water based on the resonance frequency of water molecules; after obtaining the mixed signal and the first signal, the first signal of water is calculated.
  • the spectrum distribution of the first signal is separated from the spectrum distribution of the mixed signal, thereby obtaining the spectrum distribution of the fat signal, that is, the spectrum distribution of the second signal; finally, the target area can be imaged using the spectrum distribution of the second signal.
  • the mixed signal in this method can be collected based on conventional magnetic resonance signal acquisition methods. By processing the mixed signal, millimeter-level images can be generated, thereby improving the spatial resolution of the spectrum image.
  • the target area is the area where the cone is located in the abdominal cross-section.
  • the above-mentioned first signal represents the feedback signal of water in a saturated state, which can be called a water signal;
  • the second signal represents the feedback signal of fat in a water-saturated state, which can be called a fat signal.
  • Figure 2 shows a schematic diagram of obtaining the spectral distribution of the fat signal.
  • the spectrum distribution curve of the fat signal can be obtained by making a difference between the spectrum distribution curve of the mixed signal and the spectrum distribution curve of the water signal (obtained by fitting the single-pool Lorentz function). It can be seen from the spectrum distribution curve of the fat signal that obvious peaks can be seen at chemical shifts of 0.6ppm, -0.5ppm, -2ppm, -2.6ppm, -3.4ppm and -3.8ppm, and the resonance frequencies corresponding to these chemical shifts are calculated. It was later found that the calculated resonance frequency was consistent with the main resonance frequency of fat. In other words, this result verified that the method for determining the spectral distribution of fat signals proposed in this application is reliable and accurate.
  • Figure 3 shows the peak spectrum of fat with a chemical shift of -2.6ppm
  • Figure 4 shows the peak spectrum of fat with a chemical shift of -3.4ppm, which is comparable to ordinary magnetic resonance images, and the spatial resolution can reach millimeter level, which is better than Magnetic resonance spectroscopy imaging. That is to say, this fat peak map further verifies that the imaging method proposed in this application can improve the spatial resolution of imaging.
  • FIG. 5 shows a structural block diagram of the imaging device 5 provided by the embodiment of the present application. For convenience of explanation, only the parts related to the embodiment of the present application are shown.
  • the imaging device 5 includes:
  • the excitation module 51 is configured to: for each preset frequency within the preset frequency range: transmit a radio frequency pulse of a preset frequency to the target area, and the radio frequency pulse is used to excite the water and fat in the target area, so that the water in the target area and fats are stimulated to a saturated state;
  • the collection module 52 collects the saturated signal corresponding to the preset frequency after the radio frequency pulse is transmitted;
  • the determination module 53 is used to compare the saturated signals corresponding to all preset frequencies with the pre-collected initial signals to determine the mixed signals of water and fat within the preset frequency range;
  • Calculation module 54 used to calculate the first signal of water
  • the imaging module 55 is configured to determine a second signal based on the mixed signal and the first signal, and generate a fat peak map of the target area based on the spectral distribution of the second signal, where the second signal is a fat signal.
  • the above calculation module 54 may include:
  • the first computing unit is used to calculate the first computing unit.
  • the first signal of water is fitted through the single-cell Lorentz model, where the fitting formula of the first signal is:
  • Z water ( ⁇ ) is the first signal
  • is the chemical shift of water relative to the resonance frequency of water molecules
  • A is the amplitude of the first signal
  • lw is the bandwidth of the first signal.
  • the above calculation module 54 may include:
  • An acquisition unit is used to collect longitudinal relaxation data and transverse relaxation data of water
  • the second calculation unit is used to calculate the longitudinal relaxation rate R 1w of water based on the longitudinal relaxation data
  • the third calculation unit is used to calculate the transverse relaxation rate R 2w of water based on the transverse relaxation data
  • the fourth computing unit is used to calculate the fourth computing unit.
  • the first signal is calculated based on the longitudinal relaxation rate R 1w , the transverse relaxation rate R 2w and the attribute information of the radio frequency pulse.
  • the formula is:
  • the above-mentioned excitation module 51 is specifically used to emit radio frequency pulses to the target area, so that the water and fat in the target area are excited to a saturated state, where the energy of the radio frequency pulse is 0.5 ⁇ T to 1.5 ⁇ T.
  • the duration is 50ms ⁇ 500ms.
  • the above-mentioned excitation module 51 is specifically used to transmit radio frequency pulses to the target area, so that the water and fat in the target area are excited to a saturated state, wherein the energy of the radio frequency pulse is 0.9 ⁇ T to 1.1 ⁇ T.
  • the duration is 100ms ⁇ 200ms.
  • the above-mentioned excitation module 51 is specifically used to transmit radio frequency pulses to the target area, so that the water and fat in the target area are excited to a saturated state, where the energy of the radio frequency pulse is 1 ⁇ T and the emission duration is 100 ms. .
  • the above-mentioned imaging module 55 is specifically used to: make a difference between the mixed signal and the first signal to obtain the second signal.
  • FIG. 6 is a schematic structural diagram of the physical level of an electronic device provided by an embodiment of the present application.
  • the electronic device 6 of this embodiment includes: at least one processor 60 (only one is shown in FIG. 6 ), a memory 61 and a processor stored in the memory 61 and capable of running on the at least one processor 60
  • the computer program 62 is implemented when the processor 60 executes the computer program 62 to implement the steps in any of the above imaging method embodiments, such as steps 110-150 shown in FIG. 1 .
  • the so-called processor 60 can be a central processing unit (Central Processing Unit, CPU), and the processor 60 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit) , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 61 may be an internal storage unit of the electronic device 6 in some embodiments, such as a hard disk or memory of the electronic device 6 . In other embodiments, the memory 61 may also be an external storage device of the electronic device 6, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), or a secure digital (SD) equipped on the electronic device 6. Card, Flash Card, etc.
  • a plug-in hard disk such as a smart disk, SMC), or a secure digital (SD) equipped on the electronic device 6.
  • SD secure digital
  • the memory 61 may also include both an internal storage unit of the terminal device 6 and an external storage device.
  • the memory 61 is used to store operating devices, application programs, boot loaders, data and other programs, such as program codes of computer programs.
  • the memory 61 may also be used to temporarily store data that has been output or is to be output.
  • Module completion means dividing the internal structure of the above device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the steps in each of the above method embodiments can be implemented.
  • Embodiments of the present application provide a computer program product.
  • the steps in each of the above method embodiments can be implemented when the mobile terminal is executed.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • this application can implement all or part of the processes in the methods of the above embodiments by instructing relevant hardware through a computer program.
  • the above computer program can be stored in a computer-readable storage medium.
  • the computer program can be stored in a computer-readable storage medium.
  • the steps of each of the above method embodiments can be implemented.
  • the above-mentioned computer program includes computer program code, and the above-mentioned computer program code may be in the form of source code, object code, executable file or some intermediate form, etc.
  • the above-mentioned computer-readable media may at least include: any entity or device capable of carrying computer program code to a camera/electronic device, recording media, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunications signals
  • software distribution media For example, U disk, mobile hard disk, magnetic disk or CD, etc.
  • the disclosed devices/network devices and methods can be implemented in other ways.
  • the device/network equipment embodiments described above are only illustrative.
  • the division of the above modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or units. Components may be combined or may be integrated into another system, or some features may be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本申请公开了一种成像方法、成像装置、电子设备及计算机存储介质,该成像方法包括:针对预设频率范围内的每个预设频率:向目标区域发射预设频率的射频脉冲,射频脉冲用于激发目标区域内的水和脂肪,以使得目标区域内的水和脂肪被激发至饱和状态;在发射射频脉冲结束后,采集预设频率对应的饱和信号;将所有预设频率对应的饱和信号与预先采集的初始信号进行比较,以确定预设频率范围内水和脂肪的混合信号;计算水的第一信号;基于混合信号和第一信号确定第二信号,基于第二信号的频谱分布生成目标区域的脂肪峰值图谱,第二信号为脂肪的信号。该方法可以直接基于脂肪信号的频谱分布进行成像,能够提高图像空间分辨率。

Description

成像方法、成像装置、电子设备及存储介质 技术领域
本申请属于医学影像技术领域,尤其涉及一种成像方法、成像装置、电子设备及计算机可读存储介质。
背景技术
脂肪是人体的重要组成部分,其参与人体的多种生命活动。不同部位的脂肪代谢情况可以反映出人体不同方面的健康状况,因此,可以通过脂肪成像技术为医生的诊断提供有效的辅助信息。
现有的脂肪成像技术主要包括磁共振波谱成像方法。但磁共振波谱成像方法空间分辨率有限,仅能获取厘米级别大体素的整体信息,即成像空间分辨率偏低。
技术问题
本申请提供了一种成像方法、成像装置、电子设备及计算机可读存储介质,可以解决现磁共振波谱成像方法中成像空间分辨率偏低的问题。
技术解决方案
第一方面,本申请提供了一种成像方法,包括:
针对预设频率范围内的每个预设频率:向目标区域发射上述预设频率的射频脉冲,上述射频脉冲用于激发上述目标区域内的水和脂肪,以使得上述目标区域内的水和脂肪被激发至饱和状态;
在发射上述射频脉冲结束后,采集上述预设频率对应的饱和信号;
将所有上述预设频率对应的上述饱和信号与预先采集的初始信号进行比 较,以确定上述预设频率范围内上述水和上述脂肪的混合信号;
计算上述水的第一信号;
基于上述混合信号和上述第一信号确定第二信号,基于上述第二信号的频谱分布生成上述目标区域的脂肪峰值图谱,上述第二信号为上述脂肪的信号。
第二方面,本申请提供了一种成像装置,包括:
激发模块,用于针对上述预设频率范围内的每个预设频率:向目标区域发射上述预设频率的射频脉冲,上述射频脉冲用于激发上述目标区域内的水和脂肪,以使得上述目标区域内的水和脂肪被激发至饱和状态;
采集模块,用于在发射上述射频脉冲结束后,采集上述预设频率对应的饱和信号;
确定模块,用于将所有上述预设频率对应的上述饱和信号与预先采集的初始信号进行比较,以确定上述预设频率范围内上述水和上述脂肪的混合信号;
计算模块,用于基于水分子频谱分布特点计算上述水的第一信号;
成像模块,用于基于上述混合信号和上述第一信号确定第二信号,基于上述第二信号的频谱分布生成上述目标区域的脂肪峰值图谱,上述第二信号为上述脂肪的信号。
第三方面,本申请提供了一种电子设备,该电子设备包括存储器、处理器以及存储在上述存储器中并可在上述处理器上运行的计算机程序,上述处理器执行上述计算机程序时实现如上述第一方面的方法的步骤。
第四方面,本申请提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现如上述第一方面的方法的步骤。
第五方面,本申请提供了一种计算机程序产品,上述计算机程序产品包括 计算机程序,上述计算机程序被一个或多个处理器执行时实现如上述第一方面的方法的步骤。
有益效果
本申请与现有技术相比存在的有益效果是:通过射频脉冲激发和饱和目标区域内的水和脂肪,可以获得水和脂肪的混合信号;然后可以基于水分子饱和模型计算水的第一信号;在得到混合信号和第一信号之后,可以将第一信号的频谱分布从混合信号的频谱分布中分离出来,从而得到脂肪的信号的频谱分布,即第二信号的频谱分布,最后利用第二信号的频谱分布对目标区域进行成像,以生成对应的脂肪峰值图,以供医生为病患诊断提供辅助信息。该方法中可以采用常规的自旋回波类磁共振信号采集方法获得混合信号,通过对该混合信号的处理,可以生成毫米级别的图像,从而提高频谱图像的空间分辨率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种成像方法的流程示意图;
图2是本申请实施例提供的一种脂肪信号的频谱分布的获取示意图;
图3是本申请实施例提供的一种腹部横截面内锥体所在区域的脂肪在化学位移为-2.6ppm处的脂肪峰值图谱;
图4是本申请实施例提供的一种腹部横截面内锥体所在区域的脂肪在化学位移为-3.4ppm处的脂肪峰值图谱;
图5是本申请实施例提供的成像装置的结构示意图;
图6是本申请实施例提供的电子设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
现有技术中,磁共振波谱成像因仅能获取厘米级别大体素的整体信息,使得成像的空间分辨率较低。基于此,本申请提出了一种成像方法,该方法可以将第一信号(水的信号)的频谱分布从混合信号(水和脂肪的信号)的频谱分布中去除,即可得到第二信号(脂肪的信号)的频谱分布,基于第二信号的频谱分布即可进一步对目标区域进行成像,能够获得空间分辨率较高的脂肪峰值图谱。
本申请实施例提供的成像方法可以应用于磁共振设备,该磁共振设备可以内嵌处理器来完成本申请的成像方法,或者,外接处理器以及电脑等电子设备来实现本申请的成像方法。具体地,本申请实施例对电子设备的具体类型不作任何限制。
为了说明本申请所提出的技术方案,下面通过具体实施例来进行说明。
图1示出了本申请提供的成像方法的示意性流程图,该成像方法包括:
步骤110、针对预设频率范围内的每个预设频率:向目标区域发射预设频率的射频脉冲,以使得目标区域内的水和脂肪被激发至饱和状态。
目标区域一般为人体待成像的横截面区域,例如人体腹部的横截面区域;当然也可以是横截面内某个部位所形成的区域,例如人体腹部横截面内的锥体 所在区域。要获取目标区域内水和脂肪的混合信号,可以在特定的频率范围内,利用射频脉冲来激发该目标区域内的水和脂肪,使得水和脂肪被激发至饱和状态。
其中,特定的频率范围即预设频率范围,其是涵盖水分子共振频率和脂肪共振频率的频率范围。在该预设频率范围内,磁共振设备可以划分出多个预设频率,在每个预设频率下,可以发射射频脉冲将目标区域内的水和脂肪激发至饱和状态,以便于采集该预设频率下水和脂肪的相关信号。其中,发射射频脉冲的次数和预设频率的个数成正比,即预设频率个数越多,发射射频脉冲的次数也越多,由此得到的相关信号也就越丰富且越精确。
在频谱图的绘制过程中,是以化学位移为横坐标,因此可以对上述的预设频率范围和预设频率进行转换。在本申请实施例中,是以水的共振频率为参考频率,即化学位移指的是水和/或脂肪相对于水分子共振频率的化学位移。为便于后续描述,水相对于水分子的共振频率化学位移可以记作水的第一化学位移,脂肪相对于水分子共振频率化学位移记作第二化学位移。其中,预设频率范围转换为化学位移可记作预设化学位移范围,相对应地,该预设化学位移范围涵盖了第二化学位移和第一化学位移的化学位移,例如-5ppm至5ppm之间。在该预设化学位移范围内,随着水和脂肪逐渐趋近饱和状态,水和脂肪的混合信号的强度会逐渐降低,也即,该混合信号降低的程度反映了在该预设化学位移范围内混合信号的强度变化。
在一些实施例中,为了能够让目标区域内的水和脂肪被激发至饱和状态,可以选用能量为0.5μT~1.5μT,优选为0.9μT~1.1μT,更优选为1μT的射频脉冲;该射频脉冲的发射持续时间可以为50ms~500ms之间,优选为100ms~200ms之间,更优选为100ms。其中,射频脉冲的能量取值和发射持续时 间取值可以进行自由组合,例如射频脉冲的能量为1μT,发射持续时间为100ms,或者射频脉冲的能量为0.9μT,发射持续时间为100ms。
在激发过程中,虽然目标区域内还存在氨基、磁化转移、核奥氏效应等其他内源性物质,即使这些内源性物质存在化学交换饱和转移效应,但是只有使用发射持续时间为500ms以上的射频脉冲持续对目标区域进行激发才会让这些内源物质产生明显的干扰信号。也就是说,通过本实施例中的射频脉冲激发目标区域,可以降低上述的内源性物质对混合信号的干扰。
步骤120、在发射射频脉冲结束后,采集预设频率对应的饱和信号。
射频脉冲的发射,会使得水和脂肪的混合信号强度发生变化。为了能够检测到该变化的混合信号,可以在每个预设频率下,采集得到对应的饱和信号,当采集完所有预设频率对应的饱和信号后,即可得到数量与预设频率个数等同的饱和信号,用以生成后续的水和脂肪的混合信号。
在一些实施例中,上述信号采集的方法是自旋回波类的磁共振数据的采集方法。之所以采用磁共振数据采集方法,是因为通过该方法采集得到的信号数据在经过处理后,可以得到毫米级别的成像。也即,本申请可以基于采集得到的混合信号进行处理,得到比磁共振波谱成像(空间分辨率为厘米级别)空间分辨率更高的成像。
步骤130、将所有预设频率对应的饱和信号与预先采集的初始信号进行比较,以确定预设频率范围内水和脂肪的混合信号;
为了能够检测到水和脂肪的混合信号的变化情况,可以先采集水和脂肪的初始信号,并将每个预设频率所对应的饱和信号与该初始信号进行比较,以确定出预设频率范围内水和脂肪的混合信号。例如,可以是将水和脂肪在饱和状态下获取到的信号与未发射射频脉冲时所采集到水和脂肪的初始信号做差,从 而得到每个预设频率下信号的变化量。基于此,可得到水和脂肪整体的混合信号。可以认为,最终的混合信号为一个信号合集,其包含了每个预设频率所对应的混合信号。可以理解的是,预设频率范围内的预设频率越多,饱和信号的采集频率越高,相对应地,得到的混合信号也就越精确。
步骤140、计算水的第一信号。
为了能从混合信号中分离出脂肪信号,可以先计算水的第一信号。例如可以通过单池洛伦兹模型拟合第一信号,或者可以基于弛豫信息和射频脉冲的属性信息,由水分子信号饱和模型计算得到第一信号。其中,第一信号的具体计算方法,在本实施例中不作限定。
在一些实施例中,为了提高第一信号计算的准确性,上述步骤140具体包括:
通过单池洛伦兹模型拟合水的第一信号,其中,第一信号的拟合公式为:
Figure PCTCN2022096016-appb-000001
Z water(Δω)为第一信号,Δω为水相对于水分子共振频率的化学位移,A为第一信号的振幅,lw为第一信号的带宽。
在脂肪的信号的频谱分布中,脂肪波峰主要集中在-3.8ppm至-2ppm的化学位移范围内,在-2ppm及以上的化学位移范围内,则为第一信号的频谱分布的主导范围,即水波峰主要集中在-2ppm及以上的化学位移范围内。为了能够计算出第一信号,可以根据第一化学位移确定具体的共振频率范围,以便于准确计算出第一信号。
在确定化学位移计算范围的过程中,应当确保该化学位移计算范围包含第一化学位移,且确定出来的化学位移计算范围为第一信号的频谱分布的主导范 围。例如,可以是-2ppm及以上的化学位移,表示为Δω>-2ppm。此处的化学位移计算范围是从步骤110中的预设化学位移范围中确定出来的,在确定出化学位移计算范围后,即可根据上述拟合公式进一步确定出第一信号。可以理解的是,化学位移计算范围也可以划分为多个化学位移点,针对每个化学位移点,可以计算得到一个对应的第一信号。与混合信号相同,最终得到的第一信号也看作一个信号合集,其包括每个化学位移点对应的第一信号。
在一些实施例中,除了上述通过单池洛伦兹模型拟合得到第一信号,还可以通过以下方式获得第一信号:
步骤141、采集水的纵向弛豫数据和横向弛豫数据。
步骤142、基于纵向弛豫数据计算水的纵向弛豫率R 1w
步骤143、基于横向弛豫数据计算水的横向弛豫率R 2w
步骤144、基于纵向弛豫率、横向弛豫率与射频脉冲的属性信息计算第一信号。
通过额外获取水的两种弛豫数据,计算两种弛豫的弛豫率,将两种弛豫率与射频脉冲的属性信息结合,从而估算出第一信号,公式为:
Figure PCTCN2022096016-appb-000002
其中,R =R 1wcos 2θ+R 2wsin 2θ,θ=tan -11/Δω),ω 1为饱和脉冲强度,TR为扫描重复时间,T s为射频脉冲饱和时间。
其中,两种弛豫数据分别为纵向弛豫数据和横向弛豫数据,具体地,纵向弛豫数据为T1 mapping,横向弛豫数据为T2 mapping。简单来说,T1 mapping是以T1弛豫时间做信号加权所得到的数据,T2 mapping是以T2弛豫时间做信号加权所得到的数据。在得到T1 mapping和T2 mapping之后,即可基于获 得的相关数据分别计算水的纵向弛豫率和横向弛豫率;将两种弛豫率与射频脉冲的属性信息结合,可进一步估算得到第一信号。其中,射频脉冲的属性信息包括射频脉冲的能量和射频脉冲的发射持续时间。
步骤150、基于混合信号和第一信号确定第二信号,基于第二信号的频谱分布生成目标区域的脂肪峰值图谱。
在得到混合信号和第一信号之后,可根据这两个信号对应的频谱分布确定出脂肪的信号的频谱分布。即确定出第二信号的频谱分布,使得磁共振设备能够基于第二信号的频谱分布对目标区域进行成像,得到目标区域的脂肪峰值图谱。该脂肪峰值图谱可以表征脂肪的分布,可以为医生提供目标区域内脂肪代谢的相关信息,有助于医生进一步对患者的病症进行诊断。
在一些实施例中,上述步骤150具体包括:将混合信号的频谱分布和第一信号的频谱分布做差,得到第二信号的频谱分布,基于第二信号的频谱分布生成目标区域的脂肪峰值图谱。
第二信号的频谱分布的确定过程可以是:先对混合信号和第一信号做差,得到第二信号;若将第一信号记作Z water(Δω),混合信号记作ΔZ(Δω),第二信号记作Z fat(Δω),则Z fat(Δω)=ΔZ(Δω)-Z water(Δω),在得到Z fat(Δω)后,等同于得到了第二信号的频谱分布。
本申请实施例通过射频脉冲饱和目标区域内的水和脂肪,进而获得水和脂肪的混合信号;然后基于水分子共振频率计算水的第一信号;在得到混合信号和第一信号之后,将第一信号的频谱分布从混合信号的频谱分布中分离出来,从而得到脂肪的信号的频谱分布,即第二信号的频谱分布;最后利用第二信号的频谱分布即可对目标区域进行成像。该方法中的混合信号可以基于常规的磁共振信号采集方法进行采集,通过对该混合信号的处理,可以生成毫米级别的 图像,从而提高波谱图像的空间分辨率。
为了进一步证明本申请的可行性以及本申请所能带来的有益效果,下面以具体的实验数据进行说明。其中,目标区域为腹部横截面内的锥体所在区域。上述第一信号表示水在饱和状态下反馈的信号,可以称作水信号;第二信号表示脂肪在水饱和状态下的反馈信号,可以称作脂肪信号。
如图2所示,图2示出了脂肪信号的频谱分布的获取示意图。其中,将混合信号的频谱分布曲线与水信号的频谱分布曲线(由单池洛伦兹函数拟合得到)做差,可得到脂肪信号的频谱分布曲线。由脂肪信号的频谱分布曲线可知,在化学位移为0.6ppm、-0.5ppm、-2ppm、-2.6ppm、-3.4ppm以及-3.8ppm处可见明显波峰,且计算这几个化学位移对应的共振频率后发现,计算得到的共振频率与脂肪的主要共振频率吻合,也就是说,该结果验证了本申请所提出的脂肪信号的频谱分布确定方法是可靠且准确的。
图3示出了化学位移为-2.6ppm的脂肪峰值图谱,图4示出了化学位移为-3.4ppm的脂肪峰值图谱,其与普通磁共振图像相当,空间分辨率可达到毫米级别,优于磁共振波谱成像。也即,该脂肪峰值图谱进一步验证了本申请所提出的成像方法能够提高成像的空间分辨率。
本申请上述实施例所提供的成像方法能带来以下有益效果:
(1)采用常规的磁共振信号采集方法获得混合信号,经过对该混合信号的处理,可以实现毫米级别的成像;
(2)可以获得完整的脂肪信号的频谱分布。
对应于上文实施例的成像方法,图5示出了本申请实施例提供的成像装置5的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图5,该成像装置5包括:
激发模块51,用于针对预设频率范围内的每个预设频率:向目标区域发射预设频率的射频脉冲,射频脉冲用于激发目标区域内的水和脂肪,以使得目标区域内的水和脂肪被激发至饱和状态;
采集模块52,在发射射频脉冲结束后,采集预设频率对应的饱和信号;
确定模块53,用于将所有预设频率对应的饱和信号与预先采集的初始信号进行比较,以确定预设频率范围内水和脂肪的混合信号;
计算模块54,用于计算水的第一信号;
成像模块55,用于基于混合信号和第一信号确定第二信号,基于第二信号的频谱分布生成目标区域的脂肪峰值图谱,第二信号为脂肪的信号。
可选地,上述计算模块54可以包括:
第一计算单元,用于
通过单池洛伦兹模型拟合水的第一信号,其中,第一信号的拟合公式为:
Figure PCTCN2022096016-appb-000003
Z water(Δω)为第一信号,Δω为水相对于水分子共振频率的化学位移,A为第一信号的振幅,lw为第一信号的带宽。
可选地,上述计算模块54可以包括:
采集单元,用于采集水的纵向弛豫数据和横向弛豫数据;
第二计算单元,用于基于纵向弛豫数据计算水的纵向弛豫率R 1w
第三计算单元,用于基于横向弛豫数据计算水的横向弛豫率R 2w
第四计算单元,用于
基于纵向弛豫率R 1w、横向弛豫率R 2w与射频脉冲的属性信息计算第一信号,公式为:
Figure PCTCN2022096016-appb-000004
其中,R =R 1wcos 2θ+R 2wsin 2θ,θ=tan -11/Δω),Z water(Δω)为第一信号,ω 1为饱和脉冲强度,TR为扫描重复时间,T s为射频脉冲饱和时间。
可选地,上述激发模块51具体用于:用于向目标区域发射射频脉冲,以使得目标区域内的水和脂肪被激发至饱和状态,其中,射频脉冲的能量为0.5μT~1.5μT,发射持续时间为50ms~500ms。
可选地,上述激发模块51具体用于:用于向目标区域发射射频脉冲,以使得目标区域内的水和脂肪被激发至饱和状态,其中,射频脉冲的能量为0.9μT~1.1μT,发射持续时间为100ms~200ms。
可选地,上述激发模块51具体用于:用于向目标区域发射射频脉冲,以使得目标区域内的水和脂肪被激发至饱和状态,其中,射频脉冲的能量为1μT,发射持续时间为100ms。
可选地,上述成像模块55具体用于:将混合信号和第一信号做差,得到第二信号。
需要说明的是,上述装置/单元之间的信息交互和执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图6为本申请一实施例提供的电子设备的物理层面的结构示意图。如图6所示,该实施例的电子设备6包括:至少一个处理器60(图6中仅示出一个)处理器、存储器61以及存储在存储器61中并可在至少一个处理器60上运行的计算机程序62,处理器60执行计算机程序62时实现上述任意成像方法实施例中的步骤,例如图1所示出的步骤110-150。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),该处理器60还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器61在一些实施例中可以是电子设备6的内部存储单元,例如电子设备6的硬盘或内存。存储器61在另一些实施例中也可以是电子设备6的外部存储设备,例如电子设备6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
进一步地,存储器61还可以既包括终端设备6的内部存储单元也包括外部存储设备。存储器61用于存储操作装置、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将上述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,上述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,上述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。上述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/电子设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现 所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种成像方法,其特征在于,包括:
    针对预设频率范围内的每个预设频率:向目标区域发射所述预设频率的射频脉冲,所述射频脉冲用于激发所述目标区域内的水和脂肪,以使得所述目标区域内的水和脂肪被激发至饱和状态;
    在发射所述射频脉冲结束后,采集所述预设频率对应的饱和信号;
    将所有所述预设频率对应的所述饱和信号与预先采集的初始信号进行比较,以确定所述预设频率范围内所述水和所述脂肪的混合信号;
    计算所述水的第一信号;
    基于所述混合信号和所述第一信号确定第二信号,基于所述第二信号的频谱分布生成所述目标区域的脂肪峰值图谱,所述第二信号为所述脂肪的信号。
  2. 如权利要求1所述的成像方法,其特征在于,所述计算所述水的第一信号,包括:
    通过单池洛伦兹模型拟合所述水的第一信号,其中,所述第一信号的拟合公式为:
    Figure PCTCN2022096016-appb-100001
    所述Z water(Δω)为所述第一信号,所述Δω为所述水相对于水分子共振频率的化学位移,所述A为所述第一信号的振幅,所述lw为所述第一信号的带宽。
  3. 如权利要求1所述的成像方法,其特征在于,所述计算所述水的第一信号,包括:
    采集所述水的纵向弛豫数据和横向弛豫数据;
    基于所述纵向弛豫数据计算所述水的纵向弛豫率R 1w
    基于所述横向弛豫数据计算所述水的横向弛豫率R 2w
    基于所述纵向弛豫率R 1w、所述横向弛豫率R 2w与所述射频脉冲的属性信息计算所述第一信号,公式为:
    Figure PCTCN2022096016-appb-100002
    其中,R =R 1wcos 2θ+R 2wsin 2θ,θ=tan -11/Δω),所述Z water(Δω)为所述第一信号,所述ω 1为饱和脉冲强度,所述TR为扫描重复时间,所述T s为射频脉冲饱和时间。
  4. 如权利要求1-3任一项所述的成像方法,其特征在于,所述射频脉冲的能量为0.5μT~1.5μT,发射持续时间为50ms~500ms。
  5. 如权利要求1-3任一项所述的成像方法,其特征在于,所述射频脉冲的能量为0.9μT~1.1μT,发射持续时间为100ms~200ms。
  6. 如权利要求1-3任一项所述的成像方法,其特征在于,所述射频脉冲的能量为1μT,发射持续时间为100ms。
  7. 如权利要求1所述的成像方法,其特征在于,所述基于所述混合信号和所述第一信号确定第二信号,包括:
    将所述混合信号和第一信号做差,得到所述第二信号。
  8. 一种成像装置,其特征在于,包括:
    激发模块,用于针对所述预设频率范围内的每个预设频率:向目标区域发射所述预设频率的射频脉冲,所述射频脉冲用于激发所述目标区域内的水和脂肪,以使得所述目标区域内的水和脂肪被激发至饱和状态;
    采集模块,用于在发射所述射频脉冲结束后,采集所述预设频率对应的饱 和信号;
    确定模块,用于将所有所述预设频率对应的所述饱和信号与预先采集的初始信号进行比较,以确定所述预设频率范围内所述水和所述脂肪的混合信号;
    计算模块,用于基于水分子频谱分布特点计算所述水的第一信号;
    成像模块,用于基于所述混合信号和所述第一信号确定第二信号,基于所述第二信号的频谱分布生成所述目标区域的脂肪峰值图谱,所述第二信号为所述脂肪的信号。
  9. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的成像方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的成像方法。
PCT/CN2022/096016 2022-05-30 2022-05-30 成像方法、成像装置、电子设备及存储介质 WO2023230771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096016 WO2023230771A1 (zh) 2022-05-30 2022-05-30 成像方法、成像装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096016 WO2023230771A1 (zh) 2022-05-30 2022-05-30 成像方法、成像装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023230771A1 true WO2023230771A1 (zh) 2023-12-07

Family

ID=89026494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096016 WO2023230771A1 (zh) 2022-05-30 2022-05-30 成像方法、成像装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023230771A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373249B1 (en) * 1999-05-21 2002-04-16 University Of Rochester System and method for three-dimensional interleaved water and fat image acquisition with chemical-shift correction
US20090027051A1 (en) * 2005-02-03 2009-01-29 The Johns Hopkins University Method for magnetic resonance imaging using inversion recovery with on-resonant water suppression including mri systems and software embodying same
CN103513202A (zh) * 2012-06-16 2014-01-15 上海联影医疗科技有限公司 一种磁共振成像中的dixon水脂分离方法
CN105572613A (zh) * 2014-10-13 2016-05-11 中国科学院深圳先进技术研究院 磁共振化学交换饱和转移成像方法和系统
CN105809661A (zh) * 2014-12-30 2016-07-27 中国科学院深圳先进技术研究院 磁共振成像的图像水脂分离方法和系统
CN111044957A (zh) * 2019-12-24 2020-04-21 上海联影医疗科技有限公司 磁共振成像方法、装置、存储介质和磁共振成像系统
CN112834969A (zh) * 2020-12-23 2021-05-25 江苏珂玛麒生物科技有限公司 兔、猴肝脏水/脂肪分离mri成像的方法、计算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373249B1 (en) * 1999-05-21 2002-04-16 University Of Rochester System and method for three-dimensional interleaved water and fat image acquisition with chemical-shift correction
US20090027051A1 (en) * 2005-02-03 2009-01-29 The Johns Hopkins University Method for magnetic resonance imaging using inversion recovery with on-resonant water suppression including mri systems and software embodying same
CN103513202A (zh) * 2012-06-16 2014-01-15 上海联影医疗科技有限公司 一种磁共振成像中的dixon水脂分离方法
CN105572613A (zh) * 2014-10-13 2016-05-11 中国科学院深圳先进技术研究院 磁共振化学交换饱和转移成像方法和系统
CN105809661A (zh) * 2014-12-30 2016-07-27 中国科学院深圳先进技术研究院 磁共振成像的图像水脂分离方法和系统
CN111044957A (zh) * 2019-12-24 2020-04-21 上海联影医疗科技有限公司 磁共振成像方法、装置、存储介质和磁共振成像系统
CN112834969A (zh) * 2020-12-23 2021-05-25 江苏珂玛麒生物科技有限公司 兔、猴肝脏水/脂肪分离mri成像的方法、计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO DA; YANG CHEN; CHEN TIANWU; JING ZONGLIN; MU QIWEN: "Fatty Liver on Magnetic Resonance Imaging: Current Status", MEDICAL JOURNAL OF WEST CHINA, vol. 29, no. 4, 20 April 2017 (2017-04-20), pages 574 - 577, 581, XP009550995, ISSN: 1672-3511 *

Similar Documents

Publication Publication Date Title
JP6566513B2 (ja) 心容積及び心拍出量の推定装置
US11147537B2 (en) Method for representing tissue stiffness
JP6289124B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
US11747424B2 (en) Magnetic resonance imaging apparatus, image processing apparatus, and image processing method
CN112292086B (zh) 超声病变评估及相关联的设备、系统和方法
CN109754397B (zh) 血管段中心路径的提取方法、装置、终端设备及存储介质
CN115054226A (zh) 成像方法、成像装置、电子设备及存储介质
WO2023230771A1 (zh) 成像方法、成像装置、电子设备及存储介质
US20120232390A1 (en) Diagnostic apparatus and method
WO2021115055A1 (zh) 一种动脉输入函数曲线生成方法及装置
US7741845B2 (en) Imaging tissue deformation using strain encoded MRI
CN103156609B (zh) 使用磁共振波谱系统的化学平衡比的测量
US9928576B2 (en) Denoising method and apparatus for multi-contrast MRI
CN111436966A (zh) 超声回波成像方法、装置、计算机设备及存储介质
CN116269501A (zh) 基于模糊熵的超声成像方法、装置、计算机设备及介质
CN113842212B (zh) 荧光散射光学断层成像处理方法及系统
US9754361B2 (en) Image processing apparatus and ultrasonic diagnosis apparatus
CN111681251B (zh) 组织器官参数确定方法、装置以及计算机设备
EP4008268A1 (en) Ultrasonic signal processing method and ultrasonic signal processing apparatus, and device and storage medium
CN110013277B (zh) 一种基于剪切波弹性图像的辅助诊断方法及装置
CN113509208B (zh) 一种基于相位约束的超高速超声成像的重建方法
Oh et al. Unpaired Deep Learning for Pharmacokinetic Parameter Estimation from Dynamic Contrast-Enhanced MRI
US20230380789A1 (en) Noise analysis systems and methods
Gigie et al. EMiTD: Enhanced Microwave Imaging for Breast Tumor Detection
WO2021035400A1 (zh) 肝肾回声对比的测量方法、设备、医用系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944113

Country of ref document: EP

Kind code of ref document: A1