WO2023229255A1 - Method for separating beta-mangostin with high purity and high efficiency by using smb process and use thereof - Google Patents

Method for separating beta-mangostin with high purity and high efficiency by using smb process and use thereof Download PDF

Info

Publication number
WO2023229255A1
WO2023229255A1 PCT/KR2023/006086 KR2023006086W WO2023229255A1 WO 2023229255 A1 WO2023229255 A1 WO 2023229255A1 KR 2023006086 W KR2023006086 W KR 2023006086W WO 2023229255 A1 WO2023229255 A1 WO 2023229255A1
Authority
WO
WIPO (PCT)
Prior art keywords
mangosteen
beta
smb
zone
column
Prior art date
Application number
PCT/KR2023/006086
Other languages
French (fr)
Korean (ko)
Inventor
김광동
김정윤
문성용
조철연
김민주
이시현
김주연
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Publication of WO2023229255A1 publication Critical patent/WO2023229255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/86Oxygen atoms, e.g. xanthones

Definitions

  • the present invention relates to a method for separating beta-mangosteen with high purity and efficiency from a mixture of mangosteen isomers using an optimized simulated moving bed chromatography process.
  • Mangosteen isomer components (alpha, gamma, beta mangosteen) with high industrial value can be obtained through extraction of the peel of mangosteen ( Garcinia mangostana ), a natural fruit.
  • alpha-mangosteen is known to be applicable to the manufacture of anti-inflammatory agents, antioxidants, and anticancer agents
  • beta-mangosteen is a tyrosinase and TRP-1 (tyrosinase-related protein-1) agent related to melanin production. It is known to induce a skin whitening effect by inhibiting its activity.
  • beta-mangosteen Recently, interest in beta-mangosteen has been increasing, and in order to maximize the potential value and industrial usefulness of beta-mangosteen, it is essential to establish a high-purity production system for beta-mangosteen. Furthermore, in order to promote commercialization and secure economic feasibility of the beta-mangosteen production process, in addition to high purity separation conditions, additional conditions for securing high level throughput and high yield for mass production are required.
  • Korean Patent No. 1743063 discloses 'Method for separation of cresol isomers using pseudo-moving bed adsorption separation method'
  • Korean Patent No. 1837446 discloses 'Alpha-Mangosteen, Beta-Mango' batch separation method.
  • a composition for improving skin wrinkles or moisturizing skin containing a steen, gamma-mangosteen or gartannin compound as an active ingredient is disclosed, the present invention provides a method for separating beta-mangosteen with high purity and efficiency using the SMB process and the same. There is nothing written about ‘usage’.
  • the present invention was developed in response to the above-mentioned needs, and the present inventors have developed a high-performance and highly efficient "beta-mangosteen” that can continuously separate only beta-mangosteen from a mangosteen peel extract (crude mangosteen mixture) with high purity and high yield. We sought to develop a “separated SMB process.”
  • adsorbents and solvents suitable for the separation of target components determined the dynamic behavior prediction model and related parameters of the raw material (crude extract) components, and designed the optimal operating conditions for the SMB process based on this, and designed the SMB with optimal operating conditions.
  • Process equipment was manufactured.
  • experimental verification was conducted on the optimal design results and the manufactured SMB device, and a post-treatment process for the SMB process product was established to recover the beta-mangosteen component in the raw material crude extract sample with a purity of more than 96%.
  • the present invention provides a method of producing beta-mangostin, comprising the step of separating beta-mangosteen by applying mangosteen extract raw materials to simulated moving bed chromatography. Provides a separation method.
  • beta-SMB process developed in the present invention, not only can beta-mangosteen and other mangosteen components (alpha, gamma) contained in the raw material (crude extract) be separated with high efficiency, but also unknown impurities can be separated. A significant portion can be removed, allowing high purity beta-mangosteen to be recovered.
  • the method of the present invention uses a very small amount of eluent compared to general batch chromatography, enables high-concentration and high-purity separation, and allows continuous processing, increasing the production of beta-mangosteen. It can be improved.
  • Figure 1 is a schematic diagram of a general four-zone closed loop SMB process structure.
  • Figure 2 shows a schematic diagram of the development of a beta-SMB process (beta-mangosteen separation SMB process) based on a column model-based process design approach.
  • Figure 3 is a device assembly design of the beta-SMB process (beta-mangosteen separation SMB process).
  • Figure 4 shows the results of a pulse injection experiment using an aqueous ethanol solution as a mobile phase (adsorbent: Sepra C8 resin, raw material: single mangosteen reagent 0.1 g/L, raw material injection amount: 200 ml).
  • adsorbent Sepra C8 resin, raw material: single mangosteen reagent 0.1 g/L, raw material injection amount: 200 ml.
  • Figure 5 shows the results of a pulse injection experiment (adsorbent: Sepra C8 resin, raw material: crude mangosteen sample 30 g/L, raw material injection amount: 15 ml) using an 85% ethanol aqueous solution as a mobile phase and targeting a crude mangosteen mixture sample. am.
  • Figure 6 is the optimal structure of the beta-SMB process (beta-mangosteen separation SMB process).
  • the front part of ⁇ -1 and the back part of ⁇ -2 are located in zone III and zone I, respectively, and the back part of ⁇ -2 is located in zone II.
  • the ⁇ component since the ⁇ component has the lowest adsorption strength, it is automatically discharged through the raffinate port. Under this situation, beta-mangosteen components ( ⁇ -1, ⁇ -2) are recovered through the extract port, and all other mangosteen components ( ⁇ -1, ⁇ -2, ⁇ ) are recovered through the residue port. is removed.
  • the inlet and outlet ports move the length of one column along the direction of the solvent, enabling continuous injection of the feed mixture and continuous recovery of the beta-mangosteen component.
  • Figure 7 is a graph comparing the pulse injection experiment results and computer simulation results.
  • Adsorbent Sepra C18 resin, mobile phase: 85% ethanol, (a) ⁇ -1 (based on high concentration: crude sample), (b) ⁇ -2 (based on low concentration: single reagent), (c) ⁇ -1 (based on high concentration: crude sample), (d) ⁇ -2 (low concentration standard: single reagent).
  • Figure 8 shows simulation results for the periodic steady-state column profile of the optimally designed beta-SMB process. (a) Beginning of a switching period, (b) Middle of a switching period, (c) End of a switching period.
  • Figure 9 is a photo of the device taken during the beta-SMB process experiment.
  • Figure 10 shows the results of the beta-SMB process experiment for separating beta-mangosteen.
  • Figure 11 is raw data of an HPLC concentration analysis chromatogram to prove the beta-SMB process experiment results.
  • raw material solution crude mangosteen sample solution
  • SMB product extract
  • beta-mangosteen standard reagent beta-mangosteen standard reagent
  • Figure 12 is a chromatogram of the beta-mangosteen separation process using prep-HPLC.
  • Figure 13 shows the results of a post-treatment process experiment using prep-HPLC.
  • SMB extract (product) stream (b) re-HPLC-1, (c) re-HPLC-2 (purity >95%, beta-mangosteen), (d) re-HPLC-3.
  • the present invention includes the step of separating beta-mangosteen by applying mangosteen extract raw material to simulated moving bed chromatography, beta-mangostin ( ⁇ -mangostin). ) provides a separation method.
  • the simulated moving bed (SMB) process generally has a structure divided into four zones by two inlets (feed, desorbent) and two outlets (extract, raffinate) ( Figure 1). , each zone is connected to one or more columns filled with pre-selected adsorbents. Components with relatively high affinity to the adsorbent (high-affinity solute) move at a slow speed along the flow direction of the mobile phase solvent (eluent), while components with low affinity (low-affinity solute) move at a high speed.
  • the SMB process according to the present invention is an open-loop system in which the mobile phase is not recirculated. Choosing the open type has the advantage of protecting zone I from contamination and making it easy to adjust the flow rate when problems occur during operation.
  • the mangosteen extract may contain beta-mangosteen and a mixture of isomers thereof, and the isomers may be alpha-mangosteen and gamma-mangosteen.
  • simulated moving bed chromatography was used to separate beta-mangosteen with high purity from a mixture of mangosteen isomers, which are difficult to separate.
  • step 1 Determining the adsorption coefficient and mass transfer coefficient of alpha-mangosteen and beta-mangosteen for the adsorption column applied to simulated moving bed chromatography (step 1);
  • It may include, but is not limited to, supplying mangosteen extract raw materials and eluent to simulated moving bed chromatography and separating beta-mangosteen by applying the operating conditions calculated in step 2 above (step 3).
  • the adsorption column in step 1 may include C18-coated silica as a stationary phase, but is not limited thereto.
  • the C18-coated silica was confirmed to be the most suitable adsorbent in terms of separation between beta-mangosteen and other mangosteen components and applicability to continuous processes. Furthermore, it was confirmed that for continuous process application, the particle size of the adsorbent must be 50 ⁇ m or more and a sufficient level of separation selectivity must be guaranteed even under low pressure.
  • adsorption coefficients (Henry constants) of alpha-mangosteen and beta-mangosteen on an adsorption column containing C18-coated silica as a stationary phase were determined from the pulse injection experiment data (FIGS. 4d and 5) for each component. was determined using the retention time and solute movement theory, and the mass transfer coefficients of alpha-mangosteen and beta-mangosteen for an adsorption column containing C18-coated silica as a stationary phase were determined using the Chung and Wen correlation. and computer simulation results were used to calculate it (Table 2).
  • the column model equation of step 2 may be a lumped mass-transfer model
  • the simulated moving layer computational simulation program may be Aspen Chromatography TM , but is not limited thereto. No.
  • the operating conditions of simulated moving bed chromatography calculated in step 2 of the present invention are shown in Table 3.
  • the eluent in step 3 may be a lower alcohol of C1 to C4, preferably methanol or ethanol, more preferably ethanol, and even more preferably 80 to 95 alcohol.
  • the ethanol was confirmed to have excellent separation selectivity between beta-mangosteen and its isomers under the conditions of an adsorption column containing C18-coated silica as a stationary phase. Depending on the type of adsorption column, there are different types of ethanol commonly used in the art. It may be variable with the eluent.
  • the separation method of beta-mangosteen according to the present invention may additionally perform recycling prep HPLC on the product eluted after the simulated moving bed chromatography in step 3. It is not limited to this.
  • the additional recycling prep HPLC may be performed to remove trace residues contained in the product eluted after simulated moving bed chromatography.
  • the desorption solvent eluent
  • the beta-mangosteen product is released through the outlet of the first zone.
  • a desorption solvent is injected into the inlet of the second zone so that the alpha-mangosteen and gamma-mangosteen components can be desorbed from the first column of the second zone within one exchange time and proceed toward the third zone.
  • the mangosteen sample solution is injected into the third zone through the supply fluid inlet, and at the same time, the movement range of the beta-mangosteen component in the mangosteen sample is limited to within the third zone, while alpha-mangosteen and gamma -It can be understood as a three-zone open SMB chromatography that includes the step (step 3) of allowing the mangosteen component to pass through the third zone exit point and be discharged to the outside within one exchange time.
  • beta-mangosteen can be separated with a high purity of 70% or more, 80% or more, 90% or more, or 96% or more, and unlike general batch chromatography, production
  • the yield is excellent, showing a yield of 70% or more, 80% or more, 90% or more, or 96% or more, making mass production possible, which shows that the separation method is suitable for commercial use.
  • the process development process of the present invention is largely comprised of solvent selection for the adsorbent and mobile phase, determination of basic parameters of each component (alpha, beta, and gamma mangosteen) in the selected adsorbent, and optimization of the beta-SMB process based on the determined basic parameter information. It is divided into four stages: design and theoretical verification, production of a beta-SMB device that meets the optimal design results, experimental verification based on this, and scale-up.
  • Simulation is a process of calculating the solution of the so-called column model equation, a mathematical model for the transport behavior of each component in the column. Since the column model equation itself is composed of simultaneous partial differential equations, it is computer-based. The use of numerical computational tools is essential.
  • the subscript i represents the solute
  • C b,i and C i * are the solute liquid phase concentration in the inter-particle void (mobile phase) and intra-particle void (pore phase), respectively
  • q i is It refers to the concentration in the adsorbent phase, which is in equilibrium with the liquid phase concentration in the pore phase.
  • the relationship between the liquid phase concentration and the adsorbent phase concentration in equilibrium is expressed by the adsorption model equation.
  • K f in the above column model equation is a lumped mass-transfer coefficient, and its value can be calculated in the following way.
  • d p represents the diameter of the adsorbent particle
  • D p and k f refer to intra-particle diffusivity and film mass-transfer coefficient, respectively.
  • Optimization of the SMB process based on genetic algorithms can be broadly divided into two areas.
  • the first area is a column model that can accurately predict the dynamic behaviors of each component in the SMB column and a solution method that can find a solution to this model equation.
  • the second area is to follow a step-by-step procedure based on a genetic algorithm to determine the optimal operation parameters (flow rate, switching time) of SMB and track the solution corresponding to the optimal operation parameters.
  • the lumped mass-transfer model mentioned above was adopted as the simulation model of the optimization tool.
  • the Aspen Chromatography simulator based on the biased upwind differencing scheme (BUDS) and gear integration method was used to calculate the numerical solution of the adopted column model equation (Eq. (1)).
  • the genetic algorithm the second area of the SMB optimization tool, has undergone several improvements, the most recent version being NSGA-II-JG (elitist nondominated sorting genetic algorithm with jumping gene) (R.B. Kasat et al. , Comput. Chem. Eng. 2003, 27:1785-1800; S. Mun et al., 2012).
  • an SMB optimization computer tool based on the NSGA-II-JG algorithm was produced using the Visual Basic Application (VBA) programming language.
  • VBA Visual Basic Application
  • the operation parameters (flow rate, switching time) of the SMB process were set as targets for the chromosome, and the prediction of SMB performance, which determines the fitness of this chromosome, was performed based on the solution of the column model equation.
  • n-hexane, ethyl acetate, methanol, and ethanol used as mobile phase solvents for normal and reversed phase chromatography columns in the single column experiment (pulse injection experiment) of the present invention were all purchased from Daejeong Chemical. All water used in the experiment was distilled deionized water (DDW), obtained from the Milli-Q system purchased from Millipore Co. (USA) and used in all parts of the experiment.
  • DDW distilled deionized water
  • the Young-Lin HPLC system consists of two Young-Lin SP930D pumps, a Young-Lin UV730D detector, and Autochro-3000 software.
  • the Young-Lin SP930D pump is responsible for smooth transfer of the solvent
  • the Young-Lin UV730D detector is responsible for real-time monitoring of the concentration of each component in the column effluent.
  • Autochro-3000 software is responsible for control and data collection of the pump and detector.
  • a Waters HPLC system was used as a device to analyze the concentration of samples obtained from pulse injection experiments and SMB experiments targeting crude mangosteen samples.
  • an Agilent Eclipse XDB-C18 analytical column (0.46 ⁇ 15 cm) was purchased and used as an HPLC analysis column. Injection of the sample was performed through a Rheodyne 7725i injector, and the sample injection volume was 10 ⁇ l.
  • the HPLC analysis was operated in gradient mode at room temperature, and of the two types of solvents (referred to as A and B for convenience) used, solvent A is 100% acetonitrile and solvent B is 0.1% acetic acid aqueous solution.
  • the gradient mode operation method based on solvents A and B is shown in Table 1. Throughout the HPLC analysis, the flow rate was maintained at 1 mL/min and control of the Waters HPLC system was performed by Empower 2.0 software.
  • the beta-SMB process experimental device of the present invention was self-assembled and manufactured to have a 1-2-2 column configuration structure under a 3-zone open-loop method.
  • the manufactured SMB device (FIG. 3) consisted of 5 rotary valves, 5 columns, and 3 pumps.
  • the rotary valve used in the SMB device is a Select-Trapping (ST) valve purchased from Valco Instrument Co. (USA). This valve connects each column and each port to maintain a flow structure that allows continuous separation. have Control of the rotary valve was performed using Labview 8.0 software.
  • the flow rate of the stream injected into each port of the SMB device was controlled using a Waters 515 HPLC pump purchased from Waters. Meanwhile, the flow rate of the stream discharged to the residue port was determined by mass balance without a separate pump.
  • a preparative-scale column (2.5 ⁇ 22 cm) filled with the adsorbent candidate (silica gel, Sepra C18) was installed in the Young-Lin HPLC system, and then each of the single mangosteen reagent components (alpha, beta, and gamma) and the crude mangosteen sample were analyzed.
  • a pulse injection experiment was performed. The injection amount and concentration of the feed injected into the column were set to 200 ⁇ l and 0.1 g/L, respectively, for a single mangosteen component, and 15 ml and 30 g/L, respectively, for crude mangosteen samples.
  • single mangosteen components were injected using a Rheodyne 7725i injector, and crude mangosteen samples were injected using a SP930D pump.
  • the mobile phase solvent was applied as follows depending on the phase of the adsorbent packed in the column.
  • silica resin was used as an adsorbent
  • the experiment was repeated while changing the ratios of n-hexane and ethyl acetate to 1:1, 15:1, and 30:1.
  • Sepra C18 resin is used as an adsorbent
  • a mixed solvent of methanol-DDW methanol content: changed to 100%, 99%, 95%) or ethanol-DDW (ethanol content: changed to 100%, 95%, 90%, 85%
  • Change The experiment was repeated while using a mixed solvent as a mobile phase.
  • the start of the SMB experiment began with the operation of each pump and the start of execution of Labview 8.0 software.
  • raw materials and desorbent were continuously injected into the SMB.
  • a crude mangosteen mixture solution with a concentration of 30 g/L was continuously injected into the raw material port, and the concentrations of alpha, beta, and gamma mangosteen in the raw material solution were 4.80 g/L, 0.13 g/L, and 0.70 g/L, respectively.
  • an 85% ethanol aqueous solution was used as the eluent continuously injected into the desorbent-1 and desorbent-2 ports.
  • the SMB experiment was conducted until a cyclic steady state was sufficiently reached.
  • the accuracy of the flow rate was checked at every switching period, and the concentration of the stream discharged from the extract and residue ports was measured using the Waters HPLC concentration analysis system mentioned above. Real-time analysis was performed.
  • Example 1 Determination of an adsorbent phase suitable for continuous separation between beta-mangosteen and other mangosteen components in a crude mangosteen sample.
  • the type of adsorbent phase suitable for a continuous separation process such as SMB must be determined.
  • silica resin and C18 series resin which represent normal phase and reversed phase chromatography adsorbents, were selected and a series of pulse injection experiments were performed.
  • beta-mangosteen As the content of n-hexane, which corresponds to a non-polar solvent, increases, desorption of beta-mangosteen does not proceed smoothly, resulting in a tailing phenomenon in which the back part of the solute band of beta-mangosteen is elongated. This occurred. However, the breakthrough time of the beta-mangosteen component showed no change or tended to become slightly faster, which was predicted to be due to the non-polar properties of beta-mangosteen.
  • Sepra C18 resin which is known to have particularly excellent durability among reversed-phase adsorbents.
  • 100% methanol was used as a mobile phase, and a single mangosteen reagent (pure reagent as alpha, beta, and gamma mangosteen) was used to quickly understand the experimental results.
  • a single mangosteen reagent pure reagent as alpha, beta, and gamma mangosteen
  • the Sepra C18 adsorbent can provide a meaningful level of separation selectivity between beta-mangosteen and other major non-target components (alpha- and gamma-mangosteen).
  • Example 2 Optimal determination of ethanol content in mobile phase under reversed phase chromatography (Sepra C18 adsorbent) environment
  • the pulse injection experiment of Example 2 is that when injecting the raw material (feed), the injection amount of the crude mangosteen sample was set to be more than 75 times higher than the injection amount of a single mangosteen reagent.
  • the pulse injection experiment conditions for crude mangosteen samples are conditions that maintain the mangosteen concentration in the column higher.
  • the retention time of the remaining mangosteen components (alpha, beta) except gamma-mangosteen becomes faster as the concentration increases, which means that the retention time of the remaining mangosteen components (alpha and beta) increases as the concentration increases.
  • the Steen component follows a Langmuir type nonlinear adsorption tendency.
  • each mangosteen ingredient is treated by dividing it into two components: high concentration (concentration based on crude sample: equivalent to the concentration level input to the SMB process) and low concentration (concentration based on single reagent component).
  • high concentration concentration based on crude sample: equivalent to the concentration level input to the SMB process
  • low concentration concentration based on single reagent component.
  • Henry constant linear adsorption coefficient
  • the structure is selected to minimize the number of columns and valves to save equipment and management costs.
  • more columns were placed in the separation zone (two zones located around the raw material port), and the burden of column regeneration was increased.
  • the structure presented in Figure 6 was confirmed to be the most suitable.
  • the front part of ⁇ -1 and the back part of ⁇ -2 are located in zone III and zone I, respectively, and the rear part of ⁇ -2 is located in zone II.
  • the ⁇ component has the lowest adsorption strength, it has no choice but to be automatically discharged through the raffinate port.
  • the beta-mangosteen target components ( ⁇ -1, ⁇ -2) are recovered through the extract port, and all other mangosteen components ( ⁇ -1, ⁇ -2, ⁇ ) are recovered through the residue port. is removed through
  • the inlet and outlet ports move the length of one column along the direction of the solvent, enabling continuous injection of the feed mixture and continuous recovery of the beta-mangosteen target ingredient.
  • the mass transfer coefficient which is a major basic parameter that must be determined additionally following the Henry's constant, includes the axial dispersion coefficient (E b ) and the film mass-transfer coefficient (k f ).
  • both the front part of the ⁇ -1 solute band and the back part of the ⁇ -2 solute band are well-confined within zone III and zone I. Additionally, the rear part of the ⁇ -2 band is also well controlled within zone II. Under this situation, all of the remaining mangosteen components (a-1, ⁇ ) have no choice but to be automatically discharged through the residue port, so the behavior of these components has no effect on the target component (extract) stream.
  • the operating conditions (results of optimal design) in Table 3 were determined to be SMB operating conditions that can ensure high purity and high yield continuous separation between beta-mangosteen and other mangosteen components.
  • the extract pot confirmed the presence of only beta-mangosteen among the main mangosteen components.
  • only alpha and gamma mangosteen were confirmed to leak into the raffinate port ( Figure 10b).
  • the above results meant that, considering only the main components, both purity and yield reached 100% when separating beta-mangosteen through the beta-SMB process.
  • the beta-SMB process extract (product) chromatogram of FIG. 11b was compared with the beta-mangosteen standard sample chromatogram (FIG. 11c).
  • the presence of beta-mangosteen components in the extract (product) stream of the beta-SMB process was clearly confirmed, and the presence of impurities around the beta-mangosteen peak was also observed.
  • the number and size of the impurity peaks were significantly reduced compared to the number and size of the impurity peaks in the crude mangosteen sample (FIG. 11a).
  • beta-mangosteen which was only a minor component in crude mangosteen samples, became a major component with the largest content in the SMB product stream.
  • JAI NEXT recycling preparative HPLC was used to selectively separate the target substance (beta-mangosteen) in the beta-SMB process product through HPLC chromatogram.
  • the column used was Thermofisher Scientific's Acclaim Polar Advatage II (5 ⁇ m, 250 x 20 mm), and the mobile phase was 100% acetonitrile under isocratic conditions.
  • a total of three fractions were secured: re-HPLC-1 from peaks 15 and 56, re-HPLC-2 from peaks 27 and 72, and re-HPLC-3 from peaks 28, 73, and 74. did.

Abstract

The present invention relates to a method for separating beta-mangostin with high purity and high-efficiency by using a simulated moving bend (SMB) process and use thereof, wherein the use of a beta-SMB process and a post-treatment process in the present invention enables the collection of high-purity beta-mangostin and allows a continuous process compared with general batch chromatography, thereby improving the productivity of beta-mangostin.

Description

SMB 공정을 이용한 고순도 및 고효율의 베타-망고스틴 분리방법 및 이의 용도High-purity and high-efficiency beta-mangosteen separation method using the SMB process and its uses
본 발명은 망고스틴 이성질체 성분의 혼합물로부터 최적화된 모사 이동층(simulated moving bed) 크로마토그래피 공정을 이용하여 베타-망고스틴을 고순도 및 고효율로 분리할 수 있는 방법에 관한 것이다.The present invention relates to a method for separating beta-mangosteen with high purity and efficiency from a mixture of mangosteen isomers using an optimized simulated moving bed chromatography process.
본 결과물은 교육부의 한국연구재단 산학연협력고도화지원(R&D) 사업 및 농촌진흥청의 바이오그린연계농생명혁신기술개발 사업의 지원을 받아 연구되었습니다(과제번호: BRIDGE-2021-B04 및 PJ015731).This research was conducted with support from the Ministry of Education's National Research Foundation of Korea's Industry-Academy-Research Cooperation Advancement (R&D) Project and the Rural Development Administration's Biogreen-Linked Agricultural Innovation Technology Development Project (Project Number: BRIDGE-2021-B04 and PJ015731).
천연과일 열매인 망고스틴(Garcinia mangostana)의 과피 추출을 통해 산업적 활용 가치가 높은 망고스틴 이성질체 성분(알파, 감마, 베타 망고스틴)들을 확보할 수 있다. 이 중 알파-망고스틴은 소염제, 항산화제, 항암제 등의 제조에 적용 가능한 것으로 알려져 있으며, 베타-망고스틴은 멜라닌의 생성과 관련된 티로시나제(tyrosinase)와 TRP-1 (tyrosinase-related protein-1)의 활성을 저해하여 피부 미백 효과를 유도하는 것으로 알려져 있다.Mangosteen isomer components (alpha, gamma, beta mangosteen) with high industrial value can be obtained through extraction of the peel of mangosteen ( Garcinia mangostana ), a natural fruit. Among these, alpha-mangosteen is known to be applicable to the manufacture of anti-inflammatory agents, antioxidants, and anticancer agents, while beta-mangosteen is a tyrosinase and TRP-1 (tyrosinase-related protein-1) agent related to melanin production. It is known to induce a skin whitening effect by inhibiting its activity.
최근 베타-망고스틴에 대한 관심이 증가하고 있으며 베타-망고스틴의 잠재적 가치와 산업적 유용성을 극대화하기 위해서는 베타-망고스틴에 대한 고순도 생산체제 구축이 필수적이다. 더 나아가 베타-망고스틴 생산 공정의 상용화 촉진과 경제성 확보를 위해서는 고순도 분리 조건 이외에 대량 생산을 위한 높은 수준의 처리속도(throughput)와 고수율(high yield) 확보 조건들이 추가로 요구된다.Recently, interest in beta-mangosteen has been increasing, and in order to maximize the potential value and industrial usefulness of beta-mangosteen, it is essential to establish a high-purity production system for beta-mangosteen. Furthermore, in order to promote commercialization and secure economic feasibility of the beta-mangosteen production process, in addition to high purity separation conditions, additional conditions for securing high level throughput and high yield for mass production are required.
현재까지 천연원료 추출액으로부터 망고스틴 성분의 분리를 위해 적용되어온 공정들은 대부분 회분식(batch) 크로마토그래피 공정이다. 이 공정에서는 1개의 유입구(inlet port)와 1개의 유출구(outlet port)가 설치된 흡착제 컬럼에 혼합물을 일정시간 동안만 주입한 후 이들이 컬럼 외부로 모두 배출될 때까지 이동상(mobile phase) 용매를 지속적으로 주입한다. 주입된 이동상 용매는 컬럼 내 빈 공간을 지나 유출구로 배출된다. 이 과정에서 이동상에 존재하는 목표 성분(target component)과 불순물 성분들(impurities)이 흡착제와 서로 다른 상호작용을 하게 되어 궁극적으로 각 성분들 간의 진행속도에 차이를 가져오게 되고, 이와 같은 각 성분들 간 진행속도의 차이를 이용하여 목표 성분만을 분리하게 된다. 상기 회분식 크로마토그래피 공정의 경우 고순도 및 고수율의 동시 확보가 어려울 뿐만 아니라 흡착제 효용성이 매우 낮고 용매 사용량이 매우 크다. 또한 회분식 운전에 기초하고 있기 때문에 정상상태(steady state)의 유지가 불가능하여 공정 운용 관리와 자동화 시스템 구축에 많은 제약이 따르는 것으로 알려져 있다. 더 나아가 회분식 운전모드의 내재적 한계로 인해 처리속도 향상에 많은 제약이 있을 수밖에 없다.Most of the processes that have been applied to date to separate mangosteen components from natural raw material extracts are batch chromatography processes. In this process, the mixture is injected into an adsorbent column equipped with one inlet port and one outlet port for a certain period of time, and then the mobile phase solvent is continuously injected until all the mixture is discharged out of the column. Inject. The injected mobile phase solvent passes through the empty space in the column and is discharged through the outlet. In this process, the target component and impurities present in the mobile phase interact differently with the adsorbent, ultimately resulting in differences in the progression speed between each component. Only the target component is separated by using the difference in liver progression speed. In the case of the batch chromatography process, not only is it difficult to simultaneously secure high purity and high yield, but the effectiveness of the adsorbent is very low and the amount of solvent used is very large. In addition, because it is based on batch operation, it is impossible to maintain a steady state, so it is known that there are many restrictions on process operation management and automation system construction. Furthermore, there are bound to be many limitations in improving processing speed due to the inherent limitations of the batch operation mode.
이와 같은 회분식 공정의 단점들을 극복하기 위해서는 다수의 컬럼과 다수의 포트(port)를 조합하여 이동상과 흡착제상이 서로 역방향으로 교차하게 하고 이를 바탕으로 혼합물의 연속 주입과 목표 성분의 고순도 연속 회수를 가능하게 해 줄 수 있는 공정 방식을 채택할 필요가 있다. 이와 같은 공정 방식의 대표적인 것이 바로 모사 이동층(simulated moving bed, SMB) 크로마토그래피 공정(도 1)이며 이 공정은 미국 및 유럽의 바이오, 제약, 정밀화학 산업 등의 분야에서 그 가치를 인정받고 있다.In order to overcome the shortcomings of this batch process, multiple columns and multiple ports are combined to allow the mobile phase and adsorbent phase to cross each other in the opposite direction. Based on this, continuous injection of the mixture and high-purity continuous recovery of the target component are possible. There is a need to adopt a process method that can do this. A representative example of this process method is the simulated moving bed (SMB) chromatography process (Figure 1), and this process is recognized for its value in fields such as the bio, pharmaceutical, and fine chemical industries in the United States and Europe. .
한편, 한국등록특허 제1743063호에는 '유사이동층 흡착 분리방법을 이용한 크레졸 이성질체의 분리 방법'이 개시되어 있고, 한국등록특허 제1837446호에는 회분식 분리 방법이 기재된 '알파-망고스틴, 베타-망고스틴, 감마-망고스틴 또는 가르탄닌 화합물을 유효성분으로 함유하는 피부 주름 개선 또는 피부 보습용 조성물'이 개시되어 있으나, 본 발명의 'SMB 공정을 이용한 고순도 및 고효율의 베타-망고스틴 분리방법 및 이의 용도'에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent No. 1743063 discloses 'Method for separation of cresol isomers using pseudo-moving bed adsorption separation method', and Korean Patent No. 1837446 discloses 'Alpha-Mangosteen, Beta-Mango' batch separation method. Although a composition for improving skin wrinkles or moisturizing skin containing a steen, gamma-mangosteen or gartannin compound as an active ingredient is disclosed, the present invention provides a method for separating beta-mangosteen with high purity and efficiency using the SMB process and the same. There is nothing written about ‘usage’.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 망고스틴 과피 추출액(crude 망고스틴 혼합물)으로부터 베타-망고스틴만을 고순도 및 고수율로 연속분리해낼 수 있는 고성능 고효율의 "베타-망고스틴 분리 SMB 공정"을 개발하고자 하였다.The present invention was developed in response to the above-mentioned needs, and the present inventors have developed a high-performance and highly efficient "beta-mangosteen" that can continuously separate only beta-mangosteen from a mangosteen peel extract (crude mangosteen mixture) with high purity and high yield. We sought to develop a “separated SMB process.”
이를 위해 목표 성분 분리에 적합한 흡착제와 용매를 선정하였고, 원료(조추출물) 구성 성분들의 동적 거동 예측 모델 및 관련 파라미터를 결정한 후 이에 기반한 SMB 공정의 최적 운전 조건을 설계하였으며, 최적 운전 조건을 갖춘 SMB 공정 장치를 제작하였다. 그 후, 최적설계 결과 및 제작된 SMB 장치에 대한 실험적 검증을 실시하였으며, SMB 공정 산물에 대한 후처리 공정을 확립하여, 원료인 조추출물 시료 내 베타-망고스틴 성분을 96% 이상의 순도로 회수할 수 있음을 확인함으로써, 본 발명을 완성하였다.To this end, we selected adsorbents and solvents suitable for the separation of target components, determined the dynamic behavior prediction model and related parameters of the raw material (crude extract) components, and designed the optimal operating conditions for the SMB process based on this, and designed the SMB with optimal operating conditions. Process equipment was manufactured. Afterwards, experimental verification was conducted on the optimal design results and the manufactured SMB device, and a post-treatment process for the SMB process product was established to recover the beta-mangosteen component in the raw material crude extract sample with a purity of more than 96%. By confirming that this was possible, the present invention was completed.
상기 과제를 해결하기 위해, 본 발명은 망고스틴 추출물 원료를 모사 이동층(simulated moving bed) 크로마토그래피에 적용하여 베타-망고스틴을 분리하는 단계를 포함하는, 베타-망고스틴(β-mangostin)의 분리 방법을 제공한다.In order to solve the above problem, the present invention provides a method of producing beta-mangostin, comprising the step of separating beta-mangosteen by applying mangosteen extract raw materials to simulated moving bed chromatography. Provides a separation method.
본 발명에서 개발된 beta-SMB 공정을 이용하면 원료(조추출물) 내 포함되어 있는 베타-망고스틴과 다른 망고스틴 성분들(알파, 감마)을 높은 효율로 분리할 수 있을뿐만 아니라 알려지지 않은 불순물의 상당 부분도 제거할 수 있어, 높은 순도의 베타-망고스틴을 회수할 수 있다. 또한, 본 발명의 방법은 SMB 공정을 이용함으로써, 일반적인 회분식 크로마토그래피와 비교하여 매우 적은 양의 용리액이 사용되고, 고농도 및 고순도의 분리가 가능하며, 연속공정이 가능함에 따라 베타-망고스틴의 생산량 또한 향상시킬 수 있다.Using the beta-SMB process developed in the present invention, not only can beta-mangosteen and other mangosteen components (alpha, gamma) contained in the raw material (crude extract) be separated with high efficiency, but also unknown impurities can be separated. A significant portion can be removed, allowing high purity beta-mangosteen to be recovered. In addition, by using the SMB process, the method of the present invention uses a very small amount of eluent compared to general batch chromatography, enables high-concentration and high-purity separation, and allows continuous processing, increasing the production of beta-mangosteen. It can be improved.
도 1은 일반적인 형태인 4구역 닫힌 루프계 SMB 공정 구조의 모식도이다.Figure 1 is a schematic diagram of a general four-zone closed loop SMB process structure.
도 2는 컬럼 모델 기반의 공정 설계 접근 방법에 기반을 둔 beta-SMB 공정(베타-망고스틴 분리 SMB 공정) 개발의 체계도를 나타낸다.Figure 2 shows a schematic diagram of the development of a beta-SMB process (beta-mangosteen separation SMB process) based on a column model-based process design approach.
도 3은 beta-SMB 공정(베타-망고스틴 분리 SMB 공정)의 장치 조립 설계도이다.Figure 3 is a device assembly design of the beta-SMB process (beta-mangosteen separation SMB process).
도 4는 에탄올 수용액을 이동상으로 사용하는 펄스주입 실험(흡착제: Sepra C8 레진, 원료: 단일 망고스틴 시약 0.1 g/L, 원료 주입량: 200 ㎖)의 결과이다. (a) 이동상: 100% 에탄올, (b) 이동상: 95% 에탄올, (c) 이동상: 90% 에탄올, (d) 이동상: 85% 에탄올.Figure 4 shows the results of a pulse injection experiment using an aqueous ethanol solution as a mobile phase (adsorbent: Sepra C8 resin, raw material: single mangosteen reagent 0.1 g/L, raw material injection amount: 200 ml). (a) Mobile phase: 100% ethanol, (b) Mobile phase: 95% ethanol, (c) Mobile phase: 90% ethanol, (d) Mobile phase: 85% ethanol.
도 5는 85% 에탄올 수용액을 이동상으로 사용하고 crude 망고스틴 혼합물 시료를 대상으로 한 펄스주입실험(흡착제: Sepra C8 레진, 원료: crude 망고스틴 시료 30 g/L, 원료 주입량: 15 ㎖)의 결과이다.Figure 5 shows the results of a pulse injection experiment (adsorbent: Sepra C8 resin, raw material: crude mangosteen sample 30 g/L, raw material injection amount: 15 ml) using an 85% ethanol aqueous solution as a mobile phase and targeting a crude mangosteen mixture sample. am.
도 6은 beta-SMB 공정(베타-망고스틴 분리 SMB 공정)의 최적 구조이다. β-1의 앞부분과 β-2의 뒷부분을 각각 zone Ⅲ와 zone I 내에 위치하게 하고 α-2의 뒷부분은 zone Ⅱ 내에 위치하게 한다. 한편 γ 성분은 흡착강도가 가장 작기 때문에 잔류물(raffinate) 포트를 통해 자동 배출된다. 이러한 상황 하에서의 베타-망고스틴 성분(β-1, β-2)은 추출물(extract) 포트를 통해 회수되고 다른 망고스틴 성분들(α-1, α-2, γ)은 모두 잔류물 포트를 통해 제거된다. 매 단계마다 유입구 및 유출구 포트들이 용매의 진행방향을 따라 컬럼 한 개의 길이만큼 이동하면서 원료(feed) 혼합물의 연속주입과 베타-망고스틴 성분의 연속회수를 가능하게 한다.Figure 6 is the optimal structure of the beta-SMB process (beta-mangosteen separation SMB process). The front part of β-1 and the back part of β-2 are located in zone III and zone I, respectively, and the back part of α-2 is located in zone II. Meanwhile, since the γ component has the lowest adsorption strength, it is automatically discharged through the raffinate port. Under this situation, beta-mangosteen components (β-1, β-2) are recovered through the extract port, and all other mangosteen components (α-1, α-2, γ) are recovered through the residue port. is removed. At each step, the inlet and outlet ports move the length of one column along the direction of the solvent, enabling continuous injection of the feed mixture and continuous recovery of the beta-mangosteen component.
도 7은 펄스주입 실험 결과와 컴퓨터 시뮬레이션 결과와의 비교 그래프이다. 흡착제: Sepra C18 레진, 이동상: 85% 에탄올, (a) α-1 (고농도 기준: crude 시료), (b) α-2 (저농도 기준: 단일 시약), (c) β-1 (고농도 기준: crude 시료), (d) β-2 (저농도 기준: 단일 시약).Figure 7 is a graph comparing the pulse injection experiment results and computer simulation results. Adsorbent: Sepra C18 resin, mobile phase: 85% ethanol, (a) α-1 (based on high concentration: crude sample), (b) α-2 (based on low concentration: single reagent), (c) β-1 (based on high concentration: crude sample), (d) β-2 (low concentration standard: single reagent).
도 8은 최적설계된 beta-SMB 공정의 주기적 정상상태 컬럼 프로파일에 대한 시뮬레이션 결과를 보여준다. (a) Beginning of a switching period, (b) Middle of a switching period, (c) End of a switching period.Figure 8 shows simulation results for the periodic steady-state column profile of the optimally designed beta-SMB process. (a) Beginning of a switching period, (b) Middle of a switching period, (c) End of a switching period.
도 9는 beta-SMB 공정 실험 진행 중 촬영된 장치의 사진이다.Figure 9 is a photo of the device taken during the beta-SMB process experiment.
도 10은 베타-망고스틴 분리를 위한 beta-SMB 공정 실험의 결과이다. (a) Effluent history for extract port (product port) stream, (b) Effluent history for raffinate port (non-product port) stream.Figure 10 shows the results of the beta-SMB process experiment for separating beta-mangosteen. (a) Effluent history for extract port (product port) stream, (b) Effluent history for raffinate port (non-product port) stream.
도 11은 beta-SMB 공정 실험 결과의 증빙을 위한 HPLC 농도 분석 크로마토그램의 원시 자료(raw data)이다. (a) 원료 용액(crude 망고스틴 시료 용액), (b) SMB product (extract) stream, (c) 베타-망고스틴 표준시약.Figure 11 is raw data of an HPLC concentration analysis chromatogram to prove the beta-SMB process experiment results. (a) raw material solution (crude mangosteen sample solution), (b) SMB product (extract) stream, (c) beta-mangosteen standard reagent.
도 12는 prep-HPLC를 이용한 베타-망고스틴 분리 과정의 크로마토그램이다.Figure 12 is a chromatogram of the beta-mangosteen separation process using prep-HPLC.
도 13은 prep-HPLC를 이용한 후처리 공정 실험 결과이다. (a) SMB extract (product) stream, (b) re-HPLC-1, (c) re-HPLC-2 (순도 >95%, 베타-망고스틴), (d) re-HPLC-3.Figure 13 shows the results of a post-treatment process experiment using prep-HPLC. (a) SMB extract (product) stream, (b) re-HPLC-1, (c) re-HPLC-2 (purity >95%, beta-mangosteen), (d) re-HPLC-3.
본 발명의 목적을 달성하기 위하여, 본 발명은 망고스틴 추출물 원료를 모사 이동층(simulated moving bed) 크로마토그래피에 적용하여 베타-망고스틴을 분리하는 단계를 포함하는, 베타-망고스틴(β-mangostin)의 분리 방법을 제공한다.In order to achieve the object of the present invention, the present invention includes the step of separating beta-mangosteen by applying mangosteen extract raw material to simulated moving bed chromatography, beta-mangostin (β-mangostin). ) provides a separation method.
모사 이동층(simulated moving bed, SMB) 공정은 일반적으로 2개의 유입구(feed, desorbent)와 2개의 유출구(extract, raffinate)에 의해 4개의 zone으로 구분되어 있는 형태의 구조를 가지고 있으며(도 1), 각 zone에는 미리 선별된 흡착제로 충진된 한 개 이상의 컬럼들이 연결되어 있다. 흡착제에 상대적으로 친화력이 큰 성분(high-affinity solute)은 이동상 용매(용리액)의 흐름방향을 따라 느린 속도로 이동하는 반면, 친화력이 작은 성분(low-affinity solute)은 빠른 속도로 이동하게 된다. 이 때 4개의 포트를 이동상의 흐름방향을 따라 일정한 시간 간격을 두고 컬럼 한 개의 길이만큼 이동시키고, 그 이동 속도(= column length/port switching time)를 친화력이 큰 성분의 속도보다는 크고 친화력이 낮은 성분의 속도보다는 작도록 선택한다. 이와 같은 조건이 유지되면, 친화력이 큰 성분은 항상 원료(feed) 포트보다 뒤쳐지기(lag behind) 때문에 추출물(extract) 포트에서 회수되고, 반면에 친화력이 낮은 성분은 항상 원료 포트보다 앞서나가기(advance beyond) 때문에 잔류물(raffinate) 포트에서 얻어지게 된다. 그 결과 원료 혼합물은 항상 친화력이 큰 성분과 친화력이 작은 성분들의 중복 지역(overlapping region)에 주입되고 동시에 잔류물과 추출물은 항상 분리 지역(separated region)에서 얻어지게 된다. 이와 같은 상태가 지속적으로 유지될 경우 원료 혼합물의 연속주입과 각 목표 성분(product)의 연속회수가 가능하게 된다. 아울러 SMB 컬럼 내에서 서로 다른 두 성분(high-affinity solute와 low-affinity solute)의 solute band들이 완벽히 분리되지 않고 일부만 분리되는 partial-separation의 상황 하에서도 고순도 및 고수율의 목표 성분 회수가 가능하게 된다.The simulated moving bed (SMB) process generally has a structure divided into four zones by two inlets (feed, desorbent) and two outlets (extract, raffinate) (Figure 1). , each zone is connected to one or more columns filled with pre-selected adsorbents. Components with relatively high affinity to the adsorbent (high-affinity solute) move at a slow speed along the flow direction of the mobile phase solvent (eluent), while components with low affinity (low-affinity solute) move at a high speed. At this time, the four ports are moved the length of one column at regular time intervals along the flow direction of the mobile phase, and the moving speed (= column length/port switching time) is set to be greater than the speed of the high affinity component and the low affinity component. Choose to be smaller than the speed of . If these conditions are maintained, components with high affinity are always lag behind the feed port and are recovered from the extract port, while components with low affinity are always ahead of the feed port. beyond), so it is obtained from the raffinate port. As a result, the raw material mixture is always injected into the overlapping region of the high-affinity and low-affinity components, while the residue and extract are always obtained from the separated region. If this condition is maintained continuously, continuous injection of the raw material mixture and continuous recovery of each target component (product) are possible. In addition, it is possible to recover target components with high purity and high yield even under partial-separation situations in which the solute bands of two different components (high-affinity solute and low-affinity solute) are not completely separated within the SMB column but are only partially separated. .
본 발명에 따른 SMB 공정은 개방형(open-loop)으로, 이동상이 재순화되지 않는 시스템이다. 개방형을 선택하면 zone I을 오염으로부터 보호하고 운전 중 문제가 생겼을 때 유량을 조절하기 용이한 장점을 지니고 있다.The SMB process according to the present invention is an open-loop system in which the mobile phase is not recirculated. Choosing the open type has the advantage of protecting zone I from contamination and making it easy to adjust the flow rate when problems occur during operation.
본 발명에 따른 베타-망고스틴의 분리 방법에 있어서, 상기 망고스틴 추출물은 베타-망고스틴 및 이의 이성질체 혼합물이 포함된 것일 수 있으며, 상기 이성질체는 알파-망고스틴 및 감마-망고스틴일 수 있다.In the method for separating beta-mangosteen according to the present invention, the mangosteen extract may contain beta-mangosteen and a mixture of isomers thereof, and the isomers may be alpha-mangosteen and gamma-mangosteen.
본 발명에서는 분리가 어려운 망고스틴 이성질체의 혼합물로부터 베타-망고스틴만을 고순도로 분리하기 위해 모사 이동층 크로마토그래피를 사용하였다.In the present invention, simulated moving bed chromatography was used to separate beta-mangosteen with high purity from a mixture of mangosteen isomers, which are difficult to separate.
본 발명의 일 구현 예에 따른 베타-망고스틴의 분리 방법은,The method for isolating beta-mangosteen according to one embodiment of the present invention,
모사 이동층 크로마토그래피에 적용된 흡착 칼럼에 대한 알파-망고스틴 및 베타-망고스틴의 흡착계수 및 물질전달계수를 결정하는 단계(단계 1);Determining the adsorption coefficient and mass transfer coefficient of alpha-mangosteen and beta-mangosteen for the adsorption column applied to simulated moving bed chromatography (step 1);
상기 단계 1에서 결정된 흡착계수 및 물질전달계수를 유전자알고리즘(genetic algorithm) 및 컬럼 모델식을 바탕으로 모사 이동층 전산모사 프로그램에 적용하여 모사 이동층 크로마토그래피 공정의 운전조건을 계산하는 단계(단계 2); 및Calculating the operating conditions of the simulated moving bed chromatography process by applying the adsorption coefficient and mass transfer coefficient determined in step 1 to a simulated moving bed computer simulation program based on the genetic algorithm and column model equation (step 2) ); and
모사 이동층 크로마토그래피에 망고스틴 추출물 원료와 용리액을 공급하고 상기 단계 2에서 계산된 운전조건을 적용하여 베타-망고스틴을 분리하는 단계(단계 3);를 포함할 수 있으나, 이에 제한되지 않는다.It may include, but is not limited to, supplying mangosteen extract raw materials and eluent to simulated moving bed chromatography and separating beta-mangosteen by applying the operating conditions calculated in step 2 above (step 3).
본 발명의 방법에 있어서, 상기 단계 1의 흡착 컬럼은 C18이 코팅된 실리카를 고정상으로 포함하는 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 구현 예에서 상기 C18이 코팅된 실리카는 베타-망고스틴과 다른 망고스틴 성분들 간의 분리와 연속공정 적용 가능성 면에서 가장 적합한 흡착제인 것으로 확인되었다. 더 나아가 연속공정 적용을 위해 흡착제의 입자크기는 50 ㎛ 이상이어야 하며, 저압(low pressure) 하에서도 충분한 수준의 분리선택도를 보장할 수 있어야 한다는 점을 확인하였다.In the method of the present invention, the adsorption column in step 1 may include C18-coated silica as a stationary phase, but is not limited thereto. In one embodiment of the present invention, the C18-coated silica was confirmed to be the most suitable adsorbent in terms of separation between beta-mangosteen and other mangosteen components and applicability to continuous processes. Furthermore, it was confirmed that for continuous process application, the particle size of the adsorbent must be 50 ㎛ or more and a sufficient level of separation selectivity must be guaranteed even under low pressure.
또한, C18이 코팅된 실리카를 고정상으로 포함하는 흡착 칼럼에 대한 알파-망고스틴 및 베타-망고스틴의 흡착계수(헨리상수)는 펄스주입 실험 데이터(도 4d, 및 도 5)로부터 확인된 각 성분의 체류시간과 용질운동이론(solute movement theory)을 이용하여 결정하였고, C18이 코팅된 실리카를 고정상으로 포함하는 흡착 칼럼에 대한 알파-망고스틴 및 베타-망고스틴의 물질전달계수는 Chung and Wen correlation 및 컴퓨터 시뮬레이션 결과 등을 이용하여 산출하였다(표 2).In addition, the adsorption coefficients (Henry constants) of alpha-mangosteen and beta-mangosteen on an adsorption column containing C18-coated silica as a stationary phase were determined from the pulse injection experiment data (FIGS. 4d and 5) for each component. was determined using the retention time and solute movement theory, and the mass transfer coefficients of alpha-mangosteen and beta-mangosteen for an adsorption column containing C18-coated silica as a stationary phase were determined using the Chung and Wen correlation. and computer simulation results were used to calculate it (Table 2).
또한, 본 발명의 일 구현 예에 있어서, 상기 단계 2의 컬럼 모델식은 일괄 대량 이동 모델(lumped mass-transfer model)일 수 있고, 모사 이동층 전산모사 프로그램은 Aspen ChromatographyTM 일 수 있으나, 이에 제한되지 않는다. 본 발명의 단계 2에서 계산된 모사 이동층 크로마토그래피의 운전조건은 표 3과 같다.In addition, in one implementation of the present invention, the column model equation of step 2 may be a lumped mass-transfer model, and the simulated moving layer computational simulation program may be Aspen Chromatography TM , but is not limited thereto. No. The operating conditions of simulated moving bed chromatography calculated in step 2 of the present invention are shown in Table 3.
본 발명의 방법에 있어서, 상기 단계 3의 용리액은 C1~C4의 저급 알코올일 수 있고, 바람직하게는 메탄올 또는 에탄올일 수 있으며, 보다 바람직하게는 에탄올일 수 있고, 보다 더 바람직하게는 80~95%(v/v) 에탄올일 수 있고, 가장 바람직하게는 85%(v/v) 에탄올일 수 있으나, 이에 제한되지 않는다. 상기 에탄올은 C18이 코팅된 실리카를 고정상으로 포함하는 흡착 칼럼 조건에서 베타-망고스틴과 이의 이성질체간 분리선택도가 우수하게 확인된 것으로서, 흡착 칼럼의 종류에 따라 당업계에 통상적으로 사용되는 다른 종류의 용리액으로 변동 가능할 수 있다.In the method of the present invention, the eluent in step 3 may be a lower alcohol of C1 to C4, preferably methanol or ethanol, more preferably ethanol, and even more preferably 80 to 95 alcohol. % (v/v) ethanol, most preferably 85% (v/v) ethanol, but is not limited thereto. The ethanol was confirmed to have excellent separation selectivity between beta-mangosteen and its isomers under the conditions of an adsorption column containing C18-coated silica as a stationary phase. Depending on the type of adsorption column, there are different types of ethanol commonly used in the art. It may be variable with the eluent.
또한, 본 발명에 따른 베타-망고스틴의 분리 방법은, 상기 단계 3의 모사 이동층 크로마토그래피 후 용리된 산물(product)을 대상으로 리사이클링 프렙 HPLC(Recycling Preparative HPLC)를 추가로 수행할 수 있으나, 이에 제한되지 않는다.In addition, the separation method of beta-mangosteen according to the present invention may additionally perform recycling prep HPLC on the product eluted after the simulated moving bed chromatography in step 3. It is not limited to this.
기존의 프렙 HPLC(Preparative HPLC)는 펌프에서 나오는 용매와 매뉴얼(manual) 인젝터에서 주입된 시료가 혼합되어 흐르면서 컬럼에서 분리가 이루어지고, 이 분리된 상황을 검출기로 확인한 후 바로 분취를 수행하는 시스템이었다. 그러나, 리사이클링 프렙 HPLC의 경우 재순환 시스템을 자동 재순환기(auto recycler)가 조절하여 분리가 이루어지지 않은 시료의 경우 곧바로 컬럼에 재주입하는, 즉 분리가 이루어지지 않은 시료를 분리가 이루어질 때까지 컬럼에 재순환하는 원리의 방법이다. 또한, 리사이클링 프렙 HPLC의 순환 과정에서 첫 cycle의 컬럼에서 두 번째 cycle의 컬럼까지의 넓은 용적을 시료가 확산 등의 이유로 다시 섞이지 않고 순차적으로 분리가 이루어지게 정압을 유지시켜 용매의 소비가 전혀 이루어지지 않기 때문에 용매비용의 부담이 덜어지는 이점이 있다.Existing Preparative HPLC is a system in which the solvent from the pump and the sample injected from the manual injector are mixed and separated on the column, and the separation is confirmed with a detector and then immediately collected. . However, in the case of recycling prep HPLC, the recycling system is controlled by an automatic recycler, so that samples that have not been separated are immediately reinjected into the column, that is, samples that have not been separated are placed on the column until separation is performed. It is a method based on the principle of recycling. In addition, during the circulation process of recycling prep HPLC, a wide volume from the column of the first cycle to the column of the second cycle is maintained at a positive pressure so that the samples are sequentially separated without being remixed due to diffusion or other reasons, so no solvent consumption occurs. This has the advantage of reducing the burden of solvent costs.
본 발명의 일 구현 예에 있어서, 상기 리사이클링 프렙 HPLC의 추가 수행은 모사 이동층 크로마토그래피 후 용리된 산물(product)에 포함된 미소 잔류물의 제거를 위해 수행될 수 있다.In one embodiment of the present invention, the additional recycling prep HPLC may be performed to remove trace residues contained in the product eluted after simulated moving bed chromatography.
본 발명의 모사 이동층(SMB) 크로마토그래피는,The simulated moving bed (SMB) chromatography of the present invention,
3개의 유입구와 2개의 유출구를 구비한 3구역 개방형 SMB 크로마토그래피를 이용하고, 탈착용매(용리액)를 제1구역의 입구로 주입하며 이와 동시에 제1구역의 출구를 통해 베타-망고스틴 산물(product)을 회수하는 단계 (단계 ①);Using a three-zone open SMB chromatography with three inlets and two outlets, the desorption solvent (eluent) is injected into the inlet of the first zone, and at the same time, the beta-mangosteen product is released through the outlet of the first zone. ) recovering (step ①);
상기 단계 ①과 동시에 제2구역의 입구로 탈착용매를 주입하여 알파-망고스틴 및 감마-망고스틴 성분들이 한 교환시간 이내에 제2구역의 첫 번째 컬럼으로부터 탈착되어 제3구역을 향하여 진행해 나갈 수 있도록 하는 단계 (단계 ②); 및Simultaneously with step ①, a desorption solvent is injected into the inlet of the second zone so that the alpha-mangosteen and gamma-mangosteen components can be desorbed from the first column of the second zone within one exchange time and proceed toward the third zone. Step (step ②); and
상기 단계 ②와 동시에 망고스틴 시료 용액을 공급액 주입구를 통해 제3구역으로 주입하며 이와 동시에 망고스틴 시료 내 베타-망고스틴 성분의 이동 구간 범위를 제3구역 내로 한정하게 하고 반면 알파-망고스틴과 감마-망고스틴 성분은 한 교환시간 내에 제3구역 출구 지점을 지나 외부로 배출될 수 있도록 하는 단계 (단계 ③);를 포함하는 3구역 개방형 SMB 크로마토그래피로 이해될 수 있다.At the same time as step ② above, the mangosteen sample solution is injected into the third zone through the supply fluid inlet, and at the same time, the movement range of the beta-mangosteen component in the mangosteen sample is limited to within the third zone, while alpha-mangosteen and gamma -It can be understood as a three-zone open SMB chromatography that includes the step (step ③) of allowing the mangosteen component to pass through the third zone exit point and be discharged to the outside within one exchange time.
상기 본 발명에 따른 베타-망고스틴의 분리 방법의 통해, 베타-망고스틴을 70% 이상, 80% 이상, 90% 이상 또는 96% 이상의 고순도로 분리할 수 있으며, 일반적인 회분식 크로마토그래피와는 달리 생산수율이 우수하여 70% 이상, 80% 이상, 90% 이상 또는 96% 이상의 수율을 나타낼 수 있어 대량생산이 가능하며, 이를 통해 상기 분리 방법이 상업적으로 이용하기 적합함을 알 수 있다.Through the separation method of beta-mangosteen according to the present invention, beta-mangosteen can be separated with a high purity of 70% or more, 80% or more, 90% or more, or 96% or more, and unlike general batch chromatography, production The yield is excellent, showing a yield of 70% or more, 80% or more, 90% or more, or 96% or more, making mass production possible, which shows that the separation method is suitable for commercial use.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.
재료 및 방법Materials and Methods
1. 이론적 접근 방법1. Theoretical approach
본 발명의 목표인 beta-SMB 공정(베타-망고스틴 분리 SMB 공정) 개발을 위해 도 2에 개시한 바와 같은 "컬럼 모델 및 파라미터 기반의 공정 설계 접근 방법"을 전체적인 진행 방식으로 채택하였다. 본 발명의 공정 개발 과정은 크게 흡착제와 이동상의 용매 선별, 선정된 흡착제상에서의 각 성분(알파, 베타, 감마 망고스틴)의 기초 파라미터 결정, 결정된 기초 파라미터 정보를 바탕으로 한 beta-SMB 공정의 최적설계 및 이론적 검증, 최적설계 결과에 부합하는 beta-SMB 장치의 제작 및 이를 바탕으로 한 실험적 검증과 스케일업(scale-up) 등의 4단계로 구분된다. 각 단계마다 컬럼 모델과 파라미터에 기초한 체계적인 접근 방식을 사용함으로써 공정 설계 결과에 대한 재현성과 신뢰성이 유지되도록 하였다.To develop the beta-SMB process (beta-mangosteen separation SMB process), which is the goal of the present invention, the "column model and parameter-based process design approach" as shown in FIG. 2 was adopted as the overall proceeding method. The process development process of the present invention is largely comprised of solvent selection for the adsorbent and mobile phase, determination of basic parameters of each component (alpha, beta, and gamma mangosteen) in the selected adsorbent, and optimization of the beta-SMB process based on the determined basic parameter information. It is divided into four stages: design and theoretical verification, production of a beta-SMB device that meets the optimal design results, experimental verification based on this, and scale-up. By using a systematic approach based on column models and parameters at each step, reproducibility and reliability of the process design results were maintained.
1-1. 컬럼 모델에 기반을 둔 컴퓨터 시뮬레이션1-1. Computer simulation based on column model
beta-SMB 공정 개발의 여러 단계에서 컬럼 모델 기반의 컴퓨터 시뮬레이션이 중요한 역할을 수행하며, 핵심이 되는 부분은 다음과 같다: 주요 망고스틴 성분의 기초파라미터 값 검증, SMB 최적설계, SMB 농도 프로파일 예측.Column model-based computer simulation plays an important role in various stages of beta-SMB process development, and the key parts are as follows: verification of basic parameter values of major mangosteen components, optimal design of SMB, and prediction of SMB concentration profile.
시뮬레이션은 컬럼 내 각 성분의 이동 거동(transport behavior)에 대한 수학적 모델식, 이른바 컬럼 모델식의 해(solution)를 산출하는 과정으로서, 컬럼 모델식 자체가 연립 편미분방정식으로 구성되어 있기 때문에 컴퓨터를 기반으로 하는 수치해석적 전산도구의 사용이 필수적이다.Simulation is a process of calculating the solution of the so-called column model equation, a mathematical model for the transport behavior of each component in the column. Since the column model equation itself is composed of simultaneous partial differential equations, it is computer-based. The use of numerical computational tools is essential.
컬럼 모델과 관련하여 몇 가지 모델식들이 문헌에 소개된 바 있다. 그 중에서 정확성과 계산 효율성이 검증된 lumped mass-transfer model을 본 발명의 컬럼 모델식으로 채택하였다. 채택된 lumped mass-transfer model 방정식의 구성은 다음과 같다 (Z. Ma et al., AIChE J. 1997, 43:2488-2508; Benjamin J. Hritzko et al., AIChE J. 2002, 48:2769-2787; Y. Xie et al., Ind. Eng. Chem. Res. 2003, 42:4055-4067; S. Mun et al., J. Chromatogr. A 2012, 1230:100-109).Several model equations related to the column model have been introduced in the literature. Among them, the lumped mass-transfer model, which has proven accuracy and computational efficiency, was adopted as the column model of the present invention. The structure of the adopted lumped mass-transfer model equation is as follows (Z. Ma et al., AIChE J. 1997, 43:2488-2508; Benjamin J. Hritzko et al., AIChE J. 2002, 48:2769- 2787; Y.
Figure PCTKR2023006086-appb-img-000001
Figure PCTKR2023006086-appb-img-000001
위의 식에서 아래 첨자 i는 용질(solute)을 나타내며, Cb,i와 Ci *는 각각 inter-particle void (이동상)와 intra-particle void (pore phase) 내에서의 용질 액상 농도, qi는 pore phase 내 액상 농도와 평형 관계인 흡착제상(adsorbent phase)에서의 농도를 일컫는다. 평형 상태에 있는 액상 농도와 흡착제상의 농도 간의 관계는 흡착 모델식(adsorption model equation)으로 표현된다. 한편 위의 컬럼 모델식 내 Kf는 lumped mass-transfer coefficient이며 다음과 같은 방법으로 그 값을 계산할 수 있다.In the above equation, the subscript i represents the solute, C b,i and C i * are the solute liquid phase concentration in the inter-particle void (mobile phase) and intra-particle void (pore phase), respectively, and q i is It refers to the concentration in the adsorbent phase, which is in equilibrium with the liquid phase concentration in the pore phase. The relationship between the liquid phase concentration and the adsorbent phase concentration in equilibrium is expressed by the adsorption model equation. Meanwhile, K f in the above column model equation is a lumped mass-transfer coefficient, and its value can be calculated in the following way.
Figure PCTKR2023006086-appb-img-000002
Figure PCTKR2023006086-appb-img-000002
위의 식에서 dp는 흡착제 입자의 지름을 나타내며, Dp와 kf는 각각 intra-particle diffusivity와 film mass-transfer coefficient를 일컫는다.In the above equation, d p represents the diameter of the adsorbent particle, and D p and k f refer to intra-particle diffusivity and film mass-transfer coefficient, respectively.
상기 설명한 컬럼 모델식을 바탕으로 한 단일컬럼 시뮬레이션과 SMB 공정 시뮬레이션은 Aspen Chromatography Simulator를 이용하여 수행하였다.Single column simulation and SMB process simulation based on the column model equation described above were performed using Aspen Chromatography Simulator.
1-2. SMB 공정의 최적설계1-2. Optimal design of SMB process
여러 개의 흡착제 컬럼과 다수의 포트로 이루어진 연속분리공정의 최적화와 관련하여 기존의 전통적인 최적화 기법보다는 유전자알고리즘(genetic algorithm)과 같은 확률론적(stochastic) 이론에 바탕을 둔 최적화 기법이 더욱 효과적이라는 사실이 이전에 보고된 바 있다. 특히 SMB 공정의 경우에는 유전자알고리즘에 입각한 최적화 사례가 다수 보고된 바 있으며 그 정확성이 매우 뛰어난 것으로 알려져 있다 (S. Mun et al., J. Chromatogr. A 2012, 1256:46-57; Z. Zhang et al., AIChE J 2002, 48:2800-2816; H.J. Subramani et al., Comput. Chem. Eng. 2003, 27:1883-1901).Regarding the optimization of a continuous separation process consisting of multiple adsorbent columns and multiple ports, the fact is that optimization techniques based on stochastic theory such as genetic algorithms are more effective than existing traditional optimization techniques. It has been reported previously. In particular, in the case of the SMB process, many optimization cases based on genetic algorithms have been reported, and their accuracy is known to be excellent (S. Mun et al., J. Chromatogr. A 2012, 1256:46-57; Z. Zhang et al., AIChE J 2002, 48:2800-2816; H.J. Subramani et al., Comput. Chem. Eng. 2003, 27:1883-1901).
유전자알고리즘에 입각한 SMB 공정의 최적화는 크게 두 가지 영역으로 구분해 볼 수 있다. 첫 번째 영역은 SMB 컬럼 내 각 성분들의 동적 거동(dynamic behaviors)을 정확하게 예측해 줄 수 있는 컬럼 모델과 이 모델식의 해를 구할 수 있는 solution method이다. 두 번째 영역은 SMB의 최적 운전 변수(flow rate, switching time)를 결정하기 위해 유전자알고리즘에 입각한 단계별 절차를 밟아 최적의 운전 변수(operation parameter)에 해당되는 해를 추적해 나가는 부분이다.Optimization of the SMB process based on genetic algorithms can be broadly divided into two areas. The first area is a column model that can accurately predict the dynamic behaviors of each component in the SMB column and a solution method that can find a solution to this model equation. The second area is to follow a step-by-step procedure based on a genetic algorithm to determine the optimal operation parameters (flow rate, switching time) of SMB and track the solution corresponding to the optimal operation parameters.
위에서 언급한 두 영역의 조합은 다음과 같은 방식으로 이루어진다. 유전자알고리즘 단계로부터 산출된 각 세대별 SMB operation parameter가 컬럼 모델식에 대입된 후 이 모델식의 수치해석적 해(numerical solutions)를 통하여 각 성분들의 분리 거동 및 SMB의 순도와 수율을 파악할 수 있게 된다. 이 결과는 다시 유전자알고리즘의 각 단계에서 최적 operation parameter를 추적하는 핵심 정보로 활용된다. 이와 같은 컬럼 모델과 유전자알고리즘의 상호 조합을 통하여 SMB 최적 operation parameter 해를 결정할 수 있게 된다. SMB 최적화 도구의 핵심인 이 두 영역에 대한 구체적인 설명을 아래에 요약하였다.The combination of the two areas mentioned above is achieved in the following way. After the SMB operation parameters for each generation calculated from the genetic algorithm stage are substituted into the column model equation, the separation behavior of each component and the purity and yield of SMB can be determined through numerical solutions of this model equation. . This result is again used as key information to track optimal operation parameters at each stage of the genetic algorithm. Through the combination of this column model and genetic algorithm, it is possible to determine the SMB optimal operation parameter solution. A detailed description of these two areas, which are the core of the SMB optimization tool, is summarized below.
SMB 최적화 도구의 첫 번째 영역인 컬럼 모델의 경우 앞서 언급한 lumped mass-transfer model을 최적화 도구의 시뮬레이션 모델로 채택하였다. 아울러 채택된 컬럼 모델식(Eq. (1))의 수치해석적 해 산출을 위해 biased upwind differencing scheme (BUDS)과 Gear integration method에 바탕을 둔 Aspen Chromatography simulator를 사용하였다.In the case of the column model, which is the first area of the SMB optimization tool, the lumped mass-transfer model mentioned above was adopted as the simulation model of the optimization tool. In addition, the Aspen Chromatography simulator based on the biased upwind differencing scheme (BUDS) and gear integration method was used to calculate the numerical solution of the adopted column model equation (Eq. (1)).
SMB 최적화 도구의 두 번째 영역인 유전자알고리즘은 그 동안 여러 차례의 개선을 이루어 왔으며 그 중 가장 최신의 버전은 바로 NSGA-Ⅱ-JG (elitist nondominated sorting genetic algorithm with jumping gene)이다 (R.B. Kasat et al., Comput. Chem. Eng. 2003, 27:1785-1800; S. Mun et al., 2012). 본 발명에서는 NSGA-Ⅱ-JG 알고리즘에 기반을 둔 SMB 최적화 전산 도구를 Visual Basic Application (VBA) 프로그래밍 언어를 사용하여 제작하였다. 이 과정에서 SMB 공정의 operation parameters (flow rate, switching time)를 염색체의 대상으로 설정하였으며 이 염색체의 적합도(fitness)를 결정짓는 SMB 성능에 대한 예측은 컬럼 모델식의 해를 바탕으로 수행하였다.The genetic algorithm, the second area of the SMB optimization tool, has undergone several improvements, the most recent version being NSGA-Ⅱ-JG (elitist nondominated sorting genetic algorithm with jumping gene) (R.B. Kasat et al. , Comput. Chem. Eng. 2003, 27:1785-1800; S. Mun et al., 2012). In the present invention, an SMB optimization computer tool based on the NSGA-Ⅱ-JG algorithm was produced using the Visual Basic Application (VBA) programming language. In this process, the operation parameters (flow rate, switching time) of the SMB process were set as targets for the chromosome, and the prediction of SMB performance, which determines the fitness of this chromosome, was performed based on the solution of the column model equation.
2. 실험적 접근 방법2. Experimental approach
2-1. 실험에 사용된 물질2-1. Materials used in the experiment
본 발명의 beta-SMB 공정 개발 연구에 사용된 crude 망고스틴 혼합물 시료와 단일 망고스틴 순수 시약(알파, 베타, 감마 망고스틴)은 각각 경상대학교 산학협력단과 바이오클론(한국)으로부터 제공받았다. HPLC 농도 분석 시 이동상의 구성 용매로 사용된 아세토니트릴(acetonitrile)과 아세트산은 각각 대정화금(한국)과 Sigma-Aldrich Co.(USA)로부터 구매하였다. 본 발명의 흡착제 테스트에 사용된 실리카(silica) 레진과 Sepra C18 레진은 각각 Osaka Soda Co.(Japan)와 Phenomenex Co.(USA)에서 구매하였으며 이들의 평균 입자크기는 모두 50 ㎛였다. 위의 흡착제를 Bio-Chem Fluidics Co.(USA)에서 구입한 preparative-scale 컬럼 (2.5×22 cm)에 충진하여 사용하였다.Crude mangosteen mixture samples and single mangosteen pure reagents (alpha, beta, and gamma mangosteen) used in the beta-SMB process development study of the present invention were provided by the Gyeongsang National University Industry-Academic Cooperation Foundation and Bioclone (Korea), respectively. Acetonitrile and acetic acid, which were used as solvents for the mobile phase during HPLC concentration analysis, were purchased from Daejeong Chemical (Korea) and Sigma-Aldrich Co. (USA), respectively. Silica resin and Sepra C18 resin used in the adsorbent test of the present invention were purchased from Osaka Soda Co. (Japan) and Phenomenex Co. (USA), respectively, and their average particle size was 50 ㎛. The above adsorbent was used by filling a preparative-scale column (2.5 × 22 cm) purchased from Bio-Chem Fluidics Co. (USA).
본 발명의 단일컬럼 실험(펄스주입실험)에서 정상 및 역상 크로마토그래피 컬럼의 이동상 용매로 사용된 n-헥산(n-hexane), 에틸아세테이트, 메탄올, 에탄올은 모두 대정화금에서 구입하였다. 실험에 사용된 물은 모두 탈이온증류수(distilled deionized water, DDW)로 Millipore Co.(USA)에서 구입한 Milli-Q system으로부터 얻어 실험의 모든 부분에서 사용하였다.n-hexane, ethyl acetate, methanol, and ethanol used as mobile phase solvents for normal and reversed phase chromatography columns in the single column experiment (pulse injection experiment) of the present invention were all purchased from Daejeong Chemical. All water used in the experiment was distilled deionized water (DDW), obtained from the Milli-Q system purchased from Millipore Co. (USA) and used in all parts of the experiment.
2-2. 실험에 사용된 기기2-2. Equipment used in the experiment
① 펄스주입실험 장치① Pulse injection experiment device
펄스주입실험에 영린기기(한국)에서 구입한 Young-Lin HPLC 시스템을 사용하였다. Young-Lin HPLC 시스템은 Young-Lin SP930D 펌프 2대, Young-Lin UV730D 검출기(detector), Autochro-3000 소프트웨어로 구성되어 있다. Young-Lin SP930D 펌프는 용매의 원활한 이송을 담당하며 Young-Lin UV730D 검출기는 컬럼 유출물 내 각 성분 농도의 실시간 모니터링을 담당한다. Autochro-3000 소프트웨어는 펌프와 검출기의 제어 및 데이터 수집을 담당한다.A Young-Lin HPLC system purchased from Younglin Equipment (Korea) was used for the pulse injection experiment. The Young-Lin HPLC system consists of two Young-Lin SP930D pumps, a Young-Lin UV730D detector, and Autochro-3000 software. The Young-Lin SP930D pump is responsible for smooth transfer of the solvent, and the Young-Lin UV730D detector is responsible for real-time monitoring of the concentration of each component in the column effluent. Autochro-3000 software is responsible for control and data collection of the pump and detector.
② HPLC 농도분석 장치② HPLC concentration analysis device
Crude 망고스틴 시료를 대상으로 한 펄스주입실험과 SMB 실험으로부터 얻은 샘플의 농도를 분석하기 위한 장치로 Waters HPLC 시스템을 사용하였다. Waters 515 HPLC 펌프로 용매를 이송하였으며 샘플의 농도 분석은 Waters 996 PDA 검출기 (wavelength = 254 nm)에 의해 수행되었다. 아울러 HPLC 분석 컬럼으로는 Agilent Eclipse XDB-C18 분석용 컬럼 (0.46×15cm)을 구입하여 사용하였다. 샘플의 주입은 Rheodyne 7725i 인젝터(injector)를 통하여 수행되었으며 샘플 주입량은 10 ㎕로 하였다. HPLC 분석은 상온 하에서 구배(gradient) 모드로 운용되었으며 이에 사용된 두 종류의 용매(편의상 A와 B로 지칭)들 중 용매 A는 100% 아세토니트릴이고 용매 B는 0.1% 아세트산 수용액이다. 용매 A와 B를 바탕으로 한 구배 모드 운용 방식은 표 1에 나타내었다. HPLC 분석 전반에 있어서 유량(flow rate)은 1 ㎖/min으로 유지하였고 Waters HPLC 시스템의 제어는 Empower 2.0 소프트웨어에 의해 수행되었다.A Waters HPLC system was used as a device to analyze the concentration of samples obtained from pulse injection experiments and SMB experiments targeting crude mangosteen samples. The solvent was transported by a Waters 515 HPLC pump, and concentration analysis of the samples was performed by a Waters 996 PDA detector (wavelength = 254 nm). In addition, an Agilent Eclipse XDB-C18 analytical column (0.46 × 15 cm) was purchased and used as an HPLC analysis column. Injection of the sample was performed through a Rheodyne 7725i injector, and the sample injection volume was 10 μl. The HPLC analysis was operated in gradient mode at room temperature, and of the two types of solvents (referred to as A and B for convenience) used, solvent A is 100% acetonitrile and solvent B is 0.1% acetic acid aqueous solution. The gradient mode operation method based on solvents A and B is shown in Table 1. Throughout the HPLC analysis, the flow rate was maintained at 1 mL/min and control of the Waters HPLC system was performed by Empower 2.0 software.
HPLC 분석에 적용된 구배(gradient) 모드 운용 방식Gradient mode operation method applied to HPLC analysis
Time (min)Time (min) 용매 A (%)Solvent A (%) 용매 B (%)Solvent B (%) 비고note
4545 9595 55 Linear gradient Linear gradient
6060 100100 00 Linear gradientLinear gradient
7575 100100 00 WashingWashing
9090 55 9595 EquilibriumEquilibrium
③ SMB 공정 실험 장치③ SMB process experiment device
본 발명의 beta-SMB 공정 실험 장치는 3-zone open-loop 방식 하에서 1-2-2 column configuration 구조를 가지도록 자체 조립 및 제작되었다. 제작된 SMB 장치(도 3)는 5개의 로터리 밸브(rotary valve), 5개의 컬럼, 3대의 펌프로 구성되었다. SMB 장치에 사용된 로터리 밸브는 Valco Instrument Co.(USA)에서 구입한 Select-Trapping (ST) 밸브로, 이 밸브는 각 컬럼과 각 포트를 연결하여 연속분리가 가능한 흐름 구조를 유지하도록 하는 기능을 가진다. 로터리 밸브의 제어는 Labview 8.0 소프트웨어를 이용하여 수행하였다. SMB 장치의 각 포트로 주입되는 stream은 Waters 기업에서 구입한 Waters 515 HPLC 펌프를 이용하여 유량제어를 하였다. 한편 잔류물(raffinate) 포트로 배출되는 stream의 유량은 별도의 펌프 없이 물질균형(mass balance)에 의해 결정되도록 하였다.The beta-SMB process experimental device of the present invention was self-assembled and manufactured to have a 1-2-2 column configuration structure under a 3-zone open-loop method. The manufactured SMB device (FIG. 3) consisted of 5 rotary valves, 5 columns, and 3 pumps. The rotary valve used in the SMB device is a Select-Trapping (ST) valve purchased from Valco Instrument Co. (USA). This valve connects each column and each port to maintain a flow structure that allows continuous separation. have Control of the rotary valve was performed using Labview 8.0 software. The flow rate of the stream injected into each port of the SMB device was controlled using a Waters 515 HPLC pump purchased from Waters. Meanwhile, the flow rate of the stream discharged to the residue port was determined by mass balance without a separate pump.
2-3. 실험절차2-3. Experimental procedure
① 펄스주입 실험① Pulse injection experiment
흡착제 후보군(silica gel, Sepra C18)으로 충진된 preparative-scale 컬럼 (2.5×22cm)을 Young-Lin HPLC 시스템 장치에 설치한 후 단일 망고스틴 시약 성분(알파, 베타, 감마)과 crude 망고스틴 시료 각각에 대한 펄스주입 실험을 수행하였다. 컬럼 내로 주입된 원료(feed)의 주입량과 농도는 단일 망고스틴 성분의 경우 200 ㎕와 0.1 g/L로 각각 설정하였고, crude 망고스틴 시료의 경우에는 15 ㎖와 30 g/L로 각각 설정하였다. 컬럼 내 원료의 주입과 관련하여 단일 망고스틴 성분의 경우 Rheodyne 7725i 인젝터를 사용하여 주입하였고, crude 망고스틴 시료의 경우 SP930D 펌프를 사용하여 주입하였다.A preparative-scale column (2.5 × 22 cm) filled with the adsorbent candidate (silica gel, Sepra C18) was installed in the Young-Lin HPLC system, and then each of the single mangosteen reagent components (alpha, beta, and gamma) and the crude mangosteen sample were analyzed. A pulse injection experiment was performed. The injection amount and concentration of the feed injected into the column were set to 200 ㎕ and 0.1 g/L, respectively, for a single mangosteen component, and 15 ㎖ and 30 g/L, respectively, for crude mangosteen samples. Regarding the injection of raw materials into the column, single mangosteen components were injected using a Rheodyne 7725i injector, and crude mangosteen samples were injected using a SP930D pump.
펄스주입 실험이 진행되는 동안 유량을 2 ㎖/min로 일정하게 유지시켰다. 펄스주입에 따른 각 성분에 대한 effluent history 데이터(시간에 따른 컬럼 유출물 내 각 성분의 농도 프로파일 데이터)는 단일 망고스틴 성분의 경우 UV730D 검출기를 이용하여 실시간 확보하였고, crude 망고스틴 시료의 경우 컬럼 유출물을 시간대별로 채취하고 이에 대한 HPLC 농도분석을 통해 확보하였다.While the pulse injection experiment was in progress, the flow rate was kept constant at 2 mL/min. Effluent history data (concentration profile data of each component in the column effluent over time) for each component following pulse injection was obtained in real time using a UV730D detector for single mangosteen components, and column effluent for crude mangosteen samples. Water was collected at different times and secured through HPLC concentration analysis.
이동상 용매는 컬럼 내 충진된 흡착제의 상(phase)에 따라 다음과 같이 적용하였다. 실리카 레진을 흡착제로 사용한 경우에는 n-헥산과 에틸 아세테이트를 1:1, 15:1, 30:1로 변경해가면서 실험을 반복 수행하였다. 반면 Sepra C18 레진을 흡착제로 사용한 경우에는 메탄올-DDW(메탄올 함량: 100%, 99%, 95%로 변경) 혼합용매 또는 에탄올-DDW(에탄올 함량: 100%, 95%, 90%, 85%로 변경) 혼합용매를 이동상으로 사용해가면서 실험을 반복 수행하였다.The mobile phase solvent was applied as follows depending on the phase of the adsorbent packed in the column. When silica resin was used as an adsorbent, the experiment was repeated while changing the ratios of n-hexane and ethyl acetate to 1:1, 15:1, and 30:1. On the other hand, when Sepra C18 resin is used as an adsorbent, a mixed solvent of methanol-DDW (methanol content: changed to 100%, 99%, 95%) or ethanol-DDW (ethanol content: changed to 100%, 95%, 90%, 85%) is used. Change) The experiment was repeated while using a mixed solvent as a mobile phase.
② SMB 공정 실험② SMB process experiment
SMB 실험의 시작은 각 펌프의 작동과 Labview 8.0 소프트웨어의 실행 개시를 기점으로 하였다. 실험 시작과 동시에 원료와 용리액(desorbent)이 SMB 내로 연속 주입되었다. 30 g/L 농도의 crude 망고스틴 혼합물 용액이 원료 포트로 연속 주입되었으며 상기 원료 용액 내 알파, 베타, 감마 망고스틴의 농도는 각각 4.80 g/L, 0.13 g/L, 및 0.70 g/L이다. 한편 desorbent-1 포트와 desorbent-2 포트로 연속 주입되는 용리액으로는 85% 에탄올 수용액이 사용되었다. SMB 실험은 주기적 정상 상태(cyclic steady state)에 충분히 도달될 때까지 진행하였다. SMB 실험이 진행되는 동안 매 단계(switching period)마다 유량(flow rate)의 정확성 여부를 체크하고 추출물(extract) 및 잔류물 포트에서 배출되는 stream의 농도를 상기 언급한 Waters HPLC 농도분석 시스템을 이용하여 실시간 분석하였다.The start of the SMB experiment began with the operation of each pump and the start of execution of Labview 8.0 software. At the beginning of the experiment, raw materials and desorbent were continuously injected into the SMB. A crude mangosteen mixture solution with a concentration of 30 g/L was continuously injected into the raw material port, and the concentrations of alpha, beta, and gamma mangosteen in the raw material solution were 4.80 g/L, 0.13 g/L, and 0.70 g/L, respectively. Meanwhile, an 85% ethanol aqueous solution was used as the eluent continuously injected into the desorbent-1 and desorbent-2 ports. The SMB experiment was conducted until a cyclic steady state was sufficiently reached. During the SMB experiment, the accuracy of the flow rate was checked at every switching period, and the concentration of the stream discharged from the extract and residue ports was measured using the Waters HPLC concentration analysis system mentioned above. Real-time analysis was performed.
실시예 1. Crude 망고스틴 시료 내 베타-망고스틴과 다른 망고스틴 성분들 간의 연속분리에 적합한 흡착제 상(phase)의 결정Example 1. Determination of an adsorbent phase suitable for continuous separation between beta-mangosteen and other mangosteen components in a crude mangosteen sample.
본 발명의 목표 공정인 beta-SMB 공정에 적용될 흡착제를 선정하기 위해 SMB와 같은 연속분리공정에 적합한 흡착제 상(phase)의 종류를 결정해야 한다. 이를 위해 정상(normal phase)과 역상(reversed phase) 크로마토그래피 흡착제를 대표하는 실리카 레진과 C18 계열의 레진을 각각 선별하여 일련의 펄스주입 실험을 수행하였다.In order to select an adsorbent to be applied to the beta-SMB process, which is the target process of the present invention, the type of adsorbent phase suitable for a continuous separation process such as SMB must be determined. For this purpose, silica resin and C18 series resin, which represent normal phase and reversed phase chromatography adsorbents, were selected and a series of pulse injection experiments were performed.
실리카 컬럼(실리카 레진으로 충진된 컬럼)을 바탕으로 한 펄스주입 실험에서는 n-헥산(hexane)과 에틸 아세테이트 용매의 혼합용매를 이동상으로 사용하였으며 이 과정에서 n-헥산과 에틸 아세테이트 용매의 비율을 변경해가면서 실험을 진행하였다. 그 결과, 극성용매에 해당되는 에틸 아세테이트의 함량이 클수록 베타-망고스틴의 탈착이 보다 더 원활하게 진행된다는 점을 확인하였다. 이는 정상 크로마토그래피 흡착제가 극성을 띠기 때문이다. 반면, 비극성용매에 해당되는 n-헥산의 함량이 클수록 베타-망고스틴의 탈착이 원활하게 진행되지 못하였고 이로 인해 베타-망고스틴의 용질(solute) 밴드 뒷부분이 길게 늘어지는 꼬리끌림(tailing) 현상이 발생하였다. 다만 베타-망고스틴 성분의 breakthrough time은 변화가 없거나 또는 약간씩 빨라지는 경향을 나타내었으며 이는 베타-망고스틴의 비극성 물성에 기인한 것으로 예측되었다.In the pulse injection experiment based on a silica column (a column filled with silica resin), a mixed solvent of n-hexane and ethyl acetate was used as the mobile phase, and the ratio of n-hexane and ethyl acetate solvents was changed in this process. We conducted experiments as we went. As a result, it was confirmed that the greater the content of ethyl acetate, which corresponds to the polar solvent, the more smoothly the desorption of beta-mangosteen proceeds. This is because normal chromatographic adsorbents are polar. On the other hand, as the content of n-hexane, which corresponds to a non-polar solvent, increases, desorption of beta-mangosteen does not proceed smoothly, resulting in a tailing phenomenon in which the back part of the solute band of beta-mangosteen is elongated. This occurred. However, the breakthrough time of the beta-mangosteen component showed no change or tended to become slightly faster, which was predicted to be due to the non-polar properties of beta-mangosteen.
SMB 공정의 연속적 운전 모드 실현을 위해 고려되어야 할 중요 사항들 중 하나는 모든 성분들의 탈착이 원활하게 진행될 수 있어야 한다는 점이다. 또한 이러한 조건이 충족되는 크로마토그래피 환경 하에서 목표 성분과 비목표 성분 간의 흡착제 분리선택도(selectivity)가 어느 정도 이상의 수준이 되어야 한다. 이러한 사항들을 고려해 본 결과 실리카 레진은 모든 성분들의 원활한 탈착과 적절한 수준의 분리선택도 보장이라는 2가지 요건 모두를 충족시킬 수 없다는 점을 확인하였다.One of the important considerations to realize the continuous operation mode of the SMB process is that the desorption of all components must proceed smoothly. Additionally, under a chromatography environment where these conditions are met, the adsorbent separation selectivity between target components and non-target components must be above a certain level. As a result of considering these matters, it was confirmed that silica resin cannot meet both requirements of smooth desorption of all components and ensuring an appropriate level of separation selectivity.
beta-SMB 공정에 대한 역상 크로마토그래피 흡착제의 적용 적합성을 조사하기 위해 역상 계열 흡착제들 중 내구성이 특히 우수한 것으로 알려진 Sepra C18 레진을 사용하여 펄스주입 실험을 실시하였다. 예비실험 차원에서 메탄올 100% 용매를 이동상으로, 실험결과의 신속한 파악을 위해 단일 망고스틴 시약(알파, 베타, 감마 망고스틴으로서 순수 시약)을 이용하였다. 그 결과, Sepra C18 흡착제가 베타-망고스틴과 기타 주요 비목표 성분(알파-, 감마-망고스틴) 간에 의미있는 수준의 분리선택도를 제공할 수 있음을 확인할 수 있다. 또한 베타-망고스틴의 탈착 또한 원활하게 진행되고 있음을 확인할 수 있다. 다만 감마-망고스틴의 심각한 꼬리끌림으로 인해 베타-망고스틴의 고순도 확보에 지장을 줄 수 있다는 점도 파악되었다. 이러한 이유로 역상 크로마토그래피 환경 하에서의 용매 종류 및 조성에 대한 최적 결정이 필요할 것으로 사료되었다.To investigate the suitability of reversed-phase chromatography adsorbents for the beta-SMB process, pulse injection experiments were conducted using Sepra C18 resin, which is known to have particularly excellent durability among reversed-phase adsorbents. As a preliminary experiment, 100% methanol was used as a mobile phase, and a single mangosteen reagent (pure reagent as alpha, beta, and gamma mangosteen) was used to quickly understand the experimental results. As a result, it can be confirmed that the Sepra C18 adsorbent can provide a meaningful level of separation selectivity between beta-mangosteen and other major non-target components (alpha- and gamma-mangosteen). In addition, it can be confirmed that the desorption of beta-mangosteen is also proceeding smoothly. However, it was also discovered that the severe tailing of gamma-mangosteen could interfere with securing high purity of beta-mangosteen. For this reason, it was considered necessary to optimally determine the type and composition of solvent in a reversed-phase chromatography environment.
실시예 2. 역상 크로마토그래피 (Sepra C18 흡착제) 환경 하에서의 이동상 내 에탄올 함량의 최적 결정Example 2. Optimal determination of ethanol content in mobile phase under reversed phase chromatography (Sepra C18 adsorbent) environment
메탄올에 비해 환경친화적이고 인체에 유해하지 않으면서 베타-망고스틴 성분과 다른 망고스틴 성분들 간의 분리선택도를 보다 더 향상시킬 수 있는 이동상 용매를 발굴하여 적용해 볼 필요가 있었기에, 에탄올과 DDW의 혼합용매를 이동상 용매 후보로 선정하여 그 적용 가능성에 대한 실험을 수행하였다. 이 실험에서는 에탄올과 DDW의 혼합용매 내 에탄올의 함량을 100%에서 85%까지 5% 간격으로 변화시켜가면서 단일 망고스틴 시약 성분을 대상으로 한 일련의 펄스주입 실험을 진행하였다.There was a need to discover and apply a mobile phase solvent that could further improve the separation selectivity between beta-mangosteen components and other mangosteen components while being environmentally friendly and not harmful to the human body compared to methanol, so ethanol and DDW were used. A mixed solvent was selected as a mobile phase solvent candidate and an experiment was conducted to determine its applicability. In this experiment, a series of pulse injection experiments were conducted on a single mangosteen reagent component while varying the ethanol content in the mixed solvent of ethanol and DDW from 100% to 85% at 5% intervals.
그 결과 도 4에 개시된 바와 같이, 이동상 내 에탄올 함량이 낮아질수록 모든 망고스틴 성분들의 컬럼 내 체류시간이 증가하는 경향을 보이고 있다. 주목할 점은 에탄올 함량 감소에 따른 베타-망고스틴의 체류시간 증가속도와 기타 망고스틴 성분들의 체류시간 증가속도 간에 큰 차이가 있다는 점이다. 즉, 에탄올 함량이 감소함에 따라 베타-망고스틴 성분의 체류시간은 급격히 증가하는 경향을 보이는데 반해 다른 망고스틴 성분들의 체류시간은 서서히 증가하는 패턴을 보이고 있다. 이러한 점 때문에 베타-망고스틴과 다른 망고스틴 성분들간의 분리선택도는 대체적으로 에탄올 함량이 낮아질수록 향상되는 경향을 보이고 있다. 한편 감마-망고스틴 성분의 경우 심각한 꼬리끌림 현상이 발생되고 있지만 85% 에탄올 함량 조건 하에서는 크게 완화되고 있음을 볼 수 있다(도 4d). 이러한 결과를 고려해볼 때 이동상 내 에탄올의 최적 함량은 85%인 것으로 결론 내릴 수 있었다.As a result, as shown in Figure 4, as the ethanol content in the mobile phase decreases, the residence time of all mangosteen components in the column tends to increase. What is noteworthy is that there is a large difference between the rate of increase in retention time of beta-mangosteen and the rate of increase in retention time of other mangosteen components as ethanol content decreases. In other words, as the ethanol content decreases, the retention time of the beta-mangosteen component tends to increase rapidly, while the retention time of other mangosteen components shows a pattern of gradually increasing. For this reason, the separation selectivity between beta-mangosteen and other mangosteen components generally tends to improve as the ethanol content decreases. Meanwhile, in the case of the gamma-mangosteen component, a serious tailing phenomenon occurs, but it can be seen that it is greatly alleviated under the condition of 85% ethanol content (Figure 4d). Considering these results, it could be concluded that the optimal content of ethanol in the mobile phase was 85%.
상기 결론은 단일 망고스틴 시약을 대상으로 한 결과이므로, crude 망고스틴 시료에 대해서도 유효한지 확인하기 위해 crude 망고스틴 시료를 대상으로 한 펄스주입 실험을 실시하였다. 본 실험에서 이동상은 단일 망고스틴 시약을 대상으로 한 실험에서 최적 용매로 확인된 85% 에탄올 용매가 사용되었다. 실험 결과, 도 5에서 볼 수 있듯이 crude 망고스틴 시료를 대상으로 한 펄스주입 실험에서도 단일 망고스틴 시약을 대상으로 한 실험에서와 비슷한 수준의 베타-망고스틴 분리선택도가 확인되었다. 상기 결과로 미루어 볼 때 역상 크로마토그래피 환경 하에서 베타-망고스틴과 다른 망고스틴 성분들 간의 분리에 최적인 이동상은 85% 에탄올 용매로 결정되었다.Since the above conclusion is a result of a single mangosteen reagent, a pulse injection experiment was conducted on a crude mangosteen sample to confirm whether it is also valid for a crude mangosteen sample. In this experiment, 85% ethanol solvent, which was confirmed to be the optimal solvent in an experiment targeting a single mangosteen reagent, was used as the mobile phase. As a result of the experiment, as can be seen in Figure 5, a similar level of beta-mangosteen separation selectivity was confirmed in the pulse injection experiment using a crude mangosteen sample as in the experiment using a single mangosteen reagent. Considering the above results, 85% ethanol solvent was determined to be the optimal mobile phase for separation between beta-mangosteen and other mangosteen components under a reversed-phase chromatography environment.
실시예 3. beta-SMB 공정에 대한 최적설계 접근법Example 3. Optimal design approach for beta-SMB process
상기 실시예 2의 펄스주입 실험에서 주목할 점은 원료(feed) 주입 시 crude 망고스틴 시료의 주입량을 단일 망고스틴 시약의 주입량보다 75배 이상 높게 설정하였다는 점이다. 이는 crude 망고스틴 시료의 펄스주입 실험 조건이 컬럼 내 망고스틴 농도를 더 높게 유지시키는 조건임을 의미한다. 이러한 점을 바탕으로 도 4d와 도 5를 분석해보면 감마-망고스틴을 제외한 나머지 망고스틴 성분들(알파, 베타)은 농도가 증가할수록 체류시간이 빨라진다는 점을 파악할 수 있었고, 이는 알파와 베타 망고스틴 성분이 랑그뮤어(Langmuir) 형태의 비선형 흡착 경향을 따른다는 것을 의미한다.What is noteworthy in the pulse injection experiment of Example 2 is that when injecting the raw material (feed), the injection amount of the crude mangosteen sample was set to be more than 75 times higher than the injection amount of a single mangosteen reagent. This means that the pulse injection experiment conditions for crude mangosteen samples are conditions that maintain the mangosteen concentration in the column higher. Based on this, when analyzing Figures 4d and 5, it was found that the retention time of the remaining mangosteen components (alpha, beta) except gamma-mangosteen becomes faster as the concentration increases, which means that the retention time of the remaining mangosteen components (alpha and beta) increases as the concentration increases. This means that the Steen component follows a Langmuir type nonlinear adsorption tendency.
이에 상기 결과를 바탕으로 다음과 같은 방식의 beta-SMB 공정 설계 접근법을 채택하였다. 각 망고스틴 성분을 고농도(crude 시료 기준의 농도: SMB 공정 투입 농도와 유사한 수준의 농도에 해당) 기준과 저농도(단일 시약 성분 기준의 농도) 기준의 2개 성분으로 구분하여 취급하고 각 개별 성분에 대한 헨리상수(Henry constant, 선형흡착계수)를 결정한다. 편의상 베타-망고스틴의 고농도 기준 성분과 저농도 기준 성분을 각각 β-1과 β-2로 표기하고, 알파-망고스틴과 감마-망고스틴의 경우에도 각각 α-1, α-2, γ로 표기하기로 한다.Accordingly, based on the above results, the following beta-SMB process design approach was adopted. Each mangosteen ingredient is treated by dividing it into two components: high concentration (concentration based on crude sample: equivalent to the concentration level input to the SMB process) and low concentration (concentration based on single reagent component). Determine the Henry constant (linear adsorption coefficient) for For convenience, the high- and low-concentration standard components of beta-mangosteen are denoted as β-1 and β-2, respectively, and alpha-mangosteen and gamma-mangosteen are also denoted as α-1, α-2, and γ, respectively. I decided to do it.
또한, 본 발명의 목표인 beta-SMB 공정 구조의 경우 장치 및 관리 비용의 절약을 위해 컬럼 및 밸브의 개수를 최소하는 방향으로 구조를 선정한다. 다만 베타-망고스틴과 다른 망고스틴 성분들 간의 분리효율을 향상시키기 위해 separation zone (원료 포트 주위에 위치한 두 개의 zone)에 더 많은 개수의 컬럼을 배치하도록 하였으며, 컬럼 재생(regeneration)의 경우 그 부담을 줄이고 재생 효율을 향상시키기 위해 가급적 1개의 zone이 아닌 2개의 zone에서 담당하도록 하였다. 위에서 언급한 모든 사항들을 만족시킬 수 있는 SMB 공정 구조를 검토한 결과 도 6에 제시한 구조가 가장 적합한 것으로 확인되었다.In addition, in the case of the beta-SMB process structure, which is the target of the present invention, the structure is selected to minimize the number of columns and valves to save equipment and management costs. However, in order to improve the separation efficiency between beta-mangosteen and other mangosteen components, more columns were placed in the separation zone (two zones located around the raw material port), and the burden of column regeneration was increased. In order to reduce and improve regeneration efficiency, if possible, two zones, instead of one, were responsible. As a result of reviewing the SMB process structure that can satisfy all of the above-mentioned requirements, the structure presented in Figure 6 was confirmed to be the most suitable.
도 6에 개시된 beta-SMB 공정은 β-1의 앞부분과 β-2의 뒷부분을 각각 zone Ⅲ와 zone I 내에 위치하게 하고 α-2의 뒷부분은 zone Ⅱ 내에 위치하게 한다. 한편 γ 성분은 흡착강도가 가장 작기 때문에 잔류물(raffinate) 포트를 통해 자동 배출될 수밖에 없다. 이러한 상황 하에서의 베타-망고스틴 목표 성분(β-1, β-2)은 추출물(extract) 포트를 통해 회수되고 다른 망고스틴 성분들(α-1, α-2, γ)은 모두 잔류물 포트를 통해 제거된다. 아울러 매 단계마다 유입구 및 유출구 포트들이 용매의 진행방향을 따라 컬럼 한 개의 길이만큼 이동하면서 원료(feed) 혼합물의 연속주입과 베타-망고스틴 목표 성분의 연속회수를 가능하게 한다.In the beta-SMB process disclosed in Figure 6, the front part of β-1 and the back part of β-2 are located in zone III and zone I, respectively, and the rear part of α-2 is located in zone II. Meanwhile, since the γ component has the lowest adsorption strength, it has no choice but to be automatically discharged through the raffinate port. Under this situation, the beta-mangosteen target components (β-1, β-2) are recovered through the extract port, and all other mangosteen components (α-1, α-2, γ) are recovered through the residue port. is removed through In addition, at each step, the inlet and outlet ports move the length of one column along the direction of the solvent, enabling continuous injection of the feed mixture and continuous recovery of the beta-mangosteen target ingredient.
실시예 4. beta-SMB 공정의 최적 설계를 위한 알파, 베타, 감마 망고스틴 성분들의 기초 파라미터 결정Example 4. Determination of basic parameters of alpha, beta, and gamma mangosteen components for optimal design of beta-SMB process
beta-SMB 공정의 최적설계 수행을 위해서는 알파 및 베타 망고스틴 성분들(α-1, α-2, β-1, β-2)의 기초 파라미터(헨리상수, 물질전달계수) 확보가 필요하다. 이를 위해 실시예 2에서 수행된 펄스주입 실험 결과(도 4d, 5)로부터 각 성분의 체류시간을 파악하고 이 정보와 용질운동이론(solute movement theory)을 이용하여 각 성분의 헨리상수(H)를 결정할 수 있었다(표 2). 상기 헨리상수에 이어서 추가적으로 결정되어야 할 주요 기초 파라미터인 물질전달계수에는 axial dispersion coefficient (Eb)와 film mass-transfer coefficient (kf)가 있다. 이들 중 Eb의 값은 Chung and Wen correlation을 사용하여 결정하였고, kf 값은 컴퓨터 시뮬레이션 결과를 펄스주입 실험 데이터에 가장 가까이 근접시킬 수 있는 값으로 결정하였다. 결정된 각 망고스틴 성분들(α-1, α-2, β-1, β-2)의 물질전달계수 값은 표 2와 같다.In order to perform the optimal design of the beta-SMB process, it is necessary to secure the basic parameters (Henry constant, mass transfer coefficient) of the alpha and beta mangosteen components (α-1, α-2, β-1, β-2). To this end, the retention time of each component was determined from the results of the pulse injection experiment performed in Example 2 (FIGS. 4d and 5), and the Henry constant (H) of each component was determined using this information and solute movement theory. could be determined (Table 2). The mass transfer coefficient, which is a major basic parameter that must be determined additionally following the Henry's constant, includes the axial dispersion coefficient (E b ) and the film mass-transfer coefficient (k f ). Among these, the value of E b was determined using the Chung and Wen correlation, and the k f value was determined as the value that could most closely approximate the computer simulation results to the pulse injection experiment data. The mass transfer coefficient values of each determined mangosteen component (α-1, α-2, β-1, and β-2) are shown in Table 2.
beta-SMB 공정 설계를 위한 주요 망고스틴 성분들의 기초 파라미터Basic parameters of major mangosteen ingredients for beta-SMB process design
HH Eb (cm2/min) Eb ( cm2 /min) kf (cm/min)k f (cm/min)
α-1α-1 1.451.45 Chung & Wen,
AIChE J. 1968, 14:857-866
Chung & Wen,
AIChE J. 1968, 14:857-866
0.010.01
α-2α-2 2.552.55 0.250.25
β-1β-1 4.444.44 0.040.04
β-2β-2 5.295.29 0.950.95
H: 헨리상수, Eb: axial dispersion coefficient, kf: film mass-transfer coefficient.H: Henry's constant, E b : axial dispersion coefficient, k f : film mass-transfer coefficient.
표 2에 제시된 각 성분 기초 파라미터 값들의 적정성을 확인하기 위해, 표 2의 파라미터 값과 컬럼 모델식(Eq. (1))을 바탕으로 한 컴퓨터 시뮬레이션을 수행하였다. 이 컴퓨터 시뮬레이션 결과와 실험데이터를 각 성분 별로 비교하였다. 그 결과, 도 7에 개시된 바와 같이 컴퓨터 시뮬레이션 결과와 실험데이터가 잘 일치하고 있음을 확인할 수 있었다. 이는 표 2에 제시된 기초 파라미터 값들이 Sepra C18 기반 역상 컬럼 내에서의 각 성분의 이동현상(transport phenomena) 및 분리거동을 비교적 잘 표현해주고 있음을 의미한다. 따라서 표 2에 제시된 각 성분들의 기초 파라미터 값들은 차후에 진행될 beta-SMB 공정의 최적설계 과정에 성공적으로 활용될 수 있을 것으로 기대되었다.In order to confirm the appropriateness of the basic parameter values for each component presented in Table 2, a computer simulation was performed based on the parameter values in Table 2 and the column model equation (Eq. (1)). The computer simulation results and experimental data were compared for each component. As a result, it was confirmed that the computer simulation results and the experimental data were in good agreement, as shown in FIG. 7. This means that the basic parameter values presented in Table 2 relatively well express the transport phenomena and separation behavior of each component within the Sepra C18-based reversed-phase column. Therefore, it was expected that the basic parameter values of each component presented in Table 2 could be successfully used in the optimal design process of the beta-SMB process to be carried out in the future.
실시예 5. beta-SMB 공정의 최적설계Example 5. Optimal design of beta-SMB process
결정된 각 망고스틴 성분의 기초 파라미터(표 2)와 확정된 SMB 공정 구조(도 6) 하에서 beta-SMB 공정의 최적설계(최적 운전 조건의 결정) 연구를 수행하였다. 최적설계는 다음과 같은 절차에 따라 추진되었다.A study was conducted on the optimal design (determination of optimal operating conditions) of the beta-SMB process under the determined basic parameters of each mangosteen ingredient (Table 2) and the confirmed SMB process structure (Figure 6). The optimal design was promoted according to the following procedures.
Throughput 즉, 원료 유량(feed flow rate)을 고정한 상태에서 베타-망고스틴 성분(β-1, β-2)의 수율과 다른 망고스틴 성분들(α-1, α-2, γ)의 제거율을 모두 99.9% 이상 유지되도록 하는 최적화 프레임을 구성하였다. 상기 최적화 프레임에 부합되는 최적화 도구를 구성하였으며 이 과정에 유전자알고리즘과 컬럼 모델식(Eq. (1)) 기반의 Aspen chromatography simulator가 사용되었다. 상기 구성된 최적화 도구를 이용하여 beta-SMB 공정의 최적 운전조건을 결정하였으며 그 결과를 표 3에 제시하였다.Throughput, that is, with the feed flow rate fixed, the yield of beta-mangosteen components (β-1, β-2) and the removal rate of other mangosteen components (α-1, α-2, γ) are measured. An optimization frame was created to ensure that everything was maintained above 99.9%. An optimization tool matching the above optimization frame was constructed, and the Aspen chromatography simulator based on genetic algorithm and column model equation (Eq. (1)) was used in this process. The optimal operating conditions for the beta-SMB process were determined using the optimization tool configured above, and the results are presented in Table 3.
beta-SMB 공정의 최적 운전조건Optimal operating conditions for beta-SMB process
Zone flow rates
(㎖/min)
Zone flow rates
(㎖/min)
Q1 Q 1 1.951.95
Q2 Q 2 3.053.05
Q3 Q 3 3.553.55
Inlet and outlet flow rates
(㎖/min)
Inlet and outlet flow rates
(㎖/min)
Qdes-1 Q des-1 1.951.95
Qdes-2 Q des-2 3.053.05
Qfeed Q feed 0.50.5
Qraf Q raf 3.553.55
Switching time (min)Switching time (min) tsw tsw 64.6364.63
beta-SMB 공정의 최적설계 결과에 대한 이론적 검증을 위해 상기 확보된 최적 운전조건(표 3)과 컬럼 모델식을 바탕으로 SMB 공정 시뮬레이션을 진행하였다. 상기 시뮬레이션을 통해 주기적 정상상태(cyclic steady state) 하에서의 컬럼 프로파일을 획득하였으며 그 결과는 도 8에 제시하였다.To theoretically verify the optimal design results of the beta-SMB process, an SMB process simulation was conducted based on the obtained optimal operating conditions (Table 3) and the column model equation. Through the simulation, a column profile under a cyclic steady state was obtained, and the results are presented in FIG. 8.
도 8의 컬럼 프로파일에서 볼 수 있듯이 β-1 solute band의 앞부분과 β-2 solute band의 뒷부분 모두 zone Ⅲ와 zone I 내에서 잘 통제되고(well-confined) 있다. 또한 α-2 band의 뒷부분도 zone Ⅱ 내에서 잘 통제되고 있다. 이러한 상황 하에서는 나머지 망고스틴 성분들(a-1, γ) 모두 잔류물 포트를 통해 자동 배출될 수 밖에 없기 때문에 이 성분들의 거동은 목표 성분(extract) stream에 전혀 영향을 미치지 않는다. 이러한 점들을 모두 고려해볼 때 표 3의 운전조건(최적설계의 결과)은 베타-망고스틴과 다른 망고스틴 성분들 간의 고순도 및 고수율 연속분리를 보장할 수 있는 SMB 운전조건이라고 판단되었다.As can be seen in the column profile of Figure 8, both the front part of the β-1 solute band and the back part of the β-2 solute band are well-confined within zone III and zone I. Additionally, the rear part of the α-2 band is also well controlled within zone II. Under this situation, all of the remaining mangosteen components (a-1, γ) have no choice but to be automatically discharged through the residue port, so the behavior of these components has no effect on the target component (extract) stream. Considering all these points, the operating conditions (results of optimal design) in Table 3 were determined to be SMB operating conditions that can ensure high purity and high yield continuous separation between beta-mangosteen and other mangosteen components.
실시예 6. 최적설계된 beta-SMB 공정의 실험적 검증Example 6. Experimental verification of the optimally designed beta-SMB process
상기 최적설계된 beta-SMB 공정에 대한 실험적 검증을 위해 도 6의 최적 구조에 부합하는 SMB 공정 장치를 조립 및 제작하였다. 이 장치와 표 3의 최적 운전조건을 바탕으로 crude 망고스틴 시료 내 베타-망고스틴과 다른 망고스틴 성분들(알파, 감마)간의 연속분리 실험을 수행하였다. 도 9는 이 실험 진행 중 촬영된 SMB 장치의 사진이다.To experimentally verify the optimally designed beta-SMB process, an SMB process device conforming to the optimal structure of FIG. 6 was assembled and manufactured. Based on this device and the optimal operating conditions in Table 3, continuous separation experiments were performed between beta-mangosteen and other mangosteen components (alpha, gamma) in crude mangosteen samples. Figure 9 is a photo of the SMB device taken during this experiment.
SMB 실험 중 원료 포트로는 crude 망고스틴 시료 30 g/L 용액이 연속 주입되었고, desorbent-1과 desorbent-2 포트로는 85% 에탄올 수용액이 연속 공급되었다. SMB 실험은 총 23 단계 동안(25 시간) 실시하였으며 실험의 전과정 동안 extract 포트(베타-망고스틴 product port) stream과 잔류물 포트(non-product port) stream에 대한 단계별 농도 분석을 수행하였으며, 그 결과를 도 10에 나타내었다. 농도에 대한 정량분석은 주요성분에 해당되는 알파, 베타, 감마 망고스틴 성분들에 대해서만 실시되었다. 따라서, 베타-망고스틴 순도의 경우 주요성분 (알파, 베타, 감마 망고스틴)만을 고려한 순도는 정량적으로 조사되었고, 전체성분 모두를 고려한 순도는 SMB product stream에 대한 HPLC analysis chromatogram raw data로 대신하였다.During the SMB experiment, a 30 g/L solution of crude mangosteen sample was continuously injected into the raw material port, and an 85% ethanol aqueous solution was continuously supplied into the desorbent-1 and desorbent-2 ports. The SMB experiment was conducted for a total of 23 stages (25 hours), and step-by-step concentration analysis was performed on the extract port (beta-mangosteen product port) stream and the residue port (non-product port) stream throughout the entire experiment. As a result, is shown in Figure 10. Quantitative analysis of concentration was conducted only on the main components of alpha, beta, and gamma mangosteen. Therefore, in the case of beta-mangosteen purity, the purity considering only the main components (alpha, beta, and gamma mangosteen) was quantitatively investigated, and the purity considering all components was replaced with HPLC analysis chromatogram raw data for the SMB product stream.
도 10a의 결과에서 볼 수 있듯이 extract 포트로는 주요 망고스틴 성분들 중 베타-망고스틴의 존재만 확인되었다. 반면 raffinate 포트로는 알파와 감마 망고스틴의 유출만 확인되었다(도 10b). 상기 결과는 주요 성분만을 고려했을 때 beta-SMB 공정을 통해 베타-망고스틴을 분리할 경우 순도와 수율 모두 100% 수준에 이른다는 것을 의미하였다.As can be seen in the results of Figure 10a, the extract pot confirmed the presence of only beta-mangosteen among the main mangosteen components. On the other hand, only alpha and gamma mangosteen were confirmed to leak into the raffinate port (Figure 10b). The above results meant that, considering only the main components, both purity and yield reached 100% when separating beta-mangosteen through the beta-SMB process.
상기 결과에 대한 증빙자료로서 beta-SMB 공정에 투입되었던 crude 망고스틴 시료 용액, extract stream 용액, 베타-망고스틴 표준시료 각각에 대한 HPLC 농도분석 크로마토그램 raw data를 확보하여 도 11에 제시하였다. 도 11b에서 볼 수 있듯이 beta-SMB 공정의 extract (product)에 대한 크로마토그램에서는 알파와 감마 망고스틴 성분의 피크들은 전혀 발견되지 않았다. 더 나아가 도 11a (crude 망고스틴 시료에 대한 크로마토그램)에서 베타-망고스틴 피크의 앞에 위치한 수많은 미지의 불순물 피크들이, 도 11b에서 상당부분 제거되어 있음을 확인할 수 있었다. 이는 본 발명에서 개발된 beta-SMB 공정이 crude 시료 내에 다량 함유되어 있는 알파 및 감마 망고스틴 성분들의 완전 제거뿐만 아니라 기타 소량 또는 미량의 불순물까지도 상당부분 제거해 낼 수 있음을 의미하였다.As evidence for the above results, HPLC concentration analysis chromatogram raw data for each of the crude mangosteen sample solution, extract stream solution, and beta-mangosteen standard sample that were input into the beta-SMB process were obtained and presented in Figure 11. As can be seen in Figure 11b, peaks of alpha and gamma mangosteen components were not found at all in the chromatogram for the extract (product) of the beta-SMB process. Furthermore, it was confirmed that many unknown impurity peaks located in front of the beta-mangosteen peak in Figure 11a (chromatogram for a crude mangosteen sample) were largely removed in Figure 11b. This meant that the beta-SMB process developed in the present invention could not only completely remove alpha and gamma mangosteen components contained in large quantities in crude samples, but also remove a significant portion of other small or trace impurities.
상기 실험결과에 대한 추가적인 증빙을 위해 도 11b의 beta-SMB 공정 extract (product) 크로마토그램과 베타-망고스틴 표준시료 크로마토그램(도 11c)을 비교해보았다. 그 결과 beta-SMB 공정의 extract (product) stream 내 베타-망고스틴 성분의 존재가 분명하게 확인되었고 베타-망고스틴 피크 주변의 불순물의 존재 또한 목격되었다. 다만 상기 불순물 피크의 개수 및 크기는 crude 망고스틴 시료 내 불순물 피크(도 11a)의 개수 및 크기보다 확연히 감소되었다. 이로 인해 crude 망고스틴 시료 내에서는 minor 성분에 지나지 않았던 베타-망고스틴이 SMB product stream 내에서는 가장 큰 함량을 차지하는 major 성분이 되었다는 점을 주목할 필요가 있다.For additional proof of the above experimental results, the beta-SMB process extract (product) chromatogram of FIG. 11b was compared with the beta-mangosteen standard sample chromatogram (FIG. 11c). As a result, the presence of beta-mangosteen components in the extract (product) stream of the beta-SMB process was clearly confirmed, and the presence of impurities around the beta-mangosteen peak was also observed. However, the number and size of the impurity peaks were significantly reduced compared to the number and size of the impurity peaks in the crude mangosteen sample (FIG. 11a). As a result, it is worth noting that beta-mangosteen, which was only a minor component in crude mangosteen samples, became a major component with the largest content in the SMB product stream.
실시예 7. Recycling preparative HPLC를 이용한 후처리 공정Example 7. Post-treatment process using recycling preparative HPLC
상기 결과에도 불구하고 beta-SMB 공정의 extract (product) stream 내에는 베타-망고스틴 성분 이외에 몇 가지 종류의 minor 불순물 (잔톤 불순물 포함)들이 존재하고 있다. 이 불순물의 추가적인 제거를 위해 beta-SMB 공정의 산물에 대한 후처리 공정의 개발을 다음과 같은 절차에 따라 수행하였다.Despite the above results, in the extract (product) stream of the beta-SMB process, several types of minor impurities (including xanthone impurities) exist in addition to the beta-mangosteen component. To further remove these impurities, a post-treatment process for the product of the beta-SMB process was developed according to the following procedure.
HPLC 크로마토그램을 통해 beta-SMB 공정 산물 내 목표물질(베타-망고스틴)을 선택적으로 분리하기 위해 JAI NEXT recycling preparative HPLC를 이용하였다. 컬럼은 Thermofisher scientific의 Acclaim Polar Advatage Ⅱ (5 ㎛, 250 x 20 mm)을 이용하였으며 이동상은 isocratic 조건에서 100% 아세토니트릴을 흘려주었다. 그 결과 도 12와 같이 나타났으며 Peak 15와 56으로부터 re-HPLC-1, peak 27과 72로부터 re-HPLC-2, peak 28, 73, 74로부터 re-HPLC-3의 총 3개 분획물을 확보하였다. 상기 3개 분획물의 HPLC 확인 결과, 2번째 분획인 re-HPLC-2에서 베타-망고스틴 (tR = 53 min)의 선택적 피크를 확인할 수 있었다(도 13). Recycle-HPLC 공정의 사용시 injection volume 5,000 ㎎/㎖로부터 2.1 ㎎의 베타-망고스틴을 확보하였으며 최종 순도는 >96% 였다. 이로써 본 발명에서 개발된 "beta-SMB 공정과 recycle-HPLC 기반의 후처리 공정"의 2단계 공정 절차를 통해 crude 망고스틴 시료 내 베타-망고스틴 성분을 96% 이상의 순도로 회수해낼 수 있음을 확인하였다.JAI NEXT recycling preparative HPLC was used to selectively separate the target substance (beta-mangosteen) in the beta-SMB process product through HPLC chromatogram. The column used was Thermofisher Scientific's Acclaim Polar Advatage Ⅱ (5 ㎛, 250 x 20 mm), and the mobile phase was 100% acetonitrile under isocratic conditions. As a result, as shown in Figure 12, a total of three fractions were secured: re-HPLC-1 from peaks 15 and 56, re-HPLC-2 from peaks 27 and 72, and re-HPLC-3 from peaks 28, 73, and 74. did. As a result of HPLC confirmation of the three fractions, a selective peak of beta-mangostin (t R = 53 min) was confirmed in the second fraction, re-HPLC-2 (FIG. 13). When using the Recycle-HPLC process, 2.1 mg of beta-mangosteen was secured from an injection volume of 5,000 mg/ml, and the final purity was >96%. This confirms that the beta-mangosteen component in the crude mangosteen sample can be recovered with a purity of 96% or more through the two-step process procedure of “beta-SMB process and recycle-HPLC-based post-treatment process” developed in the present invention. did.

Claims (11)

  1. 망고스틴 추출물 원료를 모사 이동층(simulated moving bed) 크로마토그래피에 적용하여 베타-망고스틴을 분리하는 단계를 포함하는, 베타-망고스틴(β-mangostin)의 분리 방법.A method of separating beta-mangostin, comprising the step of separating beta-mangostin by subjecting mangosteen extract raw material to simulated moving bed chromatography.
  2. 제1항에 있어서, 상기 망고스틴 추출물은 베타-망고스틴 및 이의 이성질체 혼합물이 포함된 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method of claim 1, wherein the mangosteen extract contains beta-mangosteen and a mixture of isomers thereof.
  3. 제2항에 있어서, 상기 이성질체는 알파-망고스틴 및 감마-망고스틴인 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method of claim 2, wherein the isomers are alpha-mangostin and gamma-mangostin.
  4. 제1항에 있어서, 상기 방법은The method of claim 1, wherein the method
    모사 이동층 크로마토그래피에 적용된 흡착 칼럼에 대한 알파-망고스틴 및 베타-망고스틴의 흡착계수 및 물질전달계수를 결정하는 단계(단계 1);Determining the adsorption coefficient and mass transfer coefficient of alpha-mangosteen and beta-mangosteen for the adsorption column applied to simulated moving bed chromatography (step 1);
    상기 단계 1에서 결정된 흡착계수 및 물질전달계수를 유전자알고리즘(genetic algorithm) 및 컬럼 모델식을 바탕으로 모사 이동층 전산모사 프로그램에 적용하여 모사 이동층 크로마토그래피 공정의 운전조건을 계산하는 단계(단계 2); 및Calculating the operating conditions of the simulated moving bed chromatography process by applying the adsorption coefficient and mass transfer coefficient determined in step 1 to a simulated moving bed computer simulation program based on the genetic algorithm and column model equation (step 2) ); and
    모사 이동층 크로마토그래피에 망고스틴 추출물 원료와 용리액을 공급하고 상기 단계 2에서 계산된 운전조건을 적용하여 베타-망고스틴을 분리하는 단계(단계 3);를 포함하는 것을 특징으로 하는 베타-망고스틴의 분리 방법.Beta-mangosteen, comprising: supplying mangosteen extract raw materials and eluent to simulated moving bed chromatography and separating beta-mangosteen by applying the operating conditions calculated in step 2 (step 3); Separation method.
  5. 제4항에 있어서, 상기 단계 1의 흡착 컬럼은 C18이 코팅된 실리카를 고정상으로 포함하는 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method for separating beta-mangosteen according to claim 4, wherein the adsorption column in step 1 includes C18-coated silica as a stationary phase.
  6. 제4항에 있어서, 상기 단계 2의 컬럼 모델식은 일괄 대량 이동 모델(lumped mass-transfer model)인 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method of separating beta-mangosteen according to claim 4, wherein the column model equation of step 2 is a lumped mass-transfer model.
  7. 제4항에 있어서, 상기 단계 3의 용리액은 C1~C4의 저급 알코올인 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method for separating beta-mangosteen according to claim 4, wherein the eluent in step 3 is a lower alcohol of C1 to C4.
  8. 제7항에 있어서, 상기 저급 알코올은 에탄올인 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method of claim 7, wherein the lower alcohol is ethanol.
  9. 제4항에 있어서, 상기 단계 3의 모사 이동층 크로마토그래피 후 용리된 산물(product)을 대상으로 리사이클링 프렙 HPLC(Recycling Preparative HPLC)를 추가로 수행하는 것을 특징으로 하는, 베타-망고스틴의 분리 방법.The method for separating beta-mangosteen according to claim 4, characterized in that recycling prep HPLC (Recycling Preparative HPLC) is additionally performed on the product eluted after the simulated moving bed chromatography in step 3. .
  10. 제1항에 있어서, 상기 모사 이동층(SMB) 크로마토그래피는,The method of claim 1, wherein the simulated moving bed (SMB) chromatography,
    3개의 유입구와 2개의 유출구를 구비한 3구역 개방형 SMB 크로마토그래피를 이용하고, 탈착용매(용리액)를 제1구역의 입구로 주입하며 이와 동시에 제1구역의 출구를 통해 베타-망고스틴 산물을 회수하는 단계 (단계 ①);Using a three-zone open SMB chromatography with three inlets and two outlets, the desorption solvent (eluent) is injected into the inlet of the first zone, and at the same time, the beta-mangosteen product is recovered through the outlet of the first zone. Step (step ①);
    상기 단계 ①과 동시에 제2구역의 입구로 탈착용매를 주입하여 알파-망고스틴 및 감마-망고스틴 성분들이 한 교환시간 이내에 제2구역의 첫 번째 컬럼으로부터 탈착되어 제3구역을 향하여 진행해 나갈 수 있도록 하는 단계 (단계 ②); 및Simultaneously with step ①, a desorption solvent is injected into the inlet of the second zone so that the alpha-mangosteen and gamma-mangosteen components can be desorbed from the first column of the second zone within one exchange time and proceed toward the third zone. Step (step ②); and
    상기 단계 ②와 동시에 망고스틴 시료 용액을 공급액 주입구를 통해 제3구역으로 주입하며 이와 동시에 망고스틴 시료 내 베타-망고스틴 성분의 이동 구간 범위를 제3구역 내로 한정하게 하고 반면 알파-망고스틴과 감마-망고스틴 성분은 한 교환시간 내에 제3구역 출구 지점을 지나 외부로 배출될 수 있도록 하는 단계 (단계 ③);를 포함하는 3구역 개방형 SMB 크로마토그래피인 것을 특징으로 하는, 베타-망고스틴의 분리 방법.At the same time as step ② above, the mangosteen sample solution is injected into the third zone through the supply fluid inlet, and at the same time, the movement range of the beta-mangosteen component in the mangosteen sample is limited to within the third zone, while alpha-mangosteen and gamma -Separation of beta-mangosteen, characterized in that it is a 3-zone open SMB chromatography, including a step (step ③) of allowing the mangosteen component to be discharged to the outside through the exit point of the 3rd zone within one exchange time. method.
  11. 제1항에 있어서, 상기 분리 방법에 의해 분리된 베타-망고스틴은 순도가 96% 이상인 것을 특징으로 하는 분리 방법.The separation method according to claim 1, wherein the beta-mangosteen isolated by the separation method has a purity of 96% or more.
PCT/KR2023/006086 2022-05-26 2023-05-04 Method for separating beta-mangostin with high purity and high efficiency by using smb process and use thereof WO2023229255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0064738 2022-05-26
KR1020220064738A KR20230164956A (en) 2022-05-26 2022-05-26 Method for separating beta-mangostin of high purity and high efficiency using SMB process and uses thereof

Publications (1)

Publication Number Publication Date
WO2023229255A1 true WO2023229255A1 (en) 2023-11-30

Family

ID=88919571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006086 WO2023229255A1 (en) 2022-05-26 2023-05-04 Method for separating beta-mangostin with high purity and high efficiency by using smb process and use thereof

Country Status (2)

Country Link
KR (1) KR20230164956A (en)
WO (1) WO2023229255A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126719A (en) * 2009-02-25 2011-11-23 대니스코 에이/에스 Separation process
KR101449808B1 (en) * 2012-02-06 2014-10-14 씨제이제일제당 (주) An apparatus for continuous separation of valine and a method for continuous separation of valine using the same
KR101721917B1 (en) * 2015-09-21 2017-03-31 경상대학교산학협력단 - Composition for skin whitening comprising -mangostin as effective component
WO2020028198A1 (en) * 2018-08-03 2020-02-06 Biomass Oil Separation Solutions, Llc Processes and apparatus for extraction of substances and enriched extracts from plant material
CN111170981A (en) * 2020-01-21 2020-05-19 浙江省人民医院 Garcinia extract extracted from mangosteen, preparation method and application thereof
US20210230206A1 (en) * 2017-05-29 2021-07-29 Spectrum Therapeutics GmbH Method for separating natural substance mixtures by means of scpc

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126719A (en) * 2009-02-25 2011-11-23 대니스코 에이/에스 Separation process
KR101449808B1 (en) * 2012-02-06 2014-10-14 씨제이제일제당 (주) An apparatus for continuous separation of valine and a method for continuous separation of valine using the same
KR101721917B1 (en) * 2015-09-21 2017-03-31 경상대학교산학협력단 - Composition for skin whitening comprising -mangostin as effective component
US20210230206A1 (en) * 2017-05-29 2021-07-29 Spectrum Therapeutics GmbH Method for separating natural substance mixtures by means of scpc
WO2020028198A1 (en) * 2018-08-03 2020-02-06 Biomass Oil Separation Solutions, Llc Processes and apparatus for extraction of substances and enriched extracts from plant material
CN111170981A (en) * 2020-01-21 2020-05-19 浙江省人民医院 Garcinia extract extracted from mangosteen, preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE MELLO RICARDO FELIPE ALEXANDRE; DE SOUZA PINHEIRO WANDSON B.; BENJAMIM JAISIELLE KELEM F.; DE SIQUEIRA FRANCILIA CAMPOS; CHIST&: "A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography", ARABIAN JOURNAL OF CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 14, no. 8, 6 June 2021 (2021-06-06), AMSTERDAM, NL , XP086700264, ISSN: 1878-5352, DOI: 10.1016/j.arabjc.2021.103252 *
MANEEWAN SIRAWEE; TANGPROMPHAN PREUK; JAREE ATTASAK: "Separation of Vitexin and Iso-vitexin from Mung Bean Seed Coats Using a Three-Zone Simulated Moving Bed (SMB)", WASTE AND BIOMASS VALORIZATION, SPRINGER NETHERLANDS, NL, vol. 12, no. 12, 12 June 2021 (2021-06-12), NL , pages 6601 - 6618, XP037615369, ISSN: 1877-2641, DOI: 10.1007/s12649-021-01493-z *

Also Published As

Publication number Publication date
KR20230164956A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP5133872B2 (en) Method and apparatus for chromatographic purification
Pais et al. Modeling, simulation and operation of a simulated moving bed for continuous chromatographic separation of 1, 1′-bi-2-naphthol enantiomers
US8722932B2 (en) Method for separating a mixture comprising three components by simulated moving bed chromatography
Kostanyan Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading
US6802969B2 (en) Preparative chromatography system and separation/purification method using same
Yang et al. Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins
WO2023229255A1 (en) Method for separating beta-mangostin with high purity and high efficiency by using smb process and use thereof
JP3408818B2 (en) Chromatographic method for obtaining highly purified cyclosporin A and related cyclosporins
Gritti et al. Semi-preparative high-resolution recycling liquid chromatography
WO2013119034A1 (en) An apparatus for continuous separation of valine and a method for continuous separation of valine using the same
Gritti Rebirth of recycling liquid chromatography with modern chromatographic columns: Extension to gradient elution
JPH08155206A (en) Separation method in simulated moving bed with constant recycling flow rate
Han et al. Total-recycling partial-discard strategy for improved performance of simulated moving-bed chromatography
EP0586385A1 (en) Enantiomer separating process on chiral separation phases by means of a continuous counter-current chromatography process.
US10675558B2 (en) Dispersed mobile-phase countercurrent chromatography
Okinyo-Owiti et al. Simulated moving bed purification of flaxseed oil orbitides: unprecedented separation of cyclolinopeptides C and E
KR100926150B1 (en) Chromatographic Method of Using Three-Zone Simulated Moving Bed Process Comprising Partial Recycle
Crépier et al. Characterization of positional isomers of drug intermediates by off-line RPLC x SFC hyphenated to high resolution MS
Küsters et al. Purification of an ascomycin derivative with simulated moving bed chromatography. A case study
Chen et al. Normal phase and reverse phase HPLC-UV-MS analysis of process impurities for rapamycin analog ABT-578: Application to active pharmaceutical ingredient process development
de Veredas et al. Continuous chromatographic separation of a baclofen precursor (N-Boc-4-[p-chloro-phenyl]-2-pyrrolidone) in a simulated moving bed using a polysaccharide carbamate as chiral stationary phase
KR101036554B1 (en) A method for starting up simulated moving bed chromatography in an asynchronous way
KR101344012B1 (en) Separation method of tacrolimus and ascomycin using simulated moving bed chromatography
CN107185273A (en) The method and its equipment of a kind of continuous chromatography
TWI697671B (en) Method of purifying tanshinone-based compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23812031

Country of ref document: EP

Kind code of ref document: A1