WO2023229021A1 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
WO2023229021A1
WO2023229021A1 PCT/JP2023/019574 JP2023019574W WO2023229021A1 WO 2023229021 A1 WO2023229021 A1 WO 2023229021A1 JP 2023019574 W JP2023019574 W JP 2023019574W WO 2023229021 A1 WO2023229021 A1 WO 2023229021A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
light emitting
substrate
emitting device
semiconductor light
Prior art date
Application number
PCT/JP2023/019574
Other languages
French (fr)
Japanese (ja)
Inventor
晃輝 坂本
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023229021A1 publication Critical patent/WO2023229021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • One type of semiconductor light emitting device is a semiconductor laser device that includes a semiconductor light emitting element as a laser light source (see, for example, Patent Document 1). Such semiconductor laser devices are widely used as light source devices installed in various electronic devices.
  • a semiconductor light emitting device includes, for example, a switching element and a capacitor that drive a semiconductor light emitting element. Therefore, parasitic inductance exists on the wiring path of the circuit including the semiconductor light emitting device. Parasitic inductance can affect the output characteristics of semiconductor light emitting devices.
  • a semiconductor light emitting device that is one aspect of the present disclosure includes a substrate, a light emitting element mounted on the substrate, a transistor mounted on the substrate and configured to drive the light emitting element, and a transistor mounted on the substrate.
  • a capacitor module mounted on the substrate, having a main surface facing the substrate, a first connection electrode and a second connection electrode provided on the main surface, and electrically connected to the light emitting element.
  • the capacitor module includes a silicon substrate having a first surface and a second surface facing opposite to each other, the first connection electrode provided on the first surface, and the first connection electrode provided on the second surface. and a counter electrode that faces the connection electrode.
  • parasitic inductance can be reduced.
  • FIG. 1 is a perspective view schematically showing an exemplary semiconductor light emitting device according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor light emitting device of FIG.
  • FIG. 3 is a perspective view schematically showing the stem and lead pin.
  • FIG. 4 is a perspective view schematically showing the stem and lead pins as seen from a viewpoint opposite to FIG. 3.
  • FIG. 5 is a perspective view schematically showing a semiconductor light emitting device and a drive board.
  • FIG. 6 is a plan view schematically showing the light emitting module according to the first embodiment.
  • FIG. 7 is a perspective view of the light emitting module of FIG. 6.
  • 8 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 6.
  • FIG. 9 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 6.
  • FIG. 10 is a cross-sectional view taken along line 10-10 in FIG.
  • FIG. 11 is a cross-sectional view taken along line 11-11 in FIG.
  • FIG. 12 is a circuit diagram schematically showing the electrical configuration of the semiconductor light emitting device.
  • FIG. 13 is a sectional view showing a light emitting module of a comparative example.
  • FIG. 14 is a sectional view showing a light emitting module including a capacitor module of a modified example.
  • FIG. 15 is a sectional view showing a light emitting module including a capacitor module according to a modified example.
  • FIG. 16 is a sectional view showing a light emitting module including a capacitor module according to a modified example.
  • FIG. 17 is a perspective view schematically showing a light emitting module including a modified example of a substrate.
  • FIG. 18 is a plan view showing the internal wiring structure of the substrate of FIG. 17.
  • FIG. 19 is a plan view showing the internal wiring structure of the substrate of FIG. 17.
  • FIG. 20 is a plan view showing the internal wiring structure of the substrate of FIG. 17.
  • 21 is a cross-sectional view of FIG. 17 taken along line 21-21 of FIG. 18.
  • FIG. 22 is a perspective view schematically showing an exemplary semiconductor light emitting device according to the second embodiment.
  • FIG. 23 is a plan view schematically showing the semiconductor light emitting device of FIG. 22.
  • FIG. 24 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22.
  • FIG. 25 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22.
  • FIG. 26 is a cross-sectional view taken along line 26-26 in FIG. 23.
  • FIG. 27 is a cross-sectional view taken along line 27-27 in FIG. 23.
  • FIG. 1 is a perspective view schematically showing an exemplary semiconductor light emitting device 10A according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the semiconductor light emitting device 10A of FIG. 1. Note that in this disclosure, constituent members may be described based on mutually orthogonal XYZ axes shown in figures such as FIG. 1 for the purpose of explanation only. In the following, the +Z direction is defined as top, the -Z direction as bottom, the +X direction as right, and the -X direction as left.
  • the semiconductor light emitting device 10A shown in FIG. 1 can be used, for example, in a laser system as LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), which is an example of three-dimensional distance measurement. Note that the semiconductor light emitting device 10A may be used in a laser system for two-dimensional distance measurement.
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • the semiconductor light emitting device 10A includes a stem 20, a light emitting module 30A mounted on the stem 20, and a surrounding member 40.
  • Stem 20 includes a base 22 and a heat sink 24 erected on base 22.
  • the light emitting module 30A is mounted on the heat sink 24.
  • the surrounding member 40 is provided on the base 22 so as to surround the light emitting module 30A and the heat sink 24.
  • the structure in which the light emitting module 30A is packaged using the stem 20 and the surrounding member 40 is also called a CAN package structure.
  • the surrounding member 40 defines an accommodation space 42 that accommodates the light emitting module 30A.
  • the surrounding member 40 is fixed to the base 22 of the stem 20, and together with the stem 20, the housing space 42 is hermetically sealed to form a hollow sealed structure.
  • the surrounding member 40 includes a cap 44 and a transparent plate 46 (see FIG. 2).
  • the light-transmitting plate 46 may be omitted depending on the use of the semiconductor light-emitting device 10A.
  • the material of the cap 44 is not particularly limited, it is formed of a metal material having light-shielding properties, such as iron (Fe) or Fe alloy.
  • the cap 44 includes a top portion 44A, a cylinder portion 44B, and a flange portion 44C, and the top portion 44A, cylinder portion 44B, and flange portion 44C are integrally formed.
  • the cylindrical portion 44B is formed, for example, in a cylindrical shape.
  • the top portion 44A is located at one end (the upper end in FIGS. 1 and 2) of the cylindrical portion 44B, and the flange portion 44C is located at the other end (the lower end in FIGS. 1 and 2) of the cylindrical portion 44B.
  • the flange portion 44C is fixed to the surface 22A of the base 22 by, for example, welding or a bonding material.
  • the top portion 44A includes a window portion 44AW through which light emitted from the light emitting module 30A passes.
  • the window portion 44AW is formed, for example, in a circular shape.
  • the light-transmitting plate 46 is fixed from the inside of the cap 44 to the top portion 44A using a bonding material or the like to close the window portion 44AW.
  • the light-transmitting plate 46 is made of a transparent material such as glass, and transmits light passing through the window portion 44AW. Furthermore, the transparent plate 46 also serves as a sealing member that seals the housing space 42 of the light emitting module 30A surrounded by the surrounding member 40.
  • the light emitting module 30A includes a substrate 50A, a light emitting element 60, and a light emitting element drive circuit 70.
  • the light emitting element 60 and the light emitting element driving circuit 70 are mounted on the substrate 50A.
  • the light emitting element 60 is a laser diode (semiconductor laser element).
  • the light emitting element drive circuit 70 includes a transistor 80 that drives the light emitting element 60.
  • the transistor 80 is mounted on the substrate 50A as a vertical metal oxide semiconductor field effect transistor (MOSFET).
  • MOSFET vertical metal oxide semiconductor field effect transistor
  • the light emitting element drive circuit 70 further includes a first capacitor module 110 and a second capacitor module 120.
  • the first and second capacitor modules 110, 120 include silicon capacitors.
  • the light emitting element driving circuit 70 drives the light emitting element 60 by supplying the charges accumulated in the first and second capacitor modules 110 and 120 to the light emitting element 60 via the transistor 80 as a pulse current.
  • FIG. 3 is a perspective view schematically showing the structure of the stem 20
  • FIG. 4 is a perspective view of the stem 20 seen from the opposite viewpoint from FIG.
  • the stem 20 includes a base 22 and a heat sink 24.
  • the base 22 and the heat sink 24 are integrally formed.
  • the stem 20 is made of a conductive material such as copper (Cu), Cu alloy, Fe, Fe alloy, or the like. Note that the base 22 and the heat sink 24 may be formed of different metals.
  • the base 22 has, for example, a substantially circular shape when viewed in the thickness direction of the base 22.
  • the thickness direction of the base 22 refers to a direction (Z-axis direction) orthogonal to the surface 22A of the base 22.
  • the size of the base 22 is not particularly limited.
  • the heat sink 24 is integrally provided on the surface 22A of the base 22.
  • the heat sink 24 has, for example, a substantially fan shape when viewed in the thickness direction of the base 22.
  • the size of the heat sink 24 is not particularly limited.
  • the heat sink 24 includes a planar support surface 24A, and the light emitting module 30A shown in FIGS. 1 and 2 is mounted on this support surface 24A.
  • the light emitting module 30A is bonded to the support surface 24A using a conductive bonding material (not shown), and is electrically connected to the heat sink 24 via the conductive bonding material.
  • the heat sink 24 is electrically connected to the transistor 80 of the light emitting module 30A via a conductive bonding material.
  • a conductive bonding material for example, a conductive paste such as silver (Ag) paste can be used.
  • the base 22 includes a plurality of through holes passing through the base 22 in the thickness direction, for example, three through holes 26A, 26B, and 26C in the first embodiment.
  • Each of the through holes 26A, 26B, and 26C has, for example, a substantially circular shape when viewed in the thickness direction of the base 22.
  • the size of each through hole 26A, 26B, 26C is not particularly limited.
  • FIG. 5 is a perspective view schematically showing a mounting example of the semiconductor light emitting device 10A.
  • the semiconductor light emitting device 10A is mounted on a drive board 910 that controls driving of the light emitting module 30A.
  • the semiconductor light emitting device 10A includes a plurality of lead pins that electrically connect the light emitting module 30A and the drive board 910.
  • the semiconductor light emitting device 10A of the first embodiment includes four lead pins 142A, 142B, 142C, and 142D.
  • lead pins 142A and 142B correspond to first lead pins
  • lead pin 142D corresponds to second lead pin
  • lead pin 142C corresponds to third lead pin.
  • the lead pins 142A, 142B, and 142C pass through the base 22.
  • lead pins 142A, 142B, and 142C are inserted into through holes 26A, 26B, and 26C of base 22, respectively.
  • the insides of these through holes 26A, 26B, and 26C are filled with an insulating material 144 that electrically insulates the lead pins 142A, 142B, and 142C from the base 22, respectively.
  • the insulating material 144 is made of glass or the like, for example.
  • the lead pins 142A, 142B, 142C include connecting portions 146A, 146B, 146C and terminal portions 148A, 148B, 148C.
  • the connecting portions 146A, 146B, and 146C are portions that protrude from the front surface 22A of the base 22, and the terminal portions 148A, 148B, and 148C are portions that protrude from the back surface 22B of the base 22.
  • the lengths of the connecting portions 146A, 146B, and 146C are not particularly limited.
  • the lead pin 142D includes a connecting portion 146D and a terminal portion 148D.
  • the connecting portion 146D is provided at one end of the terminal portion 148D and is joined to the back surface 22B of the base 22. Therefore, lead pin 142D is fixed to base 22.
  • the lead pin 142D is fixed at a position overlapping the heat sink 24 when viewed in the thickness direction of the base 22.
  • This lead pin 142D is electrically connected to the transistor 80 of the light emitting module 30A via the base 22 and the heat sink 24.
  • the terminal portions 148A, 148B, 148C, and 148D of the lead pins 142A, 142B, 142C, and 142D are used for mounting the semiconductor light emitting device 10A on the drive board 910.
  • the lengths of the terminal portions 148A, 148B, 148C, and 148D are not particularly limited.
  • the lengths of the terminal portions 148A, 148B, 148C, and 148D when the semiconductor light emitting device 10A is mounted on the drive board 910 shown in FIG. Equivalent to. As this distance increases, the terminal portions 148A, 148B, 148C, and 148D become longer, and the thermal resistance generated at the lead pins 142A, 142B, 142C, and 142D increases. Since such thermal resistance becomes a factor in increasing the temperature of the light emitting element 60, it is desirable that the distance between the back surface 22B of the base 22 and the drive board 910 be short.
  • connection portions 146A, 146B, 146C of lead pins 142A, 142B, 142C are electrically connected to light emitting module 30A by wires 152A, 152B, 152C, respectively.
  • a metal material such as gold (Au) can be used for the wires 152A, 152B, and 152C.
  • the connecting portion 146A is electrically connected to the transistor 80 of the light emitting module 30A by, for example, two wires 152A. Note that the number of wires 152A may be one, or three or more.
  • the connection portion 146B is electrically connected to the transistor 80 of the light emitting module 30A by, for example, one wire 152B.
  • the connection portion 146C is electrically connected to an external element connection pad 160 provided on the substrate 50A of the light emitting module 30A by, for example, one wire 152C.
  • the external element connection pad 160 is used to connect an external element to the substrate 50A (light emitting module 30A).
  • the external element connected to the external element connection pad 160 is a Schottky barrier diode (SBD) 906 (see FIG. 12) provided on the drive board 910.
  • SBD 906 is connected in antiparallel to the light emitting element 60 and functions as a protection diode for the light emitting element 60, thereby suppressing reverse current from flowing through the light emitting element 60.
  • FIG. 6 is a plan view schematically showing the light emitting module 30A according to the first embodiment
  • FIG. 7 is a perspective view of the light emitting module 30A
  • 8 and 9 are plan views showing the internal wiring structure of the substrate 50A of the light emitting module 30A.
  • 10 is a cross-sectional view taken along line 10-10 in FIG. 6, and
  • FIG. 11 is a cross-sectional view taken along line 11-11 in FIG.
  • the substrate 50A has a rectangular shape.
  • the size of the substrate 50A is not particularly limited.
  • the substrate 50A has a substantially square shape having a first side surface 52A and a second side surface 52B that are parallel to each other, and a third side surface 52C and a fourth side surface 52D that are parallel to each other and connect the first side surface 52A and the second side surface 52B. have.
  • parallel used in the present disclosure includes not only cases where two objects are completely parallel to each other, but also cases where two objects are not completely parallel but substantially parallel.
  • a light emitting element 60 that is a laser diode, a transistor 80 that drives the light emitting element 60, a first capacitor module 110, and a second capacitor module 120 are mounted on the substrate 50A.
  • the light emitting element 60, the transistor 80, the first capacitor module 110, and the second capacitor module 120 each have a rectangular shape in a plan view of the substrate 50A.
  • a plan view of the substrate 50A means viewing the object in the thickness direction (Y-axis direction) of the substrate 50A.
  • the light emitting element 60 has a first side surface 62A and a second side surface 62B that are parallel to each other, and a third side surface that is parallel to each other that connects the first side surface 62A and the second side surface 62B in a plan view of the substrate 50A. It has a rectangular shape having a fourth side surface 62C and a fourth side surface 62D. In the light emitting element 60, the third side surface 62C and the fourth side surface 62D are shorter than the first side surface 62A and the second side surface 62B.
  • the light emitting element 60 is arranged such that the third side surface 62C of the light emitting element 60 is parallel to and adjacent to the third side surface 52C of the substrate 50A.
  • the light emitting element 60 is disposed at a position closer to the third side surface 52C of the substrate 50A than the center of the substrate 50A in a plan view of the substrate 50A.
  • the light emitting element 60 includes a light emitting end surface 64 at a position of the third side surface 62C of the light emitting element 60, and a light emitting end surface in a direction substantially perpendicular to the light emitting end surface 64 (approximately +Z direction). Laser light is emitted from 64.
  • the light emitting element 60 includes an anode electrode 66 provided on the front surface 60A of the light emitting element 60, and a cathode electrode 68 provided on the back surface 60B of the light emitting element 60.
  • An electrode 68 is bonded to the substrate 50A.
  • the transistor 80 has a first side surface 82A and a second side surface 82B that are parallel to each other, and a first side surface 82A and a second side surface 82B that are parallel to each other in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 82C and a fourth side surface 82D that are connected and parallel to each other. In the transistor 80, the third side surface 82C and the fourth side surface 82D are shorter than the first side surface 82A and the second side surface 82B.
  • the transistor 80 is arranged such that the fourth side surface 82D of the transistor 80 is parallel to and adjacent to the fourth side surface 52D of the substrate 50A. Further, the transistor 80 is arranged such that the third side surface 82C of the transistor 80 is parallel to and adjacent to the fourth side surface 62D of the light emitting element 60.
  • the transistor 80 implemented as a vertical MOSFET has a source electrode 84 provided on a part of the surface 80A of the transistor 80, and a source electrode 84 provided on a part of the surface 80A of the transistor 80.
  • a gate electrode 86 (see FIG. 7) is provided.
  • the source electrode 84 is formed to have a larger size than the gate electrode 86.
  • the transistor 80 includes a drain electrode 88 provided almost entirely on the back surface 80B of the transistor 80, and this drain electrode 88 is joined to the substrate 50A.
  • the gate electrode 86 of the transistor 80 is electrically connected to the connection portion 146B of the lead pin 142B by a wire 152B.
  • a control voltage for controlling switching of the transistor 80 is supplied to the gate electrode 86 from a gate driver 908 (see FIG. 12) provided on a drive substrate 910 shown in FIG. 5 via a lead pin 142B and a wire 152B.
  • the source electrode 84 of the transistor 80 is electrically connected to the connection portion 146A of the lead pin 142A by a wire 152A.
  • a ground voltage is applied to the source electrode 84 from the drive board 910 via the lead pin 142A and the wire 152A.
  • the source electrode 84 of the transistor 80 is electrically connected to the anode electrode 66 of the light emitting element 60 by a plurality of wires 190, for example, four wires 190 in the first embodiment.
  • These wires 190 form a wiring path connecting the transistor 80 and the light emitting element 60, and when the transistor 80 is on, current flows from the transistor 80 to the light emitting element 60 via this wiring path. Therefore, by increasing the number of wires 190 to make it easier for current to flow from the transistor 80 to the light emitting element 60, it is possible to suppress the influence of parasitic inductance.
  • the number of wires 190 is set to be greater than the number of wires 152A and 152B.
  • Wire 190 may be a ribbon wire. Note that in the first embodiment, the wires 152A and 152B correspond to the first wire, and the wire 190 corresponds to the second wire.
  • capacitor module As shown in FIGS. 6, 7, and 11, the first capacitor module 110 and the second capacitor module 120 have a generally rectangular parallelepiped shape.
  • the first capacitor module 110 has a first side surface 111A and a second side surface 111B that are parallel to each other, and a mutually parallel connection that connects the first side surface 111A and the second side surface 111B in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 111C and a fourth side surface 111D. In the first capacitor module 110, the third side surface 111C and the fourth side surface 111D are shorter than the first side surface 111A and the second side surface 111B.
  • the first side surface 111A of the first capacitor module 110 is parallel to and adjacent to the first side surface 52A of the substrate 50A, and the third side surface 111C of the first capacitor module 110 is adjacent to the first side surface 52A of the substrate 50A. It is arranged parallel to and adjacent to the side surface 52C. Further, the first capacitor module 110 is arranged such that the second side surface 111B of the first capacitor module 110 is parallel to and adjacent to the first side surface 82A of the transistor 80.
  • the first capacitor module 110 has a first main surface 112A and a second main surface 112B that are parallel to each other.
  • the first capacitor module 110 is arranged so that the first main surface 112A faces the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A.
  • the first main surface 112A corresponds to the main surface facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A.
  • the first capacitor module 110 includes a first connection electrode 113 and a second connection electrode 114 provided on the first main surface 112A.
  • the first connection electrode 113 and the second connection electrode 114 are arranged apart from each other.
  • the first connection electrode 113 and the second connection electrode 114 are arranged side by side in the length direction (+Z direction) of the first capacitor module 110.
  • the second connection electrode 114 of the first capacitor module 110 is electrically connected to the drain electrode 88 of the transistor 80 via the internal wiring structure of the substrate 50A.
  • the first connection electrode 113 of the first capacitor module 110 is electrically connected to the cathode electrode 68 of the light emitting element 60 via the internal wiring structure of the substrate 50A.
  • the first capacitor module 110 includes a silicon capacitor 115, a connecting portion 118, and a sealing resin 119.
  • Silicon capacitor 115 includes a silicon substrate 116. As shown in FIG. 2, the silicon substrate 116 is formed into a rectangular plate shape when viewed from the top of the substrate 50A. As shown in FIG. 11, the silicon substrate 116 has a first surface 116A and a second surface 116B facing oppositely to each other.
  • the silicon capacitor 115 has a first connection electrode 113 provided on a first surface 116A of a silicon substrate 116, and a counter electrode 117 provided on a second surface 116B. The counter electrode 117 faces the first connection electrode 113 with the silicon substrate 116 in between.
  • the first connection electrode 113 is in contact with the first surface 116A of the silicon substrate 116.
  • the counter electrode 117 is in contact with the second surface 116B of the silicon substrate 116.
  • This silicon capacitor 115 is a capacitor in which two electrodes are a first connection electrode 113 and a counter electrode 117 disposed with a silicon substrate 116 in between, and the coupling between the first connection electrode 113 and the counter electrode 117 is It has a capacitance value of
  • the counter electrode 117 is electrically connected to the second connection electrode 114 by a connection part 118.
  • the connecting portion 118 includes a first wiring 118A electrically connected to the counter electrode 117 and a second wiring 118B electrically connecting the first wiring 118A to the second connection electrode 114.
  • the first wiring 118A extends in the length direction of the first capacitor module 110.
  • the second wiring 118B is a via wiring formed on the sealing resin 119 and provided in an opening 119A that exposes a part of the second connection electrode 114.
  • the first capacitor module 110 includes a plurality of second wirings 118B.
  • the first capacitor module 110 includes a sealing resin 119 that seals a silicon capacitor 115 (silicon substrate 116).
  • the sealing resin 119 is formed to seal the silicon substrate 116 and the counter electrode 117 of the silicon capacitor 115, and the connection part 118, and to expose the lower surfaces of the first connection electrode 113 and the second connection electrode 114. .
  • the second capacitor module 120 has a first side surface 121A and a second side surface 121B that are parallel to each other, and a mutually parallel connection that connects the first side surface 121A and the second side surface 121B in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 121C and a fourth side surface 121D. In the second capacitor module 120, the third side surface 121C and the fourth side surface 121D are shorter than the first side surface 121A and the second side surface 121B.
  • the second side surface 121B of the second capacitor module 120 is adjacent to and parallel to the second side surface 52B of the substrate 50A, and the third side surface 121C of the second capacitor module 120 is adjacent to the second side surface 52B of the substrate 50A. It is arranged parallel to and adjacent to the side surface 52C. Further, the second capacitor module 120 is arranged such that the first side surface 121A of the second capacitor module 120 is parallel to and adjacent to the second side surface 82B of the transistor 80.
  • the second capacitor module 120 has the same configuration as the first capacitor module 110, a cross-sectional view of the second capacitor module 120 is omitted.
  • the members constituting the second capacitor module 120 are shown in FIG.
  • the second capacitor module 120 has a first main surface 122A and a second main surface 122B that are parallel to each other.
  • the second capacitor module 120 is arranged so that the first main surface 122A faces the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A.
  • the first main surface 122A corresponds to the main surface facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A.
  • the second capacitor module 120 includes a first connection electrode 123 and a second connection electrode 124 provided on the first main surface 122A.
  • the first connection electrode 123 and the second connection electrode 124 are arranged apart from each other.
  • the first connection electrode 123 and the second connection electrode 124 are arranged side by side in the length direction (+Z direction) of the second capacitor module 120. These first and second connection electrodes 123, 124 are bonded to the substrate 50A.
  • the second connection electrode 124 of the second capacitor module 120 is electrically connected to the drain electrode 88 of the transistor 80 via the internal wiring structure of the substrate 50A.
  • the first connection electrode 123 of the second capacitor module 120 is electrically connected to the cathode electrode 68 of the light emitting element 60 via the internal wiring structure of the substrate 50A.
  • the second capacitor module 120 includes a silicon capacitor 125, a connecting portion 128, and a sealing resin 129.
  • Silicon capacitor 125 includes a silicon substrate 126. As shown in FIG. 2, the silicon substrate 126 is formed into a rectangular plate shape when viewed from the top of the substrate 50A. Silicon substrate 126 has first and second surfaces facing oppositely to each other. Silicon capacitor 125 has a first connection electrode 123 provided on the first surface of silicon substrate 126 and a counter electrode 127 provided on the second surface. The counter electrode 127 faces the first connection electrode 123 with the silicon substrate 126 in between. The first connection electrode 123 is in contact with the first surface of the silicon substrate 126. The counter electrode 127 is in contact with the second surface of the silicon substrate 126.
  • This silicon capacitor 125 is a capacitor in which two electrodes are a first connection electrode 123 and a counter electrode 127 arranged with a silicon substrate 126 in between, and the coupling between the first connection electrode 123 and the counter electrode 127 is It has a capacitance value of
  • the counter electrode 127 is electrically connected to the second connection electrode 124 by a connection part 128.
  • the connecting portion 128 includes a first wiring 128A electrically connected to the counter electrode 127 and a second wiring 128B electrically connecting the first wiring 128A to the second connection electrode 124.
  • the first wiring 128A extends in the length direction of the second capacitor module 120.
  • the second capacitor module 120 includes a plurality of second wirings 128B.
  • the second capacitor module 120 includes a sealing resin 129 that seals the silicon capacitor 125 (silicon substrate 126).
  • the sealing resin 129 is formed to seal the silicon substrate 126 and the counter electrode 127 of the silicon capacitor 125, and the connection portion 128, and to expose the lower surfaces of the first connection electrode 123 and the second connection electrode 124. .
  • the first capacitor module 110 is placed adjacent to the first side surface 82A of the transistor 80, while the second capacitor module 120 is placed adjacent to the second side surface 82B of the transistor 80.
  • This arrangement allows the third side surface 82C of the transistor 80 to be located between the first capacitor module 110 and the second capacitor module 120, so that the transistor 80 can be arranged close to the light emitting element 60.
  • This makes it possible to shorten the distance between the transistor 80 and the light emitting element 60 on the substrate 50A.
  • the first and second capacitor modules 110 and 120 include silicon capacitors 115 and 125, respectively.
  • multi-layered ceramic capacitors MLCCs
  • MLCCs multi-layered ceramic capacitors
  • a realized capacitor has a parasitic resistance (equivalent series resistance: ESR) and a parasitic inductance (equivalent series inductance: ESL) with respect to an ideal capacitor.
  • Silicon capacitors 115 and 125 have smaller parasitic inductance (ESL) than multilayer ceramic capacitors.
  • the parasitic resistance (ESR) of a multilayer ceramic capacitor is about 100 m ⁇ , and the parasitic inductance (ESL) is about 0.3 to 0.4 nH.
  • the parasitic resistance (ESR) of the first and second capacitor modules 110, 120 is preferably less than 100 m ⁇ , for example.
  • the parasitic inductance (ESL) of the first and second capacitor modules 110, 120 is less than 100 pH.
  • first capacitor module 110 and the second capacitor module 120 are arranged symmetrically with respect to the light emitting element 60 and the transistor 80 on the substrate 50A.
  • a first wiring path through which current flows from the first capacitor module 110 to the light emitting element 60 via the transistor 80, and a second wiring path through which current flows from the second capacitor module 120 to the light emitting element 60 through the transistor 80. are arranged symmetrically with respect to the light emitting element 60 and the transistor 80.
  • the first and second capacitor modules 110 and 120 are formed thicker than the light emitting element 60.
  • the first and second capacitor modules 110 and 120 are formed thinner than the transistor 80.
  • the thickness of the first and second capacitor modules 110 and 120 is 50 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the first and second capacitor modules 110, 120 is, for example, 160 ⁇ m.
  • the thickness of the multilayer ceramic capacitor having the capacitance used in the light emitting module 30A is, for example, about 500 ⁇ m.
  • the first wiring path connects the second connection electrode 114 of the first capacitor module 110 and the drain electrode 88 of the transistor 80, and the source electrode 84 of the transistor 80 and the anode electrode 66 of the light emitting element 60. It includes a connecting wire 190 and a wiring path connecting the cathode electrode 68 of the light emitting element 60 and the first connection electrode 113 of the first capacitor module 110. These wiring paths are formed by the internal wiring structure of the substrate 50A.
  • the second wiring path connects the second connection electrode 124 of the second capacitor module 120 and the drain electrode 88 of the transistor 80, and the source electrode 84 of the transistor 80 and the anode electrode 66 of the light emitting element 60. It includes a connecting wire 190 and a wiring path connecting the cathode electrode 68 of the light emitting element 60 and the first connection electrode 123 of the second capacitor module 120. These wiring paths are formed by the internal wiring structure of the substrate 50A.
  • the magnetic flux formed by the current flowing through the first wiring route and the magnetic flux formed by the current flowing through the second wiring route are separated. begin to cancel each other out. Thereby, the parasitic inductance existing in the first wiring route and the parasitic inductance existing in the second wiring route can be reduced.
  • the substrate 50A is, for example, a printed wiring board, and in the first embodiment has a two-layer wiring structure as an internal wiring structure. That is, the substrate 50A of the first embodiment is a double-sided substrate.
  • the substrate 50A includes a base material 210 having insulating properties, a first wiring layer 220 provided on a front surface 212A of the base material 210, and a second wiring layer 230 provided on a back surface 212B of the base material 210.
  • the base material 210 is formed of an insulating material such as a resin base material, a silicon base material, a glass base material, or a ceramic base material. That is, the substrate 50A can be a resin substrate, a silicon substrate, a glass substrate, a ceramic substrate, or the like. In the first embodiment, a resin base material made of glass epoxy resin is used as the base material 210.
  • the first wiring layer 220 and the second wiring layer 230 are made of a metal material such as Cu.
  • the substrate 50A includes a plurality of via wirings that penetrate the base material 210 and electrically connect the first wiring layer 220 and the second wiring layer 230.
  • a first via wiring 242 a plurality (for example, six) of second via wirings 244, and a third via wiring 246 are included.
  • These first to third via wirings 242, 244, and 246 are made of a metal material such as Cu.
  • the substrate 50A also includes a first insulating layer 250 provided on the front surface 220A of the first wiring layer 220 to partially expose the first wiring layer 220, and a second insulating layer 250 provided on the back surface 230B of the second wiring layer 230. and a second insulating layer 260 that partially exposes the wiring layer 230.
  • the first insulating layer 250 and the second insulating layer 260 are made of an insulating resin such as epoxy resin or polyimide resin. Further, the first insulating layer 250 and the second insulating layer 260 may contain fillers such as silica and alumina. Note that, in order to make the illustration easier to understand, in FIG. 7, the base material 210, the first insulating layer 250, and the second insulating layer 260 are shown by virtual lines (two-dot chain lines).
  • FIG. 8 is a plan view showing the first wiring layer 220 and the base material 210. Note that in FIG. 8, illustration of the first insulating layer 250 is omitted. As shown in FIG. 8, the first wiring layer 220 includes a plurality of wirings provided on the surface 212A of the base material 210 and spaced apart from each other; in the first embodiment, the first surface side wiring 310; It includes a second front side wiring 320 and a third front side wiring 330.
  • the first surface-side wiring 310 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50A, and has a size that is approximately 1/3 of the area of the substrate 50A, for example. ing.
  • the first surface-side wiring 310 includes first to third wiring regions 312, 314, and 316. Note that the first to third wiring regions 312, 314, and 316 are each part of the first surface side wiring 310, and the physical boundaries of the first to third wiring regions 312, 314, and 316 are on the first surface. It does not necessarily exist in the side wiring 310.
  • the first wiring area 312 is a light emitting element mounting area where the cathode electrode 68 of the light emitting element 60 is mounted.
  • the second wiring area 314 is a part of the first capacitor mounting area where the first connection electrode 113 of the first capacitor module 110 is mounted.
  • the third wiring area 316 is a part of the second capacitor mounting area where the first connection electrode 123 of the second capacitor module 120 is mounted. Therefore, the cathode electrode 68 of the light emitting element 60 is electrically connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 via the first surface wiring 310.
  • the second wiring area 314 and the third wiring area 316 are arranged symmetrically with respect to the first wiring area 312.
  • the second front-side wiring 320 is arranged along the first, second, and fourth side surfaces 52A, 52B, and 52D of the substrate 50A, and is spaced apart from the first front-side wiring 310.
  • the second surface-side wiring 320 is formed to have a size slightly smaller than about 2 ⁇ 3 of the area of the substrate 50A, for example.
  • the second front side wiring 320 includes fourth to sixth wiring regions 322, 324, and 326. Note that the fourth to sixth wiring regions 322, 324, and 326 are each part of the second surface side wiring 320, and the physical boundaries of the fourth to sixth wiring regions 322, 324, and 326 are on the second surface. It does not necessarily exist in the side wiring 320.
  • the fourth wiring region 322 is a transistor mounting region where the drain electrode 88 of the transistor 80 is mounted.
  • the fifth wiring area 324 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted.
  • the sixth wiring area 326 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320.
  • the fifth wiring area 324 and the sixth wiring area 326 are arranged symmetrically with respect to the fourth wiring area 322.
  • the second surface side wiring 320 further includes a notch 328. This notch 328 is formed at a position adjacent to the fourth wiring area 322 (transistor mounting area) and the fifth wiring area 324 (part of the first capacitor mounting area) of the second front side wiring 320.
  • the third front-side wiring 330 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50A, and is spaced apart from the second front-side wiring 320.
  • the third front-side wiring 330 is arranged adjacent to (but spaced apart from) the notch 328 of the second front-side wiring 320.
  • the total area of the second front-side wiring 320 and the third front-side wiring 330 corresponds to about 2/3 of the area of the substrate 50A.
  • the second front-side wiring 320 and the third front-side wiring 330 are spaced apart from each other so that the combined shape of the second front-side wiring 320 and the third front-side wiring 330 is a rectangular shape having a size approximately 2/3 of the area of the substrate 50A. There is.
  • the third front side wiring 330 includes a seventh wiring region 332.
  • the seventh wiring region 332 is a part of the third front-side wiring 330, and the physical boundary of the seventh wiring region 332 does not exist in the third front-side wiring 330.
  • the seventh wiring area 332 is an external element connection area for connecting an external element to the substrate 50A (light emitting element drive circuit 70), and the seventh wiring area 332 includes an external element connection pad 160 (see FIG. 6). is placed.
  • the anode electrode 906A of the SBD 906 (see FIG. 12) is connected to the seventh wiring region 332 (external element connection pad 160) via the lead pin 142C and the wire 152C (see FIG. 6). .
  • the first insulating layer 250 has first to seventh wiring regions 312, 314, 316, 322, 324, 326, and 332 of the first to third front side wirings 310, 320, and 330 that expose the first to seventh wiring regions 312, 314, 316, 322, 324, 326, and 332, respectively. It includes openings 251 to 257 (see FIG. 6).
  • a first metal plating material 362 (Fig. 6, FIG. 7, FIG. 10, and FIG. 11) are provided.
  • the first metal plating material 362 for example, a laminate containing nickel (Ni) and gold (Au) or a laminate containing Ni, palladium (Pd), and Au can be used.
  • the cathode electrode 68 of the light emitting element 60 is bonded to the first metal plating material 362 in the first wiring area 312 (light emitting element mounting area) by a bonding member (not shown).
  • the drain electrode 88 of the transistor 80 is bonded to the first metal plating material 362 in the fourth wiring area 322 (transistor mounting area) by a bonding member (not shown). Further, as shown in FIG.
  • the first and second connection electrodes 113 and 114 of the first capacitor module 110 are connected to the fifth and second wiring areas 324 and 314 (first capacitor mounting area) by a bonding member (not shown). are respectively joined to the first metal plating material 362. Further, although a cross-sectional view is omitted, like the first capacitor module 110, the first and second connection electrodes 123, 124 of the second capacitor module 120 are bonded to the sixth and third wiring regions 326, 316 by a bonding material (not shown). They are respectively bonded to the first metal plating material 362 (second capacitor mounting area).
  • a silver (Ag) paste material or a solder paste material containing tin (Su)-silver (Ag)-copper (Cu) can be used as the bonding material.
  • the bonding material may be changed depending on the member to be bonded to the first metal plating material 362.
  • Ag paste material can be used to bond the light emitting element 60.
  • a solder paste material or an Ag paste material can be used to join the transistor 80 and the first and second capacitor modules 110 and 120.
  • the above-mentioned external element connection pad 160 (FIGS. 6 and 11) is provided in the seventh wiring region 332 exposed through the seventh opening 257 of the first insulating layer 250.
  • This external element connection pad 160 is formed of a second metal plating material.
  • the second metal plating material a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
  • FIG. 9 is a plan view showing the second wiring layer 230 and the second insulating layer 260. Note that in FIG. 9, illustration of the first insulating layer 250, the first wiring layer 220, and the base material 210 is omitted. As shown in FIG. 9, the second wiring layer 230 includes a plurality of wirings provided on the back surface 212B (see FIG. 7) of the base material 210 and spaced apart from each other. It includes a side wiring 410 and a second back side wiring 420.
  • the first backside wiring 410 is arranged along the first, second, third, and fourth side surfaces 52A, 52B, 52C, and 52D of the substrate 50A.
  • the first back side wiring 410 is formed in a substantially gate shape, and an opening 410A is defined inside the first back side wiring 410 in plan view.
  • the opening 410A is formed at a position corresponding to the fourth wiring area 322 (transistor mounting area) of the second front side wiring 320 in a plan view of the substrate 50A, and has a larger size than the fourth wiring area 322. are doing.
  • the first back side wiring 410 overlaps with the first and third front side wirings 310, 330 and partially overlaps with the second front side wiring 320 in a plan view of the substrate 50A.
  • the second back side wiring 420 is arranged inside the opening 410A of the first back side wiring 410 along the fourth side surface 52D of the substrate 50A.
  • the second back side wiring 420 includes an eighth wiring region 414. Note that the eighth wiring region 414 is a part of the second backside wiring 420, and the physical boundary of the eighth wiring region 414 does not exist in the second backside wiring 420.
  • the eighth wiring region 414 is a transistor connection region for electrically connecting the drain electrode 88 of the transistor 80 to the heat sink 24 (see, for example, FIG. 1).
  • the second back side wiring 420 overlaps with the second front side wiring 320 in a plan view of the substrate 50A.
  • the second insulating layer 260 includes an eighth opening 258 that exposes the eighth wiring region 414 (transistor connection region) of the second back side wiring 420.
  • a third metal plating material 364 is provided in the eighth wiring region 414 exposed from the eighth opening 258.
  • the third metal plating material 364 for example, a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
  • the third metal plating material 364 is bonded to the heat sink 24 by a bonding material (not shown). As this bonding material, Ag paste material or solder paste material can be used.
  • the second insulating layer 260 covers the back surface 230B of the second wiring layer 230 except for the eighth wiring region 414 (transistor connection region). Therefore, the first back side wiring 410 is not exposed from the second insulating layer 260 and is not electrically connected to the heat sink 24.
  • each via wiring 242, 244, 246 is formed, for example, in a cylindrical shape, but the shape is not particularly limited.
  • These via wirings 242, 244, and 246 are so-called thermal vias, and function as conductive paths between the first wiring layer 220 and the second wiring layer 230, as well as from the first wiring layer 220 to the second wiring layer 230. functions as a heat dissipation path.
  • the first via wiring 242 is located within the first wiring area 312 (light emitting element mounting area) and electrically connects the first front side wiring 310 and the first back side wiring 410. Therefore, the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 are connected to the first back side via the first front side wiring 310 and the first via wiring 242. It is electrically connected to wiring 410.
  • the second via wiring 244 is located within the fourth wiring area 322 (transistor mounting area) and the eighth wiring area 414 (transistor mounting area), and is connected to the second front wiring 320 and the second back wiring 420. Connect electrically. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the heat sink 24 of the stem 20 via the second front wiring 320, the second via wiring 244, and the second back wiring 420. Further, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320. Note that the arrangement of the second via wiring 244 is not particularly limited. For example, the second via wiring 244 is evenly arranged within the fourth and eighth wiring regions 322 and 414. In the first embodiment, for example, the second via wiring 244 is arranged in a 2 ⁇ 3 array.
  • the third via wiring 246 electrically connects the third front side wiring 330 and the first back side wiring 410. Therefore, the anode electrode 906A of the SBD 906 (see FIG. 12) connected to the external element connection pad 160 is connected to the third surface wiring 330, the third via wiring 246, the first back wiring 410, the first via wiring 242, and It is electrically connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 via the first surface side wiring 310.
  • the anode electrode 906A of the SBD 906 is connected to the cathode electrode 68 of the light emitting element 60. It is also electrically connected to electrode 68.
  • FIG. 12 is a circuit diagram schematically showing the electrical configuration of the semiconductor light emitting device 10A.
  • the light emitting element drive circuit 70 includes a light emitting element 60, a transistor 80 (vertical MOSFET), a first capacitor module 110, and a second capacitor module 120, which are mounted on the substrate 50A of the light emitting module 30A. Note that in FIG. 12, the first capacitor module 110 and the second capacitor module 120 are shown as one capacitor.
  • the drain electrode 88 of the transistor 80 is connected to the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120.
  • the drain electrode 88 of the transistor 80 and the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120 are connected to a positive electrode 904A of a constant voltage source 904 via a resistance element 902.
  • a negative pole 904B of this constant voltage source 904 is connected to ground.
  • the constant voltage source 904 and the resistance element 902 are provided on a drive board 910 (see FIG. 5).
  • the voltage from the constant voltage source 904 is applied to the drain of the transistor 80 via the resistance element 902, the lead pin 142D (see FIGS. 1 and 2), the base 22 and heat sink 24 of the stem 20, and the internal wiring structure of the substrate 50A.
  • the voltage is applied to the electrode 88 and the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120.
  • a source electrode 84 of the transistor 80 is connected to the anode electrode 66 of the light emitting element 60 and to ground.
  • a ground voltage is applied from the drive substrate 910 to the source electrode 84 of the transistor 80 via the lead pin 142A (see FIGS. 1 and 2) and the wire 152A.
  • the source electrode 84 of the transistor 80 is connected to the anode electrode 66 of the light emitting element 60 via a wire 190 (see FIGS. 1 and 2).
  • the gate electrode 86 of the transistor 80 is connected to a gate driver 908 provided on a drive substrate 910.
  • a control voltage is supplied from the gate driver 908 to the gate electrode 86 of the transistor 80 via the lead pin 142B (see FIGS. 1 and 6) and the wire 152B, and the on/off of the transistor 80 is controlled by this control voltage. be done.
  • the cathode electrode 68 of the light emitting element 60 is connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120.
  • the cathode electrode 68 of the light emitting element 60 is connected to the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 via the internal wiring structure of the substrate 50A.
  • the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 are connected to the anode electrode 906A of the SBD 906.
  • the SBD 906 is provided on a drive board 910, and an anode electrode 906A of the SBD 906 is connected to an external element connection pad 160 via a lead pin 142C (see FIGS. 1 and 2) and a wire 152C.
  • This external element connection pad 160 is connected to the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 via the internal wiring structure of the substrate 50A.
  • a cathode electrode 906B of the SBD 906 is connected to a negative electrode 904B of a constant voltage source 904.
  • the cathode electrode 906B of the SBD 906 is connected to the anode electrode 66 of the light emitting element 60 via the lead pin 142A (see FIGS. 1 and 2), the wire 152A, the source electrode 84 of the transistor 80, and the wire 190. It is connected to the.
  • the transistor 80 When the transistor 80 is turned off by the control voltage from the gate driver 908, a closed loop circuit is formed by the constant voltage source 904, the resistance element 902, the first and second capacitor modules 110, 120, and the SBD 906. As a result, the first and second capacitor modules 110 and 120 are charged based on the voltage supplied from the constant voltage source 904.
  • the semiconductor light emitting device 10A includes a substrate 50A, a light emitting element 60, a transistor 80, a first capacitor module 110, and a second capacitor module 120 mounted on the substrate 50A.
  • the first capacitor module 110 has a first main surface 112A facing the substrate 50A, and a first connection electrode 113 and a second connection electrode 114 provided on the first main surface 112A, and has an electrical connection to the light emitting element 60. It is connected to the.
  • the second capacitor module 120 has a first main surface 122A facing the substrate 50A, and a first connection electrode 123 and a second connection electrode 124 provided on the first main surface 122A, and has an electrical connection to the light emitting element 60. It is connected to the.
  • the first capacitor module 110 includes a silicon substrate 116 having a first surface 116A and a second surface 116B facing opposite to each other, a first connection electrode 113 provided on the first surface 116A, and a first connection electrode 113 provided on the second surface 116B. , and a counter electrode 117 facing the first connection electrode 113.
  • the second capacitor module 120 includes a silicon substrate 126 having a first surface and a second surface facing opposite to each other, a first connection electrode 123 provided on the first surface, and a first connection electrode 123 provided on the second surface.
  • a counter electrode 127 facing the electrode 123 is included.
  • the first capacitor module 110 includes a silicon capacitor 115 composed of a silicon substrate 116, a first connection electrode 113, and a counter electrode 117.
  • the second capacitor module 120 includes a silicon capacitor 125 that includes a silicon substrate 126 , a first connection electrode 123 , and a counter electrode 127 .
  • the silicon capacitors 115 and 125 have smaller parasitic inductance (ESL) than multilayer ceramic capacitors used as small capacitors. Therefore, parasitic inductance in the first and second wiring paths for the light emitting element 60 can be reduced.
  • ESL parasitic inductance
  • the parasitic inductance that occurs in the first and second wiring paths affects the rise and fall characteristics of the pulse current supplied to the light emitting element 60.
  • the pulse current affects the output characteristics of the light emitting element 60, that is, the rise and fall characteristics of the optical output of the semiconductor light emitting device 10A. Therefore, by reducing the parasitic inductance, the rise and fall of the optical output can be made steeper. Thereby, optical output with a shorter pulse width can be obtained.
  • FIG. 13 is a cross-sectional view of a light emitting module of a comparative example at a position corresponding to FIG. 11.
  • the counter electrode 117 of the silicon capacitor 115 is electrically connected to the second surface wiring 320 (fifth wiring region 324) by a wire 191.
  • the silicon capacitor 115 has lower resistance and lower inductance than a multilayer ceramic capacitor.
  • the parasitic inductance in the wire 191 connecting the silicon capacitor 115 to the second surface-side wiring 320 is the same as the parasitic inductance in the connecting portions 118 and 128 of the first and second capacitor modules 110 and 120 in the first embodiment. greater than inductance. Therefore, in this comparative example, it can be said that there is little merit in using the silicon capacitor 115.
  • the light emitting module 30A is mounted on the heat sink 24 of the stem 20, and the surrounding member 40 is provided on the base 22 of the stem 20 so as to surround the light emitting module 30A and the heat sink 24.
  • the light emitting module 30A includes a light emitting element 60 and a light emitting element drive circuit 70, and the light emitting element drive circuit 70 includes a transistor 80 that drives the light emitting element 60.
  • the transistor 80 is mounted as a vertical MOSFET on the substrate 50A mounted on the heat sink 24.
  • the source electrode 84 is arranged to overlap the drain electrode 88 in a plan view of the substrate 50A. Therefore, by employing a vertical MOSFET, the wiring path of the transistor 80 mounted on the substrate 50A can be made shorter than when a horizontal MOSFET is employed. As a result, the size of the substrate 50A can be reduced and the size of the light emitting module 30A can be reduced.
  • the semiconductor light emitting device 10A includes a substrate 50A, a light emitting element 60, a transistor 80, a first capacitor module 110, and a second capacitor module 120 mounted on the substrate 50A.
  • the first capacitor module 110 includes a first main surface 112A facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A, and a first connection electrode 113 and a second connection electrode provided on the first main surface 112A. 114 and is electrically connected to the light emitting element 60.
  • the second capacitor module 120 includes a first main surface 122A facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A, and a first connection electrode 123 and a second connection electrode provided on the first main surface 122A. 124 and is electrically connected to the light emitting element 60.
  • the first capacitor module 110 includes a silicon substrate 116 having a first surface 116A and a second surface 116B facing opposite to each other, a first connection electrode 113 provided on the first surface 116A, and a first connection electrode 113 provided on the second surface 116B. , and a counter electrode 117 facing the first connection electrode 113.
  • the second capacitor module 120 includes a silicon substrate 126 having a first surface and a second surface facing opposite to each other, a first connection electrode 123 provided on the first surface, and a first connection electrode 123 provided on the second surface.
  • a counter electrode 127 facing the electrode 123 is included.
  • the parasitic inductance (ESL) in the first and second capacitor modules 110 and 120 can be made smaller than, for example, the parasitic inductance of a multilayer ceramic capacitor. Therefore, parasitic inductance occurring in the wiring path between the cathode electrode 68 of the light emitting element 60 and the transistor 80 can be reduced. Therefore, parasitic inductance in the wiring path connecting the light emitting element 60 and the transistor 80 can be reduced.
  • the pulse current affects the output characteristics of the light emitting element 60, that is, the rise and fall characteristics of the optical output of the semiconductor light emitting device 10A. Therefore, by reducing the parasitic inductance, the rise and fall of the optical output can be made steeper. Thereby, optical output with a shorter pulse width can be obtained.
  • the first capacitor module 110 is mounted on the substrate 50A adjacent to the first side surface 82A of the transistor 80 when the substrate 50A is viewed from above.
  • the second capacitor module 120 is mounted on the substrate 50A adjacent to the second side surface 82B of the transistor 80 in a plan view of the substrate 50A. Therefore, the third side surface 82C of the transistor 80 is located between the first capacitor module 110 and the second capacitor module 120.
  • the light emitting element 60 is disposed adjacent to the third side surface 82C of the transistor 80 and is electrically connected to the transistor 80 by a plurality of wires 190. With this configuration, the transistor 80 can be placed close to the light emitting element 60. Thereby, by shortening the length of the wire 190 and shortening the wiring path through which current flows from the transistor 80 to the light emitting element 60, parasitic inductance occurring in the wiring path can be reduced.
  • the first capacitor module 110 and the second capacitor module 120 are arranged symmetrically with respect to the light emitting element 60 and the transistor 80.
  • current flows from the first wiring path from the first capacitor module 110 to the light emitting element 60 via the transistor 80 and the wire 190, and from the second capacitor module 120 to the light emitting element 60 via the transistor 80 and the wire 190.
  • the flowing second wiring path is arranged symmetrically with respect to the light emitting element 60 and the transistor 80.
  • the magnetic flux formed by the current flowing through the first wiring path and the magnetic flux formed by the current flowing through the second wiring path cancel each other out. Thereby, the parasitic inductance existing in the first wiring route and the parasitic inductance existing in the second wiring route can be reduced.
  • the light emitting element drive circuit 70 supplies current to the light emitting element 60 using the first capacitor module 110 and the second capacitor module 120. With this configuration, the current supplied to the light emitting element 60 can be increased.
  • the third side surface 82C of the transistor 80 is shorter than the first side surface 82A and the second side surface 82B of the transistor 80. Further, the distance between the first capacitor module 110 and the second capacitor module 120 is greater than the length of the third side surface 82C of the transistor 80. According to this configuration, the short side (third side surface 82C) of the transistor 80 is located between the first and second capacitor modules 110 and 120. Thereby, each wiring path through which current flows from the first and second capacitor modules 110 and 120 to the light emitting element 60 via the transistor 80 can be shortened, and parasitic inductance occurring in each wiring path can be reduced.
  • the number of wires 190 connecting transistor 80 and light emitting element 60 is greater than the number of wires 152A, 152B connecting transistor 80 and lead pins 142A, 142B. Thereby, current can easily flow from the transistor 80 to the light emitting element 60, and parasitic inductance can be reduced.
  • the first via wiring 242 is arranged only in the first wiring area 312 (light emitting element mounting area) directly below the light emitting element 60.
  • the first via wiring 242 is a part of the wiring route that connects the cathode electrode 68 of the light emitting element 60 to the external element connection pad 160, and electrically connects the first front side wiring 310 and the first back side wiring 410. do.
  • the first and second capacitor modules 110, 120 are connected from the cathode electrode 68 of the light emitting element 60 via the first surface side wiring 310. The flow of current to the first connection electrodes 113 and 123 may be inhibited.
  • first via wiring 242 when the number of first via wirings 242 is increased, current flows from the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120 to the light emitting element 60 via the transistor 80 and the wire 190. is inhibited.
  • only one first via wiring 242 is arranged in the first wiring region 312 directly below the light emitting element 60. Therefore, the flow of current to the light emitting element 60 is prevented from being obstructed by the first via wiring 242.
  • first and second capacitor modules 110 and 120 may be changed as appropriate.
  • 14 to 16 show a light emitting module including a capacitor module 110A of a modified example, and are sectional views at a position corresponding to FIG. 11 of the first embodiment.
  • the capacitor module 110A includes a silicon substrate 116, a first connection electrode 113, a second connection electrode 114, a counter electrode 117, and a connection portion 118.
  • the first connection electrode 113 connects an electrode 113A provided on the first main surface 112A, a second opposing electrode 113B provided on the second surface 116B of the silicon substrate 116, and connects the electrode 113A and the second opposing electrode 113B. via wiring 113C.
  • parasitic inductance can be reduced similarly to the first embodiment described above.
  • the sealing resin 119 has a first opening 119B that exposes a part of the counter electrode 117, and a plurality of second openings that expose a part of the second connection electrode 114. 119C.
  • the first wiring 118A and the second wiring 118B of the connection portion 118 are continuously formed along the upper surface of the sealing resin 119.
  • the first wiring 118A is constituted by a conductive film formed on the first surface 119D of the sealing resin 119 and the inner wall surface of the first opening 119B.
  • the second wiring 118B is composed of a conductive film formed on the inner wall surface of the plurality of second openings 119C of the sealing resin 119.
  • the capacitor module 110C includes a silicon substrate 116, a first connection electrode 113, a second connection electrode 114, and a connection portion 118. This capacitor module 110C does not include the sealing resin 119 shown in FIG. 11.
  • the first connection electrode 113 and the second connection electrode 114 are arranged on the first surface 116A of the silicon substrate 116 so as to be separated from each other in the length direction of the silicon substrate 116.
  • the connection portion 118 is provided on the second surface 116B of the silicon substrate 116 and includes a counter electrode 117 that faces the first connection electrode 113.
  • the silicon substrate 116 has a plurality of through holes 116C that penetrate the silicon substrate 116 from the first surface 116A to the second surface 116B.
  • the connecting portion 118 includes a first wiring 118A formed on the second surface 116B of the silicon substrate 116 and a second wiring formed in the plurality of through holes 116C to connect the first wiring 118A and the second connection electrode 114. 118B.
  • the second wiring 118B is a through wiring that penetrates the silicon substrate 116.
  • 17 to 21 show a light emitting module 30A1 as a modified example, and use a modified substrate 50A1.
  • 18 to 20 are cross-sectional views showing the internal wiring structure of the substrate 50A1.
  • 21 is a cross-sectional view of FIG. 17 taken along line 21-21 of FIG. 18.
  • the substrate 50A1 of the light emitting module 30A1 is, for example, a printed wiring board, and in this modified example, has a three-layer wiring structure as an internal wiring structure.
  • the substrate 50A1 of this modification is a multilayer substrate.
  • the substrate 50A1 includes an insulating first base material 210A, a first wiring layer 220 provided on a surface 214A of the first base material 210A, an insulating second base material 210B, and a back surface of the second base material 210B. 216B. Further, the substrate 50A1 includes an intermediate wiring layer 240 provided on the back surface 214B of the first base material 210A and on the front surface 216A of the second base material 210B.
  • the base material 210 of the first embodiment is divided into a first base material 210A and a second base material 210B, and an intermediate wiring layer is provided between the first base material 210A and the second base material 210B. 240 is located. Therefore, the substrate 50A1 of this modification can be said to have a configuration in which the intermediate wiring layer 240 is located inside the base material 210 of the first embodiment.
  • the intermediate wiring layer 240 like the first and second wiring layers 220 and 230, is made of a metal material such as Cu.
  • the first base material 210A and the second base material 210B are formed of an insulating material such as a resin base material, a silicon base material, a glass base material, or a ceramic base material.
  • resin base materials made of glass epoxy resin are used as the first base material 210A and the second base material 210B.
  • the first wiring layer 220 includes first to third front-side wirings 310, 320, and 330.
  • the first surface side wiring 310 includes first to third wiring regions 312, 314, 316
  • the second surface side wiring 320 includes fourth to sixth wiring regions 322, 324, 326
  • the third surface side wiring 330 includes a seventh wiring region 332.
  • the second wiring layer 230 includes first and second backside wirings 410 and 420
  • the second backside wiring 420 includes an eighth wiring region 414.
  • the intermediate wiring layer 240 includes a first intermediate wiring 510, a second intermediate wiring 520, and a third intermediate wiring 530.
  • the first intermediate wiring 510 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50A1, and is formed to have a size that is approximately 1/3 of the area of the substrate 50A1, for example. There is.
  • the first intermediate wiring 510 overlaps the first front wiring 310 and the first back wiring 410 in a plan view of the substrate 50A1.
  • the second intermediate wiring 520 is arranged along the first, second, and fourth side surfaces 52A, 52B, and 52D of the substrate 50A1, and is spaced apart from the first intermediate wiring 510.
  • the second intermediate wiring 520 is formed to have a size slightly smaller than, for example, about 2/3 of the area of the substrate 50A1.
  • the second intermediate wiring 520 is formed to have the same size and shape as the first front wiring 310, for example, and has a notch at the same position as the first front wiring 310 in a plan view of the substrate 50A1. 522 included.
  • the second intermediate wiring 520 overlaps with the second front wiring 320 and the second back wiring 420, and partially overlaps with the first back wiring 410, in a plan view of the substrate 50A1.
  • the third intermediate wiring 530 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50A1, and is spaced apart from the second intermediate wiring 520.
  • the third intermediate wiring 530 is formed, for example, in the same size and shape as the third front side wiring 330, and is adjacent to (but separated from) the notch 522 of the second intermediate wiring 520. It is located.
  • the total area of the second intermediate wiring 520 and the third intermediate wiring 530 corresponds to about 2/3 of the area of the substrate 50A1.
  • the second intermediate wiring 520 and the third intermediate wiring 530 are spaced apart from each other so that the combined shape of the second intermediate wiring 520 and the third intermediate wiring 530 is a rectangular shape having a size approximately 2/3 of the area of the substrate 50A1.
  • the third intermediate wiring 530 overlaps the third front side wiring 330 and the first back side wiring 410 in a plan view of the substrate 50A1.
  • the substrate 50A1 includes a first insulating layer 250 and a second insulating layer 260.
  • the configuration of the first insulating layer 250 and the configuration of the second insulating layer 260 are the same as those in the first embodiment, and detailed description thereof will be omitted.
  • the substrate 50A1 penetrates through the first and second base materials 210A and 210B, and connects the first wiring layer 220 and the second wiring layer 230. It includes first to third via wirings 242, 244, and 246 that electrically connect these.
  • the first via wiring 242 electrically connects the first front wiring 310, the first intermediate wiring 510, and the first back wiring 410.
  • the second via wiring 244 electrically connects the second front side wiring 320, the second intermediate wiring 520, and the second back side wiring 420.
  • the third via wiring 246 electrically connects the third front side wiring 330, the third intermediate wiring 530, and the first back side wiring 410.
  • the substrate 50A1 further includes a plurality of (for example, four) fourth via wires 248 that electrically connect the first intermediate wire 510 and the first back side wire 410.
  • the fourth via wiring 248 is made of a metal material such as Cu. Note that the arrangement of the fourth via wiring 248 is not particularly limited. For example, the fourth via wiring 248 is evenly arranged within the first intermediate wiring 510 except for the position of the first via wiring 242. In this modification, for example, the fourth via wiring 248 and the first via wiring 242 are arranged in a line.
  • the light emitting element 60 is small. Therefore, the area of the first wiring region 312 (light emitting element mounting region) in which the light emitting element 60 is mounted is small. Therefore, there is a limit to the number of first via wirings 242 that can be arranged within the first wiring area 312, and as in the first embodiment, in this modified example as well, the first via wirings 242 are Only one is arranged in one wiring area 312. Therefore, similar to the advantage (1-9) obtained in the first embodiment described above, in this modification example as well, the flow of current to the light emitting element 60 is suppressed from being obstructed by the first via wiring 242. Ru.
  • the first via wiring 242 electrically connects the first front wiring 310, the first intermediate wiring 510, and the first back wiring 410.
  • This first via wiring 242 is also used as a heat radiation path.
  • the substrate 50A1 of the light emitting module 30A1 includes a plurality (for example, four) of fourth via wires 248 that connect the first intermediate wire 510 and the first back side wire 410. These fourth via wirings 248 do not inhibit the flow of current to the light emitting element 60 as described above, and can improve heat dissipation.
  • FIG. 22 is a perspective view schematically showing an exemplary semiconductor light emitting device 10B according to the second embodiment.
  • FIG. 23 is a plan view schematically showing the semiconductor light emitting device of FIG. 22.
  • FIG. 24 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22.
  • FIG. 25 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22.
  • FIG. 26 is a cross-sectional view taken along line 26-26 in FIG. 23.
  • FIG. 27 is a cross-sectional view taken along line 27-27 in FIG. 23.
  • the sealing resin 90 is omitted for convenience of explanation.
  • the sealing resin 90 is indicated by a two-dot chain line.
  • wires 190, 152A, and 152B are omitted for convenience of explanation.
  • the semiconductor light emitting device 10B of the second embodiment is a surface-mounted device. Therefore, the stem 20 and the like of the semiconductor light emitting device 10A of the first embodiment are not provided. Further, the semiconductor light emitting device 10B of the second embodiment differs from the semiconductor light emitting device 10A of the first embodiment in that the structure of the substrate 50B is different and that the semiconductor light emitting device 10B is provided with a sealing resin 90. These points will be explained in detail below.
  • the semiconductor light emitting device 10B has a generally rectangular plate shape.
  • the semiconductor light emitting device 10B includes a light emitting module 30B and a sealing resin 90.
  • the light emitting module 30B includes a substrate 50B, a light emitting element 60, and a light emitting element drive circuit 70.
  • the substrate 50B has a rectangular shape.
  • the size of the substrate 50B is not particularly limited.
  • the substrate 50B of the second embodiment has a rectangular shape in which the first side surface 52A and the second side surface 52B are longer than the third side surface 52C and the fourth side surface 52D.
  • the first wiring layer 220 includes a plurality of wirings provided on the surface 212A of the base material 210 and spaced apart from each other; in the second embodiment, the first surface side wiring 310; It includes a second front-side wiring 320, a third front-side wiring 340, and a fourth front-side wiring 350.
  • the first surface-side wiring 310 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50B, and has a size that is approximately 1/3 of the area of the substrate 50B, for example. ing.
  • the first surface-side wiring 310 includes first to third wiring regions 312, 314, and 316. Note that the first to third wiring regions 312, 314, and 316 are each part of the first surface side wiring 310, and the physical boundaries of the first to third wiring regions 312, 314, and 316 are on the first surface. It does not necessarily exist in the side wiring 310.
  • the first wiring area 312 is a light emitting element mounting area where the cathode electrode 68 of the light emitting element 60 is mounted.
  • the second wiring area 314 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted.
  • the third wiring area 316 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the cathode electrode 68 of the light emitting element 60 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the first surface wiring 310.
  • the second wiring area 314 and the third wiring area 316 are arranged symmetrically with respect to the first wiring area 312.
  • the second surface-side wiring 320 is arranged at a central portion of the substrate 50B, that is, a central portion between the third side surface 52C and the fourth side surface 52D of the substrate 50B.
  • the second front-side wiring 320 is arranged along the first and second side surfaces 52A and 52B of the substrate 50B, and is spaced apart from the first front-side wiring 310.
  • the second surface-side wiring 320 is formed to have a size slightly larger than, for example, about 1/2 of the area of the substrate 50B.
  • the second front side wiring 320 includes fourth to sixth wiring regions 322, 324, and 326.
  • fourth to sixth wiring regions 322, 324, and 326 are each part of the second surface side wiring 320, and the physical boundaries of the fourth to sixth wiring regions 322, 324, and 326 are on the second surface. It does not necessarily exist in the side wiring 320.
  • the fourth wiring region 322 is a transistor mounting region where the drain electrode 88 of the transistor 80 is mounted.
  • the fifth wiring area 324 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted.
  • the sixth wiring area 326 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320.
  • the fifth wiring area 324 and the sixth wiring area 326 are arranged symmetrically with respect to the fourth wiring area 322.
  • the third front-side wiring 340 and the fourth front-side wiring 350 are arranged side by side along the fourth side surface 52D of the substrate 50B and spaced apart from each other.
  • the third front-side wiring 340 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50B, and is spaced apart from the second front-side wiring 320.
  • the third front-side wiring 340 includes a seventh wiring region 342. Note that the seventh wiring region 342 is a part of the third front-side wiring 340, and a physical boundary of the seventh wiring region 342 does not exist in the third front-side wiring 340.
  • connection pads 162 are arranged in the seventh wiring region 342.
  • the gate electrode 86 of the transistor 80 is connected to the seventh wiring region 342 (connection pad 162) via a wire 152B (see FIG. 23).
  • the fourth front-side wiring 350 is arranged along the second and fourth side surfaces 52B and 52D of the substrate 50B, and is spaced apart from the second front-side wiring 320.
  • the fourth surface-side wiring 350 includes an eighth wiring region 352.
  • the eighth wiring region 352 is a part of the fourth front-side wiring 350, and the physical boundary of the eighth wiring region 352 does not exist in the fourth front-side wiring 350.
  • connection pads 164 are arranged in the eighth wiring region 352.
  • the source electrode 84 of the transistor 80 is connected to the eighth wiring region 352 (connection pad 164) via a wire 152A (see FIG. 23).
  • the first insulating layer 250 has a first insulating layer 250 that exposes the first to eighth wiring regions 312, 314, 316, 322, 324, 326, 342, 352 of the first to fourth front side wirings 310, 320, 340, 350, respectively. It includes first to eighth openings 251 to 258 (see FIG. 23).
  • a first metal plating material 362 (Fig. 23, FIG. 26, and FIG. 27) are provided.
  • the first metal plating material 362 for example, a laminate containing Ni and gold Au, or a laminate containing Ni, Pd, and Au can be used.
  • the cathode electrode 68 of the light emitting element 60 is bonded to the first metal plating material 362 in the first wiring area 312 (light emitting element mounting area) by a bonding member (not shown).
  • the drain electrode 88 of the transistor 80 is bonded to the first metal plating material 362 in the fourth wiring area 322 (transistor mounting area) by a bonding member (not shown). Further, as shown in FIG.
  • the first and second connection electrodes 113 and 114 of the first capacitor module 110 are connected to the fifth and second wiring areas 324 and 314 (first capacitor mounting area) by a bonding member (not shown).
  • the first metal plating materials 362 are respectively joined.
  • the first and second connection electrodes 123, 124 of the second capacitor module 120 are connected to the sixth and third wiring regions 326, 316 by a bonding member (not shown). They are respectively bonded to the first metal plating material 362 (second capacitor mounting area).
  • the bonding material an Ag paste material or a solder paste material containing Su-Ag-Cu can be used.
  • the bonding material may be changed depending on the member to be bonded to the first metal plating material 362.
  • Ag paste material can be used to bond the light emitting element 60.
  • a solder paste material or an Ag paste material can be used to join the transistor 80 and the first and second capacitor modules 110 and 120.
  • connection pads 162, 164 are provided in the seventh and eighth wiring regions 342, 352 exposed through the seventh and eighth openings 257, 258 of the first insulating layer 250. ing.
  • the connection pads 162, 164 are formed of a second metal plating material.
  • a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
  • FIG. 25 is a plan view showing the second wiring layer 230 and the second insulating layer 260. Note that in FIG. 25, illustration of the first insulating layer 250, the first wiring layer 220, and the base material 210 is omitted.
  • the second wiring layer 230 includes a plurality of wirings provided on the back surface 212B (see FIG. 23) of the base material 210 and spaced apart from each other. It includes a side wiring 410, a second back side wiring 420, a third back side wiring 430, and a fourth back side wiring 440.
  • the first backside wiring 410 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50B.
  • the first back side wiring 410 is formed in a rectangular shape extending along the third side surface 52C.
  • the first back side wiring 410 includes a first wiring region 412. Note that the first wiring region 412 is a part of the first backside wiring 410, and a physical boundary of the first wiring region 412 does not exist in the first backside wiring 410.
  • the first back side wiring 410 overlaps with the first front side wiring 310 shown in FIG. 24 in a plan view of the substrate 50B.
  • the second back side wiring 420 is arranged at the center portion of the substrate 50B, that is, at the center portion between the third side surface 52C and the fourth side surface 52D of the substrate 50B.
  • the second backside wiring 420 is arranged along the first and second side surfaces 52A and 52B of the substrate 50B, and is spaced apart from the first backside wiring 410.
  • the second back side wiring 420 is formed to have the same size as the second front side wiring 320 shown in FIG. 24, for example.
  • the second back side wiring 420 includes a second wiring region 422.
  • the second back side wiring 420 overlaps with the second front side wiring 320 shown in FIG. 24 in a plan view of the substrate 50B.
  • the third back side wiring 430 and the fourth back side wiring 440 are arranged side by side along the fourth side surface 52D of the substrate 50B and spaced apart from each other.
  • the third backside wiring 430 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50B, and is spaced apart from the second backside wiring 420.
  • the third back side wiring 430 includes a third wiring region 432. Note that the third wiring area 432 is a part of the third back side wiring 430, and the physical boundary of the third wiring area 432 does not exist in the third back side wiring 430.
  • the third back side wiring 430 overlaps with the third front side wiring 340 in a plan view of the substrate 50B.
  • the fourth backside wiring 440 is arranged along the second and fourth side surfaces 52B and 52D of the substrate 50B, and is spaced apart from the second backside wiring 420.
  • the fourth back side wiring 440 includes a fourth wiring region 442. Note that the fourth wiring area 442 is a part of the fourth back side wiring 440, and the physical boundary of the fourth wiring area 442 does not exist in the fourth back side wiring 440.
  • the fourth back side wiring 440 overlaps with the fourth front side wiring 350 in a plan view of the substrate 50B.
  • the second insulating layer 260 has first to fourth openings 261 that expose the first to fourth wiring regions 412, 422, 432, 442 of the first to fourth back side wirings 410, 420, 430, 440, respectively. 264 included. As shown in FIGS. 26 and 27, the first to third wiring regions 412, 422, and 432 exposed through the first to third openings 261 to 263 of the second insulating layer 260 are coated with third metal plating. A material 364 is provided. Although not shown, a third metal plating material 364 is provided in the fourth wiring region 442 exposed from the fourth opening 264 shown in FIG. 25, similar to the third wiring region 432. .
  • the third metal plating material 364 of the first to fourth wiring regions 412, 422, 432, and 442 is bonded to the pad of the drive board by a bonding material (not shown). Therefore, the first to fourth back side wirings 410, 420, 430, 440 and the third metal plating material 364 constitute mounting electrodes of the semiconductor light emitting device 10B.
  • the third metal plating material 364 a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
  • a solder paste material containing Su--Ag--Cu can be used as the bonding material.
  • each via wiring 242, 244, 246, 248 is formed, for example, in a cylindrical shape, but the shape is not particularly limited.
  • These via wirings 242, 244, 246, and 248 are so-called thermal vias, and function as conductive paths between the first wiring layer 220 and the second wiring layer 230, and also serve as conductive paths from the first wiring layer 220 to the second wiring layer. It functions as a heat dissipation path to 230.
  • the first via wiring 242 is located within the first wiring area 312 (light emitting element mounting area) and electrically connects the first front side wiring 310 and the first back side wiring 410. Therefore, the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 are connected to the first back side via the first front side wiring 310 and the first via wiring 242. It is electrically connected to wiring 410.
  • the second via wiring 244 is located within the fourth wiring area 322 (transistor mounting area) and electrically connects the second front side wiring 320 and the second back side wiring 420. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second back side wiring 420 via the second front side wiring 320 and the second via wiring 244. Further, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320.
  • the arrangement of the second via wiring 244 is not particularly limited.
  • the second via wiring 244 is evenly arranged within the fourth and second wiring regions 322 and 422. In the second embodiment, for example, the second via wiring 244 is arranged in a 2 ⁇ 3 array.
  • the third via wiring 246 electrically connects the third front side wiring 340 and the third back side wiring 430. Therefore, the gate electrode 86 of the transistor 80 is electrically connected to the third back side wiring 430 via the wire 152B, the third front side wiring 340, and the third via wiring 246 shown in FIG. Note that the arrangement of the third via wiring 246 is not particularly limited. For example, the two third via wirings 246 are arranged side by side along the fourth side surface 52D of the substrate 50B.
  • the fourth via wiring 248 electrically connects the fourth front side wiring 350 and the fourth back side wiring 440. Therefore, the source electrode 84 of the transistor 80 is electrically connected to the fourth back side wiring 440 via the wire 152A, the fourth front side wiring 350, and the fourth via wiring 248 shown in FIG. Note that the arrangement of the fourth via wiring 248 is not particularly limited. For example, the two fourth via wirings 248 are arranged side by side along the fourth side surface 52D of the substrate 50B.
  • the sealing resin 90 is formed to cover the surface of the substrate 50B.
  • the sealing resin 90 seals the light emitting element 60, the transistor 80, the first and second capacitor modules 110, 120, and each wire 190, 152A, 152B (see FIG. 23) mounted on the surface of the substrate 50B.
  • the sealing resin 90 is made of a translucent resin material. As this resin material, epoxy resin, acrylic resin, etc. can be used.
  • the semiconductor light emitting device 10B of the second embodiment is a surface-mounted light emitting module. Therefore, it can be mounted on a circuit board in the same way as the circuit elements forming the gate driver 908 shown in FIG. 12.
  • the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 may be mounted on the substrates 50A and 50B so as to be electrically connected to the drain electrode 88 of the transistor 80.
  • the number of lead pins 142D fixed to the back surface 22B of the base 22 and electrically connected to the heat sink 24 is not limited to one.
  • One or more capacitor modules may be used instead of the first and second capacitor modules 110, 120.
  • the number of second via wirings 244 is not limited to six, and can be any other number. In other words, the number of second via wirings 244 can be one or more.
  • the number of fourth via wirings 248 is not limited to four, and can be any other number. In other words, the number of second via wirings 248 can be one or more.
  • the number of intermediate wiring layers 240 is not limited to one.
  • a plurality of intermediate wiring layers 240 may be interposed inside the base material 210.
  • a protection diode for example, SBD906 connected in antiparallel to the light emitting element 60 may be mounted on the light emitting module 30A (for example, the substrate 50A).
  • a gate driver 908 that controls the driving of the transistor 80 may be mounted on the light emitting module 30A (for example, the substrate 50A). By integrating the gate driver 908 provided on the drive board 910 into the light emitting module 30A, the drive board 910 can be downsized and the size of the entire system can be reduced.
  • the term “on” includes both “on” and “above” unless the context clearly indicates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that in embodiments the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 1) are different from each other in that "upper” and “lower” in the Z-axis direction described herein are “upper” and “lower” in the vertical direction. Not limited to one thing.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.
  • the capacitor module (110, 120) and Equipped with The capacitor module (110, 120) includes: a silicon substrate (116, 126) having a first surface and a second surface facing oppositely to each other; the first connection electrode (113, 123) provided on the first surface; a counter electrode (117, 127) provided on the second surface and facing the first connection electrode (113, 123); including, Semiconductor light emitting device.
  • the capacitor module (110, 120) includes a connection part (118, 128) that connects the counter electrode (117, 127) to the second connection electrode (114, 124), according to appendix 1 or 2.
  • Semiconductor light emitting device includes a connection part (118, 128) that connects the counter electrode (117, 127) to the second connection electrode (114, 124), according to appendix 1 or 2.
  • connection portion (118, 128) connects the first wiring (118A, 128A) connected to the counter electrode (117, 127) and the first wiring (118A, 128A) to the second connection electrode (114, 124), and a second wiring (118B, 128B) connected to the semiconductor light emitting device according to appendix 3.
  • the semiconductor light emitting device according to any one of attachments 1 to 12, wherein the substrate (50A, 50B) is a resin substrate, a silicon substrate, a glass substrate, or a ceramic substrate.
  • the substrate (50A, 50B) is a semiconductor light emitting device according to any one of appendices 1 to 15, including a mounting electrode provided on a surface opposite to the surface on which the light emitting element (60) is mounted. Device.
  • Appendix 17 The semiconductor light-emitting device according to appendix 16, further comprising a transparent sealing resin (90) that covers the light-emitting element (60) as well as the surface on which the light-emitting element (60) is mounted.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

This semiconductor light emitting device comprises a substrate, a light emitting element mounted on the substrate, a transistor, and a first capacitor module. The first capacitor module has a first main surface facing the substrate, and a first connection electrode and a second connection electrode provided on the first main surface, and is electrically connected to the light emitting element. The first capacitor module includes a silicon substrate having a first surface and a second surface facing opposite each other, a first connection electrode provided on the first surface, and a counter electrode provided on the second surface, facing the first connection electrode.

Description

半導体発光装置semiconductor light emitting device
 本開示は、半導体発光装置に関するものである。 The present disclosure relates to a semiconductor light emitting device.
 半導体発光装置の種類の一つに、半導体発光素子をレーザ光源として備える半導体レーザ装置がある(たとえば特許文献1参照)。このような半導体レーザ装置は、様々な電子機器に搭載される光源装置として広く採用されている。 One type of semiconductor light emitting device is a semiconductor laser device that includes a semiconductor light emitting element as a laser light source (see, for example, Patent Document 1). Such semiconductor laser devices are widely used as light source devices installed in various electronic devices.
特開2016-29718号公報JP2016-29718A
 半導体発光装置は、半導体発光素子を駆動するたとえばスイッチング素子およびキャパシタなどを含む。このため、半導体発光素子を含む回路の配線経路上には寄生インダクタンスが存在する。寄生インダクタンスは、半導体発光素子の出力特性に影響を及ぼし得る。 A semiconductor light emitting device includes, for example, a switching element and a capacitor that drive a semiconductor light emitting element. Therefore, parasitic inductance exists on the wiring path of the circuit including the semiconductor light emitting device. Parasitic inductance can affect the output characteristics of semiconductor light emitting devices.
 本開示の一態様である半導体発光装置は、基板と、前記基板上に実装された発光素子と、前記基板上に実装され、前記発光素子を駆動するように構成されたトランジスタと、前記基板上に実装され、前記基板と対向する主面と、前記主面に設けられた第1接続電極および第2接続電極とを有し、前記発光素子に電気的に接続されたキャパシタモジュールと、を備え、前記キャパシタモジュールは、互いに反対側を向く第1面および第2面を有するシリコン基板と、前記第1面に設けられた前記第1接続電極と、前記第2面に設けられ、前記第1接続電極に対向する対向電極と、を含む。 A semiconductor light emitting device that is one aspect of the present disclosure includes a substrate, a light emitting element mounted on the substrate, a transistor mounted on the substrate and configured to drive the light emitting element, and a transistor mounted on the substrate. a capacitor module mounted on the substrate, having a main surface facing the substrate, a first connection electrode and a second connection electrode provided on the main surface, and electrically connected to the light emitting element. , the capacitor module includes a silicon substrate having a first surface and a second surface facing opposite to each other, the first connection electrode provided on the first surface, and the first connection electrode provided on the second surface. and a counter electrode that faces the connection electrode.
 本開示の一態様である半導体発光装置によれば、寄生インダクタンスを低減することができる。 According to a semiconductor light emitting device that is one embodiment of the present disclosure, parasitic inductance can be reduced.
図1は、第1実施形態にかかる例示的な半導体発光装置を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an exemplary semiconductor light emitting device according to a first embodiment. 図2は、図1の半導体発光装置の概略断面図である。FIG. 2 is a schematic cross-sectional view of the semiconductor light emitting device of FIG. 図3は、ステムおよびリードピンを概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing the stem and lead pin. 図4は、図3とは反対側の視点から視たステムおよびリードピンを概略的に示す斜視図である。FIG. 4 is a perspective view schematically showing the stem and lead pins as seen from a viewpoint opposite to FIG. 3. FIG. 図5は、半導体発光装置および駆動基板を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing a semiconductor light emitting device and a drive board. 図6は、第1実施形態にかかる発光モジュールを概略的に示す平面図である。FIG. 6 is a plan view schematically showing the light emitting module according to the first embodiment. 図7は、図6の発光モジュールの斜視図である。FIG. 7 is a perspective view of the light emitting module of FIG. 6. 図8は、図6の発光モジュールの基板の内部配線構造を示す平面図である。8 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 6. FIG. 図9は、図6の発光モジュールの基板の内部配線構造を示す平面図である。9 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 6. FIG. 図10は、図6の10-10線に沿った断面図である。FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 図11は、図6の11-11線に沿った断面図である。FIG. 11 is a cross-sectional view taken along line 11-11 in FIG. 図12は、半導体発光装置の電気的構成を概略的に示す回路図である。FIG. 12 is a circuit diagram schematically showing the electrical configuration of the semiconductor light emitting device. 図13は、比較例の発光モジュールを示す断面図である。FIG. 13 is a sectional view showing a light emitting module of a comparative example. 図14は、変更例のキャパシタモジュールを含む発光モジュールを示す断面図である。FIG. 14 is a sectional view showing a light emitting module including a capacitor module of a modified example. 図15は、変更例のキャパシタモジュールを含む発光モジュールを示す断面図である。FIG. 15 is a sectional view showing a light emitting module including a capacitor module according to a modified example. 図16は、変更例のキャパシタモジュールを含む発光モジュールを示す断面図である。FIG. 16 is a sectional view showing a light emitting module including a capacitor module according to a modified example. 図17は、変更例の基板を含む発光モジュールを概略的に示す斜視図である。FIG. 17 is a perspective view schematically showing a light emitting module including a modified example of a substrate. 図18は、図17の基板の内部配線構造を示す平面図である。FIG. 18 is a plan view showing the internal wiring structure of the substrate of FIG. 17. 図19は、図17の基板の内部配線構造を示す平面図である。FIG. 19 is a plan view showing the internal wiring structure of the substrate of FIG. 17. 図20は、図17の基板の内部配線構造を示す平面図である。FIG. 20 is a plan view showing the internal wiring structure of the substrate of FIG. 17. 図21は、図18の21-21線に沿った位置における図17の断面図である。21 is a cross-sectional view of FIG. 17 taken along line 21-21 of FIG. 18. 図22は、第2実施形態にかかる例示的な半導体発光装置を概略的に示す斜視図である。FIG. 22 is a perspective view schematically showing an exemplary semiconductor light emitting device according to the second embodiment. 図23は、図22の半導体発光装置を概略的に示す平面図である。FIG. 23 is a plan view schematically showing the semiconductor light emitting device of FIG. 22. 図24は、図22の発光モジュールの基板の内部配線構造を示す平面図である。FIG. 24 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22. 図25は、図22の発光モジュールの基板の内部配線構造を示す平面図である。FIG. 25 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22. 図26は、図23の26-26線に沿った断面図である。FIG. 26 is a cross-sectional view taken along line 26-26 in FIG. 23. 図27は、図23の27-27線に沿った断面図である。FIG. 27 is a cross-sectional view taken along line 27-27 in FIG. 23.
 以下、添付図面を参照して本開示の半導体発光装置のいくつかの実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。本開示における「第1」、「第2」、「第3」等の用語は、単に対象物を区別するために用いられており、対象物を順位づけするものではない。 Hereinafter, some embodiments of the semiconductor light emitting device of the present disclosure will be described with reference to the accompanying drawings. It should be noted that, for simplicity and clarity of explanation, the components shown in the drawings are not necessarily drawn to scale. Further, in order to facilitate understanding, hatching lines may be omitted in the cross-sectional views. The accompanying drawings are merely illustrative of embodiments of the disclosure and should not be considered as limiting the disclosure. Terms such as "first," "second," and "third" in this disclosure are used merely to distinguish between objects, and are not intended to rank the objects.
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。 The following detailed description includes devices, systems, and methods that embody example embodiments of the present disclosure. This detailed description is illustrative in nature and is not intended to limit the embodiments of the disclosure or the application and uses of such embodiments.
 (第1実施形態)
 以下、第1実施形態の半導体発光装置10Aの構成について説明する。
 図1は、第1実施形態にかかる例示的な半導体発光装置10Aを概略的に示す斜視図である。図2は、図1の半導体発光装置10Aの断面図である。なお、本開示では、単に説明を目的として、図1等の図中に示された互いに直交するXYZ軸に基づいて構成部材を説明する場合がある。以下では、+Z方向を上、-Z方向を下、+X方向を右、-X方向を左と定義する。
(First embodiment)
The configuration of the semiconductor light emitting device 10A of the first embodiment will be described below.
FIG. 1 is a perspective view schematically showing an exemplary semiconductor light emitting device 10A according to the first embodiment. FIG. 2 is a cross-sectional view of the semiconductor light emitting device 10A of FIG. 1. Note that in this disclosure, constituent members may be described based on mutually orthogonal XYZ axes shown in figures such as FIG. 1 for the purpose of explanation only. In the following, the +Z direction is defined as top, the -Z direction as bottom, the +X direction as right, and the -X direction as left.
 図1に示す半導体発光装置10Aは、たとえば3次元距離計測の一例であるLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)としてのレーザシステムに用いることができる。なお、半導体発光装置10Aは、2次元距離計測用のレーザシステムに用いられてもよい。 The semiconductor light emitting device 10A shown in FIG. 1 can be used, for example, in a laser system as LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), which is an example of three-dimensional distance measurement. Note that the semiconductor light emitting device 10A may be used in a laser system for two-dimensional distance measurement.
 (パッケージ構造)
 まず、パッケージ構造の概要を説明する。
 図1および図2に示されるように、半導体発光装置10Aは、ステム20と、ステム20に実装された発光モジュール30Aと、包囲部材40とを備えている。ステム20は、ベース22と、ベース22上に立設したヒートシンク24とを含む。発光モジュール30Aはヒートシンク24に搭載されている。包囲部材40は、発光モジュール30Aとヒートシンク24とを囲むようにベース22上に設けられている。ステム20と包囲部材40とを用いて発光モジュール30Aをパッケージングした構造はCANパッケージ構造とも呼ばれる。
(package structure)
First, an overview of the package structure will be explained.
As shown in FIGS. 1 and 2, the semiconductor light emitting device 10A includes a stem 20, a light emitting module 30A mounted on the stem 20, and a surrounding member 40. Stem 20 includes a base 22 and a heat sink 24 erected on base 22. The light emitting module 30A is mounted on the heat sink 24. The surrounding member 40 is provided on the base 22 so as to surround the light emitting module 30A and the heat sink 24. The structure in which the light emitting module 30A is packaged using the stem 20 and the surrounding member 40 is also called a CAN package structure.
 包囲部材40は、発光モジュール30Aを収容する収容空間42を画定する。包囲部材40は、ステム20のベース22に固定され、ステム20とともに収容空間42を中空状態に気密して中空封止構造を形成する。 The surrounding member 40 defines an accommodation space 42 that accommodates the light emitting module 30A. The surrounding member 40 is fixed to the base 22 of the stem 20, and together with the stem 20, the housing space 42 is hermetically sealed to form a hollow sealed structure.
 第1実施形態では、包囲部材40は、キャップ44と、透光板46(図2参照)とを含む。なお、透光板46は、半導体発光装置10Aの用途に応じて省略され得る。キャップ44の材質は特に限定されないが、たとえば鉄(Fe)またはFe合金等の遮光性を有する金属材料で形成されている。第1実施形態では、キャップ44は、頂部44A、筒部44B、およびフランジ部44Cを含み、これら頂部44A、筒部44B、およびフランジ部44Cは一体に形成されている。 In the first embodiment, the surrounding member 40 includes a cap 44 and a transparent plate 46 (see FIG. 2). Note that the light-transmitting plate 46 may be omitted depending on the use of the semiconductor light-emitting device 10A. Although the material of the cap 44 is not particularly limited, it is formed of a metal material having light-shielding properties, such as iron (Fe) or Fe alloy. In the first embodiment, the cap 44 includes a top portion 44A, a cylinder portion 44B, and a flange portion 44C, and the top portion 44A, cylinder portion 44B, and flange portion 44C are integrally formed.
 筒部44Bは、たとえば円筒状に形成されている。頂部44Aは、筒部44Bの一端(図1および図2において上端)に位置し、フランジ部44Cは、筒部44Bの他端(図1および図2において下端)に位置している。フランジ部44Cは、ベース22の表面22Aにたとえば溶接または接合材等によって固定されている。頂部44Aは、発光モジュール30Aから出射された光を通過させる窓部44AWを含む。窓部44AWは、たとえば円形状に形成されている。 The cylindrical portion 44B is formed, for example, in a cylindrical shape. The top portion 44A is located at one end (the upper end in FIGS. 1 and 2) of the cylindrical portion 44B, and the flange portion 44C is located at the other end (the lower end in FIGS. 1 and 2) of the cylindrical portion 44B. The flange portion 44C is fixed to the surface 22A of the base 22 by, for example, welding or a bonding material. The top portion 44A includes a window portion 44AW through which light emitted from the light emitting module 30A passes. The window portion 44AW is formed, for example, in a circular shape.
 透光板46は、キャップ44の内側から頂部44Aに接合材等により固定されて窓部44AWを塞いでいる。透光板46は、たとえばガラス等の透明材料で形成されており、窓部44AWを通過する光を透過させる。また、透光板46は、包囲部材40により囲まれた発光モジュール30Aの収容空間42を封止する封止部材としての役割も果たす。 The light-transmitting plate 46 is fixed from the inside of the cap 44 to the top portion 44A using a bonding material or the like to close the window portion 44AW. The light-transmitting plate 46 is made of a transparent material such as glass, and transmits light passing through the window portion 44AW. Furthermore, the transparent plate 46 also serves as a sealing member that seals the housing space 42 of the light emitting module 30A surrounded by the surrounding member 40.
 (発光モジュールの概要)
 次に、発光モジュール30Aの概要を説明する。
 発光モジュール30Aは、基板50Aと、発光素子60と、発光素子駆動回路70とを含む。発光素子60と発光素子駆動回路70は基板50Aに実装されている。発光素子60は、レーザダイオード(半導体レーザ素子)である。発光素子駆動回路70は、発光素子60を駆動するトランジスタ80を含む。トランジスタ80は、縦型構造の金属酸化膜半導体電界効果トランジスタ(MOSFET)として基板50Aに実装されている。本開示では、縦型構造のMOSFETを縦型MOSFETと呼ぶ。
(Overview of light emitting module)
Next, the outline of the light emitting module 30A will be explained.
The light emitting module 30A includes a substrate 50A, a light emitting element 60, and a light emitting element drive circuit 70. The light emitting element 60 and the light emitting element driving circuit 70 are mounted on the substrate 50A. The light emitting element 60 is a laser diode (semiconductor laser element). The light emitting element drive circuit 70 includes a transistor 80 that drives the light emitting element 60. The transistor 80 is mounted on the substrate 50A as a vertical metal oxide semiconductor field effect transistor (MOSFET). In this disclosure, a MOSFET with a vertical structure is referred to as a vertical MOSFET.
 第1実施形態において、発光素子駆動回路70はさらに、第1キャパシタモジュール110と第2キャパシタモジュール120とを含む。第1および第2キャパシタモジュール110,120は、シリコンキャパシタを含む。発光素子駆動回路70は、第1および第2キャパシタモジュール110,120に蓄積された電荷を、トランジスタ80を介して発光素子60にパルス電流として供給することで発光素子60を駆動する。 In the first embodiment, the light emitting element drive circuit 70 further includes a first capacitor module 110 and a second capacitor module 120. The first and second capacitor modules 110, 120 include silicon capacitors. The light emitting element driving circuit 70 drives the light emitting element 60 by supplying the charges accumulated in the first and second capacitor modules 110 and 120 to the light emitting element 60 via the transistor 80 as a pulse current.
 (ステム)
 次に、ステム20の構造を説明する。
 図3は、ステム20の構造を概略的に示した斜視図であり、図4は、図3とは反対側の視点から視たステム20の斜視図である。
(Stem)
Next, the structure of the stem 20 will be explained.
FIG. 3 is a perspective view schematically showing the structure of the stem 20, and FIG. 4 is a perspective view of the stem 20 seen from the opposite viewpoint from FIG.
 上記したように、ステム20は、ベース22およびヒートシンク24を含む。第1実施形態では、ベース22およびヒートシンク24は一体に形成されている。ステム20は、たとえば銅(Cu)、Cu合金、Fe、Fe合金等の導電性材料で形成されている。なお、ベース22とヒートシンク24が異なる金属で形成されてもよい。 As mentioned above, the stem 20 includes a base 22 and a heat sink 24. In the first embodiment, the base 22 and the heat sink 24 are integrally formed. The stem 20 is made of a conductive material such as copper (Cu), Cu alloy, Fe, Fe alloy, or the like. Note that the base 22 and the heat sink 24 may be formed of different metals.
 ベース22は、ベース22の厚さ方向に視てたとえば略円形状である。本開示において、ベース22の厚さ方向とは、ベース22の表面22Aに直交する方向(Z軸方向)のことを言う。ベース22の大きさは特に限定されない。 The base 22 has, for example, a substantially circular shape when viewed in the thickness direction of the base 22. In the present disclosure, the thickness direction of the base 22 refers to a direction (Z-axis direction) orthogonal to the surface 22A of the base 22. The size of the base 22 is not particularly limited.
 ヒートシンク24は、ベース22の表面22Aに一体に設けられている。ヒートシンク24は、ベース22の厚さ方向に視てたとえば略扇形状である。ヒートシンク24のサイズは特に限定されない。 The heat sink 24 is integrally provided on the surface 22A of the base 22. The heat sink 24 has, for example, a substantially fan shape when viewed in the thickness direction of the base 22. The size of the heat sink 24 is not particularly limited.
 ヒートシンク24は、平面状の支持面24Aを含み、この支持面24Aに図1,図2に示す発光モジュール30Aが搭載されている。たとえば、発光モジュール30Aは、図示しない導電性接合材によって支持面24Aに接合され、この導電性接合材を介してヒートシンク24に電気的に接続されている。第1実施形態では、ヒートシンク24は、発光モジュール30Aのトランジスタ80に導電性接合材を介して電気的に接続されている。導電性接合材としては、たとえば銀(Ag)ペースト等の導電ペーストを使用することができる。 The heat sink 24 includes a planar support surface 24A, and the light emitting module 30A shown in FIGS. 1 and 2 is mounted on this support surface 24A. For example, the light emitting module 30A is bonded to the support surface 24A using a conductive bonding material (not shown), and is electrically connected to the heat sink 24 via the conductive bonding material. In the first embodiment, the heat sink 24 is electrically connected to the transistor 80 of the light emitting module 30A via a conductive bonding material. As the conductive bonding material, for example, a conductive paste such as silver (Ag) paste can be used.
 ベース22は、ベース22を厚さ方向に貫通する複数の貫通孔、第1実施形態では、たとえば3つの貫通孔26A,26B,26Cを含む。各貫通孔26A,26B,26Cは、ベース22の厚さ方向に視てたとえば略円形状である。各貫通孔26A,26B,26Cのサイズは特に限定されない。 The base 22 includes a plurality of through holes passing through the base 22 in the thickness direction, for example, three through holes 26A, 26B, and 26C in the first embodiment. Each of the through holes 26A, 26B, and 26C has, for example, a substantially circular shape when viewed in the thickness direction of the base 22. The size of each through hole 26A, 26B, 26C is not particularly limited.
 図5は、半導体発光装置10Aの実装例を概略的に示す斜視図である。半導体発光装置10Aは、発光モジュール30Aの駆動を制御する駆動基板910上に実装されている。半導体発光装置10Aは、発光モジュール30Aと駆動基板910とを電気的に接続する複数のリードピンを含む。図3,図4に示されるように、第1実施形態の半導体発光装置10Aは、4本のリードピン142A,142B,142C,142Dを含む。第1実施形態において、リードピン142A,142Bは第1リードピンに相当し、リードピン142Dは第2リードピンに相当し、リードピン142Cは第3リードピンに相当する。 FIG. 5 is a perspective view schematically showing a mounting example of the semiconductor light emitting device 10A. The semiconductor light emitting device 10A is mounted on a drive board 910 that controls driving of the light emitting module 30A. The semiconductor light emitting device 10A includes a plurality of lead pins that electrically connect the light emitting module 30A and the drive board 910. As shown in FIGS. 3 and 4, the semiconductor light emitting device 10A of the first embodiment includes four lead pins 142A, 142B, 142C, and 142D. In the first embodiment, lead pins 142A and 142B correspond to first lead pins, lead pin 142D corresponds to second lead pin, and lead pin 142C corresponds to third lead pin.
 図1、図3、および図4に示されるように、リードピン142A,142B,142Cはベース22を貫通している。第1実施形態において、リードピン142A,142B,142Cは、ベース22の貫通孔26A,26B,26Cにそれぞれ挿通されている。これら貫通孔26A,26B,26Cの内部には、それぞれリードピン142A,142B,142Cをベース22に対し電気的に絶縁する絶縁材144が充填されている。絶縁材144は、たとえばガラス等によって形成されている。 As shown in FIGS. 1, 3, and 4, the lead pins 142A, 142B, and 142C pass through the base 22. In the first embodiment, lead pins 142A, 142B, and 142C are inserted into through holes 26A, 26B, and 26C of base 22, respectively. The insides of these through holes 26A, 26B, and 26C are filled with an insulating material 144 that electrically insulates the lead pins 142A, 142B, and 142C from the base 22, respectively. The insulating material 144 is made of glass or the like, for example.
 リードピン142A,142B,142Cは、接続部146A,146B,146Cと端子部148A,148B,148Cとを含む。接続部146A,146B,146Cはベース22の表面22Aから突出した部分であり、端子部148A,148B,148Cはベース22の裏面22Bから突出した部分である。接続部146A,146B,146Cの長さは特に限定されない。 The lead pins 142A, 142B, 142C include connecting portions 146A, 146B, 146C and terminal portions 148A, 148B, 148C. The connecting portions 146A, 146B, and 146C are portions that protrude from the front surface 22A of the base 22, and the terminal portions 148A, 148B, and 148C are portions that protrude from the back surface 22B of the base 22. The lengths of the connecting portions 146A, 146B, and 146C are not particularly limited.
 図2および図4に示されるように、リードピン142Dは、接続部146Dと端子部148Dとを含む。接続部146Dは端子部148Dの一端に設けられており、ベース22の裏面22Bに接合されている。したがって、リードピン142Dはベース22に固定されている。リードピン142Dは、ベース22の厚さ方向に視てヒートシンク24と重なる位置に固定されている。このリードピン142Dは、ベース22およびヒートシンク24を介して発光モジュール30Aのトランジスタ80に電気的に接続されている。 As shown in FIGS. 2 and 4, the lead pin 142D includes a connecting portion 146D and a terminal portion 148D. The connecting portion 146D is provided at one end of the terminal portion 148D and is joined to the back surface 22B of the base 22. Therefore, lead pin 142D is fixed to base 22. The lead pin 142D is fixed at a position overlapping the heat sink 24 when viewed in the thickness direction of the base 22. This lead pin 142D is electrically connected to the transistor 80 of the light emitting module 30A via the base 22 and the heat sink 24.
 リードピン142A,142B,142C,142Dの端子部148A,148B,148C,148Dは、駆動基板910への半導体発光装置10Aの実装に用いられる。端子部148A,148B,148C,148Dの長さは特に限定されない。 The terminal portions 148A, 148B, 148C, and 148D of the lead pins 142A, 142B, 142C, and 142D are used for mounting the semiconductor light emitting device 10A on the drive board 910. The lengths of the terminal portions 148A, 148B, 148C, and 148D are not particularly limited.
 ここで、図5に示される駆動基板910への半導体発光装置10Aの実装状態における端子部148A,148B,148C,148Dの長さは、ベース22の裏面22Bと駆動基板910との間の距離に相当する。この距離が大きくなるほど端子部148A,148B,148C,148Dが長くなり、リードピン142A,142B,142C,142Dで発生する熱抵抗が増大する。このような熱抵抗は、発光素子60の温度を上昇させる要因となるため、ベース22の裏面22Bと駆動基板910との間の距離は短いことが望ましい。 Here, the lengths of the terminal portions 148A, 148B, 148C, and 148D when the semiconductor light emitting device 10A is mounted on the drive board 910 shown in FIG. Equivalent to. As this distance increases, the terminal portions 148A, 148B, 148C, and 148D become longer, and the thermal resistance generated at the lead pins 142A, 142B, 142C, and 142D increases. Since such thermal resistance becomes a factor in increasing the temperature of the light emitting element 60, it is desirable that the distance between the back surface 22B of the base 22 and the drive board 910 be short.
 図1に示されるように、リードピン142A,142B,142Cの接続部146A,146B,146Cは、発光モジュール30Aとそれぞれワイヤ152A,152B,152Cによって電気的に接続されている。ワイヤ152A,152B,152Cには、たとえば金(Au)等の金属材料を用いることができる。第1実施形態では、接続部146Aは、たとえば2本のワイヤ152Aによって発光モジュール30Aのトランジスタ80に電気的に接続されている。なお、ワイヤ152Aの数は、1本、または3本以上であってもよい。接続部146Bは、たとえば1本のワイヤ152Bによって発光モジュール30Aのトランジスタ80に電気的に接続されている。接続部146Cは、たとえば1本のワイヤ152Cによって発光モジュール30Aの基板50Aに設けられた外部素子接続パッド160に電気的に接続されている。 As shown in FIG. 1, connection portions 146A, 146B, 146C of lead pins 142A, 142B, 142C are electrically connected to light emitting module 30A by wires 152A, 152B, 152C, respectively. For example, a metal material such as gold (Au) can be used for the wires 152A, 152B, and 152C. In the first embodiment, the connecting portion 146A is electrically connected to the transistor 80 of the light emitting module 30A by, for example, two wires 152A. Note that the number of wires 152A may be one, or three or more. The connection portion 146B is electrically connected to the transistor 80 of the light emitting module 30A by, for example, one wire 152B. The connection portion 146C is electrically connected to an external element connection pad 160 provided on the substrate 50A of the light emitting module 30A by, for example, one wire 152C.
 外部素子接続パッド160は、外部素子を基板50A(発光モジュール30A)に接続するために用いられる。なお、第1実施形態において、外部素子接続パッド160に接続される外部素子は、駆動基板910に設けられたショットキーバリアダイオード(SBD)906(図12参照)である。後述するように、SBD906は、発光素子60に逆並列に接続されて発光素子60の保護ダイオードとして機能し、発光素子60に逆電流が流れることを抑制する。 The external element connection pad 160 is used to connect an external element to the substrate 50A (light emitting module 30A). Note that in the first embodiment, the external element connected to the external element connection pad 160 is a Schottky barrier diode (SBD) 906 (see FIG. 12) provided on the drive board 910. As will be described later, the SBD 906 is connected in antiparallel to the light emitting element 60 and functions as a protection diode for the light emitting element 60, thereby suppressing reverse current from flowing through the light emitting element 60.
 図6は、第1実施形態にかかる発光モジュール30Aを概略的に示す平面図であり、図7は、発光モジュール30Aの斜視図である。図8および図9は、発光モジュール30Aの基板50Aの内部配線構造を示す平面図である。図10は、図6の10-10線に沿った断面図であり、図11は、図6の11-11線に沿った断面図である。 FIG. 6 is a plan view schematically showing the light emitting module 30A according to the first embodiment, and FIG. 7 is a perspective view of the light emitting module 30A. 8 and 9 are plan views showing the internal wiring structure of the substrate 50A of the light emitting module 30A. 10 is a cross-sectional view taken along line 10-10 in FIG. 6, and FIG. 11 is a cross-sectional view taken along line 11-11 in FIG.
 図6に示されるように、基板50Aは矩形状を有している。基板50Aのサイズは特に限定されない。たとえば、基板50Aは、互いに平行な第1側面52Aおよび第2側面52Bと、第1側面52Aと第2側面52Bとを結ぶ互いに平行な第3側面52Cおよび第4側面52Dとを有する略正方形状を有している。なお、本開示において使用される用語「平行」とは、2つの対象物が互いに完全に平行である場合だけでなく、完全に平行ではないが実質的に平行な場合も含む。 As shown in FIG. 6, the substrate 50A has a rectangular shape. The size of the substrate 50A is not particularly limited. For example, the substrate 50A has a substantially square shape having a first side surface 52A and a second side surface 52B that are parallel to each other, and a third side surface 52C and a fourth side surface 52D that are parallel to each other and connect the first side surface 52A and the second side surface 52B. have. Note that the term "parallel" used in the present disclosure includes not only cases where two objects are completely parallel to each other, but also cases where two objects are not completely parallel but substantially parallel.
 レーザダイオードである発光素子60、発光素子60を駆動するトランジスタ80、第1キャパシタモジュール110、および第2キャパシタモジュール120は、基板50A上に実装されている。これら発光素子60、トランジスタ80、第1キャパシタモジュール110、および第2キャパシタモジュール120は各々、基板50Aの平面視において矩形状を有している。なお、本開示において、基板50Aの平面視とは、基板50Aの厚さ方向(Y軸方向)に対象物を視ることを言う。 A light emitting element 60 that is a laser diode, a transistor 80 that drives the light emitting element 60, a first capacitor module 110, and a second capacitor module 120 are mounted on the substrate 50A. The light emitting element 60, the transistor 80, the first capacitor module 110, and the second capacitor module 120 each have a rectangular shape in a plan view of the substrate 50A. Note that in the present disclosure, a plan view of the substrate 50A means viewing the object in the thickness direction (Y-axis direction) of the substrate 50A.
 (発光素子)
 第1実施形態では、発光素子60は、基板50Aの平面視において、互いに平行な第1側面62Aおよび第2側面62Bと、第1側面62Aと第2側面62Bとを結ぶ互いに平行な第3側面62Cおよび第4側面62Dとを有する長方形状を有している。発光素子60において、第3側面62Cおよび第4側面62Dは、第1側面62Aおよび第2側面62Bよりも短い。発光素子60は、発光素子60の第3側面62Cが基板50Aの第3側面52Cに対して平行に隣接するように配置されている。発光素子60は、基板50Aの平面視において、基板50Aの中心よりも基板50Aの第3側面52Cに近い位置に配置されている。
(Light emitting element)
In the first embodiment, the light emitting element 60 has a first side surface 62A and a second side surface 62B that are parallel to each other, and a third side surface that is parallel to each other that connects the first side surface 62A and the second side surface 62B in a plan view of the substrate 50A. It has a rectangular shape having a fourth side surface 62C and a fourth side surface 62D. In the light emitting element 60, the third side surface 62C and the fourth side surface 62D are shorter than the first side surface 62A and the second side surface 62B. The light emitting element 60 is arranged such that the third side surface 62C of the light emitting element 60 is parallel to and adjacent to the third side surface 52C of the substrate 50A. The light emitting element 60 is disposed at a position closer to the third side surface 52C of the substrate 50A than the center of the substrate 50A in a plan view of the substrate 50A.
 図6に示されるように、発光素子60は、発光素子60の第3側面62Cの位置に光出射端面64を含み、この光出射端面64とほぼ直交する方向(概ね+Z方向)において光出射端面64からレーザ光が出射される。 As shown in FIG. 6, the light emitting element 60 includes a light emitting end surface 64 at a position of the third side surface 62C of the light emitting element 60, and a light emitting end surface in a direction substantially perpendicular to the light emitting end surface 64 (approximately +Z direction). Laser light is emitted from 64.
 図7および図10に示されるように、発光素子60は、発光素子60の表面60Aに設けられたアノード電極66と、発光素子60の裏面60Bに設けられたカソード電極68とを含み、このカソード電極68が基板50Aに接合されている。 As shown in FIGS. 7 and 10, the light emitting element 60 includes an anode electrode 66 provided on the front surface 60A of the light emitting element 60, and a cathode electrode 68 provided on the back surface 60B of the light emitting element 60. An electrode 68 is bonded to the substrate 50A.
 (トランジスタ)
 図6に示されるように、第1実施形態では、トランジスタ80は、基板50Aの平面視において、互いに平行な第1側面82Aおよび第2側面82Bと、第1側面82Aと第2側面82Bとを結ぶ互いに平行な第3側面82Cおよび第4側面82Dとを有する長方形状を有している。トランジスタ80において、第3側面82Cおよび第4側面82Dは、第1側面82Aおよび第2側面82Bよりも短い。トランジスタ80は、トランジスタ80の第4側面82Dが基板50Aの第4側面52Dに対して平行に隣接するように配置されている。さらに、トランジスタ80は、トランジスタ80の第3側面82Cが発光素子60の第4側面62Dに対して平行に隣接するように配置されている。
(transistor)
As shown in FIG. 6, in the first embodiment, the transistor 80 has a first side surface 82A and a second side surface 82B that are parallel to each other, and a first side surface 82A and a second side surface 82B that are parallel to each other in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 82C and a fourth side surface 82D that are connected and parallel to each other. In the transistor 80, the third side surface 82C and the fourth side surface 82D are shorter than the first side surface 82A and the second side surface 82B. The transistor 80 is arranged such that the fourth side surface 82D of the transistor 80 is parallel to and adjacent to the fourth side surface 52D of the substrate 50A. Further, the transistor 80 is arranged such that the third side surface 82C of the transistor 80 is parallel to and adjacent to the fourth side surface 62D of the light emitting element 60.
 図7および図10に示されるように、縦型MOSFETとして実装されるトランジスタ80は、トランジスタ80の表面80Aの一部に設けられたソース電極84と、トランジスタ80の表面80Aの他の一部に設けられたゲート電極86(図7参照)とを含む。ソース電極84は、ゲート電極86よりも大きなサイズで形成されている。また、トランジスタ80は、トランジスタ80の裏面80Bにほぼ全体に設けられたドレイン電極88を含み、このドレイン電極88が基板50Aに接合されている。 As shown in FIGS. 7 and 10, the transistor 80 implemented as a vertical MOSFET has a source electrode 84 provided on a part of the surface 80A of the transistor 80, and a source electrode 84 provided on a part of the surface 80A of the transistor 80. A gate electrode 86 (see FIG. 7) is provided. The source electrode 84 is formed to have a larger size than the gate electrode 86. Further, the transistor 80 includes a drain electrode 88 provided almost entirely on the back surface 80B of the transistor 80, and this drain electrode 88 is joined to the substrate 50A.
 図6に示されるように、トランジスタ80のゲート電極86は、ワイヤ152Bによってリードピン142Bの接続部146Bに電気的に接続されている。ゲート電極86には、図5に示される駆動基板910に設けられたゲートドライバ908(図12参照)からリードピン142Bおよびワイヤ152Bを介して、トランジスタ80をスイッチング制御する制御電圧が供給される。 As shown in FIG. 6, the gate electrode 86 of the transistor 80 is electrically connected to the connection portion 146B of the lead pin 142B by a wire 152B. A control voltage for controlling switching of the transistor 80 is supplied to the gate electrode 86 from a gate driver 908 (see FIG. 12) provided on a drive substrate 910 shown in FIG. 5 via a lead pin 142B and a wire 152B.
 トランジスタ80のソース電極84は、ワイヤ152Aによってリードピン142Aの接続部146Aに電気的に接続されている。ソース電極84には、駆動基板910からリードピン142Aおよびワイヤ152Aを介してグランド電圧が印加される。 The source electrode 84 of the transistor 80 is electrically connected to the connection portion 146A of the lead pin 142A by a wire 152A. A ground voltage is applied to the source electrode 84 from the drive board 910 via the lead pin 142A and the wire 152A.
 また、トランジスタ80のソース電極84は、複数のワイヤ190、第1実施形態ではたとえば4本のワイヤ190によって発光素子60のアノード電極66に電気的に接続されている。これらのワイヤ190は、トランジスタ80と発光素子60とを結ぶ配線経路を形成し、トランジスタ80のオン時には、この配線経路を介してトランジスタ80から発光素子60に電流が流れる。したがって、ワイヤ190の数を多くしてトランジスタ80から発光素子60に電流を流れ易くすることで寄生インダクタンスの影響を抑えることが可能となる。たとえば、ワイヤ190の数は、ワイヤ152A,152Bの数よりも多くなるように設定されている。ワイヤ190は、リボンワイヤであってもよい。なお、第1実施形態において、ワイヤ152A,152Bは第1ワイヤに相当し、ワイヤ190は第2ワイヤに相当する。 Further, the source electrode 84 of the transistor 80 is electrically connected to the anode electrode 66 of the light emitting element 60 by a plurality of wires 190, for example, four wires 190 in the first embodiment. These wires 190 form a wiring path connecting the transistor 80 and the light emitting element 60, and when the transistor 80 is on, current flows from the transistor 80 to the light emitting element 60 via this wiring path. Therefore, by increasing the number of wires 190 to make it easier for current to flow from the transistor 80 to the light emitting element 60, it is possible to suppress the influence of parasitic inductance. For example, the number of wires 190 is set to be greater than the number of wires 152A and 152B. Wire 190 may be a ribbon wire. Note that in the first embodiment, the wires 152A and 152B correspond to the first wire, and the wire 190 corresponds to the second wire.
 (キャパシタモジュール)
 図6、図7、および図11に示されるように、第1キャパシタモジュール110および第2キャパシタモジュール120は、概略直方体状を有している。
(capacitor module)
As shown in FIGS. 6, 7, and 11, the first capacitor module 110 and the second capacitor module 120 have a generally rectangular parallelepiped shape.
 図6に示されるように、第1キャパシタモジュール110は、基板50Aの平面視において、互いに平行な第1側面111Aおよび第2側面111Bと、第1側面111Aと第2側面111Bとを結ぶ互いに平行な第3側面111Cおよび第4側面111Dとを有する長方形状を有している。第1キャパシタモジュール110において、第3側面111Cおよび第4側面111Dは、第1側面111Aおよび第2側面111Bよりも短い。第1キャパシタモジュール110は、第1キャパシタモジュール110の第1側面111Aが基板50Aの第1側面52Aに対して平行に隣接し、かつ第1キャパシタモジュール110の第3側面111Cが基板50Aの第3側面52Cに対して平行に隣接するように配置されている。さらに、第1キャパシタモジュール110は、第1キャパシタモジュール110の第2側面111Bがトランジスタ80の第1側面82Aに対して平行に隣接するように配置されている。 As shown in FIG. 6, the first capacitor module 110 has a first side surface 111A and a second side surface 111B that are parallel to each other, and a mutually parallel connection that connects the first side surface 111A and the second side surface 111B in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 111C and a fourth side surface 111D. In the first capacitor module 110, the third side surface 111C and the fourth side surface 111D are shorter than the first side surface 111A and the second side surface 111B. In the first capacitor module 110, the first side surface 111A of the first capacitor module 110 is parallel to and adjacent to the first side surface 52A of the substrate 50A, and the third side surface 111C of the first capacitor module 110 is adjacent to the first side surface 52A of the substrate 50A. It is arranged parallel to and adjacent to the side surface 52C. Further, the first capacitor module 110 is arranged such that the second side surface 111B of the first capacitor module 110 is parallel to and adjacent to the first side surface 82A of the transistor 80.
 図6、図11に示されるように、第1キャパシタモジュール110は、互いに平行な第1主面112Aおよび第2主面112Bを有している。第1キャパシタモジュール110は、基板50Aの厚さ方向(Y軸方向)において、第1主面112Aを基板50Aと対向するように配置されている。第1主面112Aは、基板50Aの厚さ方向(Y軸方向)において基板50Aと対向する主面に相当する。第1キャパシタモジュール110は、第1主面112Aに設けられた第1接続電極113および第2接続電極114を含む。第1接続電極113および第2接続電極114は、互いに離れて配置されている。第1接続電極113および第2接続電極114は、第1キャパシタモジュール110の長さ方向(+Z方向)に並べて配置されている。これら第1および第2接続電極113,114は基板50Aに接合されている。 As shown in FIGS. 6 and 11, the first capacitor module 110 has a first main surface 112A and a second main surface 112B that are parallel to each other. The first capacitor module 110 is arranged so that the first main surface 112A faces the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A. The first main surface 112A corresponds to the main surface facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A. The first capacitor module 110 includes a first connection electrode 113 and a second connection electrode 114 provided on the first main surface 112A. The first connection electrode 113 and the second connection electrode 114 are arranged apart from each other. The first connection electrode 113 and the second connection electrode 114 are arranged side by side in the length direction (+Z direction) of the first capacitor module 110. These first and second connection electrodes 113, 114 are bonded to the substrate 50A.
 第1キャパシタモジュール110の第2接続電極114は、基板50Aの内部配線構造を介してトランジスタ80のドレイン電極88に電気的に接続されている。第1キャパシタモジュール110の第1接続電極113は、基板50Aの内部配線構造を介して発光素子60のカソード電極68に電気的に接続されている。 The second connection electrode 114 of the first capacitor module 110 is electrically connected to the drain electrode 88 of the transistor 80 via the internal wiring structure of the substrate 50A. The first connection electrode 113 of the first capacitor module 110 is electrically connected to the cathode electrode 68 of the light emitting element 60 via the internal wiring structure of the substrate 50A.
 第1キャパシタモジュール110は、シリコンキャパシタ115、接続部118、封止樹脂119を含む。
 シリコンキャパシタ115は、シリコン基板116を含む。シリコン基板116は、図2に示されるように、基板50Aの平面視において、四角形の板状に形成されている。図11に示されるように、シリコン基板116は、互いに反対側を向く第1面116Aおよび第2面116Bを有する。シリコンキャパシタ115は、シリコン基板116の第1面116Aに設けられた第1接続電極113と、第2面116Bに設けられた対向電極117とを有する。対向電極117は、シリコン基板116を挟んで第1接続電極113と対向している。第1接続電極113は、シリコン基板116の第1面116Aに接している。対向電極117は、シリコン基板116の第2面116Bに接している。このシリコンキャパシタ115は、シリコン基板116を挟んで配置された第1接続電極113および対向電極117を対向する2つの電極とするキャパシタであり、第1接続電極113と対向電極117との間の結合による容量値を有する。
The first capacitor module 110 includes a silicon capacitor 115, a connecting portion 118, and a sealing resin 119.
Silicon capacitor 115 includes a silicon substrate 116. As shown in FIG. 2, the silicon substrate 116 is formed into a rectangular plate shape when viewed from the top of the substrate 50A. As shown in FIG. 11, the silicon substrate 116 has a first surface 116A and a second surface 116B facing oppositely to each other. The silicon capacitor 115 has a first connection electrode 113 provided on a first surface 116A of a silicon substrate 116, and a counter electrode 117 provided on a second surface 116B. The counter electrode 117 faces the first connection electrode 113 with the silicon substrate 116 in between. The first connection electrode 113 is in contact with the first surface 116A of the silicon substrate 116. The counter electrode 117 is in contact with the second surface 116B of the silicon substrate 116. This silicon capacitor 115 is a capacitor in which two electrodes are a first connection electrode 113 and a counter electrode 117 disposed with a silicon substrate 116 in between, and the coupling between the first connection electrode 113 and the counter electrode 117 is It has a capacitance value of
 対向電極117は、接続部118により第2接続電極114と電気的に接続されている。接続部118は、対向電極117と電気的に接続された第1配線118Aと、第1配線118Aを第2接続電極114に電気的に接続する第2配線118Bとを含む。第1配線118Aは、第1キャパシタモジュール110の長さ方向に延びている。第2配線118Bは、封止樹脂119上に形成され、第2接続電極114の一部を露出する開口119Aに設けられたビア配線である。図6、図11に示すように、第1キャパシタモジュール110は、複数の第2配線118Bを含む。 The counter electrode 117 is electrically connected to the second connection electrode 114 by a connection part 118. The connecting portion 118 includes a first wiring 118A electrically connected to the counter electrode 117 and a second wiring 118B electrically connecting the first wiring 118A to the second connection electrode 114. The first wiring 118A extends in the length direction of the first capacitor module 110. The second wiring 118B is a via wiring formed on the sealing resin 119 and provided in an opening 119A that exposes a part of the second connection electrode 114. As shown in FIGS. 6 and 11, the first capacitor module 110 includes a plurality of second wirings 118B.
 第1キャパシタモジュール110は、シリコンキャパシタ115(シリコン基板116)を封止する封止樹脂119を含む。封止樹脂119は、シリコンキャパシタ115のシリコン基板116および対向電極117と、接続部118を封止するとともに、第1接続電極113および第2接続電極114の下面を露出するように形成されている。 The first capacitor module 110 includes a sealing resin 119 that seals a silicon capacitor 115 (silicon substrate 116). The sealing resin 119 is formed to seal the silicon substrate 116 and the counter electrode 117 of the silicon capacitor 115, and the connection part 118, and to expose the lower surfaces of the first connection electrode 113 and the second connection electrode 114. .
 図6に示されるように、第2キャパシタモジュール120は、基板50Aの平面視において、互いに平行な第1側面121Aおよび第2側面121Bと、第1側面121Aと第2側面121Bとを結ぶ互いに平行な第3側面121Cおよび第4側面121Dとを有する長方形状を有している。第2キャパシタモジュール120において、第3側面121Cおよび第4側面121Dは、第1側面121Aおよび第2側面121Bよりも短い。第2キャパシタモジュール120は、第2キャパシタモジュール120の第2側面121Bが基板50Aの第2側面52Bに対して平行に隣接し、かつ第2キャパシタモジュール120の第3側面121Cが基板50Aの第3側面52Cに対して平行に隣接するように配置されている。さらに、第2キャパシタモジュール120は、第2キャパシタモジュール120の第1側面121Aがトランジスタ80の第2側面82Bに対して平行に隣接するように配置されている。 As shown in FIG. 6, the second capacitor module 120 has a first side surface 121A and a second side surface 121B that are parallel to each other, and a mutually parallel connection that connects the first side surface 121A and the second side surface 121B in a plan view of the substrate 50A. It has a rectangular shape with a third side surface 121C and a fourth side surface 121D. In the second capacitor module 120, the third side surface 121C and the fourth side surface 121D are shorter than the first side surface 121A and the second side surface 121B. In the second capacitor module 120, the second side surface 121B of the second capacitor module 120 is adjacent to and parallel to the second side surface 52B of the substrate 50A, and the third side surface 121C of the second capacitor module 120 is adjacent to the second side surface 52B of the substrate 50A. It is arranged parallel to and adjacent to the side surface 52C. Further, the second capacitor module 120 is arranged such that the first side surface 121A of the second capacitor module 120 is parallel to and adjacent to the second side surface 82B of the transistor 80.
 第2キャパシタモジュール120は、第1キャパシタモジュール110の構成と同じ構成を有しているため、第2キャパシタモジュール120の断面図は省略されている。第2キャパシタモジュール120を構成する部材については、図6に示されている。 Since the second capacitor module 120 has the same configuration as the first capacitor module 110, a cross-sectional view of the second capacitor module 120 is omitted. The members constituting the second capacitor module 120 are shown in FIG.
 第2キャパシタモジュール120は、互いに平行な第1主面122Aおよび第2主面122Bを有している。第2キャパシタモジュール120は、基板50Aの厚さ方向(Y軸方向)において、第1主面122Aを基板50Aと対向するように配置されている。第1主面122Aは、基板50Aの厚さ方向(Y軸方向)において基板50Aと対向する主面に相当する。第2キャパシタモジュール120は、第1主面122Aに設けられた第1接続電極123および第2接続電極124を含む。第1接続電極123および第2接続電極124は、互いに離れて配置されている。第1接続電極123および第2接続電極124は、第2キャパシタモジュール120の長さ方向(+Z方向)に並べて配置されている。これら第1および第2接続電極123,124は基板50Aに接合されている。 The second capacitor module 120 has a first main surface 122A and a second main surface 122B that are parallel to each other. The second capacitor module 120 is arranged so that the first main surface 122A faces the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A. The first main surface 122A corresponds to the main surface facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A. The second capacitor module 120 includes a first connection electrode 123 and a second connection electrode 124 provided on the first main surface 122A. The first connection electrode 123 and the second connection electrode 124 are arranged apart from each other. The first connection electrode 123 and the second connection electrode 124 are arranged side by side in the length direction (+Z direction) of the second capacitor module 120. These first and second connection electrodes 123, 124 are bonded to the substrate 50A.
 第2キャパシタモジュール120の第2接続電極124は、基板50Aの内部配線構造を介してトランジスタ80のドレイン電極88に電気的に接続されている。第2キャパシタモジュール120の第1接続電極123は、基板50Aの内部配線構造を介して発光素子60のカソード電極68に電気的に接続されている。 The second connection electrode 124 of the second capacitor module 120 is electrically connected to the drain electrode 88 of the transistor 80 via the internal wiring structure of the substrate 50A. The first connection electrode 123 of the second capacitor module 120 is electrically connected to the cathode electrode 68 of the light emitting element 60 via the internal wiring structure of the substrate 50A.
 第2キャパシタモジュール120は、シリコンキャパシタ125、接続部128、封止樹脂129を含む。
 シリコンキャパシタ125は、シリコン基板126を含む。シリコン基板126は、図2に示されるように、基板50Aの平面視において、四角形の板状に形成されている。シリコン基板126は、互いに反対側を向く第1面および第2面を有する。シリコンキャパシタ125は、シリコン基板126の第1面に設けられた第1接続電極123と、第2面に設けられた対向電極127とを有する。対向電極127は、シリコン基板126を挟んで第1接続電極123と対向している。第1接続電極123は、シリコン基板126の第1面に接している。対向電極127は、シリコン基板126の第2面に接している。このシリコンキャパシタ125は、シリコン基板126を挟んで配置された第1接続電極123および対向電極127を対向する2つの電極とするキャパシタであり、第1接続電極123と対向電極127との間の結合による容量値を有する。
The second capacitor module 120 includes a silicon capacitor 125, a connecting portion 128, and a sealing resin 129.
Silicon capacitor 125 includes a silicon substrate 126. As shown in FIG. 2, the silicon substrate 126 is formed into a rectangular plate shape when viewed from the top of the substrate 50A. Silicon substrate 126 has first and second surfaces facing oppositely to each other. Silicon capacitor 125 has a first connection electrode 123 provided on the first surface of silicon substrate 126 and a counter electrode 127 provided on the second surface. The counter electrode 127 faces the first connection electrode 123 with the silicon substrate 126 in between. The first connection electrode 123 is in contact with the first surface of the silicon substrate 126. The counter electrode 127 is in contact with the second surface of the silicon substrate 126. This silicon capacitor 125 is a capacitor in which two electrodes are a first connection electrode 123 and a counter electrode 127 arranged with a silicon substrate 126 in between, and the coupling between the first connection electrode 123 and the counter electrode 127 is It has a capacitance value of
 対向電極127は、接続部128により第2接続電極124と電気的に接続されている。接続部128は、対向電極127と電気的に接続された第1配線128Aと、第1配線128Aを第2接続電極124に電気的に接続する第2配線128Bとを含む。第1配線128Aは、第2キャパシタモジュール120の長さ方向に延びている。図6に示すように、第2キャパシタモジュール120は、複数の第2配線128Bを含む。 The counter electrode 127 is electrically connected to the second connection electrode 124 by a connection part 128. The connecting portion 128 includes a first wiring 128A electrically connected to the counter electrode 127 and a second wiring 128B electrically connecting the first wiring 128A to the second connection electrode 124. The first wiring 128A extends in the length direction of the second capacitor module 120. As shown in FIG. 6, the second capacitor module 120 includes a plurality of second wirings 128B.
 第2キャパシタモジュール120は、シリコンキャパシタ125(シリコン基板126)を封止する封止樹脂129を含む。封止樹脂129は、シリコンキャパシタ125のシリコン基板126および対向電極127と、接続部128を封止するとともに、第1接続電極123および第2接続電極124の下面を露出するように形成されている。 The second capacitor module 120 includes a sealing resin 129 that seals the silicon capacitor 125 (silicon substrate 126). The sealing resin 129 is formed to seal the silicon substrate 126 and the counter electrode 127 of the silicon capacitor 125, and the connection portion 128, and to expose the lower surfaces of the first connection electrode 123 and the second connection electrode 124. .
 このように、第1キャパシタモジュール110は、トランジスタ80の第1側面82Aに隣接して配置される一方、第2キャパシタモジュール120は、トランジスタ80の第2側面82Bに隣接して配置されている。この配置により、トランジスタ80の第3側面82Cを第1キャパシタモジュール110と第2キャパシタモジュール120との間に位置させてトランジスタ80を発光素子60に近づけて配置することが可能となる。これにより、基板50A上におけるトランジスタ80と発光素子60との間の距離を短くすることが可能となる。その結果、発光素子60とトランジスタ80とを結ぶ配線経路(ワイヤ190)の長さを短くして寄生インダクタンスの影響を抑えることが可能となる。 In this way, the first capacitor module 110 is placed adjacent to the first side surface 82A of the transistor 80, while the second capacitor module 120 is placed adjacent to the second side surface 82B of the transistor 80. This arrangement allows the third side surface 82C of the transistor 80 to be located between the first capacitor module 110 and the second capacitor module 120, so that the transistor 80 can be arranged close to the light emitting element 60. This makes it possible to shorten the distance between the transistor 80 and the light emitting element 60 on the substrate 50A. As a result, it is possible to reduce the length of the wiring path (wire 190) connecting the light emitting element 60 and the transistor 80, thereby suppressing the influence of parasitic inductance.
 第1および第2キャパシタモジュール110,120はそれぞれ、シリコンキャパシタ115,125を含む。たとえば積層セラミックコンデンサ(MLCC:Multi Layered Ceramic Capacitor)は、小型のキャパシタとして多くの電子機器に用いられる。実現されるキャパシタ(コンデンサ)は、理想的なキャパシタに対して、寄生抵抗(等価直列抵抗:ESR)および寄生インダクタンス(等価直列インダクタンス:ESL)を有する。シリコンキャパシタ115,125は、積層セラミックコンデンサに対して、寄生インダクタンス(ESL)が小さい。積層セラミックコンデンサの寄生抵抗(ESR)は100mΩ程度であり、寄生インダクタンス(ESL)は0.3~0.4nH程度である。これに対し、第1および第2キャパシタモジュール110,120の寄生抵抗(ESR)は、例えば100mΩ未満であることが好ましい。第1および第2キャパシタモジュール110,120の寄生インダクタンス(ESL)は、100pH未満であることが好ましい。 The first and second capacitor modules 110 and 120 include silicon capacitors 115 and 125, respectively. For example, multi-layered ceramic capacitors (MLCCs) are used as small capacitors in many electronic devices. A realized capacitor (capacitor) has a parasitic resistance (equivalent series resistance: ESR) and a parasitic inductance (equivalent series inductance: ESL) with respect to an ideal capacitor. Silicon capacitors 115 and 125 have smaller parasitic inductance (ESL) than multilayer ceramic capacitors. The parasitic resistance (ESR) of a multilayer ceramic capacitor is about 100 mΩ, and the parasitic inductance (ESL) is about 0.3 to 0.4 nH. In contrast, the parasitic resistance (ESR) of the first and second capacitor modules 110, 120 is preferably less than 100 mΩ, for example. Preferably, the parasitic inductance (ESL) of the first and second capacitor modules 110, 120 is less than 100 pH.
 また、第1キャパシタモジュール110と第2キャパシタモジュール120とは、基板50A上で発光素子60およびトランジスタ80に対して対称的に配置されている。これにより、第1キャパシタモジュール110からトランジスタ80を介して発光素子60に電流が流れる第1配線経路と、第2キャパシタモジュール120からトランジスタ80を介して発光素子60に電流が流れる第2配線経路とが、発光素子60およびトランジスタ80に対して対称的に配置されるものとなる。 Further, the first capacitor module 110 and the second capacitor module 120 are arranged symmetrically with respect to the light emitting element 60 and the transistor 80 on the substrate 50A. Thereby, a first wiring path through which current flows from the first capacitor module 110 to the light emitting element 60 via the transistor 80, and a second wiring path through which current flows from the second capacitor module 120 to the light emitting element 60 through the transistor 80. are arranged symmetrically with respect to the light emitting element 60 and the transistor 80.
 図10、図11に示すように、第1および第2キャパシタモジュール110,120は、発光素子60よりも厚く形成されている。一方、第1および第2キャパシタモジュール110,120は、トランジスタ80よりも薄く形成されている。第1および第2キャパシタモジュール110,120の厚さは、50μm以上200μm以下である。第1および第2キャパシタモジュール110,120の厚さは、たとえば160μmである。なお、発光モジュール30Aに用いられる容量を有する積層セラミックコンデンサの厚さは、たとえば500μm程度である。 As shown in FIGS. 10 and 11, the first and second capacitor modules 110 and 120 are formed thicker than the light emitting element 60. On the other hand, the first and second capacitor modules 110 and 120 are formed thinner than the transistor 80. The thickness of the first and second capacitor modules 110 and 120 is 50 μm or more and 200 μm or less. The thickness of the first and second capacitor modules 110, 120 is, for example, 160 μm. Note that the thickness of the multilayer ceramic capacitor having the capacitance used in the light emitting module 30A is, for example, about 500 μm.
 なお、第1配線経路は、第1キャパシタモジュール110の第2接続電極114とトランジスタ80のドレイン電極88とを接続する配線経路と、トランジスタ80のソース電極84と発光素子60のアノード電極66とを接続するワイヤ190と、発光素子60のカソード電極68と第1キャパシタモジュール110の第1接続電極113とを接続する配線経路を含む。これらの配線経路は、基板50Aの内部配線構造によって形成される。 Note that the first wiring path connects the second connection electrode 114 of the first capacitor module 110 and the drain electrode 88 of the transistor 80, and the source electrode 84 of the transistor 80 and the anode electrode 66 of the light emitting element 60. It includes a connecting wire 190 and a wiring path connecting the cathode electrode 68 of the light emitting element 60 and the first connection electrode 113 of the first capacitor module 110. These wiring paths are formed by the internal wiring structure of the substrate 50A.
 また、第2配線経路は、第2キャパシタモジュール120の第2接続電極124とトランジスタ80のドレイン電極88とを接続する配線経路と、トランジスタ80のソース電極84と発光素子60のアノード電極66とを接続するワイヤ190と、発光素子60のカソード電極68と第2キャパシタモジュール120の第1接続電極123とを接続する配線経路を含む。これらの配線経路は、基板50Aの内部配線構造によって形成される。 Further, the second wiring path connects the second connection electrode 124 of the second capacitor module 120 and the drain electrode 88 of the transistor 80, and the source electrode 84 of the transistor 80 and the anode electrode 66 of the light emitting element 60. It includes a connecting wire 190 and a wiring path connecting the cathode electrode 68 of the light emitting element 60 and the first connection electrode 123 of the second capacitor module 120. These wiring paths are formed by the internal wiring structure of the substrate 50A.
 このように第1配線経路と第2配線経路とが対称的に配置されることで、第1配線経路を流れる電流によって形成される磁束と、第2配線経路を流れる電流によって形成される磁束とが互いに打ち消し合うようになる。これにより、第1配線経路に存在する寄生インダクタンスおよび第2配線経路に存在する寄生インダクタンスを低減することができる。 By arranging the first wiring route and the second wiring route symmetrically in this way, the magnetic flux formed by the current flowing through the first wiring route and the magnetic flux formed by the current flowing through the second wiring route are separated. begin to cancel each other out. Thereby, the parasitic inductance existing in the first wiring route and the parasitic inductance existing in the second wiring route can be reduced.
 (基板)
 次に、発光モジュール30Aの基板50Aの構造を説明する。
 図6~図11に示されるように、基板50Aは、たとえばプリント配線板であり、第1実施形態では、内部配線構造として2層配線構造を有している。つまり、第1実施形態の基板50Aは、両面基板である。基板50Aは、絶縁性を有する基材210と、基材210の表面212Aに設けられた第1配線層220と、基材210の裏面212Bに設けられた第2配線層230とを含む。基材210は、たとえば、樹脂基材、シリコン基材、ガラス基材、またはセラミック基材等の絶縁性材料で形成されている。つまり、基板50Aは、樹脂基板、シリコン基板、ガラス基板、セラミック基板、等とすることができる。第1実施形態では、基材210として、ガラスエポキシ樹脂で形成された樹脂基材が用いられている。第1配線層220および第2配線層230は、たとえばCu等の金属材料で形成されている。
(substrate)
Next, the structure of the substrate 50A of the light emitting module 30A will be explained.
As shown in FIGS. 6 to 11, the substrate 50A is, for example, a printed wiring board, and in the first embodiment has a two-layer wiring structure as an internal wiring structure. That is, the substrate 50A of the first embodiment is a double-sided substrate. The substrate 50A includes a base material 210 having insulating properties, a first wiring layer 220 provided on a front surface 212A of the base material 210, and a second wiring layer 230 provided on a back surface 212B of the base material 210. The base material 210 is formed of an insulating material such as a resin base material, a silicon base material, a glass base material, or a ceramic base material. That is, the substrate 50A can be a resin substrate, a silicon substrate, a glass substrate, a ceramic substrate, or the like. In the first embodiment, a resin base material made of glass epoxy resin is used as the base material 210. The first wiring layer 220 and the second wiring layer 230 are made of a metal material such as Cu.
 また、図7~図11に示されるように、基板50Aは、基材210を貫通し、第1配線層220と第2配線層230とを電気的に接続する複数のビア配線、第1実施形態では、第1ビア配線242と複数(たとえば6つ)の第2ビア配線244と第3ビア配線246とを含む。これら第1~第3ビア配線242,244,246は、たとえばCu等の金属材料で形成されている。 Further, as shown in FIGS. 7 to 11, the substrate 50A includes a plurality of via wirings that penetrate the base material 210 and electrically connect the first wiring layer 220 and the second wiring layer 230. In this embodiment, a first via wiring 242, a plurality (for example, six) of second via wirings 244, and a third via wiring 246 are included. These first to third via wirings 242, 244, and 246 are made of a metal material such as Cu.
 また、基板50Aは、第1配線層220の表面220Aに設けられて第1配線層220を部分的に露出させる第1絶縁層250と、第2配線層230の裏面230Bに設けられて第2配線層230を部分的に露出させる第2絶縁層260とを含む。第1絶縁層250および第2絶縁層260は、たとえばエポキシ樹脂、ポリイミド樹脂等の絶縁樹脂で形成されている。また、第1絶縁層250および第2絶縁層260は、シリカ、アルミナ等のフィラーが含まれていてもよい。なお、図示を分かり易くするために、図7では、基材210、第1絶縁層250、および第2絶縁層260を仮想線(二点鎖線)で示している。 The substrate 50A also includes a first insulating layer 250 provided on the front surface 220A of the first wiring layer 220 to partially expose the first wiring layer 220, and a second insulating layer 250 provided on the back surface 230B of the second wiring layer 230. and a second insulating layer 260 that partially exposes the wiring layer 230. The first insulating layer 250 and the second insulating layer 260 are made of an insulating resin such as epoxy resin or polyimide resin. Further, the first insulating layer 250 and the second insulating layer 260 may contain fillers such as silica and alumina. Note that, in order to make the illustration easier to understand, in FIG. 7, the base material 210, the first insulating layer 250, and the second insulating layer 260 are shown by virtual lines (two-dot chain lines).
 図8は、第1配線層220および基材210を示した平面図である。なお、図8では、第1絶縁層250の図示を省略している。
 図8に示されるように、第1配線層220は、基材210の表面212Aに設けられるとともに互いに離隔して配置された複数の配線、第1実施形態では、第1表面側配線310と、第2表面側配線320と、第3表面側配線330とを含む。
FIG. 8 is a plan view showing the first wiring layer 220 and the base material 210. Note that in FIG. 8, illustration of the first insulating layer 250 is omitted.
As shown in FIG. 8, the first wiring layer 220 includes a plurality of wirings provided on the surface 212A of the base material 210 and spaced apart from each other; in the first embodiment, the first surface side wiring 310; It includes a second front side wiring 320 and a third front side wiring 330.
 第1表面側配線310は、基板50Aの第1、第2、および第3側面52A,52B,52Cに沿って配置されており、たとえば、基板50Aの面積の約1/3のサイズで形成されている。第1表面側配線310は、第1~第3配線領域312,314,316を含む。なお、第1~第3配線領域312,314,316は各々、第1表面側配線310の一部であり、第1~第3配線領域312,314,316の物理的な境界が第1表面側配線310に存在するわけではない。 The first surface-side wiring 310 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50A, and has a size that is approximately 1/3 of the area of the substrate 50A, for example. ing. The first surface-side wiring 310 includes first to third wiring regions 312, 314, and 316. Note that the first to third wiring regions 312, 314, and 316 are each part of the first surface side wiring 310, and the physical boundaries of the first to third wiring regions 312, 314, and 316 are on the first surface. It does not necessarily exist in the side wiring 310.
 第1配線領域312は、発光素子60のカソード電極68が実装される発光素子実装領域である。第2配線領域314は、第1キャパシタモジュール110の第1接続電極113が実装される第1キャパシタ実装領域の一部である。第3配線領域316は、第2キャパシタモジュール120の第1接続電極123が実装される第2キャパシタ実装領域の一部である。したがって、発光素子60のカソード電極68は、第1表面側配線310を介して第1および第2キャパシタモジュール110,120の第1接続電極113,123に電気的に接続されている。第2配線領域314と第3配線領域316は第1配線領域312に対して対称的に配置されている。 The first wiring area 312 is a light emitting element mounting area where the cathode electrode 68 of the light emitting element 60 is mounted. The second wiring area 314 is a part of the first capacitor mounting area where the first connection electrode 113 of the first capacitor module 110 is mounted. The third wiring area 316 is a part of the second capacitor mounting area where the first connection electrode 123 of the second capacitor module 120 is mounted. Therefore, the cathode electrode 68 of the light emitting element 60 is electrically connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 via the first surface wiring 310. The second wiring area 314 and the third wiring area 316 are arranged symmetrically with respect to the first wiring area 312.
 第2表面側配線320は、基板50Aの第1、第2、および第4側面52A,52B,52Dに沿って配置されるとともに、第1表面側配線310から離隔して配置されている。第2表面側配線320は、たとえば、基板50Aの面積の約2/3よりもわずかに小さいサイズで形成されている。第2表面側配線320は、第4~第6配線領域322,324,326を含む。なお、第4~第6配線領域322,324,326は各々、第2表面側配線320の一部であり、第4~第6配線領域322,324,326の物理的な境界が第2表面側配線320に存在するわけではない。 The second front-side wiring 320 is arranged along the first, second, and fourth side surfaces 52A, 52B, and 52D of the substrate 50A, and is spaced apart from the first front-side wiring 310. The second surface-side wiring 320 is formed to have a size slightly smaller than about ⅔ of the area of the substrate 50A, for example. The second front side wiring 320 includes fourth to sixth wiring regions 322, 324, and 326. Note that the fourth to sixth wiring regions 322, 324, and 326 are each part of the second surface side wiring 320, and the physical boundaries of the fourth to sixth wiring regions 322, 324, and 326 are on the second surface. It does not necessarily exist in the side wiring 320.
 第4配線領域322は、トランジスタ80のドレイン電極88が実装されるトランジスタ実装領域である。第5配線領域324は、第1キャパシタモジュール110の第2接続電極114が実装される第1キャパシタ実装領域の一部である。第6配線領域326は、第2キャパシタモジュール120の第2接続電極124が実装される第2キャパシタ実装領域の一部である。したがって、トランジスタ80のドレイン電極88は、第2表面側配線320を介して第1および第2キャパシタモジュール110,120の第2接続電極114,124に電気的に接続されている。第5配線領域324と第6配線領域326は第4配線領域322に対して対称的に配置されている。 The fourth wiring region 322 is a transistor mounting region where the drain electrode 88 of the transistor 80 is mounted. The fifth wiring area 324 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted. The sixth wiring area 326 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320. The fifth wiring area 324 and the sixth wiring area 326 are arranged symmetrically with respect to the fourth wiring area 322.
 第2表面側配線320はさらに、切り欠き328を含む。この切り欠き328は、第2表面側配線320の第4配線領域322(トランジスタ実装領域)と第5配線領域324(第1キャパシタ実装領域の一部)とに隣接する位置に形成されている。 The second surface side wiring 320 further includes a notch 328. This notch 328 is formed at a position adjacent to the fourth wiring area 322 (transistor mounting area) and the fifth wiring area 324 (part of the first capacitor mounting area) of the second front side wiring 320.
 第3表面側配線330は、基板50Aの第1および第4側面52A,52Dに沿って配置されるとともに、第2表面側配線320から離隔して配置されている。第1実施形態では、第3表面側配線330は、第2表面側配線320の切り欠き328に隣接して(ただし離隔して)配置されている。第2表面側配線320と第3表面側配線330との総面積は、基板50Aの面積の約2/3に相当する。言い換えれば、第2表面側配線320と第3表面側配線330は、それらを組み合わせた形状が基板50Aの面積の約2/3のサイズを有する矩形状となるように互いに離隔して配置されている。 The third front-side wiring 330 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50A, and is spaced apart from the second front-side wiring 320. In the first embodiment, the third front-side wiring 330 is arranged adjacent to (but spaced apart from) the notch 328 of the second front-side wiring 320. The total area of the second front-side wiring 320 and the third front-side wiring 330 corresponds to about 2/3 of the area of the substrate 50A. In other words, the second front-side wiring 320 and the third front-side wiring 330 are spaced apart from each other so that the combined shape of the second front-side wiring 320 and the third front-side wiring 330 is a rectangular shape having a size approximately 2/3 of the area of the substrate 50A. There is.
 第3表面側配線330は、第7配線領域332を含む。なお、第7配線領域332は第3表面側配線330の一部であり、第7配線領域332の物理的な境界が第3表面側配線330に存在するわけではない。第7配線領域332は、基板50A(発光素子駆動回路70)に外部素子を接続するための外部素子接続領域であり、この第7配線領域332には、外部素子接続パッド160(図6参照)が配置される。なお、第1実施形態において、第7配線領域332(外部素子接続パッド160)には、SBD906(図12参照)のアノード電極906Aがリードピン142Cおよびワイヤ152C(図6参照)を介して接続される。 The third front side wiring 330 includes a seventh wiring region 332. Note that the seventh wiring region 332 is a part of the third front-side wiring 330, and the physical boundary of the seventh wiring region 332 does not exist in the third front-side wiring 330. The seventh wiring area 332 is an external element connection area for connecting an external element to the substrate 50A (light emitting element drive circuit 70), and the seventh wiring area 332 includes an external element connection pad 160 (see FIG. 6). is placed. In the first embodiment, the anode electrode 906A of the SBD 906 (see FIG. 12) is connected to the seventh wiring region 332 (external element connection pad 160) via the lead pin 142C and the wire 152C (see FIG. 6). .
 第1絶縁層250は、第1~第3表面側配線310,320,330の第1~第7配線領域312,314,316,322,324,326,332をそれぞれ露出させる第1~第7開口部251~257(図6参照)を含む。 The first insulating layer 250 has first to seventh wiring regions 312, 314, 316, 322, 324, 326, and 332 of the first to third front side wirings 310, 320, and 330 that expose the first to seventh wiring regions 312, 314, 316, 322, 324, 326, and 332, respectively. It includes openings 251 to 257 (see FIG. 6).
 第1絶縁層250の第1~第6開口部251~256から露出された第1~第6配線領域312,314,316,322,324,326上には、第1金属めっき材362(図6、図7、図10、および図11参照)が設けられている。第1金属めっき材362は、たとえば、ニッケル(Ni)および金(Au)を含む積層体、Niとパラジウム(Pd)とAuを含む積層体を用いることができる。図10に示されるように、発光素子60のカソード電極68は、図示しない接合部材によって第1配線領域312(発光素子実装領域)の第1金属めっき材362に接合されている。また、トランジスタ80のドレイン電極88は、図示しない接合部材によって第4配線領域322(トランジスタ実装領域)の第1金属めっき材362に接合されている。また、図11に示されるように、第1キャパシタモジュール110の第1および第2接続電極113,114は、図示しない接合部材によって第5および第2配線領域324,314(第1キャパシタ実装領域)の第1金属めっき材362にそれぞれ接合されている。また、断面図は省略するが、第1キャパシタモジュール110と同様、第2キャパシタモジュール120の第1および第2接続電極123,124は、図示しない接合材によって第6および第3配線領域326,316(第2キャパシタ実装領域)の第1金属めっき材362にそれぞれ接合されている。接合材は、銀(Ag)ペースト材、錫(Su)-銀(Ag)-銅(Cu)を含むはんだペースト材を用いることができる。接合材は、第1金属めっき材362に接合する部材に応じて変更されてもよい。たとえば、発光素子60の接合には、Agペースト材を用いることができる。また、トランジスタ80、第1および第2キャパシタモジュール110,120の接合には、はんだペースト材またはAgペースト材を用いることができる。 A first metal plating material 362 (Fig. 6, FIG. 7, FIG. 10, and FIG. 11) are provided. As the first metal plating material 362, for example, a laminate containing nickel (Ni) and gold (Au) or a laminate containing Ni, palladium (Pd), and Au can be used. As shown in FIG. 10, the cathode electrode 68 of the light emitting element 60 is bonded to the first metal plating material 362 in the first wiring area 312 (light emitting element mounting area) by a bonding member (not shown). Furthermore, the drain electrode 88 of the transistor 80 is bonded to the first metal plating material 362 in the fourth wiring area 322 (transistor mounting area) by a bonding member (not shown). Further, as shown in FIG. 11, the first and second connection electrodes 113 and 114 of the first capacitor module 110 are connected to the fifth and second wiring areas 324 and 314 (first capacitor mounting area) by a bonding member (not shown). are respectively joined to the first metal plating material 362. Further, although a cross-sectional view is omitted, like the first capacitor module 110, the first and second connection electrodes 123, 124 of the second capacitor module 120 are bonded to the sixth and third wiring regions 326, 316 by a bonding material (not shown). They are respectively bonded to the first metal plating material 362 (second capacitor mounting area). As the bonding material, a silver (Ag) paste material or a solder paste material containing tin (Su)-silver (Ag)-copper (Cu) can be used. The bonding material may be changed depending on the member to be bonded to the first metal plating material 362. For example, Ag paste material can be used to bond the light emitting element 60. Moreover, a solder paste material or an Ag paste material can be used to join the transistor 80 and the first and second capacitor modules 110 and 120.
 第1絶縁層250の第7開口部257から露出された第7配線領域332には、上述した外部素子接続パッド160(図6および図11)が設けられている。この外部素子接続パッド160は第2金属めっき材によって形成されている。第2金属めっき材としては、Ni及びAuを含む積層体、NiとPdとAuを含む積層体を用いることができる。 The above-mentioned external element connection pad 160 (FIGS. 6 and 11) is provided in the seventh wiring region 332 exposed through the seventh opening 257 of the first insulating layer 250. This external element connection pad 160 is formed of a second metal plating material. As the second metal plating material, a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
 図9は、第2配線層230および第2絶縁層260を示す平面図である。なお、図9では、第1絶縁層250、第1配線層220、および基材210の図示を省略している。
 図9に示されるように、第2配線層230は、基材210の裏面212B(図7参照)に設けられるとともに互いに離隔して配置された複数の配線、第1実施形態では、第1裏面側配線410と、第2裏面側配線420とを含む。
FIG. 9 is a plan view showing the second wiring layer 230 and the second insulating layer 260. Note that in FIG. 9, illustration of the first insulating layer 250, the first wiring layer 220, and the base material 210 is omitted.
As shown in FIG. 9, the second wiring layer 230 includes a plurality of wirings provided on the back surface 212B (see FIG. 7) of the base material 210 and spaced apart from each other. It includes a side wiring 410 and a second back side wiring 420.
 第1裏面側配線410は、基板50Aの第1、第2、第3、および第4側面52A,52B,52C,52Dに沿って配置されている。第1裏面側配線410は略ゲート形状に形成されており、平面視において第1裏面側配線410の内側には開口部410Aが画定されている。開口部410Aは、基板50Aの平面視において、第2表面側配線320の第4配線領域322(トランジスタ実装領域)に対応する位置に形成されており、第4配線領域322よりも大きなサイズを有している。第1裏面側配線410は、基板50Aの平面視において、第1および第3表面側配線310,330と重なっており、かつ第2表面側配線320と部分的に重なっている。 The first backside wiring 410 is arranged along the first, second, third, and fourth side surfaces 52A, 52B, 52C, and 52D of the substrate 50A. The first back side wiring 410 is formed in a substantially gate shape, and an opening 410A is defined inside the first back side wiring 410 in plan view. The opening 410A is formed at a position corresponding to the fourth wiring area 322 (transistor mounting area) of the second front side wiring 320 in a plan view of the substrate 50A, and has a larger size than the fourth wiring area 322. are doing. The first back side wiring 410 overlaps with the first and third front side wirings 310, 330 and partially overlaps with the second front side wiring 320 in a plan view of the substrate 50A.
 第2裏面側配線420は、基板50Aの第4側面52Dに沿って、第1裏面側配線410の内側の開口部410A内に配置されている。第2裏面側配線420は、第8配線領域414を含む。なお、第8配線領域414は第2裏面側配線420の一部であり、第8配線領域414の物理的な境界が第2裏面側配線420に存在するわけではない。第8配線領域414は、トランジスタ80のドレイン電極88をヒートシンク24(たとえば図1参照)に電気的に接続するためのトランジスタ接続領域である。第2裏面側配線420は、基板50Aの平面視において第2表面側配線320と重なっている。 The second back side wiring 420 is arranged inside the opening 410A of the first back side wiring 410 along the fourth side surface 52D of the substrate 50A. The second back side wiring 420 includes an eighth wiring region 414. Note that the eighth wiring region 414 is a part of the second backside wiring 420, and the physical boundary of the eighth wiring region 414 does not exist in the second backside wiring 420. The eighth wiring region 414 is a transistor connection region for electrically connecting the drain electrode 88 of the transistor 80 to the heat sink 24 (see, for example, FIG. 1). The second back side wiring 420 overlaps with the second front side wiring 320 in a plan view of the substrate 50A.
 第2絶縁層260は、第2裏面側配線420の第8配線領域414(トランジスタ接続領域)を露出させる第8開口部258を含む。図10に示されるように、第8開口部258から露出された第8配線領域414には、第3金属めっき材364が設けられている。第3金属めっき材364は、たとえばNi及びAuを含む積層体、NiとPdとAuを含む積層体を用いることができる。第3金属めっき材364は、図示しない接合材によってヒートシンク24に接合されている。この接合材としては、Agペースト材またははんだペースト材を用いることができる。 The second insulating layer 260 includes an eighth opening 258 that exposes the eighth wiring region 414 (transistor connection region) of the second back side wiring 420. As shown in FIG. 10, a third metal plating material 364 is provided in the eighth wiring region 414 exposed from the eighth opening 258. As the third metal plating material 364, for example, a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used. The third metal plating material 364 is bonded to the heat sink 24 by a bonding material (not shown). As this bonding material, Ag paste material or solder paste material can be used.
 なお、第2絶縁層260は、第8配線領域414(トランジスタ接続領域)以外において第2配線層230の裏面230Bを覆っている。したがって、第1裏面側配線410は、第2絶縁層260から露出しておらず、ヒートシンク24に電気的に接続されていない。 Note that the second insulating layer 260 covers the back surface 230B of the second wiring layer 230 except for the eighth wiring region 414 (transistor connection region). Therefore, the first back side wiring 410 is not exposed from the second insulating layer 260 and is not electrically connected to the heat sink 24.
 図7~図11に示されるように、第1配線層220と第2配線層230は、基材210を貫通する上述の第1~第3ビア配線242,244,246によって電気的に接続されている。第1実施形態において、各ビア配線242,244,246はたとえば円筒状に形成されているが、その形状は特に限定されない。これらのビア配線242,244,246はいわゆるサーマルビアであり、第1配線層220と第2配線層230との間の導電経路として機能するとともに、第1配線層220から第2配線層230への放熱経路として機能する。 As shown in FIGS. 7 to 11, the first wiring layer 220 and the second wiring layer 230 are electrically connected by the above-mentioned first to third via wirings 242, 244, and 246 that penetrate the base material 210. ing. In the first embodiment, each via wiring 242, 244, 246 is formed, for example, in a cylindrical shape, but the shape is not particularly limited. These via wirings 242, 244, and 246 are so-called thermal vias, and function as conductive paths between the first wiring layer 220 and the second wiring layer 230, as well as from the first wiring layer 220 to the second wiring layer 230. functions as a heat dissipation path.
 第1ビア配線242は、第1配線領域312(発光素子実装領域)内に位置しており、第1表面側配線310と第1裏面側配線410とを電気的に接続する。したがって、発光素子60のカソード電極68と第1および第2キャパシタモジュール110,120の第1接続電極113,123は、第1表面側配線310および第1ビア配線242を介して、第1裏面側配線410に電気的に接続されている。 The first via wiring 242 is located within the first wiring area 312 (light emitting element mounting area) and electrically connects the first front side wiring 310 and the first back side wiring 410. Therefore, the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 are connected to the first back side via the first front side wiring 310 and the first via wiring 242. It is electrically connected to wiring 410.
 第2ビア配線244は、第4配線領域322(トランジスタ実装領域)内および第8配線領域414(トランジスタ実装領域)内に位置しており、第2表面側配線320と第2裏面側配線420とを電気的に接続する。したがって、トランジスタ80のドレイン電極88は、第2表面側配線320、第2ビア配線244、および第2裏面側配線420を介して、ステム20のヒートシンク24に電気的に接続されている。また、トランジスタ80のドレイン電極88は、第2表面側配線320を介して第1および第2キャパシタモジュール110,120の第2接続電極114,124に電気的に接続されている。なお、第2ビア配線244の配置は特に限定されない。たとえば、第2ビア配線244は、第4および第8配線領域322,414内に均等に配置されている。第1実施形態では、たとえば、第2ビア配線244は2×3のアレイ状に配置されている。 The second via wiring 244 is located within the fourth wiring area 322 (transistor mounting area) and the eighth wiring area 414 (transistor mounting area), and is connected to the second front wiring 320 and the second back wiring 420. Connect electrically. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the heat sink 24 of the stem 20 via the second front wiring 320, the second via wiring 244, and the second back wiring 420. Further, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320. Note that the arrangement of the second via wiring 244 is not particularly limited. For example, the second via wiring 244 is evenly arranged within the fourth and eighth wiring regions 322 and 414. In the first embodiment, for example, the second via wiring 244 is arranged in a 2×3 array.
 第3ビア配線246は、第3表面側配線330と第1裏面側配線410とを電気的に接続する。したがって、外部素子接続パッド160に接続されたSBD906(図12参照)のアノード電極906Aは、第3表面側配線330、第3ビア配線246、第1裏面側配線410、第1ビア配線242、および第1表面側配線310を介して、第1および第2キャパシタモジュール110,120の第1接続電極113,123に電気的に接続されている。また、第1および第2キャパシタモジュール110,120の第1接続電極113,123は発光素子60のカソード電極68に電気的に接続されているため、SBD906のアノード電極906Aは、発光素子60のカソード電極68にも電気的に接続されている。 The third via wiring 246 electrically connects the third front side wiring 330 and the first back side wiring 410. Therefore, the anode electrode 906A of the SBD 906 (see FIG. 12) connected to the external element connection pad 160 is connected to the third surface wiring 330, the third via wiring 246, the first back wiring 410, the first via wiring 242, and It is electrically connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 via the first surface side wiring 310. Further, since the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 are electrically connected to the cathode electrode 68 of the light emitting element 60, the anode electrode 906A of the SBD 906 is connected to the cathode electrode 68 of the light emitting element 60. It is also electrically connected to electrode 68.
 (半導体発光装置の電気的構成)
 図12は、半導体発光装置10Aの電気的構成を概略的に示す回路図である。
 発光素子駆動回路70は、発光モジュール30Aの基板50Aに実装された発光素子60、トランジスタ80(縦型MOSFET)、第1キャパシタモジュール110、および第2キャパシタモジュール120を含む。なお、図12では、第1キャパシタモジュール110および第2キャパシタモジュール120を1つのキャパシタとして示している。
(Electrical configuration of semiconductor light emitting device)
FIG. 12 is a circuit diagram schematically showing the electrical configuration of the semiconductor light emitting device 10A.
The light emitting element drive circuit 70 includes a light emitting element 60, a transistor 80 (vertical MOSFET), a first capacitor module 110, and a second capacitor module 120, which are mounted on the substrate 50A of the light emitting module 30A. Note that in FIG. 12, the first capacitor module 110 and the second capacitor module 120 are shown as one capacitor.
 トランジスタ80のドレイン電極88は、第1および第2キャパシタモジュール110,120の第2接続電極114,124に接続されている。トランジスタ80のドレイン電極88ならびに第1および第2キャパシタモジュール110,120の第2接続電極114,124は、抵抗素子902を介して定電圧源904の正極904Aに接続されている。この定電圧源904の負極904Bはグランドに接続されている。第1実施形態では、定電圧源904および抵抗素子902は駆動基板910(図5参照)に設けられている。そして、定電圧源904からの電圧が、抵抗素子902、リードピン142D(図1および図2参照)、ステム20のベース22およびヒートシンク24、ならびに基板50Aの内部配線構造を介して、トランジスタ80のドレイン電極88と、第1および第2キャパシタモジュール110,120の第2接続電極114,124とに印加される。 The drain electrode 88 of the transistor 80 is connected to the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120. The drain electrode 88 of the transistor 80 and the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120 are connected to a positive electrode 904A of a constant voltage source 904 via a resistance element 902. A negative pole 904B of this constant voltage source 904 is connected to ground. In the first embodiment, the constant voltage source 904 and the resistance element 902 are provided on a drive board 910 (see FIG. 5). Then, the voltage from the constant voltage source 904 is applied to the drain of the transistor 80 via the resistance element 902, the lead pin 142D (see FIGS. 1 and 2), the base 22 and heat sink 24 of the stem 20, and the internal wiring structure of the substrate 50A. The voltage is applied to the electrode 88 and the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120.
 トランジスタ80のソース電極84は、発光素子60のアノード電極66に接続されるとともにグランドに接続されている。第1実施形態では、駆動基板910からリードピン142A(図1および図2参照)およびワイヤ152Aを介してトランジスタ80のソース電極84にグランド電圧が印加される。また、トランジスタ80のソース電極84は、ワイヤ190(図1および図2参照)を介して発光素子60のアノード電極66に接続されている。 A source electrode 84 of the transistor 80 is connected to the anode electrode 66 of the light emitting element 60 and to ground. In the first embodiment, a ground voltage is applied from the drive substrate 910 to the source electrode 84 of the transistor 80 via the lead pin 142A (see FIGS. 1 and 2) and the wire 152A. Further, the source electrode 84 of the transistor 80 is connected to the anode electrode 66 of the light emitting element 60 via a wire 190 (see FIGS. 1 and 2).
 トランジスタ80のゲート電極86は、駆動基板910に設けられたゲートドライバ908に接続されている。第1実施形態では、このゲートドライバ908からリードピン142B(図1および図6参照)およびワイヤ152Bを介してトランジスタ80のゲート電極86に制御電圧が供給され、この制御電圧によりトランジスタ80のオンオフが制御される。 The gate electrode 86 of the transistor 80 is connected to a gate driver 908 provided on a drive substrate 910. In the first embodiment, a control voltage is supplied from the gate driver 908 to the gate electrode 86 of the transistor 80 via the lead pin 142B (see FIGS. 1 and 6) and the wire 152B, and the on/off of the transistor 80 is controlled by this control voltage. be done.
 発光素子60のカソード電極68は、第1および第2キャパシタモジュール110,120の第1接続電極113,123に接続されている。第1実施形態では、発光素子60のカソード電極68は、基板50Aの内部配線構造を介して第1および第2キャパシタモジュール110,120の第1接続電極113,123に接続されている。 The cathode electrode 68 of the light emitting element 60 is connected to the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120. In the first embodiment, the cathode electrode 68 of the light emitting element 60 is connected to the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 via the internal wiring structure of the substrate 50A.
 また、発光素子60のカソード電極68、ならびに第1および第2キャパシタモジュール110,120の第1接続電極113,123は、SBD906のアノード電極906Aに接続されている。第1実施形態では、SBD906は駆動基板910に設けられており、SBD906のアノード電極906Aがリードピン142C(図1および図2参照)およびワイヤ152Cを介して外部素子接続パッド160に接続されている。この外部素子接続パッド160は、基板50Aの内部配線構造を介して、発光素子60のカソード電極68ならびに第1および第2キャパシタモジュール110,120の第1接続電極113,123に接続されている。 Furthermore, the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 are connected to the anode electrode 906A of the SBD 906. In the first embodiment, the SBD 906 is provided on a drive board 910, and an anode electrode 906A of the SBD 906 is connected to an external element connection pad 160 via a lead pin 142C (see FIGS. 1 and 2) and a wire 152C. This external element connection pad 160 is connected to the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 via the internal wiring structure of the substrate 50A.
 SBD906のカソード電極906Bは、定電圧源904の負極904Bに接続されている。また、第1実施形態では、SBD906のカソード電極906Bは、リードピン142A(図1および図2参照)、ワイヤ152A、トランジスタ80のソース電極84、およびワイヤ190を介して、発光素子60のアノード電極66に接続されている。 A cathode electrode 906B of the SBD 906 is connected to a negative electrode 904B of a constant voltage source 904. In the first embodiment, the cathode electrode 906B of the SBD 906 is connected to the anode electrode 66 of the light emitting element 60 via the lead pin 142A (see FIGS. 1 and 2), the wire 152A, the source electrode 84 of the transistor 80, and the wire 190. It is connected to the.
 ゲートドライバ908からの制御電圧によってトランジスタ80がオフされているとき、定電圧源904と、抵抗素子902と、第1および第2キャパシタモジュール110,120と、SBD906とによる閉ループ回路が形成される。これにより、定電圧源904から供給される電圧に基づいて第1および第2キャパシタモジュール110,120が充電される。 When the transistor 80 is turned off by the control voltage from the gate driver 908, a closed loop circuit is formed by the constant voltage source 904, the resistance element 902, the first and second capacitor modules 110, 120, and the SBD 906. As a result, the first and second capacitor modules 110 and 120 are charged based on the voltage supplied from the constant voltage source 904.
 ゲートドライバ908からの制御電圧によってトランジスタ80がオンされると、トランジスタ80と、発光素子60と、第1および第2キャパシタモジュール110,120とによる閉ループ回路が形成される。これにより、第1および第2キャパシタモジュール110,120に蓄積された電荷に基づく電流(パルス電流)がトランジスタ80を介して発光素子60に流れることにより、発光素子60からレーザ光が出射される。 When the transistor 80 is turned on by the control voltage from the gate driver 908, a closed loop circuit is formed by the transistor 80, the light emitting element 60, and the first and second capacitor modules 110 and 120. As a result, a current (pulse current) based on the charges accumulated in the first and second capacitor modules 110 and 120 flows to the light emitting element 60 via the transistor 80, so that a laser beam is emitted from the light emitting element 60.
 (作用)
 次に、第1実施形態の半導体発光装置10Aの作用を説明する。
 半導体発光装置10Aは、基板50Aと、基板50A上に実装された発光素子60、トランジスタ80、第1キャパシタモジュール110、および第2キャパシタモジュール120を含む。第1キャパシタモジュール110は、基板50Aと対向する第1主面112Aと、第1主面112Aに設けられた第1接続電極113および第2接続電極114とを有し、発光素子60に電気的に接続されている。第2キャパシタモジュール120は、基板50Aと対向する第1主面122Aと、第1主面122Aに設けられた第1接続電極123および第2接続電極124とを有し、発光素子60に電気的に接続されている。第1キャパシタモジュール110は、互いに反対側を向く第1面116Aおよび第2面116Bを有するシリコン基板116と、第1面116Aに設けられた第1接続電極113と、第2面116Bに設けられ、第1接続電極113に対向する対向電極117と、を含む。第2キャパシタモジュール120は、互いに反対側を向く第1面および第2面を有するシリコン基板126と、第1面に設けられた第1接続電極123と、第2面に設けられ、第1接続電極123に対向する対向電極127と、を含む。
(effect)
Next, the operation of the semiconductor light emitting device 10A of the first embodiment will be explained.
The semiconductor light emitting device 10A includes a substrate 50A, a light emitting element 60, a transistor 80, a first capacitor module 110, and a second capacitor module 120 mounted on the substrate 50A. The first capacitor module 110 has a first main surface 112A facing the substrate 50A, and a first connection electrode 113 and a second connection electrode 114 provided on the first main surface 112A, and has an electrical connection to the light emitting element 60. It is connected to the. The second capacitor module 120 has a first main surface 122A facing the substrate 50A, and a first connection electrode 123 and a second connection electrode 124 provided on the first main surface 122A, and has an electrical connection to the light emitting element 60. It is connected to the. The first capacitor module 110 includes a silicon substrate 116 having a first surface 116A and a second surface 116B facing opposite to each other, a first connection electrode 113 provided on the first surface 116A, and a first connection electrode 113 provided on the second surface 116B. , and a counter electrode 117 facing the first connection electrode 113. The second capacitor module 120 includes a silicon substrate 126 having a first surface and a second surface facing opposite to each other, a first connection electrode 123 provided on the first surface, and a first connection electrode 123 provided on the second surface. A counter electrode 127 facing the electrode 123 is included.
 第1キャパシタモジュール110は、シリコン基板116と第1接続電極113と対向電極117により構成されるシリコンキャパシタ115を含む。第2キャパシタモジュール120は、シリコン基板126と第1接続電極123と対向電極127により構成されるシリコンキャパシタ125を含む。シリコンキャパシタ115,125は、小型のキャパシタとして用いられる積層セラミックコンデンサに対して、寄生インダクタンス(ESL)が小さい。したがって、発光素子60に対する第1および第2配線経路における寄生インダクタンスを低減することができる。 The first capacitor module 110 includes a silicon capacitor 115 composed of a silicon substrate 116, a first connection electrode 113, and a counter electrode 117. The second capacitor module 120 includes a silicon capacitor 125 that includes a silicon substrate 126 , a first connection electrode 123 , and a counter electrode 127 . The silicon capacitors 115 and 125 have smaller parasitic inductance (ESL) than multilayer ceramic capacitors used as small capacitors. Therefore, parasitic inductance in the first and second wiring paths for the light emitting element 60 can be reduced.
 第1および第2配線経路に生じる寄生インダクタンスは、発光素子60に供給するパルス電流の立ち上がり特性と立ち下がり特性とに影響する。寄生インダクタンスが大きいほど、パルス電流の立ち上がりおよび立ち下がりは緩やかになる。したがって、寄生インダクタンスを低減することにより、パルス電流の立ち上がりおよび立ち下がりを急峻とすることができる。パルス電流は、発光素子60の出力特性、つまり半導体発光装置10Aの光出力の立ち上がり特性、立ち下がり特性に影響する。したがって、寄生インダクタンスを低減することにより、光出力の立ち上がりおよび立ち下がりを急峻とすることができる。これにより、より短いパルス幅の光出力を得ることができる。 The parasitic inductance that occurs in the first and second wiring paths affects the rise and fall characteristics of the pulse current supplied to the light emitting element 60. The larger the parasitic inductance, the slower the pulse current rises and falls. Therefore, by reducing the parasitic inductance, the rise and fall of the pulse current can be made steeper. The pulse current affects the output characteristics of the light emitting element 60, that is, the rise and fall characteristics of the optical output of the semiconductor light emitting device 10A. Therefore, by reducing the parasitic inductance, the rise and fall of the optical output can be made steeper. Thereby, optical output with a shorter pulse width can be obtained.
 図13は、比較例の発光モジュールについて、図11に対応する位置の断面図である。図13では、基板50Aにシリコンキャパシタ115のみが実装されている。シリコンキャパシタ115の対向電極117は、ワイヤ191により、第2表面側配線320(第5配線領域324)に電気的に接続されている。上述したように、シリコンキャパシタ115は、積層セラミックコンデンサと比べ、低抵抗、低インダクタンスである。しかしながら、この比較例では、シリコンキャパシタ115を第2表面側配線320に接続するワイヤ191における寄生インダクタンスは、第1実施形態における第1および第2キャパシタモジュール110,120の接続部118,128における寄生インダクタンスよりも大きい。したがって、この比較例では、シリコンキャパシタ115を用いるメリットが少ないといえる。 FIG. 13 is a cross-sectional view of a light emitting module of a comparative example at a position corresponding to FIG. 11. In FIG. 13, only the silicon capacitor 115 is mounted on the substrate 50A. The counter electrode 117 of the silicon capacitor 115 is electrically connected to the second surface wiring 320 (fifth wiring region 324) by a wire 191. As described above, the silicon capacitor 115 has lower resistance and lower inductance than a multilayer ceramic capacitor. However, in this comparative example, the parasitic inductance in the wire 191 connecting the silicon capacitor 115 to the second surface-side wiring 320 is the same as the parasitic inductance in the connecting portions 118 and 128 of the first and second capacitor modules 110 and 120 in the first embodiment. greater than inductance. Therefore, in this comparative example, it can be said that there is little merit in using the silicon capacitor 115.
 発光モジュール30Aは、ステム20のヒートシンク24に搭載されており、包囲部材40は、発光モジュール30Aとヒートシンク24とを囲むようにステム20のベース22上に設けられている。発光モジュール30Aは、発光素子60と発光素子駆動回路70とを含み、発光素子駆動回路70は、発光素子60を駆動するトランジスタ80を含む。トランジスタ80は、ヒートシンク24に搭載された基板50A上に縦型MOSFETとして実装されている。 The light emitting module 30A is mounted on the heat sink 24 of the stem 20, and the surrounding member 40 is provided on the base 22 of the stem 20 so as to surround the light emitting module 30A and the heat sink 24. The light emitting module 30A includes a light emitting element 60 and a light emitting element drive circuit 70, and the light emitting element drive circuit 70 includes a transistor 80 that drives the light emitting element 60. The transistor 80 is mounted as a vertical MOSFET on the substrate 50A mounted on the heat sink 24.
 トランジスタ80に縦型MOSFETを採用することで、基板50Aの平面視において、ソース電極84がドレイン電極88に重なって配置される。このため、縦型MOSFETを採用することで、横型MOSFETを採用する場合に比べて基板50A上に実装されるトランジスタ80の配線経路を短くすることができる。その結果、基板50Aのサイズを小さくして発光モジュール30Aのサイズを小さくすることができる。 By employing a vertical MOSFET as the transistor 80, the source electrode 84 is arranged to overlap the drain electrode 88 in a plan view of the substrate 50A. Therefore, by employing a vertical MOSFET, the wiring path of the transistor 80 mounted on the substrate 50A can be made shorter than when a horizontal MOSFET is employed. As a result, the size of the substrate 50A can be reduced and the size of the light emitting module 30A can be reduced.
 (効果)
 第1実施形態の半導体発光装置10Aによれば、以下の効果が得られる。
 (1-1)半導体発光装置10Aは、基板50Aと、基板50A上に実装された発光素子60、トランジスタ80、第1キャパシタモジュール110、および第2キャパシタモジュール120を含む。第1キャパシタモジュール110は、基板50Aの厚さ方向(Y軸方向)において基板50Aと対向する第1主面112Aと、第1主面112Aに設けられた第1接続電極113および第2接続電極114とを有し、発光素子60に電気的に接続されている。第2キャパシタモジュール120は、基板50Aの厚さ方向(Y軸方向)において基板50Aと対向する第1主面122Aと、第1主面122Aに設けられた第1接続電極123および第2接続電極124とを有し、発光素子60に電気的に接続されている。第1キャパシタモジュール110は、互いに反対側を向く第1面116Aおよび第2面116Bを有するシリコン基板116と、第1面116Aに設けられた第1接続電極113と、第2面116Bに設けられ、第1接続電極113に対向する対向電極117と、を含む。第2キャパシタモジュール120は、互いに反対側を向く第1面および第2面を有するシリコン基板126と、第1面に設けられた第1接続電極123と、第2面に設けられ、第1接続電極123に対向する対向電極127と、を含む。
(effect)
According to the semiconductor light emitting device 10A of the first embodiment, the following effects can be obtained.
(1-1) The semiconductor light emitting device 10A includes a substrate 50A, a light emitting element 60, a transistor 80, a first capacitor module 110, and a second capacitor module 120 mounted on the substrate 50A. The first capacitor module 110 includes a first main surface 112A facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A, and a first connection electrode 113 and a second connection electrode provided on the first main surface 112A. 114 and is electrically connected to the light emitting element 60. The second capacitor module 120 includes a first main surface 122A facing the substrate 50A in the thickness direction (Y-axis direction) of the substrate 50A, and a first connection electrode 123 and a second connection electrode provided on the first main surface 122A. 124 and is electrically connected to the light emitting element 60. The first capacitor module 110 includes a silicon substrate 116 having a first surface 116A and a second surface 116B facing opposite to each other, a first connection electrode 113 provided on the first surface 116A, and a first connection electrode 113 provided on the second surface 116B. , and a counter electrode 117 facing the first connection electrode 113. The second capacitor module 120 includes a silicon substrate 126 having a first surface and a second surface facing opposite to each other, a first connection electrode 123 provided on the first surface, and a first connection electrode 123 provided on the second surface. A counter electrode 127 facing the electrode 123 is included.
 この構成によれば、第1および第2キャパシタモジュール110,120における寄生インダクタンス(ESL)を、たとえば積層セラミックコンデンサの寄生インダクタンスよりも小さくすることができる。このため、発光素子60のカソード電極68とトランジスタ80との間の配線経路に生じる寄生インダクタンスを低減することができる。したがって、発光素子60とトランジスタ80とを結ぶ配線経路における寄生インダクタンスを低減することができる。 According to this configuration, the parasitic inductance (ESL) in the first and second capacitor modules 110 and 120 can be made smaller than, for example, the parasitic inductance of a multilayer ceramic capacitor. Therefore, parasitic inductance occurring in the wiring path between the cathode electrode 68 of the light emitting element 60 and the transistor 80 can be reduced. Therefore, parasitic inductance in the wiring path connecting the light emitting element 60 and the transistor 80 can be reduced.
 (1-2)配線経路に生じる寄生インダクタンスは、発光素子60に供給するパルス電流の立ち上がり特性と立ち下がり特性とに影響する。寄生インダクタンスが大きいほど、パルス電流の立ち上がりおよび立ち下がりは緩やかになる。したがって、寄生インダクタンスを低減することにより、パルス電流の立ち上がりおよび立ち下がりを急峻とすることができる。パルス電流は、発光素子60の出力特性、つまり半導体発光装置10Aの光出力の立ち上がり特性、立ち下がり特性に影響する。したがって、寄生インダクタンスを低減することにより、光出力の立ち上がりおよび立ち下がりを急峻とすることができる。これにより、より短いパルス幅の光出力を得ることができる。 (1-2) Parasitic inductance occurring in the wiring path affects the rise and fall characteristics of the pulse current supplied to the light emitting element 60. The larger the parasitic inductance, the slower the pulse current rises and falls. Therefore, by reducing the parasitic inductance, the rise and fall of the pulse current can be made steeper. The pulse current affects the output characteristics of the light emitting element 60, that is, the rise and fall characteristics of the optical output of the semiconductor light emitting device 10A. Therefore, by reducing the parasitic inductance, the rise and fall of the optical output can be made steeper. Thereby, optical output with a shorter pulse width can be obtained.
 (1-3)トランジスタ80に縦型MOSFETを採用することにより、横型MOSFETを採用する場合に比べて、第1および第2キャパシタモジュール110,120からトランジスタ80を介して発光素子60に電流が流れる各配線経路を短くすることができる。これにより、各配線経路に生じる寄生インダクタンスを低減することができる。 (1-3) By employing a vertical MOSFET as the transistor 80, current flows from the first and second capacitor modules 110 and 120 to the light emitting element 60 via the transistor 80, compared to the case where a horizontal MOSFET is employed. Each wiring route can be shortened. Thereby, parasitic inductance occurring in each wiring route can be reduced.
 (1-4)第1キャパシタモジュール110は、基板50Aの平面視においてトランジスタ80の第1側面82Aに隣接して基板50A上に実装されている。第2キャパシタモジュール120は、基板50Aの平面視においてトランジスタ80の第2側面82Bに隣接して基板50A上に実装されている。したがって、トランジスタ80の第3側面82Cは、第1キャパシタモジュール110と第2キャパシタモジュール120との間に位置する。発光素子60は、トランジスタ80の第3側面82Cに隣接して配置され、複数のワイヤ190によってトランジスタ80に電気的に接続されている。この構成では、発光素子60にトランジスタ80を近づけて配置することが可能となる。これにより、ワイヤ190の長さを短くしてトランジスタ80から発光素子60に電流が流れる配線経路を短くすることにより、配線経路に生じる寄生インダクタンスを低減することができる。 (1-4) The first capacitor module 110 is mounted on the substrate 50A adjacent to the first side surface 82A of the transistor 80 when the substrate 50A is viewed from above. The second capacitor module 120 is mounted on the substrate 50A adjacent to the second side surface 82B of the transistor 80 in a plan view of the substrate 50A. Therefore, the third side surface 82C of the transistor 80 is located between the first capacitor module 110 and the second capacitor module 120. The light emitting element 60 is disposed adjacent to the third side surface 82C of the transistor 80 and is electrically connected to the transistor 80 by a plurality of wires 190. With this configuration, the transistor 80 can be placed close to the light emitting element 60. Thereby, by shortening the length of the wire 190 and shortening the wiring path through which current flows from the transistor 80 to the light emitting element 60, parasitic inductance occurring in the wiring path can be reduced.
 (1-5)第1キャパシタモジュール110と第2キャパシタモジュール120は、発光素子60およびトランジスタ80に対して対称的に配置されている。これにより、第1キャパシタモジュール110からトランジスタ80およびワイヤ190を介して発光素子60に電流が流れる第1配線経路と、第2キャパシタモジュール120からトランジスタ80およびワイヤ190を介して発光素子60に電流が流れる第2配線経路とが、発光素子60およびトランジスタ80に対して対称的に配置されるようになる。この配置では、第1配線経路を流れる電流によって形成される磁束と、第2配線経路を流れる電流によって形成される磁束とが互いに打ち消し合うようになる。これにより、第1配線経路に存在する寄生インダクタンスおよび第2配線経路に存在する寄生インダクタンスを低減することができる。 (1-5) The first capacitor module 110 and the second capacitor module 120 are arranged symmetrically with respect to the light emitting element 60 and the transistor 80. As a result, current flows from the first wiring path from the first capacitor module 110 to the light emitting element 60 via the transistor 80 and the wire 190, and from the second capacitor module 120 to the light emitting element 60 via the transistor 80 and the wire 190. The flowing second wiring path is arranged symmetrically with respect to the light emitting element 60 and the transistor 80. In this arrangement, the magnetic flux formed by the current flowing through the first wiring path and the magnetic flux formed by the current flowing through the second wiring path cancel each other out. Thereby, the parasitic inductance existing in the first wiring route and the parasitic inductance existing in the second wiring route can be reduced.
 (1-6)発光素子駆動回路70は、第1キャパシタモジュール110と第2キャパシタモジュール120とを用いて発光素子60に電流を供給する。この構成では、発光素子60に供給する電流を増加させることができる。 (1-6) The light emitting element drive circuit 70 supplies current to the light emitting element 60 using the first capacitor module 110 and the second capacitor module 120. With this configuration, the current supplied to the light emitting element 60 can be increased.
 (1-7)トランジスタ80の第3側面82Cは、トランジスタ80の第1側面82Aおよび第2側面82Bよりも短い。また、第1キャパシタモジュール110と第2キャパシタモジュール120との間の距離は、トランジスタ80の第3側面82Cの長さよりも大きい。この構成によれば、第1および第2キャパシタモジュール110,120間にトランジスタ80の短辺(第3側面82C)が位置する。これにより、第1および第2キャパシタモジュール110,120からトランジスタ80を介して発光素子60に電流が流れる各配線経路を短くして、各配線経路に生じる寄生インダクタンスを低減することができる。 (1-7) The third side surface 82C of the transistor 80 is shorter than the first side surface 82A and the second side surface 82B of the transistor 80. Further, the distance between the first capacitor module 110 and the second capacitor module 120 is greater than the length of the third side surface 82C of the transistor 80. According to this configuration, the short side (third side surface 82C) of the transistor 80 is located between the first and second capacitor modules 110 and 120. Thereby, each wiring path through which current flows from the first and second capacitor modules 110 and 120 to the light emitting element 60 via the transistor 80 can be shortened, and parasitic inductance occurring in each wiring path can be reduced.
 (1-8)トランジスタ80とリードピン142A,142Bとを接続するワイヤ152A,152Bの数よりも、トランジスタ80と発光素子60とを接続するワイヤ190の数が多い。これにより、トランジスタ80から発光素子60に電流を流れ易くして、寄生インダクタンスを低減することができる。 (1-8) The number of wires 190 connecting transistor 80 and light emitting element 60 is greater than the number of wires 152A, 152B connecting transistor 80 and lead pins 142A, 142B. Thereby, current can easily flow from the transistor 80 to the light emitting element 60, and parasitic inductance can be reduced.
 (1-9)第1ビア配線242は、発光素子60の直下の第1配線領域312(発光素子実装領域)にのみ配置されている。第1ビア配線242は、発光素子60のカソード電極68を外部素子接続パッド160に接続する配線経路の一部であり、第1表面側配線310と第1裏面側配線410とを電気的に接続する。ここで、第1ビア配線242が第1配線領域312以外に複数配置されていた場合、発光素子60のカソード電極68から第1表面側配線310を介した第1および第2キャパシタモジュール110,120の第1接続電極113,123への電流の流れが阻害される可能性がある。結果として、第1ビア配線242の数を増加させると、第1および第2キャパシタモジュール110,120の第2接続電極114,124からトランジスタ80およびワイヤ190を介した発光素子60への電流の流れが阻害される。第1実施形態では、発光素子60の直下の第1配線領域312に第1ビア配線242が1つのみ配置されている。したがって、発光素子60への電流の流れが第1ビア配線242により阻害されることが抑制される。 (1-9) The first via wiring 242 is arranged only in the first wiring area 312 (light emitting element mounting area) directly below the light emitting element 60. The first via wiring 242 is a part of the wiring route that connects the cathode electrode 68 of the light emitting element 60 to the external element connection pad 160, and electrically connects the first front side wiring 310 and the first back side wiring 410. do. Here, if a plurality of first via wirings 242 are arranged outside the first wiring area 312, the first and second capacitor modules 110, 120 are connected from the cathode electrode 68 of the light emitting element 60 via the first surface side wiring 310. The flow of current to the first connection electrodes 113 and 123 may be inhibited. As a result, when the number of first via wirings 242 is increased, current flows from the second connection electrodes 114, 124 of the first and second capacitor modules 110, 120 to the light emitting element 60 via the transistor 80 and the wire 190. is inhibited. In the first embodiment, only one first via wiring 242 is arranged in the first wiring region 312 directly below the light emitting element 60. Therefore, the flow of current to the light emitting element 60 is prevented from being obstructed by the first via wiring 242.
 (第1実施形態の変更例)
 上記第1実施形態はたとえば以下のように変更できる。上記実施形態と以下の各変更例は、技術的な矛盾が生じない限り、互いに組み合せることができる。なお、以下の変更例において、上記実施形態と共通する部分については、上記実施形態と同一の符号を付してその説明を省略する。
(Example of modification of the first embodiment)
The first embodiment described above can be modified as follows, for example. The above embodiment and each modification example below can be combined with each other as long as no technical contradiction occurs. In addition, in the following modified examples, parts common to the above embodiment are given the same reference numerals as in the above embodiment, and the explanation thereof will be omitted.
 ・第1および第2キャパシタモジュール110,120の構成は、適宜変更されてもよい。
 図14~図16は、変更例のキャパシタモジュール110Aを含む発光モジュールであり、第1実施形態の図11に対応する位置の断面図である。
- The configurations of the first and second capacitor modules 110 and 120 may be changed as appropriate.
14 to 16 show a light emitting module including a capacitor module 110A of a modified example, and are sectional views at a position corresponding to FIG. 11 of the first embodiment.
 図14に示されるように、キャパシタモジュール110Aは、シリコン基板116、第1接続電極113、第2接続電極114、対向電極117、接続部118を含む。第1接続電極113は、第1主面112Aに設けられた電極113Aと、シリコン基板116の第2面116Bに設けられた第2対向電極113Bと、電極113Aと第2対向電極113Bとを接続するビア配線113Cとを含む。このキャパシタモジュール110Aにより、上記の第1実施形態と同様に、寄生インダクタンスを低減することができる。 As shown in FIG. 14, the capacitor module 110A includes a silicon substrate 116, a first connection electrode 113, a second connection electrode 114, a counter electrode 117, and a connection portion 118. The first connection electrode 113 connects an electrode 113A provided on the first main surface 112A, a second opposing electrode 113B provided on the second surface 116B of the silicon substrate 116, and connects the electrode 113A and the second opposing electrode 113B. via wiring 113C. With this capacitor module 110A, parasitic inductance can be reduced similarly to the first embodiment described above.
 図15に示されるように、キャパシタモジュール110Bにおいて、封止樹脂119は、対向電極117の一部を露出する第1開口119Bと、第2接続電極114の一部を露出する複数の第2開口119Cを有している。接続部118の第1配線118Aと第2配線118Bは、封止樹脂119の上面に沿って連続的に形成されている。つまり、第1配線118Aは、封止樹脂119の第1面119Dと第1開口119Bの内壁面に形成された導電膜により構成される。そして、第2配線118Bは、封止樹脂119の複数の第2開口119Cの内壁面に形成された導電膜により構成される。このキャパシタモジュール110Bにより、上記の第1実施形態と同様に、寄生インダクタンスを低減することができる。 As shown in FIG. 15, in the capacitor module 110B, the sealing resin 119 has a first opening 119B that exposes a part of the counter electrode 117, and a plurality of second openings that expose a part of the second connection electrode 114. 119C. The first wiring 118A and the second wiring 118B of the connection portion 118 are continuously formed along the upper surface of the sealing resin 119. In other words, the first wiring 118A is constituted by a conductive film formed on the first surface 119D of the sealing resin 119 and the inner wall surface of the first opening 119B. The second wiring 118B is composed of a conductive film formed on the inner wall surface of the plurality of second openings 119C of the sealing resin 119. With this capacitor module 110B, parasitic inductance can be reduced similarly to the first embodiment described above.
 図16に示されるように、キャパシタモジュール110Cは、シリコン基板116、第1接続電極113、第2接続電極114、接続部118を含む。このキャパシタモジュール110Cは、図11に示す封止樹脂119を備えていない。 As shown in FIG. 16, the capacitor module 110C includes a silicon substrate 116, a first connection electrode 113, a second connection electrode 114, and a connection portion 118. This capacitor module 110C does not include the sealing resin 119 shown in FIG. 11.
 第1接続電極113と第2接続電極114は、シリコン基板116の第1面116Aに、シリコン基板116の長さ方向に離れて配置されている。接続部118は、シリコン基板116の第2面116Bに設けられ、第1接続電極113と対向する対向電極117を含む。シリコン基板116は、第1面116Aから第2面116Bまでシリコン基板116を貫通する複数の貫通孔116Cを有している。接続部118は、シリコン基板116の第2面116Bに形成された第1配線118Aと、複数の貫通孔116C内に形成され、第1配線118Aと第2接続電極114とを接続する第2配線118Bとを含む。第2配線118Bは、シリコン基板116を貫通する貫通配線である。このキャパシタモジュール110Cにより、上記の第1実施形態と同様に、寄生インダクタンスを低減することができる。 The first connection electrode 113 and the second connection electrode 114 are arranged on the first surface 116A of the silicon substrate 116 so as to be separated from each other in the length direction of the silicon substrate 116. The connection portion 118 is provided on the second surface 116B of the silicon substrate 116 and includes a counter electrode 117 that faces the first connection electrode 113. The silicon substrate 116 has a plurality of through holes 116C that penetrate the silicon substrate 116 from the first surface 116A to the second surface 116B. The connecting portion 118 includes a first wiring 118A formed on the second surface 116B of the silicon substrate 116 and a second wiring formed in the plurality of through holes 116C to connect the first wiring 118A and the second connection electrode 114. 118B. The second wiring 118B is a through wiring that penetrates the silicon substrate 116. With this capacitor module 110C, parasitic inductance can be reduced similarly to the first embodiment described above.
 ・基板50Aの構成は、適宜変更されてもよい。
 図17~図21は、変更例の発光モジュール30A1を示し、変更例の基板50A1を用いている。図18~図20は、基板50A1の内部配線構造を示す断面図である。図21は、図18の21-21線に沿った位置における図17の断面図である。
- The configuration of the substrate 50A may be changed as appropriate.
17 to 21 show a light emitting module 30A1 as a modified example, and use a modified substrate 50A1. 18 to 20 are cross-sectional views showing the internal wiring structure of the substrate 50A1. 21 is a cross-sectional view of FIG. 17 taken along line 21-21 of FIG. 18.
 図17~図21に示されるように、発光モジュール30A1の基板50A1は、たとえばプリント配線板であり、この変更例では、内部配線構造として3層配線構造を有している。つまり、この変更例の基板50A1は、多層基板である。 As shown in FIGS. 17 to 21, the substrate 50A1 of the light emitting module 30A1 is, for example, a printed wiring board, and in this modified example, has a three-layer wiring structure as an internal wiring structure. In other words, the substrate 50A1 of this modification is a multilayer substrate.
 基板50A1は、絶縁性の第1基材210Aと、第1基材210Aの表面214Aに設けられた第1配線層220と、絶縁性の第2基材210Bと、第2基材210Bの裏面216Bに設けられた第2配線層230とを含む。また、基板50A1は、第1基材210Aの裏面214Bに設けられるとともに第2基材210Bの表面216Aに設けられた中間配線層240を含む。 The substrate 50A1 includes an insulating first base material 210A, a first wiring layer 220 provided on a surface 214A of the first base material 210A, an insulating second base material 210B, and a back surface of the second base material 210B. 216B. Further, the substrate 50A1 includes an intermediate wiring layer 240 provided on the back surface 214B of the first base material 210A and on the front surface 216A of the second base material 210B.
 すなわち、この変更例では、第1実施形態の基材210が第1基材210Aと第2基材210Bとに分割され、第1基材210Aと第2基材210Bとの間に中間配線層240が位置している。したがって、この変更例の基板50A1は、第1実施形態の基材210の内部に中間配線層240が位置する構成と言える。中間配線層240は、第1および第2配線層220,230と同様、たとえばCu等の金属材料で形成されている。 That is, in this modification example, the base material 210 of the first embodiment is divided into a first base material 210A and a second base material 210B, and an intermediate wiring layer is provided between the first base material 210A and the second base material 210B. 240 is located. Therefore, the substrate 50A1 of this modification can be said to have a configuration in which the intermediate wiring layer 240 is located inside the base material 210 of the first embodiment. The intermediate wiring layer 240, like the first and second wiring layers 220 and 230, is made of a metal material such as Cu.
 第1基材210Aおよび第2基材210Bは、たとえば、樹脂基材、シリコン基材、ガラス基材、またはセラミック基材等の絶縁性材料で形成されている。この変更例では、第1基材210Aおよび第2基材210Bとして、ガラスエポキシ樹脂で形成された樹脂基材が用いられている。 The first base material 210A and the second base material 210B are formed of an insulating material such as a resin base material, a silicon base material, a glass base material, or a ceramic base material. In this modification, resin base materials made of glass epoxy resin are used as the first base material 210A and the second base material 210B.
 第1配線層220の構成および第2配線層230の構成は、第1実施形態と同様である。したがって、図18に示されるように、第1配線層220は、第1~第3表面側配線310,320,330を含む。第1表面側配線310は第1~第3配線領域312,314,316を含み、第2表面側配線320は第4~第6配線領域322,324,326を含み、第3表面側配線330は第7配線領域332を含む。また、図20に示されるように、第2配線層230は、第1および第2裏面側配線410,420を含み、第2裏面側配線420は第8配線領域414を含む。 The configuration of the first wiring layer 220 and the configuration of the second wiring layer 230 are similar to those in the first embodiment. Therefore, as shown in FIG. 18, the first wiring layer 220 includes first to third front- side wirings 310, 320, and 330. The first surface side wiring 310 includes first to third wiring regions 312, 314, 316, the second surface side wiring 320 includes fourth to sixth wiring regions 322, 324, 326, and the third surface side wiring 330 includes a seventh wiring region 332. Further, as shown in FIG. 20, the second wiring layer 230 includes first and second backside wirings 410 and 420, and the second backside wiring 420 includes an eighth wiring region 414.
 図19に示されるように、中間配線層240は、第1中間配線510と、第2中間配線520と、第3中間配線530とを含む。
 第1中間配線510は、基板50A1の第1、第2、および第3側面52A,52B,52Cに沿って配置されており、たとえば、基板50A1の面積の約1/3のサイズで形成されている。第1中間配線510は、基板50A1の平面視において、第1表面側配線310および第1裏面側配線410に重なっている。
As shown in FIG. 19, the intermediate wiring layer 240 includes a first intermediate wiring 510, a second intermediate wiring 520, and a third intermediate wiring 530.
The first intermediate wiring 510 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50A1, and is formed to have a size that is approximately 1/3 of the area of the substrate 50A1, for example. There is. The first intermediate wiring 510 overlaps the first front wiring 310 and the first back wiring 410 in a plan view of the substrate 50A1.
 第2中間配線520は、基板50A1の第1、第2、および第4側面52A,52B,52Dに沿って配置されるとともに、第1中間配線510から離隔して配置されている。第2中間配線520は、たとえば、基板50A1の面積の約2/3よりもわずかに小さいサイズで形成されている。この変更例では、第2中間配線520は、たとえば、第1表面側配線310と同じサイズおよび形状で形成されており、基板50A1の平面視において、第1表面側配線310と同じ位置に切り欠き522を含む。第2中間配線520は、基板50A1の平面視において、第2表面側配線320および第2裏面側配線420と重なっており、かつ第1裏面側配線410と部分的に重なっている。 The second intermediate wiring 520 is arranged along the first, second, and fourth side surfaces 52A, 52B, and 52D of the substrate 50A1, and is spaced apart from the first intermediate wiring 510. The second intermediate wiring 520 is formed to have a size slightly smaller than, for example, about 2/3 of the area of the substrate 50A1. In this modification example, the second intermediate wiring 520 is formed to have the same size and shape as the first front wiring 310, for example, and has a notch at the same position as the first front wiring 310 in a plan view of the substrate 50A1. 522 included. The second intermediate wiring 520 overlaps with the second front wiring 320 and the second back wiring 420, and partially overlaps with the first back wiring 410, in a plan view of the substrate 50A1.
 第3中間配線530は、基板50A1の第1および第4側面52A,52Dに沿って配置されるとともに、第2中間配線520から離隔して配置されている。この変更例では、第3中間配線530は、たとえば、第3表面側配線330と同じサイズおよび形状で形成されており、第2中間配線520の切り欠き522に隣接して(ただし離隔して)配置されている。第2中間配線520と第3中間配線530との総面積は、基板50A1の面積の約2/3に相当する。言い換えれば、第2中間配線520と第3中間配線530は、それらを組み合わせた形状が基板50A1の面積の約2/3のサイズを有する矩形状となるように互いに離隔して配置されている。第3中間配線530は、基板50A1の平面視において、第3表面側配線330および第1裏面側配線410に重なっている。 The third intermediate wiring 530 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50A1, and is spaced apart from the second intermediate wiring 520. In this modification example, the third intermediate wiring 530 is formed, for example, in the same size and shape as the third front side wiring 330, and is adjacent to (but separated from) the notch 522 of the second intermediate wiring 520. It is located. The total area of the second intermediate wiring 520 and the third intermediate wiring 530 corresponds to about 2/3 of the area of the substrate 50A1. In other words, the second intermediate wiring 520 and the third intermediate wiring 530 are spaced apart from each other so that the combined shape of the second intermediate wiring 520 and the third intermediate wiring 530 is a rectangular shape having a size approximately 2/3 of the area of the substrate 50A1. The third intermediate wiring 530 overlaps the third front side wiring 330 and the first back side wiring 410 in a plan view of the substrate 50A1.
 第1実施形態と同様、基板50A1は、第1絶縁層250と第2絶縁層260とを含む。これら第1絶縁層250の構成および第2絶縁層260の構成は第1実施形態と同様であり、詳細な説明を省略する。 Similar to the first embodiment, the substrate 50A1 includes a first insulating layer 250 and a second insulating layer 260. The configuration of the first insulating layer 250 and the configuration of the second insulating layer 260 are the same as those in the first embodiment, and detailed description thereof will be omitted.
 また、図17~図21に示されるように、第1実施形態と同様、基板50A1は、第1および第2基材210A,210Bを貫通して、第1配線層220と第2配線層230とを電気的に接続する第1~第3ビア配線242,244,246を含む。この変更例において、第1ビア配線242は、第1表面側配線310と第1中間配線510と第1裏面側配線410とを電気的に接続する。第2ビア配線244は、第2表面側配線320と第2中間配線520と第2裏面側配線420とを電気的に接続する。第3ビア配線246は、第3表面側配線330と第3中間配線530と第1裏面側配線410とを電気的に接続する。 Further, as shown in FIGS. 17 to 21, similarly to the first embodiment, the substrate 50A1 penetrates through the first and second base materials 210A and 210B, and connects the first wiring layer 220 and the second wiring layer 230. It includes first to third via wirings 242, 244, and 246 that electrically connect these. In this modification, the first via wiring 242 electrically connects the first front wiring 310, the first intermediate wiring 510, and the first back wiring 410. The second via wiring 244 electrically connects the second front side wiring 320, the second intermediate wiring 520, and the second back side wiring 420. The third via wiring 246 electrically connects the third front side wiring 330, the third intermediate wiring 530, and the first back side wiring 410.
 図17および図19~図21に示されるように、基板50A1はさらに、第1中間配線510と第1裏面側配線410とを電気的に接続する複数(たとえば4つ)の第4ビア配線248を含む。第4ビア配線248は、たとえばCu等の金属材料で形成されている。なお、第4ビア配線248の配置は特に限定されない。たとえば、第4ビア配線248は、第1ビア配線242の位置を除いて第1中間配線510内に均等に配置されている。この変更例では、たとえば、第4ビア配線248は、第1ビア配線242とともに一列に配置されている。 As shown in FIG. 17 and FIGS. 19 to 21, the substrate 50A1 further includes a plurality of (for example, four) fourth via wires 248 that electrically connect the first intermediate wire 510 and the first back side wire 410. including. The fourth via wiring 248 is made of a metal material such as Cu. Note that the arrangement of the fourth via wiring 248 is not particularly limited. For example, the fourth via wiring 248 is evenly arranged within the first intermediate wiring 510 except for the position of the first via wiring 242. In this modification, for example, the fourth via wiring 248 and the first via wiring 242 are arranged in a line.
 この変更例の基板50A1において、発光素子60は小型である。このため、発光素子60が実装される第1配線領域312(発光素子実装領域)の面積は小さい。したがって、第1配線領域312内に配置可能な第1ビア配線242の数には限りがあり、第1実施形態と同様、この変更例でも、第1ビア配線242は、発光素子60直下の第1配線領域312に1つのみ配置されている。このため、上述した第1実施形態で得られる(1-9)の利点と同様、この変更例においても、発光素子60への電流の流れが第1ビア配線242により阻害されることが抑制される。この変更例では、第1ビア配線242は、第1表面側配線310と第1中間配線510と第1裏面側配線410とを電気的に接続する。この第1ビア配線242は放熱経路としても利用される。しかしながら、第1ビア配線242の数が1つのみの場合、第1ビア配線242を用いた放熱性が十分に得られない可能性がある。この変更例では、発光モジュール30A1の基板50A1は、第1中間配線510と第1裏面側配線410とを接続する複数(例えば4つ)の第4ビア配線248を含む。これらの第4ビア配線248は、上記したような発光素子60への電流の流れを阻害せず、放熱性を高めることができる。 In the substrate 50A1 of this modification, the light emitting element 60 is small. Therefore, the area of the first wiring region 312 (light emitting element mounting region) in which the light emitting element 60 is mounted is small. Therefore, there is a limit to the number of first via wirings 242 that can be arranged within the first wiring area 312, and as in the first embodiment, in this modified example as well, the first via wirings 242 are Only one is arranged in one wiring area 312. Therefore, similar to the advantage (1-9) obtained in the first embodiment described above, in this modification example as well, the flow of current to the light emitting element 60 is suppressed from being obstructed by the first via wiring 242. Ru. In this modification, the first via wiring 242 electrically connects the first front wiring 310, the first intermediate wiring 510, and the first back wiring 410. This first via wiring 242 is also used as a heat radiation path. However, when the number of first via wiring 242 is only one, there is a possibility that sufficient heat dissipation performance using first via wiring 242 cannot be obtained. In this modification, the substrate 50A1 of the light emitting module 30A1 includes a plurality (for example, four) of fourth via wires 248 that connect the first intermediate wire 510 and the first back side wire 410. These fourth via wirings 248 do not inhibit the flow of current to the light emitting element 60 as described above, and can improve heat dissipation.
 (第2実施形態)
 以下、第2実施形態の半導体発光装置10Bの構成について説明する。なお、第2実施形態の半導体発光装置10Bについて、第1実施形態の半導体発光装置10Aと共通する構成要素については同一の符号を用いる。
(Second embodiment)
The configuration of the semiconductor light emitting device 10B of the second embodiment will be described below. In addition, regarding the semiconductor light emitting device 10B of the second embodiment, the same reference numerals are used for components common to the semiconductor light emitting device 10A of the first embodiment.
 図22は、第2実施形態にかかる例示的な半導体発光装置10Bを概略的に示す斜視図である。図23は、図22の半導体発光装置を概略的に示す平面図である。図24は、図22の発光モジュールの基板の内部配線構造を示す平面図である。図25は、図22の発光モジュールの基板の内部配線構造を示す平面図である。図26は、図23の26-26線に沿った断面図である。図27は、図23の27-27線に沿った断面図である。なお、図23では、説明の便宜上、封止樹脂90が省略されている。図26,図27では、封止樹脂90は二点鎖線にて示されている。図26、図27では、説明の便宜上、ワイヤ190,152A,152Bが省略されている。 FIG. 22 is a perspective view schematically showing an exemplary semiconductor light emitting device 10B according to the second embodiment. FIG. 23 is a plan view schematically showing the semiconductor light emitting device of FIG. 22. FIG. 24 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22. FIG. 25 is a plan view showing the internal wiring structure of the substrate of the light emitting module of FIG. 22. FIG. 26 is a cross-sectional view taken along line 26-26 in FIG. 23. FIG. 27 is a cross-sectional view taken along line 27-27 in FIG. 23. Note that in FIG. 23, the sealing resin 90 is omitted for convenience of explanation. In FIGS. 26 and 27, the sealing resin 90 is indicated by a two-dot chain line. In FIGS. 26 and 27, wires 190, 152A, and 152B are omitted for convenience of explanation.
 第2実施形態の半導体発光装置10Bは、表面実装型の装置である。このため、第1実施形態の半導体発光装置10Aのステム20等は備えていない。また、第2実施形態の半導体発光装置10Bは、第1実施形態の半導体発光装置10Aに対して、基板50Bの構成が異なる点、封止樹脂90を備える点が異なる。これらの点について以下に詳述する。 The semiconductor light emitting device 10B of the second embodiment is a surface-mounted device. Therefore, the stem 20 and the like of the semiconductor light emitting device 10A of the first embodiment are not provided. Further, the semiconductor light emitting device 10B of the second embodiment differs from the semiconductor light emitting device 10A of the first embodiment in that the structure of the substrate 50B is different and that the semiconductor light emitting device 10B is provided with a sealing resin 90. These points will be explained in detail below.
 図22に示されるように、半導体発光装置10Bは、概略矩形平板状を有している。半導体発光装置10Bは、発光モジュール30Bと、封止樹脂90とを備えている。
 発光モジュール30Bは、基板50Bと、発光素子60と、発光素子駆動回路70とを含む。
As shown in FIG. 22, the semiconductor light emitting device 10B has a generally rectangular plate shape. The semiconductor light emitting device 10B includes a light emitting module 30B and a sealing resin 90.
The light emitting module 30B includes a substrate 50B, a light emitting element 60, and a light emitting element drive circuit 70.
 (基板)
 図23~図27に示されるように、基板50Bは矩形状を有している。基板50Bのサイズは特に限定されない。第2実施形態の基板50Bは、第1側面52Aおよび第2側面52Bが、第3側面52Cおよび第4側面52Dに対して長い長方形状を有している。
(substrate)
As shown in FIGS. 23 to 27, the substrate 50B has a rectangular shape. The size of the substrate 50B is not particularly limited. The substrate 50B of the second embodiment has a rectangular shape in which the first side surface 52A and the second side surface 52B are longer than the third side surface 52C and the fourth side surface 52D.
 図24に示されるように、第1配線層220は、基材210の表面212Aに設けられるとともに互いに離隔して配置された複数の配線、第2実施形態では、第1表面側配線310と、第2表面側配線320と、第3表面側配線340と、第4表面側配線350とを含む。 As shown in FIG. 24, the first wiring layer 220 includes a plurality of wirings provided on the surface 212A of the base material 210 and spaced apart from each other; in the second embodiment, the first surface side wiring 310; It includes a second front-side wiring 320, a third front-side wiring 340, and a fourth front-side wiring 350.
 第1表面側配線310は、基板50Bの第1、第2、および第3側面52A,52B,52Cに沿って配置されており、たとえば、基板50Bの面積の約1/3のサイズで形成されている。第1表面側配線310は、第1~第3配線領域312,314,316を含む。なお、第1~第3配線領域312,314,316は各々、第1表面側配線310の一部であり、第1~第3配線領域312,314,316の物理的な境界が第1表面側配線310に存在するわけではない。 The first surface-side wiring 310 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50B, and has a size that is approximately 1/3 of the area of the substrate 50B, for example. ing. The first surface-side wiring 310 includes first to third wiring regions 312, 314, and 316. Note that the first to third wiring regions 312, 314, and 316 are each part of the first surface side wiring 310, and the physical boundaries of the first to third wiring regions 312, 314, and 316 are on the first surface. It does not necessarily exist in the side wiring 310.
 第1配線領域312は、発光素子60のカソード電極68が実装される発光素子実装領域である。第2配線領域314は、第1キャパシタモジュール110の第2接続電極114が実装される第1キャパシタ実装領域の一部である。第3配線領域316は、第2キャパシタモジュール120の第2接続電極124が実装される第2キャパシタ実装領域の一部である。したがって、発光素子60のカソード電極68は、第1表面側配線310を介して第1および第2キャパシタモジュール110,120の第2接続電極114,124に電気的に接続されている。第2配線領域314と第3配線領域316は第1配線領域312に対して対称的に配置されている。 The first wiring area 312 is a light emitting element mounting area where the cathode electrode 68 of the light emitting element 60 is mounted. The second wiring area 314 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted. The third wiring area 316 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the cathode electrode 68 of the light emitting element 60 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the first surface wiring 310. The second wiring area 314 and the third wiring area 316 are arranged symmetrically with respect to the first wiring area 312.
 第2表面側配線320は、基板50Bの中央部分、つまり基板50Bの第3側面52Cと第4側面52Dとの間の中央部分に配置されている。
 第2表面側配線320は、基板50Bの第1および第2側面52A,52Bに沿って配置されるとともに、第1表面側配線310から離隔して配置されている。第2表面側配線320は、たとえば、基板50Bの面積の約1/2よりもわずかに大きいサイズで形成されている。第2表面側配線320は、第4~第6配線領域322,324,326を含む。なお、第4~第6配線領域322,324,326は各々、第2表面側配線320の一部であり、第4~第6配線領域322,324,326の物理的な境界が第2表面側配線320に存在するわけではない。
The second surface-side wiring 320 is arranged at a central portion of the substrate 50B, that is, a central portion between the third side surface 52C and the fourth side surface 52D of the substrate 50B.
The second front-side wiring 320 is arranged along the first and second side surfaces 52A and 52B of the substrate 50B, and is spaced apart from the first front-side wiring 310. The second surface-side wiring 320 is formed to have a size slightly larger than, for example, about 1/2 of the area of the substrate 50B. The second front side wiring 320 includes fourth to sixth wiring regions 322, 324, and 326. Note that the fourth to sixth wiring regions 322, 324, and 326 are each part of the second surface side wiring 320, and the physical boundaries of the fourth to sixth wiring regions 322, 324, and 326 are on the second surface. It does not necessarily exist in the side wiring 320.
 第4配線領域322は、トランジスタ80のドレイン電極88が実装されるトランジスタ実装領域である。第5配線領域324は、第1キャパシタモジュール110の第2接続電極114が実装される第1キャパシタ実装領域の一部である。第6配線領域326は、第2キャパシタモジュール120の第2接続電極124が実装される第2キャパシタ実装領域の一部である。したがって、トランジスタ80のドレイン電極88は、第2表面側配線320を介して第1および第2キャパシタモジュール110,120の第2接続電極114,124に電気的に接続されている。第5配線領域324と第6配線領域326は第4配線領域322に対して対称的に配置されている。 The fourth wiring region 322 is a transistor mounting region where the drain electrode 88 of the transistor 80 is mounted. The fifth wiring area 324 is a part of the first capacitor mounting area where the second connection electrode 114 of the first capacitor module 110 is mounted. The sixth wiring area 326 is a part of the second capacitor mounting area where the second connection electrode 124 of the second capacitor module 120 is mounted. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320. The fifth wiring area 324 and the sixth wiring area 326 are arranged symmetrically with respect to the fourth wiring area 322.
 第3表面側配線340と第4表面側配線350は、基板50Bの第4側面52Dに沿って並んで配置されるとともに互いに離隔して配置されている。
 第3表面側配線340は、基板50Bの第1および第4側面52A,52Dに沿って配置されるとともに、第2表面側配線320から離隔して配置されている。第3表面側配線340は、第7配線領域342を含む。なお、第7配線領域342は、第3表面側配線340の一部であり、第7配線領域342の物理的な境界が第3表面側配線340に存在するわけではない。第7配線領域342は、接続パッド162(図23、図26、図27参照)が配置される。なお、第2実施形態において、第7配線領域342(接続パッド162)には、トランジスタ80のゲート電極86がワイヤ152B(図23参照)を介して接続される。
The third front-side wiring 340 and the fourth front-side wiring 350 are arranged side by side along the fourth side surface 52D of the substrate 50B and spaced apart from each other.
The third front-side wiring 340 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50B, and is spaced apart from the second front-side wiring 320. The third front-side wiring 340 includes a seventh wiring region 342. Note that the seventh wiring region 342 is a part of the third front-side wiring 340, and a physical boundary of the seventh wiring region 342 does not exist in the third front-side wiring 340. In the seventh wiring region 342, connection pads 162 (see FIGS. 23, 26, and 27) are arranged. Note that in the second embodiment, the gate electrode 86 of the transistor 80 is connected to the seventh wiring region 342 (connection pad 162) via a wire 152B (see FIG. 23).
 第4表面側配線350は、基板50Bの第2および第4側面52B,52Dに沿って配置されるとともに、第2表面側配線320から離隔して配置されている。第4表面側配線350は、第8配線領域352を含む。なお、第8配線領域352は、第4表面側配線350の一部であり、第8配線領域352の物理的な境界が第4表面側配線350に存在するわけではない。第8配線領域352は、接続パッド164(図23参照)が配置される。なお、第2実施形態において、第8配線領域352(接続パッド164)には、トランジスタ80のソース電極84がワイヤ152A(図23参照)を介して接続される。 The fourth front-side wiring 350 is arranged along the second and fourth side surfaces 52B and 52D of the substrate 50B, and is spaced apart from the second front-side wiring 320. The fourth surface-side wiring 350 includes an eighth wiring region 352. Note that the eighth wiring region 352 is a part of the fourth front-side wiring 350, and the physical boundary of the eighth wiring region 352 does not exist in the fourth front-side wiring 350. In the eighth wiring region 352, connection pads 164 (see FIG. 23) are arranged. Note that in the second embodiment, the source electrode 84 of the transistor 80 is connected to the eighth wiring region 352 (connection pad 164) via a wire 152A (see FIG. 23).
 第1絶縁層250は、第1~第4表面側配線310,320,340,350の第1~第8配線領域312,314,316,322,324,326,342,352をそれぞれ露出させる第1~第8開口部251~258(図23参照)を含む。 The first insulating layer 250 has a first insulating layer 250 that exposes the first to eighth wiring regions 312, 314, 316, 322, 324, 326, 342, 352 of the first to fourth front side wirings 310, 320, 340, 350, respectively. It includes first to eighth openings 251 to 258 (see FIG. 23).
 第1絶縁層250の第1~第6開口部251~256から露出された第1~第6配線領域312,314,316,322,324,326上には、第1金属めっき材362(図23、図26、および図27参照)が設けられている。第1金属めっき材362は、たとえば、Niおよび金Auを含む積層体、NiとPdとAuを含む積層体を用いることができる。図26に示されるように、発光素子60のカソード電極68は、図示しない接合部材によって第1配線領域312(発光素子実装領域)の第1金属めっき材362に接合されている。また、トランジスタ80のドレイン電極88は、図示しない接合部材によって第4配線領域322(トランジスタ実装領域)の第1金属めっき材362に接合されている。また、図27に示されるように、第1キャパシタモジュール110の第1および第2接続電極113,114は、図示しない接合部材によって第5および第2配線領域324,314(第1キャパシタ実装領域)の第1金属めっき材362それぞれ接合されている。また、断面図は省略するが、第1キャパシタモジュール110と同様、第2キャパシタモジュール120の第1および第2接続電極123,124は、図示しない接合部材によって第6および第3配線領域326,316(第2キャパシタ実装領域)の第1金属めっき材362にそれぞれ接合されている。接合材は、Agペースト材、Su-Ag-Cuを含むはんだペースト材を用いることができる。接合材は、第1金属めっき材362に接合する部材に応じて変更されてもよい。たとえば、発光素子60の接合には、Agペースト材を用いることができる。また、トランジスタ80、第1および第2キャパシタモジュール110,120の接合には、はんだペースト材またはAgペースト材を用いることができる。 A first metal plating material 362 (Fig. 23, FIG. 26, and FIG. 27) are provided. As the first metal plating material 362, for example, a laminate containing Ni and gold Au, or a laminate containing Ni, Pd, and Au can be used. As shown in FIG. 26, the cathode electrode 68 of the light emitting element 60 is bonded to the first metal plating material 362 in the first wiring area 312 (light emitting element mounting area) by a bonding member (not shown). Furthermore, the drain electrode 88 of the transistor 80 is bonded to the first metal plating material 362 in the fourth wiring area 322 (transistor mounting area) by a bonding member (not shown). Further, as shown in FIG. 27, the first and second connection electrodes 113 and 114 of the first capacitor module 110 are connected to the fifth and second wiring areas 324 and 314 (first capacitor mounting area) by a bonding member (not shown). The first metal plating materials 362 are respectively joined. Further, although a cross-sectional view is omitted, similarly to the first capacitor module 110, the first and second connection electrodes 123, 124 of the second capacitor module 120 are connected to the sixth and third wiring regions 326, 316 by a bonding member (not shown). They are respectively bonded to the first metal plating material 362 (second capacitor mounting area). As the bonding material, an Ag paste material or a solder paste material containing Su-Ag-Cu can be used. The bonding material may be changed depending on the member to be bonded to the first metal plating material 362. For example, Ag paste material can be used to bond the light emitting element 60. Moreover, a solder paste material or an Ag paste material can be used to join the transistor 80 and the first and second capacitor modules 110 and 120.
 第1絶縁層250の第7および第8開口部257,258から露出された第7および第8配線領域342,352には、上述した接続パッド162,164(図23および図27)が設けられている。この接続パッド162,164は第2金属めっき材によって形成されている。第2金属めっき材としては、Ni及びAuを含む積層体、NiとPdとAuを含む積層体を用いることができる。 The aforementioned connection pads 162, 164 (FIGS. 23 and 27) are provided in the seventh and eighth wiring regions 342, 352 exposed through the seventh and eighth openings 257, 258 of the first insulating layer 250. ing. The connection pads 162, 164 are formed of a second metal plating material. As the second metal plating material, a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used.
 図25は、第2配線層230および第2絶縁層260を示す平面図である。なお、図25では、第1絶縁層250、第1配線層220、および基材210の図示を省略している。 FIG. 25 is a plan view showing the second wiring layer 230 and the second insulating layer 260. Note that in FIG. 25, illustration of the first insulating layer 250, the first wiring layer 220, and the base material 210 is omitted.
 図25に示されるように、第2配線層230は、基材210の裏面212B(図23参照)に設けられるとともに互いに離隔して配置された複数の配線、第2実施形態では、第1裏面側配線410と、第2裏面側配線420と、第3裏面側配線430と、第4裏面側配線440とを含む。 As shown in FIG. 25, the second wiring layer 230 includes a plurality of wirings provided on the back surface 212B (see FIG. 23) of the base material 210 and spaced apart from each other. It includes a side wiring 410, a second back side wiring 420, a third back side wiring 430, and a fourth back side wiring 440.
 第1裏面側配線410は、基板50Bの第1、第2、および第3側面52A,52B,52Cに沿って配置されている。第1裏面側配線410は第3側面52Cに沿って延びる長方形状に形成されている。第1裏面側配線410は、第1配線領域412を含む。なお、第1配線領域412は、第1裏面側配線410の一部であり、第1配線領域412の物理的な境界が第1裏面側配線410に存在するわけではない。第1裏面側配線410は、基板50Bの平面視において、図24に示す第1表面側配線310と重なっている。 The first backside wiring 410 is arranged along the first, second, and third side surfaces 52A, 52B, and 52C of the substrate 50B. The first back side wiring 410 is formed in a rectangular shape extending along the third side surface 52C. The first back side wiring 410 includes a first wiring region 412. Note that the first wiring region 412 is a part of the first backside wiring 410, and a physical boundary of the first wiring region 412 does not exist in the first backside wiring 410. The first back side wiring 410 overlaps with the first front side wiring 310 shown in FIG. 24 in a plan view of the substrate 50B.
 第2裏面側配線420は、基板50Bの中央部分、つまり基板50Bの第3側面52Cと第4側面52Dとの間の中央部分に配置されている。第2裏面側配線420は、基板50Bの第1および第2側面52A,52Bに沿って配置されるとともに、第1裏面側配線410から離隔して配置されている。第2裏面側配線420は、たとえば図24に示す第2表面側配線320と同じサイズで形成されている。第2裏面側配線420は、第2配線領域422を含む。第2裏面側配線420は、基板50Bの平面視において、図24に示す第2表面側配線320と重なっている。 The second back side wiring 420 is arranged at the center portion of the substrate 50B, that is, at the center portion between the third side surface 52C and the fourth side surface 52D of the substrate 50B. The second backside wiring 420 is arranged along the first and second side surfaces 52A and 52B of the substrate 50B, and is spaced apart from the first backside wiring 410. The second back side wiring 420 is formed to have the same size as the second front side wiring 320 shown in FIG. 24, for example. The second back side wiring 420 includes a second wiring region 422. The second back side wiring 420 overlaps with the second front side wiring 320 shown in FIG. 24 in a plan view of the substrate 50B.
 第3裏面側配線430と第4裏面側配線440は、基板50Bの第4側面52Dに沿って並んで配置されるとともに、互いに離隔して配置されている。
 第3裏面側配線430は、基板50Bの第1および第4側面52A,52Dに沿って配置されるとともに、第2裏面側配線420から離隔して配置されている。第3裏面側配線430は、第3配線領域432を含む。なお、第3配線領域432は、第3裏面側配線430の一部であり、第3配線領域432の物理的な境界が第3裏面側配線430に存在しているわけではない。第3裏面側配線430は、基板50Bの平面視において、第3表面側配線340と重なっている。
The third back side wiring 430 and the fourth back side wiring 440 are arranged side by side along the fourth side surface 52D of the substrate 50B and spaced apart from each other.
The third backside wiring 430 is arranged along the first and fourth side surfaces 52A and 52D of the substrate 50B, and is spaced apart from the second backside wiring 420. The third back side wiring 430 includes a third wiring region 432. Note that the third wiring area 432 is a part of the third back side wiring 430, and the physical boundary of the third wiring area 432 does not exist in the third back side wiring 430. The third back side wiring 430 overlaps with the third front side wiring 340 in a plan view of the substrate 50B.
 第4裏面側配線440は、基板50Bの第2および第4側面52B,52Dに沿って配置されるとともに、第2裏面側配線420から離隔して配置されている。第4裏面側配線440は、第4配線領域442を含む。なお、第4配線領域442は、第4裏面側配線440の一部であり、第4配線領域442の物理的な境界が第4裏面側配線440に存在しているわけではない。第4裏面側配線440は、基板50Bの平面視において、第4表面側配線350と重なっている。 The fourth backside wiring 440 is arranged along the second and fourth side surfaces 52B and 52D of the substrate 50B, and is spaced apart from the second backside wiring 420. The fourth back side wiring 440 includes a fourth wiring region 442. Note that the fourth wiring area 442 is a part of the fourth back side wiring 440, and the physical boundary of the fourth wiring area 442 does not exist in the fourth back side wiring 440. The fourth back side wiring 440 overlaps with the fourth front side wiring 350 in a plan view of the substrate 50B.
 第2絶縁層260は、第1~第4裏面側配線410,420,430,440の第1~第4配線領域412,422,432,442をそれぞれ露出させる第1~第4開口部261~264を含む。図26,図27に示されるように、第2絶縁層260の第1~第3開口部261~263から露出された第1~第3配線領域412,422,432には、第3金属めっき材364が設けられている。なお、図示されていないが、図25に示される第4開口部264から露出された第4配線領域442には、第3配線領域432と同様に、第3金属めっき材364が設けられている。そして、第1~第4配線領域412,422,432,442の第3金属めっき材364は、図示しない接合材によって駆動基板のパッドに接合される。したがって、第1~第4裏面側配線410,420,430,440及び第3金属めっき材364は、半導体発光装置10Bの実装電極を構成する。第3金属めっき材364としては、Ni及びAuを含む積層体、NiとPdとAuを含む積層体を用いることgできる。接合材としては、たとえばSu-Ag-Cuを含むはんだペースト材を用いることができる。 The second insulating layer 260 has first to fourth openings 261 that expose the first to fourth wiring regions 412, 422, 432, 442 of the first to fourth back side wirings 410, 420, 430, 440, respectively. 264 included. As shown in FIGS. 26 and 27, the first to third wiring regions 412, 422, and 432 exposed through the first to third openings 261 to 263 of the second insulating layer 260 are coated with third metal plating. A material 364 is provided. Although not shown, a third metal plating material 364 is provided in the fourth wiring region 442 exposed from the fourth opening 264 shown in FIG. 25, similar to the third wiring region 432. . The third metal plating material 364 of the first to fourth wiring regions 412, 422, 432, and 442 is bonded to the pad of the drive board by a bonding material (not shown). Therefore, the first to fourth back side wirings 410, 420, 430, 440 and the third metal plating material 364 constitute mounting electrodes of the semiconductor light emitting device 10B. As the third metal plating material 364, a laminate containing Ni and Au or a laminate containing Ni, Pd, and Au can be used. As the bonding material, for example, a solder paste material containing Su--Ag--Cu can be used.
 図23~図27に示されるように、第1配線層220と第2配線層230は、基材210を貫通する上述の第1~第4ビア配線242,244,246,248によって電気的に接続されている。第2実施形態において、各ビア配線242,244,246,248はたとえば円柱状に形成されているが、その形状は特に限定されない。これらのビア配線242,244,246,248はいわゆるサーマルビアであり、第1配線層220と第2配線層230との間の導電経路として機能するとともに、第1配線層220から第2配線層230への放熱経路として機能する。 As shown in FIGS. 23 to 27, the first wiring layer 220 and the second wiring layer 230 are electrically connected to each other by the above-mentioned first to fourth via wirings 242, 244, 246, and 248 that penetrate the base material 210. It is connected. In the second embodiment, each via wiring 242, 244, 246, 248 is formed, for example, in a cylindrical shape, but the shape is not particularly limited. These via wirings 242, 244, 246, and 248 are so-called thermal vias, and function as conductive paths between the first wiring layer 220 and the second wiring layer 230, and also serve as conductive paths from the first wiring layer 220 to the second wiring layer. It functions as a heat dissipation path to 230.
 第1ビア配線242は、第1配線領域312(発光素子実装領域)内に位置しており、第1表面側配線310と第1裏面側配線410とを電気的に接続する。したがって、発光素子60のカソード電極68と第1および第2キャパシタモジュール110,120の第1接続電極113,123は、第1表面側配線310および第1ビア配線242を介して、第1裏面側配線410に電気的に接続されている。 The first via wiring 242 is located within the first wiring area 312 (light emitting element mounting area) and electrically connects the first front side wiring 310 and the first back side wiring 410. Therefore, the cathode electrode 68 of the light emitting element 60 and the first connection electrodes 113, 123 of the first and second capacitor modules 110, 120 are connected to the first back side via the first front side wiring 310 and the first via wiring 242. It is electrically connected to wiring 410.
 第2ビア配線244は、第4配線領域322(トランジスタ実装領域)内に位置しており、第2表面側配線320と第2裏面側配線420とを電気的に接続する。したがって、トランジスタ80のドレイン電極88は、第2表面側配線320および第2ビア配線244を介して第2裏面側配線420に電気的に接続されている。また、トランジスタ80のドレイン電極88は、第2表面側配線320を介して第1および第2キャパシタモジュール110,120の第2接続電極114,124に電気的に接続されている。なお、第2ビア配線244の配置は特に限定されない。たとえば、第2ビア配線244は、第4および第2配線領域322,422内に均等に配置されている。第2実施形態では、たとえば、第2ビア配線244は2×3のアレイ状に配置されている。 The second via wiring 244 is located within the fourth wiring area 322 (transistor mounting area) and electrically connects the second front side wiring 320 and the second back side wiring 420. Therefore, the drain electrode 88 of the transistor 80 is electrically connected to the second back side wiring 420 via the second front side wiring 320 and the second via wiring 244. Further, the drain electrode 88 of the transistor 80 is electrically connected to the second connection electrodes 114 and 124 of the first and second capacitor modules 110 and 120 via the second surface side wiring 320. Note that the arrangement of the second via wiring 244 is not particularly limited. For example, the second via wiring 244 is evenly arranged within the fourth and second wiring regions 322 and 422. In the second embodiment, for example, the second via wiring 244 is arranged in a 2×3 array.
 第3ビア配線246は、第3表面側配線340と第3裏面側配線430とを電気的に接続する。したがって、トランジスタ80のゲート電極86は、図23に示すワイヤ152B、第3表面側配線340、および第3ビア配線246を介して第3裏面側配線430に電気的に接続されている。なお、第3ビア配線246の配置は特に限定されない。たとえば、2つの第3ビア配線246は、基板50Bの第4側面52Dに沿って並んで配置されている。 The third via wiring 246 electrically connects the third front side wiring 340 and the third back side wiring 430. Therefore, the gate electrode 86 of the transistor 80 is electrically connected to the third back side wiring 430 via the wire 152B, the third front side wiring 340, and the third via wiring 246 shown in FIG. Note that the arrangement of the third via wiring 246 is not particularly limited. For example, the two third via wirings 246 are arranged side by side along the fourth side surface 52D of the substrate 50B.
 第4ビア配線248は、第4表面側配線350と第4裏面側配線440とを電気的に接続する。したがって、トランジスタ80のソース電極84は、図23に示すワイヤ152A、第4表面側配線350、および第4ビア配線248を介して第4裏面側配線440に電気的に接続されている。なお、第4ビア配線248の配置は特に限定されない。たとえば、2つの第4ビア配線248は、基板50Bの第4側面52Dに沿って並んで配置されている。 The fourth via wiring 248 electrically connects the fourth front side wiring 350 and the fourth back side wiring 440. Therefore, the source electrode 84 of the transistor 80 is electrically connected to the fourth back side wiring 440 via the wire 152A, the fourth front side wiring 350, and the fourth via wiring 248 shown in FIG. Note that the arrangement of the fourth via wiring 248 is not particularly limited. For example, the two fourth via wirings 248 are arranged side by side along the fourth side surface 52D of the substrate 50B.
 (封止樹脂)
 図22、図26、図27に示されるように、封止樹脂90は、基板50Bの表面を覆うように形成されている。封止樹脂90は、基板50Bの表面に実装された発光素子60、トランジスタ80、第1および第2キャパシタモジュール110,120、各ワイヤ190,152A,152B(図23参照)を封止する。封止樹脂90は、透光性を有する樹脂材料によって形成されている。この樹脂材料は、エポキシ樹脂、アクリル樹脂、等を用いることができる。
(Sealing resin)
As shown in FIGS. 22, 26, and 27, the sealing resin 90 is formed to cover the surface of the substrate 50B. The sealing resin 90 seals the light emitting element 60, the transistor 80, the first and second capacitor modules 110, 120, and each wire 190, 152A, 152B (see FIG. 23) mounted on the surface of the substrate 50B. The sealing resin 90 is made of a translucent resin material. As this resin material, epoxy resin, acrylic resin, etc. can be used.
 (効果)
 第2実施形態の半導体発光装置10Bによれば、以下の効果が得られる。
 (2-1)第1実施形態の半導体発光装置10Aにおける(1-1)~(1-7)(1-9)の効果が得られる。
(effect)
According to the semiconductor light emitting device 10B of the second embodiment, the following effects can be obtained.
(2-1) Effects (1-1) to (1-7) and (1-9) in the semiconductor light emitting device 10A of the first embodiment can be obtained.
 (2-2)第2実施形態の半導体発光装置10Bは、面実装型の発光モジュールである。したがって、図12に示すゲートドライバ908を構成する回路素子と同様に回路基板に実装することができる。 (2-2) The semiconductor light emitting device 10B of the second embodiment is a surface-mounted light emitting module. Therefore, it can be mounted on a circuit board in the same way as the circuit elements forming the gate driver 908 shown in FIG. 12.
 (変更例)
 上記実施形態は、以下のように変更して実施することができる。また、上記実施形態および以下の各変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Example of change)
The above embodiment can be modified and implemented as follows. Further, the above embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
 ・第1および第2キャパシタモジュール110,120の第1接続電極113,123を、トランジスタ80のドレイン電極88に電気的に接続するように基板50A,50Bに実装してもよい。 - The first connection electrodes 113 and 123 of the first and second capacitor modules 110 and 120 may be mounted on the substrates 50A and 50B so as to be electrically connected to the drain electrode 88 of the transistor 80.
 ・第1実施形態において、ベース22の裏面22Bに固定されてヒートシンク24に電気的に接続されるリードピン142Dの数は1つに限定されない。
 ・第1および第2キャパシタモジュール110,120に代えて1つまたは3つ以上のキャパシタモジュールを用いてもよい。
- In the first embodiment, the number of lead pins 142D fixed to the back surface 22B of the base 22 and electrically connected to the heat sink 24 is not limited to one.
- One or more capacitor modules may be used instead of the first and second capacitor modules 110, 120.
 ・第2ビア配線244の数は6つに限定されず、他の任意の数とすることができる。言い換えれば、第2ビア配線244の数は1つまたは複数とすることができる。
 ・第4ビア配線248の数は4つに限定されず、他の任意の数とすることができる。言い換えれば、第2ビア配線248の数は1つまたは複数とすることができる。
- The number of second via wirings 244 is not limited to six, and can be any other number. In other words, the number of second via wirings 244 can be one or more.
- The number of fourth via wirings 248 is not limited to four, and can be any other number. In other words, the number of second via wirings 248 can be one or more.
 ・中間配線層240は1つに限定されない。基材210の内部に複数の中間配線層240を介在させてもよい。
 ・発光素子60に逆並列接続される保護ダイオード(例えばSBD906)を発光モジュール30A(例えば基板50A)に実装してもよい。駆動基板910に設けられているSBD906を発光モジュール30Aに一体化することにより、駆動基板910を小型化して、システム全体のサイズを低減することができる。
- The number of intermediate wiring layers 240 is not limited to one. A plurality of intermediate wiring layers 240 may be interposed inside the base material 210.
- A protection diode (for example, SBD906) connected in antiparallel to the light emitting element 60 may be mounted on the light emitting module 30A (for example, the substrate 50A). By integrating the SBD 906 provided on the drive board 910 into the light emitting module 30A, the drive board 910 can be downsized and the size of the entire system can be reduced.
 ・トランジスタ80の駆動を制御するゲートドライバ908を発光モジュール30A(例えば基板50A)に実装してもよい。駆動基板910に設けられているゲートドライバ908を発光モジュール30Aに一体化することにより、駆動基板910を小型化して、システム全体のサイズを低減することができる。 - A gate driver 908 that controls the driving of the transistor 80 may be mounted on the light emitting module 30A (for example, the substrate 50A). By integrating the gate driver 908 provided on the drive board 910 into the light emitting module 30A, the drive board 910 can be downsized and the size of the entire system can be reduced.
 本明細書において、「AおよびBのうちの少なくとも1つ」とは、「Aのみ、または、Bのみ、または、AおよびBの両方」を意味するものとして理解されるべきである。
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」との双方の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置される得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。
As used herein, "at least one of A and B" should be understood to mean "A only, or B only, or both A and B."
As used in this disclosure, the term "on" includes both "on" and "above" unless the context clearly indicates otherwise. Thus, the phrase "the first layer is formed on the second layer" refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that in embodiments the first layer may be placed above the second layer without contacting the second layer. That is, the term "on" does not exclude structures in which other layers are formed between the first layer and the second layer.
 本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(たとえば、図1に示される構造)は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。たとえば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。 The Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 1) are different from each other in that "upper" and "lower" in the Z-axis direction described herein are "upper" and "lower" in the vertical direction. Not limited to one thing. For example, the X-axis direction may be a vertical direction, or the Y-axis direction may be a vertical direction.
 (付記)
 本開示から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載される構成要素には、実施形態中の対応する構成要素の参照符号が付されている。参照符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、参照符号で示される構成要素に限定されるべきではない。
(Additional note)
The technical ideas that can be understood from this disclosure are described below. Note that, not for the purpose of limitation but for the purpose of aiding understanding, the reference numerals of the corresponding components in the embodiments are attached to the components described in the supplementary notes. Reference numerals are shown by way of example to aid understanding, and the components described in each appendix should not be limited to the components indicated by the reference numerals.
 (付記1)
 基板(50A,50B)と、
 前記基板(50A,50B)上に実装された発光素子(60)と、
 前記基板(50A,50B)上に実装され、前記発光素子(60)を駆動するように構成されたトランジスタ(80)と、
 前記基板(50A,50B)上に実装され、前記基板(50A,50B)の厚さ方向(Y)において前記基板(50A,50B)と対向する主面(112A,122A)と、前記主面(112A,122A)に設けられた第1接続電極(113,123)および第2接続電極(114,124)とを有し、前記発光素子(60)に電気的に接続されたキャパシタモジュール(110,120)と、
 を備え、
 前記キャパシタモジュール(110,120)は、
 互いに反対側を向く第1面および第2面を有するシリコン基板(116,126)と、
 前記第1面に設けられた前記第1接続電極(113,123)と、
 前記第2面に設けられ、前記第1接続電極(113,123)に対向する対向電極(117,127)と、
 を含む、
 半導体発光装置。
(Additional note 1)
Boards (50A, 50B),
a light emitting element (60) mounted on the substrate (50A, 50B);
a transistor (80) mounted on the substrate (50A, 50B) and configured to drive the light emitting element (60);
a main surface (112A, 122A) mounted on the substrate (50A, 50B) and facing the substrate (50A, 50B) in the thickness direction (Y) of the substrate (50A, 50B); A capacitor module (110, 122A) having a first connection electrode (113, 123) and a second connection electrode (114, 124) provided in the light emitting element (60), and electrically connected to the light emitting element (60). 120) and
Equipped with
The capacitor module (110, 120) includes:
a silicon substrate (116, 126) having a first surface and a second surface facing oppositely to each other;
the first connection electrode (113, 123) provided on the first surface;
a counter electrode (117, 127) provided on the second surface and facing the first connection electrode (113, 123);
including,
Semiconductor light emitting device.
 (付記2)
 前記第1接続電極(113,123)と前記第2接続電極(114,124)は、前記主面(112A,122A)と平行な方向に離隔して配置されている、付記1に記載の半導体発光装置。
(Additional note 2)
The semiconductor according to supplementary note 1, wherein the first connection electrode (113, 123) and the second connection electrode (114, 124) are spaced apart in a direction parallel to the main surface (112A, 122A). Light emitting device.
 (付記3)
 前記キャパシタモジュール(110,120)は、前記対向電極(117,127)を前記第2接続電極(114,124)に接続する接続部(118,128)を含む、付記1または付記2に記載の半導体発光装置。
(Additional note 3)
The capacitor module (110, 120) includes a connection part (118, 128) that connects the counter electrode (117, 127) to the second connection electrode (114, 124), according to appendix 1 or 2. Semiconductor light emitting device.
 (付記4)
 前記接続部(118,128)は、前記対向電極(117,127)に接続された第1配線(118A,128A)と、前記第1配線(118A,128A)を前記第2接続電極(114,124)に接続する第2配線(118B,128B)と、を含む、付記3に記載の半導体発光装置。
(Additional note 4)
The connection portion (118, 128) connects the first wiring (118A, 128A) connected to the counter electrode (117, 127) and the first wiring (118A, 128A) to the second connection electrode (114, 124), and a second wiring (118B, 128B) connected to the semiconductor light emitting device according to appendix 3.
 (付記5)
 前記第2配線(118B,128B)は複数設けられている、付記4に記載の半導体発光装置。
(Appendix 5)
The semiconductor light emitting device according to appendix 4, wherein a plurality of the second wirings (118B, 128B) are provided.
 (付記6)
 前記第2配線(118B,128B)は、前記シリコン基板(116,126)を貫通する貫通配線である、付記4または付記5に記載の半導体発光装置。
(Appendix 6)
The semiconductor light emitting device according to appendix 4 or 5, wherein the second wiring (118B, 128B) is a through wiring that penetrates the silicon substrate (116, 126).
 (付記7)
 前記キャパシタモジュール(110,120)は、前記シリコン基板(116,126)を封止する封止樹脂(119,129)を含む、付記4から付記6のいずれか一つに記載の半導体発光装置。
(Appendix 7)
The semiconductor light emitting device according to any one of attachments 4 to 6, wherein the capacitor module (110, 120) includes a sealing resin (119, 129) that seals the silicon substrate (116, 126).
 (付記8)
 前記第2配線(118B,128B)は、前記封止樹脂(119,129)に形成された開口に設けられたビア配線である、付記7に記載の半導体発光装置。
(Appendix 8)
The semiconductor light emitting device according to appendix 7, wherein the second wiring (118B, 128B) is a via wiring provided in an opening formed in the sealing resin (119, 129).
 (付記9)
 前記キャパシタモジュール(110,120)の厚さは、前記トランジスタ(80)の厚さ以下である、付記1から付記8のいずれか一つに記載の半導体発光装置。
(Appendix 9)
The semiconductor light emitting device according to any one of Supplementary Notes 1 to 8, wherein the thickness of the capacitor module (110, 120) is equal to or less than the thickness of the transistor (80).
 (付記10)
 前記トランジスタ(80)は、縦型MOSEFTである、付記1から付記9のいずれか一つに記載の半導体発光装置。
(Appendix 10)
The semiconductor light emitting device according to any one of appendices 1 to 9, wherein the transistor (80) is a vertical MOSEFT.
 (付記11)
 前記基板(50A,50B)に2つのキャパシタモジュール(110,120)が実装されている、付記1から付記10のいずれか一つに記載の半導体発光装置。
(Appendix 11)
The semiconductor light emitting device according to any one of Supplementary Notes 1 to 10, wherein two capacitor modules (110, 120) are mounted on the substrate (50A, 50B).
 (付記12)
 前記基板(50A,50B)に実装され、前記発光素子(60)に接続された保護ダイオードを含む、付記1から付記11のいずれか一つに記載の半導体発光装置。
(Appendix 12)
The semiconductor light emitting device according to any one of Supplementary notes 1 to 11, including a protection diode mounted on the substrate (50A, 50B) and connected to the light emitting element (60).
 (付記13)
 前記基板(50A,50B)は、樹脂基板、シリコン基板、ガラス基板、またはセラミック基板である、付記1から付記12のいずれか一つに記載の半導体発光装置。
(Appendix 13)
The semiconductor light emitting device according to any one of attachments 1 to 12, wherein the substrate (50A, 50B) is a resin substrate, a silicon substrate, a glass substrate, or a ceramic substrate.
 (付記14)
 前記基板(50A,50B)は、両面基板または多層基板である、付記1から付記13のいずれか一つに記載の半導体発光装置。
(Appendix 14)
The semiconductor light emitting device according to any one of attachments 1 to 13, wherein the substrate (50A, 50B) is a double-sided substrate or a multilayer substrate.
 (付記15)
 導電性のベース(22)と、前記基板(50A,50B)が搭載された導電性のヒートシンク(24)とを含むステム(20)と、
 前記ベース(22)に設けられた複数のリードピン(142A~142D)と、
 を含む、付記1から付記14のいずれか一つに記載の半導体発光装置。
(Appendix 15)
a stem (20) including a conductive base (22) and a conductive heat sink (24) on which the substrate (50A, 50B) is mounted;
a plurality of lead pins (142A to 142D) provided on the base (22);
The semiconductor light emitting device according to any one of Supplementary Notes 1 to 14, comprising:
 (付記16)
 前記基板(50A,50B)は、前記発光素子(60)が実装された面とは反対側の面に設けられた実装電極を含む、付記1から付記15のいずれか一つに記載の半導体発光装置。
(Appendix 16)
The substrate (50A, 50B) is a semiconductor light emitting device according to any one of appendices 1 to 15, including a mounting electrode provided on a surface opposite to the surface on which the light emitting element (60) is mounted. Device.
 (付記17)
 前記発光素子(60)が実装された面とともに前記発光素子(60)を覆う、透光性を有する封止樹脂(90)を備える、付記16に記載の半導体発光装置。
(Appendix 17)
The semiconductor light-emitting device according to appendix 16, further comprising a transparent sealing resin (90) that covers the light-emitting element (60) as well as the surface on which the light-emitting element (60) is mounted.
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。 The above description is merely an example. Those skilled in the art will recognize that many more possible combinations and permutations are possible beyond those listed for the purpose of describing the techniques of the present disclosure. This disclosure is intended to cover all alternatives, variations, and modifications falling within the scope of this disclosure, including the claims.
 10A,10B 半導体発光装置
 20 ステム
 22 ベース
 24 ヒートシンク
 30A,30A1,30B 発光モジュール
 40 包囲部材
 42 収容空間
 50A,50A1,50B 基板
 60 発光素子
 66 アノード電極
 68 カソード電極
 70 発光素子駆動回路
 80 トランジスタ
 84 ソース電極
 86 ゲート電極
 88 ドレイン電極
 90 封止樹脂
 110 第1キャパシタモジュール
 110A~110C キャパシタモジュール
 111A 第1側面
 111B 第2側面
 111C 第3側面
 111D 第4側面
 112A 第1主面
 112B 第2主面
 113 第1接続電極
 113A 電極
 113B 第2対向電極
 113C ビア配線
 114 第2接続電極
 115 シリコンキャパシタ
 116 シリコン基板
 116A 第1面
 116B 第2面
 116C 貫通孔
 117 対向電極
 118 接続部
 118A 第1配線
 118B 第2配線
 119 封止樹脂
 119A 開口
 119B 第1開口
 119C 第2開口
 119D 第1面
 120 第2キャパシタモジュール
 121A 第1側面
 121B 第2側面
 121C 第3側面
 121D 第4側面
 122A 第1主面
 122B 第2主面
 123 第1接続電極
 124 第2接続電極
 125 シリコンキャパシタ
 126 シリコン基板
 127 対向電極
 128 接続部
 128A 第1配線
 128B 第2配線
 129 封止樹脂
 142A~142D リードピン
 144 絶縁材
 152A~152C ワイヤ
 160 外部素子接続パッド
 162 接続パッド
 164 接続パッド
 190,191 ワイヤ
 210 基材
 210A 第1基材
 210B 第2基材
 220 第1配線層
 230 第2配線層
 240 中間配線層
 242 第1ビア配線
 244 第2ビア配線
 246 第3ビア配線
 248 第4ビア配線
 250 第1絶縁層
 260 第2絶縁層
 310 第1表面側配線
 320 第2表面側配線
 330 第3表面側配線
 340 第3表面側配線
 350 第4表面側配線
 362 第1金属めっき材
 364 第3金属めっき材
 410 第1裏面側配線
 420 第2裏面側配線
 430 第3裏面側配線
 440 第4裏面側配線
 530 第3中間配線
 902 抵抗素子
 904 定電圧源
 906 ショットキーバリアダイオード(SBD)
 908 ゲートドライバ
 910 駆動基板
10A, 10B semiconductor light emitting device 20 stem 22 base 24 heat sink 30A, 30A1, 30B light emitting module 40 surrounding member 42 housing space 50A, 50A1, 50B substrate 60 light emitting element 66 anode electrode 68 cathode electrode 70 light emitting element drive circuit 80 transistor 84 source electrode 86 Gate electrode 88 Drain electrode 90 Sealing resin 110 First capacitor module 110A to 110C Capacitor module 111A First side surface 111B Second side surface 111C Third side surface 111D Fourth side surface 112A First main surface 112B Second main surface 113 First connection Electrode 113A Electrode 113B Second opposing electrode 113C Via wiring 114 Second connection electrode 115 Silicon capacitor 116 Silicon substrate 116A First surface 116B Second surface 116C Through hole 117 Opposing electrode 118 Connection portion 118A First wiring 118B Second wiring 119 Sealing Resin 119A Opening 119B First opening 119C Second opening 119D First surface 120 Second capacitor module 121A First side 121B Second side 121C Third side 121D Fourth side 122A First main surface 122B Second main surface 123 First connection Electrode 124 Second connection electrode 125 Silicon capacitor 126 Silicon substrate 127 Counter electrode 128 Connection part 128A First wiring 128B Second wiring 129 Sealing resin 142A to 142D Lead pin 144 Insulating material 152A to 152C Wire 160 External element connection pad 162 Connection pad 164 Connection pad 190, 191 Wire 210 Base material 210A First base material 210B Second base material 220 First wiring layer 230 Second wiring layer 240 Intermediate wiring layer 242 First via wiring 244 Second via wiring 246 Third via wiring 248 4 via wiring 250 First insulating layer 260 Second insulating layer 310 First surface side wiring 320 Second surface side wiring 330 Third surface side wiring 340 Third surface side wiring 350 Fourth surface side wiring 362 First metal plating material 364 Third metal plating material 410 First back side wiring 420 Second back side wiring 430 Third back side wiring 440 Fourth back side wiring 530 Third intermediate wiring 902 Resistance element 904 Constant voltage source 906 Schottky barrier diode (SBD)
908 Gate driver 910 Drive board

Claims (17)

  1.  基板と、
     前記基板上に実装された発光素子と、
     前記基板上に実装され、前記発光素子を駆動するように構成されたトランジスタと、
     前記基板上に実装され、前記基板の厚さ方向において前記基板と対向する主面と、前記主面に設けられた第1接続電極および第2接続電極とを有し、前記発光素子に電気的に接続されたキャパシタモジュールと、
     を備え、
     前記キャパシタモジュールは、
     互いに反対側を向く第1面および第2面を有するシリコン基板と、
     前記第1面に設けられた前記第1接続電極と、
     前記第2面に設けられ、前記第1接続電極に対向する対向電極と、
     を含む、
     半導体発光装置。
    A substrate and
    a light emitting element mounted on the substrate;
    a transistor mounted on the substrate and configured to drive the light emitting element;
    It is mounted on the substrate and has a main surface facing the substrate in the thickness direction of the substrate, and a first connection electrode and a second connection electrode provided on the main surface, and electrically connects the light emitting element. a capacitor module connected to the
    Equipped with
    The capacitor module includes:
    a silicon substrate having a first surface and a second surface facing oppositely to each other;
    the first connection electrode provided on the first surface;
    a counter electrode provided on the second surface and facing the first connection electrode;
    including,
    Semiconductor light emitting device.
  2.  前記第1接続電極と前記第2接続電極は、前記主面と平行な方向に離れて配置されている、請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the first connection electrode and the second connection electrode are arranged apart from each other in a direction parallel to the main surface.
  3.  前記キャパシタモジュールは、前記対向電極を前記第2接続電極に接続する接続部を含む、請求項1または2に記載の半導体発光装置。 3. The semiconductor light emitting device according to claim 1, wherein the capacitor module includes a connection part that connects the counter electrode to the second connection electrode.
  4.  前記接続部は、前記対向電極に接続された第1配線と、前記第1配線を前記第2接続電極に接続する第2配線と、を含む、請求項3に記載の半導体発光装置。 The semiconductor light emitting device according to claim 3, wherein the connection portion includes a first wiring connected to the counter electrode and a second wiring connecting the first wiring to the second connection electrode.
  5.  前記第2配線は複数設けられている、請求項4に記載の半導体発光装置。 5. The semiconductor light emitting device according to claim 4, wherein a plurality of said second wirings are provided.
  6.  前記第2配線は、前記シリコン基板を貫通する貫通配線である、請求項4または5に記載の半導体発光装置。 6. The semiconductor light emitting device according to claim 4, wherein the second wiring is a through wiring that penetrates the silicon substrate.
  7.  前記キャパシタモジュールは、前記シリコン基板を封止する封止樹脂を含む、請求項4から6のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 4 to 6, wherein the capacitor module includes a sealing resin that seals the silicon substrate.
  8.  前記第2配線は、前記封止樹脂に形成された開口に設けられたビア配線である、請求項7に記載の半導体発光装置。 8. The semiconductor light emitting device according to claim 7, wherein the second wiring is a via wiring provided in an opening formed in the sealing resin.
  9.  前記キャパシタモジュールの厚さは、前記トランジスタの厚さ以下である、請求項1から8のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 8, wherein the thickness of the capacitor module is less than or equal to the thickness of the transistor.
  10.  前記トランジスタは、縦型MOSEFTである、請求項1から9のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 9, wherein the transistor is a vertical MOSEFT.
  11.  前記基板に2つのキャパシタモジュールが実装されている、請求項1から10のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 10, wherein two capacitor modules are mounted on the substrate.
  12.  前記基板に実装され、前記発光素子に接続された保護ダイオードを含む、請求項1から11のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 11, further comprising a protection diode mounted on the substrate and connected to the light emitting element.
  13.  前記基板は、樹脂基板、シリコン基板、ガラス基板、またはセラミック基板である、請求項1から12のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 12, wherein the substrate is a resin substrate, a silicon substrate, a glass substrate, or a ceramic substrate.
  14.  前記基板は、両面基板または多層基板である、請求項1から13のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 13, wherein the substrate is a double-sided substrate or a multilayer substrate.
  15.  導電性のベースと、前記基板が搭載された導電性のヒートシンクとを含むステムと、
     前記ベースに設けられた複数のリードピンと、
     を含む、請求項1から14のいずれか一項に記載の半導体発光装置。
    a stem including a conductive base and a conductive heat sink on which the substrate is mounted;
    a plurality of lead pins provided on the base;
    The semiconductor light emitting device according to any one of claims 1 to 14, comprising:
  16.  前記基板は、前記発光素子が実装された面とは反対側の面に設けられた実装電極を含む、請求項1から15のいずれか一項に記載の半導体発光装置。 16. The semiconductor light emitting device according to claim 1, wherein the substrate includes a mounting electrode provided on a surface opposite to a surface on which the light emitting element is mounted.
  17.  前記発光素子が実装された面とともに前記発光素子を覆う、透光性を有する封止樹脂を備える、請求項16に記載の半導体発光装置。 17. The semiconductor light emitting device according to claim 16, further comprising a translucent sealing resin that covers the light emitting element as well as the surface on which the light emitting element is mounted.
PCT/JP2023/019574 2022-05-27 2023-05-25 Semiconductor light emitting device WO2023229021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087081 2022-05-27
JP2022087081 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023229021A1 true WO2023229021A1 (en) 2023-11-30

Family

ID=88919473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019574 WO2023229021A1 (en) 2022-05-27 2023-05-25 Semiconductor light emitting device

Country Status (1)

Country Link
WO (1) WO2023229021A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180278011A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Laser diode module
WO2021014917A1 (en) * 2019-07-23 2021-01-28 ローム株式会社 Semiconductor laser device
WO2022102411A1 (en) * 2020-11-13 2022-05-19 ローム株式会社 Semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180278011A1 (en) * 2017-03-23 2018-09-27 Infineon Technologies Ag Laser diode module
WO2021014917A1 (en) * 2019-07-23 2021-01-28 ローム株式会社 Semiconductor laser device
WO2022102411A1 (en) * 2020-11-13 2022-05-19 ローム株式会社 Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
KR100298162B1 (en) Resin-encapsulated semiconductor device
TWI385778B (en) Semiconductor power device having a stacked discrete inductor structure
US11742264B2 (en) Semiconductor device
CN108475672B (en) Semiconductor module
WO2018101382A1 (en) High-frequency module
JP4900148B2 (en) Semiconductor device
KR20200067233A (en) Semiconductor device
US11848315B2 (en) Semiconductor light-emitting device
CN112997407A (en) Low inductance laser driver package with lead frame and thin dielectric layer mask pad definition
US20130270706A1 (en) Semiconductor device
WO2023229021A1 (en) Semiconductor light emitting device
JP5172290B2 (en) Semiconductor device
JP6583545B2 (en) Power supply module and power supply
JP2017123386A (en) Semiconductor device and portable device using the same
KR102425194B1 (en) Package
JP7322065B2 (en) Semiconductor laser device
JP7363190B2 (en) Semiconductor devices and oscillators
JP4237542B2 (en) Semiconductor device
WO2022259903A1 (en) Semiconductor light-emitting device
JP5147295B2 (en) Semiconductor device
JP2004186362A (en) Circuit device
WO2023100887A1 (en) Semiconductor light emitting device and semiconductor light emitting unit
WO2023079825A1 (en) Semiconductor device
WO2023090072A1 (en) Semiconductor device
WO2021205989A1 (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811893

Country of ref document: EP

Kind code of ref document: A1