WO2023228946A1 - Work system, and work method - Google Patents

Work system, and work method Download PDF

Info

Publication number
WO2023228946A1
WO2023228946A1 PCT/JP2023/019185 JP2023019185W WO2023228946A1 WO 2023228946 A1 WO2023228946 A1 WO 2023228946A1 JP 2023019185 W JP2023019185 W JP 2023019185W WO 2023228946 A1 WO2023228946 A1 WO 2023228946A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
welding
robot
measurement
route
Prior art date
Application number
PCT/JP2023/019185
Other languages
French (fr)
Japanese (ja)
Inventor
基史 鈴木
Original Assignee
リンクウィズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンクウィズ株式会社 filed Critical リンクウィズ株式会社
Publication of WO2023228946A1 publication Critical patent/WO2023228946A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to technology for performing operations such as welding, adhesion, and other processing on target members.
  • Patent Document 1 discloses that a plurality of welding robots are set in advance on the workpiece so that the time required for the robot to reach the work point is the shortest possible time.
  • a technology has been disclosed that allocates work points to multiple robots and efficiently shares the work among the multiple robots.
  • the main invention of the present invention for solving the above problems is a work system that performs a work of welding or joining target members, which includes a measuring robot that measures the shape of the target member, and a measuring robot that performs the work on the target member.
  • a plurality of work robots that execute a plurality of work robots, a work route generation unit that generates a work route including work position information based on measurement data measured by the measurement robot, and a work route generation unit that divides the work route into a plurality of parts, and divides the work route into a plurality of parts, and a work distribution unit that distributes the work route of the work robot to the plurality of work robots.
  • FIG. 1 is a diagram showing an example of the overall configuration of a welding system 100 according to the present embodiment.
  • FIG. 2 is a diagram showing how a welding target member is measured using the welding system 100 of the present embodiment.
  • FIG. 2 is a diagram showing how welding target members are welded using the welding system 100 of the present embodiment.
  • It is a figure showing the example of composition of the measurement control part 24 and other hardware concerning this embodiment.
  • It is a diagram showing an example of the functional configuration of a measurement control section 24 according to the present embodiment.
  • FIG. 3 is a diagram showing an example of condition data stored by a torch position/angle condition storage unit according to the present embodiment. It is a figure which shows an example of the control flowchart of the measurement control part 24 based on this embodiment.
  • FIG. 3 is a diagram showing an example of a plurality of cylindrical arcs defined around a planned welding location by the gap measuring section according to the present embodiment.
  • FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment.
  • FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment.
  • FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment.
  • FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment.
  • FIG. 3 is a diagram illustrating an example of distribution conditions stored by a distribution condition storage unit according to the present embodiment. It is a figure which shows an example of the control flowchart of the work allotment part 34 based on this embodiment. It is a figure showing an example of the distribution result of welding work by work distribution part 34 concerning this embodiment.
  • 7 is a diagram illustrating another example of the distribution result of welding work by the work distribution unit 34 according to the present embodiment.
  • FIG. 7 is a diagram illustrating another example of the distribution result of welding work by the work distribution unit 34 according to the present embodiment.
  • FIG. 7 is a diagram illustrating another example of the distribution result of welding work by the work distribution unit 34 according to the present embodiment.
  • FIG. 1 is a diagram showing an example of a welding system 100 of this embodiment.
  • the welding inspection system 100 of this embodiment includes an input/output unit 1, a controller 3, one or more measurement robots 20, and one or more measurement robot control units 23. , a measurement control section 24, a plurality of welding robots 30, a plurality of welding robot control sections 33, and a work distribution section .
  • the measuring robot 20 acquires information regarding the shape of the welding object 2 using the sensor 21 .
  • the measurement robot control unit 23 is a control unit that is connected to the measurement robot 20 so as to be able to communicate with each other by wire or wirelessly, and controls the measurement operation of the measurement robot 20 and obtains measurement results.
  • the measurement robot control unit 23 is provided for each measurement robot.
  • the measurement control unit 24 is connected to each measurement robot control unit 23 so as to be able to communicate with each other by wire or wirelessly, and indicates the welding position for the measurement object 2 based on the measurement results obtained from each measurement robot control unit 23.
  • This is a control unit that generates a work path (welding path).
  • the measurement control unit 24 does not necessarily have to be an independent device from the measurement robot control unit 23, and the measurement control unit 24 and the measurement robot control unit 23 may be configured in one and the same device. Also good.
  • the work distribution section 34 is connected to the measurement control section 24 by wire or wirelessly so as to be able to communicate with each other, and acquires information such as work routes from the measurement control section 24 . Further, the work distribution unit 34 allocates the work of welding the work path, and transmits information regarding the welding work to be allocated to each welding robot control unit 33 to the welding robot control unit 33.
  • the welding robot control section 33 is connected to the work distribution section 34 in a wired or wireless manner so as to be able to communicate with each other, and controls the welding robot based on the information regarding the welding work received from the work distribution section 34 . Further, the welding robot control section 33 can also accommodate a plurality of welding robots 30 corresponding to the plurality of welding robots 30.
  • the welding robot 30 is connected to a welding robot control section 33 by wire or wirelessly so as to be able to communicate with each other, and performs welding work on the welding object 2 based on control commands received from the welding robot control section 33.
  • the work distribution section 34 does not necessarily have to be an independent device from the welding robot control section 33, and the work distribution section 34 and the welding robot control section 33 may be configured in one and the same device. Also good.
  • the input/output unit 1 is an output device that is connected to the measurement control unit 24 and the work distribution unit 34 so as to be able to communicate with each other by wire or wirelessly, and displays data stored in the storage units of the measurement control unit 24 and the work distribution unit 34. (for example, a display) and an information input device (for example, a keyboard, a mouse, a touch panel, etc.) for inputting data stored in the storage unit.
  • the controller 3 is connected to the measurement control unit 24 and the work distribution unit 34 so as to be able to communicate with each other by wire or wirelessly, and includes an input unit for inputting instructions for starting and stopping the operation of the measurement robot 20 and the welding robot 30. .
  • FIG. 2 is a diagram illustrating how the three-dimensional shape of the welding target member is measured using the plurality of measurement robots 20 of the welding system 100 and a work path 200 is generated.
  • the measurement robot 20 has an arm 21 and a sensor 22 mounted on the tip of the arm 21. Based on the three-dimensional CAD data of the welding object 2 obtained in advance, the measurement range is set as a range including the parts where the two welding objects 201 and 202, which are the two members to be welded, are close to each other.
  • the measuring robot 20 uses a sensor 22 provided on the arm 21 of the measuring robot 2 to acquire point cloud data of the surface shape of the measurement range. Furthermore, a work route 200 for welding work is generated based on this point cloud data.
  • FIG. 3 is a diagram showing how welding is performed on the work path 200 using the plurality of welding robots 30 of the welding system 100.
  • the welding robot 30 includes at least an arm 31 and a welding torch 32 mounted on the tip of the arm 31.
  • the welding work will be divided and carried out. Since the welding work on the work path 200 is distributed to each welding robot by the work distribution unit 34, the welding robot 30 can set the target position of the welding torch 32 based on the welding work assigned to it.
  • the operation of the arm 31 is controlled to achieve the target angle, and the welding work is executed.
  • FIG. 4 is a diagram showing the hardware configuration of the measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33.
  • the measurement control unit 24, the work distribution unit 34, the measurement robot control unit 23, or the welding robot control unit 33 may be a general-purpose computer such as a personal computer, or may be logically realized by cloud computing. You can. Note that the illustrated configuration is an example, and other configurations may be used. For example, some of the functions provided in the processor 10 may be executed by a server or another terminal external to the measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33.
  • the measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33 includes at least a processor 10, a memory 11, a storage 12, a transmission/reception section 13, an input/output section 14, etc. are electrically connected to each other through a bus 15.
  • the processor 10 controls the operation of the measurement control unit 24 and the like in which it is installed, controls the transmission and reception of data, etc. to and from devices connected by wire or wirelessly via the transmission/reception unit 13, and executes and authenticates applications.
  • This is a calculation device that performs information processing necessary for processing.
  • the processor 10 is a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a CPU and a GPU, and executes programs for this system stored in the storage 12 and developed in the memory 11. Performs each information processing.
  • the memory 11 includes a main memory configured with a volatile storage device such as a DRAM (Dynamic Random Access Memory), and an auxiliary memory configured with a non-volatile storage device such as a flash memory or an HDD (Hard Disc Drive). .
  • the memory 11 is used as a work area of the processor 10, and also stores a BIOS (Basic Input/Output System) that is executed when the measurement control unit 24 and the like in which it is installed is started, various setting information, and the like.
  • BIOS Basic Input/Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be constructed in the storage 12.
  • the transmitting/receiving unit 13 connects to a device that is communicably connected to the device in which it is mounted, and transmits and receives data, etc. according to instructions from the processor.
  • the transmitter/receiver 13 is configured by wire or wirelessly, and in the case of wireless, it may be configured by, for example, a short-range communication interface such as WiFi, Bluetooth (registered trademark), and BLE (Bluetooth Low Energy). .
  • the bus 15 is commonly connected to each of the above elements and transmits, for example, address signals, data signals, and various control signals.
  • the measurement robot 20 includes the arm 21 and the sensor 22. Note that the illustrated configuration is an example, and the present invention is not limited to this configuration.
  • the operation of the arm 21 is controlled by the measurement robot control unit 23 based on a three-dimensional robot coordinate system. Further, the operation of the arm 21 may be controlled by the controller 3.
  • the sensor 22 senses the members to be welded 201 and 202 based on a three-dimensional sensor coordinate system.
  • the sensor 22 is, for example, a laser sensor that operates as a three-dimensional scanner, and acquires three-dimensional point group data 50 of the members to be welded 201 and 202 including the position to be welded by sensing.
  • each point data has coordinate information of the sensor coordinate system, and the shape of the object to be inspected can be grasped by the point group.
  • the sensor 22 is not limited to a laser sensor, and may be an image sensor using a stereo system, for example, or may be a sensor independent of the measurement robot, and may be a sensor in a three-dimensional sensor coordinate system. Any information from which coordinate information can be obtained may be used. Further, in order to make the explanation more specific, a configuration using three-dimensional point group data as the three-dimensional model data 50 will be described below as an example.
  • the user can specify the position (coordinates) based on the sensor coordinate system, so that the arm 21 and sensor 22 can
  • the configuration may be such that the operation is controlled based on the position.
  • a plurality of measuring robots 20 may be used to measure the three-dimensional welding object members 201 and 202 of the welding object 2.
  • Point cloud data 50 is acquired, and the measurement control unit 24 generates a work route 200 based on the three-dimensional point cloud data 50.
  • the three-dimensional point cloud data acquired by each measurement robot can be integrated in a short time, and the entire part to be welded can be integrated.
  • 3D point cloud data can be obtained with high precision and in a short time.
  • a welding robot 3 according to this embodiment will be explained using FIGS. 1 and 3.
  • the welding robot 2 includes the arm 31 and the welding torch 32. Note that the illustrated configuration is an example, and the present invention is not limited to this configuration.
  • the operation of the arm 31 is controlled by a welding robot controller 33 based on a three-dimensional robot coordinate system. Further, the operation of the arm 31 may be controlled by the controller 4.
  • the welding torch 32 performs welding work based on a work path 200 set in the vicinity of the welding target members 201 and 202 based on a three-dimensional torch coordinate system.
  • the welding torch 32 is a tool used in fusion welding methods such as arc welding, laser welding, electron beam welding, and plasma arc welding, and outputs an arc, laser, beam, etc. that melts the welding target member from the welding torch. Then, the members to be welded 201 and 202 are welded.
  • the welding torch may be a discharge part for a filler material (adhesive) used in soldering such as brazing, or a discharge part for a sealant or an adhesive.
  • the robot coordinate systems and torch coordinate systems of the measuring robot 20 and welding robot 30 are associated with each other, and for example, the user specifies the position (coordinates) based on the torch coordinate system. Accordingly, the configuration may be such that the arm 31 and the welding torch 32 are controlled in operation based on the corresponding positions. Furthermore, by defining the robot coordinate systems of a plurality of welding robots as the same coordinate system as the robot coordinate system of the measuring robot, welding work can be performed in a short time on the work paths distributed from the work distribution section. be able to.
  • the measurement robot control unit 23 is provided for each measurement robot.
  • the measurement robot control unit 23 also receives measurement conditions related to the measurement operation (including the position and measurement direction of the sensor 22) from the measurement control unit 24, generates an operation command that satisfies the measurement conditions, and connects the unit for communication.
  • the operation command is transmitted to the measuring robot 20 to control the measuring operation by the measuring robot 20, and the three-dimensional point group data 50 measured by the measuring robot 20 is acquired.
  • the measurement robot control unit 23 transmits the acquired three-dimensional point group data 50 to the measurement control unit 24.
  • the measurement robot control section 23 does not necessarily need to be provided for each measurement robot, and if the computing performance of the hardware is sufficiently high, one measurement robot control section 23 can control multiple robots. It may also be configured to control a measuring robot.
  • FIG. 5 is a block diagram illustrating functions implemented in the measurement control section 24.
  • the measurement control section 24 includes a processing section 2410 and a storage section 2420.
  • the processing section 2410 includes a measurement condition determination section 2411, a point cloud data acquisition section 2412, a gap measurement section 2413, a welding torch position/angle determination section 2414, and a work path generation section 2415.
  • the storage unit 2420 of the measurement control unit 24 also includes a measurement condition storage unit 2421, a three-dimensional CAD data storage unit 2422, a measurement point group data storage unit 2423, a torch position/angle condition storage unit 2424, a gap storage unit 2425, and a working route. It has a storage section 2426.
  • the measurement method determining unit 2411 determines the method based on the measurement conditions stored in the measurement condition storage unit 2421 and the three-dimensional CAD data (three-dimensional shape data) of the welding object 2 stored in the three-dimensional CAD data storage unit 2422. , determines a measurement method including the position and measurement direction (orientation of the sensor 22 ) of the sensor 22 that performs the measurement, and transmits the measurement conditions to the measurement robot control unit 23 .
  • the three-dimensional CAD data includes information on a predetermined welding location on the welding object 2, and the measurement conditions include information on the position and measurement direction of the sensor 22 with respect to the welding location. ing.
  • the measurement condition storage unit 2421 includes information regarding the plurality of measurement robots 20 as measurement conditions, and the measurement condition determination unit 2411 As well as assigning a measurement range to each of the measurement robots 20 on the stand, measurement conditions including the position and measurement direction (orientation of the sensor 22) of the sensor 22 of each measurement robot 22 are determined. The measurement conditions are transmitted to the corresponding measurement robot control unit 23.
  • the point cloud data acquisition unit 2412 generates a three-dimensional point cloud of the welding object 2 including the boundary position (planned welding location) between the welding target members 201 and 202 acquired by the measuring robot 20 via the measuring robot control unit 23. Get data.
  • the acquired three-dimensional point group data is, for example, three-dimensional coordinate information data based on the sensor coordinate system, and is stored in the measurement point group data storage unit 2423.
  • the gap measurement unit 2413 measures the distance (gap distance) between the welding target members 201 and 202 at the welding location set in the 3D CAD data based on the acquired 3D point cloud data and 3D CAD data. do.
  • the measured gap distance is recorded in the gap storage section 2424.
  • the distance (gap distance) between the members to be welded 201 and 202 is the distance between the gaps between the parts to be welded 201 and the members to be welded 202 in the vicinity of the welding target part. It can be estimated as the distance between two points where the straight line distance is the shortest among the straight line distances connecting the point group of and the point group of the welding target member 202, but it is not necessarily limited to this. Further, the gaps are estimated at multiple positions of the planned welding location. A specific method for estimating the gap will be described later.
  • the welding torch position/angle determining unit 2414 performs gap measurement according to the measured gap distance, information on each shape type of T type, J type, and overlap type, and information in the torch position/angle condition storage unit 2424. Determine the position and angle of the welding torch relative to the workpiece to be welded. In addition, if the gap distance exceeds a predetermined value (for example, a predetermined threshold value), it is determined that welding is not possible, and an error notification is sent via the input/output unit 14 to the effect that welding should not be performed. Prohibit execution of work. Details of how to determine the position and angle of the welding torch for each of the T-shape, J-shape, and overlap-shape types will be described later.
  • a predetermined value for example, a predetermined threshold value
  • the work route generation unit 2415 generates a work route based on the information on the position and angle of the welding torch with respect to the welding target member determined by the welding torch position/angle determination unit 2414.
  • the generated work route is recorded in the work route storage section 2426.
  • the generated work route is defined in a coordinate system based on the same measurement target member as the coordinate system of the measurement robot.
  • FIG. 6 is a diagram showing an example of information recorded in the torch position/angle condition storage section 2424.
  • the torch position/angle condition storage unit 2424 stores the measured gap distance, information on the position and angle of the welding torch corresponding to each shape type of T type, J type, and overlap type, and information on welding suitability. has been done.
  • the overlap type when the gap distance n is smaller than the first threshold value (Th1), the welding torch position and welding torch angle are not changed from the predetermined position and predetermined angle ( ⁇ 1), respectively, and the gap distance is If n is larger than the first threshold value (Th1) and smaller than the second threshold value (Th2), the position of the welding torch is shifted from the predetermined position to the positive side in the Z direction (the torch angle is set to a predetermined value). If the gap distance n is larger than the second threshold value (Th2), the gap distance is too large and welding is rejected.
  • the welding torch position is set to the member boundary position, and the welding torch angle is set to a predetermined angle ( ⁇ 2). If the gap distance n is larger than the third threshold value (Th3) and smaller than the fourth threshold value (Th4), the torch position is shifted from the member boundary position to the positive side in the Z direction. (the torch angle is not changed from the predetermined angle ( ⁇ 2)), and if the gap distance n is larger than the fourth threshold value (Th4), the gap distance is too large and welding is rejected.
  • the gap distance n is smaller than the fifth threshold value (Th5), the welding torch position and welding torch angle remain unchanged from the predetermined position and predetermined angle ( ⁇ 3), respectively.
  • the gap distance n is larger than the fifth threshold value (Th5) and smaller than the sixth threshold value (Th6), the torch position is shifted from the predetermined position to the negative side in the X direction, and the torch angle is set to the predetermined value. Do not change the angle.
  • the gap distance n is larger than the sixth threshold value (Th6) and smaller than the seventh threshold value (Th7), the torch position is shifted from the predetermined position to the negative side in the X direction, and the torch angle is set to the predetermined value. The angle is decreased from the angle ( ⁇ 3) to an angle ( ⁇ 3') that is nearly parallel to the lower member. If the gap distance n is larger than the seventh threshold value (Th7), the gap distance is too large and welding is rejected.
  • FIG. 7 is a diagram showing a control flow of the measurement control section 24 in this embodiment.
  • the measurement condition determination unit 2411 determines measurement conditions, etc. (step 101).
  • the point cloud data acquisition unit 2412 acquires three-dimensional point cloud data (step 102).
  • the measurement robot 20 is controlled to measure the welding object 2 based on the measurement conditions determined in step 101 described above, and three-dimensional point cloud data of the surface shape of the welding object including the planned welding location is obtained. get.
  • gap measurement is performed by the gap measurement unit 2413 (step 103).
  • the gap measurement unit 2413 measures the distance (gap distance) between the welding target members 201 and 202 at the welding planned location based on the measured three-dimensional point group data.
  • FIG. 8 shows a boundary line between members 201 and 202 to be welded when performing overlap type welding.
  • the gap measurement unit 2413 generates a plurality of circular arcs surrounding the welding location based on the information of the welding location preset in the three-dimensional CAD data, and generates a cylindrical space around the welding location. .
  • FIG. 9 shows an example of a plurality of cylindrical arcs defined around the work path in this process.
  • the gap measurement unit 2413 extracts two-dimensional point cloud data within the cylinder (inside the circular arc) on each cross-sectional plane defined by this circular arc from the three-dimensional point cloud data acquired by the point cloud data acquisition unit 2412.
  • the gap measurement unit 2413 calculates the gap distance between the welding target member 201 and the welding target member 202 based on two-dimensional point cloud data.
  • the welding torch position/angle determination unit 2414 determines the welding position and angle of the welding torch on each cross-sectional plane defined by the aforementioned circular arcs (step 104).
  • the welding torch position/angle determining unit 2414 uses information on the torch position and angle corresponding to the gap distance and shape type, and information on welding suitability, which are stored in the torch position/angle condition storage unit 2424. , determines the position of the welding torch and the angle of the welding torch, determines the suitability of welding, and notifies the user of the determination result of suitability of welding via the controller 3 or the input/output unit 1.
  • the work route generation unit 2415 generates a work route (step 105).
  • the work path generation unit 105 defines the welding torch movement route and angle based on the welding torch position and welding torch angle determined for each cross-sectional plane defined by a plurality of circular arcs. Generate a work route.
  • the work route can also be defined as a movement route defined only by the position of the welding torch.
  • an example is shown in which the position and angle of the welding torch are changed according to the size of the gap distance measured by the gap measurement section, but the working route is determined using three-dimensional point cloud data acquired by the point cloud data acquisition section 2412. It is also possible to detect the boundary line between the welding target member 201 and the welding target member 202 and generate the boundary line as a work route.
  • FIG. 10(a) shows the positions of the welding target member 201, the welding target member 202, and the sensor 22 on the cross-sectional plane defined by the circular arc 220 when measuring the welding target members 201 and 202 of the overlap type shape type. Show relationships.
  • FIGS. 10(b) and 10(c) show point cloud data ( 2D).
  • the gap measuring unit 2413 calculates a point group indicating the lowest part (end) of the welding target member 201 and the surface shape of the welding target member 202 based on two-dimensional point cloud data as shown in FIG. 10(b). By calculating the distance to the indicated point group, the gap distance between the welding target members 201 and 202 is obtained.
  • the gap distance in the overlap type (a shape in which the members to be welded are arranged so as to overlap each other) shown in FIG. 10 is, for example, as shown in FIG.
  • a pair of points of the welding target member 201 and a point group of the welding target member 202 in can be defined as the distance between the pair of point groups where the straight line distance between the point groups is the shortest.
  • the gap measurement unit 103 calculates the coordinates in the Z-axis direction of a point group indicating the upper surface of the welding target member 201 and the welding target member 202, as shown in FIG. 10(c). It is also possible to calculate the distance between the upper surfaces from the coordinates in the Z-axis direction of the point group indicating the upper surfaces, and then obtain a value obtained by subtracting the thickness of the member 201 to be welded from this distance as the gap distance.
  • FIG. 11 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the first threshold value (for example, 1 mm).
  • the first threshold value for example, 1 mm.
  • the welding torch is shifted from the member boundary position in the X-axis direction by a predetermined distance (several millimeters) in the X-axis direction. is the welding position, and the angle of the welding torch with respect to the plane of the member 202 to be welded is determined to be a predetermined angle ( ⁇ 1 ).
  • Figure 12 shows the welding position and angle of the welding torch when the gap distance (n mm) between the members is greater than the first threshold (for example, 1 mm) and less than the second threshold.
  • FIG. 13 when the gap distance between the members is larger than the first threshold (for example, 1 mm) and less than the second threshold, the welding torch moves toward the welding target member 202 in the Z-axis direction.
  • the welding position is defined as a position shifted from the surface position by the gap distance (n millimeters) in the Z-axis direction from the boundary position of the member, and the welding torch is tilted at a predetermined angle ( ⁇ 1 ) from the member plane of the member to be welded 202. determined (i.e., no change in angle).
  • the arc etc. discharged from the welding torch will follow the upper workpiece to be welded and will be connected to the lower workpiece. Can be joined.
  • FIG. 13A shows the positional relationship on the cross-sectional plane defined by the circular arc 220 when measuring the T-shaped members 201 and 202 to be welded.
  • FIG. 13(b) shows point group data (two-dimensional) on a cross-sectional plane defined by the circular arc 220, extracted from the three-dimensional point group data acquired in the positional relationship shown in FIG. 13(a).
  • the gap measuring unit 2413 calculates a point group indicating the lowest part (end) of the welding target member 201 and the surface shape of the welding target member 202 based on two-dimensional point cloud data as shown in FIG. 13(b). By calculating the distance to the indicated point group, the gap distance between the welding target members 201 and 202 is obtained.
  • the gap distance in the T-shape (a shape in which the members to be welded are substantially perpendicular to each other) shown in FIG. 201 and the point group of the member to be welded 202, and can be defined as the distance between the pair of point groups where the straight line distance between the point groups is the shortest. However, it does not necessarily have to be the distance between the point groups where the straight line distance is the shortest, but is defined as the distance between point groups that are close to each other in a pair of point groups of the welding target member 201 and the point group of the welding target member 202 You may do so.
  • FIG. 14 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the third threshold (for example, 0.5 mm).
  • the welding torch sets the welding position at the member boundary position, and the welding torch angle is set at a predetermined angle from the member plane of the welding target member 202.
  • the angle ( ⁇ 2 ) is determined to be an inclined angle.
  • Figure 15 shows the welding position and angle of the welding torch when the gap distance (n millimeters) between members is greater than the third threshold (for example, 0.5 mm) and less than the fourth threshold.
  • FIG. 15 when the gap distance between the members is greater than the third threshold (for example, 0.5 mm) and less than the fourth threshold, the welding torch moves toward the welding target member 202 in the Z-axis direction.
  • the welding position is a position shifted by the gap distance (n millimeters) from the boundary position of the member in the Z-axis direction from the surface position of the member, and the angle of the welding torch is an angle tilted by a predetermined angle ( ⁇ 2 ) from the member plane of the member to be welded 202.
  • FIG. 16(a) shows the positional relationship on the cross-sectional plane defined by the circular arc 220 when measuring the J-shaped members 201 and 202 to be welded.
  • FIG. 16(b) shows point group data (two-dimensional) on a cross-sectional plane defined by the circular arc 220, extracted from the three-dimensional point group data acquired in the positional relationship shown in FIG. 16(a).
  • the gap measurement unit 2413 estimates the radius of curvature of the curved portion based on the point cloud data of the bent curved portion of the welding target member 201, or calculates the radius of curvature based on information input by the user. get.
  • the gap distance between the lower side of the curvature portion (the welding target member 202 side) and the welding target member 202 is estimated based on the estimated or acquired curvature radius.
  • the gap distance in the J-shape (a shape in which the welding target member 201 having a bent curvature portion and the plate-shaped welding target member 202 are welded at the curvature portion) shown in FIG. 16 is, for example, as shown in FIG. 16b.
  • the distance between the end of the bent curvature part of the welding target member 201 that is close to the welding target member 202 and the end of the welding target member 202, and the distance between the ends where the straight line distance is the shortest. Can be defined by distance. However, it does not necessarily have to be the shortest distance, and may be defined as the distance between the ends of the welding target member 201 and the welding target member 202 at positions close to each other.
  • FIG. 17 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the fifth threshold (for example, 1 mm).
  • the welding torch is moved from the intersection of the extension line of the side surface of the upper welding target member 201 and the lower welding target member 202.
  • a position shifted by a predetermined distance (for example, 1 mm) in the negative direction of the X-axis is defined as a welding position, and the angle of the welding torch is determined to be inclined by a predetermined angle ( ⁇ 3 ) from the plane of the member 202 to be welded.
  • the welding torch discharges the welding torch.
  • the arc and the like can more easily hit the upper and lower members to be welded, and the members to be welded can be joined more reliably.
  • FIG. 18 is a diagram showing the welding position and the angle of the welding torch when the gap distance (n millimeters) between members is larger than the fifth threshold (for example, 1 millimeter).
  • the angle of the welding torch is such that if the gap distance (n mm) between the parts is greater than the fifth threshold (e.g. 1 mm) and less than the sixth threshold (e.g. 2 mm), the welding torch The angle is determined to be a predetermined angle ( ⁇ 3 ) (that is, the angle is not changed). If the gap distance (n mm) between the parts is greater than the sixth threshold (e.g. 2 mm) and less than the seventh threshold (e.g. 3 mm), the angle of the welding torch should be reduced.
  • the fifth threshold e.g. 1 mm
  • the sixth threshold e.g. 2 mm
  • the seventh threshold e.g. 3 mm
  • ⁇ 3′ which is smaller than ⁇ 3, is determined as the angle of the welding torch (that is, the lower welding target member).
  • ⁇ 3 ' which is smaller than ⁇ 3
  • the welding position by the welding torch is the upper side.
  • a position shifted by the predetermined distance + ⁇ (for example, 1 millimeter) in the negative X-axis direction (that is, the direction toward the back of the curvature) from the intersection of the extension line of the side surface of the welding target member 201 and the lower welding target member 202. is the welding position.
  • the welding position is a position shifted by ⁇ in the direction toward the back of the curvature from the welding position shown in FIG.
  • the welding torch is shifted by the predetermined distance + ⁇ from the intersection of the extension line of the side surface of the upper welding target member 201 and the lower welding target member 202 in the negative direction of the X axis (that is, the direction toward the back of the curved part).
  • the arc discharged from the welding torch will reach the back of the curved part, making it easier to hit the upper and lower parts to be welded, making it more reliable.
  • the members to be welded can be joined together.
  • FIG. 19 is a block diagram illustrating functions implemented in the work distribution 34.
  • the work distribution section 34 includes a processing section 3410 and a storage section 3420.
  • the processing section 3410 includes a welding order determining section 3411, a welding work assignment determining section 3412, and a welding execution instruction section 3413.
  • the storage section 3420 of the work distribution section 34 includes a welding order storage section 3421, a distribution condition storage section 3422, a robot characteristic storage section 3423, and a work history storage section 3424.
  • the welding order determining unit 3411 divides the work route into three types of areas described below based on the gap information received from the measurement control unit 24 and the information regarding the welding priority recorded in the welding priority storage unit 3421. The welding order is determined by dividing it.
  • FIG. 20 is a diagram showing an example of information recorded in the welding priority storage section 3421. Three area classifications are defined in the welding priority storage unit 3421 according to the size of the gap distance (G) at each position of the work route 200.
  • the gap distance G is smaller than the first threshold (Th1)
  • the area is classified into area A.
  • area A automatic welding by the welding robot is determined to be OK, and the priority of automatic welding work is set to "high.”
  • the gap distance is larger than the first threshold (Th1) and smaller than the second threshold (Th2)
  • area B automatic welding by the welding robot is determined to be OK, and the priority of automatic welding work is set to "low.”
  • the gap distance is larger than the second threshold (Th2), it is classified into area C.
  • area C automatic welding by the welding robot is determined to be NG, automatic welding by the welding robot is stopped, and the user is notified of this via the controller 3 or the input/output unit 1.
  • the welding order determining unit 3411 classifies the work route into areas A, B, or C based on the gap information received from the measurement control unit 24, welds area A preferentially, and performs welding in area A.
  • the welding order is determined so that the welding work in area B is performed after the work is completed.
  • it is necessary to relatively increase the output of the welding torch compared to a position with a small gap distance. At this position, a relatively large amount of heat is applied to the workpiece 2 to be welded.
  • the area classified as area C is not automatically welded by the welding robot, but areas A and B other than area C are automatically welded by the welding robot. In this way, for area C where the gap distance is large and it is difficult to weld with a welding robot, automatic welding can be prohibited and the welding work can be performed manually, which improves the overall quality of welding on the welding target. Easier to maintain.
  • the welding work allocation determination unit 3412 determines the allocation (distribution) of welding work to be performed by a plurality of welding robots.
  • the allocation conditions can be set and changed by the user via the input/output unit 1 or the controller 3 from a plurality of distribution conditions recorded in the distribution condition storage unit 3422.
  • FIG. 21 is a diagram showing an example of a plurality of distribution conditions recorded in the distribution condition storage section 3422. For example, the following three distribution conditions are set in the distribution condition storage unit 3422.
  • the robot characteristic storage unit 3423 stores the drive time of each welding robot, which is necessary when moving the movement route and angle of the welding torch of the robot according to the work path, or the information necessary to calculate the drive time, as well as information necessary for calculating the drive time of each welding robot.
  • the spatial range reached by the tip position of the welding robot is recorded.
  • the welding execution instruction unit 3413 issues a welding execution command to the plurality of welding robot control units 33 corresponding to each welding robot according to the welding work allocation to each welding robot determined by the welding work allocation determining unit 3412. send and have the welding work performed.
  • the work history storage unit 3424 records performance information of welding work actually performed by the welding robots from each welding robot control unit 33 in the work history storage unit 3424.
  • the welding robot control section 33 does not necessarily need to be provided for each welding robot, and if the computing performance of the hardware is sufficiently high, one welding robot control section 33 can control multiple welding robots. It may be configured to control a welding robot.
  • FIG. 22 is a diagram showing an example of a control flowchart of the work sharing section 34.
  • the work route and gap information are acquired from the measurement control unit 24 (step 201).
  • the welding order determining section 3411 determines the welding order based on the information acquired from the measurement control section 24 and the information recorded in the welding priority storage section 3421 (step 202).
  • the welding work allocation determining unit 3412 determines the welding work allocation (step 203).
  • the welding execution instruction section 3413 transmits a welding command to each welding robot control section 33 (step 204).
  • FIGS. 23 to 25 are diagrams showing examples in which the welding work allocation determining unit 3412 allocates work to two welding robots 30a and 30b when "work quality priority" is set as the distribution condition.
  • Welding work allocation determining unit 3412 selects points where welding execution times are expected to overlap (welding start point, welding intermediate point, welding end point) in order to avoid contact between two welding robots that distribute welding work. etc.), it is necessary to set the work route so that the work routes are not closer than a predetermined distance, and furthermore, based on the distribution condition of "work quality priority", it is necessary to set the work route so that the It is necessary to distribute work to welding robots.
  • the work route in area A where the gap distance is relatively short (less than a predetermined value, e.g. Th1) is longer than the work route in area B where the gap distance is relatively long (greater than a predetermined value, e.g. Th1).
  • a post-distribution work path to be distributed to each welding robot is generated so that the work is executed first.
  • a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side.
  • the welding order determining unit 3411 selects two areas A with high priority (inside the dotted line frame) and two areas B with low priority (inside the solid line frame). An example of determining (within) is shown.
  • the welding work allocation determining unit 3412 sets the lower ends of the two areas A as the welding start points of the work routes 200a and 200b of each welding robot 30a and 30b, and sets the upper end of the area B adjacent to the upper side of each area A as the welding start point of each work route 200a.
  • , 200b is the welding end point. In this way, if there are multiple areas A and B, welding can be done by distributing the work route connecting one set of Areas A and B to one welding robot. Since there is no action to move the position of the welding torch other than the action, the working time can also be shortened.
  • a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side.
  • the welding order determining unit 3411 determines that area A with high priority is placed in one place in the center (within the dotted line frame), and areas with low priority are located above and below area A.
  • B shows an example in which two locations (within the solid line frame) are determined.
  • Welding in area A can be assigned to either the welding robots 30a or 30b, but since area B on the welding robot 30a side is narrower than area B on the welding robot 30b side, welding work
  • the allocation determining unit 3412 allocates area A and upper area B to welding robot 30a, and allocates lower area B to welding robot 30b.
  • a work path 200a in which the lower end of area A is the welding start point and the upper end of upper area B is the welding end point is assigned to the welding robot 30a, and the lower end of lower area B is the welding start point and the upper end of lower area B is the welding point.
  • a work path 200b having a welding end is assigned as a work for the welding robot 30b. In this way, if there is one area A, by distributing the work so that the work path for welding area A is assigned to one welding robot, the position of the welding torch can be moved other than during welding operations. Since no movement occurs, the working time can also be shortened.
  • a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side. Furthermore, based on the results of measuring the members 201 and 202 to be welded, the welding order determining unit 3411 determines that area C, which is determined to be an area in which automatic welding is not performed (NG area), is located at one location in the center (within the dotted line frame); An example is shown in which two low-priority areas B (within the solid line frame) are determined on both sides of the top and bottom of C. Since area C is an area where automatic welding is not possible, no work route is set in area C, and the work route 20a set in upper area B is assigned to the welding robot 30a and set in lower area B.
  • area C is an area where automatic welding is not possible
  • Work path 20b is assigned to welding robot 30b. In this way, if there is a mixture of area C where automatic welding is not performed and area A or B where automatic welding is performed, the work route set for areas other than area C is allocated to each welding robot. Therefore, even if the area C includes a large gap distance where automatic welding cannot be performed, automatic welding can be performed only in areas where the gap distance is small.
  • the measurement control unit 24 does not directly communicate with the measurement robot 20, but exchanges measurement command signals and measurement data with the measurement robot via the measurement robot control unit.
  • the work distribution section 34 does not directly communicate with the welding robot 30, but exchanges welding command signals and welding performance data with the welding robot via the welding robot control section 33.
  • the welding system can be improved by incorporating external equipment such as the measurement control section 24 and the work distribution section 34 without changing the hardware or software of each existing robot and the control section of the robot. It becomes possible to construct.
  • the present invention is not limited to welding applications, but can also be applied to sealing work, bonding work, etc. It is also possible to apply the present invention to a work system that includes other work such as gluing on the boundary part, and in that case, the welding torch may be replaced with a discharge part that discharges sealant or adhesive. is possible, and the working nozzle section in this specification shall be interpreted to include a welding torch and a discharge section. Furthermore, when work other than welding is included, "welding path" in this specification can be interpreted as being replaced with "work route”.
  • (Claim 1) A work system that performs work to weld or join target members, a measuring robot (20) that measures the shape of the target member; a plurality of work robots that perform the work on the target member; a work route (200) generation unit (2415) that generates a work route (200) including work position information based on measurement data measured by the measurement robot (20);
  • a work system comprising: a work distribution unit (34) that divides the work route (200) into a plurality of parts and distributes the divided work route (200) to the plurality of work robots.
  • (Claim 2) The working system according to claim 1, A work system, wherein the measurement data measured by the measurement robot (20) includes a gap distance between the target members.
  • the working system according to claim 2 The work route (200) that the work distribution unit (34) distributes to the plurality of work robots includes the work route (200) in which the gap distance is shorter than the predetermined value, and the work route (200) in which the gap distance is shorter than the predetermined value.
  • the work system according to claims 1 to 4 comprising a work history storage unit (3424) that stores history information of the operation distance or operation time of each of the plurality of work robots, The work distribution unit (34) distributes the work route (200) to the work robots based on the history information so that the difference in the cumulative value of the movement distance or the movement time is reduced. system.
  • the work system according to claims 1 to 5 A work system in which a coordinate system of the measurement robot (20) and a coordinate system of the work robot are the same coordinate system.
  • (Claim 7) The working system according to claims 1 to 6, The work system, wherein the measurement data measured by the measurement robot (20) is three-dimensional point group data of the target member.
  • (Claim 8) A work method using a system for performing work of welding or joining target members, the method comprising: Measuring the shape of the target member using one or more measuring robots (20), generating a work route (200) including information on a work position based on measurement data measured by the measurement robot (20); A working method, wherein the working route (200) is divided into a plurality of parts, and the divided working route (200) is distributed to the plurality of working robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)
  • Laser Beam Processing (AREA)

Abstract

[Problem] The objective of the present invention is to perform appropriate division of work, even if an error arises in a shape or position of a workpiece, which is an object to be worked on. [Solution] The present invention provides a work system for executing work to weld or bond a target member, the work system comprising: a measuring robot for measuring a shape of the target member; a plurality of work robots for executing the work with respect to the target member; a work route generating unit for generating a work route including information relating to a working position, on the basis of measurement data measured by the measuring robot; and a work division unit for splitting the work route into a plurality of parts, and dividing the split work route between the plurality of work robots.

Description

作業システム、作業方法Work system, work method
 本発明は、対象部材に対する溶接、接着、その他の加工などの作業を行う技術に関する。 The present invention relates to technology for performing operations such as welding, adhesion, and other processing on target members.
 従来から複数の溶接ロボットを用いて溶接対象部材を溶接する技術が提案されており、特許文献1には、ロボットが作業点に到達する時間が最短時間となるように、ワークに予め設定した複数の作業点を複数のロボットに振り分けを行い、複数のロボットに対して効率的な作業分担を行う技術が開示されている。 Techniques for welding workpieces using multiple welding robots have been proposed in the past, and Patent Document 1 discloses that a plurality of welding robots are set in advance on the workpiece so that the time required for the robot to reach the work point is the shortest possible time. A technology has been disclosed that allocates work points to multiple robots and efficiently shares the work among the multiple robots.
特開平8-36409JP 8-36409
 実際の作業現場においては、作業対象であるワークは予め設定した形状や位置からの誤差が生じるため、特許文献1に記載された作業分担の決定技術では、ワークの形状変形や位置ズレが生じた場合には、複数の作業ロボットの間で適切に作業分担を行うことができなかった。 In actual work sites, errors occur in the shape and position of the workpieces that have been set in advance, so the technology for determining work assignments described in Patent Document 1 causes deformation of the shape and positional deviation of the workpieces. In some cases, work could not be divided appropriately among multiple robots.
 上記課題を解決するための本発明の主たる発明は、対象部材を溶接又は接合する作業を実行する作業システムであって、前記対象部材の形状を計測する計測用ロボットと、前記対象部材に対する前記作業を実行する複数の作業用ロボットと、前記計測用ロボットにより計測した計測データに基づいて作業位置の情報を含む作業経路を生成する作業経路生成部と、前記作業経路を複数に分割し、分割後の前記作業経路を前記複数の作業用ロボットに分配する作業分配部と、を備える、作業システム,である。 The main invention of the present invention for solving the above problems is a work system that performs a work of welding or joining target members, which includes a measuring robot that measures the shape of the target member, and a measuring robot that performs the work on the target member. a plurality of work robots that execute a plurality of work robots, a work route generation unit that generates a work route including work position information based on measurement data measured by the measurement robot, and a work route generation unit that divides the work route into a plurality of parts, and divides the work route into a plurality of parts, and a work distribution unit that distributes the work route of the work robot to the plurality of work robots.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed in the present application and methods for solving them will be clarified by the section of the embodiments of the invention and the drawings.
 本発明によれば、溶接の精度が悪化することを抑制することができる溶接システム、溶接方法を提供することができる。 According to the present invention, it is possible to provide a welding system and a welding method that can suppress deterioration of welding accuracy.
本実施形態の溶接システム100の全体構成例を示す図である。1 is a diagram showing an example of the overall configuration of a welding system 100 according to the present embodiment. 本実施形態の溶接システム100を用いて溶接対象部材を計測する様子を示す図である。FIG. 2 is a diagram showing how a welding target member is measured using the welding system 100 of the present embodiment. 本実施形態の溶接システム100を用いて溶接対象部材を溶接する様子を示す図である。FIG. 2 is a diagram showing how welding target members are welded using the welding system 100 of the present embodiment. 本実施形態に係る計測制御部24他のハードウェアの構成例を示す図である。It is a figure showing the example of composition of the measurement control part 24 and other hardware concerning this embodiment. 本実施形態に係る計測制御部24の機能構成例を示す図である。It is a diagram showing an example of the functional configuration of a measurement control section 24 according to the present embodiment. 本実施形態に係るトーチ位置・角度条件記憶部により記憶される条件データの一例を示す図である。FIG. 3 is a diagram showing an example of condition data stored by a torch position/angle condition storage unit according to the present embodiment. 本実施形態に係る計測制御部24の制御フローチャートの一例を示す図である。It is a figure which shows an example of the control flowchart of the measurement control part 24 based on this embodiment. 本実施形態に係るギャップ計測部が溶接予定箇所である溶接対象部材間の境界線の一例を示す図である。It is a figure which shows an example of the boundary line between the members to be welded which are the planned welding parts by the gap measurement part based on this embodiment. 本実施形態に係るギャップ計測部が溶接予定箇所の回りに定義するシリンダ状の複数円弧の一例を示す図である。FIG. 3 is a diagram showing an example of a plurality of cylindrical arcs defined around a planned welding location by the gap measuring section according to the present embodiment. 本実施形態に係るギャップ計測部が点群データからギャップ距離を推定する一例を示す図である。FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data. 本実施形態において、ギャップ距離が所定値よりも小さい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment. 本実施形態において、ギャップ距離が所定値よりも大きい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment. 本実施形態に係るギャップ計測部が点群データからギャップ距離を推定する一例を示す図である。FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data. 本実施形態において、ギャップ距離が所定値よりも小さい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment. 本実施形態において、ギャップ距離が所定値よりも大きい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment. 本実施形態に係るギャップ計測部が点群データからギャップ距離を推定する一例を示す図である。FIG. 6 is a diagram illustrating an example in which the gap measurement unit according to the present embodiment estimates a gap distance from point cloud data. 本実施形態において、ギャップ距離が所定値よりも小さい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is smaller than a predetermined value in this embodiment. 本実施形態において、ギャップ距離が所定値よりも大きい場合に行う溶接の様子を示す図である。FIG. 6 is a diagram showing how welding is performed when the gap distance is larger than a predetermined value in this embodiment. 本実施形態に係る作業分担部34の機能構成例を示す図である。It is a diagram showing an example of the functional configuration of a work sharing section 34 according to the present embodiment. 本実施形態に係る溶接優先度記憶部により記憶される溶接優先度の一例を示す図である。It is a figure showing an example of welding priority stored by a welding priority storage part concerning this embodiment. 本実施形態に係る分配条件記憶部により記憶される分配条件の一例を示す図である。FIG. 3 is a diagram illustrating an example of distribution conditions stored by a distribution condition storage unit according to the present embodiment. 本実施形態に係る作業分担部34の制御フローチャートの一例を示す図である。It is a figure which shows an example of the control flowchart of the work allotment part 34 based on this embodiment. 本実施形態に係る作業分配部34による溶接作業の分配結果の一例を示す図である。It is a figure showing an example of the distribution result of welding work by work distribution part 34 concerning this embodiment. 本実施形態に係る作業分配部34による溶接作業の分配結果の他の一例を示す図である。7 is a diagram illustrating another example of the distribution result of welding work by the work distribution unit 34 according to the present embodiment. FIG. 本実施形態に係る作業分配部34による溶接作業の分配結果の他の一例を示す図である。7 is a diagram illustrating another example of the distribution result of welding work by the work distribution unit 34 according to the present embodiment. FIG.
<実施の形態1の詳細>
 本発明の一実施形態に係る溶接システム100の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<Details of Embodiment 1>
A specific example of a welding system 100 according to an embodiment of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims. In the following description, the same or similar elements are given the same or similar reference numerals and names in the accompanying drawings, and overlapping description of the same or similar elements may be omitted in the description of each embodiment. Furthermore, features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
 図1は、本実施形態の溶接システム100の一例を示す図である。図1に示されるように、本実施形態の溶接検査システム100では、入出力部1と、コントローラ3、1台又は複数台の計測用ロボット20、1台又は複数台の計測用ロボット制御部23、計測制御部24、複数台の溶接用ロボット30、複数台の溶接用ロボット制御部33、作業分配部34を有している。計測用ロボット20は、溶接対象物2の形状に関する情報をセンサ21により取得する。計測用ロボット制御部23は、計測用ロボット20と有線又は無線で相互に通信可能に接続され、計測用ロボット20の計測動作を制御し計測結果を取得する制御部である。計測用ロボット制御部23は、計測用ロボットが複数台ある場合には、それぞれの計測用ロボット毎に設けられる。計測制御部24は、各計測用ロボット制御部23と有線又は無線で相互に通信可能に接続され、各計測用ロボット制御部23から取得する計測結果に基づいて計測対象物2に対する溶接位置を示す作業経路(溶接パス)を生成する制御部である。ここで、計測制御部24は、必ずしも、計測用ロボット制御部23と独立した装置である必要はなく、計測制御部24と計測用ロボット制御部23が同一の1台の装置で構成されていても良い。 FIG. 1 is a diagram showing an example of a welding system 100 of this embodiment. As shown in FIG. 1, the welding inspection system 100 of this embodiment includes an input/output unit 1, a controller 3, one or more measurement robots 20, and one or more measurement robot control units 23. , a measurement control section 24, a plurality of welding robots 30, a plurality of welding robot control sections 33, and a work distribution section . The measuring robot 20 acquires information regarding the shape of the welding object 2 using the sensor 21 . The measurement robot control unit 23 is a control unit that is connected to the measurement robot 20 so as to be able to communicate with each other by wire or wirelessly, and controls the measurement operation of the measurement robot 20 and obtains measurement results. If there are a plurality of measurement robots, the measurement robot control unit 23 is provided for each measurement robot. The measurement control unit 24 is connected to each measurement robot control unit 23 so as to be able to communicate with each other by wire or wirelessly, and indicates the welding position for the measurement object 2 based on the measurement results obtained from each measurement robot control unit 23. This is a control unit that generates a work path (welding path). Here, the measurement control unit 24 does not necessarily have to be an independent device from the measurement robot control unit 23, and the measurement control unit 24 and the measurement robot control unit 23 may be configured in one and the same device. Also good.
 作業分配部34は、計測制御部24と有線又は無線で相互に通信可能に接続され、計測制御部24から作業経路などの情報を取得する。また、作業分配部34は、作業経路を溶接する作業の割り当てを行い、各溶接用ロボット制御部33に対して割り当てる溶接作業に関する情報を溶接用ロボット制御部33に送信する。
溶接用ロボット制御部33は、作業分配部34と有線又は無線で相互に通信可能に接続され、作業分配部34から受信した溶接作業に関する情報に基づいて、溶接用ロボットを制御する。また、溶接用ロボット制御部33は、複数台の溶接用ロボット30に対応して複数台も受けられる。溶接用ロボット30は、溶接用ロボット制御部33と有線又は無線で相互に通信可能に接続され、溶接用ロボット制御部33から受信する制御指令に基づいて、溶接対象物2に対して溶接作業を実行する。ここで、作業分配部34は、必ずしも、溶接用ロボット制御部33と独立した装置である必要はなく、作業分配部34と溶接用ロボット制御部33が同一の1台の装置で構成されていても良い。
The work distribution section 34 is connected to the measurement control section 24 by wire or wirelessly so as to be able to communicate with each other, and acquires information such as work routes from the measurement control section 24 . Further, the work distribution unit 34 allocates the work of welding the work path, and transmits information regarding the welding work to be allocated to each welding robot control unit 33 to the welding robot control unit 33.
The welding robot control section 33 is connected to the work distribution section 34 in a wired or wireless manner so as to be able to communicate with each other, and controls the welding robot based on the information regarding the welding work received from the work distribution section 34 . Further, the welding robot control section 33 can also accommodate a plurality of welding robots 30 corresponding to the plurality of welding robots 30. The welding robot 30 is connected to a welding robot control section 33 by wire or wirelessly so as to be able to communicate with each other, and performs welding work on the welding object 2 based on control commands received from the welding robot control section 33. Execute. Here, the work distribution section 34 does not necessarily have to be an independent device from the welding robot control section 33, and the work distribution section 34 and the welding robot control section 33 may be configured in one and the same device. Also good.
 入出力部1は、計測制御部24と作業分配部34と有線又は無線で相互に通信可能に接続され、計測制御部24と作業分配部34の記憶部に記憶されたデータを表示させる出力機器(例えばディスプレイ)を備えると共に、記憶部に記憶されるデータ等を入力する情報入力機器(例えばキーボード、マウス又はタッチパネル等)を備える。コントローラ3は、計測制御部24と作業分配部34と有線又は無線で相互に通信可能に接続され、計測用ロボット20と溶接用ロボット30の動作開始と動作停止の指示を入力する入力部を備える。 The input/output unit 1 is an output device that is connected to the measurement control unit 24 and the work distribution unit 34 so as to be able to communicate with each other by wire or wirelessly, and displays data stored in the storage units of the measurement control unit 24 and the work distribution unit 34. (for example, a display) and an information input device (for example, a keyboard, a mouse, a touch panel, etc.) for inputting data stored in the storage unit. The controller 3 is connected to the measurement control unit 24 and the work distribution unit 34 so as to be able to communicate with each other by wire or wirelessly, and includes an input unit for inputting instructions for starting and stopping the operation of the measurement robot 20 and the welding robot 30. .
 図2は、溶接システム100の複数の計測用ロボット20を用いて溶接対象部材の三次元形状を計測し、作業経路200を生成する様子を示す図である。計測用ロボット20は、アーム21、アーム21の先端に搭載されたセンサ22を有している。予め取得する溶接対象物2の三次元CADデータに基づいて、溶接を行う2つの部材である溶接対象部材201及び202の部材同士が近接する部分を含む範囲が計測範囲として設定されており、計測用ロボット20は、計測用ロボット2のアーム21に設けられたセンサ22により、計測範囲の表面形状の点群データを取得する。また、この点群データに基づいて溶接作業を行う作業経路200を生成する。 FIG. 2 is a diagram illustrating how the three-dimensional shape of the welding target member is measured using the plurality of measurement robots 20 of the welding system 100 and a work path 200 is generated. The measurement robot 20 has an arm 21 and a sensor 22 mounted on the tip of the arm 21. Based on the three-dimensional CAD data of the welding object 2 obtained in advance, the measurement range is set as a range including the parts where the two welding objects 201 and 202, which are the two members to be welded, are close to each other. The measuring robot 20 uses a sensor 22 provided on the arm 21 of the measuring robot 2 to acquire point cloud data of the surface shape of the measurement range. Furthermore, a work route 200 for welding work is generated based on this point cloud data.
 図3は、溶接システム100の複数の溶接用ロボット30を用いて、作業経路200に対して溶接を行う様子を示す図である。溶接用ロボット30は、少なくともアーム31、アーム31の先端に搭載された溶接トーチ32を有している。図3に示すように溶接対象物2が複雑な構造である場合には、1台の溶接用ロボットでは作業経路200全ての位置に対して溶接を行うことが難しいため、複数台の溶接用ロボットで溶接作業を分担して実行する。作業経路200への溶接作業は作業分配部34により各溶接用ロボットに分配されるため、溶接用ロボット30は、自機に割り当てられた溶接作業に基づいて設定される、溶接トーチ32の目標位置と目標角度となるようにアーム31の動作を制御して、溶接作業を実行する。 FIG. 3 is a diagram showing how welding is performed on the work path 200 using the plurality of welding robots 30 of the welding system 100. The welding robot 30 includes at least an arm 31 and a welding torch 32 mounted on the tip of the arm 31. As shown in FIG. 3, when the welding object 2 has a complicated structure, it is difficult for one welding robot to weld all positions on the work path 200, so multiple welding robots are required. The welding work will be divided and carried out. Since the welding work on the work path 200 is distributed to each welding robot by the work distribution unit 34, the welding robot 30 can set the target position of the welding torch 32 based on the welding work assigned to it. The operation of the arm 31 is controlled to achieve the target angle, and the welding work is executed.
<ハードウェア>
 図4は、計測制御部24、作業分配部34、計測用ロボット制御部23、又は溶接用ロボット制御部33のハードウェア構成を示す図である。計測制御部24、作業分配部34、計測用ロボット制御部23、又は溶接用ロボット制御部33は、例えばパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。例えば、プロセッサ10に設けられる一部の機能が計測制御部24、作業分配部34、計測用ロボット制御部23、又は溶接用ロボット制御部33の外部のサーバや別端末により実行されてもよい。
<Hardware>
FIG. 4 is a diagram showing the hardware configuration of the measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33. The measurement control unit 24, the work distribution unit 34, the measurement robot control unit 23, or the welding robot control unit 33 may be a general-purpose computer such as a personal computer, or may be logically realized by cloud computing. You can. Note that the illustrated configuration is an example, and other configurations may be used. For example, some of the functions provided in the processor 10 may be executed by a server or another terminal external to the measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33.
 計測制御部24、作業分配部34、計測用ロボット制御部23、又は溶接用ロボット制御部33は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。 The measurement control section 24, the work distribution section 34, the measurement robot control section 23, or the welding robot control section 33 includes at least a processor 10, a memory 11, a storage 12, a transmission/reception section 13, an input/output section 14, etc. are electrically connected to each other through a bus 15.
 プロセッサ10は、自己が搭載される計測制御部24等の動作を制御し、少なくとも送受信部13を介して有線又は無線で接続される装置とのデータ等の送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)であり、あるいは、CPU及びGPUであり、ストレージ12に格納されメモリ11に展開された本システムのためのプログラム等を実行して各情報処理を実施する。 The processor 10 controls the operation of the measurement control unit 24 and the like in which it is installed, controls the transmission and reception of data, etc. to and from devices connected by wire or wirelessly via the transmission/reception unit 13, and executes and authenticates applications. This is a calculation device that performs information processing necessary for processing. For example, the processor 10 is a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a CPU and a GPU, and executes programs for this system stored in the storage 12 and developed in the memory 11. Performs each information processing.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、自己が搭載される計測制御部24等の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。 The memory 11 includes a main memory configured with a volatile storage device such as a DRAM (Dynamic Random Access Memory), and an auxiliary memory configured with a non-volatile storage device such as a flash memory or an HDD (Hard Disc Drive). . The memory 11 is used as a work area of the processor 10, and also stores a BIOS (Basic Input/Output System) that is executed when the measurement control unit 24 and the like in which it is installed is started, various setting information, and the like.
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ12に構築されていてもよい。 The storage 12 stores various programs such as application programs. A database storing data used for each process may be constructed in the storage 12.
 送受信部13は、自己が搭載される装置と通信可能に接続される装置と接続し、プロセッサの指示に従い、データ等の送受信を行う。なお、送受信部13は、有線または無線により構成されおり、無線である場合には、例えば、WiFiやBluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インターフェースにより構成されていてもよい。 The transmitting/receiving unit 13 connects to a device that is communicably connected to the device in which it is mounted, and transmits and receives data, etc. according to instructions from the processor. Note that the transmitter/receiver 13 is configured by wire or wirelessly, and in the case of wireless, it may be configured by, for example, a short-range communication interface such as WiFi, Bluetooth (registered trademark), and BLE (Bluetooth Low Energy). .
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 15 is commonly connected to each of the above elements and transmits, for example, address signals, data signals, and various control signals.
<計測用ロボット20>
 図1、図2に戻り、本実施形態に係る作業用ロボット2について説明する。上述のとおり、計測用ロボット20は、アーム21と、センサ22とを有する。なお、図示された構成は一例であり、この構成に限定されない。
<Measurement robot 20>
Returning to FIGS. 1 and 2, the working robot 2 according to this embodiment will be described. As described above, the measurement robot 20 includes the arm 21 and the sensor 22. Note that the illustrated configuration is an example, and the present invention is not limited to this configuration.
 アーム21は、三次元のロボット座標系に基づき、計測用ロボット制御部23にその動作を制御される。また、アーム21は、コントローラ3によりその動作を制御されてもよい。 The operation of the arm 21 is controlled by the measurement robot control unit 23 based on a three-dimensional robot coordinate system. Further, the operation of the arm 21 may be controlled by the controller 3.
 センサ22は、三次元のセンサ座標系に基づき、溶接対象部材201,202のセンシングを行う。センサ22は、例えば三次元スキャナとして動作するレーザセンサであり、センシングにより溶接予定の位置を含む溶接対象部材201,202の三次元点群データ50を取得する。三次元モデルデータ50は、例えば、それぞれの点データがセンサ座標系の座標情報を有し、点群により検査対象物の形状を把握することが可能となる。なお、センサ22は、レーザセンサに限らず、例えばステレオ方式などを用いた画像センサなどであってもよいし、計測用ロボットとは独立したセンサであってもよく、三次元のセンサ座標系における座標情報が取得できるものであればよい。また、説明を具体化するために、以下では三次元モデルデータ50として、三次元点群データを用いた構成を一例として説明する。 The sensor 22 senses the members to be welded 201 and 202 based on a three-dimensional sensor coordinate system. The sensor 22 is, for example, a laser sensor that operates as a three-dimensional scanner, and acquires three-dimensional point group data 50 of the members to be welded 201 and 202 including the position to be welded by sensing. In the three-dimensional model data 50, for example, each point data has coordinate information of the sensor coordinate system, and the shape of the object to be inspected can be grasped by the point group. Note that the sensor 22 is not limited to a laser sensor, and may be an image sensor using a stereo system, for example, or may be a sensor independent of the measurement robot, and may be a sensor in a three-dimensional sensor coordinate system. Any information from which coordinate information can be obtained may be used. Further, in order to make the explanation more specific, a configuration using three-dimensional point group data as the three-dimensional model data 50 will be described below as an example.
 なお、作業前に所定のキャリブレーションを行い、ロボット座標系及びセンサ座標系を互いに関連付け、例えばセンサ座標系を基にユーザが位置(座標)を指定することにより、アーム21やセンサ22が対応した位置を基に動作制御されるように構成をなしてもよい。また、溶接対象物2の形状が複雑であり、又は溶接予定の位置が立体的である場合には、複数の計測用ロボット20を用いて溶接対象物2の溶接対象部材201,202の三次元点群データ50が取得され、計測制御部24で当該三次元点群データ50に基づいて作業経路200が生成される。ここで、複数の計測用ロボットのロボット座標系を同一座標系で定義しておくことにより、各計測用ロボットで取得した三次元点群データを短時間に統合して、溶接対象部材全体の統合された三次元点群データを高精度かつ短時間に得ることができる。 Note that by performing a predetermined calibration before work and associating the robot coordinate system and the sensor coordinate system with each other, for example, the user can specify the position (coordinates) based on the sensor coordinate system, so that the arm 21 and sensor 22 can The configuration may be such that the operation is controlled based on the position. In addition, when the shape of the welding object 2 is complex or the planned welding position is three-dimensional, a plurality of measuring robots 20 may be used to measure the three-dimensional welding object members 201 and 202 of the welding object 2. Point cloud data 50 is acquired, and the measurement control unit 24 generates a work route 200 based on the three-dimensional point cloud data 50. By defining the robot coordinate systems of multiple measurement robots as the same coordinate system, the three-dimensional point cloud data acquired by each measurement robot can be integrated in a short time, and the entire part to be welded can be integrated. 3D point cloud data can be obtained with high precision and in a short time.
<溶接用ロボット3>
 図1、3を用いて、本実施形態に係る溶接用ロボット3について説明する。上述のとおり、溶接用ロボット2は、アーム31と、溶接トーチ32とを有する。なお、図示された構成は一例であり、この構成に限定されない。
<Welding robot 3>
A welding robot 3 according to this embodiment will be explained using FIGS. 1 and 3. As described above, the welding robot 2 includes the arm 31 and the welding torch 32. Note that the illustrated configuration is an example, and the present invention is not limited to this configuration.
 アーム31は、三次元のロボット座標系に基づき、溶接用ロボット制御部33にその動作を制御される。また、アーム31は、コントローラ4によりその動作を制御されてもよい。 The operation of the arm 31 is controlled by a welding robot controller 33 based on a three-dimensional robot coordinate system. Further, the operation of the arm 31 may be controlled by the controller 4.
 溶接トーチ32は、三次元のトーチ座標系に基づき、溶接対象部材201,202の近接部分に設定された作業経路200に基づいて溶接作業を行う。溶接トーチ32は、例えばアーク溶接、レーザ溶接、電子ビーム溶接、プラズマアーク溶接などの融接による溶接方式に用いられるツールであり、溶接トーチから溶接対象部材を溶融させるアーク、レーザ、ビームなどを出力して、溶接対象部材201,202を溶接する。なお、溶接トーチは、ろう付けなどのろう接で用いられる溶加材(接着剤)の吐出部、またはシーリング材や接着剤の吐出部であっても良い。 The welding torch 32 performs welding work based on a work path 200 set in the vicinity of the welding target members 201 and 202 based on a three-dimensional torch coordinate system. The welding torch 32 is a tool used in fusion welding methods such as arc welding, laser welding, electron beam welding, and plasma arc welding, and outputs an arc, laser, beam, etc. that melts the welding target member from the welding torch. Then, the members to be welded 201 and 202 are welded. Note that the welding torch may be a discharge part for a filler material (adhesive) used in soldering such as brazing, or a discharge part for a sealant or an adhesive.
 なお、作業前に所定のキャリブレーションを行い、計測用ロボット20と溶接用ロボット30のロボット座標系、及びトーチ座標系を互いに関連付け、例えばトーチ座標系を基にユーザが位置(座標)を指定することにより、アーム31や溶接トーチ32が対応した位置を基に動作制御されるように構成をなしてもよい。また、複数の溶接用ロボットのロボット座標系を前記計測用ロボットのロボット座標系と同一座標系で定義しておくことにより、作業分配部から分配される作業経路に対する溶接作業を短時間に実行することができる。 Note that a predetermined calibration is performed before the work, and the robot coordinate systems and torch coordinate systems of the measuring robot 20 and welding robot 30 are associated with each other, and for example, the user specifies the position (coordinates) based on the torch coordinate system. Accordingly, the configuration may be such that the arm 31 and the welding torch 32 are controlled in operation based on the corresponding positions. Furthermore, by defining the robot coordinate systems of a plurality of welding robots as the same coordinate system as the robot coordinate system of the measuring robot, welding work can be performed in a short time on the work paths distributed from the work distribution section. be able to.
<計測用ロボット制御部23の機能>
計測用ロボット制御部23は、計測用ロボットが複数台ある場合には、それぞれの計測用ロボット毎に設けられる。また、計測用ロボット制御部23は、計測制御部24から計測動作に関する計測条件(センサ22の位置と計測方向を含む)を受信し、計測条件を満たす動作指令を生成して、通信可能に接続される計測用ロボット20に対して当該動作指令を送信して計測用ロボット20による計測動作を制御すると共に、当該計測用ロボット20で計測される三次元点群データ50を取得する。計測用ロボット制御部23は、取得した三次元点群データ50を計測制御部24に送信する。ここで、計測用ロボット制御部23は、必ずしもそれぞれの計測用ロボット毎に設ける必要は無く、ハードウェアの演算性能が十分に高い場合には、1台の計測用ロボット制御部23で複数台の計測用ロボットを制御するように構成しても良い。
<Functions of the measurement robot control unit 23>
If there are a plurality of measurement robots, the measurement robot control unit 23 is provided for each measurement robot. The measurement robot control unit 23 also receives measurement conditions related to the measurement operation (including the position and measurement direction of the sensor 22) from the measurement control unit 24, generates an operation command that satisfies the measurement conditions, and connects the unit for communication. The operation command is transmitted to the measuring robot 20 to control the measuring operation by the measuring robot 20, and the three-dimensional point group data 50 measured by the measuring robot 20 is acquired. The measurement robot control unit 23 transmits the acquired three-dimensional point group data 50 to the measurement control unit 24. Here, the measurement robot control section 23 does not necessarily need to be provided for each measurement robot, and if the computing performance of the hardware is sufficiently high, one measurement robot control section 23 can control multiple robots. It may also be configured to control a measuring robot.
<計測制御部24の機能>
 図5は、計測制御部24に実装される機能を例示したブロック図である。本実施の形態においては、計測制御部24は、処理部2410と記憶部2420を備えている。処理部2410は、計測条件決定部2411、点群データ取得部2412、ギャップ計測部2413、溶接トーチ位置・角度決定部2414、作業経路生成部2415を有している。また、計測制御部24の記憶部2420は、計測条件記憶部2421、三次元CADデータ記憶部2422、計測点群データ記憶部2423、トーチ位置・角度条件記憶部2424、ギャップ記憶部2425、作業経路記憶部2426を有している。
<Function of measurement control unit 24>
FIG. 5 is a block diagram illustrating functions implemented in the measurement control section 24. As shown in FIG. In this embodiment, the measurement control section 24 includes a processing section 2410 and a storage section 2420. The processing section 2410 includes a measurement condition determination section 2411, a point cloud data acquisition section 2412, a gap measurement section 2413, a welding torch position/angle determination section 2414, and a work path generation section 2415. The storage unit 2420 of the measurement control unit 24 also includes a measurement condition storage unit 2421, a three-dimensional CAD data storage unit 2422, a measurement point group data storage unit 2423, a torch position/angle condition storage unit 2424, a gap storage unit 2425, and a working route. It has a storage section 2426.
 計測方法決定部2411は、計測条件記憶部2421に記憶された計測条件と、三次元CADデータ記憶部2422に記憶された溶接対象物2の三次元CADデータ(三次元の形状データ)に基づいて、計測を行うセンサ22の位置と計測方向(センサ22の向き)を含む計測方法を決定し、当該計測条件を計測用ロボット制御部23に送信する。前記三次元CADデータには、予め設定された溶接対象物2における溶接予定個所の情報が含まれており、前記計測条件には、溶接予定箇所に対するセンサ22の位置と計測方向の情報が含まれている。また、複数台の計測用ロボット20により計測作業を分担する場合には、計測条件記憶部2421は計測条件として、当該複数台の計測用ロボット20に関する情報を含み、計測条件決定部2411は、複数台の計測用ロボット20のそれぞれについて、計測範囲の割り当てを行うと共に、各計測用ロボットのセンサ22の位置と計測方向(センサ22の向き)を含む計測条件を決定し、各計測用ロボット20に対応する計測用ロボット制御部23に計測条件を送信する。 The measurement method determining unit 2411 determines the method based on the measurement conditions stored in the measurement condition storage unit 2421 and the three-dimensional CAD data (three-dimensional shape data) of the welding object 2 stored in the three-dimensional CAD data storage unit 2422. , determines a measurement method including the position and measurement direction (orientation of the sensor 22 ) of the sensor 22 that performs the measurement, and transmits the measurement conditions to the measurement robot control unit 23 . The three-dimensional CAD data includes information on a predetermined welding location on the welding object 2, and the measurement conditions include information on the position and measurement direction of the sensor 22 with respect to the welding location. ing. Furthermore, when a plurality of measurement robots 20 share the measurement work, the measurement condition storage unit 2421 includes information regarding the plurality of measurement robots 20 as measurement conditions, and the measurement condition determination unit 2411 As well as assigning a measurement range to each of the measurement robots 20 on the stand, measurement conditions including the position and measurement direction (orientation of the sensor 22) of the sensor 22 of each measurement robot 22 are determined. The measurement conditions are transmitted to the corresponding measurement robot control unit 23.
 点群データ取得部2412は、計測用ロボット制御部23を介して、計測用ロボット20により取得した溶接対象部材201と202の境界位置(溶接予定箇所)を含む溶接対象物2の三次元点群データを取得する。取得した三次元点群データは、例えばセンサ座標系に基づく三次元座標情報データであり、計測点群データ記憶部2423に記憶される。 The point cloud data acquisition unit 2412 generates a three-dimensional point cloud of the welding object 2 including the boundary position (planned welding location) between the welding target members 201 and 202 acquired by the measuring robot 20 via the measuring robot control unit 23. Get data. The acquired three-dimensional point group data is, for example, three-dimensional coordinate information data based on the sensor coordinate system, and is stored in the measurement point group data storage unit 2423.
 ギャップ計測部2413は、取得した三次元点群データと三次元CADデータに基づいて、三次元CADデータにおいて設定された溶接予定箇所における溶接対象部材201と202の間の距離(ギャップ距離)を計測する。計測したギャップ距離はギャップ記憶部2424に記録される。ここで、溶接対象部材201と202の間の距離(ギャップ距離)とは、溶接予定箇所における溶接対象部材201と溶接対象部材202の近接部分の空隙の距離であって、例えば、溶接対象部材201の点群と溶接対象部材202の点群を結ぶ直線距離のうち、当該直線距離が最短となる2点間の距離として推定することができるが、必ずしもこれに限られない。また当該ギャップは、溶接予定箇所の複数位置において推定される。ギャップの具体的な推定方法は、後述する。 The gap measurement unit 2413 measures the distance (gap distance) between the welding target members 201 and 202 at the welding location set in the 3D CAD data based on the acquired 3D point cloud data and 3D CAD data. do. The measured gap distance is recorded in the gap storage section 2424. Here, the distance (gap distance) between the members to be welded 201 and 202 is the distance between the gaps between the parts to be welded 201 and the members to be welded 202 in the vicinity of the welding target part. It can be estimated as the distance between two points where the straight line distance is the shortest among the straight line distances connecting the point group of and the point group of the welding target member 202, but it is not necessarily limited to this. Further, the gaps are estimated at multiple positions of the planned welding location. A specific method for estimating the gap will be described later.
 溶接トーチ位置・角度決定部2414は、計測したギャップ距離と、T型、J型、オーバーラップ型のそれぞれの形状タイプの情報と、トーチ位置・角度条件記憶部2424の情報に応じて、ギャップ計測位置における溶接トーチの溶接対象部材に対する位置と角度を決定する。また、ギャップ距離が所定値(例えば、所定のしきい値)を超える場合には、溶接不可と判断して、入出力部14を介して、溶接すべきでない旨のエラー通知を行うと共に、溶接作業の実行を禁止する。T型、J型、オーバーラップ型のそれぞれの形状タイプにおける溶接トーチの位置と角度の決定方法の詳細は、後述する。 The welding torch position/angle determining unit 2414 performs gap measurement according to the measured gap distance, information on each shape type of T type, J type, and overlap type, and information in the torch position/angle condition storage unit 2424. Determine the position and angle of the welding torch relative to the workpiece to be welded. In addition, if the gap distance exceeds a predetermined value (for example, a predetermined threshold value), it is determined that welding is not possible, and an error notification is sent via the input/output unit 14 to the effect that welding should not be performed. Prohibit execution of work. Details of how to determine the position and angle of the welding torch for each of the T-shape, J-shape, and overlap-shape types will be described later.
 作業経路生成部2415は、溶接トーチ位置・角度決定部2414で決定した溶接トーチの溶接対象部材に対する位置と角度の情報に基づいて、作業経路を生成する。生成した作業経路は作業経路記憶部2426に記録される。なお、望ましくは、生成される作業経路は、計測用ロボットの座標系と同一の計測対象部材を基準とする座標系で定義されると良い。 The work route generation unit 2415 generates a work route based on the information on the position and angle of the welding torch with respect to the welding target member determined by the welding torch position/angle determination unit 2414. The generated work route is recorded in the work route storage section 2426. Preferably, the generated work route is defined in a coordinate system based on the same measurement target member as the coordinate system of the measurement robot.
 図6は、トーチ位置・角度条件記憶部2424に記録される情報の一例を示す図である。トーチ位置・角度条件記憶部2424には、計測したギャップ距離と、T型、J型、オーバーラップ型のそれぞれの形状タイプに対応する溶接トーチの位置と角度の情報、及び溶接適否の情報が記憶されている。オーバーラップ型では、ギャップ距離nが第1しきい値(Th1)よりも小さい場合には、溶接トーチの位置と溶接トーチの角度はそれぞれ所定位置と所定角度(θ1)から変更せず、ギャップ距離nが第1しきい値(Th1)よりも大きく、第2しきい値(Th2)よりも小さい場合には、溶接トーチの位置を所定位置からZ方向のプラス側にシフトさせる(トーチ角度は所定角度から変更しない)、またギャップ距離nが第2しきい値(Th2)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。 FIG. 6 is a diagram showing an example of information recorded in the torch position/angle condition storage section 2424. The torch position/angle condition storage unit 2424 stores the measured gap distance, information on the position and angle of the welding torch corresponding to each shape type of T type, J type, and overlap type, and information on welding suitability. has been done. In the overlap type, when the gap distance n is smaller than the first threshold value (Th1), the welding torch position and welding torch angle are not changed from the predetermined position and predetermined angle (θ1), respectively, and the gap distance is If n is larger than the first threshold value (Th1) and smaller than the second threshold value (Th2), the position of the welding torch is shifted from the predetermined position to the positive side in the Z direction (the torch angle is set to a predetermined value). If the gap distance n is larger than the second threshold value (Th2), the gap distance is too large and welding is rejected.
 次に、T型では、ギャップ距離nが第3しきい値(Th3)よりも小さい場合には、溶接トーチの位置は部材境界位置を溶接する位置とし、溶接トーチの角度は所定角度(θ2)から変更せず、ギャップ距離nが第3しきい値(Th3)よりも大きく、第4しきい値(Th4)よりも小さい場合には、トーチ位置を部材境界位置からZ方向のプラス側にシフトさせる(トーチ角度は所定角度(θ2)から変更しない)、またギャップ距離nが第4しきい値(Th4)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。 Next, in the T type, if the gap distance n is smaller than the third threshold value (Th3), the welding torch position is set to the member boundary position, and the welding torch angle is set to a predetermined angle (θ2). If the gap distance n is larger than the third threshold value (Th3) and smaller than the fourth threshold value (Th4), the torch position is shifted from the member boundary position to the positive side in the Z direction. (the torch angle is not changed from the predetermined angle (θ2)), and if the gap distance n is larger than the fourth threshold value (Th4), the gap distance is too large and welding is rejected.
 次に、J型では、ギャップ距離nが第5しきい値(Th5)よりも小さい場合には、溶接トーチの位置と溶接トーチの角度はそれぞれ所定位置と所定角度(θ3)から変更しない。ギャップ距離nが第5しきい値(Th5)よりも大きく、第6しきい値(Th6)よりも小さい場合には、トーチ位置を所定位置からX方向のマイナス側にシフトさせ、トーチ角度は所定角度から変更しない。ギャップ距離nが第6しきい値(Th6)よりも大きく、第7しきい値(Th7)よりも小さい場合には、トーチ位置を所定位置からX方向のマイナス側にシフトさせ、トーチ角度は所定角度(θ3)から角度減少して下側部材と並行に近くなる角度(θ3’)に変更する。ギャップ距離nが第7しきい値(Th7)よりも大きい場合は、ギャップ距離が大き過ぎるため溶接NGとする。 Next, in the J type, when the gap distance n is smaller than the fifth threshold value (Th5), the welding torch position and welding torch angle remain unchanged from the predetermined position and predetermined angle (θ3), respectively. When the gap distance n is larger than the fifth threshold value (Th5) and smaller than the sixth threshold value (Th6), the torch position is shifted from the predetermined position to the negative side in the X direction, and the torch angle is set to the predetermined value. Do not change the angle. When the gap distance n is larger than the sixth threshold value (Th6) and smaller than the seventh threshold value (Th7), the torch position is shifted from the predetermined position to the negative side in the X direction, and the torch angle is set to the predetermined value. The angle is decreased from the angle (θ3) to an angle (θ3') that is nearly parallel to the lower member. If the gap distance n is larger than the seventh threshold value (Th7), the gap distance is too large and welding is rejected.
<制御フロー>
 図7は、本実施形態における計測制御部24の制御フローを示す図である。まず、計測条件決定部2411により計測条件等の決定を行う(ステップ101)。次に、点群データ取得部2412により三次元点群データを取得する(ステップ102)。このステップでは、前述したステップ101で決定した計測条件に基づいて計測用ロボット20を制御して溶接対象物2の測定を行い、溶接予定箇所を含む溶接対象部材の表面形状の三次元点群データを取得する。
<Control flow>
FIG. 7 is a diagram showing a control flow of the measurement control section 24 in this embodiment. First, the measurement condition determination unit 2411 determines measurement conditions, etc. (step 101). Next, the point cloud data acquisition unit 2412 acquires three-dimensional point cloud data (step 102). In this step, the measurement robot 20 is controlled to measure the welding object 2 based on the measurement conditions determined in step 101 described above, and three-dimensional point cloud data of the surface shape of the welding object including the planned welding location is obtained. get.
 次に、ギャップ計測部2413によりギャップ計測を行う(ステップ103)。このステップにおいて、ギャップ計測部2413は、計測した三次元点群データに基づいて溶接予定箇所における溶接対象部材201と202の間の距離(ギャップ距離)を計測する。図8は、オーバーラップ型の形状タイプの溶接を行う場合に、溶接対象部材201と202の境界線を示している。ギャップ計測部2413は、三次元CADデータに予め設定された溶接予定箇所の情報に基づいて、溶接予定箇所を囲う複数の円弧を生成して、溶接予定箇所の回りにシリンダ上の空間を生成する。図9は、この処理で作業経路の回りに定義されるシリンダ状の複数円弧の一例を示している。ギャップ計測部2413は、この円弧で定義される各断面平面上におけるシリンダ内(円弧内)の二次元点群データを点群データ取得部2412により取得された三次元点群データから抽出する。ギャップ計測部2413は、二次元の点群データに基づいて、溶接対象部材201と溶接対象部材202の間のギャップ距離を算出する。 Next, gap measurement is performed by the gap measurement unit 2413 (step 103). In this step, the gap measurement unit 2413 measures the distance (gap distance) between the welding target members 201 and 202 at the welding planned location based on the measured three-dimensional point group data. FIG. 8 shows a boundary line between members 201 and 202 to be welded when performing overlap type welding. The gap measurement unit 2413 generates a plurality of circular arcs surrounding the welding location based on the information of the welding location preset in the three-dimensional CAD data, and generates a cylindrical space around the welding location. . FIG. 9 shows an example of a plurality of cylindrical arcs defined around the work path in this process. The gap measurement unit 2413 extracts two-dimensional point cloud data within the cylinder (inside the circular arc) on each cross-sectional plane defined by this circular arc from the three-dimensional point cloud data acquired by the point cloud data acquisition unit 2412. The gap measurement unit 2413 calculates the gap distance between the welding target member 201 and the welding target member 202 based on two-dimensional point cloud data.
 次に、溶接トーチ位置・角度決定部2414により前述した円弧で定義される各断面平面上における溶接トーチの溶接位置と溶接トーチの角度の決定を行う(ステップ104)。このステップにおいて、溶接トーチ位置・角度決定部2414は、トーチ位置・角度条件記憶部2424に記憶されている、ギャップ距離と形状タイプに対応するトーチ位置と角度の情報、溶接適否の情報に基づいて、溶接トーチの位置と溶接トーチの角度を決定すると共に、溶接適否を決定して、コントローラ3又は入出力部1を介して溶接適否の決定結果をユーザに通知する。 Next, the welding torch position/angle determination unit 2414 determines the welding position and angle of the welding torch on each cross-sectional plane defined by the aforementioned circular arcs (step 104). In this step, the welding torch position/angle determining unit 2414 uses information on the torch position and angle corresponding to the gap distance and shape type, and information on welding suitability, which are stored in the torch position/angle condition storage unit 2424. , determines the position of the welding torch and the angle of the welding torch, determines the suitability of welding, and notifies the user of the determination result of suitability of welding via the controller 3 or the input/output unit 1.
 次に、作業経路生成部2415により作業経路の生成を行う(ステップ105)。このステップにおいて、作業経路生成部105は、複数の円弧でそれぞれ定義された各断面平面に対して決定した溶接トーチの位置と溶接トーチの角度に基づいて、溶接トーチの移動ルートと角度で定義される作業経路を生成する。ここで、作業経路は溶接トーチの位置のみで定義される移動ルートで定義することも可能である。ここでは、ギャップ計測部で計測したギャップ距離の大きさに応じて溶接トーチの位置と角度を変更する例を示したが、作業経路は、点群データ取得部2412で取得した三次元点群データから溶接対象部材201と溶接対象部材202の境界線を検出し、当該境界線を作業経路として生成することも可能である。 Next, the work route generation unit 2415 generates a work route (step 105). In this step, the work path generation unit 105 defines the welding torch movement route and angle based on the welding torch position and welding torch angle determined for each cross-sectional plane defined by a plurality of circular arcs. Generate a work route. Here, the work route can also be defined as a movement route defined only by the position of the welding torch. Here, an example is shown in which the position and angle of the welding torch are changed according to the size of the gap distance measured by the gap measurement section, but the working route is determined using three-dimensional point cloud data acquired by the point cloud data acquisition section 2412. It is also possible to detect the boundary line between the welding target member 201 and the welding target member 202 and generate the boundary line as a work route.
<オーバーラップ型タイプ>
図10(a)は、オーバーラップ型の形状タイプの溶接対象部材201と202を測定する際の円弧220で定義される断面平面上における、溶接対象部材201と溶接対象部材202とセンサ22の位置関係を示す。図10(b)及び図10(c)は、図10(a)に示す位置関係で取得された三次元点群データから抽出された、円弧220で定義される断面平面上の点群データ(二次元)を示す。ギャップ計測部2413は、図10(b)に示すような二次元の点群データに基づいて、溶接対象部材201の最下部(端部)を示す点群と、溶接対象部材202の表面形状を示す点群との距離を算出することにより、溶接対象部材201と202のギャップ距離を取得する。図10に示すオーバーラップ型(溶接対象部材が互いに重なるように配置された形状)におけるギャップ距離は、一例として、図10(b)に示すように、断面平面上の点群データ(二次元)における溶接対象部材201の点群と溶接対象部材202の点群のペアであって、点群間の直線距離が最短となる点群のペアの間の距離で定義することができる。ただし、直線距離が最短となる点群間の距離である必要は必ずしもなく、溶接対象部材201の点群と溶接対象部材202の点群のペアであって互いに近接する点群間の距離として定義しても良い。
<Overlap type>
FIG. 10(a) shows the positions of the welding target member 201, the welding target member 202, and the sensor 22 on the cross-sectional plane defined by the circular arc 220 when measuring the welding target members 201 and 202 of the overlap type shape type. Show relationships. FIGS. 10(b) and 10(c) show point cloud data ( 2D). The gap measuring unit 2413 calculates a point group indicating the lowest part (end) of the welding target member 201 and the surface shape of the welding target member 202 based on two-dimensional point cloud data as shown in FIG. 10(b). By calculating the distance to the indicated point group, the gap distance between the welding target members 201 and 202 is obtained. The gap distance in the overlap type (a shape in which the members to be welded are arranged so as to overlap each other) shown in FIG. 10 is, for example, as shown in FIG. A pair of points of the welding target member 201 and a point group of the welding target member 202 in , and can be defined as the distance between the pair of point groups where the straight line distance between the point groups is the shortest. However, it does not necessarily have to be the distance between the point groups where the straight line distance is the shortest, but is defined as the distance between point groups that are close to each other in a pair of point groups of the welding target member 201 and the point group of the welding target member 202 You may do so.
 あるいは、ギャップ距離の別の算出方法として、ギャップ計測部103は、図10(c)に示すように、溶接対象部材201の上面を示す点群のZ軸方向の座標と、溶接対象部材202の上面を示す点群のZ軸方向の座標から上面間の距離を算出し、さらに当該距離から溶接対象部材201の部材板厚を差し引いた値をギャップ距離として取得することも可能である。 Alternatively, as another method of calculating the gap distance, the gap measurement unit 103 calculates the coordinates in the Z-axis direction of a point group indicating the upper surface of the welding target member 201 and the welding target member 202, as shown in FIG. 10(c). It is also possible to calculate the distance between the upper surfaces from the coordinates in the Z-axis direction of the point group indicating the upper surfaces, and then obtain a value obtained by subtracting the thickness of the member 201 to be welded from this distance as the gap distance.
 図11は、部材間のギャップ距離が第1しきい値(例えば1ミリメートル)未満の場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。図11に示すように、部材間のギャップ距離が所定距離(例えば1ミリメートル)未満の場合は、溶接トーチはX軸方向における部材境界位置からX軸方向に所定距離(数ミリメートル)だけシフトした位置を溶接位置とし、溶接トーチの角度は溶接対象部材202の部材平面に対する角度が所定角度(θ1)に決定される。 FIG. 11 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the first threshold value (for example, 1 mm). As shown in Fig. 11, when the gap distance between the members is less than a predetermined distance (for example, 1 mm), the welding torch is shifted from the member boundary position in the X-axis direction by a predetermined distance (several millimeters) in the X-axis direction. is the welding position, and the angle of the welding torch with respect to the plane of the member 202 to be welded is determined to be a predetermined angle (θ 1 ).
 図12は、部材間のギャップ距離(nミリメートル)が第1しきい値(例えば1ミリメートル)よりも大きくで、かつ第2しきい値未満の場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。図13に示すように、部材間のギャップ距離が第1しきい値(例えば1ミリメートル)よりも大きく、かつ第2しきい値未満の場合は、溶接トーチはZ軸方向における溶接対象部材202の表面位置から部材の境界位置からZ軸方向にギャップ距離分(nミリメートル)シフトした位置を溶接位置とし、溶接トーチの角度は溶接対象部材202の部材平面から所定角度(θ1)傾いた角度に決定される(つまり、角度の変更なし)。このように、溶接トーチを境界位置からZ軸方向にギャップ距離分(nミリメートル)シフトさせることにより、溶接トーチから吐出されるアーク等が上側の溶接対象部材に追従し下側の溶接対象部材と接合させることができる。 Figure 12 shows the welding position and angle of the welding torch when the gap distance (n mm) between the members is greater than the first threshold (for example, 1 mm) and less than the second threshold. FIG. As shown in FIG. 13, when the gap distance between the members is larger than the first threshold (for example, 1 mm) and less than the second threshold, the welding torch moves toward the welding target member 202 in the Z-axis direction. The welding position is defined as a position shifted from the surface position by the gap distance (n millimeters) in the Z-axis direction from the boundary position of the member, and the welding torch is tilted at a predetermined angle (θ 1 ) from the member plane of the member to be welded 202. determined (i.e., no change in angle). In this way, by shifting the welding torch from the boundary position in the Z-axis direction by the gap distance (n millimeters), the arc etc. discharged from the welding torch will follow the upper workpiece to be welded and will be connected to the lower workpiece. Can be joined.
<T型タイプ>
図13(a)はT型の形状タイプの溶接対象部材201と202を測定する際の円弧220で定義される断面平面上における位置関係を示す。図13(b)は、図13(a)に示す位置関係で取得された三次元点群データから抽出された、円弧220で定義される断面平面上の点群データ(二次元)を示す。ギャップ計測部2413は、図13(b)に示すような二次元の点群データに基づいて、溶接対象部材201の最下部(端部)を示す点群と、溶接対象部材202の表面形状を示す点群との距離を算出することにより、溶接対象部材201と202のギャップ距離を取得する。図13に示すT型(溶接対象部材が互いに略直交する形状)におけるギャップ距離は、一例として、図13(b)に示すように、断面平面上の点群データ(二次元)における溶接対象部材201の点群と溶接対象部材202の点群のペアであって、点群間の直線距離が最短となる点群のペアの間の距離で定義することができる。ただし、直線距離が最短となる点群間の距離である必要は必ずしもなく、溶接対象部材201の点群と溶接対象部材202の点群のペアであって互いに近接する点群間の距離として定義しても良い。
<T type>
FIG. 13A shows the positional relationship on the cross-sectional plane defined by the circular arc 220 when measuring the T-shaped members 201 and 202 to be welded. FIG. 13(b) shows point group data (two-dimensional) on a cross-sectional plane defined by the circular arc 220, extracted from the three-dimensional point group data acquired in the positional relationship shown in FIG. 13(a). The gap measuring unit 2413 calculates a point group indicating the lowest part (end) of the welding target member 201 and the surface shape of the welding target member 202 based on two-dimensional point cloud data as shown in FIG. 13(b). By calculating the distance to the indicated point group, the gap distance between the welding target members 201 and 202 is obtained. As an example, the gap distance in the T-shape (a shape in which the members to be welded are substantially perpendicular to each other) shown in FIG. 201 and the point group of the member to be welded 202, and can be defined as the distance between the pair of point groups where the straight line distance between the point groups is the shortest. However, it does not necessarily have to be the distance between the point groups where the straight line distance is the shortest, but is defined as the distance between point groups that are close to each other in a pair of point groups of the welding target member 201 and the point group of the welding target member 202 You may do so.
 図14は、部材間のギャップ距離が第3しきい値(例えば0.5ミリメートル)未満の場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。図14に示すように、部材間のギャップ距離が所定距離(例えば0.5ミリメートル)未満の場合は、溶接トーチは部材境界位置を溶接位置とし、溶接トーチの角度は溶接対象部材202の部材平面から所定角度(θ2)傾いた角度に決定される。 FIG. 14 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the third threshold (for example, 0.5 mm). As shown in FIG. 14, when the gap distance between the members is less than a predetermined distance (for example, 0.5 mm), the welding torch sets the welding position at the member boundary position, and the welding torch angle is set at a predetermined angle from the member plane of the welding target member 202. The angle (θ 2 ) is determined to be an inclined angle.
 図15は、部材間のギャップ距離(nミリメートル)が第3しきい値(例えば0.5mm)よりも大きくで、かつ第4しきい値未満の場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。図15に示すように、部材間のギャップ距離が第3しきい値(例えば0.5mm)よりも大きくで、かつ第4しきい値未満の場合は、溶接トーチはZ軸方向における溶接対象部材202の表面位置から部材の境界位置からZ軸方向にギャップ距離分(nミリメートル)シフトした位置を溶接位置とし、溶接トーチの角度は溶接対象部材202の部材平面から所定角度(θ2)傾いた角度に決定される(つまり角度の変更なし)。このように、溶接トーチを境界位置からZ軸方向にギャップ距離分(nミリメートル)シフトさせることにより、溶接トーチから吐出されるアーク等が上側の溶接対象部材に追従し、下側の溶接対象部材と接合させることができる。 Figure 15 shows the welding position and angle of the welding torch when the gap distance (n millimeters) between members is greater than the third threshold (for example, 0.5 mm) and less than the fourth threshold. FIG. As shown in FIG. 15, when the gap distance between the members is greater than the third threshold (for example, 0.5 mm) and less than the fourth threshold, the welding torch moves toward the welding target member 202 in the Z-axis direction. The welding position is a position shifted by the gap distance (n millimeters) from the boundary position of the member in the Z-axis direction from the surface position of the member, and the angle of the welding torch is an angle tilted by a predetermined angle (θ 2 ) from the member plane of the member to be welded 202. (i.e., no change in angle). In this way, by shifting the welding torch by the gap distance (n millimeters) from the boundary position in the Z-axis direction, the arc etc. discharged from the welding torch will follow the upper welding target member, and the lower welding target member It can be joined with
<J型タイプ>
図16(a)はJ型の形状タイプの溶接対象部材201と202を測定する際の円弧220で定義される断面平面上における位置関係を示す。図16(b)は、図16(a)に示す位置関係で取得された三次元点群データから抽出された、円弧220で定義される断面平面上の点群データ(二次元)を示す。ギャップ計測部2413は、図16(b)に示すように、溶接対象部材201の折り曲げられた曲率部の点群データに基づいて、曲率部の曲率半径を推定、またはユーザによる入力情報により曲率半径を取得する。推定又は取得した曲率半径に基づいて曲率部の下側(溶接対象部材202側)と溶接対象部材202とのギャップ距離を推定する。図16に示すJ型(折り曲げられた曲率部を有する溶接対象部材201と板状の溶接対象部材202とが曲率部分で溶接される形状)におけるギャップ距離は、一例として、図16bに示すように、溶接対象部材201の折り曲げられた曲率部の溶接対象部材202に近接する端部と、溶接対象部材202の端部の間の距離であって、直線距離が最短となる端部同士の間の距離で定義することができる。ただし、必ずしも最短距離である必要は無く、溶接対象部材201の端部と溶接対象部材202の端部であって互いに近接する位置における両部材の間の距離として定義しても良い。
<J type>
FIG. 16(a) shows the positional relationship on the cross-sectional plane defined by the circular arc 220 when measuring the J-shaped members 201 and 202 to be welded. FIG. 16(b) shows point group data (two-dimensional) on a cross-sectional plane defined by the circular arc 220, extracted from the three-dimensional point group data acquired in the positional relationship shown in FIG. 16(a). As shown in FIG. 16(b), the gap measurement unit 2413 estimates the radius of curvature of the curved portion based on the point cloud data of the bent curved portion of the welding target member 201, or calculates the radius of curvature based on information input by the user. get. The gap distance between the lower side of the curvature portion (the welding target member 202 side) and the welding target member 202 is estimated based on the estimated or acquired curvature radius. The gap distance in the J-shape (a shape in which the welding target member 201 having a bent curvature portion and the plate-shaped welding target member 202 are welded at the curvature portion) shown in FIG. 16 is, for example, as shown in FIG. 16b. , the distance between the end of the bent curvature part of the welding target member 201 that is close to the welding target member 202 and the end of the welding target member 202, and the distance between the ends where the straight line distance is the shortest. Can be defined by distance. However, it does not necessarily have to be the shortest distance, and may be defined as the distance between the ends of the welding target member 201 and the welding target member 202 at positions close to each other.
 図17は、部材間のギャップ距離が第5しきい値(例えば1ミリメートル)未満の場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。図17に示すように、部材間のギャップ距離が所定距離(例えば1ミリメートル)未満の場合は、溶接トーチは上側の溶接対象部材201の側面の延長線と下側の溶接対象部材202の交点からX軸マイナス方向に所定距離(例えば、1ミリメートル)シフトした位置を溶接位置とし、溶接トーチの角度は溶接対象部材202の部材平面から所定角度(θ3)傾いた角度に決定される。このように、上側の溶接対象部材201の側面の延長線と下側の溶接対象部材202の交点からX軸マイナス方向に所定距離シフトした位置を溶接位置とすることにより、溶接トーチから吐出されるアーク等が上側と下側の溶接対象部材に当たり易くなり、より確実に溶接対象部材同士を接合させることができる。 FIG. 17 is a diagram showing the welding position and the angle of the welding torch when the gap distance between the members is less than the fifth threshold (for example, 1 mm). As shown in FIG. 17, when the gap distance between the members is less than a predetermined distance (for example, 1 mm), the welding torch is moved from the intersection of the extension line of the side surface of the upper welding target member 201 and the lower welding target member 202. A position shifted by a predetermined distance (for example, 1 mm) in the negative direction of the X-axis is defined as a welding position, and the angle of the welding torch is determined to be inclined by a predetermined angle (θ 3 ) from the plane of the member 202 to be welded. In this way, by setting the welding position at a position shifted by a predetermined distance in the negative direction of the X-axis from the intersection of the extension line of the side surface of the upper welding target member 201 and the lower welding target member 202, the welding torch discharges the welding torch. The arc and the like can more easily hit the upper and lower members to be welded, and the members to be welded can be joined more reliably.
 図18は、部材間のギャップ距離(nミリメートル)が第5しきい値(例えば1ミリメートル)よりも大きい場合における溶接トーチによる溶接位置と溶接トーチの角度を示す図である。溶接トーチの角度は、部材間のギャップ距離(nミリメートル)が第5しきい値(例えば1ミリメートル)よりも大きく、かつ第6しきい値(例えば2ミリメートル)未満である場合には、溶接トーチ角度は所定角度(θ3)に決定する(つまり角度は変更しない)。部材間のギャップ距離(nミリメートル)が第6しきい値(例えば2ミリメートル)よりも大きく、かつ第7しきい値(例えば3ミリメートル)未満である場合は、溶接トーチの角度を小さくする方向に変更し、θ3よりも角度が小さいθ3’を溶接トーチの角度に決定する(つまり、下側の溶接対象部材)。このように、溶接トーチの角度を小さくする方向に変更し、θ3よりも角度が小さいθ3’を溶接トーチの角度とすることにより、部材同士のギャップ距離が大きい場合であっても、溶接トーチから吐出されるアーク等が、曲率部の奥側に届くため、上側と下側の溶接対象部材に当たり易くなり、より確実に溶接対象部材同士を接合させることができる。 FIG. 18 is a diagram showing the welding position and the angle of the welding torch when the gap distance (n millimeters) between members is larger than the fifth threshold (for example, 1 millimeter). The angle of the welding torch is such that if the gap distance (n mm) between the parts is greater than the fifth threshold (e.g. 1 mm) and less than the sixth threshold (e.g. 2 mm), the welding torch The angle is determined to be a predetermined angle (θ 3 ) (that is, the angle is not changed). If the gap distance (n mm) between the parts is greater than the sixth threshold (e.g. 2 mm) and less than the seventh threshold (e.g. 3 mm), the angle of the welding torch should be reduced. θ 3′ , which is smaller than θ 3, is determined as the angle of the welding torch (that is, the lower welding target member). In this way, by changing the welding torch angle to a smaller angle and setting the welding torch angle to θ 3 ', which is smaller than θ 3 , it is possible to weld even if the gap distance between members is large. Since the arc discharged from the torch reaches the inner side of the curved portion, it is easier to hit the upper and lower parts to be welded, and the parts to be welded can be joined together more reliably.
 溶接トーチによる溶接位置は、部材間のギャップ距離(nミリメートル)が第5しきい値(例えば1ミリメートル)よりも大きく、かつ第7しきい値(例えば3ミリメートル)未満である場合には、上側の溶接対象部材201の側面の延長線と下側の溶接対象部材202の交点からX軸マイナス方向(つまり曲率部の奥側に向かう方向)に前記所定距離+α(例えば、1ミリメートル)シフトした位置を溶接位置とする。つまり、図17で示した溶接位置よりも曲率部の奥側に向かう方向)にαだけシフトした位置を溶接位置とする。このように、上側の溶接対象部材201の側面の延長線と下側の溶接対象部材202の交点からX軸マイナス方向(つまり曲率部の奥側に向かう方向)に溶接トーチを前記所定距離+αシフトさせることにより、部材同士のギャップ距離が大きい場合であっても、溶接トーチから吐出されるアーク等が、曲率部の奥側に届くため、上側と下側の溶接対象部材に当たり易くなり、より確実に溶接対象部材同士を接合させることができる。 If the gap distance (n mm) between the parts is greater than the fifth threshold (e.g. 1 mm) and less than the seventh threshold (e.g. 3 mm), the welding position by the welding torch is the upper side. A position shifted by the predetermined distance + α (for example, 1 millimeter) in the negative X-axis direction (that is, the direction toward the back of the curvature) from the intersection of the extension line of the side surface of the welding target member 201 and the lower welding target member 202. is the welding position. In other words, the welding position is a position shifted by α in the direction toward the back of the curvature from the welding position shown in FIG. In this way, the welding torch is shifted by the predetermined distance +α from the intersection of the extension line of the side surface of the upper welding target member 201 and the lower welding target member 202 in the negative direction of the X axis (that is, the direction toward the back of the curved part). By doing so, even if the gap distance between the parts is large, the arc discharged from the welding torch will reach the back of the curved part, making it easier to hit the upper and lower parts to be welded, making it more reliable. The members to be welded can be joined together.
<作業分配部34の機能>
 図19は、作業分配34に実装される機能を例示したブロック図である。本実施の形態においては、作業分配部34は、処理部3410と記憶部3420を備えている。処理部3410は、溶接順序決定部3411、溶接作業割当決定部3412、溶接実行指示部3413を有している。また、作業分配部34の記憶部3420は、溶接順序記憶部3421、分配条件記憶部3422、ロボット特性記憶部3423、作業履歴記憶部3424を有している。
<Function of work distribution unit 34>
FIG. 19 is a block diagram illustrating functions implemented in the work distribution 34. In this embodiment, the work distribution section 34 includes a processing section 3410 and a storage section 3420. The processing section 3410 includes a welding order determining section 3411, a welding work assignment determining section 3412, and a welding execution instruction section 3413. Further, the storage section 3420 of the work distribution section 34 includes a welding order storage section 3421, a distribution condition storage section 3422, a robot characteristic storage section 3423, and a work history storage section 3424.
 溶接順序決定部3411は、計測制御部24から受信するギャップ情報と、溶接優先度記憶部3421に記録された溶接の優先度に関する情報に基づいて、作業経路を以下に説明する3種類のエリアに分割して溶接順序の決定を行う。図20は、溶接優先度記憶部3421に記録された情報の一例を示す図である。溶接優先度記憶部3421には、作業経路200の各位置におけるギャップ距離(G)の大きさに応じて、3つのエリア分類を定義している。 The welding order determining unit 3411 divides the work route into three types of areas described below based on the gap information received from the measurement control unit 24 and the information regarding the welding priority recorded in the welding priority storage unit 3421. The welding order is determined by dividing it. FIG. 20 is a diagram showing an example of information recorded in the welding priority storage section 3421. Three area classifications are defined in the welding priority storage unit 3421 according to the size of the gap distance (G) at each position of the work route 200.
ギャップ距離Gが第1しきい値(Th1)よりも小さい場合には、エリアAに分類される。エリアAでは、溶接用ロボットによる自動溶接がOKと判定され、自動溶接作業の優先度は「高」となる。一方、ギャップ距離が第1しきい値(Th1)よりも大きく、第2しきい値(Th2)よりも小さい場合には、エリアBに分類される。エリアBでは、溶接用ロボットによる自動溶接がOKと判定され、自動溶接作業の優先度は「低」となる。ギャップ距離が第2しきい値(Th2)よりも大きい場合には、エリアCに分類される。エリアCでは、溶接用ロボットによる自動溶接がNGと判定され、溶接用ロボットによる自動溶接が停止し、その旨がコントローラ3又は入出力部1を介してユーザに通知される。 If the gap distance G is smaller than the first threshold (Th1), the area is classified into area A. In area A, automatic welding by the welding robot is determined to be OK, and the priority of automatic welding work is set to "high." On the other hand, if the gap distance is larger than the first threshold (Th1) and smaller than the second threshold (Th2), it is classified into area B. In area B, automatic welding by the welding robot is determined to be OK, and the priority of automatic welding work is set to "low." If the gap distance is larger than the second threshold (Th2), it is classified into area C. In area C, automatic welding by the welding robot is determined to be NG, automatic welding by the welding robot is stopped, and the user is notified of this via the controller 3 or the input/output unit 1.
 溶接順序決定部3411は、計測制御部24から受信するギャップ情報に基づいて、作業経路をエリアA,B,Cのいずれかに分類を行い、エリアAを優先的に溶接し、エリアAの溶接作業が完了後にエリアBの溶接作業を行うように、溶接順序を決定する。一般的にギャップ距離の大きな位置をギャップ距離の小さい位置と同じ強度で溶接するためには、ギャップ距離の小さい位置よりも溶接トーチの出力を相対的に増加させる必要があるため、ギャップ距離の大きな位置では、溶接対象物2に比較的大きな熱が加えられる。そのため溶接対象物2の熱による変形量が大きくなり、溶接作業により作業経路の他のエリアにおける歪やギャップ距離の増大の問題が生じやすくなる。一方、エリアAはギャップ距離が十分に小さいため、溶接時に大きな熱を発生させることなく溶接作業ができる。そのため、よりギャップ距離が小さいエリアAをエリアBよりも先行して溶接するように溶接順序を決定することで、溶接時の溶接対象物の熱変形により溶接品質が悪化する問題を生じにくくすることができる。 The welding order determining unit 3411 classifies the work route into areas A, B, or C based on the gap information received from the measurement control unit 24, welds area A preferentially, and performs welding in area A. The welding order is determined so that the welding work in area B is performed after the work is completed. Generally, in order to weld a position with a large gap distance with the same strength as a position with a small gap distance, it is necessary to relatively increase the output of the welding torch compared to a position with a small gap distance. At this position, a relatively large amount of heat is applied to the workpiece 2 to be welded. Therefore, the amount of deformation of the welding object 2 due to heat increases, and welding operations tend to cause problems such as distortion and increased gap distance in other areas of the work path. On the other hand, since the gap distance in area A is sufficiently small, welding work can be performed without generating large amounts of heat during welding. Therefore, by determining the welding order so that area A, which has a smaller gap distance, is welded before area B, welding quality is less likely to deteriorate due to thermal deformation of the welding object during welding. I can do it.
また、エリアCに分類されたエリアは、溶接用ロボットによる自動溶接は行わず、エリアC以外のエリアA,Bに対して溶接用ロボットによる自動溶接を行う。このように、ギャップ距離が大きく、溶接用ロボットによる溶接が難しいエリアCに対しては、自動溶接を禁止して、人手により溶接作業を行うことができるため、溶接対象物に対する溶接全体の品質を維持しやすくなる。 Further, the area classified as area C is not automatically welded by the welding robot, but areas A and B other than area C are automatically welded by the welding robot. In this way, for area C where the gap distance is large and it is difficult to weld with a welding robot, automatic welding can be prohibited and the welding work can be performed manually, which improves the overall quality of welding on the welding target. Easier to maintain.
 溶接作業割振決定部3412は、複数の溶接用ロボットで実行する溶接作業の割振り(分配)を決定する。割振りの条件は分配条件記憶部3422に記録された複数の分配条件から、入出力部1又はコントローラ3を介してユーザが設定及び変更可能である。図21は、分配条件記憶部3422に記録された複数の分配条件の一例を示す図である。分配条件記憶部3422には、例えば、以下の3つの分配条件が設定されている。 The welding work allocation determination unit 3412 determines the allocation (distribution) of welding work to be performed by a plurality of welding robots. The allocation conditions can be set and changed by the user via the input/output unit 1 or the controller 3 from a plurality of distribution conditions recorded in the distribution condition storage unit 3422. FIG. 21 is a diagram showing an example of a plurality of distribution conditions recorded in the distribution condition storage section 3422. For example, the following three distribution conditions are set in the distribution condition storage unit 3422.
(1)「作業品質優先」 溶接順序決定部3411でギャップ距離の大きさに応じて分類したエリア毎に決定した優先度(高い/低い)に基づいて複数の溶接用ロボットに作業分配を行う。この分配条件で分配を行う具体例は後述する。 (1) "Work quality priority" Work is distributed to a plurality of welding robots based on the priority (high/low) determined by the welding order determining unit 3411 for each area classified according to the size of the gap distance. A specific example of performing distribution under this distribution condition will be described later.
(2)「作業時間短縮優先」 作業経路を分配した場合の各溶接用ロボットの動作距離(又は動作時間)が略均一となるように作業分配を行う。ここで、一般に自動溶接などで用いられる多関節ロボットの先端角度(溶接トーチ角度)は、先端に近い可動部だけではなく、他の可動部も複合的に駆動することにより決定される。そのため、実際の多関節ロボットなどによる自動溶接の動作では、溶接トーチの角度変化のためのロボット駆動時間は無視できないほどあるため、作業時間の短縮を図るためには当該ロボット駆動時間を考慮して作業経路の作業を複数の溶接用ロボットに分配することが望ましい。ロボット特性記憶部3423には、ロボットの溶接トーチの移動ルートと角度を作業経路に従って動かす場合に必要となる各溶接用ロボットの駆動時間、又は駆動時間を算出するために必要な情報、更には各溶接用ロボットの先端位置が届く空間的範囲が記録されている。この「作業時間短縮優先」の分配条件を選択することにより、溶接対象物2の三次元点群計測に基づいて生成された作業経路を溶接するために、実際に必要となるロボット駆動時間と各溶接用ロボットで溶接可能な範囲を考慮することで、各溶接用ロボットでの姿勢変化が少なく、複数の溶接用ロボットによる溶接作業を短縮できる作業分配を行うことができる。 (2) "Priority for reducing work time" Work is distributed so that the working distance (or working time) of each welding robot is approximately uniform when the work paths are distributed. Here, the tip angle (welding torch angle) of an articulated robot generally used in automatic welding and the like is determined by driving not only the movable part near the tip but also other movable parts in a complex manner. Therefore, in actual automatic welding operations using articulated robots, etc., the robot drive time required to change the angle of the welding torch cannot be ignored, so in order to reduce work time, the robot drive time must be taken into consideration. It is desirable to distribute work on a work path to multiple welding robots. The robot characteristic storage unit 3423 stores the drive time of each welding robot, which is necessary when moving the movement route and angle of the welding torch of the robot according to the work path, or the information necessary to calculate the drive time, as well as information necessary for calculating the drive time of each welding robot. The spatial range reached by the tip position of the welding robot is recorded. By selecting this distribution condition of "prioritize work time reduction", the actual robot driving time and each By considering the range that can be welded by a welding robot, it is possible to perform work distribution that reduces the change in posture of each welding robot and shortens the welding work performed by a plurality of welding robots.
(3)「メンテナンス均等優先」 作業履歴記憶部に記憶された各溶接用ロボットの動作距離(又は動作時間)の履歴情報に基づいて、溶接用ロボットの間で累積距離又は累積時間の差が減少するように各溶接用ロボットに対する作業分担を決定する。 (3) "Equal maintenance priority" Based on the history information of the operating distance (or operating time) of each welding robot stored in the work history storage unit, the difference in cumulative distance or cumulative time between welding robots is reduced. Determine the work assignment for each welding robot so that
 溶接実行指示部3413は、溶接作業割振決定部3412で決定した各溶接用ロボットへの溶接作業の割振りに従って、各溶接用ロボットに対応する複数の溶接用ロボット制御部33に対して溶接実行指令を送信し、溶接作業を実行させる。作業履歴記憶部3424は、各溶接用ロボット制御部33から、溶接用ロボットが実際に実行した溶接作業の実績情報を作業履歴記憶部3424に記録する。ここで、溶接用ロボット制御部33は、必ずしもそれぞれの溶接用ロボット毎に設ける必要は無く、ハードウェアの演算性能が十分に高い場合には、1台の溶接用ロボット制御部33で複数台の溶接用ロボットを制御するように構成しても良い。 The welding execution instruction unit 3413 issues a welding execution command to the plurality of welding robot control units 33 corresponding to each welding robot according to the welding work allocation to each welding robot determined by the welding work allocation determining unit 3412. send and have the welding work performed. The work history storage unit 3424 records performance information of welding work actually performed by the welding robots from each welding robot control unit 33 in the work history storage unit 3424. Here, the welding robot control section 33 does not necessarily need to be provided for each welding robot, and if the computing performance of the hardware is sufficiently high, one welding robot control section 33 can control multiple welding robots. It may be configured to control a welding robot.
 図22は、作業分担部34の制御フローチャートの一例を示す図である。まず、作業経路とギャップ情報を計測制御部24から取得する(ステップ201)。次に、計測制御部24から取得した情報と溶接優先度記憶部3421に記録された情報に基づいて、溶接順序決定部3411が溶接順序を決定する(ステップ202)。次に、溶接作業割振決定部3412が溶接作業の割振りを決定する(ステップ203)。次に、溶接実行指示部3413が各溶接用ロボット制御部33に溶接指令を送信する(ステップ204)。 FIG. 22 is a diagram showing an example of a control flowchart of the work sharing section 34. First, the work route and gap information are acquired from the measurement control unit 24 (step 201). Next, the welding order determining section 3411 determines the welding order based on the information acquired from the measurement control section 24 and the information recorded in the welding priority storage section 3421 (step 202). Next, the welding work allocation determining unit 3412 determines the welding work allocation (step 203). Next, the welding execution instruction section 3413 transmits a welding command to each welding robot control section 33 (step 204).
 図23~25は、分配条件として「作業品質優先」が設定された場合に、溶接作業割振決定部3412が二つの溶接用ロボット30aと30bに対して作業割振りを行う例を示す図である。溶接作業割振決定部3412は、溶接作業を分配する2台の溶接用ロボットが接触することを避けるために、溶接実施時刻が重なると予想される地点(溶接開始地点、溶接中間地点、溶接終了地点など)が所定距離以上近くならないように作業経路を設定する必要があり、更に、「作業品質優先」の分配条件に基づいて、エリア毎に決定した優先度(高い/低い)に応じて複数の溶接用ロボットに作業分配を行う必要がある。つまり、ギャップ距離が相対的に短い(所定値、例えばTh1よりも小さい)エリアAの作業経路が、ギャップ距離が相対的に長い(所定値、例えばTh1よりも大きい)エリアBの作業経路よりも先に作業実行されるように、各溶接用ロボットへ分配する分配後の作業経路が生成される。 FIGS. 23 to 25 are diagrams showing examples in which the welding work allocation determining unit 3412 allocates work to two welding robots 30a and 30b when "work quality priority" is set as the distribution condition. Welding work allocation determining unit 3412 selects points where welding execution times are expected to overlap (welding start point, welding intermediate point, welding end point) in order to avoid contact between two welding robots that distribute welding work. etc.), it is necessary to set the work route so that the work routes are not closer than a predetermined distance, and furthermore, based on the distribution condition of "work quality priority", it is necessary to set the work route so that the It is necessary to distribute work to welding robots. In other words, the work route in area A where the gap distance is relatively short (less than a predetermined value, e.g. Th1) is longer than the work route in area B where the gap distance is relatively long (greater than a predetermined value, e.g. Th1). A post-distribution work path to be distributed to each welding robot is generated so that the work is executed first.
図23に示す例では、図面上側に溶接用ロボット30aが設置され、下側に溶接用ロボット30bが設置されている。また、溶接対象部材201,202を計測した結果に基づいて、溶接順序決定部3411は、優先度の高いエリアAが2箇所(点線枠内)、優先度の低いエリアBが2箇所(実線枠内)を決定する例を示している。溶接作業割振決定部3412は、2箇所のエリアAの下端を各溶接ロボット30a、30bの作業経路200a、200bの溶接始点とし、各エリアAの上側に隣接するエリアBの上端を各作業経路200a、200bの溶接終点としている。このように、エリアAとエリアBがそれぞれ複数個所ある場合には、一組のエリアAとエリアBを接続する作業経路を1台の溶接用ロボットに割振るように作業分配することで、溶接動作以外で溶接トーチの位置を移動させる動作も生じないため、作業時間も短縮することができる。 In the example shown in FIG. 23, a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side. Also, based on the results of measuring the members 201 and 202 to be welded, the welding order determining unit 3411 selects two areas A with high priority (inside the dotted line frame) and two areas B with low priority (inside the solid line frame). An example of determining (within) is shown. The welding work allocation determining unit 3412 sets the lower ends of the two areas A as the welding start points of the work routes 200a and 200b of each welding robot 30a and 30b, and sets the upper end of the area B adjacent to the upper side of each area A as the welding start point of each work route 200a. , 200b is the welding end point. In this way, if there are multiple areas A and B, welding can be done by distributing the work route connecting one set of Areas A and B to one welding robot. Since there is no action to move the position of the welding torch other than the action, the working time can also be shortened.
 図24に示す例では、図面上側に溶接用ロボット30aが設置され、下側に溶接用ロボット30bが設置されている。また溶接対象部材201,202を計測した結果に基づいて、溶接順序決定部3411は、優先度の高いエリアAが中央の1箇所(点線枠内)、エリアAの上下両側に優先度の低いエリアBが2箇所(実線枠内)を決定する例を示している。エリアAの溶接は溶接用ロボット30aと30bのどちらに割振ることも可能であるが、溶接用ロボット30a側のエリアBは、溶接用ロボット30b側のエリアBよりもエリアが狭いため、溶接作業割振決定部3412は、エリアA及び上側エリアBを溶接用ロボット30aに割り当てて、下側エリアBを溶接用ロボット30bに割り当てる。また、エリアAの下端を溶接始点とし上側エリアBの上端を溶接終端とする作業経路200aを溶接用ロボット30aの作業として割り当て、下側エリアBの下端を溶接始点とし下側エリアBの上端を溶接終端とする作業経路200bを溶接用ロボット30bの作業として割り当てる。このように、エリアAが1箇所ある場合には、エリアAを溶接する作業経路を1台の溶接用ロボットに割振るように作業分配することで、溶接動作以外で溶接トーチの位置を移動させる動作も生じないため、作業時間も短縮することができる。 In the example shown in FIG. 24, a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side. In addition, based on the results of measuring the members 201 and 202 to be welded, the welding order determining unit 3411 determines that area A with high priority is placed in one place in the center (within the dotted line frame), and areas with low priority are located above and below area A. B shows an example in which two locations (within the solid line frame) are determined. Welding in area A can be assigned to either the welding robots 30a or 30b, but since area B on the welding robot 30a side is narrower than area B on the welding robot 30b side, welding work The allocation determining unit 3412 allocates area A and upper area B to welding robot 30a, and allocates lower area B to welding robot 30b. In addition, a work path 200a in which the lower end of area A is the welding start point and the upper end of upper area B is the welding end point is assigned to the welding robot 30a, and the lower end of lower area B is the welding start point and the upper end of lower area B is the welding point. A work path 200b having a welding end is assigned as a work for the welding robot 30b. In this way, if there is one area A, by distributing the work so that the work path for welding area A is assigned to one welding robot, the position of the welding torch can be moved other than during welding operations. Since no movement occurs, the working time can also be shortened.
 図25に示す例では、図面上側に溶接用ロボット30aが設置され、下側に溶接用ロボット30bが設置されている。また溶接対象部材201,202を計測した結果に基づいて、溶接順序決定部3411は、自動溶接を行わないエリア(NGエリア)と判断されるエリアCが中央の1箇所(点線枠内)、エリアCの上下両側に優先度の低いエリアBが2箇所(実線枠内)を決定する例を示している。エリアCは自動溶接NGのエリアであるため、エリアCには作業経路は設定されず、上側エリアBに設定される作業経路20aが溶接用ロボット30aに割り当てられ、下側エリアBに設定される作業経路20bが溶接用ロボット30bに割り当てられる。このように、自動溶接を行わないエリアCと、自動溶接を行うエリアA又はBが混在する場合には、エリアC以外のエリアに対して設定される作業経路が、各溶接用ロボットに割振られるため、自動溶接を行うことができないギャップ距離が大きなエリアCを含む場合であっても、ギャップ距離が小さいエリアのみ自動溶接を行うことができる。 In the example shown in FIG. 25, a welding robot 30a is installed on the upper side of the drawing, and a welding robot 30b is installed on the lower side. Furthermore, based on the results of measuring the members 201 and 202 to be welded, the welding order determining unit 3411 determines that area C, which is determined to be an area in which automatic welding is not performed (NG area), is located at one location in the center (within the dotted line frame); An example is shown in which two low-priority areas B (within the solid line frame) are determined on both sides of the top and bottom of C. Since area C is an area where automatic welding is not possible, no work route is set in area C, and the work route 20a set in upper area B is assigned to the welding robot 30a and set in lower area B. Work path 20b is assigned to welding robot 30b. In this way, if there is a mixture of area C where automatic welding is not performed and area A or B where automatic welding is performed, the work route set for areas other than area C is allocated to each welding robot. Therefore, even if the area C includes a large gap distance where automatic welding cannot be performed, automatic welding can be performed only in areas where the gap distance is small.
 三次元CADデータに基づいて複数の溶接用ロボットに対する作業割振りを予め設定することは特許文献1などにも開示されているが、現実には溶接対象部材の形状や位置は、三次元CADデータの理想的な形状や位置からズレが生じているため、必ずしも最適な作業割振りとはなっていなかったが、上述した実施形態で説明したように、計測用ロボットにより溶接対象部材の実際の形状を計測し、溶接予定箇所の位置やギャップ距離を考慮して、複数の溶接用ロボットへの作業の割振りを行うため、現実の溶接対象部材の状態に適した溶接作業の割振りを行うことが可能となる。 Setting work assignments to multiple welding robots in advance based on three-dimensional CAD data is disclosed in Patent Document 1, etc., but in reality, the shape and position of the welding target member are determined based on the three-dimensional CAD data. As there were deviations from the ideal shape and position, the work allocation was not necessarily optimal, but as explained in the above embodiment, the actual shape of the part to be welded was measured by the measuring robot. However, since work is allocated to multiple welding robots taking into consideration the position of the planned welding location and gap distance, it is possible to allocate welding work that is appropriate for the actual condition of the parts to be welded. .
 上述した実施形態では、図1に示すように、計測制御部24は、計測用ロボット20と直接通信せず、計測用ロボット制御部を介して計測用ロボットと計測指令信号や計測データのやり取りを行い、また、作業分配部34は、溶接用ロボット30と直接通信せず、溶接用ロボット制御部33を介して溶接用ロボットと溶接指令信号や溶接実績データのやり取りを行う例を示した。このような構成とすることで、既存の各ロボットと当該ロボットの制御部にハードウェアやソフトウェアを変更することなく、計測制御部24や作業分配部34の外部機器を組み込むことにより、溶接システムを構築することが可能となる。 In the embodiment described above, as shown in FIG. 1, the measurement control unit 24 does not directly communicate with the measurement robot 20, but exchanges measurement command signals and measurement data with the measurement robot via the measurement robot control unit. Furthermore, an example has been shown in which the work distribution section 34 does not directly communicate with the welding robot 30, but exchanges welding command signals and welding performance data with the welding robot via the welding robot control section 33. With this configuration, the welding system can be improved by incorporating external equipment such as the measurement control section 24 and the work distribution section 34 without changing the hardware or software of each existing robot and the control section of the robot. It becomes possible to construct.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is for facilitating the understanding of the present invention, and is not intended to be interpreted as limiting the present invention. The present invention may be modified and improved without departing from the spirit thereof, and the present invention also includes equivalents thereof.
 上述した実施形態では、ロボットアームを用いて溶接を行う溶接システムに本発明を適用する実施例を説明したが、本発明は溶接の用途に限らず、シーリング作業や接着作業などの二つの部材の境界部分に対して接着等の他の作業を含む作業システムにおいても本発明を適用することは可能であり、その場合には、溶接トーチは、シーリング剤又は接着剤を吐出する吐出部に置き換えることが可能であり、本明細書における作業ノズル部とは、溶接トーチや吐出部を含む意味に解釈するものとする。また、溶接以外の作業を含む場合には、本明細書における「溶接パス」は「作業経路」に置き換えて解釈できるものとする。 In the embodiment described above, an example in which the present invention is applied to a welding system that performs welding using a robot arm has been described, but the present invention is not limited to welding applications, but can also be applied to sealing work, bonding work, etc. It is also possible to apply the present invention to a work system that includes other work such as gluing on the boundary part, and in that case, the welding torch may be replaced with a discharge part that discharges sealant or adhesive. is possible, and the working nozzle section in this specification shall be interpreted to include a welding torch and a discharge section. Furthermore, when work other than welding is included, "welding path" in this specification can be interpreted as being replaced with "work route".
 最後に、本発明の実施の形態を図面及び対応する記載等を用いて以下に総括する。 Finally, embodiments of the present invention will be summarized below using drawings and corresponding descriptions.
(請求項1)
 対象部材を溶接又は接合する作業を実行する作業システムであって、
 前記対象部材の形状を計測する計測用ロボット(20)と、
 前記対象部材に対する前記作業を実行する複数の作業用ロボットと、
前記計測用ロボット(20)により計測した計測データに基づいて作業位置の情報を含む作業経路(200)を生成する作業経路(200)生成部(2415)と、
 前記作業経路(200)を複数に分割し、分割後の前記作業経路(200)を前記複数の作業用ロボットに分配する作業分配部(34)と、を備える、作業システム。
(請求項2)
 請求項1に記載の作業システムにおいて、
 前記計測用ロボット(20)により計測した計測データは前記対象部材の間のギャップ距離を含む、作業システム。
(請求項3)
 請求項2に記載の作業システムにおいて、
 前記作業分配部(34)が前記複数の作業用ロボットに分配する前記作業経路(200)は、前記ギャップ距離が所定値よりも短い前記作業経路(200)を、前記ギャップ距離が前記所定値よりも長い前記作業経路(200)よりも先に作業する作業経路(200)である、作業システム。
(請求項4)
 請求項1ないし3に記載の作業システムにおいて、
 前記複数の作業用ロボットの特性を記憶するロボット特性記憶部(3423)を備え、
 前記作業分配部(34)は、前記特性に基づいて推定される各作業用ロボットの動作距離又は動作時間が前記複数の作業用ロボットの間で略均一となるように、前記作業経路(200)を前記作業用ロボットに分配する、作業システム。
(請求項5)
 請求項1ないし4に記載の作業システムにおいて、
前記複数の作業用ロボット毎の動作距離又は動作時間の履歴情報を記憶する作業履歴記憶部(3424)を備え、
 前記作業分配部(34)は、前記履歴情報に基づいて、前記動作距離又は前記動作時間の累積値の差が減少するように、前記作業経路(200)を前記作業用ロボットに分配する、作業システム。
(請求項6)
 請求項1ないし5に記載の作業システムにおいて、
 前記計測用ロボット(20)の座標系と前記作業用ロボットの座標系を同一座標系とする、作業システム。
(請求項7)
 請求項1ないし6に記載の作業システムにおいて、
前記計測用ロボット(20)により計測した前記計測データは、前記対象部材の三次元点群データである、作業システム。
(請求項8)
 対象部材を溶接又は接合する作業を実行するシステムを用いた作業方法であって、
 1台又は複数台の計測用ロボット(20)により前記対象部材の形状を計測し、
 前記計測用ロボット(20)により計測した計測データに基づいて作業位置の情報を含む作業経路(200)を生成し、
 前記作業経路(200)を複数に分割して、分割後の前記作業経路(200)を前記複数の作業用ロボットに分配する、作業方法。
(Claim 1)
A work system that performs work to weld or join target members,
a measuring robot (20) that measures the shape of the target member;
a plurality of work robots that perform the work on the target member;
a work route (200) generation unit (2415) that generates a work route (200) including work position information based on measurement data measured by the measurement robot (20);
A work system comprising: a work distribution unit (34) that divides the work route (200) into a plurality of parts and distributes the divided work route (200) to the plurality of work robots.
(Claim 2)
The working system according to claim 1,
A work system, wherein the measurement data measured by the measurement robot (20) includes a gap distance between the target members.
(Claim 3)
The working system according to claim 2,
The work route (200) that the work distribution unit (34) distributes to the plurality of work robots includes the work route (200) in which the gap distance is shorter than the predetermined value, and the work route (200) in which the gap distance is shorter than the predetermined value. A work system in which a work route (200) is operated before the work route (200), which is also longer.
(Claim 4)
The working system according to claims 1 to 3,
comprising a robot characteristic storage unit (3423) that stores characteristics of the plurality of working robots;
The work distribution unit (34) distributes the work path (200) so that the operation distance or operation time of each work robot estimated based on the characteristics is approximately uniform among the plurality of work robots. A work system that distributes the work robot to the work robot.
(Claim 5)
The work system according to claims 1 to 4,
comprising a work history storage unit (3424) that stores history information of the operation distance or operation time of each of the plurality of work robots,
The work distribution unit (34) distributes the work route (200) to the work robots based on the history information so that the difference in the cumulative value of the movement distance or the movement time is reduced. system.
(Claim 6)
The work system according to claims 1 to 5,
A work system in which a coordinate system of the measurement robot (20) and a coordinate system of the work robot are the same coordinate system.
(Claim 7)
The working system according to claims 1 to 6,
The work system, wherein the measurement data measured by the measurement robot (20) is three-dimensional point group data of the target member.
(Claim 8)
A work method using a system for performing work of welding or joining target members, the method comprising:
Measuring the shape of the target member using one or more measuring robots (20),
generating a work route (200) including information on a work position based on measurement data measured by the measurement robot (20);
A working method, wherein the working route (200) is divided into a plurality of parts, and the divided working route (200) is distributed to the plurality of working robots.
  1:入出力部、 2:溶接対象物、 3:コントローラ、 10:プロセッサ、
 11:メモリ、 12:ストレージ、 13:送受信部、 15:バス、
 20:計測用ロボット、 21、31:アーム、 22:センサ、
 23:計測用ロボット制御部、 24:計測制御部、 30:溶接用ロボット、
 32:溶接トーチ、 33:溶接用ロボット制御部、 34:作業分配部、
 200:作業経路、 201、202:溶接対象部材、 220:円弧、
 100:溶接システム、 2410、3410:溶接条件設定部、
 2420、3420:記憶部、 2411:計測条件決定部、
 2412:点群データ取得部、 2413:ギャップ計測部、
 2414:溶接トーチ位置・角度決定部、 2415:作業経路生成部、
 2421:計測条件記憶部、 2422:三次元CADデータ記憶部、
 2423:計測点群データ記憶部、 2424:トーチ位置・角度条件記憶部、
 2425:ギャップ記憶部、 2426:作業経路記憶部、
 3411:溶接順序決定部、 3412:溶接作業割振決定部、
 3413:溶接実行指示部、 3421:溶接優先度記憶部、
 3422:分配条件記憶部、 3423:ロボット特性記憶部、
 3424:作業履歴記憶部
 
 
1: Input/output section, 2: Welding object, 3: Controller, 10: Processor,
11: Memory, 12: Storage, 13: Transmission/reception section, 15: Bus,
20: Measuring robot, 21, 31: Arm, 22: Sensor,
23: Measurement robot control unit, 24: Measurement control unit, 30: Welding robot,
32: Welding torch, 33: Welding robot control section, 34: Work distribution section,
200: Working path, 201, 202: Welding target member, 220: Arc,
100: Welding system, 2410, 3410: Welding condition setting section,
2420, 3420: Storage unit, 2411: Measurement condition determination unit,
2412: Point cloud data acquisition unit, 2413: Gap measurement unit,
2414: Welding torch position/angle determining unit, 2415: Working route generating unit,
2421: Measurement condition storage unit, 2422: Three-dimensional CAD data storage unit,
2423: Measurement point group data storage unit, 2424: Torch position/angle condition storage unit,
2425: Gap storage unit, 2426: Work route storage unit,
3411: Welding order determining unit, 3412: Welding work allocation determining unit,
3413: Welding execution instruction section, 3421: Welding priority storage section,
3422: Distribution condition storage unit, 3423: Robot characteristics storage unit,
3424: Work history storage unit

Claims (8)

  1.  対象部材を溶接又は接合する作業を実行する作業システムであって、
     前記対象部材の形状を計測する計測用ロボットと、
     前記対象部材に対する前記作業を実行する複数の作業用ロボットと、
    前記計測用ロボットにより計測した計測データに基づいて作業位置の情報を含む作業経路を生成する作業経路生成部と、
     前記作業経路を複数に分割し、分割後の前記作業経路を前記複数の作業用ロボットに分配する作業分配部と、を備える、作業システム。
    A work system that performs work to weld or join target members,
    a measuring robot that measures the shape of the target member;
    a plurality of work robots that perform the work on the target member;
    a work route generation unit that generates a work route including work position information based on measurement data measured by the measurement robot;
    A work system comprising: a work distribution unit that divides the work route into a plurality of parts and distributes the divided work route to the plurality of work robots.
  2.  請求項1に記載の作業システムにおいて、
     前記計測用ロボットにより計測した計測データは前記対象部材の間のギャップ距離を含む、作業システム
    The working system according to claim 1,
    The measurement data measured by the measurement robot includes a gap distance between the target members, and the work system
  3.  請求項2に記載の作業システムにおいて、
     前記作業分配部が前記複数の作業用ロボットに分配する前記作業経路は、前記ギャップ距離が所定値よりも短い前記作業経路を、前記ギャップ距離が前記所定値よりも長い前記作業経路よりも先に作業する作業経路である、作業システム。
    The working system according to claim 2,
    The work route that the work distribution unit distributes to the plurality of work robots includes the work route where the gap distance is shorter than the predetermined value, and the work route where the gap distance is longer than the predetermined value. A work system, which is a work route.
  4.  請求項1又は2に記載の作業システムにおいて、
     前記複数の作業用ロボットの特性を記憶するロボット特性記憶部を備え、
     前記作業分配部は、前記特性に基づいて推定される各作業用ロボットの動作距離又は動作時間が前記複数の作業用ロボットの間で略均一となるように、前記作業経路を前記作業用ロボットに分配する、作業システム。
    The work system according to claim 1 or 2,
    comprising a robot characteristic storage unit that stores characteristics of the plurality of work robots,
    The work distribution unit distributes the work path to the work robots so that the operating distance or operation time of each work robot, which is estimated based on the characteristics, is approximately uniform among the plurality of work robots. Distribute, work system.
  5.  請求項1又は2に記載の作業システムにおいて、
    前記複数の作業用ロボット毎の動作距離又は動作時間の履歴情報を記憶する作業履歴記憶部を備え、
     前記作業分配部は、前記履歴情報に基づいて、前記動作距離又は前記動作時間の累積値の差が減少するように、前記作業経路を前記作業用ロボットに分配する、作業システム。
    The work system according to claim 1 or 2,
    comprising a work history storage unit that stores history information of the working distance or working time of each of the plurality of working robots,
    The work distribution unit is configured to distribute the work route to the work robots based on the history information so that a difference in cumulative values of the movement distance or the movement time is reduced.
  6.  請求項1又は2に記載の作業システムにおいて、
     前記計測用ロボットの座標系と前記作業用ロボットの座標系を同一座標系とする、作業システム。
    The work system according to claim 1 or 2,
    A work system in which a coordinate system of the measurement robot and a coordinate system of the work robot are the same coordinate system.
  7.  請求項1又は2に記載の作業システムにおいて、
    前記計測用ロボットにより計測した前記計測データは、前記対象部材の三次元点群データである、作業システム。
    The work system according to claim 1 or 2,
    The work system wherein the measurement data measured by the measurement robot is three-dimensional point group data of the target member.
  8.  対象部材を溶接又は接合する作業を実行するシステムを用いた作業方法であって、
     1台又は複数台の計測用ロボットにより前記対象部材の形状を計測し、
     前記計測用ロボットにより計測した計測データに基づいて作業位置の情報を含む作業経路を生成し、
     前記作業経路を複数に分割して、分割後の前記作業経路を前記複数の作業用ロボットに分配する、作業方法。
     
    A work method using a system for performing work of welding or joining target members, the method comprising:
    Measuring the shape of the target member using one or more measuring robots,
    Generating a work route including information on work positions based on measurement data measured by the measurement robot,
    A working method, wherein the working route is divided into a plurality of parts, and the divided working route is distributed to the plurality of working robots.
PCT/JP2023/019185 2022-05-24 2023-05-23 Work system, and work method WO2023228946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084464 2022-05-24
JP2022084464A JP2023172561A (en) 2022-05-24 2022-05-24 Work system and work method

Publications (1)

Publication Number Publication Date
WO2023228946A1 true WO2023228946A1 (en) 2023-11-30

Family

ID=88919408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019185 WO2023228946A1 (en) 2022-05-24 2023-05-23 Work system, and work method

Country Status (2)

Country Link
JP (1) JP2023172561A (en)
WO (1) WO2023228946A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836409A (en) * 1994-07-25 1996-02-06 Nissan Motor Co Ltd Method for determining work allotment of robot
JP2020104239A (en) * 2018-12-28 2020-07-09 川崎重工業株式会社 Work plan creation method and work plan creation device for robot
JP2021137953A (en) * 2020-05-28 2021-09-16 リンクウィズ株式会社 Information processing method, information processing system, and program
JP2022031083A (en) * 2020-08-07 2022-02-18 リンクウィズ株式会社 Information processing method, information processing system, and program
JP7079047B1 (en) * 2022-01-24 2022-06-01 リンクウィズ株式会社 Work system, work method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836409A (en) * 1994-07-25 1996-02-06 Nissan Motor Co Ltd Method for determining work allotment of robot
JP2020104239A (en) * 2018-12-28 2020-07-09 川崎重工業株式会社 Work plan creation method and work plan creation device for robot
JP2021137953A (en) * 2020-05-28 2021-09-16 リンクウィズ株式会社 Information processing method, information processing system, and program
JP2022031083A (en) * 2020-08-07 2022-02-18 リンクウィズ株式会社 Information processing method, information processing system, and program
JP7079047B1 (en) * 2022-01-24 2022-06-01 リンクウィズ株式会社 Work system, work method

Also Published As

Publication number Publication date
JP2023172561A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
CN110153534B (en) Multilayer and multi-path robot welding path planning method and system suitable for welding deformation
Tavares et al. Collaborative welding system using BIM for robotic reprogramming and spatial augmented reality
CN111014879B (en) Automatic welding method for corrugated plate of robot based on laser weld seam tracking
JP5144785B2 (en) Method and apparatus for predicting interference between target region of robot and surrounding object
CN109029453B (en) Cladding head posture path planning method, device, terminal, storage medium and system
US20140008415A1 (en) Welding system and method for automatic welding
CN106994545B (en) Setting support device and setting support method
WO2023140366A1 (en) Work system and work method
WO2023234291A1 (en) Welding system and welding method
WO2023234289A1 (en) Welding system and welding method
JP2019513557A (en) Method, system and apparatus for determining search parameters for weld seam point calibration
WO2023228946A1 (en) Work system, and work method
WO2023234290A1 (en) Work path generation system and work path generation method
US20220288625A1 (en) Sealing robot
Kuss et al. Automated planning of robotic MAG welding based on adaptive gap model
CN105537820A (en) Welding system and welding method
US20170173732A1 (en) Controller with drop prevention function for gap control axis
US20230001582A1 (en) Control device, inspection system, control method, and storage medium
WO2023027068A1 (en) Weld inspection method, weld inspection system, and weld inspection program
US20220297241A1 (en) Repair welding device and repair welding method
JPH09164483A (en) Automatically deciding system for welding route
JP2007307612A (en) Automatic welding method and automatic welding equipment, and reference tool used for automatic welding
JP2001105137A (en) Off-line teaching device for welding and method of manufacturing for large structure using the device
CN109304543B (en) Double-beam laser welding control method based on bilateral reference
JP2020049614A (en) Control device for controlling robot and robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811818

Country of ref document: EP

Kind code of ref document: A1